ABSTRACT

Title of Thesis: FAST HASHING INTO ELLIPTIC
AND HYPERELLIPTIC CURVES:
Michael Goldman, Master of Arts, 2011

Thesis directed by: Professor Lawrence C. Washington
Department of Mathematics

The BLS Digital Signature Algorithm is a cryptographic scheme using elliptic
curves over finite fields. In the BLS Digital Signature Algorithm, we require a
function that maps a arbitrary element of a finite field to an elliptic curve in that
field. There is a simple, naive way to do this, but it is not particularly fast.

In a recent paper, Paulo S. L. M. Barreto and Hae Y. Kim described an
algorithm that speeds up the computation significantly (by about two orders of
magnitude). This speed up in computation is due to avoiding square roots in these
finite fields. Square root computation in these fields leads to speeds of O(r?). Barreto
and Kim’s techniques uses the fact that cubing in a finite field of characteristic 3 is
a fast, linear operation on the order of O(r). Barreto and Kim’s complete algorithm
takes O(r?) steps, a major improvement.

However, this algorithm is only for specific elliptic curves of the form
2 — x + b = y% The goal of this paper is to extend this algorithm to significantly

more elliptic curves in characteristic 3. To do so, we consider other elliptic curves

of similar construction (of the form 23 + z + b = y?), and then we reduce much
more general cases to these two curves. We also describe the limitations of these
techniques for other elliptic curves.

We then extend this algorithm to a more general case of hyperelliptic curves
in characteristic p. Similarly to the case in characteristic 3, raising to the pth power
is a fast operation in characteristic p. We first look at a more simple case, where
the elliptic curve is described as z¥ 4+ Bz + b = y?, where 3 is in the base field of F,,.
Then we seek to generalize to where [is any element in our field. Once again, we
describe the limitations of these techniques when applying them to other curves.

After initial setup costs, the algorithm remains at the speed O(r?). In certain
cases, the algorithm will converge at a rate 1/p, and in other cases, the algorithm

will be deterministic.

FAST HASHING INTO ELLIPTIC
AND HYPERELLIPTIC CURVES

by

Michael Goldman

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Master of Arts
2011

Advisory Committee:
Professor Lawrence Washingtion, Chair/Advisor
Professor Jeff Adams

Professor Harry Tamvakis

(© Copyright by
Michael Goldman
2011

Dedication

This mathematics dissertation is dedicated to my father, Professor William

Goldman, who continues to inspire me as a mathematician and a friend.

ii

Table of Contents

List of Abbreviations

1 Introduction

1.1 The BLS Signature Scheme,
1.2 Standard Methodo
1.3 Normal Bases
1.4 Finding a Normal Basis

2 The Main Algorithm
2.1 Speed Comparison and Timings

3 Extending to other Curves

3.1 The Other Base Case
3.2 Error Term Computation
3.3 Limitations of the Error Termm
3.4 General Elliptic Curves
3.5 Taking the Square Root
3.6 Limitations of the Curve
3.7 Summary of the Algorithm
4 Extending to Characteristic p
4.1 The Base Cases
4.2 Error Term Computation
4.3 The General Case
44 Findingtand fo
4.5 Limitations
4.6 Summary of the Algorithm
4.7 Conclusions e
Bibliography

il

v

11
11
13
14
15
16
17
17

20
20
22
24
24
26
26
28

29

List of Abbreviations

Q alpha

15} beta

¥ gamma

w omega

F, field of g elements

BLS Boneh-Lynn-Shacham

v

1 Introduction

In recent years, the development of elliptic curve cryptography has given rise
to much more efficient cryptographic schemes, such as the digital signing scheme by
Boneh, Lynn, and Shacham also known as the BLS Signature Algorithm. Unlike
other previous schemes, this scheme has no equivalent with more conventional groups
like Z,. While other kinds of signature algorithms are known and can produce
smaller signatures, the BLS Signature is significantly faster in practice.

In the BLS Signature Algorithm, there is a specific need for a function to map
from F, to the elliptic curve in question. The simplest function has a running time
of O(r?), and is restricted by the need to calculate square roots. Paulo S. L. M.
Barreto and Hae Y. Kim discussed a fast hash into an elliptic curve of characteristic
three [1]. By avoiding square root evaluations, they developed a map that takes
O(r?) steps.

This algorithm can be found in Section 2 and is the basis of this paper. While
Barreto and Kim’s paper discuss the properties of this algorithm on a specific elliptic
curve, this paper uses their techniques to extend their algorithm to other curves.
Not only do we extend this method to more elliptic curves in characteristic three,

but we also extend their methods to hyperelliptic curves in characteristic p.

1.1 The BLS Signature Scheme

The BLS Signature Algorithm is the motivating factor for this paper. The

digital signature algorithm goes as follows:

The BLS Signature Algorithm

1. Alice sets up the signature scheme. She chooses a public elliptic curve
E € F,r x Fpr, and a public elliptic curve point G. Alice chooses a Pairing
Operation p : E x 2 — Fx¥. This pairing operation is bilinear and one-way.

She chooses a mapping H(y) : F — F

2. Alice has a private key k, and a message m that she would like to sign. She

lets G = k - G, and makes G public.

3. Alice signs a message m. She lets S = k- H(m) and she sends the pair (S, m)
to Bob.

4. Bob verifies the signature. He checks that p[S, G] = p[H(m), G], which works

simply by the bilinear property of p.

In the above and in the following, we do not need E to be the full group of
points on the elliptic curve with coordinates in F,-. A subgroup suffices, and we
denote such a subgroup also by E. This paper deals with H(y), the function that
hashes onto the elliptic curve E. The goal is to find methods for incredibly fast hash
functions.

First of all, one may wonder why we even need H(y). A naive way to do this
scheme is to instead sign a message with S = k- h(m) - G, where h(m) is an integer
valued hash function. This seems intuitive because we already use a hash function.
However, this makes it possible to forge a signature on any message. As the hash
function is public information, anyone could simply send (h(m)-G,m) and it would
satisfy the verification.

Therefore, we need some way to map to points on the elliptic curve without

the discrete logarithm of the signature with respect to G' being known.

1.2 Standard Method

Here we present the standard, simplest method of mapping to the elliptic

curve. Start with an elliptic curve in the form:

far+b=1y> (1.1)

The Standard Mapping Algorithm [1]
1. Choose z € F,.
2. Check if 2% 4+ ax + b is a square in the field.

3. If it is, take the square root. Otherwise, let x be the next x (according to

some ordering) and go back to step 1.

This is obviously a very simple and direct way to obtain a point on the elliptic
curve. As half of the numbers are squares, it is a 1/2 chance that you will obtain a
point immediately. The main issue with this computation is taking a square root in
a finite field.

Taking square roots is not a particularly fast operation (on the order of O(r?)),
and can slow down the computation. To perform this action, one would need to
calculate a square root for every choice of x. In Section 2, we give a method that is
significantly faster.

We choose x by hashing our message with a typical integer hash function.
Henceforth, when we say “we choose x or 3”, we imply that we hash our message

into a value in IFr.

1.3 Normal Bases

There are many choices we have for the field F,. The two main ones that are
used for security purposes are when ¢ is a large prime, and when ¢ = p”, where p is
a small prime, and r is a large prime. We say that F,- is a field of characteristic p.
These fields have specific properties related to their characteristic.

The main advantage of working in I~ is that it can broken down into a vector
space of dimension r, where each coordinate is represented by an element in F,,. The
computation can be done in [F, which has relatively fast computation. A standard
representation of - is F,[x]/ f(2) where f is an irreducible polynomial of degree r.
This yields the basis {1,z,2% -+ ,2"7'}. However, for our purposes it is better to
work with a normal basis. A normal basis has several properties that we want.

For any basis, if ag, ay,...a,_1 are our basis elements, then all n € [, have
unique representions n = ZZ;E nya, where each ny € F,. This gives us the vector
space. But there is an additional property of the normal basis; namely, a} = ag1.
This means that each element of the normal basis can be raised to the pth power to
shift to the next basis element. Also, n, € F,, so n} = n; by Fermat. Henceforth,
consider all indices to be taken mod r except where specifically denoted otherwise.

The normal basis yields a powerful formula with exponents: if

r—1

n= Z nEak (1.2)
k=0

then we can express n” in the following way:

r—1

nf = Z ApNps1 (1.3)
k=0

Simply put, raising something to the pth power in a field of characteristic p shifts

the coefficients of the normal basis over one. That means raising to the pth power

is a linear operation.

Consider the element ag + a1 + - -+ + a,_1. Notice that when you raise this
to the pth power, it is itself. So this is an element of F,. In fact by rescaling by
a suitable element of F,-, we may assume ag + a; + --- + a,—1 = 1, and similarly
—ap—a; —---—a,_1 to be-1. Also, if 8 € F,, then it is represented as Bag + Ba; +
<o+ Bay_q € Fpyr

Now that we have described the properties of the normal basis, how do we

find this normal basis?

1.4 Finding a Normal Basis

We represent F- by F,[x]/ f(2) where f(x) is some monic polynomial of degree
r. We define the ged of two polynomials to be the monic polynomial of highest degree
that divides both polynomials. We present an algorithm for finding a normal basis

using this construction.

Probablistic Normal Basis Search [3]
1. Choose a € F,r at random
2. Compute a? for 1 <i<r
3. Let w(x) = .7, a”z’. Calculate the ged(w(z), 2" — 1).

4. If ged(w(x), 2" — 1) = 1 then {a”'} is a normal basis. If not, try the

algorithm again.

Clearly the elements of {api} are shifted by the pth-power map. The question
is why does the gcd check that this is a basis?

Theorem (Hensel) ged(w(z), 2" — 1) = 1 if and only if {a?'} is a basis.

Proof. Suppose:

Toag + T1a1 + -+ Tp_1a,-1 =0

with some {x} € F,. Let w(z) be the function to the left. We apply the pth power

map several times, along with af = a;,; and z¥ = z; to obtain:

ao aq as - Ap—1 o 0
Qr-1 Qo a1 -+ 4p-2 T 0
Qp—2 Qr_1 Go -+ Gp_3 T3 — |0

aq Qo as --- ao Tr_q 0

We let the matrix on the left be matrix D. First we will show that if {a”'} has
a nonzero solution with entries in F,- then there is a nonzero solution with entries
in [F, if these rows are independent as vectors. Suppose {z;} is in the nullspace of

the matrix. Looking at the r — j + 1st row for any j yields the relation:
T1Qr—jy1 + ToQp_jro + -+ + 2pap_j =0
Now apply the p/th power map to this to obtain:
x’l’jaHl + xé’jaMg +- 4+ xfjar =0

It is easy to see that (x’fj,xgj, e ,xffj_l) is in the nullspace of our matrix for any
J. Therefore the sum of all these elements is also in the null space. But x; + =¥ +
xf2 + ot xfr_l is equal to its pth power, so it is in [F,. We assume z; is nonzero,
so we can rescale it to be 1. As ged(r,p) = 1 because r is a large prime, we have

zi+ a2l +a +---+ 27 =1 £0. So we have a nonzero vector with entries in F,
in the nullspace. Therefore if we have a solution with entries in F,» then we have a

solution with entries in F,.

Now, we want the {api} to be independent as vectors, which implies that
det D # 0. D is called a circulant matriz, and it has a well known determinant. Let

¢ be an r** root of unity in the algebraic closure of our field. We have:

ao aq Ao -+ Qp_q 1 1
Qr—1 Qo A1 -+ Qr-2 ¢ ¢
Qr—2 Qr-1 Qo - Ar—3 C2 = (CLO —|— CLIC —|— e —|— CLT_ICT_I) C2

ax az az - Qo ¢t ¢t
Therefore ve = (1,¢,¢%, - -+, (") is an eigenvector with eigenvalue ag+ a1¢ +

o+ a,_1¢"1, for all ¢ such that ¢" = 1. The vectors (1,¢, (2, ---,¢("1) as ¢ runs
through all roots of " — 1 are linearly independent (as they form a Vandermonde
matrix with determinant nonzero), so we have r eigenvectors. Therefore, this yields

the determinant of the matrix D:

Qo ay a2 - Qr}
r—1 Qo QA1 -+ Q-2
... 2 -1
det | @r—2 ar—1 Go ar-3 | = H (a0 +Car + CCag + - + (" ap_1)
. . . . o1
ay as as --- ao

In order for this product to be zero, there must be a root of unity ¢ such that:
ag + C(Zl + C2CL2 + -+ Cr_l(lr_l =0

which means (is a zero of w(x). By definition, is a zero of " — 1, so ged(w(x), 2" —
1) # 1. So {a;} are linearly dependent if and only if there is a nonzero solution to
D if and only if ged(w(z),z" — 1 = 0) # 1.

Therefore the Probabilistic Normal Basis Search obtains a normal basis.

2 The Main Algorithm

We now introduce the main algorithm of the paper. This algorithm was intro-
duced by Paulo S. L. M. Barreto and Hae Y. Kim in their paper “Fast Hashing Onto
Elliptic Curves Over Fields of Characteristic 3.” It avoids taking square roots in
these finite fields entirely. The Standard Mapping Algorithm chooses x and solves
the square root for y. This algorithm works in the reverse. We choose y and solve
for x to avoid the square root.

This algorithm works specifically with a field of characteristic three and the
elliptic curve, 2® — z 4+ b = y2. It uses the fact that cubing is a linear operation in

this finite field. With this, we speed up the computation.

Algorithm 1

1. Begin with a normal basis in the field of 3" elements where r is prime. The
basis elements will be denoted ag, a1, -+, a,_1. Let E/ be an elliptic curve

over [F3- with the equation:

* — x4+ b=y’

2. Choose y € F3r and let u = y? — b. So we have the equation:

3. Let uy, be the coefficients of u:

U = UG + U1a1 + -+ + Up_1G71

4. Let xp to be a fixed element of F3 (for example, let 2y = 0). Run through the

series of computations to obtain {xy}:

T1 = Ug + X

To = U1 + T

Tp = Up_1 + Ty_1

5. Now check if x, = z¢. If so, let © = xpap + z1a1 + -+ - + z,_1a,_1, and (x,y) is
a point on the elliptic curve. If not, then that choice of y does not yield a

point on the curve. In this case, use the next value of y and go back to step 1.

After initial setup, this algorithm takes O(r?) time. While our techniques
allowed Step 4 to be O(r) time, choosing y and computing u ends up dominating
the entire algorithm. Not only does Step 4 only contain O(r) operations, it only
involves addition in the field F3, so the computation is incredibly fast. Why does
this yield a point on the curve?

Cubing in a field of characteristic three is a linear operation. In terms of the
normal basis, if x = Z;;E Tp - ai then a3 = Z};é Try10,. S0 solving the equation

3

x® — x = u involves solving the equation for each of the coefficients of the basis

elements, which are all elements of F3.

In Step 4, we have that the map # — 2® — x has kernel of 3 elements: 0, and
+1=+(ap+---+a,_1). So if any choice of x; fails, then all three choices of xq will
fail. So our only option is pick an entirely different y.

This algorithm is the basis of this paper. We will see how this technique works
in different elliptic curves in fields of characteristic three, and how we can stretch

this algorithm to hyperelliptic curves in characteristic p.

2.1 Speed Comparison and Timings

The following table compares the timing of the Standard Mapping Algorithm
with Algorithm 1. The algorithms were coded in C++ and run on a 550 Mhz
Pentium III Processor, and these timings are taken directly from Barreto and Kim’s

paper on this algorithm [1].

Running Times of Algorithms in ms

r Standard Mapping | Algorithm 1

79 3.02 0.037
97 5.53 0.054
163 25.7 0.164

As one can see, Algorithm 1 noticeably faster. It speeds up the algorithm by
about two orders of magnitude. This technique is neither limited to this elliptic

curve nor to this characteristic, and this paper explores these other possibilities.

10

3 Extending to other Curves

Our goal is to extend Algorithm 1 to all equations of the form z* + ax = u.

However, before we do that, we need to consider another particular elliptic curve.

3.1 The Other Base Case

Consider the elliptic curve:

v =2*4+14+0b

We now present a similar algorithm to map onto this curve:

Algorithm 2

1. Begin with a normal basis in the field of 3" elements where r is prime. The
basis elements will be denoted a1, as, -+, a,_1. Let E/ be an elliptic curve

over [F3- with the equation:

P4 r b=y

2. Choose y € F3-. Let u = y? — b as before, yielding the equation:

x3—|—x:u

11

3. Compute the vector x by the following series of computations:

1 = Uy — X9

To = Ul — 1

Ty = Up—1 — Tp-1

4. Check if x, = x¢. If so, then (z,y) is a point on the curve and you're finished.

5. If not, let e = x,, — . Compute & by the series of computations:

Zi’(]:l'o—F@

Zi’lle—@

Zi’k =T+ (—1)k€

i'r—l =Xx,_1+e€

and (&,y) is a point on the curve.

Algorithm 2 is extremely similar to Algorithm 1. There is a parity change in Step
3, but that is obviously because of the parity change in the original equation. The
significant difference comes in at Step 5. We now look at Step 5, and see why
this computation gives us a point on the curve. This has the same complexity as

Algorithm 1, but it is deterministic.

12

3.2 Error Term Computation

With 2® + 2 = u, rather than giving up on a specific y, we can fix 2o to be
the correct choice. First run through the computation and check whether x, = x.
If so, then we’re done. If not, let e = x¢y — x,. Now we run through the algorithm
a second time, using o = zo + e. This yields the computation we ended up with in

Step 5 of Algorithm 2:

=

1 =Uyg — Lo — €
Zi’lle—@
Zi’gzul—l’l—F@

52'221'2—1'6

:%k:xk—l—(—l)k-e

Finally, we check if this is correct. We know r is odd because it’s assumed to

be a large prime, so z, = =, — e.

To— T, =¢€
xog—x, = —2e (as —2=1¢€TFy)

Tog+e€e=x.—€

=
(e}
I
=
3

Computationally, the correction can be done as follows: Let z be defined as

2, = (—1). Then let # = z + ez by vector addition. This is another extremely fast

13

method to fix the original choice of x.

3.3 Limitations of the Error Term

One may also be tempted to try the same method of Error Term Computation
on the elliptic curve 2® — o + b = y2. However, we can prove that this fails. Take
the elliptic curve 23 — z + b = y?. Let 29 = x¢ + e for any choice of e. Run through

the algorithm to obtain:

52'1:’&0—1'1'0—1'6
52'121'1—1—6
Tao=ur+21+e

52'221'2—1—6

Ir=1xL+e

and with this we check if the point is on the curve:

by our assumption of our original point not working. This is because the map

x — 23 — 2 from Fy — F3- is three-to-one. If one z fails, then all choices of z(will

fail.

14

3.4 General Elliptic Curves

Now that we have figured out the two base cases, we can extend to a much

more general case. Look at the equation:

P 4+ar+b=y*> with o € Fy.

Our method for solving this problem is to find ¢ such that > = £a. Once we
find such a ¢, we can use either Algorithm 1 or Algorithm 2 to find points quickly

on the curve.

Algorithm 3
1. Let E be an elliptic curve onto Fs» with the equation 23 4+ ax + b = v

2. Let t be a square root of @ or —«a. By the transformation x — tx, we reduce

our equation to x® + z = (y* — b)/(«at).
3. Let u = % to obtain the equation 2% + z = u.
4. Use Algorithm 1 or Algorithm 2 to obtain .

5. Transform back the solution x — x/t.

The additional computation is calculating the square root of «, division by ¢,
and transforming back and forth. However, other than the transformations back and
forth, these operations only are computed once for the whole curve, independently
of how many points are computed on the curve. So calculating the square root will
take O(r?®) operations initially. For every point we want to calculate on the curve,

it takes O(r?) operations to multiply and divide elements.

15

Remember, we are working a field of 3" elements where r is prime (and there-
fore odd), which means that —1 is not a square in the field. So of course if « is not

a square, then —a is a square and vice versa.

3.5 Taking the Square Root

Lemma If « is a square in a finite field with 3" elements, then we can calculate

t such that t? = o by the following operation:

—Ja=a"t (3.1)

Proof: Tt should be noted that r is a large prime and therefore odd. Therefore,
3" =3 mod 4 so we know that the exponent is an integer. Therefore, this operation
is well defined. To see why this operation yields the element we are looking for,

square the result:

Note that a” 2 is a square root of unity, in this case it is 1. This also gives an
algorithm for deciding which of +« is a square. Compute (aBTTH)? It will be either

a or —a, and that will be a square in our field.

16

3.6 Limitations of the Curve

If we try to use the above ideas for other elliptic curves, there are significant
limitations on when this algorithm is actually practical. The main reason is because
simple transformations can drastically increase the running time of the algorithm.
Essentially, if we have to take a square root for every choice of y, rather than for all
choices of y, then this algorithm is pointless. It would be faster - or similar in time
- to simply choose z first, and calculate the square root of y? directly.

For instance, consider the elliptic curve:

2° + az’ + b=y’

First, we can turn this into the equation 23 + ax? = u. Then, naturally, we
do a transformation z — 1/ (assuming z # 0) and multiply by 23 to obtain the

equation:

2 —ar/u—1/u=0

We can apply to our algorithm to this curve. But u is different for each y, so
we would be solving a square root for each y, rather than once for all y. This means
we would probably be better off using the Standard Algorithm of choosing x and

taking a square root to find y.

3.7 Summary of the Algorithm

We now present a summary of operations of the algorithm for the general case.
Algorithm 4

1. Begin with a normal basis in the field of 3" elements where r is prime. The

basis elements will be denoted ag, a1, -+, a,_1. Let E/ be an elliptic curve

17

over [F3- with the equation:

2 foax+b=1y°

3"+1

.Lett=a 1 .

. Calculate t2. It will either be a or —a.

. Now, transform this equation by x — ¢ - x. We now have the following curve:

P +x=(y>—b)/(at) (3.2)

. If a is a square, then we are in the positive case. That means we can use an

error term. Let z be defined by z, = (—1)" for all k.

. Now we perform our major computation. Choose y. Now let

u = (y*> — b)/(at). We now have the equation:

P rr=u (3.3)

. Represent u by the normal basis. Let u; be defined such that

U = AoUg + A UL + .o + Ap_1Upr_1

. Choose zy € F3. Recursively find x; by performing the computations:

Tpy1 =up Fap for0<k<r-—1

. Now check if o = z,. If it is, then move to the step 10. If it isn’t, then it

depends on if a or —« is a square. If —« is a square, choose next y and go

18

back to step 6. If « is a square, then calculate e = 2o — x,. Let z := x + ez.

10. Transform x — 2/t and we have (z,y) is a point on the elliptic curve.

This algorithm takes O(r?) operations. The computation that dominates is
the transforming x — tx and reversing it. If « is a square, then it will always take

the same amount of time as well.

19

4 Extending to Characteristic p

Algorithms 1-4 simply use the fact that cubing is linear in fields of characteris-
tic three. Similarly, 2® is a linear operation in a field of characteristic p. So now we
consider F,r. We will discuss an algorithm for mapping into Hyperelliptic Curves in

the following form:

P+ oz + b=y’

4.1 The Base Cases

First, we look at the base cases. Consider the equation:

o+ B + b=y (4.1)

where 8 € F,. We immediately see that the main part of our algorithm remains
untouched. As f is in the base field, our computation remains in F, rather than
F,-. If ZZ;E xpay is the representation of x in the normal basis, then ZZ;E (xB)ay,
is the representation of Sx with the normal basis. Therefore we can immediately

create an algorithm as follows:

Algorithm 5

1. Begin with a normal basis in the field of p” elements where p and r are

prime. The basis elements will be denoted ag, a1, ---, a,_1. Let E be a

20

hyperelliptic curve over F,» with the equation:

2’ + Br + b=y

. Choose y, and let © = y? — b to obtain the equation P + Bz = u.

. Define uy by the representation of u in the normal basis:

U = UG + U1a1 + -+ + Up_1G71

. Let xo be a fixed element of F, (for instance, let zo be 0). Let z, be

determined by the series of computations:

1 = uy — Bxo

To =up — B,

Tp = Up—1 — Bx'r—l

. Check that x, = xo. If it does, then (z,y) is a point on the hyperelliptic

curve. If not, move on to the next step.

. If B = —1, then choose the next y by some ordering and go back to Step 2.
Otherwise, let v = —1/(1 + ") mod p, and e = xq — x,. Define z by its

coordinates in the normal basis:

2= (—1)" 8"y

21

7. Let z = zoap + 2101 + -+ - + Z—1a,—1. Let T = x + ze, and (Z,y) is a point on

the elliptic curve.

We see many similarities between this algorithm and the base cases of the
characteristic 3 case. For instance, in Step 6. If § = —1, then we get a p-to-one
map. As before, if our choice xq does not work, then none will work, and we simply
have to change our choice of y. The speed of the algorithm becomes slower as p
increases, because it’s a one in p chance that we’ll obtain a solution. If § # —1, then
we have a one-to-one map. As before, we obtain an error vector, the calculation of
which will be described in the next section.

After the initial setup (Step 1), which is relatively trivial, this algorithm takes
O(r?) operations. The computation of u dominates the algorithm, which is the only
part that takes O(7?) steps. If 3 = —1 then we have convergence based on the size

of p.

4.2 Error Term Computation

Assume § # —1. Let e = 29 — z,. Let v = —(1/(1 + ")) mod p. Then
commence the operation £¢ = x¢ + ye.
The transformation may look different, but it is actually the generalization of

the one in characteristic three, because v = 1 in F3 with g = 1.

22

Now we’ll show why this works.

We know r is odd as we assumed r is a large prime. So now we just have to check:

.7
To =Ty
? r
xo+ve =x, — B ve
zo — 2, = —ye(1 4 ")

l=—y(1+5")

Therefore this error term is the one we want. We can now describe the exact vector

to add to the term. Let z be this error vector. Define:

2 = (~1)" 8%y (4.2)

So for straightforward calculation, one only needs to let £ = z + ze by vector
addition, and this point will be guarenteed to be on the elliptic curve. Therefore
this algorithm is not only extremely fast but will always find a point in the same

amount of time. Not only that, but v does not depend on e. One only needs to

23

calculate this v once for each elliptic curve.
It should also be pointed out that, in general, p will be significantly smaller

than 7, so ¥ will cycle around values over and over again.

4.3 The General Case

We now consider the general equation:

P+ oz + b=y’

where o € F,». We will show later that there exist 8 € F, and ¢t € F,- such that

a = tP~13. With this, we perform the transformation x — tx to obtain:

tPz? + tax =y* — b

tP(aP + Br) = y* — b

2 +) = ((y* — b)B) /1"
o’ + Bz = ((y* - b)B)/(ta)

2+ Br=u

So the method works exactly as it should. There is exactly one calculation of
r~/a and it is independent of the y chosen. After that, there is only straightforward
calculation for each choice of y.

We will now find £ and ¢.

4.4 Finding t and (8

Lemma: Let ged(r,p—1) = 1 (which we assumed as r is a large prime) and

let k = —1/r mod (p—1). If there exists ¢ such that *~! = a then we can compute

24

t by the following:

kp"—k+p—1

t=*"Va=a 012

Proof: First we need to show that the exponent is an integer so this operation is

well defined:

kr =—1 modp—1
k(1+1414---41)=-1 modp—1
k(l+p+p°+-+p)+1=0 modp—1

k(ph — 1)+ (p—1)=0 mod (p—1)*

Therefore the exponent is an integer and this is a well defined function. Now we
show that this formula does in fact give a (p — 1)st root of «, if a = tP~1 for some

t € R,

kp" —k4p—1
I R ()

kp" —k+p—1
= (p—1)

k(p"—1)
= (r—1) . «

The first factor is a (p — 1)st root of unity in F,-. These are the elements in F,,.
That means that this root of unity is exactly .

Therefore, look at tP~!. Let 8 = «/tP~!. By definition, this gives us the
element that we are looking for. We have now found and ¢ given any « such that

a =tPip.

25

4.5 Limitations

Once again, this algorithm has its limitations. If the transformation of x is
too complex, it will end up being a situation where one computes p — 1 roots for

each choice of y rather than once for all y. Take the polynomial:

A Y T (4.3)

Once again, choose y and reduce this to 2P +2P~! = u. Now transform x — 1/t

and multiply both sides by t? to obtain:

ut! — oz =—1

tr—x/u=—-1/u

We can only solve this by taking a p — 1 root of —1/u for each choice of y, so the
algorithm has no advantage over the Standard Algorithm.
4.6 Summary of the Algorithm

We now give a summary of the steps of the complete algorithm in characteristic

Algorithm 6

1. Begin with a normal basis in the field of p” elements where p and r are
prime. The basis elements will be denoted aq, as, ---, a,_1. Let E be an

elliptic curve over F,» with the equation:

2P+ ar+b=y?

26

10.

. Let k= —1/r mod p— 1. Define ¢ to be:

kp" —k+p—1

t=a ®-D? (4.4)

. Let 8= a/tr™L.

. If B # —1 then x — 2P + [z is one-to-one, and we can use the error vector.

Let v =—1/(1+ ") mod p, Define error vector z by:

25 = (_1)k+1,y

. Perform the transformation x — tz which will turn our equation into:

(y> —b)B

P+ pr =
at

(¥2-b)B

at

Choose y, and let u = , and put that in the normal basis.

. Define uy, to be the representation of v in the normal basis:

U = UgQo + U1A] + .o + Up_1Qpr_1

Choose xg, and define x; by the computations:

Tpy1 =up — Py for k=0,1,--- ;r—1

Check if ¢y = x,. If it is then move to step 10. If not, check if 5 = —1. If
B = —1, choose the next y and go back to step 7. If 8 # —1, then let

e =29 — T,, and then let z := x + ez.

Perform the transformation x := z/t and (z,y) is a point on the elliptic

27

curve.

The initial setup of our algorithm takes O(r3) operations (Steps 1-4), due to
exponentiation involved in finding § and t. However, after the initial setup, each
point calculated on the curve takes only O(r?) operations. The transformation
x — tx and back (Steps 5 and 10) dominates the rest of the algorithm as Step 8

only takes O(r) operations.

4.7 Conclusions

We have extended our original algorithm to several different scenarios to ob-
tain fast hashing into curves we previously could not. We avoided taking unneces-
sary square roots and (p — 1)st roots so that the algorithm maintained its speed.
This technique speeds up this specific part of the BLS Signature Scheme and any

analagous signature schemes with hyperelliptic curves.

28

Bibliography

[1] Paulo S. L. M. Barreto and Hae Y. Kim, “Fast hashing onto pairing-friendly
elliptic curves over ternary fields,” Revista de Engenharia de Computacao e

Sistemas Digitais 2, pp. 19-28.

[2] K. Hensel, Ueber die Darstellung der Zahlen eines Gattungsbereiches fiir einen

beliebigen Primdivisor, J. Reine Angew. Math. 103 (1888), 230-237.

[3] von zur Gathen, Joachim; Giesbrecht, Mark “Constructing normal bases in

finite fields,” J. Symbolic Comput. 10 (1990), no. 6, 547-570.

29

