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The purpose of this study was to investigate the performance of different 

approaches in analyzing multigroup multidimensional binary data under different 

conditions. Two multidimensional Item Response Theory (MIRT) methods 

(concurrent MIRT calibration and separate MIRT calibration with linking) and one 

factor analysis method (concurrent factor analysis calibration) were examined. The 

performance of the unidimensional IRT method compared to its multidimensional 

counterparts was also investigated.   

The study was based on simulated data. Common-item nonequivalent groups 

design was employed with the manipulation of four factors: the structural 

orthogonality, the equivalence of test structure, the equivalence of item difficulty, and 

the equivalence of examinee groups. The performance of the methods was evaluated 

based on the recovery of the item parameters and the estimation of the true score of 

the examinees.  

The results indicated that, in general, the concurrent factor analysis method 

performed as well as, sometimes even better than, the two MIRT methods in 

recovering the item parameters. However, in estimating the true score of examinees, 



the concurrent MIRT method usually performed better than the concurrent factor 

analysis method. The results also indicated that the unidimensional IRT method was 

quite robust to the violation of unidimensionality assumption.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background and Research Questions  

In educational assessments, multigroup analysis has been widely applied in 

equating, vertical scaling, differential item functioning (DIF) analysis, and two-stage 

testing. According to Bock and Zimowski (1996):  

[Multigroup analysis provides] . . . a unified approach to such problems as 
differential item functioning, item parameter drift, nonequivalent groups 
equating, vertical equating, two-stage testing, and matrix-sampled educational 
assessment. The common element in these problems is the existence of 
persons from different populations responding to the same test or to tests 
containing common items . . ., the objective of the multiple-group analysis is 
to estimate jointly the item parameters and the latent distribution of a common 
attribute or ability of the persons in each of the populations (Bock & 
Zimowski, 1996, p. 433). 

  
In practice, most of the approaches applied in the multigroup analysis are 

unidimensional. However, a limitation of the unidimensional approaches is that the 

assumption of unidimensionality sometimes does not hold, even though the statistical 

analysis proves it acceptable. Most, if not all, tests measure a complex of abilities 

rather than a single one (Reckase, Ackerman, & Carlson, 1988). For example, a state 

mathematics accountability test might be developed to measure abilities on algebra, 

geometry, data and probability, measurement, and number and operations. Although 

these abilities might be related, the relationship would hardly be perfect. For example, 

two examinees with equal ability on geometry might have different abilities on 

algebra. When only one item is of interest, a unidimensional model can always work 

well because the resulting single dimension might represent a single ability or a 

composite of abilities. However, when a set of items are considered, the use of 

unidimensional models must be considered carefully (Ackerman, 1994). A variety of 
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research has been conducted to investigate the robustness of the unidimensional 

models to multidimensional data when only one group or test is considered. Reckase 

and Ackerman (1988) stated that when the same weighted composite of multiple 

abilities is measured by all items of a test, the test can be treated as unidimensional. 

Wang (1986) and Dickenson (2005) showed that when using a unidimensional IRT 

model analyzing multidimensional data, the resulting single dimension is actually a 

linear composite of the multiple dimensions. Min (2003) summarized three different 

conditions under which applying unidimensional models is appropriate: 1) both 

examinee’s ability and test item characteristics are varying on one dimension as 

assumed in the model; 2) examinee ability varies only on one ability dimension even 

though test items are measuring more than one ability; 3) examinee abilities are 

different on multiple ability dimensions but all items are measuring the same 

composite of abilities. In other conditions that cannot be categorized as one of the 

three above, applying unidimensional models might be problematic. Studies have 

shown that when the multidimensional data are modeled under the unidimensional 

assumption, measurement error will increase and the inferences from the results 

would be problematic (Ackerman, 1994; Baker, 1992; Reckase, 1985, 1995).  

In multigroup analysis, the application of unidimensional models should be 

considered even more carefully than in the single group analysis because not only the 

structure of the test in each group could be multidimensional, but the dimensions in 

the test structure could change across groups. Again, use the state mathematics 

accountability test as an example to illustrate this situation, as is shown in Figure 1-1. 

The figure describes the content specification of the test in Grades 3 through 8.  In 

Grade 3, the test is developed to measure geometry, algebra, number and operation. 

From Grade 4, one additional ability, data and probability, is added in the test. In 
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Grade 7 and Grade 8, another additional ability, measurement, is tested. However, in 

Grade 8, algebra is no longer tested. From this example, we can see that the test at 

each grade measures multiple abilities and the abilities are not consistent across 

grades. Even when the test at Grades 4 to 6 measure the same four abilities, the 

measurement emphases on these four abilities are not same for different grades. Under 

this condition, using a unidimensional model might not be able to capture the changes 

in the test structure, and therefore, the illustration of the test results based on the 

unidimensional model would be problematic.   

 

 

 

 

 

 

 

 

 

Figure 1-1 Content Specification in a Grade 3-8 Mathematics Assessment Blueprint 

(Martineau, 2006) 

 

To solve this problem, multidimensional approaches have been proposed for 

multigroup analysis. Multidimensional Item Response Theory (IRT) methods and 

factor analysis methods are two important ones. IRT methods have been widely 

applied in analyzing the tests where the items are scored dichotomously (0 vs. 1) or 

polytomously (e.g., 0, 1, 2) (Kolen & Brennan, 2005). Although factor analysis 
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models are often applied in the situations in which the indicators are treated as 

continuous (e.g., the total score of a test or the score of a testlet), they can also be 

applied to analyze categorical, dichotomous or polytomous, item response data (Bock 

& Aitkin, 1981; Chirstoffersson, 1975; Horst, 1965; McDonald, 1967; Muthén, 1978). 

Both IRT methods and factor analysis methods provide powerful tools to describe the 

relationship between item responses and the latent traits, as well as estimate the 

relative amount of the latent traits of the examinees. If multiple traits are measured by 

the test, some factor analysis models (Structural Equation Modeling models) can also 

describe the causal relationship between the latent traits. IRT methods, however, do 

not provide this kind of information. The discussion of causal relationship between 

latent traits is beyond the scope of this study. Although IRT and factor analysis 

methods belong to different traditions, they are highly related (Glockner-Rist & 

Hoijtink, 2003; Knol & Berger, 1991; Reckase, 1997; Takane & de Leeuw, 1987). 

According to Takane and de Leeuw (1987), when the latent traits are normally 

distributed, IRT and factor analysis models are equivalent. The performance of IRT 

and factor analysis methods in single group analysis has been investigated in previous 

literature (Glockner-Rist & Hoijtink, 2003; Knol & Berger, 1991). But there have 

been few studies that investigate the performance of the two methods in multigroup 

analysis.   

How do IRT methods and factor analysis methods perform in multigroup 

analysis? How is the performance of these methods affected by the characteristics of 

the tests? Do multidimensional methods have evident advantages over the 

unidimensional counterparts in analyzing multidimensional data?  These are the 

questions this study explores.  
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1.2 Group Invariance and Scale Indeterminacy in Multigroup Analysis 

One important assumption of multigroup analysis is measurement invariance. 

That is, the parameters of any given item are the same for all groups. Rupp and 

Zumbo (2006) stated that:  

. . . for inferences to be equally valid for different populations of examinees or 
different measurement conditions, parameters in the psychometric models 
used for data analysis need to be invariant; if parameters are not invariant, the 
statistical foundation for inferences is not identical across the populations or 
measurement conditions, and hence the inferences are not generalizable across 
those to the same degree (Rupp & Zumbo, 1996, p. 64).  
 
If the assumption of measurement invariance is violated, it might indicate the 

presence of differential item functioning (DIF) (the parameters of a given item are 

different across the groups formed by gender or other demographic features), or item 

parameter drift (IPD) (the parameters of a given item change over subsequent 

occasions) (Goldstein, 1983).  

When the parameters are estimated separately for each group, the estimate of 

the parameters of the same item might be different across groups. However, one 

cannot simply conclude that measurement invariance does not hold because scale 

difference (using a different scale measuring the parameters in different groups) can 

also lead to such discrepancy. A frequently cited example of this situation is 

measuring temperature using different scales. Assume one person uses the Fahrenheit 

scale and reads the temperature as 32o, whereas another one uses the Celsius scale and 

reads the temperature as 0o. The difference between the two reads does not indicate 

that the temperature is different. It is just a result of scale difference.  

In IRT and factor analysis models, the scale of item or person parameters is 

quite arbitrary. In the unidimensional models, the origin and unit can be set at any 

value without changing the fit of the model. This is often referred to as scale 

indeterminacy: the scale of parameters is determined only up to a linear 
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transformation (Oshima et al., 2000). In most cases, a scale is selected so that the 

mean and standard deviation of the latent traits are 0 and 1 (Zimowski, 2003), which 

is called standardization. In multigroup analysis, when the distribution of the latent 

traits is not equivalent across groups, standardization within each group might result 

in different scales for different groups. Under this condition, the parameters estimated 

from different groups can not be compared directly. What’s more important, the 

inference made based on the parameter estimates in one group may not be generalized 

to other groups. The scale indeterminacy problem in multidimensional models is more 

complicated than that in unidimensional models. In addition to the indeterminacy of 

origin and scale, multidimensional models have an additional indeterminacy, rotation 

indeterminacy, the direction the dimensions can be rotated in the ability space without 

changing the model fit (Li & Lissitz, 2000; Min, 2003; Reckase & Martineau, 2004). 

To solve the problems caused by scale difference, a common scale for all 

groups is needed. One approach to achieving a common scale is to estimate the 

parameters simultaneously for all groups and constrain the parameters of the same 

item to be equal across groups. This method is often referred to as the concurrent 

calibration. Another approach is to estimate the parameters separately for each group 

and then rescale the parameters onto the common scale. This method is often referred 

to as the separate calibration and the process of rescaling is often referred to as 

linking. Figure 1-2 (from Min, 2003, with some changes) illustrates the scale 

transformation in (a) unidimensional and (b) multidimensional models. In the figure, 

Scale B  is used as the common scale or base scale to which Scale E  is transformed. 

BO  is the origin for Scale B  and EO  is the origin for Scale E . The unit for Scale B  

is the segment between point BO  and BU , and that for Scale E is the segment 

between point EO  and EU . During scale transformation, the origin of Scale E  is 
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shifted to Scale B  by translation, the unit of Scale E  is adjusted to Scale B  by 

dilation, and for multidimensional linking, the coordinate system of Scale E  is 

aligned with that of Scale B  through rotation.  

 

Figure 1-2 Linking in (a) unidimensional  

 and (b)multidimensional  models (resource: Min, 2003) 

 

Both concurrent calibration and separate calibration have their merits and 

limits. One prominent advantage of concurrent calibration is that it estimates the 

parameters for all groups at one time, and there is no need for linking (Kolen & 

Brennan, 2004). Studies also indicated that for unidimensional models, concurrent 
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calibration produces less biased and more stable estimate than separate calibration 

when the data fit the model (Hanson & Béguin, 2002; Kim, 2004; Kim & Cohen, 

1998; Spence, 1996; Yao & Mao, 2004). However, one limit of concurrent calibration 

is that it has a higher requirement on both the computer program and computer 

capacity than separate calibration.  

When the parameter estimates are put on a common scale, further analysis can 

be conducted. For example, scores from parallel forms of a test can be equated 

(equating), or the growth of the examinees can be evaluated through a battery of tests 

scanning several years.   

 

1.3 Multigroup Unidimensional Analysis 

1.3.1 Unidimensional IRT (UIRT) methods 

 There are a variety of unidimensional IRT models. For example, the models 

for binary (dichotomous) data include Rasch model, two-parameter logistic model (2-

PLM), three-parameter logistic model (3-PLM), and Normal-ogive model. The 

models for polytomous data include partial credit model and graded response model.  

Mislevy (1987) and Bock and Zimowski (1996) described the multigroup IRT 

procedures for concurrently estimating item and ability parameters for all groups 

using the maximum marginal likelihood (MML) method (Bock & Aitkin, 1981; Bock 

& Lieberman, 1970). During the process of estimation, the item parameters are 

estimated over all groups whereas the ability distribution is estimated separately for 

each group so that they can be different when the groups are nonequivalent. The 

procedures have been incorporated in the computer program BILOG-MG (Zimowski, 

Muraki, Mislevy, &Bock, 1996) for dichotomous data and in PARSCALE (Muraki & 

Bock, 1991) and PARDUX (Burket, 2002) for polytomous data.  
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Several programs have been developed for separate calibration, such as 

LOGIST (Wingersky, Barton, Lord, 1982) and BILOG 3 (Mislevy & Bock, 1990). 

When the parameters are estimated separately for each group, the estimates from 

different groups need to be linked. Usually, one group is selected as the reference 

group and the scale of parameters in the reference group is treated as the base scale, 

onto which the parameter estimated from other groups are transformed through some 

transformation equations.  

A variety of studies have been conducted to compare unidimensional 

concurrent and separate calibration (Béguin & Hanson, 2001; Béguin, Hanson, & 

Glas, 2000; Hanson & Béguin, 2002; Kim, 2004; Kim & Cohen, 1998; Spence, 1996). 

These studies suggested that when the data fit the IRT model, concurrent calibration 

produced less biased and more stable estimate than separate calibration. However, 

when the data violate the assumption of unidimensionality, the advantage of 

concurrent estimation is questionable. Some studies (Béguin & Hanson, 2001; Béguin, 

Hanson, & Glas, 2001; Yao & Mao, 2004) indicated that, while doing equating, the 

separate calibration might be more robust to multidimensionality than the concurrent 

calibration. However, some other studies (Kim, 2004; Spence, 1996) came to the 

opposite conclusion.  

 

1.3.2 Uni-factor Analysis Models 

The unidimensional normal-ogive IRT model (Bock & Lieberman, 1970) and 

the general multigroup factor analysis methods for continuous variables (Jöreskog, 

1971; Sörbom, 1974) are two origins of multigroup uni-factor analysis models. 

Multigroup factor analysis methods for continuous data concurrently estimate the 

parameters by constraining the parameters (factor loadings and thresholds) of the 
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same item to be equal across groups and allow the ability distribution to be different 

for nonequivalent groups, which is illustrated in Figure 1-3, where θ  is the ability 

measured by the items; the double-headed arched arrow represents the variance of θ ; 

the one-headed arrows from θ  to the items represent the factor loadings, which depict 

the relationship between the item responses and the latent trait; and the equal sign 

indicates that the parameters of given common item are constrained to be equal across 

groups during the process of estimation. For categorical data, factor analysis methods 

assume that there is a latent continuous variable underlying each categorical variable. 

The categorical data are formed by categorizing the latent continuous variable based 

on the threshold(s). In multigroup analysis, the threshold(s) for each common item 

should be equal across groups. The details of this method are discussed in the next 

chapter. The multigroup factor analysis can be carried out in the computer programs 

such as LISREL (Jöreskog & Sörbom, 2004), Mplus (Muthén & Muthén, 2006), and 

EQS (Bentler, 2004). 

 

Figure 1-3 Multigroup unidimensional factor analysis 

 

Group 1 

Group 2 

Common Items Unique Items in Group1 
…… …… 

Common Items Unique Items in Group2 
…… …… 

 θ

= = 

 θ

= = 
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In educational assessment, factor analysis methods are less frequently applied 

than IRT methods in unidimensional analysis, perhaps because, in practice, one of the 

main purposes of using factor analysis methods is to explore the dimensionality 

structure of the items, whereas that of using IRT methods is to explore the interaction 

between item response and the latent trait.  

 

1.4 Multigroup Multidimensional Analysis 

1.4.1 Multidimensional IRT (MIRT) models  

 Most of the MIRT models are derived by generalizing their unidimensional 

counterparts to multidimensional models. The examples include the multidimensional 

2-PLM, multidimensional 3-PLM, and multidimensional Normal-ogive model, for 

binary (dichotomous) data; multidimensional partial credit model，and 

multidimensional graded response model for polytomous data.  

Concurrent calibration of the MIRT models in multigroup analysis can be 

carried out by a Bayesian based approach proposed by Yao (2003, 2004) which 

employs Markov Chain Monte Carlo (MCMC) methods to estimate the paramters. 

The procedure has been implemented in a computer program BMIRT (Yao, 2003).  

In separate calibration, the parameters of MIRT models are first estimated for 

each group by computer programs, such as TESTFACT or NOHARM (note that 

BMIRT can also do separate calibration).  Then the parameters estimated from 

different groups are linked to a common scale. Several approaches have been 

proposed for MIRT scale linking. Davey and his colleagues (Davey, Oshima, & Lee, 

1996; Oshima, Davey, & Lee, 2000) proposed four procedures for multidimensional 

scale linking, three of which were implemented in computer program IPLINK (Lee & 

Oshima, 1996). Davey et al. ’s (1996, 2000) methods allow oblique rotation of the 
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latent structure so that the rotation matrix is supposed to adjust both the unit and the 

orientation of the dimensions. Li and Lissitz (2000) proposed three transformation 

procedures from a different perspective than the Davey et al.’s (1996, 2000) methods. 

In their procedures, it is assumed that the dimensions are orthogonal (not assumed in 

Davey et al.’s procedures), and only orthogonal rotation is allowed. In Li and Lissitz’s 

(2000) approach the work of rotation in Davey et al.’s (1996, 2000) procedures is split 

into two parts, where the Procrustes orthogonal rotation matrix adjusts the orientation 

of the dimensions and a dilation scalar adjust the unit. The three procedures were 

implemented in the program MDEQUATE (Li, 1996). Min (2003) extended Li and 

Lissitz’s (2000) approach by allowing the unit dilation to be different for different 

dimensions. Min’s (2003) approach works well when the number of dimension is low, 

but when the number of dimensions is high, the computational burden becomes 

unfeasible (Reckase & Martineau, 2004). To address this flaw, Reckase and Martineau 

(2004) employed a non-orthogonal Procrustes transformation approach (Mulaik, 

1972), which automatically aligns each dimension of the original matrix to the target 

matrix (the base matrix) without assuming orthogonality. This approach eliminates the 

need for a dilation parameter without causing a scale indeterminacy problem. From 

this point, Reckase and Martineau’s (2004) procedure is similar to Davey et al.’s 

(1996, 2000), although they use somewhat different methods to determine the 

transformation equation. Yon and Reckase (2005) compared Davey et al.’s (1996, 

2000) procedure and Reckase and Martineaus’s (2004) procedure in the performance 

of MIRT parameter recovery in multigroup analysis. They found that for the mixed 

structure data (the item measures more than one dimensions) Reckase and 

Martineau’s (2004) non-orthogonal Procrustes procedure works to some degree better 

than Davey et al.’s (1996, 2000).  
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1.4.2 Multi-factor analysis models 

Present in literature, most of the factor analysis models are multi-factor ones. 

As has been discussed earlier, multi-factor analysis can not only explore the 

interaction between the observed data and the latent traits, but also provide more 

flexibilities than IRT models in analyzing the connection among the latent traits.  

The procedure employed by multi-factor analysis models in multigroup 

analysis is similar to that used in uni-factor analysis. Figure 1-4 illustrates the 

concurrent estimation of parameters in multigroup multidimensional factor analysis. 

The equal signs indicate that the factor loading for the same item is constrained to be 

equal across groups. The programs such as LISREL (Jöreskog & Sörbom, 2004), 

Mplus (Muthén & Muthén, 2006), and EQS (Bentler, 2004) can also conduct 

multigroup multidimensional analysis.  

 

Figure 1-4 Concurrent estimation in multigroup multidimensional SEM analysis 

 

Most of the multigroup factor analysis studies conducted previously assumed 

that same set of items are given to different groups (Jöreskog, 1971; Sörbom, 1974; 
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Muthén & Christoffersson, 1981). In this study, the method is extended to the 

situation where only some of the items are same between groups and each group has 

some unique items (referred to as indicator shift in Hancock et al., 2002). This is very 

common in the real testing situations. With this extension, multigroup factor analysis 

methods can then be applied in the areas where IRT methods dominate, such as 

equating and vertical scaling. 

 

1.5 Purpose of the Study 

The multidimensional nature of some multigroup assessments makes the 

application of unidimensional methods questionable. Although several 

multidimensional approaches have been proposed, the use of these methods has been 

limited in part because of the lack of knowledge with regard to which methods would 

be more appropriate under specific conditions and how these methods perform 

compared to the unidimensional methods. To date, little research has been conducted 

to explore these questions.  

The purpose of this study was to compare and evaluate the performance of 

three multigroup multidimensional methods, specifically, the concurrent MIRT 

calibration, the separate MIRT calibration with linking, and the concurrent factor 

analysis calibration, under different conditions. The performance of unidimensional 

IRT models under these conditions was also investigated and compared with its 

multidimensional counterparts.  

Note that only the models for binary (dichotomous) data were investigated in 

this study. The discussion of the models for polytomous data were beyond the scope 

of this study.  
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CHAPTER 2  

LITERATURE REVIEW 

 MULTIGROUP IRT AND FACTOR ANALYSIS METHODS  

 

In this chapter, the multigroup IRT and factor analysis methods are introduced. 

The relation between IRT and factor analysis methods is also discussed.  

 

2.1. IRT Models 

2.1.1 Unidimensional IRT (UIRT) Model and Linking 

The unidimensional two-parameter logistic (2PL) IRT model (Lord & Novick, 

1968) can be expressed as  

)(

)(

1
)1(

ii

ii

ba

ba

i e
eXP −

−

+
== θ

θ

θ ,                                        (2-1) 

where )1( θ=iXP is the probability of a correct response to item i given ability θ ; ia  

is the discrimination parameter for item i ; and ib is the difficulty parameter for item i. 

As has been discussed in Chapter 1, in the framework of IRT, the scale of 

parameters is determined only up to a linear transformation (Oshima et al., 2000). The 

probability of correct response is not altered by linear transformations (Hambleton et 

al., 1991)  

α
i

i
aa =*  ,                                                     (2-2) 

βα += ii bb* ,                                               (2-3) 

βαθθ += jj
* ,                                               (2-4) 

where α is a coefficient that adjusts the unit of the scale and β is a coefficient that 

adjusts the origin of the scale. It can be shown that 
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( ) ( )( ) ( )( ) ( )ijiij
i

ij
i

iji babababa −=−=+−+=− θθα
α

βαβαθ
α

θ )( *** .       (2-5) 

Therefore, when the IRT model holds, the scale of the parameter estimates 

from different groups are only linearly related (Kolen & Brennan, 2004). To put these 

estimates on the same scale, usually one group, for example group 1, is selected as the 

reference group and the scale of this group is used as the base scale, to which the 

parameters estimated in other groups are transformed, ( )βα , of the transformation 

equation are determined so that the parameter estimates from the other groups are as 

close as possible to the parameter estimates from group 1 after the transformation.   

 

2.1.2 The Multidimensional IRT Model  

Basically, there are two types of multidimensional IRT (MIRT) models: the 

compensatory model and the noncompensatory model. The compensatory models 

(Lord & Novick, 1968; McDonald, 1967; Reckase, 1985, 1995) allow the dimensions 

to interact: being low on one ability can be compensated for by being high on the 

other abilities to give a correct response. However, with the noncompensatory models 

(Embretson, 1984; Sympson, 1978), being low on one ability cannot be compensated 

for by being high on the other ability; one must demonstrate proficiency in all abilities 

in order to give a correct response. The current study focused on the more common 

compensatory models.  

The multidimensional compensatory two-parameter logistic (MC2PL) model 

(Reckase, 1985) can be expressed as 

)(

)(

1
)1(

ii

ii

d

d

i e
eXP +′

+′

+
== θa

θa

θ ,                                            (2-6) 

where ( )θ1=iXP  is the probability of a correct response to item i given ability θ ; θ  
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is a 1×n  vector of ability parameters, where n is the number of dimensions; ia  is a 

1×n vector of discrimination parameters; id is a scalar parameter that is related to the 

difficulty of the item. Note that  

∑
=

−=+′
n

k
ikkikii bad

1
)(θθa ,                                      (2-7) 

where ika is the k th element of ia , specifying the discrimination power of item i on 

dimension k ; kθ is the k th element of θ , specifying the ability on dimension k ; ikb  

specifies the item difficulty on dimension k , and ∑
=

−=
n

k
ikiki bad

1

.  

This model implies that the probability of a correct item response increases 

monotonically with the increase of the composite of the abilities on all dimensions. As 

the analog to the item characteristic curve (ICC) in the unidimensional IRT model, the 

relationship between the probability of correct response and the abilities can be 

graphically illustrated as an item characteristic surface (ICS). Figure 2-1 shows the 

ICS of a two dimensional MC2PL model, where 5.0,5.0,0.1 21 === daa  (Bolt & 

Lall, 2003, with the change of some notations). As can be seen from the ICS, the 

probability is more sensitive to the change of 1θ , which has a discrimination 

parameter of 1, than it is to the change of 2θ , which has a discrimination parameter 

of .5.   
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Figure 2-1 Item Response Surface (Resource: Bolt & Lall, 2003) 

 

In MC2PL model, the analog to item discrimination and item difficulty in 

unidimensional IRT models is MDISC and MID  (Reckase, 1985; Reckase & 

Mckinley, 1991). Graphically, MDISC  represents the length of the discrimination 

vector in the ability space and can be calculated as  

2
1

1

2 ⎟
⎠

⎞
⎜
⎝

⎛
=′= ∑

=

n

k
ikiii aMDISC aa .                                      (2-8) 

MID represents the signed distance from the origin of the ability space to the 

point of  the steepest slope on the ICS and can be calculated as   

i

i
i MDISC

dMID −
=  .                                                  (2-9) 

The direction of the item vector can be expressed as 

1θ        

 

1θ 2θ
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

ik
ik MDISC

aarccosα , k = 1, 2, …, n ,                                  (2-10) 

where ikα  is the angle of the item vector with dimension k for item i .  

With the information of MDISC , MID , and the direction of the item vector, 

the multidimensional items can be graphically displayed in the ability space. Note that 

if all item vectors were extended, they would pass through the origin. Figure 2-2 

provides an example of two items in a two dimensional plane. In this example, item 1 

is easier than item 2 and it has more discrimination power than item 2. Item 1 is more 

sensitive to 2θ  than to 1θ . In contrast, item 2 is more sensitive to 1θ than to 2θ .  

 

Figure 2-2 The item vectors in the ability space 

 

2.1.3 Concurrent and separate MIRT calibration methods 

BMIRT current and separate calibration  

Yao (2003) developed a program, BMIRT, which can do both separate and 

concurrent parameter estimation for multigroup multidimensional IRT models. 

BMIRT employs a Bayesian approach, which estimates the parameters based a 
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Markov chain Monte Carlo (MCMC) method (for more detail, see Yao & Daniel, 

2006). BMIRT can do both exploratory and confirmatory analysis. In exploratory 

analysis, the number of dimensions can be determined by evaluating the change of 

model fit from each additional dimension. In the confirmatory analysis, the analysis is 

conducted based on the model that has been specified. In the output, BMIRT provides 

parameter estimates, model fit indices (e.g. chi-square, AIC, BIC), estimated score 

distribution for each group, and the estimated true score for each examinee.  

In a simulation study conducted by Yao and Mao (2004) which compared the 

concurrent and separate calibration using BMIRT, it was found that the concurrent 

calibration always performed better than separate calibration.  

 

NOHARM separate MIRT calibration 

The Normal-Ogive Harmonic Analysis Robust Method (NOHARM) is a 

nonlinear item factor analysis method that can be used for single group 

multidimensional binary data analysis. The theory was developed by McDonald (1981, 

1982, 1985) and programmed by Fraser and McDonald (1988). NOHARM 

approximates the MIRT normal-ogive model by a four-term polynomial series (for 

details see McDonald, 1983). Parameters are estimated using an unweighted least 

squares estimation based on the matrix of raw product moments. NOHARM can do 

both exploratory and confirmatory analysis. In exploratory analysis, an unrestricted 

model can be specified to obtain an exploratory solution, followed by either an 

orthogonal (Varimax) or oblique (Promax) rotation. The number of dimensions can be 

determined by evaluating the change of model fit from each additional dimension. In 

confirmatory analysis, the model can be described by specifying the parameters as 

either (1) fixed, (2) free to be estimated, or (3) constrained to be equal to one or 
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several other parameters. In all cases, NOHARM provides the parameter estimates as 

well as the matrix of covariance residuals. It also gives the root mean squares for the 

residual matrix as an overall measure of misfit of the model to the data. Note that 

NOHARM does not allow for missing data. So it is required that the data has been 

cleaned before running the analysis.  

 

TESTFACT separate MIRT calibration  

Full-information item factor analysis (Bock, Gibbons, & Schilling, 1988) 

provides another item factor analysis method for single group multidimensional data 

analysis. The method, implemented in TESTFACT (Bock et al., 1999), uses the 

marginal maximum likelihood (MML) estimation to provide full-information 

parameter estimates. That is, the estimates are based on all of the information in each 

examinee’s pattern of correct and incorrect responses to all test items, not just the 

correct and incorrect frequencies for each item in the sample together with the joint 

correct and incorrect frequencies for all possible pairs of items (Toit, 2003). Details 

are given in Bock et al. (1988). TESTFACT can be used for exploratory factor 

analysis. The number of dimensions can be determined by evaluating the change of 

model fit from each additional dimension. TESFACT also provides an option for 

confirmatory bifactor analysis (Holzinger & Swineford, 1937). The associated model 

assumes a single general dimension for all items plus one or more orthogonal “group” 

dimensions that also determine some or all of the items. Other than the confirmatory 

bifactor analysis, TESTFACT cannot be used for confirmatory factor analysis. The 

results provided by TESTFACT include a chi-square statistic for the model fit and the 

parameter estimates.  In addition to full-information item factor analysis, TESTFACT 

can also do classical factor analysis based on tetrachoric correlations and uses the 
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estimates from a principal factor analysis of the tetrachoric correlation matrix as the 

starting value for full-information item factor analysis. Unlike NOHARM, 

TESTFACT allows missing data. 

 

2.1.4 Linking in MIRT 

As has been discussed previously, scale indeterminacy also exists in MIRT 

models. Thus, the parameters estimated from different groups need to be transformed 

to a common scale, and the process is referred to as multidimensional linking.  

 

The Davey, Oshima, and Lee Method  

Davey (1991) introduced the theoretical background of a multidimensional 

linking method. For the multidimensional models with the exponent of ii d+′θa , the 

scale transformation can be conducted through the following transformation equations: 

( ) ii aAa ′
= −1*  ,                                                   (2-11) 

βAa 1* −′−= iii dd ,                                                (2-12) 

βAθθ +=* ,                                                    (2-13) 

where A is a nn×  rotation matrix ( n is the number of dimensions), which has two 

functions: to rotate the orientation of the dimensions and to adjust the unit of the 

dimensions ; and β is a 1×n translation vector, which shifts the origin of a scale, So it 

can be shown that 

( ) ( ) ( ) iiiiiiiiiii dddd +′=′−+′+′=′−++
′
⎟
⎠
⎞

⎜
⎝
⎛ ′

=+
′ −−−− θaβAaβAaθaβAaβAθaAθa 1111*** . 

(2-14)  

Therefore, the transformation of the scale won’t change the probability of 
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correct responses.                                       

Davey and his colleagues (Davey, Oshima, & Lee, 1996; Oshima, Davey, Lee, 

2000) proposed four procedures (the direct method, the equated function method, the 

test characteristic function method, and the item characteristic function method) to 

estimate ( βA, ) in the transformation equation. These procedures, although employing 

slightly different criteria functions, are developed to make the corresponding 

parameter estimates from different scales as similar as possible after the 

transformation. All four methods estimate the rotation matrix and the translation 

vector simultaneously and allow non-orthogonal rotation of the matrix. A simulation 

study comparing the four methods (Oshima et al., 2000) suggested that linking from 

the test characteristic function (TCF) and the item characteristic function (ICF) 

methods are more stable than the other two procedures. In addition, the TCF method 

was best at estimating the rotation matrix over other three methods and was also 

relatively good at estimating the translation vector.   

 

The Li and Lissitz Method 

Li and Lissitz (2000) described another multidimensional linking method. In 

the Li and Lissitz’s (2000) method, the dimensions are orthogonal. The scale linking 

consists of three parts: an orthogonal Procrustes rotation, a translation transformation, 

and a single dilation or contraction. The scale transformations are performed as 

follows 

Taa ii k ′='* ,                                                  (2-15) 

Tma iii dd ′+=* ,                                              (2-16) 

( ) kmθTθ −= −1* ,                                            (2-17) 

where T  is a nn× orthogonal Procrustes rotation matrix, which rotates the orientation 
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of the dimensions; m  is a 1×n translation vector, which shifts the origin of the scale; 

and k  is a central dilation constant, which adjusts the unit of the dimensions. The 

equality of exponent terms after and before transformation is then established by 

( )( )( ) ( ) iiiiiiiiiii dddkkd +′=′++′−=′++−′=+ − θaTmaTmaθaTmamθTTaθa '/1' 1***

.      (2-18) 

Whereas Davey et al.’s (1996, 2000) method estimate the transformation 

coefficients simultaneously, Li and Lissitz (2000) estimates the rotation matrix ( T ) 

and scaling coefficients ( m and k ) separately. T is estimated by minimizing the sum 

of squared differences between each pair of the corresponding item discrimination 

parameters from the two scales. Three sets of methods are proposed to estimate 

m and k . The two parameters can be simultaneously estimated by the matching test 

response surfaces method, or separately estimated with m  by the least squares for 

estimating translation parameters method, and k by either the ratio of eigenvalues for 

estimating the dilation parameter method or the ratio of trace for the dilation 

parameter method. A simulation study (Li & Lissitz, 2000) indicated that Procrustes 

rotation satisfactorily estimated the rotation matrix; the least squares method produced 

a less biased and more stable estimate of m than the test response surfaces method; 

and the ratio of trace method performed best for the k estimation.  

Min (2003) identified a limitation with Li and Lissitz’s (2000) approach in that 

the scalar dilation parameter is insufficient for dilating the scales of the multiple 

dimensions. The scalar dilation adjusts the scale of different dimensions to exactly the 

same extent, but the separate calibration from different groups might dilate the scales 

of multiple dimensions to different degrees (Reckase & Martineau, 2003). To address 

this limitation, Min extended Li and Lissitz’s (2000) transformation equations as:   

TKaa ii ′='* ,                                                 (2-19) 
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Tma iii dd ′+=* ,                                             (2-20) 

( )mθTKθ −= −− 11*  ,                                           (2-21) 

where K is a diagonal dilation matrix and the elements on the diagonal of K can be 

different, which allows for different dilation for different dimensions.  

 

The Reckase and Martineau Method 

Reckase and Martineau (2004) identified an important weakness in the Min 

(2003) approach. When the number of dimensions is large, the computational load 

would be unfeasible. To solve this problem, Reckase and Martineau proposed 

employing an oblique Procrustes transformation method (Mulaik, 1972), which 

automatically aligns each dimension of the original matrix (comparison matrix) to the 

target matrix (base matrix) and, therefore, eliminates the need for a dilation parameter 

or vector. The rotation matrix from oblique Procrustes procedure is 

( ) BAAAT ′′= −1 ,                                               (2-22) 

where T  is the rotation matrix; A  is the comparison matrix; and B  is the base matrix. 

The transformation equation is then  

Taa ii ′='* ,                                                        (2-23) 

Tmaiii dd ′+=* ,                                                  (2-24) 

mθTθ −= −1* ,                                                  (2-25) 

where m  is determined by minimizing sum of square difference between the estimate 

of d  from the two groups after transformation.  

As has been discussed earlier, Yon and Reckase (2005) compared Davey et 

al’s (1996, 2000) method with Reckase and Martineau’s (2004) method using both 

real and simulated data. Their study indicated that Reckase and Martineau’s (2004) 
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method generally performed better than Davey et al.’s (1996, 2000) method in terms 

of parameter recovery.  

 

2. 2 Factor analysis models 

2.2.1 Factor analysis models for continuous data 

The general factor analysis model with continuous indicator variables can be 

expressed as 

εΛθY += ,                                                       (2-26) 

where Y  is the 1×p  vector of observed indicator variables, p is the number of 

indicator variables; Λ  is a np×  matrix of λ  loadings, n is the number of factors 

(dimensions); θ  is a 1×n  vector of factors; and ε  is a 1×p  vector of errors,  which is 

assumed to follow ),( ψ0N  when maximum likelihood estimation method is used; ψ  

is the pp× diagonal matrix of the variance in ε ;θ  and ε  are independent with each 

other. The first and second order moment matrixes are then 

)()( θΛμY EE == ,                                                 (2-27) 

( )( ) ψΛΛφΣμYμY +′==⎥⎦
⎤

⎢⎣
⎡ ′−−E ,                                 (2-28) 

where φ is the covariance matrix of θ .  

The parameters can be estimated by comparing the observed and estimated 

first and second moment matrix through maximum likelihood estimation method 

(MLE), generalized least squares method (GLS), asymptotically distribution-free 

method (ADF), or other methods.  

Factor analysis models also have the problem of indeterminacy. 

Mathematically,  

( ) ( )θΛθTΛTTθΛTμY EEEE ==== −− 11 )()( ,                       (2-29) 
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( )( ) ψΛΛφψΛTTTφΛTΣμYμY +′=+′′′==⎥⎦
⎤

⎢⎣
⎡ ′−− −− 11E ,        (2-30) 

where T  is a matrix for linear transformation of the factor loading matrix Λ .  

In the single group analysis, the indeterminacy is usually removed by fixing 

one element as 1 and at least 1−n elements as 0 in each column of factor loading 

matrixΛ  (Jöreskog, 1971).  

In multigroup analysis, when the measurement invariance assumption holds, 

the item parameters for the common items should be same across groups so that the 

first and second moment matrix of the common items of group k can be expressed as                          

)()( )()()( kcckckc EE θΛμY == ,                                   (2-31) 

( )( ) )()()()()()()( kcckcckckckckckcE ψΛφΛΣμYμY +′==⎥⎦
⎤

⎢⎣
⎡ ′−− ,               (2-32) 

where the subscript c  indicates that the items are common items; and )(k indicates 

that the model is for group k . Note that there are no constraints on the unique items in 

each group during the process of estimation.  

To remove the indeterminacy in multigroup analysis, usually one group is 

chosen as the reference group and the indeterminacy in the reference group is 

removed in the same way as in single group analysis. The indeterminacy in other 

groups is then removed by constraining the parameters of the common items to be 

equal to those in the reference group.  

 

2.2.2 Factor analysis models for categorical data 

In analyzing categorical data, factor analysis methods assume that there is a 

continuous latent response variable Y underlying each categorical variable 

X (Christoffersson, 1975; Muthén, 1978; Muthén & Christoffersson, 1981). The 

categorical item response is the result of categorizing the latent continuous variable 
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Y by the threshold(s), as is illustrated in Figure 2-3. In this example, when the value 

of Y is greater than the threshold τ , the observed dichotomous dichotomous variable 

X is 1, otherwise it’s 0.  

Figure 2-3 The categorization of the continuous Y into dichotomous X  

 

Therefore, the probability of 1=X  is the probability of τ≥Y .  

( ) ( )τ≥== YPXP 1 .                                                (2-33) 

Knowing the relationship between X  and Y , some important information 

about Y  can be recovered by observing X . With the recovered information about Y , 

the relationship between Y  and θ  can then be modeled by a regular factor analysis 

model for continuous data. Therefore, factor analysis for categorical data has two 

components: a threshold model describing the nonlinear relationship between X  and 

Y , and an ordinary factor analysis model where Y  is a linear function of θ  (Tate, 

2003).  

Let ( )pXXX ,,, 21 K=′X  be a random vector of responses to p  dichotomous 

items. Assume that the joint distribution of Y under these p items follows a 

multivariate normal distribution. Then the probability of observing response pattern 

X  is 

( ) YYX dfP
R R RP
∫ ∫ ∫=

1 2

)(L ,                                   (2-34) 

τ

0=X 1=X
Y  
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where iR  of item i ( i = 1, 2, …, p ) is the range of integral, which is [ )∞,iτ  if 

1=iX and ),( iτ−∞  if 0=iX ; iτ  is the threshold for item i ; )(Yf  is the joint density 

function and can be expressed as 

( )
( )

( ) ( ) 2/
22/ 2

1 μYΣμY 1

Σ
Y −′−− −

= ef
pp π

,                           (2-35) 

where μ  is the mean vector of Y ; and Σ  is the covariance matrix of Y . Estimating 

the underlying continuous Y  also has a problem of scale indeterminacy, the unit and 

origin of the scale is quite arbitrary. Without loss of generality, in single group 

analysis, it is often assumed that 0=μ  and ( ) IΣ =diag  (Muthén & Christoffersson, 

1981). The marginal distribution of iY  of item i is 

( )
( )

dYeXPP Y
ii

i

2
2/1

2

2
11 −∞

∫===
τ π

,                            (2-36) 

iii PYPQ −=== 1)0( .                                       (2-37) 

For a pair of items, item i and item j , 

( ) YYΣY 1
ij deXXPP

i j
ij

jiij
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−′−∞ ∞
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Σ

====
τ τ π

.                (2-38) 

Recall that the parameters in factor analysis models are estimated based on the 

first and second moment matrix of the indicator variables (the underlying Y if the 

indicator variables are categorical). When 0=μ  and ( ) IΣ =diag , the analysis are 

then based on the correlation matrix of Y , which is referred to as the tetrachoric 

correlation matrix of X . Estimating the tetrachoric correlation matrix and the 

thresholds of all items simultaneously from the observed item responses was 

computationally intensive at one time (Christoffersson, 1975). Christoffersson (1975) 

suggested estimating threshold of item i based on the marginal proportions iP , and 
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tetrachoric correlation between item  i  and item j  based on two-way joint proportion 

ijP . The parameters can be estimated by maximum likelihood estimation (Bock & 

Lieberman, 1970) or generalized least squares estimation (Christoffersson, 1975; 

Muthén, 1978).  

In multigroup analysis, usually one group is selected as the reference group, in 

which the mean and covariance matrix of Y  is constrained as 0=μ  and ( ) IΣ =diag , 

the same as in single group analysis.  The threshold τ  and factor loadings Λ  of 

common items are constrained to be equal across groups as 

( ) ( ) ( ) ττττ ==== GL21 ,                                   (2-39) 

( ) ( ) ( ) ΛΛΛΛ ==== GL21 .                                 (2-40) 

 

As has been discussed in Chapter 1, most of the popular factor analysis 

programs (e.g., LISREL, Mplus, EQS) can do multigroup analysis for categorical data. 

In this study, Mplus was employed to conduct the analysis. Mplus estimates the 

parameters based on the maximum-likelihood estimation (for details, see Muthén & 

Asparouhov, 2002).  

 

2.3. The equivalence of IRT and factor analysis method 

2.3.1 Normal-ogive IRT model vs. logistic IRT model 

Generally, there are two main variants of IRT models. One is the normal-ogive 

IRT model (“ogive” refers to the characteristic S-shape of the item response function). 

The other is the logistic IRT model. Although the normal-ogive model was dominant 

in early research on IRT, it has largely been replaced by the logistic model, which 

requires simpler computations (Crocker, 1986). The IRT models discussed in the 

previous sections are all logistic IRT models. 
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In the two-parameter normal-ogive binary IRT model (Bock & Aitkin, 1981; 

Bock & Lieberman, 1970), the probability of a correct response to item i , given 

ability θ , is: 

( ) ( ) ( )wzzθ
w

Φ=== ∫
∞

dXP i φ|1                                       (2-41) 

where φ is the density function of the standard normal distribution; )( ii bθaw −′= . 

As in logistic IRT models, ia  is the discrimination parameter (or vector of parameters 

in multidimensional models), and ib  is the difficulty parameter ( iii bad ′= in 

multidimensional IRT model). Research (Haley, 1952; Lord & Novick, 1968) has 

proven that the relationship between the logistic distribution function ( ).L  and the 

cumulative standard normal distribution ( ).F can be expressed as  

( ) ( ) 01.07.1 <− zLzF                                            (2-42) 

for all z . Therefore, the item parameters in the normal-ogive IRT model can be 

transformed to the corresponding parameters in the logistic IRT model by multiplying 

them by a scaling factor of 1.7. This is why logistic IRT model is often expressed as  
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In this case, the parameters ia  and ib serve the same role in the logistic models as 

they do in the normal-ogive models.  

 

2.3.2 The relationship between normal-ogive IRT model and factor analysis model  

The relationship between normal-ogive IRT model and factor analysis model 

has been illustrated by Takane and Leeuw (1987) and Knol and Berger (1991). Recall 

that in the factor analysis model 

εΛθY +=  .                                                  (2-44) 
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Assume that ),(~ φ0θ N , where Iφ =)(diag ; ),0(~ ii N ψε ; and θ and iε are 

independent of each other. It then follows that for item i  

),(~ iiii NY ψ+′φΛΛ0 .                                        (2-45) 

The conditional distribution of iY  given θ  is  

),(~| iii NY ψθΛθ ,                                          (2-46) 
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ψ
θΛθ − .                                         (2-47) 

The probability of a correct response to item i given θ is then  
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The normal-ogive IRT model is:  

( ) ( )( )iiiXP bθaθ −′Φ== |1 .                                    (2-49) 

Therefore, 
i

i ψ
iΛa =  (2-50) and 1−= iii Λb τ (2-51). In multidimensional IRT model, 

i

i
id

ψ
τ

−= (2-52). Similar relationship can be found in Muthén (1979, Appendix), 

Muthén & Christoffersson (1981), and Bartholomew (1985).  
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CHAPTER 3  

METHODOLOGY 

 

Because the purpose of this study was not to explore the dimensionality 

structure of the data, confirmatory analysis approaches were investigated, which 

means that such information as the number of dimensions, the dimension(s) each item 

measured was already know before the analysis. The performance was evaluated 

based on the recovery of item parameters and the estimation of examinee true scores.  

The study was based on simulated data because it is the best way to investigate 

the research questions in this study. In this chapter, statistical procedures for the 

simulation analysis are described. The criteria for evaluating the performance of the 

multigroup multidimensional methods are also provided.  

 

3.1 Simulation Design 
 

In this study, a common item nonequivalent groups design was employed. In 

the design, it was assumed that two test forms, Form 1 and Form 2, were administered 

to two imaginary groups of examinees, Group 1 and Group 2. Each form consisted of 

60 dichotomous items, 20 of which were common for both forms. Thus, there were 

100 items in total for the two forms. Figure 3-1 illustrates the item composition of the 

two forms. The numbers in the parentheses are the number of items. Each form was 

developed to measure two abilities, 1θ  and 2θ , so the latent structure of each form 

was two-dimensional. Assume also that the two abilities were compensatory with each 

other so that being low on one ability can be compensated for by being high on the 

other ability to give a correct response. In this study, guessing was assumed not to be 

a factor in getting a correct answer. Therefore, a two-dimensional MC2PL IRT model 
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was used to generate the response data. Remember that the MC2PL IRT model and 

factor analysis model are equivalent in the sense of formal mathematical functions. 

The response data generated from the IRT model were analyzed by both IRT methods 

and factor analysis methods. The parameters estimated from the factor analysis model 

were then translated to the IRT counterparts for comparison purposes.  

 

Figure 3-1 Items in Form 1 and Form 2 

 

3.2 The Multigroup Analysis Methods Investigated  

Four multigroup analysis methods were investigated. They were: concurrent 

MIRT calibration method, separate MIRT calibration method with linking, concurrent 

factor analysis calibration method, and concurrent UIRT calibration method. Both 

MIRT methods analyzed data based on MC2PL IRT model.  

(1) Concurrent MIRT Calibration  

The item parameters from the two forms were estimated simultaneously using 

BMIRT. The pooled data from both groups were analyzed in one step of analysis. In 

each run, the number of iterations was set to 5,000 and the burn-in was set to 2,000 

(for each parameter, the estimate from the first 2,000 iterations was discarded, not 

used for the estimation of the distribution of the parameter).  

Form 1 Form 2 

Common 
Items 
(20) 

Unique 
Items 
(40) 

Unique 
Items 
(40) 
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(2) Separate MIRT calibration with linking  

The parameters were estimated separately for Form 1 and Form 2. NOHARM 

was employed for the calibration because TESTFACT can only be used for 

exploratory analysis or confirmatory analysis for the bifactor model (as discussed in 

Chapter 2), neither of which was the case in this study. Since Group 1 was selected as 

the reference group, the parameter scale in Group 1 was treated as the base scale, to 

which the parameters estimated in Group 2 were transformed.  

(3) Concurrent Factor Analysis Calibration  

Factor analysis was carried out using Mplus. Group 1 was selected as the 

reference group with constraints for model identification. The parameters of common 

items were constrained to be equal across groups. The parameter estimates were 

transformed to the IRT scale through the transformation equations 2-50 and 2-52 

discussed in Chapter 2.  

(4) Concurrent UIRT Calibration  

  The pooled data from Group 1 and Group 2 were analyzed in one run of 

BILOG-MG. The ability distribution of Group 1 was constrained to be a standard 

normal distribution. No constraints were imposed on Group 2.  

 

  As has been discussed in Chapter 2, the MIRT methods and factor analysis 

methods are equivalent when the dimensions follow a multivariate normal 

distribution. However, the two MIRT methods and the one factor analysis method 

employ different algorithms to estimate the parameters. Therefore, the differences, if 

any, between the performance from the different calibration methods are the result of 

using different estimation algorithms, not different models.  
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3.3 Key factors 

 This study examined how different factors affect the four calibration methods 

in multigroup analysis. Four factors were manipulated in the simulation.  These 

factors were chosen based on the literature of simulation studies in related fields (Bolt, 

1999, 2001; Dickenson, 2005; Finch, 2006; Kim, 2004; Oshima et al. ,2000; Spence, 

1996; Tate, 2003).  

(1) The Structural Orthogonality  

The structural orthogonality was reflected by the correlation between the two 

dimensions ( 1θ and 2θ ). Three levels of correlation were manipulated: 0.5, 0.7, and 0.9, 

which means 1θ and 2θ  shared 25%, 49%, and 81% of variance.  

 

(2) Equivalence of Test structure between Form 1 and Form 2 

The equivalence of test structure was reflected by the equivalence of 

measurement emphasis on 1θ and 2θ  in the two forms. The emphasis of the test was 

determined by the number of the items measuring 1θ and 2θ  respectively.  

Form 1 always had equivalent emphasis on 1θ and 2θ . In Form 1, 20 items 

measure 1θ only, 20 items measure 2θ only, and 20 items measure both. Among the 20 

items measuring both 1θ and 2θ , 7 items were more sensitive to 1θ , 7 were more 

sensitive to 2θ , and 6 were equally sensitive to 1θ  and 2θ . These 20 items were 

common items between the two forms. Figure 3-2 illustrates the orientation of the 60 

items of Form 1 in the ability space. The degrees in parentheses represent the angle 

between the item vectors and 1θ .  

Three levels of measurement emphasis in Form 2 were manipulated as 

following:  
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 a. Equivalent Emphasis 

In this case, Form 2 had equal emphasis on 1θ  and 2θ  as Form 1 did, with 20 

items measuring only 1θ , 20 items measuring only 2θ , and 20 items measuring both. 

The 20 items, measuring both 1θ  and 2θ , were common items between Form 1 and 

Form 2. Those items measuring only 1θ  or 2θ were unique items.  

 

Figure 3-2 The distribution of the items of Form 1 in the ability space 

 

 b. Moderate Nonequivalent Emphasis 

In this case, Form 2 had more emphasis on 2θ , with 10 items measuring 

only 1θ , 30 items measuring only 2θ , and still 20 measuring both. Again, the 20 items 

measuring both 1θ  and 2θ were common items. 

 c. Large Nonequivalent Emphasis 

In this case, Form 2 put even more emphasis on 2θ  than condition b did. No 

item measured only 1θ . In contrast, 40 items measured only 2θ . The 20 items 

measuring both 1θ  and 2θ in Form 2 were still common items, same as those in the 

above 2 scenarios.  

 

 

 

Items 13 to 20 (60o) 

Items  7 to 12 (45o) 

Items  1 to 6 (30o) 

 

2θ
 

1θ  
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Table 3-1 The number of items measuring 1θ  or 2θ or both  
in Form 1 and Form 2 under different conditions 

Form 1 Form 2 Nonequivalence 
in emphasis 1θ  only Both 2θ  only 1θ  only Both 2θ  only 

No 20 20 20 20 20 20 
Moderate 20 20 20 10 20 30 

Large 20 20 20 0 20 40 
 

The three conditions of structural equivalence are summarized in Table 3-1. 

The first condition happens most frequently when two parallel forms of the same test 

are administered to different groups.  The second and third conditions often happen 

when the two forms are from the tests of different grades and the emphasis of the tests 

changes according to the curriculum of the grades. For example, assume that grade 3 

and grade 4 math tests both measure the abilities of data analysis and number sense. 

The grade 3 test has equal emphasis on both abilities, whereas the grade 4 test puts 

more emphasis on data analysis ability because the curriculum in grade 4 does so.  

 

 (3) Equivalence of item difficulty 

Two levels of item difficulty equivalence for the two forms were manipulated.  

a. Equivalent item difficulty   

In this situation, the two forms had equivalent item difficulty. The mean and 

standard deviation of item difficulty parameter MID  were 0 and 1 for both forms.  

b. Nonequivalent item difficulty 

In this situation, the unique items in Form 2 on average are more difficult than 

those in Form 1. The mean of the MID  of the unique items in Form 2 is .5 higher 

than and those in Form 1. The standard deviation of the parameter did not change: it 

was still 1 for both forms.  
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(4) Equivalence of examinee groups 

Three levels of the equivalence of the two groups of examinees were 

manipulated. It was assumed that the variance of 1θ  and 2θ  was 1 under all conditions. 

Thus, the two groups differed only in the mean proficiency on 1θ  and/or 2θ  when the 

two groups were not equivalent.  

a. Equivalent on 1θ  and 2θ  

In this case, the mean proficiency on 1θ  and 2θ  was 0 in both groups. 

b. Not equivalent on 2θ  

In this case, the mean proficiency on 1θ was 0 in both groups, whereas the 

mean proficiency on 2θ  was 0 in Group 1 and was .5 in Group 2.  

c. Not equivalent on both 1θ  and 2θ  

In this case, Group 2 had higher mean proficiency on both 1θ  and 2θ .  The 

mean proficiency on both abilities were 0 in Group 1 and .5 in Group 2.  

 

Table 3-2  The mean proficiency on 1θ  and 2θ in the two groups 

Group Equivalence Group 1 Group 2 

Equivalent on 1θ  and 2θ  ( 0,  0) ( 0,  0) 
Nonequivalent on 2θ  ( 0,  0) ( 0,  .5) 

Nonequivalent on 1θ  and 2θ ( 0,  0) (.5,  .5) 
 

Table 3-2 summarizes the three conditions of group equivalence. A difference 

of 0.5 in the mean proficiency between the two groups was chosen because it is big 

enough to show the effect of difference (Li & Lissitz, 2000) and has been used in 

many simulation studies (Davey et al., 1996; Kim, 2004; Li & Lissitz, 2000; Min, 

2003; Oshima et al. 2000; Skaggs & Lissitz, 1988).  
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When the two groups were equivalent, there was no need for linking in the 

separate calibration method because the standardization procedure (constraining the 

mean and standard deviation of 1θ  and 2θ to be 0 and 1 within each group) had 

already put the parameter estimates on the same scale. In this case, the differences 

between the parameter estimates of the common items from the two forms were 

probably from sampling error. Therefore, the averages of the parameter estimates 

from the two forms were used as the parameter estimates for the common items in this 

study. When the two groups were not equivalent, however, linking was necessary for 

the separate calibration method becasue there were two sets of parameter estimates for 

the common items. One was from the estimation in Form 1. Another was from the 

estimation in Form 2 after transforming the parameter estimates to the scale of Form 1. 

In this case, the estimates from Group 1/Form 1 were used for the purpose of 

evaluation (Hanson & Beguin, 2002) since the scale of Form 1 was the base of the 

transformation, and the target of the transformation was to make the parameter 

estimates from Form 2 as close to those from Form 1 as possible. This was different 

from Kim and Cohen’s (1998) method, where the average of the estimates of the 

common item parameters from the two groups were used to evaluate the parameter 

recovery. 

 

In total, there were 54 combinations of conditions (3 structural orthogonality 

×  3 structural equivalence ×  2 item difficulty equivalence×3 examinee group 

equivalence). The conditions are summarized in Table 3-3. Under each condition, 100 

replications were obtained in which all four methods converged. The value of 100 was 

chosen because it is common in simulation studies in related fields (Dickenson, 2005; 

Li & Lissitz, 2000; Kim, 2004). In some cases, Mplus failed to converge. When this 



 41

happened, a new set of data were generated and the four methods applied. This 

process was continued until 100 successes were obtained.  

 

3.4 Data generation 

3.4.1 Item parameters generation  

Remember that the multidimensional compensatory two-parameter logistic 

(MC2PL) model (Reckase, 1985) can be expressed as  
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where θ  is a vector of ability parameters; ia  is a vector of discrimination parameters; 

and id is a scalar parameter that is related to the difficulty of the item.  

 MDISC and MID are two parameters derived from MC2PL model. They 

represent the overall item discrimination and item difficulty for the item,  
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 In this study MDISC and MID were generated first. The parameters in 

MC2PL model were then determined based on MDISC , MID , and 1iα (the angle 

between the item vector and 1θ ) .  

 

(1) Item Discrimination Parameter MDISC  

The literature from previous simulation studies indicated that the researchers 

had different beliefs about the distribution of MDISC . Although most of the 

researchers believed that MDISC  follows the lognormal distribution (Bolt, 2001; 
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Dickenson, 2005; Finch, 2006; Min, 2003; Skaggs & Lissitz, 1988; Spence, 1996; 

Tate, 2003; Yao, 2006), there is still a lot of disagreement about the reasonable value 

range of the parameter. In this study, MDISC  was assumed to follow a lognormal 

distribution. The mean and standard deviation of )log(MDISC  distribution were set to 

0 and .5, which are the default values of the distribution of a in BILOG-MG program. 

Because there were 100 items in total, 100 MDISC  values were randomly generated 

from this lognormal distribution with the range of .5 to 2.5, which was chosen 

according to the results of empirical studies reported by Doody-Bogan and Yen (1983), 

Ackerman (1988), Spence (1996), and Roussos et al. (1998). Of the 100 MDISC  

value generated, 20 were randomly selected for the common items, 40 for the unique 

items of Form 1, and the other 40 for the unique items of Form 2.  

Because the 20 common items measured both 1θ  and 2θ , the value of 1ia and 

2ia  were determined by 1iα and MDISC   

)cos( 11 ii MDISCa α×= ,                                      (3-3) 

)sin( 12 ii MDISCa α×= .                                      (3-4) 

Note that of the 20 common items, the 1iα of 7 items were 30o , 6 items were 

45o, and the other 7 items were 60o.  

The 40 unique items of each form had simple structure. In Form 1, 20 items 

measured only 1θ  so the discrimination vectors for these items were in the form of ( 1ia , 

0), with ii MDISCa =1 . The other 20 items measured only 2θ  so the discrimination 

vectors for these items were in the form of (0, 2ia ), with ii MDISCa =2 . Three versions 

of Form 2 were generated according to the change of the measurement emphasis of 

the test. In the first version, Form 2 had equivalent emphasis on 1θ  and 2θ , same as 

Form 1, with discrimination vectors of 20 unique items as ( 1ia , 0) and the other 20 
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items as (0, 2ia ). In the second version, Form 2 had more emphasis on 2θ . The 

discrimination vector of 10 items, randomly selected from the 20 items measuring 

1θ in the first version, were changed from ( 1ia , 0) to (0, 2ia ), with iMDISC unchanged. 

In the third version, Form 2 put even more emphasis on 2θ  than the second version; 

all unique items of Form B measured only 2θ , with discriminatio vectors as (0, 2ia ).  

 

(2) Item Difficulty Parameter MID  

Item difficulty parameter MID  was assumed to follow the normal distribution 

by many researchers (Bolt, 2001; Finch, 2006; Spence, 1996; Yao, 2006). The range 

of MID  in this study was determined based on the previous studies so that it’s 

reasonable for published tests. 100 MID  values were randomly generated from a 

standard normal distribution with the range from -2 to 2 (Finch, 2006; Spence, 1996). 

These values were randomly assigned to the 100 items (20 common items, 40 unique 

items of Form 1, and 40 unique items of Form 2). This was the case for equivalent 

item difficulty for the two forms. When Form 2 was more difficult than Form 1, each 

MID value originally generated for the unique items in Form 2 was increased by .5 so 

that the average difficulty level of Form 2 is higher than Form 1. The value of id  in 

the MC2PL model was calculated by  

iii MIDMDISCd ×−=  .                                                    (3-5) 

 

3.4.2. Generation of Correlated 1θ and 2θ for Group 1 and Group 2 

A sample size of 2,000 or more is usually suggested for MIRT calibration 

(Akerman, 1994; Reckase, 1995), which indicates that MIRT methods are more 

suitable for large scale assessment. In this study, the sample size for Group 1 and 
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Group 2 were both 2,000.  

To generate correlated 1θ and 2θ  values for each examinee, the following 

procedure was followed. Assuming the values of 1θ and 2θ  were determined by a 

higher-order standard normal random variable z , as is shown in Figure 3-3.  

2
2

22

1
2

11

1

1

ςββαθ

ςββαθ

−++=

−++=

z

z
 ,                                       (3-6) 

where 1α  and 2α  were the mean of 1θ  and 2θ  in the population; 2β equals the 

targeted correlation between 1θ and 2θ ; and 1ς  and 2ς  are two standard normal 

random variables.  

 

Figure 3-3 Generating correlated 1θ and 2θ  from higher order variable z  

 

By this means, 2,000 pairs of correlated 1θ  and 2θ  were generated for each 

group in every replication of the simulation. Note that the value of 1α , 2α , and β  

were determined by the value of manipulated factors.  

 

3.4.3 Generate Response Data 

With the generated item and person parameters, the probability of correct 

response to item i by person j , ijP , were calculated from the MC2PL model. 

 To generate the 0 / 1 response, ijX , a uniform random number, R , was 

z
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1 1
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generated in the range of (0, 1). Comparing R with ijP , the value of ijX was 

determined by the following rule:  
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 .                                                   (3-7) 

In this study, all parameter values and response data were generated by the 

SAS program.  

 

3.5 Linking for Separate MIRT Calibration  

 In Chapter 2, several methods of linking for separate MIRT calibration have 

been discussed. Davey et al.’s (1996, 2000) methods allow non-orthogonal rotation of 

the dimensions. The rotation matrix takes care of the orientation and the unit of the 

dimensions simultaneously. Li and Lissitz’s (2000) method assumes that the 

dimensions are orthogonal. The orientation of the dimensions is rotated by an 

orthogonal Procrustes rotation matrix. The unit of the dimensions is adjusted by a 

central dilation constant. Min’s (2003) method extends Li and Lissitz’s (2000) method 

by replacing the dilation constant with a diagonal dilation matrix. This change allows 

the units of the different dimensions to be adjusted to different levels. Reckase and 

Martineau’s (2004) method employs an oblique Procrustes transformation (Mulaik, 

1972) approach, which automatically aligns each dimension of the original matrix 

(comparison matrix) to the target matrix (base matrix) and, therefore, eliminates the 

need for a dilation parameter or vector. 

 Confirmatory analysis was employed in this study, which means that the 

information of the dimension(s) measured by each item was already known at the 

beginning of the analysis. In Form 1 and Form 2, the unique items measure only one 

of the two dimensions so that the discrimination vectors of these items were in the 
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form of ( 1a , 0) or (0, 2a ). In this way, the direction of the dimensions was determined 

and there was no need for rotation. The only indeterminacies remaining were then the 

unit and origin of the dimensions. In this study, Min’s (2003) method was employed 

for linking with some changes. This method was chosen because it takes care of the 

dimension orientation and unit separately so that the unit of the dimension could be 

adjusted without changing the orientation of the dimensions. In addition, the method 

allows the dilation to be different across dimensions. The scale transformation 

employed in this study was then 

EKaa ii ′='* ,                                                (3-8) 

Ema iii dd ′+=* ,                                              (3-9) 

( )mEθKθ −= −1* .                                         (3-10) 

Note that the orthogonal Procrustes rotation matrix T in Min’s (2003) method was 

replaced by an identity matrix E so that no change was made to the orientation of the 

dimensions. The estimation of K and m is described in detail in the Appendix A.  

 

3.6 Evaluation Criteria 

The performance of the methods was evaluated from two perspectives. The 

first one evaluated the recovery of item parameters by comparing the estimates from 

different calibration methods with the true value of the parameters. This is the most 

often used criterion in the simulation studies conducted previously to investigate the 

performance of calibration methods (Kim, 2004; Li & Lissitz, 2000; Min, 2003; 

Oshima et al., 2000). Note that this criterion was not applicable to the unidimensional 

model because there were no true unidimensional parameters to compare with. The 

second criterion was about the accuracy of the estimation of true score (the model-

indicated total score) of examinees. The performance was evaluated based on the 
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difference between the estimated true scores from the calibration methods and the 

“true” true scores obtained with the model used to generate the data. This criterion 

was not applicable to the separate MIRT calibration in this study because NOHARM 

does not provide the estimation of 1θ and 2θ . Therefore no estimated true score was 

available.  

 (1) Recovery of Item Parameters 

a. BIAS   

BIAS is a measure of the accuracy of the estimation of parameter. It was 

calculated by taking the mean differences between the true parameter values and the 

corresponding estimates over the 100 iterations. For a given parameter, for example 

id of item i , iBIAS can be calculated as 
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where ind̂ is the estimate of id in the n th replication; trueid , is the true value of id .  

b. Standard deviation ( SD ) of parameter estimate 

SD  is a measure of the stability of estimation. Again, use id as an example, 

iSD can be calculated as  
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(2) Estimation of True Score of Examinees  

The “true” true score for person j in the n th replication can be estimated as 
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a. BIAS  

BIAS  measures the average of the difference between the estimated true score 

and “true” true score for all examinees in the group. The BIAS of the true score 

estimation in one group over 100 replication can be calculated as  
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where njT̂  is the estimated true score of person j given the estimated parameters.  

 b. SD  

SD  reflects the variability of the difference between the estimated and “true” 

true score among the examinees in the group. SD  of the true score estimation in one 

group over 100 replication can be calculated as 
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CHAPTER 4  

RESULTS 

 

 This chapter presents the results from the simulation study described in 

Chapter 3. The performance of the three multidimensional calibration methods 

(concurrent MIRT, separate MIRT with linking, concurrent Factor Analysis) and their 

unidimensional counterpart (concurrent UIRT) were investigated under different 

conditions. The performance was evaluated based on the recovery of the item 

parameters and the estimation of the true score of examinees.  The effect of the four 

manipulated factors (the structural orthogonaility, the equivalence of test structure, 

item difficulty, and examinee groups) on the performance of the four methods was 

also investigated.  

Table 4-1 summarizes the 54 combinations of conditions from the four 

manipulated factors in this study. In the table, the “correlation” column represents the 

three levels of the structural orthogonality, reflected by the correlation between 1θ  and 

2θ , which were 0.5, 0.7, and 0.9 respectively. The “emphasis” column represents the 

three levels of structural equivalence between Form 1 and Form 2, reflected by the 

measurement emphasis on 1θ  and 2θ  in the forms. The three numbers in the 

parenthesis are the number of items measuring both 1θ  and 2θ , only 1θ , and only 2θ  

in Form 2. For example, (20, 10, 30) means that of the 60 items in Form 2, 20 items 

measure both 1θ  and 2θ , 10 items measure only 1θ , and the other 30 items measure 

only 2θ . Note that the measurement emphasis on 1θ  and 2θ  was always equivalent in 

Form 1 so that the items were (20, 20, 20) under all conditions. The “difficulty” 

column represents the two levels of item difficulty equivalence between the two forms. 

“Equivalent” means that the two forms had equivalent item difficulty. “.5 higher” 
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means that the mean of MID of the unique items in Form 2 was .5 higher than that in 

Form 1. The “ability” column represents the three levels of equivalence of the two 

examinee groups. The mean of 1θ  and 2θ  in Group 1 was (0, 0) for all conditions. 

Three levels of the mean of 1θ  and 2θ  in Group 2 were (0, 0), (0, .5), and (.5, .5).  

Same notations are used in all figures and tables in this chapter and the appendix.  

 

Table 4-1 The 54 combinations of conditions 

Condition Correlation Emphasis Difficulty Ability 
1 0.5 (20,20,20) equivalent (0,0) 
2 0.5 (20,20,20) equivalent (0,.5) 
3 0.5 (20,20,20) equivalent (.5,.5) 
4 0.7 (20,20,20) equivalent (0,0) 
5 0.7 (20,20,20) equivalent (0,.5) 
6 0.7 (20,20,20) equivalent (.5,.5) 
7 0.9 (20,20,20) equivalent (0,0) 
8 0.9 (20,20,20) equivalent (0,.5) 
9 0.9 (20,20,20) equivalent (.5,.5) 
10 0.5 (20,20,20) .5 higher (0,0) 
11 0.5 (20,20,20) .5 higher (0,.5) 
12 0.5 (20,20,20) .5 higher (.5,.5) 
13 0.7 (20,20,20) .5 higher (0,0) 
14 0.7 (20,20,20) .5 higher (0,.5) 
15 0.7 (20,20,20) .5 higher (.5,.5) 
16 0.9 (20,20,20) .5 higher (0,0) 
17 0.9 (20,20,20) .5 higher (0,.5) 
18 0.9 (20,20,20) .5 higher (.5,.5) 
19 0.5 (20,10,30) equivalent (0,0) 
20 0.5 (20,10,30) equivalent (0,.5) 
21 0.5 (20,10,30) equivalent (.5,.5) 
22 0.7 (20,10,30) equivalent (0,0) 
23 0.7 (20,10,30) equivalent (0,.5) 
24 0.7 (20,10,30) equivalent (.5,.5) 
25 0.9 (20,10,30) equivalent (0,0) 
26 0.9 (20,10,30) equivalent (0,.5) 
27 0.9 (20,10,30) equivalent (.5,.5) 
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Table 4-1 The 54 combinations of conditions (continued) 

Condition Correlation Emphasis Difficulty Ability 
28 0.5 (20,10,30) .5 higher (0,0) 
29 0.5 (20,10,30) .5 higher (0,.5) 
30 0.5 (20,10,30) .5 higher (.5,.5) 
31 0.7 (20,10,30) .5 higher (0,0) 
32 0.7 (20,10,30) .5 higher (0,.5) 
33 0.7 (20,10,30) .5 higher (.5,.5) 
34 0.9 (20,10,30) .5 higher (0,0) 
35 0.9 (20,10,30) .5 higher (0,.5) 
36 0.9 (20,10,30) .5 higher (.5,.5) 
37 0.5 (20, 0,40) equivalent (0,0) 
38 0.5 (20, 0,40) equivalent (0,.5) 
39 0.5 (20, 0,40) equivalent (.5,.5) 
40 0.7 (20, 0,40) equivalent (0,0) 
41 0.7 (20, 0,40) equivalent (0,.5) 
42 0.7 (20, 0,40) equivalent (.5,.5) 
43 0.9 (20, 0,40) equivalent (0,0) 
44 0.9 (20, 0,40) equivalent (0,.5) 
45 0.9 (20, 0,40) equivalent (.5,.5) 
46 0.5 (20, 0,40) .5 higher (0,0) 
47 0.5 (20, 0,40) .5 higher (0,.5) 
48 0.5 (20, 0,40) .5 higher (.5,.5) 
49 0.7 (20, 0,40) .5 higher (0,0) 
50 0.7 (20, 0,40) .5 higher (0,.5) 
51 0.7 (20, 0,40) .5 higher (.5,.5) 
52 0.9 (20, 0,40) .5 higher (0,0) 
53 0.9 (20, 0,40) .5 higher (0,.5) 
54 0.9 (20, 0,40) .5 higher (.5,.5) 

 

4.1 Recovery of the item parameters 

The evaluation of the recovery of the item parameters was only available for 

the three multidimensional calibration methods. Two criteria were used: BIAS  

measured the average difference between the estimated and the true value of the 

parameters; SD  reflected the stability of the estimation.  The detailed information 

about the BIAS  and SD  of 1a , 2a , and d can be found in the tables in Appendix B. 

In the tables are the averages of the BIAS or SD  over the 100 items under each 

condition. The bold-faced numbers in the tables indicate the methods that resulted in 
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the smallest BIAS or SD  under each condition. 

 

4.1.1 The recovery of 1a  

Figures 4-1 and Figure 4-2 depict the BIAS  and the SD  of 1a  from the three 

methods under all 54 conditions. In the figures, the solid line represents the 

concurrent MIRT calibration, which was carried out in the program BMIRT; the 

dashed line represents the separate MIRT calibration with linking, which was carried 

out in the program NHOARM; the dotted line represents the concurrent factor 

analysis calibration, which was carried out in the program Mplus. For the ease of 

illustration, in this chapter, the calibration methods were represented by the name of 

the computer programs that carried out the analysis. Specifically, BMIRT represents 

the concurrent MIRT calibration; NOHARM represents the separate MIRT calibration 

with linking; Mplus represents the concurrent factor analysis calibration. Each figure 

is split into three parts based on the three levels of the equivalence of test structure 

between the two forms. In addition, the conditions with relatively large BIAS  are 

labeled with the corresponding value of the factor(s) that is(are) common to these 

conditions.   

Figures 4-3 to 4-6 depict the effect of the four manipulated factors on the 

BIAS  and the SD  of the estimates of 1a  from the three methods. Boxplots were 

employed. Each bounded vertical line represents the range of the observations in a set 

of data for each method at each factor level. The bottom and the top of the box 

represent the first quartile (Q1) and the third (Q3) quartile of the data. The horizontal 

line in the middle of the box represents the median. The dots away from the box, with 

the condition numbers, are outliers. The abscissa of each plot represents the levels of 

the specific factor. The cluster of three boxes represents the observations from the 
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three methods under each level of the factor.  

Therefore, Figures 4-1 and 4-2 reflect the main effect of the calibration 

methods on the estimate of  1a  and some higher-order interaction effects between the 

calibration methods and the manipulated factors. Figures 4-3 to 4-6 reflect the first 

order interaction effects between the calibration methods and the manipulated factors. 

From Figures 4-1 to 4-6, it can be found that the three methods performed 

differently on the estimation of 1a . The following are the major findings.  

(1) In general, the BIAS  of 1a  from Mplus and NOHARM were comparable 

and close to zero under most conditions, which indicates that the estimate 

of 1a  from the two methods, on average, were very close to their true 

value. BMIRT tended to underestimate 1a  under all conditions and the 

absolute magnitude of BIAS was larger than that from the other two 

methods.   

(2) The SD  of 1a  from NOHARM was generally larger than that from the 

other two methods and tended to fluctuate widely across conditions. The 

SD  from Mplus also fluctuated across conditions, but with a smaller 

magnitude than that from NOHARM. The SD  of  1a  from BMIRT was the 

smallest under most conditions, and it tended to be more consistent across 

conditions, which indicates that it was less affected by the manipulated 

factors.  

(3) When the correlation between 1θ  and 2θ  increased, the absolute 

magnitude of the BIAS  from BMIRT increased. For all three methods, the 

estimate of 1a  became less stable as the correlation increased, especially 

when the correlation increased from 0.7 to 0.9.  
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(4) When the “ emphasis” in Form 2 was (20, 10, 30), the estimate of 1a  from 

Mplus tended to be more stable than when the emphasis was (20, 20, 20) 

or (20, 0, 40).  

(5) When the two groups were not equivalent, specifically, when the “ability” 

was (0, .5) or (.5, .5), the estimate of 1a  from NOHARM became less 

stable. 

(6) There were some higher order interaction effects among the manipulated 

factors and the calibration methods. When the “emphasis” was (20, 0, 40) 

and the “Ability” was (0, 0), NOHARM tended to underestimate the 

parameter. When the “emphasis” was (20, 20, 20) or (20, 10, 30), the SD  

from Mplus was relatively large when the “correlation” was 0.9 and the 

ability was (0, .5) or (.5, .5). When the “emphasis” was (20, 0, 40), the SD  

from Mplus was relatively large when the “correlation” was 0.9. 
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Figure 4-1 BIAS of 1a  from the three calibration methods  

under all 54 conditions 



 56

 

Figure 4-2 SD of 1a from the three calibration methods  

under all 54 conditions 
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Figure 4-3 BIAS and SD of 1a  under three structural orthogonality levels 
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Figure 4-4 BIAS and SD  of 1a  under three structural equivalence levels 
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Figure 4-5 BIAS and SD of 1a  under two item difficulty equivalence levels 
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Figure 4-6 BIAS and SD of 1a  under three examinee group equivalence levels 
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4.1.2 The recovery of 2a  

Figures 4-7 to 4-8 depict the BIAS  and the SD  of 2a  from the three methods 

under all 54 conditions. Figures 4-9 to 4-12 depict the effect of the four manipulated 

factors on the BIAS  and the SD  of the estimate of 2a  from the three methods. The 

notations in these figures are the same as those in Figures 4-1 to 4-6.  

From Figures 4-7 to 4-12, it can be found that the three methods performed 

differently on the estimation of 2a . The following are the major findings.  

(1) In general, the BIAS  of 2a  was larger than that of 1a  for all three methods 

under most conditions when Form 2 had more measurement emphasis on 

2θ . BMIRT tended to underestimate 2a  under all conditions and the 

absolute magnitude of the BIAS  was larger than that from the other two 

methods. Different from the estimate of 1a , the BIAS  of 2a  from 

NOHARM and Mplus were not comparable. The BIAS  from BMIRT and 

NOHARM tended to fluctuate widely across conditions. In contrast, that 

from Mplus was more consistent, which indicates that the BIAS  of 2a  

from Mplus was less affected by the manipulated factors than the other 

two methods. 

(2) The SD  of 2a  was comparable to that of 1a  for all three methods under 

most conditions. The SD  of 2a  from NOHARM was generally larger than 

the other two methods and tended to fluctuate widely across conditions. 

The SD  from Mplus also fluctuated across conditions but with smaller 

magnitude than that from NOHARM. Compared with the other two 

methods, the SD  from BMIRT were more consistent across conditions.  
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(3)  When the correlation between 1θ  and 2θ  increased, the absolute 

magnitude of the BIAS  from BMIRT increased. When the correlation was 

0.9, the BIAS  from NOHARM was much larger than when the correlation 

was 0.7 or 0.5. For all three methods, the SD  of 2a  increased as the 

correlation increased, especially when the correlation increased form 0.7 to 

0.9.  

(4) When the emphasis on 2θ  in Form 2 increased, the absolute magnitude of 

the BIAS  from BMIRT increased. When the “emphasis” was (20, 20, 20), 

the BIAS  from Mplus was close to zero. However, when the “emphasis” 

was (20, 10, 30) or (20, 0, 40), Mplus tended to underestimate 2a . With 

respect to NOHARM, when the “emphasis” was (20, 0, 40), the BIAS  was 

much larger than that when the “emphasis” was (20, 20, 20) or (20, 10, 30). 

Unlike the other two methods, NOHARM did not always underestimate 

2a , sometimes it overestimated the parameter. An interesting finding was 

that when more emphasis was put on 2θ  in Form 2, the SD  of 2a  from 

Mplus decreased, which indicated that the estimate of the parameter 

became more stable.  

(5) When the two groups were not equivalent, NOHARM tended to 

underestimate 2a  with larger BIAS  and SD  than when the two groups 

were equivalent.  

(6) There were some higher order interaction effects among the manipulated 

factors and the calibration methods on the BIAS  of 2a  from NOHARM. 

When the “emphasis” was (20, 20, 20) or (20, 10, 30) and the two groups 

were not equivalent, NOHARM tended to underestimate 2a  when the 
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correlation was 0.9. When the “emphasis” was (20, 0, 40) and the two 

groups were not equivalent, NOHARM tended to underestimate 2a  no 

matter what the correlation was.  
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Figure 4-7 BIAS of 2a  from the three calibration methods  

under all 54 conditions 
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Figure 4-8 SD of 2a  from the three calibration methods  

under all 54 conditions 
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Figure 4-9 BIAS and SD of 2a  under three structural orthogonality levels 
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Figure 4-10 BIAS and SD  of 2a  under three structural equivalence levels 
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Figure 4-11 BIAS and SD of 2a  under two item difficulty equivalence levels 
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Figure 4-12 BIAS and SD  of 2a  under three examinee group equivalence levels 
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4.1.3 The recovery of d  

Figures 4-13 to 4-18 depict the BIAS  and the SD  of d  from the three 

methods under all 54 conditions. The gray areas in Figure 4-13 represent all the 

conditions with the “difficulty” being “.5 higher”. Figures 4-9 to 4-12 depict the effect 

of the four manipulated factors on the BIAS  and the SD  of the estimates of 2a  from 

the three methods.  

From Figures 4-13 to 4-18, it can be found that the three methods performed 

differently on the estimate of d . The following are the major findings.  

(1) In general, the BIAS of d  from Mplus and NOHARM were comparable 

and very close to zero under most conditions. BMIRT tended to 

overestimate d  under most conditions, and the absolute magnitude of the 

BIAS  was usually larger than that of the other two methods.  

(2) The three methods had comparable SD  of d , except under some 

conditions the SD  from Mplus became much larger than that from the 

other two methods.  

(3) When the correlation was 0.9, the SD  of d  from Mplus was much larger 

than when the correlation was 0.5 or 0.7.  

(4) When the emphasis on 2θ  in Form 2 increased, the BIAS  of d  from 

BMIRT increased.  

(5) When Form 2 was more difficult than Form 1, the BIAS of d  from 

BMIRT was larger than when the two forms were equally difficult.  

(6) There was one higher order interaction effect. When the “ability” was 

(0, .5) and the “emphasis” was (20, 10, 30) or (20, 0, 40), NOHARM 

tended to overestimate d and the absolute magnitude of the BIAS was 

larger than that under the other conditions.  
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Figure 4-13 BIAS of d  from the three calibration methods  

under all 54 conditions 
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Figure 4-14 SD of d  from the three calibration methods  

under all 54 conditions
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Figure 4-15 BIAS and SD of d  under three structural orthogonality levels 
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Figure 4-16 BIAS and SD of d  under three structural equivalence levels 
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Figure 4-17 BIAS and SD of d  under two item difficulty equivalence levels 
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Figure 4-18 BIAS and SD of d under three examinee group equivalence levels 
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4.2 Estimate of true score of the examinees 

The evaluation of the estimate of true scores was only available for two of the 

three multidimensional calibration methods (the concurrent MIRT method and the 

concurrent factor analysis method) and the unidimensional method (the concurrent 

UIRT method). Again, two criteria were used: BIAS  measured the mean of the 

difference between the estimated true score and “true” true score of the examinees in 

each group; SD  reflected the variability of the difference among the examinees in 

each group.  More detailed information about the BIAS  and the SD  can be found in 

the tables in Appendix C.  

 

4.2.1 The estimate of true scores in Group 1 

 Figures 4-19 and 4-20 depict the BIAS  and the SD  of the estimates of the true 

scores from the three methods in Group 1 under all 54 conditions.  In the figures, the 

solid line represents the concurrent MIRT calibration method, which was carried out 

in the program BMIRT; the dotted line represents the concurrent factor analysis 

calibration method, which was carried out in the program Mplus; the dashed line 

represents the concurrent unidimensional IRT calibration method, which was carried 

out in the program BILOG. Again, the three methods are represented by the name of 

the programs that carried out the analysis. Each figure is split into three parts based on 

the three levels of the equivalence of the test structure between the two forms. In 

addition, the conditions with relative large BIAS  are labeled with the corresponding 

value of the factor(s) that is(are) common to these conditions.  Figures 4-21 to 4-24 

depict the effect of the four manipulated factors on the BIAS  and the SD  of the 

estimate of true scores in Group 1 from the three methods. 

From Figures 4-19 to 4-24, it can be found that the three methods performed 
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differently on the estimate of the true scores in Group 1. The following are the major 

findings.  

(1) In general, the BIAS  of the estimate from all three methods was pretty 

small, with the magnitude less than 0.15 under most conditions, compared 

with the range of the true score, which was from 0 to 60.  

(2) The estimate of the true scores from BMIRT and BILOG were comparable 

and close to the true values under most conditions. The BIAS  from Mplus 

tended to fluctuate across conditions and the absolute magnitude was 

usually larger than that from the other two methods. 

(3) The SD  from BMIRT and BILOG was very comparable and consistent 

across conditions. The SD  from Mplus was always larger than that from 

the other two methods and it tended to fluctuate across conditions.  

(4) When the “emphasis” was (20, 20, 20) or (20, 10, 30), Mplus tended to 

underestimate the true scores. When the “emphasis” was (20, 0, 40), 

however, it tended to overestimate the true scores. When the “emphasis” 

was (20, 0, 40), the SD  from Mplus was much larger than when the 

“emphasis” was (20, 20, 20) or (20, 10, 30). 

(5) There were some higher order interaction effects among the factors and the 

calibration methods. When the “emphasis” was (20, 20, 20), the BIAS and 

the SD  from Mplus was larger when the “ability” was (0, .5) or (.5, .5) 

than when the “ability” was (0, 0).   When the “emphasis” was (20, 10, 30), 

the BIAS  from Mplus increased with the increase of the correlation 

between 1θ  and 2θ . An interesting finding was that when the “emphasis” 

was (20, 0, 40), the SD  from Mplus decreased with the increase of the 

correlation between 1θ  and 2θ .  
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Figure 4-19 BIAS of the true score estimation in Group 1 
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Figure 4-20 SD  of the true score estimation in Group 1
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Figure 4-21 BIAS and SD  of estimation of true score in Group 1 

under three structural orthogonality levels 
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Figure 4-22 BIAS and SD  of estimation of true score in Group 1 

under three structural equivalence levels 
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Figure 4-23 BIAS and SD  of estimation of true score in Group 1 

under two item difficulty equivalence levels  
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Figure 4-24 BIAS and SD  of estimation of true score in Group 1  

under three examinee group equivalence levels  
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4.2.2 The true score estimation in Group 2 

 Figures 4-25 and 4-26 depict the BIAS  and the SD  of the estimates of the 

true scores from the three methods in Group 2 under all 54 conditions. Figures 4-27 to 

4-30 depict the effect of the four manipulated factors on the BIAS  and the SD  of the 

estimate from the three methods. 

From Figures 4-25 to 4-30, it can be found that the three methods performed 

differently on the estimate of the true scores in Group 2. The following are the major 

findings.  

(1) As in Group 1, in general, the BIAS of the estimates from all three 

methods was pretty small, with the magnitude less than 0.15 under most 

conditions, compared with the range of the true score, which was from 0 to 

60.  

(2) The BIAS  from BILOG was usually smaller than that from the other two 

methods. The BIAS  from BMIRT and BILOG tended to fluctuate across 

conditions in the same pattern and the magnitude was usually much larger 

than that in Group 1. Mplus tended to overestimate the true score in Group 

2 under most conditions. As in Group 1, the BIAS  from Mplus in Group 2 

was different from the other two methods. However, it was not always 

larger than that from the other two methods; sometimes it was smaller.  

(3) The SD  from BMIRT and BILOG was very comparable and consistent 

across conditions. The absolute magnitude of SD  from the two methods 

was much smaller than that from Mplus under all conditions. The SD  

from Mplus in Group 2 was usually smaller than that in Group 1 and it 

tended to fluctuate across conditions.  

(4) When the correlation between 1θ  and 2θ  was 0.9, Mplus tended to 
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overestimate the true scores to a slightly larger extent than that when the 

correlation was 0.5 or 0.7, and the SD  of the estimate was also slightly 

larger.  

(5) When the “emphasis” was (20, 0, 40), the BIAS  from BMIRT and BILOG 

was slightly smaller than when the “emphasis” was (20, 20, 20) or (20, 10, 

30). In contrast, the BIAS from Mplus was slightly larger when the 

“emphasis” was (20, 0, 40) than when the “emphasis” was (20, 20, 20) or 

(20, 10, 30).  

(6) When the two forms had equivalent item difficulty level, all three methods 

tended to overestimate the true scores. But when Form 2 was more 

difficult than Form 1, BMIRT and BILOG, on average, no longer 

overestimated the true scores. Such change was not found in the estimate 

from Mplus.  

(7) When the two groups were equivalent, BMIRT and BILOG tended to 

underestimate the true scores under most conditions; but when Group 2 

had higher ability than Group1, the two methods tended to overestimate 

the true scores in Group 2. In addition, the absolute magnitude of the 

BIAS was larger when the “ability” was (.5, .5) than when the “ability” 

was (0, .5).  

(8) There were some higher order interaction effects among the factors and the 

calibration methods. When the “emphasis” was (20, 20, 20), the SD  from 

Mplus was larger when the “ability” was (0, .5) than when the “ability” 

was (0, 0) or (.5, .5). An interesting finding was that when the “ability” 

was (0, 0), the SD  from Mplus was larger than when the “ability” was 

(0, .5) or (.5, .5).  
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Figure 4-25 BIAS of the true score estimation in Group 2 
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Figure 4-26 SD  of the true score estimation in Group 2
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Figure 4-27 BIAS and SD  of estimation of true score in Group 2 

under three structural orthogonality levels  
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Figure 4-28 BIAS and SD  of estimation of true score in Group 2  

under three structural equivalence levels  
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Figure 4-29 BIAS and SD  of estimation of true score in Group 2  

under two item difficulty equivalence levels  
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Figure 4-30 BIAS and SD  of estimation of true score in Group 2  

under three examinee group equivalence levels  
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CHAPTER 5  

CONCLUSION AND DISCUSSION 

 

5.1 Summary of the Study 

Multigroup analysis has been widely applied in educational measurement. In 

practice, most of the approaches for multigroup analysis are unidimensional. These 

approaches assume that the tests across groups measure a single uniform construct. 

This assumption, however, has been increasingly challenged. Not only the test 

construct within each group might be multidimensional, but the dimensions might 

change across groups. To solve this problem, multidimensional approaches have been 

proposed. Multidimensional IRT (MIRT) and factor analysis methods are two 

important ones. The purpose of this study was to investigate the performance of MIRT 

and factor analysis methods in analyzing multigroup multidimensional data. The 

performance of the unidimensional IRT method, compared with its multidimensional 

counterparts, was also investigated. The three multidimensional methods investigated 

were the concurrent MIRT calibration method, the separate MIRT calibration method 

with linking, and the concurrent factor analysis method. The unidimensional IRT 

method investigated was the concurrent unidimensional IRT calibration method.  

 The study was based on simulated data. A common item nonequivalent groups 

design was employed. There were two test forms. Each had 60 items, 20 of which 

were common items. Each form was developed to measure two abilities, 1θ  and 2θ . 

The 20 common items measured both 1θ  and 2θ  and the 40 unique items measured 

only ability, either 1θ  or 2θ . Assume that each test form was taken by a group of 2,000 

imaginary examinees. Form 1 was taken by Group 1 and Form 2 was taken by Group 

2. Four factors were manipulated to emulate real test conditions, including the 
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structural orthogonality, reflected by the correlation between 1θ  and 2θ ; the 

equivalence of test structure, reflected by the number of items measuring 1θ  and 2θ in 

each form; the equivalence of item difficulty; and the equivalence of examinee groups, 

reflected by the mean proficiency on 1θ  and 2θ  in each group. In total, there were 54 

combinations of conditions. Under each condition 100 replications were made. The 

item response data was generated based on multidimensional compensatory two-

parameter logistic (MC2PL) model. The concurrent MIRT calibration was carried out 

by the program BMIRT; the separate MIRT calibration was carried out by the program 

NOHARM, and the linking was done through a method modified from the method 

proposed by Min (2003); the concurrent factor analysis calibration was carried out by 

the program Mplus; the concurrent unidimensional IRT calibration was carried out by 

the program BILOG.  

The performance of the calibration methods was evaluated based on the 

recovery of item parameters and the estimate of the true score of the examinees. The 

evaluation of the item parameter recovery was only available for the three 

multidimensional calibration methods. Two criteria were used: BIAS  measured the 

mean difference between the estimated and true value of the parameters; SD  reflected 

the stability of the estimation. The evaluation of the estimation of true score was only 

available for two of the three multidimensional calibration methods (the concurrent 

MIRT calibration method and the concurrent factor analysis calibration method) and 

the concurrent unidimensional IRT calibration method. Again, two criteria were used: 

BIAS  measured the mean of the difference between the estimated true score and 

“true” true score of the examinees in each group; SD  reflected the variability of the 

difference among the examinees in each group. 
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5.2 Summary of the Results 

5.2.1 The Recovery of Item Parameters 

 From the results of the analysis, it can be concluded that the three 

multidimensional approaches performed differently with respect to the recovery of 

item parameters. The manipulated factors had some effect on the recovery of the 

parameters, but in a different way for each of the methods.  

The key findings are as follows: 

(1) The bias of the estimate of 1a  and d from the concurrent factor analysis 

method (Mplus) and the separate MIRT method (NOHARM) were 

comparable and very close to zero under most conditions. But the bias of 

the estimate of 2a  from the two methods was less similar, with that from 

NOHARM fluctuating more widely across conditions.   

(2) For 1a , 2a , and d , the bias of the estimate from the concurrent factor 

analysis method tended to be more consistent across conditions than the 

other two methods. The results indicated that the concurrent factor analysis 

method was less affected by the manipulated factors with respect to the 

bias of the estimation.  However, the stability of the estimate from the 

concurrent factor analysis method fluctuated widely across conditions. 

(3) The concurrent MIRT calibration method tended to underestimate 1a  and 

2a  and overestimate d . The estimate from the concurrent MIRT method 

usually had more bias than that of the other two methods under most 

conditions. However, it was more stable than the other two methods under 

most conditions and the stability was less affected by the manipulated 

factors. 
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(4) When the correlation between the two dimensions increased, the estimate 

of 1a  and 2a  from the concurrent MIRT method became more biased, and 

that from all three methods became less stable. This effect was not evident 

in the estimate of d , except when the correlation was 0.9, then the 

estimate from the concurrent factor analysis method became less stable. A 

possible reason for this phenomenon might be that when the correlation 

between the dimensions was relatively high, it became more difficult for 

the analytic methods to define the difference between the dimensions and, 

therefore, it’s harder to get unbiased and stable estimates of the parameters 

related to the dimensions.  The parameter d  reflects the overall difficulty 

of the item and is not directly related to the dimensions. Therefore, it was 

less affected by the correlation between dimensions.  

(5)  For all three methods, the estimate of 2a  had much more bias than that of 

1a  when the test structure of the two forms was not equivalent, specifically, 

when more emphasis was put on 2θ  in Form 2. This indicated that when 

the common items did not represent the dimensions equally well in a test, 

the estimate of the parameters related to the underrepresented dimension 

tended to be more biased. However, the stability of the estimate from all 

three methods was not negatively affected. The estimate of 2a  from the 

concurrent factor analysis method became more stable when more 

emphasis was put on 2θ . The following is a tentative explanation for this 

phenomenon. In the multigroup analysis, the common scale for the 

parameters from different tests is constructed based on the common items 

between the tests. When some dimension(s) can not be represented by the 

common items as well as the other dimensions, the common scale for the 
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underrepresented dimension(s) would be more biased and, therefore, the 

parameters on this common scale tend to be more biased.  However, the 

bias of the common scale does necessarily relate to the stability of the 

parameter estimation. In this study, when more items measured 2θ  in the 

test, more information about 2θ was recovered from the data, and this, in 

turn, helped to get a more stable estimate of the parameters related to this 

dimension.  

(6) No effect of the equivalence of item difficulty between the two forms was 

found in the estimates of 1a  and 2a  from any of the three methods. 

However, the estimate of d from the concurrent MIRT method tended to 

have more bias when the item difficulty of the two forms was not 

equivalent. However, this effect was not found in the estimates from the 

other two methods.  

(7) When the two examinee groups were not equivalent, the estimate of 1a , 2a , 

and d from the separate MIRT method became more biased and less stable. 

This effect was not found in the estimates from the other two method. 

Linking error might be a reason for such a change in the estimate from the 

separate MIRT method. As was discussed earlier, when the two groups 

were equivalent, no linking was made to the estimate of the parameters 

from different groups because they were already on the same scale. When 

the two groups were not equivalent, however, linking was needed. The 

increase in bias and decrease in stability of the parameter estimates when 

linking was conducted indicated that linking error might be a reason for 

such a change.  
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5.2.2 The Estimation of True Score of Examinees 

With respect to the estimate of true score of examinees, the two 

multidimensional methods (the concurrent MIRT method and the concurrent factor 

analysis method) and the unidimensional IRT method performed differently with 

respect to bias and stability of the estimation. As to the recovery of the item 

parameters, the estimation of the true scores from different methods was also affected 

by the manipulated factors, but in somewhat different ways.   

The followings are the key findings:  

(1) The estimate of true scores from all three methods had relatively small bias, 

compared with the range of total score.  

(2) In both groups, the estimate of true score from the concurrent MIRT 

method and the concurrent UIRT method were quite comparable, with 

respect to both bias and stability. In Group 1, the estimate of the true score 

from the two methods had very little bias. In Group 2, however, the 

estimate had much more bias and the bias tended to fluctuate a lot across 

conditions. One possible reason for the larger bias in Group 2 might be 

that during the process of concurrent estimation, Group 1 was treated as 

the reference group, where the joint distribution of the abilities is 

constrained to be standard multivariate normal and this happened to be 

true in Group 1. The distribution of the abilities in Group 2, however, was 

estimated based on the data. Therefore, the ability distribution in Group 1 

had no estimation error, whereas that in Group 2 had error. As a result, the 

true score estimate in Group 2 had more bias than that in Group 1.   The 

stability of the estimation in the two groups was comparable and consistent 

across conditions.  



 99

(3) Compared with the two IRT methods, the estimate of true scores from the 

concurrent factor analysis method were less stable. In Group 1, the 

concurrent factor analysis method had more bias than the two IRT methods 

and the bias tended to fluctuate across conditions. In Group 2, however, 

the concurrent factor analysis method did not always have larger bias than 

the two IRT methods.  

(4) With respect to the effect of the correlation between the dimensions, no 

clear evidence regarding its impact was found in the estimates from the 

two IRT methods. The estimate from the concurrent factor analysis method 

became slightly more biased and less stable when the correlation between 

the dimensions increased. It was expected that the correlation between the 

dimensions would affect the estimates of the UIRT method in this way: the 

lower the correlation, the more bias and the less stable the estimates. 

However, such a pattern was not found in the results, which indicated that 

the UIRT method was robust to the multidimensionality of the data, at least 

under the conditions investigated in this study.  In regard to the two 

multidimensional methods, although the correlation between the 

dimensions affected the estimation of the item parameters, the effect was 

much less in the estimation of the true score.  

(5) When the test structure of the two forms was not equivalent, the estimates 

of the true score in Group 1 from the concurrent factor analysis method 

tended to be more biased and less stable; in Group 2, the estimates from 

the concurrent MIRT and the concurrent factor analysis method tended to 

be slightly more biased. No evident effect was found in the estimate from 

the concurrent UIRT method, which indicated that the unidimensional 
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method was also robust to the nonequivalence of test structure.  

(6) When the two forms were equally difficult, all three methods tended to 

overestimate the true score in Group 2. However, when Form 2 was more 

difficult than Form 1, the two IRT methods no longer overestimated the 

true scores in Group 2. This change, however, was not found in the 

estimate from the factor analysis method.  

(7) When the two groups became less equivalent, specifically, when Group 2 

had higher ability than Group 1 on one or both dimensions, the estimate of 

true scores in Group 1 from the two IRT methods was not affected 

appreciably, whereas that from the concurrent factor analysis method 

became slightly more biased and less stable under some conditions. In 

Group 2, however, the estimate from the two IRT methods became 

increasingly positively biased. Such a change was not evident in the 

estimate from the concurrent factor analysis method. This might indicate 

that the IRT methods somewhat “overreacted” to the increase in the ability 

of the examinees.   

 

5.3 Discussion and Future Study 

(1) Unidimensional vs. multidimensional methods 

 In estimating the true score of examinees, the performance of the concurrent 

unidimensional IRT method was quite comparable to its multidimensional counterpart 

with respect to both bias and stability of the estimates. The unidimensional IRT 

method was robust to the multidimensionality of the data under the conditions 

investigated in this study. It was also robust to the nonequivalence of the test structure 

across groups, when the test of different groups had different measurement emphases 
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on the same set of dimensions. This indicates that for a test, such as reading, where 

the dimensions or contents are moderately to highly related and the same set of 

dimensions or contents are measured across groups, applying the concurrent 

unidimensional IRT method in the multigroup analysis, such as equating or vertical 

scaling, might not be a problem. However, the results from this study are not readily 

generalized to the more complicated situation in which the correlation between 

dimensions is relatively low or the dimensions or contents change across groups. An 

example of this situation is the vertical scaling of a science test that spans a wide 

range of grades.  More study is needed.  

 

 (2) IRT vs. factor analysis methods 

 In regard to the recovery of the item parameters, the concurrent factor analysis 

method, in general, did a better job than the two MIRT methods. The bias of the 

estimate from the concurrent factor analysis method was comparable to, and 

sometimes smaller than, that from the separate MIRT method and it was always 

smaller than that from the concurrent MIRT method. The bias from the concurrent 

factor analysis method was more consistent across conditions and was less affected by 

the manipulated factors. Compared with the two MIRT methods, the estimates from 

the concurrent factor analysis method were also very stable, except when the 

correlation between dimensions were very high. This indicated that the concurrent 

factor analysis method might be a useful tool for item calibration in the multigroup 

analysis, which, in practice, is primarily done by the IRT methods. In general, one 

limitation of employing the factor analysis methods in item calibration is that they 

currently cannot model guessing (giving a correct response to an item by guessing) in 

the item response. When guessing is present, a preliminary analysis needs to be done 
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to adjust the response data before item calibration is conducted. The concurrent factor 

analysis method investigated in this study has this problem. However, guessing is not 

a problem for the two MIRT methods in this study because guessing is allowed in the 

model. How does the concurrent factor analysis method perform, compared with the 

MIRT methods, in item calibration when guessing is present? This question might be 

worth studying in the future.  

 With respect to the estimation of the true score, the two IRT methods, in 

general, performed better than the concurrent factor analysis method in Group 1, with 

smaller bias and more stability. Although the estimate of item parameters from the 

concurrent MIRT method had more bias than that from the concurrent factor analysis 

method, the underestimation of 1a  and 2a  and the overestimation of d seems to 

cancel each other out in the estimation of the true score. However, the two IRT 

methods tended to “overreact” to the change in the factors such as item difficulty and 

examinee ability. When the item difficulty in Form 2 increased, the estimate of the 

true score in Group 2 decreased more than it was supposed to. Similarly, when the 

examinees in Group 2 had higher ability than those in Group 1, the estimate of true 

score in Group 2 increased more than it was supposed to.  The concurrent factor 

analysis method, however, was less affected by these factors. In summary, the results 

from this study indicated that the two IRT methods performed better than the factor 

analysis method in estimating the true score of the examinees. However, this 

conclusion can not be easily generalized to other conditions because the effect of the 

factors on the IRT methods needs to be studied further.   
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 (3) Concurrent vs. separate calibration methods 

 When the two groups were equivalent, the concurrent factor analysis method 

and the separate IRT method performed comparably, with respect to both estimation 

bias and stability. When the two groups were not equivalent, however, the parameter 

estimate from the separate MIRT method tended to be more biased and less stable 

than that from the concurrent factor analysis method. Linking error might contribute 

to this change. This might indicate that the concurrent factor analysis method is a 

better choice for the item calibration than the separate MIRT method when the 

examinee groups are not equivalent. On the other hand, because only one linking 

method was investigated in this study, one may ask how the other linking methods 

perform compared to this one under different conditions and what the most 

appropriate linking method is that could minimize the linking error.  More 

investigation is needed to answer these questions.  

  

 (4) The representation of the dimensions by the common items 

 When the test structure was not equivalent across groups, the selection of the 

common items would be a problem. If the common items can not represent the 

dimensions of a test equally well, the parameter(s) related to the underrepresented 

dimension(s) would be more biased. However, when the two tests do not have 

equivalent test structure, it’s not possible for the common items to represent the 

dimensions equally well for all tests. Then one can ask how to select the common 

items so that they can minimize the overall bias in the parameter estimate resulting 

from the underrepresentation of dimensions.  This too is worth further study.  
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APPENDIX  A 

Scale Transformation Method for separate MIRT calibration 

In this study, the scale transformation for the separate MIRT calibration is 

performed as followed: 

EKaa ii ′='*  

Ema iii dd ′+=*  

( )mEθKθ −= −1*  

where θ is 1×n vector of ability parameters, where n is the number of dimensions; ia  

and id  are the estimate of item parameters on the compared scale; *
ia  and *

id  are the 

estimate of the item parameters transformed from the compared scale to the base scale; 

K is a nn× diagonal dilation matrix; m  is a 1×n translation vector for location; k  is 

a central dilation constant for unit change; and E is a nn×  identity matrix. Here, the 

matrix T  in Min (2003)’s method is replaced by the identity matrix E so that the 

direction of the dimensions won’t change in scale transformation.  

 

 K can be derived through the following procedure:  

 Assume bA is the item discrimination matrix for the common items in the base 

test, which is Form 1 in this study; eA is the item discrimination matrix for the 

common items in the equated test, which is Form 2 here.  

EKAA eb +=  

where E is the residual matrix KAAE eb −= . K can be derived by minimizing 

)( EE′tr . In result, [ ] ( )( ) 1−′×′= eediagdiag AATAAK eb  
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  m can be derived by the following procedure: 

Assume bD is the item difficulty vector for the common items in the base 

test; eD is the item difficulty vector for the common items in the equated test.  

QmADD ceb ++=  

whereQ is the residual matrix mADDQ eeb −−= . m can be derived by minimizing 

)( QQ′tr . In result, ))D(DA()AA(m ebc
1

ee −′′= − .
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APPENDIX B 

Table B-1 BIAS  of 1a  estimated from the three methods under all 54 conditions 

Emphasis 

(20,20,20) (20,10,30) (20,0,40) 

Difficulty 
Correlation Ability Method 

Equivalent .5 higher Equivalent .5 higher Equivalent .5 higher

BMIRT -0.0234 -0.0172 -0.0098 -0.0113  -0.0093  -0.0073 

Mplus 0.0064 0.0109 0.0140 0.0125  0.0030  0.0054 (0,0) 

NOHARM 0.0052 0.0037 0.0059 0.0044  -0.0150  -0.0137 

BMIRT -0.0237 -0.0238 -0.0173 -0.0113  -0.0114  -0.0084 

Mplus 0.0059 0.0037 0.0087 0.0123  0.0011  0.0028 (0,.5) 

NOHARM 0.0015 0.0082 -0.0007 0.0044  -0.0005  0.0011 

BMIRT -0.0209 -0.0236 -0.0079 -0.0106  -0.0115  -0.0114 

Mplus 0.0118 0.0155 0.0147 0.0152  0.0002  0.0002 

0.5 

(.5,.5) 

NOHARM 0.0022 0.0049 0.0058 0.0049  -0.0010  -0.0018 

BMIRT -0.0345 -0.0361 -0.0200 -0.0198  -0.0233  -0.0271 

Mplus 0.0045 0.0049 0.0128 0.0142  0.0053  0.0016 (0,0) 

NOHARM 0.0051 0.0037 0.0057 0.0051  -0.0238  0.0013 

BMIRT -0.0353 -0.0315 -0.0245 -0.0200  -0.0277  -0.0275 

Mplus 0.0073 0.0049 0.0101 0.0139  0.0013  0.0012 (0,.5) 

NOHARM 0.0019 0.0053 0.0015 0.0085  0.0009  0.0008 

BMIRT -0.0310 -0.0344 -0.0221 -0.0218  -0.0247  -0.0252 

Mplus 0.0107 0.0113 0.0119 0.0133  0.0033  0.0020 

0.7 

(.5,.5) 

NOHARM 0.0019 0.0074 -0.0007 0.0025  0.0030  0.0017 

BMIRT -0.0412 -0.0409 -0.0167 -0.0192  -0.0342  -0.0308 

Mplus 0.0166 0.0180 0.0125 0.0126  0.0000  0.0017 (0,0) 

NOHARM 0.0098 0.0062 0.0090 0.0047  -0.0368  -0.0339 

BMIRT -0.0366 -0.0358 -0.0227 -0.0181  -0.0328  -0.0350 

Mplus 0.0216 0.0216 0.0097 0.0096  -0.0007  -0.0032 (0,.5) 

NOHARM 0.0041 0.0068 -0.0044 0.0101  0.0055  0.0028 

BMIRT -0.0312 -0.0424 -0.0171 -0.0246  -0.0350  -0.0280 

Mplus 0.0127 0.0216 0.0156 0.0125  -0.0030  0.0057 

0.9 

(.5,.5) 

NOHARM -0.0125 0.0044 0.0071 -0.0115  0.0023  0.0095 

 

Note: The bold-faced numbers in the table indicate the methods that resulted in the 

smallest BIAS under each condition. 
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Table B-2 SD of 1a estimated from the three methods under all 54 conditions 

Emphasis 

(20,20,20) (20,10,30) (20,0,40) 

Difficulty 
correlationb Ability Method 

Equivalent .5 higher Equivalent .5 higher Equivalent .5 higher
BMIRT 0.0715 0.0751 0.0733 0.0728  0.0699  0.0717 

Mplus 0.0824 0.0852 0.0700 0.0687  0.0760  0.0784 (0,0) 

NOHARM 0.0734 0.0750 0.0761 0.0750  0.0735  0.0828 

BMIRT 0.0712 0.0725 0.0749 0.0732  0.0704  0.0714 

Mplus 0.0826 0.0824 0.0698 0.0683  0.0787  0.0782 (0,.5) 

NOHARM 0.0912 0.0903 0.0889 0.0885  0.0848  0.0844 

BMIRT 0.0736 0.0738 0.0734 0.0745  0.0714  0.0714 

Mplus 0.0870 0.0852 0.0697 0.0715  0.0781  0.0798 

0.5  

(.5,.5) 

NOHARM 0.0898 0.0971 0.0889 0.0902  0.0850  0.0865 

BMIRT 0.0766 0.0764 0.0758 0.0791  0.0749  0.0750 

Mplus 0.0911 0.0908 0.0722 0.0770  0.0856  0.0877 (0,0) 

NOHARM 0.0798 0.0786 0.0803 0.0834  0.0817  0.0969 

BMIRT 0.0779 0.0781 0.0760 0.0761  0.0737  0.0747 

Mplus 0.0926 0.0927 0.0746 0.0758  0.0851  0.0854 (0,.5) 

NOHARM 0.1000 0.1018 0.1012 0.0995  0.0955  0.0952 

BMIRT 0.0790 0.0758 0.0756 0.0761  0.0745  0.0753 

Mplus 0.0932 0.0929 0.0757 0.0752  0.0863  0.0856 

0.7  

(.5,.5) 

NOHARM 0.1014 0.1004 0.0970 0.1003  0.0946  0.0961 

BMIRT 0.0855 0.0847 0.0910 0.0879  0.0837  0.0824 

Mplus 0.1471 0.1487 0.1095 0.1135  0.1463  0.1477 (0,0) 

NOHARM 0.1094 0.1076 0.1150 0.1214  0.1896  0.1688 

BMIRT 0.0841 0.0840 0.0836 0.0852  0.0814  0.0872 

Mplus 0.1392 0.1354 0.0978 0.1023  0.1256  0.1387 (0,.5) 

NOHARM 0.1651 0.1660 0.1673 0.1719  0.1663  0.1683 

BMIRT 0.0864 0.0841 0.0892 0.0868  0.0842  0.0806 

Mplus 0.1526 0.1557 0.1125 0.1114  0.1478  0.1386 

0.9  

(.5,.5) 

NOHARM 0.1715 0.1690 0.1687 0.1705  0.1660  0.1644 

 

Note: The bold-faced numbers in the table indicate the methods that resulted in the 

smallest SD  under each condition. 
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Table B-3 BIAS for 2a  estimated from the three methods under all 54 conditions 

Emphasis 

(20,20,20) (20,10,30) (20,0,40) 

Difficulty 
correlation Ability Method 

Equivalent .5 higher Equivalent .5 higher Equivalent .5 higher
BMIRT -0.0198 -0.0204 -0.0354 -0.0363  -0.0697  -0.0679 

Mplus 0.0065 0.0012 -0.0323 -0.0359  -0.0342  -0.0337 (0,0) 

NOHARM 0.0044 0.0021 0.0034 -0.0016  0.0248  0.0221 

BMIRT -0.0219 -0.0207 -0.0245 -0.0352  -0.0659  -0.0728 

Mplus 0.0027 0.0042 -0.0285 -0.0344  -0.0334  -0.0353 (0,.5) 

NOHARM -0.0015 -0.0025 0.0040 -0.0031  -0.1011  -0.0995 

BMIRT -0.0276 -0.0231 -0.0383 -0.0318  -0.0766  -0.0771 

Mplus -0.0046 0.0047 -0.0348 -0.0321  -0.0310  -0.0376 

0.5  

(.5,.5) 

NOHARM -0.0033 -0.0017 -0.0073 0.0026  -0.1012  -0.1000 

BMIRT -0.0407 -0.0419 -0.0623 -0.0570  -0.1094  -0.1020 

Mplus 0.0053 -0.0023 -0.0334 -0.0289  -0.0317  -0.0294 (0,0) 

NOHARM 0.0025 0.0005 0.0040 0.0019  0.0290  0.0040 

BMIRT -0.0451 -0.0488 -0.0581 -0.0603  -0.1039  -0.1089 

Mplus -0.0021 -0.0023 -0.0328 -0.0292  -0.0305  -0.0327 (0,.5) 

NOHARM -0.0084 -0.0098 -0.0094 -0.0114  -0.1110  -0.1119 

BMIRT -0.0421 -0.0416 -0.0578 -0.0610  -0.1138  -0.1030 

Mplus 0.0026 0.0049 -0.0306 -0.0342  -0.0348  -0.0279 

0.7  

(.5,.5) 

NOHARM -0.0044 -0.0015 -0.0031 -0.0013  -0.1198  -0.1099 

BMIRT -0.0637 -0.0618 -0.1017 -0.0992  -0.1482  -0.1458 

Mplus -0.0034 0.0006 -0.0351 -0.0348  -0.0275  -0.0323 (0,0) 

NOHARM -0.0018 0.0006 -0.0036 -0.0018  0.0275  0.0222 

BMIRT -0.0700 -0.0728 -0.0954 -0.0955  -0.1357  -0.1443 

Mplus -0.0088 -0.0127 -0.0328 -0.0295  -0.0267  -0.0288 (0,.5) 

NOHARM -0.0462 -0.0507 -0.0604 -0.0678  -0.1610  -0.1434 

BMIRT -0.0733 -0.0691 -0.1043 -0.0988  -0.1437  -0.1523 

Mplus 0.0022 -0.0006 -0.0330 -0.0384  -0.0256  -0.0285 

0.9  

(.5,.5) 

NOHARM -0.0304 -0.0471 -0.0613 -0.0337  -0.1535  -0.1469 

 

Note: The bold-faced numbers in the table indicate the methods that resulted in the 

smallest BIAS under each condition. 
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Table B-4 SD  for 2a  estimated from the three methods under all 54 conditions 

Emphasis 

(20,20,20) (20,10,30) (20,0,40) 

Difficulty 
correlation Ability Method 

Equivalent .5 higher Equivalent .5 higher Equivalent .5 higher
BMIRT 0.0731 0.0742 0.0737 0.0740  0.0775  0.0783 

Mplus 0.0847 0.0848 0.0617 0.0633  0.0637  0.0641 (0,0) 

NOHARM 0.0761 0.0766 0.0734 0.0755  0.0719  0.0750 

BMIRT 0.0722 0.0713 0.0748 0.0732  0.0760  0.0801 

Mplus 0.0841 0.0822 0.0624 0.0617  0.0626  0.0629 (0,.5) 

NOHARM 0.0882 0.0885 0.0899 0.0894  0.0762  0.0793 

BMIRT 0.0733 0.0724 0.0718 0.0744  0.0785  0.0778 

Mplus 0.0852 0.0858 0.0616 0.0626  0.0640  0.0619 

0.5  

(.5,.5) 

NOHARM 0.0876 0.0934 0.0865 0.0896  0.0762  0.0767 

BMIRT 0.0759 0.0763 0.0723 0.0762  0.0779  0.0792 

Mplus 0.0908 0.0922 0.0656 0.0676  0.0670  0.0678 (0,0) 

NOHARM 0.0794 0.0801 0.0773 0.0794  0.0741  0.0847 

BMIRT 0.0759 0.0741 0.0773 0.0744  0.0806  0.0770 

Mplus 0.0910 0.0917 0.0676 0.0671  0.0681  0.0658 (0,.5) 

NOHARM 0.1002 0.0968 0.1019 0.0988  0.0859  0.0825 

BMIRT 0.0761 0.0762 0.0760 0.0756  0.0795  0.0780 

Mplus 0.0901 0.0923 0.0685 0.0661  0.0682  0.0676 

0.7  

(.5,.5) 

NOHARM 0.0985 0.0987 0.1008 0.0975  0.0855  0.0846 

BMIRT 0.0846 0.0850 0.0858 0.0842  0.0818  0.0864 

Mplus 0.1464 0.1421 0.0919 0.0939  0.0990  0.0994 (0,0) 

NOHARM 0.1084 0.1084 0.1028 0.1065  0.1212  0.1162 

BMIRT 0.0842 0.0812 0.0806 0.0786  0.0801  0.0853 

Mplus 0.1301 0.1326 0.0856 0.0852  0.0877  0.0961 (0,.5) 

NOHARM 0.1632 0.1601 0.1691 0.1596  0.1515  0.1428 

BMIRT 0.0841 0.0827 0.0849 0.0871  0.0800  0.0836 

Mplus 0.1503 0.1593 0.0945 0.0937  0.0996  0.0942 

0.9  

(.5,.5) 

NOHARM 0.1651 0.1693 0.1604 0.1760  0.1508  0.1424 

 

Note: The bold-faced numbers in the table indicate the methods that resulted in the 

smallest SD  under each condition. 
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Table B-5 BIAS  for d  estimated from the three methods under all 54 conditions  

Emphasis 

(20,20,20) (20,10,30) (20,0,40) 
Difficulty 

correlation Ability Method 

Equivalent .5 higher Equivalent .5 higher Equivalent .5 higher

BMIRT 0.0035 0.0221 0.0074 0.0350  0.0073  0.0558 

Mplus -0.0012 -0.0005 0.0091 0.0129  0.0054  0.0059 (0,0) 

NOHARM -0.0017 -0.0011 0.0001 -0.0005  -0.0043  -0.0022 

BMIRT 0.0036 0.0252 0.0105 0.0453  0.0189  0.0753 

Mplus -0.0041 -0.0008 0.0100 0.0198  0.0018  0.0164 (0,.5) 

NOHARM -0.0008 -0.0034 0.0018 0.0100  0.0033  0.0168 

BMIRT 0.0015 0.0220 0.0088 0.0364  0.0169  0.0700 

Mplus -0.0100 -0.0087 0.0035 0.0083  0.0058  0.0065 

0.5  

(.5,.5) 

NOHARM -0.0015 -0.0033 -0.0055 -0.0035  -0.0008  0.0018 

BMIRT 0.0043 0.0215 0.0111 0.0350  0.0121  0.0679 

Mplus -0.0018 -0.0012 0.0100 0.0124  0.0040  0.0121 (0,0) 

NOHARM 0.0005 -0.0004 -0.0014 0.0014  -0.0017  0.0011 

BMIRT -0.0001 0.0231 0.0138 0.0427  0.0199  0.0741 

Mplus -0.0076 -0.0022 0.0148 0.0193  0.0061  0.0120 (0,.5) 

NOHARM -0.0051 -0.0004 0.0146 0.0140  0.0289  0.0309 

BMIRT 0.0019 0.0236 0.0121 0.0400  0.0257  0.0821 

Mplus -0.0080 -0.0068 0.0063 0.0094  0.0060  0.0094 

0.7  

(.5,.5) 

NOHARM -0.0039 -0.0033 -0.0026 -0.0020  -0.0037  0.0004 

BMIRT -0.0043 0.0187 0.0102 0.0426  0.0164  0.0972 

Mplus -0.0102 -0.0049 0.0264 0.0128  0.0101  0.0362 (0,0) 

NOHARM -0.0032 -0.0026 -0.0022 -0.0017  -0.0019  -0.0036 

BMIRT 0.0003 0.0255 0.0147 0.0479  0.0251  0.1094 

Mplus -0.0001 0.0019 -0.0028 0.0155  -0.0022  0.7327 (0,.5) 

NOHARM 0.0003 0.0054 0.0378 0.0379  0.0826  0.0861 

BMIRT 0.0089 0.0215 0.0096 0.0444  0.0229  0.1187 

Mplus -0.0004 -0.0085 0.0086 0.0153  -0.0022  0.0602 

0.9  

(.5,.5) 

NOHARM 0.0036 -0.0034 -0.0051 -0.0026  -0.0048  -0.0005 

 

Note: The bold-faced numbers in the table indicate the methods that resulted in the 

smallest BIAS under each condition. 
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Table B-6 SD  for d  estimated from the three methods under all 54 conditions 

Emphasis 

(20,20,20) (20,10,30) (20,0,40) 
Difficulty 

correlation Ability Method 

Equivalent .5 higher Equivalent .5 higher Equivalent .5 higher

BMIRT 0.0694 0.0705 0.0718 0.0685  0.0701  0.0710 

Mplus 0.0785 0.0804 0.0756 0.0732  0.0747  0.0732 (0,0) 

NOHARM 0.0613 0.0633 0.0629 0.0620  0.0613  0.0638 

BMIRT 0.0711 0.0730 0.0714 0.0706  0.0706  0.0698 

Mplus 0.0775 0.0796 0.0765 0.0768  0.0750  0.0763 (0,.5) 

NOHARM 0.0766 0.0768 0.0789 0.0784  0.0740  0.0781 

BMIRT 0.0725 0.0719 0.0714 0.0741  0.0691  0.0752 

Mplus 0.0815 0.0814 0.0729 0.0762  0.0721  0.0788 

0.5  

(.5,.5) 

NOHARM 0.0762 0.0780 0.0768 0.0790  0.0759  0.0802 

BMIRT 0.0707 0.0708 0.0747 0.0708  0.0698  0.0728 

Mplus 0.0743 0.0759 0.0765 0.0765  0.0771  0.0781 (0,0) 

NOHARM 0.0612 0.0624 0.0632 0.0623  0.0604  0.0655 

BMIRT 0.0747 0.0729 0.0724 0.0725  0.0725  0.0717 

Mplus 0.0818 0.0814 0.0768 0.0750  0.0774  0.0815 (0,.5) 

NOHARM 0.0761 0.0777 0.0754 0.0751  0.0759  0.0781 

BMIRT 0.0757 0.0752 0.0755 0.0731  0.0728  0.0742 

Mplus 0.0802 0.0827 0.0758 0.0761  0.0785  0.0792 

0.7  

(.5,.5) 

NOHARM 0.0812 0.0774 0.0759 0.0778  0.0770  0.0815 

BMIRT 0.0754 0.0791 0.0766 0.0772  0.0747  0.0785 

Mplus 0.0936 0.0907 0.3784 0.0938  0.1016  0.1561 (0,0) 

NOHARM 0.0610 0.0623 0.0605 0.0611  0.0623  0.0621 

BMIRT 0.0791 0.0772 0.0761 0.0762  0.0768  0.0845 

Mplus 0.0993 0.1048 0.1514 0.0994  0.1179  2.3621 (0,.5) 

NOHARM 0.0741 0.0740 0.0758 0.0723  0.0724  0.0763 

BMIRT 0.0769 0.0802 0.0781 0.0788  0.0773  0.0802 

Mplus 0.0993 0.1068 0.1057 0.1518  0.1113  0.2326 

0.9  

(.5,.5) 

NOHARM 0.0729 0.0722 0.0730 0.0751  0.0721  0.0765 

 

Note: The bold-faced numbers in the table indicate the methods that resulted in the 

smallest SD  under each condition. 
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APPENDIX C 

Table C-1 BIAS  of true score estimated from the three methods  

under all 54 conditions in Group 1 

Emphasis 
(20,20,20) (20,10,30) (20,0,40) 

Difficulty 
Correlation Ability Method 

Equivalent .5 higher Equivalent .5 higher Equivalent .5 higher

BMIRT -0.0267 -0.0145 -0.0232 -0.0009  -0.0247  -0.0181 

Mplus -0.0361 -0.0420 -0.1022 -0.0921  0.0371  0.0345 (0,0) 

BILOG -0.0156 -0.0129 -0.0122 -0.0043  -0.0121  -0.0175 

BMIRT -0.0230 -0.0214 -0.0224 0.0129  -0.0347  -0.0031 

Mplus -0.1130 -0.1010 -0.1027 -0.0728  0.0216  0.0468 (0,.5) 

BILOG -0.0036 -0.0131 -0.0095 0.0147  -0.0211  -0.0012 

BMIRT -0.0137 -0.0125 -0.0120 -0.0078  -0.0119  -0.0043 

Mplus -0.0979 -0.1067 -0.0843 -0.0943  0.0466  0.0466 

0.5  

(.5,.5) 

BILOG -0.0039 -0.0142 -0.0025 -0.0087  0.0008  -0.0013 

BMIRT -0.0077 -0.0047 -0.0105 -0.0048  -0.0236  0.0071 

Mplus -0.0125 -0.0286 -0.1165 -0.1186  0.0258  0.0438 (0,0) 

BILOG 0.0008 -0.0050 -0.0028 -0.0082  -0.0147  0.0059 

BMIRT -0.0173 -0.0107 -0.0157 0.0069  -0.0130  0.0051 

Mplus -0.1100 -0.1309 -0.1160 -0.1079  0.0427  0.0452 (0,.5) 

BILOG -0.0002 -0.0059 -0.0015 0.0085  -0.0004  0.0076 

BMIRT 0.0005 -0.0056 -0.0209 -0.0082  -0.0128  -0.0007 

Mplus -0.1111 -0.1284 -0.1237 -0.1202  0.0420  0.0377 

0.7  

(.5,.5) 

BILOG 0.0093 -0.0085 -0.0134 -0.0122  -0.0023  -0.0012 

BMIRT -0.0185 -0.0128 -0.0237 0.0031  -0.0240  -0.0023 

Mplus -0.0081 -0.0164 -0.1236 -0.1160  0.0371  0.0521 (0,0) 

BILOG -0.0117 -0.0181 -0.0140 -0.0018  -0.0148  -0.0026 

BMIRT -0.0109 0.0009 -0.0174 0.0030  -0.0278  -0.0086 

Mplus -0.1245 -0.1084 -0.1293 -0.1117  0.0368  0.0108 (0,.5) 

BILOG 0.0026 0.0033 -0.0043 0.0047  -0.0148  -0.0056 

BMIRT -0.0093 -0.0092 -0.0146 -0.0028  -0.0188  -0.0037 

Mplus -0.1183 -0.1072 -0.1028 -0.1127  0.0494  0.0404 

0.9  

(.5,.5) 

BILOG -0.0017 -0.0123 -0.0065 -0.0111  -0.0103  -0.0106 

 

Note: The bold-faced numbers in the table indicate the methods that resulted in the 

smallest BIAS under each condition. 
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Table C-2 SD  of true score estimated from the three methods  

under all 54 conditions in Group 1 

Emphasis 
(20,20,20) (20,10,30) (20,0,40) 

Difficulty 
Correlation Ability Method 

Equivalent .5 higher Equivalent .5 higher Equivalent .5 higher
BMIRT 2.871 2.864 2.866 2.866  2.862  2.866 

Mplus 3.088 3.068 3.402 3.394  4.079  4.111 (0,0) 

BILOG 2.881 2.874 2.875 2.875  2.871  2.875 

BMIRT 2.865 2.872 2.864 2.863  2.881  2.856 

Mplus 3.410 3.396 3.393 3.418  4.079  4.069 (0,.5) 

BILOG 2.876 2.882 2.872 2.873  2.890  2.864 

BMIRT 2.874 3.198 2.864 2.864  2.870  2.853 

Mplus 3.399 3.430 3.415 3.408  4.102  4.073 

0.5  

(.5,.5) 

BILOG 2.885 2.882 2.874 2.873  2.878  2.864 

BMIRT 2.866 3.200 2.864 2.871  2.865  2.872 

Mplus 3.119 3.079 3.370 3.391  3.969  3.974 (0,0) 

BILOG 2.871 2.871 2.870 2.876  2.872  2.878 

BMIRT 2.879 2.864 2.865 2.867  2.862  2.856 

Mplus 3.396 3.378 3.406 3.379  3.975  3.943 (0,.5) 

BILOG 2.885 2.871 2.869 2.873  2.866  2.862 

BMIRT 2.865 2.854 2.863 2.865  2.875  2.870 

Mplus 3.385 3.397 3.351 3.391  3.950  3.977 

0.7  

(.5,.5) 

BILOG 2.872 2.860 2.870 2.872  2.881  2.875 

BMIRT 2.877 2.873 2.877 2.880  2.872  2.875 

Mplus 3.228 3.201 3.514 3.451  3.905  3.928 (0,0) 

BILOG 2.873 2.868 2.873 2.877  2.869  2.873 

BMIRT 2.873 2.869 2.870 2.878  2.868  2.872 

Mplus 3.437 3.514 3.424 3.483  3.925  3.802 (0,.5) 

BILOG 2.869 2.867 2.867 2.876  2.866  2.868 

BMIRT 2.874 2.877 2.871 2.879  2.871  2.881 

Mplus 3.481 3.497 3.494 3.473  3.955  3.895 

0.9  

(.5,.5) 

BILOG 2.870 2.875 2.868 2.875  2.868  2.874 

 

Note: The bold-faced numbers in the table indicate the methods that resulted in the 

smallest SD  under each condition. 
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Table C-3 BIAS  of true score estimated from the three methods  

under all 54 conditions in Group 2 

Emphasis 
(20,20,20) (20,10,30) (20,0,40) 

Difficulty 
Correlation Ability Method 

Equivalent .5 higher Equivalent .5 higher Equivalent .5 higher
BMIRT -0.0156 -0.0940 0.0042 -0.1004  -0.0131  -0.0659 

Mplus 0.0245 0.0166 0.0542 0.0165  0.0465  0.0450 (0,0) 

BILOG -0.0123 -0.0435 0.0068 -0.0534  -0.0145  -0.0574 

BMIRT 0.0665 -0.0334 0.0751 -0.0115  0.0819  0.0263 

Mplus 0.0272 0.0345 0.0552 0.0370  0.0638  0.0618 (0,.5) 

BILOG 0.0343 -0.0200 0.0523 0.0067  0.0479  0.0032 

BMIRT 0.1388 0.0133 0.1371 0.0503  0.1222  0.0769 

Mplus 0.0555 0.0378 0.0509 0.0411  0.0910  0.0873 

0.5  

(.5,.5) 

BILOG 0.0851 0.0358 0.0799 0.0366  0.0735  0.0364 

BMIRT 0.0031 -0.0083 -0.0090 -0.0814  -0.0029  -0.0531 

Mplus 0.0460 0.0357 0.0517 0.0348  0.0562  0.0479 (0,0) 

BILOG 0.0066 -0.0336 -0.0065 -0.0434  -0.0055  -0.0452 

BMIRT 0.0547 -0.0316 0.0617 -0.0166  0.0852  0.0331 

Mplus 0.0509 0.0304 0.0478 0.0282  0.0703  0.0640 (0,.5) 

BILOG 0.0267 -0.0214 0.0391 -0.0037  0.0562  0.0137 

BMIRT 0.1343 0.0407 0.1348 0.0531  0.1071  0.0450 

Mplus 0.0207 0.0442 0.0573 0.0501  0.0742  0.0688 

0.7  

(.5,.5) 

BILOG 0.0886 0.0339 0.0909 0.0408  0.0724  0.0157 

BMIRT -0.0017 -0.0753 -0.0140 -0.0624  0.0042  -0.0543 

Mplus 0.0570 0.0361 0.0822 0.0690  0.0692  0.0469 (0,0) 

BILOG -0.0023 -0.0617 -0.0142 -0.0421  0.0052  -0.0490 

BMIRT 0.0520 -0.0176 0.0700 -0.0022  0.0763  0.0228 

Mplus 0.0700 0.1445 0.0771 0.0595  0.0558  -0.0612 (0,.5) 

BILOG 0.0314 -0.0199 0.0542 -0.0024  0.0569  0.0116 

BMIRT 0.1033 0.0570 0.1028 0.0427  0.0905  0.0476 

Mplus 0.0691 0.1024 0.0480 0.0436  0.0547  0.0795 

0.9  

(.5,.5) 

BILOG 0.0783 0.0487 0.0790 0.0368  0.0755  0.0417 

 

Note: The bold-faced numbers in the table indicate the methods that resulted in the 

smallest BIAS under each condition. 
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Table C-4 SD  of true score estimated from the three methods  

under all 54 conditions in Group 2 

Emphasis 
(20,20,20) (20,10,30) (20,0,40) 

Difficulty 
Correlation Ability Method 

Equivalent .5 higher Equivalent .5 higher Equivalent .5 higher
BMIRT 2.974 2.918 2.969 2.927 2.997 2.955

Mplus 3.209 3.206 3.294 3.255 3.339 3.314(0,0) 

BILOG 2.979 2.921 2.970 2.927 2.991 2.949

BMIRT 2.949 2.947 2.956 2.953 2.968 2.987

Mplus 3.175 3.215 3.206 3.288 3.189 3.288(0,.5) 

BILOG 2.955 2.952 2.956 2.957 2.962 2.981

BMIRT 2.919 3.311 2.918 2.954 2.962 2.978

Mplus 3.111 3.184 3.146 3.254 3.188 3.267

0.5  

(.5,.5) 

BILOG 2.922 2.954 2.921 2.960 2.956 2.971

BMIRT 2.964 3.364 2.976 2.917 2.990 2.947

Mplus 3.197 3.207 3.329 3.274 3.335 3.316(0,0) 

BILOG 2.961 2.926 2.969 2.911 2.986 2.942

BMIRT 2.962 2.954 2.959 2.954 2.964 2.993

Mplus 3.224 3.294 3.282 3.287 3.215 3.297(0,.5) 

BILOG 2.959 2.951 2.952 2.949 2.958 2.987

BMIRT 2.933 2.954 2.937 2.958 2.935 2.965

Mplus 3.119 3.160 3.196 3.278 3.164 3.300

0.7  

(.5,.5) 

BILOG 2.930 2.952 2.931 2.952 2.931 2.960

BMIRT 2.971 2.928 2.967 2.926 2.977 2.928

Mplus 3.324 3.301 3.470 3.432 3.328 3.316(0,0) 

BILOG 2.963 2.925 2.962 2.924 2.973 2.924

BMIRT 2.967 2.947 2.949 2.954 2.944 2.987

Mplus 3.475 3.716 3.305 3.393 3.241 3.193(0,.5) 

BILOG 2.962 2.942 2.944 2.950 2.940 2.982

BMIRT 2.934 2.957 2.927 2.953 2.942 2.967

Mplus 3.377 3.502 3.255 3.284 3.172 3.266

0.9  

(.5,.5) 

BILOG 2.929 2.952 2.920 2.947 2.938 2.963

 

Note: The bold-faced numbers in the table indicate the methods that resulted in the 

smallest SD  under each condition. 
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