
1

Visual & Textual Consistency Checking
Tools for Graphical User Interfaces

Rohit Mahajan and Ben Shneiderman1

1Department of Computer Science,
 Human-Computer Interaction Laboratory &

Institute for Systems Research
University of Maryland, College Park, MD 20742 USA

email: mahajan@cs.umd.edu, ben@cs.umd.edu

Abstract
Designing a user interface with a consistent
visual design and textual properties with current
generation GUI development tools is
cumbersome. SHERLOCK, a family of
consistency checking tools, has been designed to
evaluate visual design and textual properties of
interface, make the GUI evaluation process less
arduous, and aid usability testing. SHERLOCK
includes a dialog box summary table to provide
a compact overview of visual properties of
hundreds of dialog boxes of the interface.
Terminology specific tools, like Interface
Concordance, Terminology Baskets and
Interface Speller have been developed. Button
specific tools including Button Concordance
and Button Layout Table have been created to
detect variant capitalization, distinct typefaces,
distinct colors, variant button sizes and
inconsistent button placements. This paper
describes the design, software architecture, and
the use of SHERLOCK. An experiment with 60
subjects to study the effects of inconsistent
interface terminology on user's performance
showed 10-25% speedup for consistent
interfaces. SHERLOCK was tested with four
commercial prototypes; the corresponding
outputs, analysis and feedback from designers of
these applications is presented.

Index Terms: Graphical user interfaces,
evaluation tools, consistency, textual and visual
style, assessment tools, metrics.

1.0 Introduction & Previous
Research
Consistency in User Interfaces follows the second law of
thermodynamics. If nothing is done, then entropy will

increase in the form of more and more inconsistency in
your user interface

 Jakob Nielsen
Graphical User Interface design is a complex
and challenging discipline. It should be user-
centered (Norman & Draper, 1986) and requires
iterative design, usability testing, and evaluation
(Shneiderman, 1992). GUI programming in
recent years has become a major part of
software development, and is minimally 29% of
software development budgets (Rosenberg,
1989). Moreover, data analysis has shown that
the user interface is 47-60% of the total lines of
application code (MacIntyre, Estep & Sieburth,
1990) GUI design encompasses more than one
third of the software development cycle and
plays a major role in determining the quality of
a product. Applying proper human factors
techniques including early completion of user
requirements definitions, usability prototype
testing, and usability walkthroughs can
significantly reduce the cost of identifying and
resolving usability problems, and can save time
in software development (Karat 1992).

With the emergence of powerful GUI
development tools in the recent years, test
applications can be created in few weeks. These
interfaces may embody inconsistencies in visual
design and textual properties which can't be
detected by these powerful current generation
development tools. Such inconsistencies can
have a subtle and negative impact on the
usability of the interface. Not only are more
quality control and GUI test procedures
required, but also new analytic and metric based
tools are needed for the creation of cognitively
consistent interfaces having a common “look
and feel”.

2

We worked closely with General Electric
Information Services to design and develop
task-independent metrics to evaluate visual
design and textual properties of user interfaces.
We developed a single tool with multiple
metrics to accomplish this task. The complexity
of interpreting the results of a single evaluation
tool led us to modify our evaluation approach by
constructing smaller tools, each of which
evaluates a few design aspects. Together these
tools evaluated multiple design issues, forming
a family of consistency checking tools
(SHERLOCK). The reports generated by these
mini-tools require less interpretation, thereby
expediting the quick evaluation process and
providing feedback to the designer. The
designer must then decide whether the
inconsistencies detected are relevant to the
particular application.

1.1 Consistency and Evaluation

Defining Consistency: Consistency in design is
an important aspect to be considered when
creating user interfaces and is supported by most
user interface experts. Shneiderman (1992) says
that the first golden rule of dialog design is
strive for consistency. Nielsen (1989) says that
one of the most important aspects of usability is
consistency in user interfaces. But, experts have
struggled to define exactly “what consistency
is?” and “how to identify good consistency?”.
Reisner (1990) states that consistency is neither
a property of the system nor the user, it is a
relation between two languages, that of the
system, as a designer intended it, and of the
competent user. Wolf (1989) says that
consistency means that similar user actions
lead to similar results. A consistent user
interface is an interface that maximizes the
number of shared rules across tasks (Polson et
al., 1986). Therefore, consistency is a relational
concept and can't be defined by itself. A user
interface is consistent or inconsistent with
respect to something, which may be within the
individual application or across a product family
or for all the applications running on a particular
system.

Consistency across the application in those
components of the user interface which require
human perception and cognitive mechanisms
like visual scanning, learning and remembering
is very important. Spatial organization which
may include the organization of menus,
placement of frequently used widgets,
symmetry, and alignment of widgets is one of
those components. Other components may
include fonts, colors, common actions,
sequences, terms, units, layouts, typography and
more within an application program.
Consistency is naturally extended to include
compatibility across application programs and
compatibility with paper or non-computer-based
system. The sequence of pointing, selecting or
clicking should be the same throughout the
application (Smith et al, 1982) Consistency
facilitates positive transfer of skills from one
system to another leading to ease of use,
reduced training time and improved retention of
operating procedures (Nielsen, 1989; Polson et
al, 1986).

Kellogg (1987) studied the impact of the
conceptual dimension of consistency by
prototyping a “consistent” version (common
look and feel and conceptually consistent) and
an “inconsistent” version (only common look
and feel) of an interface. The results of the
study, which incorporated a variety of measures
like learning time, subjective satisfaction and
more, showed that the “consistent” interface
was better than the “inconsistent” (consistent in
visual appearance and behavior only). Although
visual appearance and behavior are very
important aspects of consistency, they need to
be combined with conceptual consistency in
designing user interfaces.

GUI Guidelines & Task Analysis: The use of
guidelines has been identified as important
within the framework of a representation of the
human-computer interface (HCI) by many
experts (Harrison & Thimbleby, 1985).
However most guidelines do not include
specifications of consistency or properties of a
consistent interface that produce positive
transfer of skills. Frederiksen, Grudin and

3

Laursen (1995) demonstrated through an
experiment that a consistency guideline, “The
direction in which the contents of a window
move when a mouse is used with a scrolling
arrow at the edge of the window”, which is
strongly endorsed by the Apple Human Interface
Guidelines (1992), may lead to poor design for
certain tasks. This study showed that
consistency guidelines should be applied
cautiously to be in harmony with the user's task.

According to Grudin (1989) interface
consistency is a largely unworkable concept and
can sometimes work against good design.
Grudin explained that consistency can be
harmful with Printing a folder of a directory
example. He considered the situation in which a
folder containing several documents is selected
and is followed by selection of print operation
from the menu. The design question in this case
is: What should be printed when the operation is
executed? Informal user studies suggested that
documents in the folder should be printed.
However, system architects argued that a list of
documents within the folder should be printed.
A folder in this system was a list of pointers to
documents. Since in this case, printing a
document produced the contents of the
documents and it was argued that printing a
folder should similarly produce a copy of its
contents i.e. list of documents in the folder.
Although developers argued that consistency
which was based on software architecture was
important, the design was rejected in favor of
consistency within system architecture.
Therefore wrong dimension of consistency was
chosen but was consistent with what users
wanted. The bottom line is that the interface
should be consistent with the user's task and
fulfill the requirements of the targeted users.

GUI Terminology: Another important
component of consistency is terminology used
in the interface. Terminology used in interactive
dialogs for text editing can sometimes be
problematic for the user (Long et al., 1983).
Inconsistencies in low-level interactions can be
frustrating, for example programs that differ in
the names of important commands (e.g., “quit”

and “exit”) (Grudin, 1989). A study done by
Long, Hammond, Barnard and Morton (1983)
showed that users in most text editing tasks refer
first to objects in the text or in the system and
then perform actions on them, so the use of
proper terminology is an important factor in
interactive dialog design. Several issues
associated with the structuring of arguments
with a set of commands were examined
(Barnard et al., 1981) in three studies on
consistency and compatibility in human-
computer interaction. One of the implications
of this study was that the users learned
positionally consistent systems more readily
when recurrent arguments were placed first.

Abbreviations are constructed to reduce typing
and optimize the use of screen space, but can
impose significant cognitive demands on a user
in a new application. To create internally
consistent design, one abbreviation algorithm
should be used (Grudin, 1989)

Tools for Consistent Design: An important
step in GUI design was taken by an Interactive
Transition Systems (ITS) project (Wiecha et al,
1989). The ITS approach was to generate
consistent interfaces automatically by the use of
executable style rules. ITS provided a set of
software tools to support four application
development roles: an application expert, a style
expert, an application programmer, and a style
programmer. The ITS architecture divided the
application into three parts, namely: application
functions, a dialog manager, and views
supporting user interfaces. This architecture
helped to create a consistent interface for a
family of applications and to create multiple
consistent interfaces for a given application.
ITS supported designers in generating consistent
interfaces because it separated the application
from the interface and linked them using
executable style rules. ITS has generated
interfaces for demonstration applications, but
has not been used to create real-world
applications.

Interface Evaluation Methods: Interface
evaluation is a difficult and cumbersome

4

process.and can be performed using various
techniques. Evaluation of a software product's
user interface using four techniques, namely
heuristic evaluation, usability testing, guidelines
and cognitive walk-throughs, showed that each
has advantages and disadvantages (Jeffries et al,
1991) For instance, heuristic evaluation
identifies more problems than any other method,
but it requires UI expertise and several
evaluators. Similarly, usability testing identifies
serious and recurring problems, but requires UI
expertise and has a high cost. The requirements
for these powerful methods, which may include
availability of working prototypes, test users,
expert evaluators and time constraints are
hindrances in applying these methods more
frequently. The study also showed that usability
testing, a powerful and effective evaluation
method, is not good in evaluating design
consistencies and missed consistency problems
in its evaluation technique. Therefore,
consistency checking tools are likely to be a
beneficial complement to usability testing.

Furthermore, usability testing works best for
smaller applications. It is practically infeasible
to analyze every dialog box in an application
with hundreds of dialog boxes with the current
evaluation methods. Finding anomalies or
differences while reviewing hundreds of dialog
boxes is even hard for expert reviewers, who
may fail to detect some flaws and
inconsistencies. In contrast, automated
evaluation tools can be used in early prototypes
(or late iterations) and can detect anomalies
across hundreds of dialog boxes. These
automated tools, in addition to detecting
anomalies, can make interfaces cleaner and
easier to use.

1.2 Evaluation Tools for Visual Design
and Textual Properties

Automated tools for consistency checking are
meant to replace the current manual consistency
checking process which is complex, expensive,
error prone, and time consuming. These tools
can be made independent of platform and
development environment, as visual and textual

properties of the interface are independent of
these factors. In developing a system to evaluate
alphanumeric displays, Tullis (1983) derived six
measures (Overall Density, Local Density,
Number of Groups, Size of Groups, Number of
Items, Layout Complexity) to describe screen
formats of spatial arrays of characters. These
measures were later incorporated into a Display
Analysis Program to analyze displays on IBM
PC and PC-compatible computers, to develop a
tool for objectively evaluating the usability of
any alphanumeric display format (Tullis,
1988a). This Display Analysis Program was
developed with two systems created specifically
to test these programs and then tested with the
displays of seven previous studies (Tullis,
1988b). The results indicated that given a set of
alternative screen formats to present some
alphanumeric data, this program can accurately
predict the relative search times and subjective
ratings for the formats. “Number of groups” and
“Size of groups” were found to be the most
important display parameters in determining
search time.

Streveler and Wasserman (1987) proposed novel
visual metrics to quantitatively assess screen
formats which have similarities with Tullis's
Display Analysis Program. They proposed three
basic techniques for analyzing screen formats:
“boxing”, “hot-spot” and “alignment” analysis.
A balance measure was also proposed by them
which computed the differences between the
center of mass of the array of characters and the
physical center of the screen. These proposed
metrics were not applied to any system to
validate them. The applicability of Tullis's
complexity proposition was later applied to the
domain of interactive system design with
findings strongly supporting their applicability
(Coll & Wingertsman, 1990). Choosing screen
density as the measure of complexity, it was
found that Madd's Modified Discrepancy
Hypothesis in psychology is applicable to user
interface design, i.e. users performance and
preference for screen complexity follows a U-
shaped curve, with too little or too much
complexity depressing preference and
performance. In other words, humans have
preference and affinity for medium complexity.

5

Furthermore, Kim and Foley (1993) used
metrics as a constant for the design space and
the layout style. They developed a tool which
generated potential design specifications and
guidelines for the metrics. Effectiveness of their
metrics has not yet been evaluated. The
evolution of GUIs with multiple typefaces,
colors, new kinds of widgets etc. means that
more analysis is required and new metrics need
to be implemented.

The evolution of modern user interfaces, like
multimedia interfaces, has sparked research in
automated evaluation based on visual
techniques. Vanderdonckt and Gillo (1994)
proposed five visual techniques (Physical,
Composition, Association and dissociation,
Ordering, Photographic techniques) which
identified more visual design properties than
traditional balance, symmetry, and alignment.
Dynamic strategies for computer-aided visual
placement of interaction objects on the basis of
localization, dimensioning and arrangement
have been introduced (Bodart et al.,
1994).These techniques of localization,
dimensioning and arrangement were based on
some of the visual techniques introduced by
Vanderdonckt and Gillo (1994). Mathematical
relationships were defined to improve the
practicability, the workability and the
applicability of the visual principles into a
systematic strategy, but specific metrics and
acceptance ranges were not tested. Visual
techniques introduced for multimedia layout
frames have only rarely been applied to
commercial applications.

Sears (1993, 1994) has developed a first
generation tool (AIDE) using automated metrics
for both design and evaluation using Layout
Appropriateness metrics. In computing the
Layout Appropriateness the designer provides
the set of widgets used in the interface, the
sequence of actions to be performed by the user
and how frequently each sequence is used. The
appropriateness of a given layout is computed
by weighing the cost of each sequence of
actions by how frequently the sequence is
performed. Layout Appropriateness can be used
to compare existing layouts and to generate

optimal layouts for the designer. AIDE has
demonstrated its effectiveness in analyzing and
redesigning dialog boxes in simple Macintosh
applications and also dialog boxes with complex
control panels in NASA applications. Currently,
studies are being done by Comber and Maltby
(1995) in assesing the usefulness of layout
complexity metric in evaluating the usability of
different screen designs. Mullet (1995)
developed a simple layout grid forming the basis
of a systematic layout program embodying a set
of guidelines that make it easy to position
related controls consistently across dialogs.
Using this systematic re-structuring and
redesign approach he showed that the GUI of
the “Authorware Professional”, a leading
development tool for learning materials in the
Macintosh and Windows environments, could
be easily redesigned to create a more coherent,
consistent and less crowded layout.

In order to help designers identify
inconsistencies before usability testing,
automated consistency checking tools have been
developed to evaluate visual design and
terminology in user interfaces (Shneiderman et
al., 1995; Mahajan & Shneiderman, 1995)

1.4 Scientific Experiments on Effects of
Interface Inconsistencies

Chimera and Shneiderman (1993) performed a
controlled experiment to determine the effects
of inconsistency on performance. This
experiment used two interactive computer
systems at the National Library of Medicine
which were an original inconsistent version and
a revised consistent version. Compared to the
original version, the revised version had
consistent screen layouts and colors plus use of
consistent task and domain oriented phrases for
the description of menu items. The results
showed that there was a statistically significant
difference (p<.01) favoring the revised interface
for five out of twenty tasks and only one task
favored the original interface (p<.01). It was
concluded that the revised interface yielded
faster performance and higher satisfaction due

6

to how information was displayed with respect
to location, wording and color choices.

Bajwa (1995) studied the effect of
inconsistencies in color, location and size of
widgets (in this case buttons) on user's
performance and subjective satisfaction. To test
the hypothesis that inconsistency deteriorates
performance and subjective satisfaction, four
versions of a Billing System interface were
created in Visual Basic. The original version
was consistent in accordance with most
windows applications. The other three versions
were made inconsistent with respect to color,
location, or size, so that every inconsistent
version had about 33% of only one type of
inconsistency. The experiment was divided into
three phases, namely inconsistent color versus
consistent interface, inconsistent location versus
consistent interface and inconsistent size versus
consistent interface. For every phase of the
experiment, subjects used both the consistent
and inconsistent version with 50% of the
subjects using the inconsistent version first and
the other 50% using the consistent version first.
With the participation of 60 subjects, the results
of the experiment showed that inconsistency in
color, location and size of objects significantly
effects user's performance by about 5%.
Although studies have been done to check the
effects of inconsistencies in the interface design
on user's performance, no experiments have
been done for terminology inconsistencies
specifically.

2.0 Description of the Evaluation
Tools
2.1 Metrics Evaluation Using Canonical
Format: The present research evolved from the
concept of converting interface form files
generated by Visual Basic into canonical format
files and feeding them as input to the
SHERLOCK. The canonical format is an
organized set of GUI object descriptions. These
object descriptions are enclosed in curly braces
and embrace interface visual design and
terminology information in a sequence of
attribute-value pairs. The canonical format is
advantageous because of its lucidity and

extendibility. It can be easily modified to
include any new attributes encompassing
interface description information in the form
files.

A translator program was developed to convert
the Visual Basic form files into the canonical
format. Another translator program was created
to convert the Visual C++ resource files into the
canonical format and is currently being tested.
These canonical formats are platform
independent and may be created for other
interface development tools like Power Builder,
Galaxy and XVT by writing a translator
program for those tools.

2.2 Evaluation Tools
Development of SHERLOCK is an extension
of previous work (Shneiderman et al., 1995) in
which spatial and textual evaluation tools were
constructed. These tools have been modified
after evaluating sample applications and new
tools have been integrated with them into a
family of consistency checking tools leading to
the evolution of SHERLOCK. Our focus was
on evaluating only certain aspects of
consistency in user interfaces which are task-
independent and can be automated. One of the
task-independent features evaluated by our tools
is visual design which includes properties such
as sizes of similar screens, placement of similar
items, screen density, consistency in margins,
screen balance and alignment. Consistency in
other visual design properties such as fonts,
font-sizes, font-styles and background and
foreground colors has also been evaluated.
Finally our evaluation includes checking for
terminology inconsistencies, abbreviations,
variant capitalization and spelling errors.

Dialog Box Summary Table
The dialog box summary table is a compact
overview of the visual design of dozens or
hundreds of dialog boxes of the interface. Each
row represents a dialog box and each column
represents a single metric. Typical use would be
to scan down the columns looking for extreme
values, spotting inconsistencies, and
understanding patterns within the design.

7

Choosing the appropriate metrics set was the
most important factor in the design of the dialog
box summary table. The researchers at the
University of Maryland generated a list of
approximately 40 metrics which were
constructed after reviewing the relevant
previous literature, consulting with colleagues
and using their GUI evaluation experience. A
similar effort was taken on the GE side, where
they brain-stormed and proposed their metric
set based on their commercial software
development experience. The two lists had
many similar items and the lists were grouped
into categories such as spatial layout, alignment,
clustering, cluttering, color usage, fonts,
attention getting, etc. The metric set has been
revised several times after evaluating a series of
interfaces. The metrics that were ineffective
have been removed and others have been
redefined and new metrics have been added.
The modified column set of the dialog box
summary table is explained below:
Aspect Ratio: The ratio of the height of a
dialog box to its width. Numbers in the range
0.5 thru 0.8 are desirable. Dialogs that perform
similar functions should have the same aspect
ratio.
Widget Totals: Count of all the widgets and the
top level widgets. Increasing difference
between all and top level counts indicates
greater nesting of widgets, such as buttons, lists
and combo boxes inside containers.
Non-Widget Area: The ratio of the non-widget
area to the total area of the dialog, expressed as
a percentage. Numbers closer to 100 indicate
high utilization, and low numbers (<30) indicate
possibilities for redesign.
Widget Density: The number of top-level
widgets divided by the total area of the dialog
box (multiplied by 100,000 to normalize it).
High numbers greater than 100 indicate that a
comparatively large number of widgets are
present in a small area. This number is a
measure of the 'crowding' of widgets in the
dialog box.
Margins: The number of pixels between the
dialog box border and the closest widget. The
left, right, top and bottom margins should all be

approximately equal to each other in a dialog
box, and across different dialog boxes.
Gridedness: Gridedness is a measure of
alignment of widgets. This metric has been
refined several times, but we have not been able
to find a perfect metric to detect misaligned
widgets. X-Gridedness counts the number of
stacks of widgets with the same X coordinates
(excluding labels). Similarly Y-Gridedness
counts the number of stacks of the widgets with
the same Y coordinates. High values of X-
Gridedness and Y-Gridedness indicate the
possibility of misaligned widgets. An extension
of Gridedness is Button Gridedness where the
above metrics are applied to button widgets.

Fig. 1 shows how the Gridedness metric works.
The dialog box on the right half of the figure has
all the three buttons (OK, No and Cancel) with
the same Y-coordinates, so the Y-Gridedness in
buttons is 1 and X-Gridedness in buttons is 0.
On the otherhand, the dialog box on the left half
of the figure has a misaligned Cancel button
from the OK and No buttons which have the
same Y-coordinate. Thus, the Cancel button has
a different Y-value forming a different stack,
this misalignment introduces a new stack in both
X and Y direction increasing the Y-Gridedness
to 2 and X-Gridedness to 1. So every time there
is a misaligned button the X- and Y-Gridedness
values are increased by 1.
Area Balances: A measure of how evenly
widgets are spread out over the dialog box.
There are two measures: a horizontal balance,
which is the ratio of the total widget area in the
left half of the dialog box to the total widget
area in the right half of the dialog box; and the
vertical balance, which uses top area divided by
bottom area. High values of balances between
4.0 and 10.0 indicate screens are not well
balanced. The limiting value 10.0 represents a
blank or almost blank (for example, a dialog box
that has only one widget which is a button)
dialog box.
Distinct Typefaces: Typeface consists of a font,
font size, bold and italics information. Each
distinct typeface in all the dialog boxes is
randomly assigned an integer to facilitate quick
interpretation.

8

For each dialog box all the integers representing
the distinct typefaces are listed so that the
typeface inconsistencies can be easily spotted
locally within each dialog box and globally
among all the dialog boxes. The idea is that a
small number of typefaces should be used for all
the dialog boxes.
Distinct Background Colors: All the distinct
background colors (RGB values) in a dialog box
are displayed. Each distinct color is randomly
assigned to an integer for display and
comparison convenience and is described in
detail at the end of the table. The purpose of this
metric is to check if all the dialog boxes have
consistent background colors. Multiple
background colors in a dialog box may indicate
inconsistency.
Distinct Foreground Colors: Similar to distinct
background colors, displays all the distinct
foreground colors in a dialog box. The purpose
of this metric is to check if all the dialog boxes
have consistent foreground colors.

Margin Analyzer
Margin analyzer is an extension of the dialog
box summary table's margins metric. This
analyzer calculates the most frequently
occurring values of left, right, top and bottom
margins across the interface and then lists
margins in every dialog box which are
inconsistent with these frequently occurring
values. It also calculates what widgets of the
dialog box need to be moved by how many
pixels to make the margins consistent. The
Margin analyzer tool depends on the fact that
the most frequently occurring value of margins
are the optimum margin values which the
designer would have ideally used for
consistency.

Concordance
The concordance tool extracts all the words that
appear in every dialog box and helps designers
with appropriate word use such as spelling,

Button GridednessButton Gridedness

 X-Gridedness = 1 X-Gridedness = 1 X-Gridedness = 0 X-Gridedness = 0

 Y-Gridedness = 2 Y-Gridedness = 2 Y-Gridedness = 1 Y-Gridedness = 1

Fig. 1. Working of Button Gridedness

9

abbreviation, tense consistency, case
consistency, passive/active voice etc.
Occurrences of words in a different case are
preserved as unique occurrences of words in a
sorted list to point out the use of different case.
The sort order used was aAbB...zZ so that the
occurrence of “cancel” is not separated from
“Cancel” or “CANCEL”. The concordance tool
has been broken down further to extract specific
information related to spelling, abbreviation and
case consistency to expedite the quick
evaluation process.

Interface Concordance
The interface concordance tool checks for
variant capitalization for all the terms that
appear in buttons, labels , menus, etc. in every
dialog box of the interface. This tool outputs
strings which have variant capitalization, listing
all the variant formats of the string and its
dialog box sources. These variant forms are
spelling differences and may be acceptable, but
they may be something that should be
reconsidered. For example the words
“MESSAGES”, “messages”, “Messages” and
“mesgs” are variant capitalization forms of the
same word.

Button Concordance
As buttons are one of the most frequently used
widgets performing vital functions like “Save”,
“Open”, “Delete”, “Exit” etc., checking
consistency in their size, placement, typefaces,
colors and case usage becomes more important.
This tool outputs all the buttons used in the
interface, listing the dialog boxes containing the
buttons plus fonts, colors and button sizes. The
button concordance identifies variant
capitalization, distinct typefaces, distinct
foreground colors and variant sizes in buttons.

Button Layout Table
Given a set of buttons that frequently occur
together (for example, OK Cancel, Close, Help),
if the first button in the set is detected in the
dialog box then the program outputs the height,
width and position relative to the first button of
every button detected in the list. The relative
position of every button detected in the set is
output as (x + offset, y + offset) to the first

button, where offset is in pixels. Buttons stacked
in rows would yield a (x + offset, y) relative
position and those stacked in columns would
yield (x, y + offset). The Button Layout table
identifies inconsistencies in button placement,
inconsistencies in button terminology and
variant button sizes locally within a dialog box
and globally across all the dialog boxes. Some
of the sample button sets are:
• OK Cancel Close Exit Quit Help
• Start Stop Halt Pause Cancel
 Close Done End Exit Quit
• Add Remove Delete Copy Clear
• Cancel Close Exit

Interface Speller
Interface Speller is a spell checking tool which
reads all the terms used in widgets throughout
the interface and outputs terms that are not
found in the dictionary. The spell checking
operation is performed within the code and all
the possible misspelled words are stored in a
file. This file can be reviewed by the designer to
detect possible misspelled and abbreviated
words which may create confusion for end
users. The output is filtered through a file
containing valid computer terms and default
Visual Basic terms that may be flagged as
spelling errors by the dictionary.

Terminology Baskets
A terminology basket is a collection of
computer terms including their different tense
formats which may be inadvertently used as
synonyms by the interface designers. Our goal is
to construct different sets of terminology
baskets by constructing our own computer
thesaurus and then search for these baskets in
every dialog box of the interface. The purpose
of terminology baskets is to provide interface
designers with feedback on misleading
synonymous computer terms, like “Close”,
“Cancel”, “End”, “Exit”, “Terminate”, “Quit”.
The program reads an ASCII file containing the
basket list. For each basket all the dialog boxes
containing any of the basket terms are output.
Some of the idiosyncratic baskets are:
• Remove Removes Removed Removing
 Delete Deletes Deleted Deleting
 Clear Clears Cleared Clearing
 Purge Purges Purged Purging Cancel

10

 Cancels Canceled Canceling Refresh
 Refreshed
• Item Items Entry Entries Record

Records Segment Segments Segmented
Segmenting Field Fields

• Message Messages Note Notes Letter
Letters Comment Comments

3.0 Interface Evaluations

3.1 Testing the Evaluation Tools
The effectiveness of SHERLOCK tools has
been determined by evaluating four commercial
prototype applications developed in Microsoft
Visual Basic. These applications included a 139
and 30 dialog box GE Electronic Data
Interchange Interface, a 75 dialog box Italian
Business Application, and a set of University of
Maryland AT&T Teaching Theater Interfaces
combined together into an 80 dialog box
application. The analysis of the Italian Business
Application is not discussed in this paper
because its results detected inconsistencies
similar to the other applications.

3.2 Evaluation Results, GE Interfaces
The 139 dialog box GE Electronic Data
Interchange Interface was the first prototype
evaluated. Although this was a well-reviewed
and polished design, SHERLOCK detected
some inconsistencies which may have otherwise
been left undetected. Another small 30 dialog
box GE interface was evaluated which also
revealed inconsistencies.

Dialog Box Summary Table Analysis
Aspect Ratio: Aspect Ratio varied from 0.32 to
1.00 and some dialog boxes which performed
the same functionality had different aspect ratio,
which was an inconsistency.
Non-widget Area: Non-Widget Area varied
from 2% to 97.5%. Some dialog boxes with low
Non-widget area (5% to 15%) were candidates
for redesign.
Widget Density: Widget Density varied from
14 to 271, but most of the high values were due
to exceptions in the metric, as none of the dialog
boxes had too many widgets in a small area.
Margins: Left, right, top and bottom margins
were inconsistent within a single dialog box and

were also inconsistent across the interface. For
example, the average value of the left margin
was 12 pixels, but the margin value ranged
across the interface from 0 to 80 pixels.
Gridedness: Some high values of the Button
Gridedness (3 or more) metric helped in
detecting dialog boxes with misaligned buttons.
Area Balances: Dialog boxes were well
balanced as the average value of Left/Right
Balance and Top/Bottom Balance was 1.1 and
1.4 respectively.
Distinct Typefaces: Although most of the
dialog boxes used a single typeface (MS Sans
Serif 8.25 Bold), there were a couple which
used more than three typefaces Altogether seven
distinct typefaces were used.
Distinct Background & Foreground Colors:
There was much variation in color usage among
different dialog boxes, indicating inconsistency.
The interface used a total of eight foreground
and seven background colors (RGB Values).

Margin Analyzer
The margin analyzer successfully detected the
dialog boxes which had margin values more
than two pixels apart from the most frequently
occurring value in both the applications. For
each inconsistent value, it listed the widgets that
need to be moved and by how many pixels to
alleviate the inconsistency. In the case of the
smaller application, the margin values were
highly inconsistent, since most frequently
occurring margin values had a maximum
envelope of six to eight dialog boxes, making
the other values inconsistent. These results
showed that the design didn't adhere to any
concept of consistent margins. There were some
exceptions in Visual Basic (Visual Basic
allowing widgets to extend beyond the area
enclosed by the dialog box and size of label and
text boxes being greater than size of text
enclosed by them) beyond the capability of the
tool to handle, leading to negative margins

Interface Concordance
The interface concordance tool spotted the terms
that used more than one case across the
application. For example, terms like
“Messages”, “MESSAGES” and “messages”

11

were detected by the interface concordance tool.
Some of the other inconsistencies included
terms like “Item”, “item” and “Item”, “Open”,
“OPEN” and “open”.

Button Concordance
GE Interfaces did not have any button labels
which used more than one case. All the button
labels used the title format and were therefore
consistent. Also, all the buttons used the same
typeface and foreground color. Button
Concordance detected inconsistency in height
and width of the buttons across the interface.
The table below shows a portion of the button

concordance output for the “Archive” button.
Browsing across the columns of the table, we
can see that the width of the “Archive” button
varies between 65 and 105 pixels. All the
buttons have a top margin of 0 pixels except one
(file.find.cft) which has a top margin of 312
pixels. This is an inconsistency, since all the
“Archive” buttons are placed at the top right
corner of the dialog box except one which is
placed at the bottom right corner. Button
placement inconsistencies were detected in
many other buttons including “OK”, “Cancel”,
“Close”, “Find”, “Forward”, and “Print”

BUTTON DIALOG BUTTON BUTTON BUTTON BUTTON POSITION
LABEL BOX TYPEFACE FG_COLOR (H , W) LEFT RIGHT TOP
Archive xref.cft 1 1 25,105 208 311 0
 file.cft 1 1 25,89 448 87 0
 file2.cft 1 1 25,73 360 72 0
 filefind.cft 1 1 25,73 408 142 312
 hold.cft 1 1 25,65 320 55 0
 in.cft 1 1 25,81 464 79 0
 out.cft 1 1 25,73 304 55 0
 sent.cft 1 1 25,81 344 78 0

DISTINCT TYPEFACES IN BUTTONS:
1 = MS Sans Serif 8.25 Bold No Label
DISTINCT FOREGROUND COLORS IN BUTTONS:
1 = Default Color

Interface Speller
The tool detected few misspelled terms, but
many potentially confusing incomplete and
abbreviated words such as “Apps”, “Trans”,
“Ins” , “Oprs” were found in both the
applications.

Terminology Baskets
The basket browser revealed some interesting
terminology anomalies after analyzing the large
130 dialog box interface that led to

reconsideration of the design. As shown below
terms like “record”, “segment”, “field” and
“item” were used in similar context in different
dialog boxes. Other interesting inconsistencies
included the use of “start”, “execute” and “run”
for identical tasks in different dialog boxes .
Also, the small 30 dialog box interface had
terminology inconsistencies, such as using the
terms like “Show”, “View”, and “Display” to
perform similar tasks.

Basket: Entries, Entry, Field, Fields, Item, Itemized, Itemizing, Items
 Record, Records, Segment, Segmented , Segmenting, Segments

BASKET TERM FORM CONTAINING THE BASKET TERM
Field search.cft
Items reconly.cft reconly.cft reconly.cft
 reconly.cft sendrec.cft sendrec.cft
 sendrec.cft sendrec.cft wastedef.cft
Record ffadm.cft profile.cft
Segment addr.cft search.cft

12

Button Layout Table
The most common button positional and
terminology inconsistency was in the button set
[OK Cancel Close Exit Help], the button labels
“Cancel”, “Close” and “Exit” were used
interchangeably. Sometimes these buttons were
stacked in a column on the top left corner of the
dialog box and in other cases they were stacked
in a row at the bottom of the dialog box and
were either left, right or center aligned.

Output of the button detector set (OK Cancel
Close Exit Quit Help) tested with the small 30
dialog box GE application is shown below.
Inconsistency in height and relative button
positions within a button set can be checked by
moving across the rows of the table.
Inconsistency in height and relative position for

a particular button can be spotted by moving
down the columns. For example, browsing the
“OK” button column we found that the height of
the “OK” button varied between 22 and 26
pixels and the width varied between 62 and 82
pixels. Also, scanning across the rows, we
found that the relative position between “OK”
and “Cancel” buttons varied in all the three
dialog boxes in which they occurred together. In
the dialog boxes “nbatch.cft” and “systinp.cft”
the “Cancel” button was 20 pixels and 13 pixels
below the “OK” button, but in the dialog box
“admprof.cft” the buttons occurred next to each
other in the same row. Also, both the buttons
“Cancel” and “Exit” were used with the “OK”
button essentially to perform the same task.
This is a terminology inconsistency.

--
DIALOG BOX OK Cancel Exit Help
 (H,W) (H,W) Rel. Pos. (H,W) Rel. Pos. (H,W) Rel. Pos.
--
admprof.cft 22,68 22,68 x+16, y 22,68 x+98, y
checkpsw.cft 25,82 25,82 x+18, y 25,82 x+116, y+1
nbatch.cft 25,62 25,62 x-1, y+20 25,62 x, y+66
systinp.cft 26,72 26,72 x+1, y+13 25,73 x+2, y+48

3.3 Evaluation of University of Maryland
Interface
The 80 dialog box University of Maryland
AT&T Teaching Theater Interface was a
combination of different applications all
designed for the students to use. Evaluation of
this interface highlighted the intra-application
inconsistencies that may exist among
applications designed for the same user.

Dialog Box Summary Table Analysis
A portion of the dialog box summary table is
shown in Fig. 3.
Aspect Ratio: Aspect Ratio, in general varied
between 0.5 and 0.8. There were a few dialog
boxes whose Aspect Ratio were on the lower
side, (left_or_right.cft, ratefrm2.cft and
zoom.frm.cft) and a few had a high aspect ratio
of 0.9 or more. (about1.frm.cft, about2.frm.cft,
delete.frm.cft and notice.frm.cft). All the About
(Fig. 2), Cover and Exit dialog boxes had
different aspect ratios. Although most of these
dialog boxes belong to a different application,

these applications have been designed for the
same set of users and these inconsistencies in
Aspect Ratio, especially in the dialog boxes
with the same functionality, should not exist.
Widget Totals: Some dialog boxes had a high
value of widget totals i.e. 70 or more widgets.
This may indicate complexity in the dialog box.
Non-Widget Area: High values of Non-Widget
area (above 90%) were found in some of the
dialog boxes including main.frm.cft,
syllabus.frm.cft, vdmdi3.frm.cft, winstat.frm.cft.
This indicates that the use of screen space may
not be optimum in the above cases. Dialog
boxes filelist.frm.cft, winchat8.frm.cft and
zoom.frm.cft had low Non-widget areas.
Widget Density: High values of widget density
(around 150 or more) in the dialog boxes like
ibm_az.frm.cft, rate.frm.cft and seat_uaz.frm
may indicate that too many widgets are present
in a small area. Those dialog boxes which had
high widget density, but had Non-widget area of
40% or more may be acceptable.

13

Fig. 2. Aspect Ratio Inconsistencies

Margins: Left margins varied from 0 to 192
pixels, although the most frequently used
margin values were between 8 to 16 pixels. A
quarter of the dialog boxes had left margin
values of 0 pixels and a few had high values
above 70 pixels. Right margins varied from 0 to
381 pixels. In some cases high values of the
right margins were not a problem, like the case

when the dialog box only had labels and
buttons which are in general center aligned. Top
margin varied from 0 to 56 pixels and was more
consistent than left and right margins. Similarly,
bottom margins were more consistent than left
and right margins with values clustered between
8 and 30 pixels.

14

No. Dialog Aspect -WIDGET-- Non- Widget -----M A R G I N S------ ----GRIDEDNESS----- -Balances-- Distinct Distinct Distinct
 Name Ratio TOTALS Widget Density Left Right Top Bottom Top Level Buttons Area Ratios Typefaces Background Foreground
 (H/W) All Top- Area widget/ (pixels) X Y X Y Horiz Vert Colors Colors
 Level (%) area (L/R) (T/B)

 30 form9.cft 0.74 19 13 88.7 69 0 381 0 17 3 3 0 0 10.0 2.4 4 9 1 2 5 6 3 4 6

 31 frmcompaz.cft 0.79 5 4 67.5 11 104 97 56 69 1 2 0 1 1.0 1.4 9 13 2 3 4 7

 32 frmcompu.cft 0.79 5 4 67.5 11 104 101 56 69 1 2 0 1 1.0 1.4 9 13 2 3 4 7

 33 frmhand.cft 0.48 6 5 67.5 33 32 31 32 31 1 2 0 1 1.0 1.5 9 13 2 3 4 7

 34 frmlogin.cft 0.85 8 7 77.1 25 96 96 40 64 1 1 0 1 0.6 1.7 9 13 2 3 4 7

 35 frmlogo.cft 0.38 9 8 18.3 25 0 223 0 0 2 2 1 1 0.8 1.3 4 9 16 17 1 2 10 2 3 11

 36 frmmatch.cft 0.50 7 6 70.0 60 16 50 24 43 1 1 0 1 0.8 1.3 4 2 3 4

 37 frmquesaz.cft 0.42 6 5 75.6 25 56 54 48 61 0 1 0 1 1.1 1.5 9 13 2 3 4 7

 38 frmquesu.cft 0.45 6 5 73.9 23 72 14 48 74 0 1 0 1 0.8 1.3 9 13 2 3 4 7

 39 graph.cft 0.55 14 4 57.0 22 0 0 0 7 2 3 0 1 1.0 1.0 7 8 2 5 8 2 3 7

 40 grid3.cft 0.89 5 4 42.5 23 21 15 13 60 2 1 1 0 1.5 1.2 4 2 3

Maximum 1.60 102 101 100.0 184 192 381 56 276 9 13 2 3 10.0 10.0
Minimum 0.13 0 0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0
Average 0.73 14 9 57.5 48 19 52 11 29 2 2 0 0 1.8 1.6

DISTINCT TYPEFACES:

1 = Arial 13.5 Bold 11 = Symbol 13.5 Bold
2 = Symbol 9.75 Bold 12 = MS Sans Serif 24 Bold Italic
3 = Arial 8.25 Bold 13 = MS Sans Serif 13.5 Bold
4 = MS Sans Serif 8.25 Bold 14 = MS Sans Serif 18
5 = System 9.75 Bold 15 = MS Serif 30 Bold
6 = Arial 15.75 Bold 16 = Arial 18 Bold
7 = MS Sans Serif 9.75 Bold 17 = Symbol 8.25 Bold
8 = MS Sans Serif 16.5 Bold 18 = Times New Roman 24 Bold Italic
9 = MS Sans Serif 12 Bold 19 = Times New Roman 30 Bold Italic
10 =MS Sans Serif 13.5

DISTINCT BACKGROUND COLORS: DISTINCT FOREGROUND COLORS:

1 = ffffff 2 = ffffffff80000005
2 = ffffffff80000005 3 = ffffffff80000008
5 = c0c0c0 4 = 0
6 = ff 6 = ff
8 = e0ffff 7 = ff0000
10 =c00000 9 = c000c0
12 404040 10 =c00000
14 =ffffffff8000000f 11 =ffff

13 =808080
15 =c000

Fig. 3. A Portion of Dialog Box Summary Table

15

Gridedness: Most dialog boxes had well
aligned widgets, with low X-Gridedness and Y-
Gridedness values (1 or 2). Some dialog boxes
which had high values of Gridedness (4 or
more) like picture3.frm, ratefrm2.frm,
seat_uaz.frm, topic.frm, tqmain.frm, winstat.frm
required minor alignment changes. A small
number of dialog boxes like cover.frm,
qmain3.frm, mulq.frm, omp.frm had higher
values of Button Gridedness due to
misalignment of buttons by a few pixels.
Area Balances: Dialog boxes like dynaset.frm,
dyngrid.frm, form9.frm and winstat.frm had
high balance values indicating that they may not
have well balanced screens.
Distinct Typefaces: In total 19 distinct
typefaces were used which is very high. This
shows that different designers worked on
different applications without following any
guidelines. It is recommended that the
applications should be modified to decrease the
use of too many typefaces. Some of the dialog
boxes that used four or more different typefaces
are about.frm, cover.frm, coveraf.frm,
coveruf.frm and frmlogo.frm.
Distinct Background Colors: This application
uses 8 background colors. This may be
attributed to the fact that different dialog boxes
had different styles which means specific groups

of designers worked on particular applications.
Distinct Foreground Colors: Altogether the
application used 15 different colors (both
background and foreground). The number of
foreground colors used was 10 which is high.

Interface Concordance
There are a few terms which used different case
across the application like Cancel, cancel,
CANCEL, Delete, DELETE and more.
Designers need to check whether these are
inconsistencies or not.

Button Concordance
The following are the inconsistencies detected
by the Button Concordance Tool:
• Designers used six distinct typefaces in

Button Labels which is inconsistent. A
single typeface should be used for all button
labels.

• Designer used three distinct foreground
colors in button labels which is inconsistent.
Like the typefaces, a single foreground color
should be used for all the button labels.

BUTTON DIALOG BUTTON BUTTON BUTTON BUTTON POSITION
LABEL BOX TYPEFACE FG_COLOR (H , W) LEFT RIGHT TOP
Exit attapp94.cft 1 2 56,120 464 56 240
 cover.cft 2 2 57,153 680 182 536
 coveraf.cft 3 2 41,89 448 0 392
 coveruf.cft 3 2 41,89 448 85 392
 frmhand.cft 4 3 49,105 384 31 136
 frmlogin.cft 4 3 41,97 248 96 256
 winstat.cft 6 1 49,113 368 70 424

EXIT delete.cft 1 1 41,97 280 45 352
 syllabus.cft 1 1 33,137 856 7 512

Left SAVE feed.cft 5 2 33,81 272 647 448
Left Save omp.cft 5 3 33,97 112 796 456
Right SAVE feed.cft 5 2 33,89 648 263 448
Right Save omp.cft 5 3 33,97 544 364 456
SAVE Left mulq.cft 5 2 33,97 256 653 488
SAVE Right mulq.cft 5 2 33,97 504 405 488

DISTINCT TYPEFACES IN BUTTONS: DISTINCT FOREGROUND COLORS IN BUTTONS:
1 = MS Sans Serif 8.25 Bold 1 = Default Color
2 = MS Sans Serif 18 2 = ffffffff80000005
3 = MS Sans Serif 13.5 3 = 0
4 = MS Sans Serif 12 Bold 4 = ff0000
5 = MS Sans Serif 9.75 Bold
6 = MS Serif 12 Bold

16

Fig. 4. Button placement inconsistencies in OK and Cancel buttons.

• Button sizes are inconsistent across the
application. For example, the height of the
“Cancel” button varies between 24 and 49
pixels and width varies between 57 and 122
pixels. Other buttons that have

inconsistencies in button sizes include
“OK”, “Done”, “Exit”, “No”, “Previous”
and “Start” and more.

• Buttons like “OK”, “Cancel”, “Done”,
“Exit”, “ No” used different case across the

17

application which is an inconsistency. Also,
the designers used the button labels “Save
Left” and “Save Right” in some dialog
boxes and “Left Save” and “Right Save” in
others which is an inconsistency.

• The button positions metric detected many
inconsistencies. For example, the “Cancel”
button had a different right button position
for every dialog box. In the case of the
“Close” button, the left position was 8
pixels in two dialog boxes and was 291 in
the third, indicating that the “Close” button
is left aligned in the first case and right
aligned in the second case. Similar
inconsistencies existed in buttons like
“Done”, “Exit”, “OK” and more.

Interface Speller
The spell checking tool detected various
abbreviations and a few misspelled terms. The
following were the spelling errors detected:
“qiz”, “veryfying”, “peronal” and “btrieve”.

Terminology Baskets
The output from the basket [Browse, Display,
Find, Retrieve, Search, Select, Show, View]
shows that “Display”, “View” and “Show” have
all been used in this application. Also, both
“Find” and “Search” have been used. Similarly
the output from the basket [Cancel, Clear,
Delete, Purge, Refresh, Remove] indicates that
the terms “Cancel”, “Delete”, “Clear”,
“Refresh” and “Remove” were all used in the
application. Designers need to check whether
these are inconsistencies.

Button Layout Table:
The Button Layout Table revealed
inconsistencies in button sizes and placement
within a dialog box and across the interface. For
example, the button set [OK Cancel ... Exit
Help] revealed inconsistencies in the sizes of the
“OK” “Cancel” and “Help” buttons. Also, the
”Cancel” and “Help” buttons were in some
cases placed next to OK buttons in a row and
other times stacked below the “OK” button in a
column, with the distance between these buttons
varying from 0 to 40 pixels. Fig. 4 shows the
dialog boxes in which button placement

inconsistencies of “OK” and “Cancel” buttons
were detected by the Button Layout Table and
Button Concordance Tool.

3.5 Conclusion
Evaluation of the four applications using
SHERLOCK tools helped us to determine those
tools which were most successful in detecting
inconsistencies and those that were less
successful. The dialog box summary table had
limited success in detecting inconsistencies.
Only certain metrics of the dialog box summary
table like Aspect Ratio, Margins, Distinct
Typefaces, Distinct Foreground and
Background Colors were successful in finding
inconsistencies. Most of the extreme values
computed by the metrics like Non-Widget Area,
Widget Density and Area Balances were due to
the limitations of SHERLOCK or the Visual
Basic development tool and were not real
inconsistencies. These metrics were modified
several times to deal with exceptions and further
work is required to validate these metrics. The
Button Concordance and the Button Layout
Table proved to be the most useful tools and
were able to detect inconsistencies in the size,
position, typeface, color and terminology used
in buttons. The Interface Concordance and the
Interface Speller tools were successful in
detecting terminology inconsistencies like
variant capitalization, abbreviations and spelling
errors. The Terminology Basket tool helped in
detecting misleading synonym terms in many
cases. In summary SHERLOCK, was successful
in detecting major terminology inconsistencies
and certain inconsistencies in visual design of
the evaluated interfaces.

SHERLOCK is a collection of programs that
require detailed knowledge to use effectively.
Additional programming and a graphic user
interface would be necessary to make it viable
as a software engineering tool. However, the
source code and documentation that exists are
available (http://www.cs.umd.edu/projects/hcil).

3.6 Limitations of SHERLOCK
SHERLOCK evaluation is limited to certain
visual design and terminology aspects of the

18

interface. Issues like efficiency in screen layout
including proper placement of widgets on the
dialog box, violations of design constraints, and
the use of inappropriate widgets types are not
evaluated by SHERLOCK. Other evaluation
methods, such as usability testing and heuristic
evaluation, are needed to locate typical user
interface design problems such as inappropriate
metaphors, missing functionality, chaotic screen
layouts, unexpected sequencing of screens,
misleading menus, excessive demands on short-
term memory, poor error messages, or
inadequate help screens.

4.0 Feedback From Designers
Output from the tools and the screen shots of
the interface along with the analyses were
forwarded to the developers and designers to
elicit feedback.

4.1 GE Interfaces
We worked closely with the people at GE
Information Services to get feedback on the
effectiveness of SHERLOCK tools, as these
tools were being iteratively refined. The
feedback was positive on the evaluation output
with suggestions for modifications at every
refinement stage.

The feedback suggested that the outputs of the
dialog box summary table were simple for the
designers to interpret, as they were able to
detect inconsistencies by scanning down the
columns for extreme values, indicated by the
statistical analysis at the bottom of the table.
They recommended that we develop some
"goodness" measures for the metrics after
analyzing more applications. We have
succeeded partly in assigning measures to
certain metrics after analyzing the four
applications. The detection of the use of
multiple typefaces and colors by SHERLOCK
is one of the inconsistencies they otherwise
would have missed. Inconsistent margins was
another dimension that would have been slipped
through testing, if not detected by SHERLOCK.
Although, most of the dialog boxes in the GE
interface neither had a cluttered or crowded
layout, Non-Widget Area and Widget Density

were two of the metrics which the GE designers
agreed were important in determining the layout
of the interface.

The incorporation of a spell checking tool in
SHERLOCK had a positive response from the
designers, since none of the current GUI
building environments on the PCs have a built in
spell checker. Separate detailed analysis of each
metric of the dialog box summary table was
recommended by the designers for the future
implementations. One of the steps taken in this
direction was the development of the Margin
Analyzer tool to indicate inconsistencies in
margins and the way to rectify those
inconsistencies. Another tool that had positive
results in detecting inconsistencies was the
button concordance tool. The extreme variations
in button sizes detected by this tool that
included instances with no two same label
buttons having the same size across the
application, raised concerns within GE design
team. The button typeface, size and placement
inconsistencies detected by the Button
Concordance tool were corrected by the GE
designers after reviewing the evaluations
performed by SHERLOCK.

Inconsistencies in relative positioning of button
labels and button terminology detected by the
Button Layout table were modified by the GE
designers using the output. Use of misleading
terminology was another dimension explored by
the terminology basket tool which helped GE
designers in rectifying a few terminology
inconsistencies which would have been missed
otherwise. Overall the use of SHERLOCK
helped to modify the layout, visibility and
terminology of GE interfaces by detecting many
small inconsistencies.

4.2 University of Maryland Interface
Since this application was a combination of
various small applications, the output was given
to two different design groups to elicit a broader
spectrum of feedback. The first group included
the developers of a portion of the interface and
the other was the designers responsible for all
the applications together.

19

Developers' feedback on the dialog box
summary table was positive for some metrics.
They showed interest in the ability of the dialog
box summary table to detect the typeface and
color inconsistencies in their application. When
asked for a possible explanation of these
inconsistencies, they explained that different
designers worked on different portions of the
application, with very few guidelines on visual
design. Similar reasons were given for other
inconsistencies including different aspect ratio's
for functionally similar screens and the use of
inconsistent margins.

Designers liked the statistical analysis at the end
of the metric table with mean, maximum and
minimum values and wanted an additional
function that listed the optimum values for the
metrics. Many of the terminology
inconsistencies detected by the Button Layout
Table and the Terminology Basket tool were
valid inconsistencies which they will take into
consideration for the next version of the
application.

5.0 Software Design
SHERLOCK is a set of 7 user interface
consistency checking programs which were
implemented in about 7000 lines of C++ code,
and developed on the SUN SPARC
Stations/UNIX platform. In order to evaluate a
Graphical User Interface using SHERLOCK, its
interface description files need to be converted
to a canoncial format [see section 2.1]. These
canonical format files are the only input
required by the SHERLOCK evaluation tools.
SHERLOCK was designed to be a generic GUI
consistency and evaluation tool.

5.1 Translator and Canonical Format
Design
Translator programs are specifically designed
for a particular GUI development tool and
converts its interface description(resource) file
to a canonical format.[see section 2.1]. Design
of the data structure for the translator depends
on the format of the interface resource file. Two
translators were created, one for Visual Basic
3.0 and the other for Visual C++ 4.0 using a

lexical scanner generated by FLEX (Fast
Lexical Analyzer Generator) which is a tool for
generating programs that perform pattern
matching on text. Using the lexical scanner,
attribute value strings are detected and
converted to the appropriate format as defined
by the canonical format. All the dimensional
coordinates are converted to pixels and other
platform and application dependent values.

5.2 SHERLOCK Design
The family of consistency checking tools was
implemented using different sets of classes in
the C++ programming language. The data
structure for these tools was designed in
accordance with the canonical format input
files. The SHERLOCK data structure was
designed to be flexible, extensible and
customizable to changes that may be made by
expansion of the canonical format files.
SHERLOCK has a sequential modular design
and can be divided into the follwing subsystems.
• Widget Store Subsystem
• Dialog Box Subsystem
• String Processing Subsystem
• Spell Checker subsystem
• Button Processing Subsystem

6.0 Effects of Terminology
Inconsistencies on User's Performance
and Subjective Satisfaction

6.1 Introduction
An experiment was designed to test the
hypothesis that terminology inconsistencies
reduce performance speed and subjective
satisfaction The experiment considered only
one aspect of inconsistency, misleading
synonyms.. We developed a GUI in Visual
Basic for the students to access the resources
of University’s Career Center. Three versions
of the interface were created, the first one with
no terminology inconsistency. The second
version had a medium level of terminology
inconsistency (on average, one inconsistency in
terminology was introduced for each task and
each task had an average of four screens). The
third version had a high level of terminology

20

inconsistency (50% more inconsistent terms
than the medium inconsistent version). The
resulting 2 X 3 experiment had two
independent variables which were level of
expertise and the type of the interface (no
inconsistency, medium level of inconsistency
and high level of inconsistency). The levels of
expertise were no prior training and five
minutes of training. For all the six phases of
the experiment, users were given the same task
list and their task completion time and
subjective satisfaction was evaluated. For each
treatment 10 subjects were selected, with a total
of 60 subjects for the whole experiment. The
results showed that the user's performance is
significantly affected by terminology
inconsistencies.

6.2 Interface Design
All the screens of the Career Center interfaces
had a consistent visual design. Only terminology
inconsistencies were introduced in the medium
and high inconsistency version.
• In the medium inconsistency version, on

average one terminological inconsistency
was introduced for every task. Since the
subjects were told to perform seven tasks,
the interface had seven terminology
inconsistencies. These inconsistencies
included changing the heading of the dialog
box from “Questions” to “Inquiries” or
changing the widget labels from
“Workshops” to “Seminars”. Also, menu
items were changed from “Career
Counseling” to “Career Advising” and
“View” to “List”. Inconsistency in button
labels were also introduced by changing
“OK” and “Abort” to “Forward” and
“Discard” in the case of a particular task.

• In the high inconsistency version, 50% more
terminology inconsistency was introduced
than the medium inconsistent version. On
average, the high inconsistency version had
one or two terminology inconsistencies per
task with a total of 11 terminology
inconsistencies. These inconsistencies
included changing the“OK” button to
“Done”, “Return” or “Forward” depending
upon the task being performed and the

“Abort” button to “Discard” ,”End” or
“Suspend”, and “View Interviews” to
“Interviews”. Inconsistencies in menu items
were introduced by changing “Workshops”
to “Seminars” plus inconsistencies in widget
labels were introduced by changing “Major”
to “Area”.

6.3 Hypothesis
• The task completion time for the interface

with no terminology inconsistency will be
significantly lower than the interfaces with
medium and high levels of terminology
inconsistency in the case of subjects with no
prior training of the system.

• The difference in task completion time for
the interface with no, medium and high
levels of terminology inconsistencies would
decrease when subjects are given five
minutes of training with the system, prior to
the execution of the tasks.

• The subjective satisfaction will be
significantly higher for the interface with no
terminology inconsistency as compared to
those with medium and high levels of
terminology inconsistency.

6.4 Subjects
A total of 60 subjects were used in the
experiment out of which 30 were given 5
minutes training on the no inconsistency
interface. The subjects chosen were students at
the University of Maryland and were frequent
computer users and were comfortable using the
mouse and Windows 3.1 operating system.

6.5 Materials
The experiment was run on a 100MHz Pentium
machine with a 17" color monitor having a 1024
X 768 pixel resolution with 256 colors. A set of
instructions was provided in writing and was
also explained to the subjects verbally before
beginning the experiment. The subjects were
asked to fill out a modified version of the
Questionnaire (QUIS) (Chin et al, 1988) after
completing the experiment.

21

6.6 Task List
The subjects performed the seven tasks which
are:
• Register for Workshop II
• Set appointment with any one of the career

counselor for Nov. 8 for 10:00 to 10:30 am.

• View Part-time job openings in Computer

Science Major in Maryland state.
• Submit the following question to the Career

Center: Do counselors at the career center
perform mock interviews ?

• Request Graduate School information for
Masters program in Business Management
in any one of the listed universities.

• Register for an interview with any one of
the listed companies on Nov. 20th using
any one of the open slots.

• Cancel Registration for Workshop II

6.7 Procedure
Administration: Subjects were asked to read
the instructions before starting the experiment
and to sign the consent form. All the subjects
were shown the different functionalities of the
interface by browsing through the list of menu
items. The subjects who were trained were
shown the functionality of all the dialog boxes
by opening each of the menu items. They were
also allowed to use the interface for two minutes
to experience the interface. The subjects in the
training group were all trained using the same

version (no terminology inconsistency) of the
interface and then were tested using appropriate
versions.
Grading: Task completion times for each task
were measured using an electronic stop watch
with an accuracy of 1/100th of a second. Any
time taken by the subject to ask questions during
the experiment was excluded from the total task
completion time. Error rates were observed to
facilitate the derivation of results, but no
measurement were done. The subjective
satisfaction questionnaire had 19 questions.

6.8 SHERLOCK Analysis
The terminology inconsistencies in the Career
Center application can be detected by the
SHERLOCK Terminology Baskets tool. These
baskets with user predefined synonym terms are
used to find misleading synonyms in the
application. For example, shown below are the
output of terminology baskets tool using the
basket “Browse”, “Browsing”, “Query”,
“Search” and “Searching” when applied on the
no and high inconsistency versions
respectively. Comparing the outputs for this
basket for both versions we find that the no
inconsistency version of the interface only uses
the term “Search” and “Searching”, but in the
high inconsistency version terms “Browse”,
“Browsing” and “Query” were used instead of
the term “Search” in various parts of the
application.

--
Browse Browsing Query Search Searching
--
TERM DIALOG BOXES CONTAINING THE TERM
Browse
Browsing
Query
Search
 coop.frm.cft fulltime.frm.cft intern.frm.cft
 parttime.frm.cft
Searching
 coop.frm.cft fulltime.frm.cft intern.frm.cft
 parttime.frm.cft

--
Browse Browsing Query Search Searching
--
TERM DIALOG BOXES CONTAINING THE TERM
Browse coop.frm.cft
Browsing
 parttime.frm.cft
Query
 parttime.frm.cft
Search
 fulltime.frm.cft intern.frm.cft
Searching
 coop.frm.cft fulltime.frm.cft intern.frm.cft

22

Following are the other terminology baskets
used in detecting terminology inconsistencies:
• Abort Discard End Exit Suspend
• Major Field Area Program

• OK Done Apply Submit Send Forward
• Question,Questions,Inquiry,Inquiries
• Counselor,Counseling,Advisor,Advising
• Workshop, Workshops, Seminar, Seminars

Level of Expertise No Inconsistency Medium Inconsistency High Inconsistency

Without Training 239.0 sec. (61.0) 287.4 sec (42.6) 312.7 sec (88.25)

With Training 204.0 sec. (41.7) 217.4 sec (50.6) 270.7 sec (30.5)

Table 1. Average Task Completion Time and Standard Deviation
(10 subjects per cell & 7 tasks per subject)

6.9 Results
The experimental results summarized in Table 1
shows that the no inconsistency version had a
faster average task completion time than the
medium and high inconsistency versions. Also,
the average subjective satisfaction ratings for
the no inconsistency version was higher than the
medium and the high inconsistency versions of
the interface. Overall, the performance
improved when training was administered to the
subjects, as the average task completion time
was lower for all the three versions of the
interface when training was provided.

The 2 X 3 ANOVA (Analysis of Variance) was
used to determine whether the interface types
(versions) and the level of expertise have
statistically significant effects on the task
completion time and subjective satisfaction
measured across the three treatments(no,
medium and high level of terminology
inconsistency) and two training levels (with
prior training and without prior training). There
was a statistically significance difference for
task completion time by expertise (F (1,54) =
12.38, p < 0.05)and interface type (F (2,54) =
8.21, p < 0.05) but no interaction effect.This
implied that for the task completion time, the
effect of the level of expertise is not dependent
on the inconsistency level of the interface.
Therefore, performance of both the experts and
novices reduces with increase in terminology
inconsistencies. In summary, terminology
inconsistencies decrease user's performance

regardless of the user`s level of expertise. For
the subjective satisfaction, no statistically
significant effects.

6.10 Discussion
In relation to the task completion time, the
ANOVA identified that the terminology
inconsistencies introduced in each version of the
interface significantly slowed the user's
performance. These effects can also be observed
in the task completion time difference between
the averages of each treatment. In the treatments
with no training the average task completion
time for the medium and high inconsistency
treatments were 20% and 30% more than the no
inconsistency treatment. Similarly in the block
with training administered, the average task
completion time for medium and high
inconsistency treatments were 7% and 34%
more than the no inconsistency treatment.

The level of expertise, according to ANOVA
significantly effected the user's performance. On
average, the training decreased the task
completion time by 14%, 24% and 13% in no,
medium and high inconsistency versions
respectively. Although the subjective
satisfaction ratings for the medium and the high
inconsistency versions were less than the no
inconsistency version, the ANOVA analysis
found no statistically significant results. It is
difficult to obtain statistically significant
differences in preference scores for between
groups design, because subjects do not see the

23

other versions. A future within subjects study
might elicit stronger preference differences.

6.11 Conclusion

The results of this experiment, along with the
experiment done by Bajwa (1995) support the
encouragement to “strive for consistency” and
including consistency as one of the prime
guidelines when designing user interfaces. Also,
the terminology inconsistencies introduced in
the design of the experimental interfaces were
detected by the SHERLOCK Terminology
Basket Tool, verifying the tool's capability.

7.0 Recommendations

7.1 Recommendations for the GUI
Application Developers:
The following guidelines are recommended as a
step towards creating consistent interfaces:

• Consistent Aspect Ratio especially for
dialog boxes having similar visual design
and functionality.

• Non-Widget Area (white space) should be
atleast 20% of total area enclosed by the
dialog box.

• Consistent margins within and across dialog
boxes.

• Widgets within a dialog box should be both
horizontally and vertically aligned.

• Design with too many widgets in a small
area should be avoided.

• Consistent background colors, foreground
colors and typefaces.

• Consistent location and size of frequently
used widget.

• Consistent terminology across dialog boxes
• Terminology in menu items should be

consistent with the title of the dialog boxes
which they open and with the labels of the
widgets contained in those dialog boxes.

• Button Labels should be consistent across
the interface, for example synonyms like
“Abort”, “Cancel”, “Close” and “Exit”
should not be used for similar tasks.

• Terminology should be consistent within the
sequence of dialog boxes which are
connected through button clicks.

• In addition to these consistencies within the
dialog boxes, the interface should be
consistent in terminology with the current
commercial applications running on that
system, but in accordance with the user's
task domain.

7.2 Recommendations for Designers Looking
for GUI Evaluation Metrics

• To evaluate screen complexity, use metrics
like Non-Widget Area and Widget Density
of the dialog box summary table. Explore
the use of other metrics for dialog box
crowdedness like Local Density metric
developed by Tullis (1988b) and Hot-Spot
metric by Streveler & Wasserman (1987).

• Use metrics like Aspect Ratio, Margins, and
Balance to evaluate size of dialog boxes and
create a more coherent and consistent
layout.

• Metrics evaluation using additional visual
techniques of Regularity, Proportion,
Neutrality, Transparency and Grouping
defined by Vanderdonck and Gillio (1994)
should be explored.

• Develop metrics to check consistency in
typefaces and colors across dialog boxes in
general and for every widget type in
particular.

• Develop a better metric for detecting
misaligned widgets similar to the dialog box
summary table gridedness metric and
previously developed Layout Complexity
and Alignment metrics (Tullis, 1988;
Streveler & Wasserman, 1987).

• Develop metric to check consistency in size
and location of specific widget types across
dialog boxes. These metrics may be similar
to those used in SHERLOCK's Button
Concordance and Button Layout Table
tools.

• Expand the Terminology Basket tool to
detect misleading synonyms for specific
widget types and across all the widgets.

24

• Implement tools similar to Interface
Concordance and Interface Speller to detect
variant capitalization, spelling errors and
abbreviations.

7.3 Recommendations for Designers of New
GUI Tools
The applicability of SHERLOCK's canonical
format approach to other GUI development tools
beyond Visual Basic was explored. The
following are recommendations for designers of
new GUI tools after analyzing existing tools like
Visual Basic, Visual C++, Galaxy, and Tk/Tcl.

• Visual design and textual properties of
dialog boxes including widget labels, widget
coordinates, widget sizes, typefaces, colors
and more should be stored in an ASCII
resource file. Many existing GUI
development tools store this information as
binary files.

• If the GUI development tool allows the user
to dynamically change the widget size and
position within the code, these changes
should be updated to the corresponding
resource files.

• The GUI development tool should not allow
widget in the dialog box to extend beyond
the area of the dialog box.

• If possible, the GUI development tool
should create default left, right, top and
bottom margins for dialog box beyond
which widgets may not be extended.

• The GUI development tool should promote
consistency by creating default dialog box
templates so that developers are aware of
the positioning of frequently used widget.

• A spell checking tool should be
incorporated in the GUI development tool.

8.0 Future Directions

8.1 Extension to SHERLOCK
• Analyze more interfaces developed in

Visual Basic to further modify the dialog
box summary table metrics. Furthermore,
remove those metrics that are not successful
in detecting any inconsistencies.

• Analyze interfaces developed in Visual C++
to validate the canonical format approach on
which the design of SHERLOCK is based.

• Subdivide the dialog box summary table
into smaller tools. This subdivision would
expand the analysis of each metric by
reporting any exceptions or additional
information along with metric values to
facilitate the interpretation of results.

• Link the dialog box summary table to a
spread sheet software like Microsoft Excel
that can graph the inconsistencies for every
metric.

• Add a generic tool to SHERLOCK which
can detect visual design and textual
inconsistencies in any type of widget,
including combo boxes, drop down boxes,
text boxes, similar to the inconsistencies
detected by button layout table and button
concordance tools in button widgets.

• Expand the terminology thesaurus of
SHERLOCK in button sets of the button
layout table and baskets of the terminology
basket tool.

• A new tool needs to be added to
SHERLOCK that can separate dialog boxes
with similar layout features and then use the
other SHERLOCK tools for consistency
checking.

8.2 Extension beyond SHERLOCK
SHERLOCK analysis is static and provides
limited feedback to the user. Steps need to be
taken to design a tool that incorporates
SHERLOCK tools, but is dynamic in nature,
where users can interactively modify the
inconsistencies highlighted by SHERLOCK.
Also, the future tool should be able to indicate
the severity of the inconsistency, so that the
designers can prioritize the modifications
suggested by those tools. Perhaps the greatest
challenge is to provide a “goodness” measures
for the metric values. We have laid down the
foundation for building the next generation
generic GUI consistency checking tool to
evaluate visual design and textual properties,
but more work needs to be done to build a
complete structure on this foundation.

25

Acknowledgments
Funding for this research was provided by General
Electric Company. We would also like to thank Ren
Stimart of GE for his help.

References
Apple Computer, Inc. (1992), “Macintosh
 Human Interface Guidelines”, Addison-
 Wesley Publishing Co., Reading, MA.
Bajwa, S.(1995), “Effects of inconsistencies on
 users performance and subjective
 satisfaction”, Unpublished, Department of
 Computer Science, University of Maryland.
Barnard, P., Hammond, J. , Morton, J., Long, J.
 and Clark, I. (1981), “Consistency and
 compatibility in human-computer dialogue”,
 International Journal of Man-Machine Studies
 15, 87-134.
Bodart, F., Hennebert, A.-M., Leheureux, J.-M.,
 and Vanderdonckt, J. (1994), Towards a
 dynamic strategy for computer-aided visual
 placement, In Catarci, T., Costabile, M.,
 Levialdi, S., and Santucci, G. (Editors), Proc.
 Advanced Visual Interfaces Conference '94,
 ACM Press, New York, 78-87.
Chimera, R. and Shneiderman, B. (1993),
 User interface consistency: An evaluation of
 original and revised interfaces for a videodisk
 library, In Shneiderman, B. (Editor), Sparks
 of Innovation in Human-Computer Interaction,
 Ablex Publishers, Norwood, NJ, 259-273.
Chin, J.P., Diehl, V.A. and Norman, K. (1988),
 Development of an instrument measuring user
 satisfaction of the human-computer interface.
 Proc. of the Conference on Human Factors in
 Computing Systems, CHI'90, ACM, New York,
 213-218.
Coll, R., and Wingertsman, A. (1990), The
 effect of screen complexity on user preference
 and performance, International Journal of
 Human-Computer Interaction 2,3, 255-265.
Comber, T. and Maltby, J. (1995), Evaluating
 usability of screen design with layout
 complexity, Proc. of the CHISIG Annual
 Conference, Melborne, Australia (in print).
Frederiksen, N., Grudin, J. and Laursen, B.
 (1995), Inseparability of design and use: An
 experimental study of design consistency,
 Proceedings of Computers in Context'95,
 Aarhus, Aarhus University, 83-89.
Grudin, J. (1989), The case against user
 interface consistency, Communications of the
 ACM 32,10, ACM Press, New York, 1164-
 1173.

Grudin, J., and Norman, D

. (1991), Language
 evolution and human-computer interaction,
 Proc. of the Thirteenth Annual Conference of
 the Cognitive Science Society, Hillsdale, New
 Jersey, 611-616.
Harrison, M.D. and Thimbleby, H.W. (1985),
 Formalizing guidelines for the design of
 interactive systems. In Proc. of BCS HCI
 Specialist Group Conference HCI85, 161-171.
Jeffries, R., Miller, J., Wharton, C. and Uyeda,
 K. (1991), User interface evaluation in the real
 world: A comparison of four techniques, Proc.
 of CHI 1991, ACM, New York, 119-127.
Kellogg, W. (1987), Conceptual consistency in the
 user interface: Effects on user performance,
 In Proc. of Interact '87 Conference on Human-
 Computer Interaction, Stuttgart.
Kim, W. and Foley, J. (1993), Providing high-
 level control and expert assistance in the user
 interface presentation design, Proc. of CHI 93,
 ACM, New York, 430-437.
Karat, C-M., (1992), Cost-justifying human
 factors support in development projects,
 Human Factors Society Bulletin 35, 8.
Long, J., Hammond, N., Barnard, P., Morton, J.
 and Clark, I. (1983), Introducing the interactive
 computer at work: The user's view, Behavior and
 Information Technology, 2, 39-106.
Lynch, P. (1994), Visual design for the user
 interface, pt. 1 design fundamentals, Journal
 of Biocommunications 21, 1, 22-30.
MacIntyre, F., Estep, K.W. and Sieburth, J.M.
 (1990), Cost of user-friendly programming,
 Journal of Fourth Application and Research 6,
 2, 103-115.
Mahajan, R. and Shneiderman, B. (1995), A
 family of user interface consistency checking
 tools: Design analysis of SHERLOCK, Proc. of
 NASA Twentieth Annual Software Engineering
 Workshop, SEL-95-004, NASA Pub., 169-188.
Mullet, K.(1995), Organizing information
 spatially, Interactions, July 95, 15-20.
Nielsen, H.(1989), Coordinating User Interfaces
 for Consistency Checking, Ed. Nielsen, J.
 Academic Press Inc., London.

26

Norman, D.A. and Draper, S.W. (1986), User
 Centered System Design: New Perspectives in
 Human-Computer Interaction, Lawrence
 Erlbaum Associates, Hillsdale, N.J.
Polson, P., Muncher, E. and Engelbeck, G.
 (1986), A test of a common elements theory of
 transfer, Proc. of CHI'86, ACM, New York, 78-83.
Reisner, P. (1990), What is consistency?, Proc. of
 the IFIP Third International Conference on
 Human-Computer Interaction, Interact '90,
 Elsevier Science Publishers, B.V., North-Holland,
 175-181.
Rosenberg, D. (1989), Cost benefit analysis for
 corporate user interface standards: What price to
 pay for consistent look and feel?, Coordinating
 User Interfaces for Consistency Checking, Ed.
 Nielsen, J. Academic Press Inc., London, 21-34.
Sears, A. (1993), Layout Appropriateness: A
 metric for evaluating user interface widget
 layouts, IEEE Transactions on Software
 Engineering 19, 7, 707-719.
Sears, A. (1994), AIDE: A step towards metric-
 based interface development tools, Proc. of
 UIST '95, ACM, New York, 101-110.
Shneiderman, B. (1992), Designing the user
 interface: Strategies for Effective Human-
 Computer Interaction: Second Edition,
 Addison-Wesley Publ. Co., Reading, MA.
Shneiderman, B., Chimera, R., Jog, N., Stimart,R.
 and White, D. (1995), Evaluating spatial and
 textual style of displays, Proc. of Getting the Best
 from State- of the-Art Display Systems '95, London.
Smith, D.C., Irby, C., Kimball, R., Verplank, B.and
 Harslem, E. (1982), Designing the star user
 interface, Byte 7, 4, 242-282.
Streveler, D. and Wasserman, A. (1987),
 Quantitative measures of the spatial properties
 of screen designs, Proc. of INTERACT '87,
 Elsevier Science, Amsterdam, 125-133.
Tullis, T.S. (1983), The formatting of alphanumeric
 displays: A review and analysis, Human Factors
 25, 657-682.
Tullis, T. S. (1988a), Screen design, In Helander, M.
 (Editor), Handbook of Human-Computer
 Interaction, Elsevier Science, Amsterdam, The
 Netherlands, 377-411.
Tullis, T. S. (1988b), A system for evaluating
 screen formats: Research and application, In
 Hartson, H. Rex and Hix, Hartson (Ed.),
 Advances in Human-Computer Interaction:
 Volume 2, Ablex Publishing Corp., Norwood,
 NJ, 214-286.
Vanderdonckt, J. and Gillo, X. (1994), Visual
 techniques for traditional and multimedia layouts,
 In Catarci, T., Costabile, M., Levialdi, S. and

 Santucci, G. (Editors), Proc. Advanced Visual
 Interfaces Conference '94, ACM Press, New York,
 95-104.
Wiecha, C., Bennett, W., Boies, S. and Gould, J.
 (1989), Generating Highly Interactive User
 Interface, Proc. of CHI'89, ACM, New York, 277-
 282.
Wolf, R. (1989), Consistency as process,
 Coordinating User Interfaces for Consistency
 Checking, Ed. Nielsen, J. Academic Press Inc.,
 London, 89-92.

