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Increase in stream temperature by heated stormwater runoff from impervious surfaces is a 

serious environmental problem. An underground storage/slow release facility is a 

versatile stormwater best management practice (BMP) for buffering high flows. 

Temperature reductions in underground storage BMPs, however, have not been 

quantified. A field study on an underground storage facility was undertaken to 

characterize its effect on stormwater runoff temperatures. In colder months, when the 

runoff temperature ranged from 5 and 15
○
C, small or no temperature change was 

observed. Runoff produced during summer storm events, with event mean temperatures 

over 20
○
C, exhibited mean temperature reductions of 1.6

○
C through the BMP. While 

statistically significant, the reductions were not sufficient to cool the summer runoff 

discharges below the Maryland Class III temperature standard (20
○
C) 100% of the time. 

The results indicate that underground facilities can moderate high runoff temperatures, 

but that a more efficient design is needed. 
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Chapter 1 

INTRODUCTION 

 

Over the past several centuries, forests have been cleared to satisfy the growing demand 

for land and fuel of the burgeoning world population. Natural land covers have been replaced by 

large agricultural lands and urban areas. The world urban population is expected to almost double 

by 2050, increasing from 3.3 billion in 2007 to 6.4 billion in 2050 (United Nations 2008). 

Globally, the proportion of the population that resides in urban areas is expected to rise from 50% 

in 2008 to 70% in 2050 (United Nations 2008). The sustained increase in urbanization has 

resulted in large scale replacement of pervious land cover by impervious areas such as roads, 

driveways, sidewalks, parking lots, and rooftops. Replacement of the natural land cover by 

impervious surfaces and infrastructure has resulted in the “urban heat island effect.” Many US 

cities have been found to have air temperatures 3.3 to 4.4°C (6 to 8°F) warmer than the 

surrounding rural regions (US Department of Energy, 1996). 

Imperviousness impacts the quality and quantity of water from a watershed by reducing 

infiltration and increasing the runoff volume and pollutant loadings during storm events. 

Hydrologic modification in a watershed associated with urbanization can affect physical, 

chemical, and biological conditions of the receiving waters (Paul and Meyer 2001; Wang et al. 

2003). Increased frequency of flooding and peak flow volumes, increased sediment loadings, loss 

of riparian habitat, changes in stream channel width and depth, decreased base flow, and 

increased stream temperatures are some of the impacts of urban runoff on streams.  

Stream warming due to urbanization has been a problem of growing concern in recent 

years. In summer, the average stream temperature was found to increase by as much as 5–8°C in 

a watershed in Long Island, New York, associated with urbanization (Pluhowski 1970). A study 

by Galli (1990) on thermal and dissolved oxygen impacts to aquatic life associated with 
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urbanization and representative best management practices (BMPs) in Maryland showed that 

stream temperature increases by 0.14
o
F (0.08

o
C) for each one percent increase in watershed 

imperviousness. The aquatic biota were affected for connected imperviousness greater than 10% 

(Schueler 1994). Sensitive species such brook trout ceased to exist for watershed impervious 

cover beyond 4% in Maryland (Stranko et al. 2008). 

Streams that receive urban stormwater runoff have been found to have elevated 

temperatures (Galli 1990; USEPA 1999; Walsh et al. 2003). Increased stream temperatures by 

heated runoff have been noted as a severe and prevalent problem in Maryland (Boward et al. 

1999). Common urban impervious surfaces have high thermal capacity and absorb solar radiation. 

As stormwater runoff is conveyed over black asphalt roadways and access areas, heat is 

transferred to the runoff via conduction, thereby raising its temperature. Summer is the period of 

concern when ground temperatures are highest and when intense direct sunlight will greatly 

increase the temperature of the black-colored asphalt (Figure 1). Runoff temperatures from urban 

impervious areas as high as 29
o
C have been measured in Dane County, Wisconsin (Roa-Espinosa 

et al. 2003).  

 

 

Figure 1-1. Schematic diagram showing the transfer of heat to stormwater runoff 

Hot asphalt pavement 

Stormwater runoff 

Heated runoff to local stream 

Transfer of 

heat to runoff 
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The discharge of high-temperature water can have negative impacts on local streams 

receiving the runoff, raising stream temperatures, causing direct impact to aquatic organisms that 

cannot withstand higher temperature. Cold-water species such as trout are extremely sensitive to 

temperature and are stressed at high temperatures. The Maryland state Class III standard for 

natural trout waters and Class IV standard for recreational trout waters have been established as 

20ºC (68ºF) and 24ºC (75ºF), respectively (USEPA 1988b). 

An increase in stream temperature has a direct impact on the dissolved oxygen level. The 

solubility of oxygen in water decreases at higher temperatures, which results in lower levels of 

dissolved oxygen. Additionally, as the temperature increases, the metabolic rate of aquatic 

organisms rises, which causes an increase in the demand for dissolved oxygen. Also, 

photosynthesis and plant growth increase with higher water temperatures. The consumption of 

oxygen by bacteria during decomposition of dead plants further depletes the dissolved oxygen 

level in the stream (Paul and Meyer 2001).  

Best management practices such as wetlands, dry detention ponds, grass swales, and sand 

filters are widely employed control measures for removing pollutants in urban stormwater runoff. 

While the need to control thermal pollution by storm runoff has been recognized in many 

research studies, limited studies have investigated the thermal sensitivity of BMPs. Galli (1990) 

studied the effects of stormwater BMPs, specifically an infiltration facility, an artificial wetland, 

an extended detention dry pond, and a wet pond, on water temperature. The study results 

demonstrated the thermal enhancement of the outflow from the BMPs. A thermal balance study 

on an on-stream wetpond in Ontario yielded similar results. The large surface area of the pond 

exposed to solar radiation and the lack of surrounding vegetation resulted in the thermal 

enhancement of the pond during the dry-weather seasons (Van Buren et al. 2000a). However, 

small reductions in runoff temperatures were observed in bioretention facilities located in trout 

sensitive regions in North Carolina (Jones et al. 2007).  
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Another versatile stormwater best management practice is an underground storage and 

slow release facility. These detention facilities attenuate peak flows. However, evaluation of the 

temperature mitigation in such underground storage BMPs has not been performed. The ambient 

temperature in an underground storage is cooler than the surface ground temperature, and 

extended detention of the inflow runoff should aid in heat loss. Thus, it can be hypothesized that 

reductions in the temperature of incoming stormwater runoff should occur in an underground 

storage BMP. Hence, the temperature of runoff discharged from the BMP into the receiving 

waters or streams will be relatively low.  

In order to test the hypothesis, a thermal impact study was conducted in two underground 

storage BMPs in Timonium, Maryland. The objectives of this study were to quantify the impact 

of underground storage on the temperature of runoff from a highway and to develop a simple heat 

transfer model. In order to achieve these objectives, the first task was to set up and monitor 

stormwater runoff flows and temperatures into and out of the underground storage BMP. The data 

obtained were employed to quantify the temperature mitigation in the BMP and to develop the 

heat transfer model. The model, formulated as a set of differential equations, when solved 

numerically would predict the temperature of the runoff at the outlet of the facility. This will 

enable the determination of the efficiency of underground stormwater storage facilities in 

mitigating runoff temperature. While the outflow from this specific BMP may not be directly 

discharged into an active trout stream, the data and performance results obtained from this 

research should be applicable to other similar BMPs in trout sensitive regions. The impact of 

these BMPs in managing high temperature concerns in highway applications can hence be 

quantified for future design, analysis, and implementation. 



5 

Chapter 2 

BACKGROUND 

 

2.1 Urbanization and Land Development 

Impervious surfaces like, roads, driveways, parking lots, and rooftops have increased due 

to expanding urbanization. In 2002, urban land in the United States was less than 3% of total land 

area, but housed 79% of the U.S. population (Lubowski et al. 2006). Urban and suburban lands 

(residential, commercial, industrial, and institutional) constitute nearly 16% of Maryland and are 

concentrated in the Washington-Baltimore metropolitan area (Boward et al. 1999). Based on the 

2000 Census, the population of Maryland has been projected to increase by 33% between 2000 

and 2030 (US Census Bureau statistics Sep 29, 2008). With the increase in population, urban 

sprawl is expected to further expand to accommodate the new population. 

2.2 Imperviousness and its Impacts on Runoff Quantity and Quality  

Watershed imperviousness imparts hydrologic modifications in the catchment; reduced 

infiltration, increased surface runoff, decreased lag time, increased peak flow volumes, and lower 

dry weather stream flow. Due to urbanization, increase in direct runoff to streams up to five times 

that of pre-urban periods has been witnessed in Long Island, New York (Seaburn 1970). In 

addition to the impact on water quantity, urbanization has an effect on the quality of the runoff. 

Impervious surfaces accumulate pollutants which are washed off during storm events and 

eventually delivered to the receiving waters. The National Water Quality Inventory: 2000 Report 

to Congress has identified urban runoff as one of the leading sources of water quality impairment 

in surface waters (USEPA 2005). 

2.2.1 Effects of Imperviousness on Stream Ecosystem 

The impact of watershed imperviousness on the stream ecosystem is manifold. Physical, 

chemical, and biological processes in the receiving waters are affected due to urbanization (Booth 
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and Jackson 1997; Paul and Meyer 2001; Elliott et al. 2004 Walsh et al. 2004; Bernhardt and 

Palmer 2007). The term “urban stream syndrome” has been used to describe the consistently 

observed ecological degradation of streams draining urban land (Walsh et al. 2005). Urban-

induced flashy hydrographs, decreased baseflow, channel instability, elevated levels of sediments, 

metals, nutrients, pesticides, fecal coliforms and other contaminants, stream warming, riparian 

deforestation, and decline in biodiversity in streams have been well documented by various 

researchers. 

Imperviousness is considered as a valuable indicator of the impact of urbanization in a 

watershed on aquatic systems (Schueler 1994). In western Washington, approximately 10% 

effective watershed imperviousness yielded demonstrable loss of aquatic system function (Booth 

and Jackson 1997). Similar results have been reported for trout streams in Maryland and 

Wisconsin (Galli 1990; Wang et al. 2003). Urbanization is considered one of the more serious 

immediate threats to the brook trout populations in Maryland. For a watershed of impervious 

surface area of 0.5%, substantial reduction in brook trout population was observed, while for 

imperviousness greater than 4%, brook trout is expected to be completely eliminated (Butowski et 

al. 2006; Stranko et al. 2008). Figure 2-1 illustrates the extreme sensitivity of brook trout to 

upstream imperviousness in Maryland. 
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Figure 2-1. Sensitivity of brook trout population to percentage watershed imperviousness 

(Source: Boward et al. 1999) 

 

2.3 Stream Warming 

Research studies have indicated that imperviousness has a direct impact on, and high 

correlation with, the stream temperature (Galli 1990; Booth and Jackson 1997; Schueler 2003; 

Wang et al. 2003). Stream temperature enhancement has been attributed to a range of urban 

factors, including the clear cutting of vegetation from stream banks, introduction of ponds and 

lakes, increased stormwater runoff to streams, and a reduction in the amount of ground-water 

inflow (Pluhowski 1970; USEPA 1999). Pluhowski (1970) observed 5-8
○
C increase in mean 

stream temperatures during summer in a study in Long Island, New York.  

Galli (1990) performed continuous water temperature monitoring in six headwater urban 

streams in the Piedmont portion of Maryland’s Anacostia basin. The watershed imperviousness 

ranged between 0 and 60%. The study showed that the stream temperature increased by 0.14
o
F 

for each one percent increase in watershed imperviousness. The study findings on the effect of 

urbanization on stream temperature supported the work of Pluhowski (1970); urbanized Lower 

White Oak was typically 4-15
o
F warmer than undeveloped, forested Lakemont tributary (Figure 

2-2). The study revealed that as the level of watershed imperviousness increased, the size of 
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storm required to produce large fluctuations in stream temperature decreased. The streams 

became increasingly responsive to stormwater runoff inputs with the increase in watershed 

imperviousness. Study by Wang et al. (2003) in trout streams in Wisconsin and Minnesota 

predicted 0.25
o
C increase in water temperature for each one percent increase in imperviousness. 

 

 

Figure 2-2. Effect of development on six headwater stream temperatures in Maryland  

(Source: Galli 1990) 

 

Section 303(d) of the Clean Water Act addresses the thermal pollution of receiving 

waters. The section states that “each State shall estimate for the waters identified as impaired the 

total maximum daily thermal load required to assure protection and propagation of a balanced, 

indigenous population of shellfish, fish and wildlife” (Federal Water Pollution Control Act, 

USEPA). Temperature Total Maximum Daily Loads (TMDLs) are being developed to protect 

coldwater stream habitats, especially in the Pacific Northwest (Kieser et al. 2003). 
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2.3.1 Response of Stream Biota to Stream Warming 

Many research studies on the effects of elevated stream temperature on aquatic biota have 

been conducted. Biotic integrity and species diversity are severely impaired at higher water 

temperatures. Fish growth, metabolic rate, egg maturation, spawning, incubation success, 

distribution and migration patterns, and resistance to diseases, parasites, and pollutants are 

influenced by temperature regimes (Armour 1991; Schueler 2003; Butowski et al. 2006). Hogg 

and Williams (1996) observed that a 2-3.5
○
C water temperature increase in a stream in Ontario, 

Canada caused decrease in the total animal densities, smaller size and altered sex ratios in the 

stream invertebrates, and increase in the growth rates of amphipoda. 

2.3.1.1 Temperature Sensitivity of Trout 

When general temperature requirements are considered, fish can be grouped into cold 

water, cool water, or warm water categories (Armour 1991). Increased water temperature may 

preclude temperature sensitive cold water species such as salmon and trout. Alteration in thermal 

regimes can change the relative distribution and population of the species; cool water and cold 

water species may be completely extirpated and replaced by more tolerable species (USEPA 

1999). 

Comprehensive study on Maryland streams, named the Maryland Biological Stream Survey, 

conducted by the Maryland Department of Natural Resources from 1995 to 1997, showed that the 

streams most affected by urbanization are in the Baltimore-Washington Metropolitan portions of 

the Patapsco and Potomac Washington Metro river basins (Boward et al. 1999). The survey 

estimated the current brook trout population in Maryland streams to be about 300,000, which 

once numbered more than 3 million. The study cites that one of the most important reasons for 

the decrease in brook trout population is water temperature. Due to the clearing of trees for urban 

development, previously forested streams have been exposed to direct sunlight, combined with 

the input of heated runoff from impervious surfaces and warm water discharges from ponds and 

lakes. Consequently, only few streams have temperatures cool enough to support brook trout, 



10 

particularly in the eastern half of the state (Boward et al. 1999). Figure 2-3 depicts the historic 

change in the population of brook trout in the state of Maryland. 

 

 

Figure 2-3. Current and historical distribution of brook trout in Maryland 

   (Source: Boward et al. 1999) 

 

2.3.1.2 Temperature Requirements of Trout 

Trout are adapted to cooler waters and may become stressed in warm waters. Baldwin 

(1951) identified 14
o
C as optimal water temperature for brook trout. The upper lethal water 

temperature limit for hatchlings is 20
o
C and approximately 25

o
C for juveniles and adults. Brown 

trout have an optimum temperature range of 7 to 17ºC and become stressed at temperatures above 

19ºC (Roa-Espinosa et al. 2003). Table 2-1 provides a summary of the temperature regimes for 

trout species. 
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Table 2-1. Summary of temperature requirements and regimes for trout 

Requirement/Criteria Temperature (ºC) Reference 

Growth and survival 11 - 16 Baldwin (1951); Raleigh 

(1982); Drake and Taylor 

(1996) 

Optimal water temperature for 

brook trout 

14 (Maximum 14.4) Baldwin (1951); 

MacCrimmon and Campbell 

(1969) 

Optimal water temperature for 

brown trout 

7 - 17 Roa-Espinosa et al. (2003) 

Spawning of brook trout 19 Hokansen et al. (1973) 

Egg maturation and development 4.5 – 11.5 MacCrimmon and Campbell 

(1969) 

Upper lethal water temperature 

limit 

Hatchlings: 20 

Juveniles and adults: 25 

MacCrimmon and Campbell 

(1969) 

Experimental LT50 (temperature at 

which 50% population survive) for 

trout 

Brook : 25.2 

Brown: 26.2 

Rainbow: 26.6 

Grande and Andersen (1991) 

Maryland Class III standard for 

natural trout waters 

20 USEPA (1988b) 

Maryland Class IV standard for 

recreational trout waters 

24 USEPA (1988b) 

Maximum daily mean temperature 

(for brown trout) 

22 Rossi and Hari (2007) 

Maximum temperature for 100% 

survival exposure time (for brown 

trout) 

1- minute: 28 

10-minutes: 26.5 

1-hour: 25 

Rossi and Hari (2007) 

Change in temperature at the 

beginning of storm event 

≤ 7 Rossi and Hari (2007) 

Maximum daily temperature in 

winter 

≤ 12 Rossi and Hari (2007) 
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Procedures to evaluate the temperature regimes of salmon, namely maximum weekly 

temperature that should not be exceeded, short-term maximum survival temperature, upper and 

lower incipient temperatures, and lethality of exposure time based on the acclimation temperature 

have been proposed by Armour (1991). The Maryland state Class III standard for natural trout 

waters and Class IV standard for recreational trout waters have been established as 20ºC (68ºF) 

and 24ºC (75ºF), respectively (USEPA 1988a). The U.S EPA has placed limitations on the daily 

and weekly average temperatures, and exposure times in marine and freshwater streams (USEPA 

1988b). 

2.3.2 Other Impacts of Stream Warming  

In addition to the previously discussed effect on aquatic biota, stream temperature 

directly influences the level of dissolved oxygen in the water. At higher temperatures, the 

solubility of oxygen in water decreases, resulting in lower levels of dissolved oxygen. The rise in 

metabolic rate of aquatic organisms at higher temperatures causes an increase in the demand for 

dissolved oxygen. Also, photosynthesis and plant growth increase with higher water temperatures. 

The consumption of oxygen by bacteria for decomposing dead plants further depletes the 

dissolved oxygen level in the stream (Paul and Meyer 2001). 

2.3.3 Thermal Enhancement of Streams by Stormwater Runoff 

Streams receiving storm runoff from urban impervious surfaces have been found to have 

elevated temperatures (Galli 1990; Booth and Jackson 1997; Boward et al. 1999; USEPA 1999; 

Walsh et al. 2004; Wang et al. 2003; Walsh et al. 2005). Stream warming due to heated runoff has 

been reported as a severe and prevalent problem in Maryland (Boward et al. 1999). Summer is a 

critical period when discharge of heated runoff can lead to a short-term spike in the stream 

temperature at the beginning of a storm (Rossi and Hari 2007). This is because summer storms 

are usually characterized short heavy storms, typically more frequent in afternoon. 

Common impervious surfaces have high thermal capacity and absorb solar radiation. 

During summer, the ground temperatures are highest and intense direct sunlight will greatly 
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increase the temperature of the black-colored asphalt. Pavement temperatures can reach as high as 

60
o
C in summer (Rossi and Hari 2007). As stormwater runoff is conveyed over heated black 

asphalt roadways and access areas, heat is transferred to the runoff via conduction, thereby raising 

its temperature. Heated stormwater runoff flowing into the local stream would cause negative 

impact on its ecosystem. 

2.4 Thermal Impact Study of Best Management Practices (BMPs) 

Thermal impacts of treatment processes on urban stormwater runoff can be considered to 

be under-monitored and under-researched. Generally, little or no consideration is placed towards 

temperature mitigation in the design aspects of the BMPs (Jones et al. 2007). Although the need 

for control measures to mitigate urban stormwater thermal enhancement has been emphasized, 

limited studies have investigated the performance of BMPs in reducing runoff temperature. The 

majority of such studies performed have focused on wetlands, wet and dry detention basins (Galli 

1990; Van Buren et al. 2000a; Sherwood 2001; Kieser et al. 2003), and few on infiltration and 

bioretention facilities (Galli 1990; Jones et al. 2007). 

2.4.1 Runoff Temperature Mitigation Wetponds and Wetlands 

Galli (1990) performed a study on four representative BMPs including an infiltration 

facility, artificial wetland, extensive detention dry pond, and a wetpond in Maryland. Inflow and 

outflow temperatures were monitored and violation of temperature standards during both 

baseflow and stormflow conditions was evaluated. The study revealed that none of the four 

monitored BMPs reduced the runoff temperature and in fact contributed to the increase in outflow 

temperature. The BMPs ranked in order of temperature mitigation performance were infiltration-

dry pond, artificial wetland, extensive detention dry pond, and a wetpond (Table 2-2 shows the 

delta-T and standard violations). Based on the observed runoff temperatures, trout cannot be 

expected to survive at the outfall of any of the four BMPs. 
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Van Buren et al. (2000a) performed the thermal energy balance of an on-stream 

stormwater management pond in Kingston, Ontario. The pond received runoff inflows from a 

parking lot and a creek having drainage areas of 12.6 ha and 4500 ha, respectively. During the 

dry-weather days, net radiation and heating of the baseflow owing to the large exposed surface 

area of the pond, along with the lack of surrounding vegetation, resulted in increased pond 

temperature. During rainfall events, the parking lot runoff contributed to the thermal enhancement 

of the receiving waters and the thermal output was greater than the input. Also, the average 

surface water temperature was 3.6ºC higher than that at the pond bottom. The study illustrated 

that the per-area thermal energy contribution of the parking lot was 30 times higher than that of 

the upstream catchment area consisting of residential and forested land use. 

Sherwood (2001) studied the effectiveness of a naturally vegetated stormwater detention 

basin in reducing the chemical loading and temperature of runoff from a residential development 

located in Monroe County, New York. The facility did not have a significant thermal impact on 

the runoff.  During summer storms, the maximum inflow and outflow runoff temperatures were 

observed to be similar, the mean outflow temperature being 0.5
○
C (0.9

○
F) higher than the mean 

inflow temperature. 

2.4.2 Runoff Temperature Mitigation of Bioretention Facilities 

Recently, a thermal impact study was conducted on six BMPs located in trout sensitive 

regions in Western North Carolina (Jones et al. 2007). Four bioretention facilities, one wetland 

and a wetpond were monitored for inflow and outflow temperatures. The BMPs received 

stormwater runoff from asphalt parking lots with or without any shading by trees or vegetation. 

During the summer months, the mean effluent runoff temperature was significantly higher than 

the mean influent temperature in both the wetland and wetpond. The water temperature remained 

above the 21
○
C threshold in the deeper waters in the wetpond throughout the period. The outflow 

from the wetpond was warmer than that from the wetland (p<0.05). Unlike the wetland and 

wetpond, the bioretention facilities cooled the inflow runoff, although not below the 21
○
C 
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threshold. Infiltration of runoff through the bioretention area aided in the loss of heat to the 

surrounding soil. Further, the study found that runoff conveyed through a buried metal pipe 

exhibited a temperature reduction of up to 6
○
C. 

2.4.3 Thermal Impact of Other BMPs 

Porous pavement has been observed to provide some thermal mitigation (USEPA 2000). 

Temperature mitigation in rock cribs has been studied in Dane County, Wisconsin (Roa-Espinosa 

et al. 2003). The field data indicated that the rock crib (volume 255 m
3
) filled to capacity aided in 

effective mitigation of the runoff temperature until the initial volume of the crib was completely 

replaced by the runoff. The rock crib did not reduce inflow temperature after the volume was 

replaced. 

2.4.4 Underground Stormwater Storage Facilities 

An underground storage and slow release facility is another versatile stormwater best 

management practice. In ultra-urban settings, where surface space is a constraint, underground 

detention systems provide the best alternative to surface detention/retention ponds (Roberts 1997). 

These systems are mainly designed to address the quantitative aspect of stormwater runoff by 

attenuating peak flows. The outflow from underground storage facilities is controlled by orifice 

and/or weir combinations. However, the ability of these facilities to reduce runoff temperature 

has not been investigated.  

2.4.5 Summary of Performance of Various BMPs in Temperature Mitigation 

Wetponds and wetlands have been found to serve as a source of thermal pollution in most 

of the studies. The large surface area of wetponds exposed to direct solar radiation and lack of 

shading result in increase in water temperature. Shading by vegetation and riparian buffers can 

help reduce temperature to some extent, but the outflow temperature might still be harmful to the 

receiving waters (Galli 1990; Van Buren et al. 2000a). Bioretention facilities and grass swales 

have the potential to reduce runoff temperature. With regards to design considerations, Jones et al. 

(2007) pointed out that bioretention facilities with inadequate depth and not designed to capture 
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the first flush may cause additional heating of the runoff. In general, stormwater BMPs promoting 

infiltration and providing sufficient shading to detained runoff can mitigate runoff temperature 

(Kieser et al. 2003). The performance of BMPs such as parallel pipe and baseflow diversion 

systems, multiple-port release wet ponds, sand and peat filters, and conveyance systems in 

mitigating temperature are yet to be evaluated (Galli 1990). No research study has reported on 

potential thermal mitigation in underground storage facilities. 

2.5 Thermal Impact Study of Underground Stormwater Storage BMP 

Underground storage systems have not been monitored for stormwater runoff temperature 

mitigation. Since these BMPs have been designed as slow release facilities, the runoff is stored in 

the underground pipes for some period. During this detention period, the runoff can lose some 

heat by various heat transfer mechanisms. Hence, the BMP might be capable of reducing the 

temperature of urban storm runoff.   

2.5.1 Heat Transfer Mechanism in Underground Storage Facilities 

During summer storms, the runoff from highway and other impervious surface is 

typically heated due to the convective transfer of heat from the hot impervious surface.  The 

heated runoff flows into the underground pipes, where the ambient temperature is cooler than the 

high air temperature outside, specifically in summer. In case the underground storage pipes have 

some stored volume of water between storms, its temperature is expected to be same as the 

ambient underground temperature. The pipe buried underground is also expected to be at the 

surrounding soil temperature.  

The runoff flowing into the underground system can lose heat by three main mechanisms. 

Convective heat transfer in fluids is comprised of two mechanisms: diffusion (by random 

molecular motion) and advection (by bulk motion) (Incorpera and DeWitt 1990). As the heated 

runoff from highway flows into the storage system, it comes into contact with the pipe, 

surrounding air and already-stored runoff, if any, all at a lower temperature. If any water is stored 
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in the pipe, the warmer inflow runoff mixes with the cooler stored water resulting in buffering of 

the temperature.  

A temperature gradient exists between the pipe wall and the inflow runoff. As runoff is 

conveyed through the pipe, convective heat transfer will occur between the flowing water and the 

pipe surface. The convective heat flux q”, is proportional to the temperature difference between 

the surface (Tp) and the fluid (Tw) and is of the form: 

)(" wp TThq −=      (2-1) 

The proportionality constant h, called the convective heat transfer coefficient, is a function of the 

nature of the flow motion and the thermal properties of the material (Incorpera and DeWitt 1990). 

This suggests that the thermal conductivity of the pipe material will control the rate of heat 

transfer between the flowing runoff and the pipe; the higher the conductivity, the greater the heat 

transfer and hence more reduction in the runoff temperature. The runoff will be cooled by the 

surrounding air as well. Some heat might be conducted through the pipe to the surrounding soil.  

The detention time of runoff in the pipes will have an influence on the total heat transfer. 

Longer retention time will allow for further cooling of runoff. However, the retention time of 

runoff in the system depends on the volume received from the storm event. As more runoff flows 

in, the stored water flows out, and this may limit the net heat loss. The temperature of inflow 

runoff varies depending on the season. Hence a seasonal variation in temperature reduction in the 

BMP is expected. 

2.6 Modeling of Thermal Mitigation in BMPs 

Thermal enrichment of runoff passing over heated asphalt pavement is well established and 

has been modeled (Xie and James 1994; Van Buren et al. 2000b; Roa-Espinosa et al. 2003; Herb 

et al. 2006). Regression models for predicting stream temperatures as a function of watershed 

characteristics, land use, solar inputs, and inflows from upstream channel and/or runoff from a 

stormwater control also have been developed (Huebner and Soutter 1994; Weatherbe 1995; 
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Schroeter et al. 1996; LeBlanc et al. 1997; Wehrly et al. 1998). The Thermal Urban Runoff 

Model (TURM) was developed by the Dane County Land Conservation Department to predict the 

impact of urban development on stream temperature and tested successfully in the Token Creek 

watershed in Dane County, Wisconsin (Roa-Espinosa et al. 2003). 

Thermal impact of best management practices have been also been modeled. Van Buren et 

al. (2000a) modeled an on-stream stormwater management pond in Kingston, Ontario by using a 

thermal energy balance approach. Assuming that the pond is completely mixed, the average pond 

temperature was estimated as a function of the thermal energy stored in the pond. A routine in the 

TURM model accounts for the gain or loss of heat from the passage of water through swales, 

detention basins, and rock cribs. TURM predicted that cooling of the runoff passing through a 

rock crib and grass swales (Roa-Espinosa et al. 2003). Herb et al. (2007), at the St. Anthony Falls 

Laboratory (Minnesota), developed hydro-thermal models to simulate temperature mitigation of 

surface runoff in wetland basins. The simulations predicted the wetland complex to reduce runoff 

temperature by 2.6 °C, on average for Minnesota climate conditions, compared to unmitigated 

runoff from an asphalt parking lot. 

To summarize, many models have been developed to predict runoff and stream 

temperatures. Thermal impact of BMPs has been modeled for limited types of BMPs. Since heat 

transfer models will measure the performance of the BMP in reducing runoff temperature, 

modeling the thermal impact of a BMP will yield useful information regarding the employment of 

BMPs for mitigating temperature of urban stormwater runoff for various imperviousness 

conditions. 
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Chapter 3 

METHODOLOGY 

 

3.1 Site Description 

Several underground stormwater management facilities in Maryland were investigated to 

determine their suitability for inclusion in this study. The sites were evaluated based on the size 

of drainage area, percentage imperviousness, asphalt vis-à-vis concrete pavement, number of 

inflow points, accessibility of inlet and outlet points, and safety at the site. Two BMPs, BMP 

3007 and BMP 3008, both located along I-83 northbound, north of Seminary Avenue in 

Baltimore County (Figures 3-1 to 3-4), were chosen for the study. Both the BMPs are located 

within the Maryland State Highway Authority right-of-way. A pavement sensor is located in I-

695 at I-83 N, at a distance of approximately 3.22 km (2 miles) from the two BMPs. The sensor 

measurements include rainfall intensity, air temperature, pavement temperature and other weather 

parameters such as relative humidity, dew point, and wind speed and direction. 

BMP 3007 and BMP 3008 were both modified to have two inflow points by blocking one 

inlet in each facility and redirecting the runoff into their respective downstream inlets. The 

drainage area to BMP 3007 is 1.07 ha (2.64 acres), of which 66% is impervious. BMP 3008 has a 

contributing drainage area of 1.23 ha (3.04 acres) and impervious fraction of 43%. The 

characteristics of the drainage areas of the two BMPs, including SCS curve number and time of 

concentration (Tc), are summarized in Table 3-1.  

In each BMP, the underground storage system consists of six HDPE pipes, each 122 cm 

(48 in.) in diameter. The outflow is controlled by a 3.8 cm (1.5 in.) orifice. The total length of 

pipes in BMP 3007 and BMP 3008 are 166 m (544 ft) and 188 m (616 ft) respectively, their 

corresponding storage capacities being 210 m
3
 (7419 ft

3
) and 236 m

3
 (8316 ft

3
).  
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Figure 3-1. Map location of I-83 study sites BMP 3007 and BMP 3008 

(Source: <www.maps.google.com>) 
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Figure 3-2. Study site BMP 3007 behind the noise wall along I-83 NB 

 

 

Figure 3-3. Study site BMP 3008 along I-83 NB 
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Figure 3-5. Inlet I-43 of BMP 3008 along I-83 NB 

 

Table 3-1. Drainage characteristics of BMP 3007 and BMP 3008 

 BMP 
Structure 

Number (or Inlet) 

Drainage 

Area (ha) 

Curve 

Number 
Tc (hr) 

Impervious 

Area (ha) 

% 

Impervious 

I 3-5 0.12 98 0.10 0.12 100% 

I 3-4 blocked 

MH 3-3 0.95 62 0.10 0.58 61% 
3007 

Total 1.07 66   0.70 66% 

I 4-3 0.05 98 0.10 0.05 100% 

I 4-1 blocked 

MH 4-3 1.18 81 0.38 0.48 41% 
3008 

Total 1.23 82   0.53 43% 

 

The study sites are located within the Patapsco river watershed (MD stream designation 

02-13-09). The outlet of BMP 03007 is approximately 900 ft upstream of a tributary of Roland 

Run. The two BMPs discharge into this tributary of Roland Run, which ultimately drains into the 

Patapsco River.  
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3.2 Monitoring and Sampling 

Monitoring equipment was installed in BMPs 3007 and 3008 in September 2007 to 

continuously measure and record flow depth, conductivity and temperature of stormwater runoff 

at the inflow and outlet points, air temperature, and rainfall depth. The sensors are manufactured 

by Global Water Instrumentation, Inc. (Gold River, CA). A Global Water FL16 flow logger was 

installed to record the stormwater runoff flow rate and temperature at the BMP inflow and 

outflow pipes. The probe has an operating temperature range of -40 to +85
○
C. The sensor works 

in depths as low as 1.9 cm (3/4 in.) and can be programmed to suit the pipe characteristics. 

Conductivity measurements were made using a conductivity sensor (WQ301) working over the 

range of 0-5000 microsiemens/cm. The sensors were placed in the inlet pipes (Figure 3-6) and 

their loggers in a weather-proof box (Figures 3-7). A 15.2 cm (6 in.) tipping bucket rain gauge 

(RG 200) was installed to record the rainfall at the site at two minute intervals.  The temperature 

sensor (WE700), capable of operating in the temperature range of -50 to +50
○
C, was installed to 

record air temperature. The air temperature sensor was mounted on a post and housed in a 

ventilated solar shield having high reflectiveness, low heat retention and low thermal conductivity 

in order to protect it from direct sunlight effects (Figure 3-8). 

The conductivity sensor, air temperature sensor and rain gauge were connected to 

individual data loggers (GL500-2-1 USB model) capable of recording over 81,000 readings. The 

data logger can be programmed to sample at the desired interval from 1 second to multiple years. 

The instruments are battery powered and operate on a Windows-based software interface. The 

data stored in the logger’s memory were retrieved by downloading as a file into a laptop. 
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Figure 3-6. Flow and conductivity sensors installed in the inlet pipe at MH 4-3 of BMP 3008 

 

 

Figure 3-7. Set up of instruments at the site 
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Figure 3-8. Rain gauge and air temperature sensor installed at the site  

 

Each probe was programmed to continuously record data at two-minute intervals. It was 

proposed to collect data for as many rainfall events as possible, placing importance on data 

obtained during late spring, summer, and early fall, when high temperatures are most critical. 

3.3 Data Collection 

Runoff flow, temperature, and conductivity were monitored from the end of September 

2007 through September 2008. Several initial installation problems occurred at the site. Rainfall 

data for the months September to November 2007 were lost due to calibration error in the rain 

gauge. The probes at one inlet in each of the two BMPs did not record any flow during the storm 

events until December 2007. As a measure to capture most of the runoff from the highway, it was 

proposed to install weirs in the inlet pipes to increase the flow depth. The installation of weirs and 

replacement of non-functional units was completed in February 2008. Flow and temperature data 

were lost at the outlet of BMP 3008 due to malfunctioning of the flow probe from March 2008. 

Hence, BMP 3008 data were not considered for analysis. In total, 70 events were recorded since 

Rain gauge Air Temperature 

sensor 
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equipment installation. However, due to the initial problems encountered at the site, it was 

necessary to exclude data collected for BMP 3007 from September 2007 until the reinstallation in 

February 2008. 

3.4 Data Quality Assurance and Quality Check 

3.4.1 Rainfall Data 

As a measure of quality check, rainfall depths recorded at the I-83 site were compared to 

the recordings at a weather station in Timonium, Maryland. The weather station, located at a 

distance of approximately 6 miles from the study site, measures rainfall rate, air temperature, and 

other weather parameters such as humidity, dew point, pressure, and wind speed at 5-minute 

increments. The data recorded at the weather station are accessible through the web 

(<http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KMDTIMON1&mont

h=10&day=19&year=2007>). The total rainfall depth recordings at the site and the weather 

station were found to be in good agreement for most of the events. 

3.4.2 Flow Data 

The inflows observed at the two inlets of BMP 3007 were found to be unrealistic. This 

was because the inflow into the system was much higher compared to the observed outflow, 

resulting in volume imbalance. Additionally, the inflows exceeded those reasonable for rainfall 

depth and drainage area. It is essential to achieve flow balance in the system to perform data 

analysis of any kind. It was thus necessary to simulate the runoff into the BMP. 

3.4.2.1 Simulation of runoff 

TR-55 was employed to simulate the runoff from the area draining each of the inlets 

based on the rainfall depth recorded at the study site (USDA 1986). The method employed for 

runoff simulation has been outlined in Appendix A. Simulations using weighted curve number, 

computed based on cover type of the drainage area (Table 3-1), produced small or no runoff for 

the range of rainfall recorded at the site. However, the probes installed in the inlet pipes had 

responded to these storm events. This suggested that a modification was required in the approach 
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adopted to simulate runoff. It is reasonable to assume that runoff is generated from the 

impervious area only and the rainfall occurring over the grassy/pervious area is completely 

infiltrated for most common events. Based on this assumption, runoff to an inlet was computed 

using the fraction of impervious area as contributing drainage area and the corresponding curve 

number of 98 as input. Simulations were performed for a number of storm events and the 

simulated runoffs compared to the observed inflows. 

The simulated flows matched the trend of the observed flow but were of significantly 

lower magnitudes. The simulated runoff and observed flow at the two inlets of BMP 3007 during 

a rainfall event on April 28, 2008 is shown for comparison in Figures 3-9a and 3-9b. The 

simulated inflows and observed outflow at BMP 3007 during the same event is shown in Figure 

3-9c. The simulated inflows and observed outflow yielded flow balance in the storage system for 

most of the storm events. This suggested that the approach adopted for simulating runoff was 

acceptable. Inflows to each inlet of BMP 3007 were simulated using rainfall data for all the storm 

events and utilized for all data analyses. 
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Figure 3-9a. Plot of simulated and observed inflow at inlet 1 of BMP 3007 on April 28, 2008, 

storm event 
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Figure 3-9b. Plot of simulated and observed inflow at inlet 2 of BMP 3007 on April 28, 2008, 

storm event 
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Figure 3-9c. Plot of simulated inflows and observed outflow at BMP 3007 on April 28, 2008, 

storm event 

 

3.5 Data Analyses 

Complete data sets for flow, temperature, and rainfall were available beginning February 

2008. In total, 56 storm events occurred between February 22 and September 30, 2008, and were 

considered for data analyses. 

3.5.1 Event Mean Temperature 

  For each storm event, the total thermal energy (E) present is calculated as: 
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     ∫=
dT

pwdtCQTE
0

ρ      (3-1) 

 

where Q is the measured stormwater flow rate, T is the water temperature, ρ is the density of 

water and Cpw is the specific heat capacity of water. Td is the duration of storm event. Substituting 

the flow and temperature observed at the inlets and outlet, the total thermal energy in and out can 

be obtained respectively. 

 The event mean temperature (EMT) is defined and calculated similarly as: 

    EMT

TQdt

Qdt

T

T

d

d
=
∫

∫

0

0

    (3-2) 

The EMT represents the temperature that would result if the entire storm event discharge were 

collected in one container. Since EMT weights discrete temperature measurements with flow 

volumes, EMT aids in the comparison of temperatures between inflow and outflow and among 

different events. By combining the events on a monthly (or seasonal) basis, the flow-weighted 

mean monthly (or seasonal) temperature can be computed for each month (or season). 

Additionally, peak input and output temperatures can be evaluated for each storm. The event 

mean temperature and peak temperature at the inlet and outlet are metrics employed to evaluate 

the reduction in temperature achieved in the underground system. 

3.5.2 Exceedence of Threshold Temperature 

 In the present study, two temperature thresholds were considered, namely optimal water 

temperature for brook trout of 14
o
C (57.2

○
F) and the Maryland State Class III temperature 

standard of 20
○
C (68

○
F). Volume of water and time exceeding these two temperature thresholds 

at the inlet and outlet are evaluated for each storm. This demonstrates the possibility of the trout 

being subjected to stress if the runoff from highway and outflow from BMP were to be directly 
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introduced into the stream. Also, an understanding of the performance of the system in abating 

temperature can be achieved. 

3.6 Heat Transfer Model 

3.6.1 Model Formulation 

The impact of the underground storage BMP in mitigating stormwater runoff temperature 

can be estimated using a heat transfer model. The underground storage system consists of parallel 

pipes of diameter 122 cm (48 in.). For the purpose of modeling, the pipes are considered as a 

single storage pipe of 122 cm, and of length equal to the combined lengths of all pipes in the 

system. This pipe will be modeled as a set of completely mixed tank reactors (CSTR) in series. In 

this design, it is assumed that the water flowing in is instantaneously and completely mixed with 

the stored water and hence the temperature of water is uniform over the volume in a given CSTR. 

For each CSTR, knowing the initial volume (V) of water stored, the equation below can 

be solved for θ (Figure 3-9): 

                                         ( )LR
V θθ sin

2

2

−=     (3-3) 

The flow depth in the storage pipe can be calculated using: 








 −=
2

cos1
θ

Rh     (3-4) 

The outflow is calculated based on the flow depth assuming that it is controlled by a weir or 

orifice using: 
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RgCghCQ ddo             (3-5) 

or for orifice               






 −==
2

cos122
θ

gRaCghaCQ ddo              (3-6)      

where R is the radius of the storage pipe (m), θ is the angle subtended by the water surface at the 

center of the pipe (radians), L is the length of one CSTR (m), h is the flow depth, which is the 
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head over the weir or upstream head above the center of the orifice (m), Cd is the coefficient of 

discharge, a is the area of the orifice (m
2
), d is the diameter of  the orifice (m), and g  is the 

acceleration due to gravity (ms
-2
). 

The storage in the pipe is calculated by solving the flow balance differential equation: 

021 QQQ
dt

dV
inin −+=     (3-7) 

where Qin1 and Qin2 are the two inflow rates (m
3
s
-1
), and Q0 is the computed outflow rate  

(m
3
s
-1
). 

In the summer, the runoff flowing into the underground pipe is at a higher temperature 

compared to the water stored in the pipe, if any. Heat is transferred from the inflow water to the 

stored water by convection. As water flows through the pipe, heat will be transferred to the pipe 

walls from the runoff by convection. Some heat transfer might occur to surrounding air in the 

pipe. The heat transfer phenomenon occurring in the pipe is shown by a simple diagram in Figure 

3-10. For simplicity, it is assumed that conduction of heat through the pipe wall and to the 

surrounding soil is negligible. 

 

         

Figure 3-10. Schematic diagram of heat transfer in the storage pipe and air 

 

Taking into consideration these heat transfer terms, the heat balance for the system is 

given as:  

To = Temperature of stored water 

Ta = Temperature of air 

Tp = Temperature of pipe 

 

Initial condition: To = Ta = Tp 
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              Heat energy stored = Heat in – Heat out – Heat loss                              (3-8) 

The heat loss term includes the heat transferred to the pipe wall and the surrounding air. Although, 

the heat loss to the air is likely to be very small due to the poor thermal conductivity of air, the 

water-air heat transfer term is taken into consideration. 

The volume of water stored in the pipe is the control volume for performing the heat 

balance. The change in heat energy in the system per unit time can be expressed in the form of a 

differential equation as: 

( ) ( )
poppaoaaopwwoinpwwininpwwin

o
pwww TTAUTTAUTCQTCQTCQ

dt

dT
CV

dt

dE
−−−−−+== ρρρρ 2211

 

(3-9) 

where T is the temperature (
○
C), ρw is the density of water (kg m

-3
), Cp is the specific heat 

capacity of water (J kg
-1○
C

-1
), U is the overall heat transfer coefficient (J s

-1
 m

-2
 
○
C

-1
), A is the 

surface area in contact (m
2
), and M is the mass (kg). Subscripts ‘a’, ‘p’ and ‘w’ denote air, pipe 

and water, respectively. 

The change in air and pipe temperature can be obtained by a heat balance on the 

surrounding air and that on the pipe:  

( )aoaa
a

paa TTAU
dt

dT
CM −=     (3-10) 

)( popp
a

ppp TTAU
dt

dT
CM −=    (3-11) 

where, 

                                               
2

sin2
θ

RLAa =      (3-12) 

                                               LRAp θ=      (3-13) 

                                               LRM aa 




 −
−Π=

2

sin2 θθ
ρ    (3-14) 
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                                               kAM ppp ρ=      (3-15) 

Here, k is the thickness of the storage pipe (m). By solving the differential equations (3-9, 3-10 

and 3-11) simultaneously by a numerical approach, the outflow temperature can be obtained 

along with the air and pipe temperature. The constants used in the above equations are listed in 

Table 3-3. 

 

Table 3-3. Constants and parameters of the heat transfer model 

Parameter/Constant Value Units Reference 

Qi  m
3
s
-1
  Data  

Ti  
○
C  

g 9.8 ms
-2
 Gibson (1952) 

ρw 1000 kg m
-3
 Incorpera and DeWitt (1990) 

ρp 950 kg m
-3
 Matweb (Jun 27, 2007) 

ρa 1.247 kg m
-3
 Incorpera and DeWitt (1990) 

Cpw 4186 J kg
-1○
C

-1
 Incorpera and DeWitt (1990) 

Cpp 2200 J kg
-1○
C

-1
 Matweb (Jun 27, 2007) 

Constants 

Cpa 1012 J kg
-1○
C

-1
 Incorpera and DeWitt (1990) 

 

 

3.6.2 Implementation and Programming 

Based on the CSTR-in-series design of the system, the pipe is divided into ‘n’ number of 

CSTRs of equal lengths L. The first reactor in the series receives two inflows, as observed in the 

study sites. The outflow from the first reactor is the input to the second reactor and so on. The 

flow from one reactor to the successive one, except to the last, is assumed to be controlled by a 

weir. The outflow from last reactor is controlled by a 3.8 cm (1.5 in.) orifice, as existing in the 

study sites. A simple schematic of the underground storage system and the model design is shown 

in Figure 3-11. 
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Figure 3-11. Schematic representation of the underground system and the model design 

 

For each reactor, the volume and temperature differential equations, developed in the 

previous section, are solved numerically by the Runge-Kutta method in Matlab. Runoff inflow 

and temperature observed at the site and constants (discharge coefficients, density and thermal 

constants) are the inputs to the model. The model assumes that the stored water (if any), pipe wall 

and air have the same initial temperature, which is specified as an input. In the water balance 

module, the model computes the outflow rate and the storage in the system. In the second module 

of the code, the model predicts the temperature of runoff at the outlet as a function of time. The 

model results can hence be used to quantify the reduction in temperature of runoff. 

3.6.3 Model Evaluation 

Evaluation of the heat-transfer model is essential to determine the prediction accuracy of 

the model. The observed and model-predicted outflow temperature should be compared for a 

number of events to determine whether the model underpredicts or overpredicts the temperature. 

The bias and relative bias in the model predictions can yield the level of prediction accuracy of 

the model. 

Inlet pipe 2 

Outlet 

Inlet pipe 1 

 
Flow probe 

Conductivity probe 

6# 48” Underground storage pipe 

Inflow 1 & 2 Outflow  

n CSTRs-in-series, each of length L 
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Chapter 4 

 RESULTS AND DISCUSSION 

 

4.1 Field Study 

4.1.1 Event Characterization 

Measurements for 56 storms included rainfall depths that ranged from 0.15 to 8.64 cm 

(0.06 to 3.4 in.) and were recorded at the study site from February through September 2008. The 

total rainfall depth and duration of each storm event are given in Table 4-1. The highest rainfall 

depth of 8.64 cm (3.4 in.) was recorded on September 27, 2008. The duration of this event was 

nearly 18 hours. The majority of the storm events ranged from 0.25 to 1.52 cm (0.1 to 0.6 in.) (see 

Table 4-1). Totally, nine events had measured rainfall depths greater than 2.54 cm (1 in.) during 

the monitoring period. The summer storms were characterized by intense short-duration rainfall.  

The volume-duration-frequency characteristics of the storm events included in the analyses 

were compared to the distribution of rainfall in 15 stations in Maryland (Kreeb and McCuen, 

2003). The purpose of the comparison was to ensure that the rainfall data chosen for data analyses 

were representative of those expected in the state of Maryland. The Kreeb and McCuen study, 

conducted for 15 stations in Maryland, was based on 10352 storms. Table 4-2 shows the 

frequency of storms events of given volume and duration at the Timonium study site. The 

statistics for the 15 stations in Maryland are also included in Table 4-2 for comparison. 

On comparing the two frequency distributions, the number of storms measuring rainfall 

depths between 0.025 and 0.254 cm may be considered to be under-represented in the data 

collected. About 16% of the storm events fall in the rainfall depth range 0.025 to 0.254 cm at 

Timonium compared to nearly 33% in the historical data. The frequency of storms that measured 

rainfall depths between 0.255 and 0.635 cm is higher at Timonium in comparison to that in the 15 

stations in Maryland. Frequency of storms that measured rainfall depths in the ranges of 0.636 to 
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1.27 cm, 1.271 to 2.54 cm, and that greater than 2.54 cm at Timonium are similar to that of 

historical data. Taking into consideration the smaller sample size and sampling variation involved 

in the present study, it can be concluded that the rainfall data chosen for analysis adequately 

represents Maryland and is unbiased. 

 

Table 4-1. Rainfall data for Timonium site from February until September 2008 

Event Date 

Rainfall 

Depth, 

cm (in.) 

Event 

Duration, 

hr 

Event Date 

Rainfall 

Depth, 

cm (in.) 

Event 

Duration, 

hr 

2/26/2008 0.25 (0.10) 2.60 5/31/2008 1.09 (0.43) 3.77 

2/26/2008 0.25 (0.10) 1.50 6/3/2008 0.15 (0.06)
*
 0.97 

3/4/2008 0.99 (0.39) 3.30 6/4/2008 0.99 (0.39) 2.60 

3/5/2008 0.56 (0.22) 2.13 6/4/2008 0.84 (0.33) 0.97 

3/5/2008 0.13 (0.05) 1.60 6/4/2008 0.10 (0.04)
*
 1.47 

3/7/2008 1.37 (0.54) 9.50 6/10/2008 1.80 (0.71) 2.93 

3/8/2008 0.71 (0.28) 10.17 6/28/2008 0.38 (0.15) 0.47 

3/16/2008 0.66 (0.26) 6.87 6/29/2008 0.18 (0.07)
*
 0.13 

3/18/2008 0.18 (0.07)* 2.90 6/30/2008 0.48 (0.19) 0.17 

3/19/2008 1.42 (0.56) 7.27 7/6/2008 0.48 (0.19) 0.37 

3/20/2008 0.28 (0.11) 1.40 7/9/2008 1.50 (0.59) 0.50 

4/1/2008 0.28 (0.11) 4.53 7/13/2008 3.10 (1.22) 12.20 

4/3/2008 1.47 (0.58) 12.27 7/23/2008 3.66(1.44) 5.10 

4/6/2008 0.58 (0.23) 5.57 7/30/2008 0.99 (0.39) 0.30 

4/11/2008 0.48 (0.19) 0.70 8/2/2008 0.28 (0.11) 1.13 

4/13/2008 0.15 (0.06)* 1.30 8/2/2008 0.56 (0.22) 0.27 

4/20/2008 0.53 (0.21) 0.93 8/13/2008 2.92 (1.15) 2.50 

4/20/2008 4.17 (1.64) 3.53 8/28/2008 0.20 (0.08)
*
 0.37 

4/21/2008 0.76 (0.30) 1.13 8/29/2008 2.01 (0.79) 12.67 

4/26/2008 0.64 (0.25) 4.03 8/30/2008 0.30 (0.12) 0.37 

4/28/2008 3.12 (1.23) 10.17 9/05/2008 0.46 (0.18)
*
 4.07 

5/9/2008 3.12 (1.23) 14.33 9/06/2008 3.81 (1.50) 8.30 

5/10/2008 0.46 (0.18) 5.03 9/12/2008 2.44 (0.96) 10.10 

5/12/2008 4.72 (1.86) 26.63 9/25/2008 0.84 (0.33) 3.87 

5/16/2008 1.19 (0.47) 9.53 9/26/2008 0.56 (0.22) 0.27 

5/18/2008 0.46 (0.18) 4.67 9/26/2008 0.71 (0.28) 8.03 

5/20/2008 0.53 (0.21) 2.73 9/27/2008 8.64 (3.40) 17.90 

5/20/2008 0.56 (0.22) 1.13 9/30/2008 0.71 (0.28) 3.47 

      

• indicates events falling below the rainfall threshold value of 0.25 cm (0.10 in.)  
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Table 4-2. Rainfall data recorded at the I-83 site from February until September 2008 

    Rainfall Depth, cm Total 

  

Event 

Duration 

0.025- 

0.254 

0.255- 

0.635 

0.636- 

1.27 

1.271- 

2.54 2.54 < 

Timonium, 

MD 

15 

Stations, 

MD* 

  1 hr 0.0536 0.1429 0.0357 0.0179 0.0000 0.2500 0.3290 

  2 hr 0.0714 0.0357 0.0179 0.0000 0.0000 0.1250 0.0756 

  3 hr 0.0357 0.0357 0.0179 0.0179 0.0179 0.1250 0.0627 

  4-6 hr 0.0000 0.1071 0.0714 0.0000 0.0357 0.2143 0.1234 

  7-12 hr 0.0000 0.0179 0.0714 0.0536 0.0357 0.1786 0.1818 

  13-24 hr 0.0000 0.0000 0.0000 0.0357 0.0536 0.0893 0.1616 

  24< hr 0.0000 0.0000 0.0000 0.0000 0.0179 0.0179 0.0659 

                  

Total 

Timonium, 

MD 0.1607 0.3393 0.2143 0.1250 0.1607 1.0000 1.0000 

                  

  

15 Stations, 

MD* 0.3288 0.1461 0.2131 0.1747 0.1373 1.0000   

* Kreeb and McCuen (2003) 

 

BMP 3007 received very small volumes of inflow during storm events measuring rainfall 

depths less than 0.25 cm (0.10 in.). However, the volumes were not large enough to produce 

measurable outflows from the underground systems. Hence, a threshold rainfall depth value of 

0.25 cm was fixed and only rainfall events equal to or greater than the threshold value were 

considered for the analyses. During large storm events, outflow from the storage system 

continued for long periods, up to two days after the event. Smaller storm events of rainfall depth 

less than 0.25 cm occasionally occurred during these periods. Hence, events that had rainfall 

depths less than the threshold depth and preceeded by large storm events were not eliminated. A 

total of seven events were eliminated from the record, thereby reducing the storm sample size 

from 56 to 49 (Table 4-3). Runoff flows to the inlets were computed for each of the selected 

storm events by the TR-55 method (see Appendix A). 

 

 



39 

Table 4-3. Total number and rainfall depths of events recorded and selected for analysis in 

each month at Timonium  

 

Month Events  Events 

  
Total 

Total Rainfall 

Depth , cm 

Above 

Threshold* 

Total Rainfall 

Depth, cm 

Feb-08 2 0.51 2 0.51 

Mar-08 9 6.30 8 6.12 

Apr-08 10 12.19 9 12.04 

May-08 8 12.14 8 12.14 

Jun-08 8 4.93 5 4.50 

Jul-08 5 9.86 5 9.86 

Aug-08 6 6.25 5 5.97 

Sep-08 8 17.73 7 17.27 

     

Total 56 69.90 49 68.40 

       *includes storms below threshold but preceded by large storm events 

 

4.1.2 General Observations 

The general characteristics of flow, temperature, and conductivity during all of the storm 

events are discussed in this section. A storm event is accompanied by a decrease in the air 

temperature prior to the start of the event. After the rain started, runoff took about 6 to 10 minutes 

(inlet 2 and inlet 1) from the highway to flow into the underground facility. Since the pavement is 

warm at the beginning of the storm, an initial spike was observed in the temperature of the inflow. 

The inflow temperature gradually decreased as the storm progressed due to the cooling of the 

pavement. The average detention time of the inflow in the storage facility was between 15 and 20 

minutes. The outflow temperature was more uniform compared to the inflow temperature and was 

observed to follow the trend of the inflow temperature until the inflow ceased.  

The conductivity measurements support the start and stop of the inflow to the system. An 

initial spike was observed in inflow conductivity due to the first-flush phenomenon. The lag time 

between inflow and outflow conductivity peak was observed to be similar to that of temperature. 

The level of conductivity in the stormwater runoff was found to have seasonal variations. High 
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levels of conductivity in the inflow runoff were measured during winter due to the use of salts to 

melt ice and snow on the highway. The concentration of salts in the runoff decreased in spring 

and a further decrease was observed in summer. 

Factors such as impervious cover and intensity, duration, time of the day, and season of 

occurrence of the rainfall event have an effect on the inflow temperatures. The fraction of 

impervious area in the drainage area of an inlet influenced the inflow temperatures at that inlet. 

The inflow temperatures recorded at the inlet drained by a larger fraction of impervious area were 

at least 1
○
C higher than at the inlet having smaller impervious fraction for most of the events 

during summer. During large storm events, the BMP received inflow at a higher rate and the 

runoff was quickly conveyed through the BMP. The shorter detention time in the BMP had some 

impact on the reduction observed in the runoff temperature. The time of the day determined the 

air temperature and the pavement temperature and hence influenced the runoff temperature. 

During cooler months, when the air temperature was low, the runoff exhibited low temperature. 

In summer, most of the events occurred in hot afternoons and produced warm runoff. 

The general observations are illustrated for the June 30, 2008, storm (Figure 4-1). The total 

rainfall depth recorded during this event was 0.48 cm (0.19 in.). The total duration of the event 

was 10 minutes. The air temperature was around 34
○
C one hour prior to the rainfall event and 

dropped by 8
○
C at the start of the event. BMP 3007 received inflow six minutes after the start of 

rain. The highest inflow temperature of 21.7
○
C (71

○
F) was recorded during this event. The inflow 

temperature gradually reduced as the event progressed. Outflow from the system was observed 

six minutes after the runoff inflow began. The time lag between peak inflow and outflow 

temperatures was around ten minutes. The outflow temperature remained lower than the two 

inflow temperatures throughout the event and then gradually approached the ambient 

underground temperature. High inflow runoff conductivity was measured when the inflow began 

and then gradually decreased to almost zero conductivity. This is because the salts on the 

highway are washed-off during the first few minutes of the storm. 
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Figure 4-1. Plot of flow, temperature and conductivity of BMP 3007 on June 30, 2008 

storm (Flow, temperature, and conductivity measurements are plotted at two-

minute intervals and rainfall is plotted at six-minute intervals) 
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4.1.3 Analyses and Characterization of Runoff Temperatures 

During the monitoring period, the inflow and outflow runoff temperatures exhibited 

seasonal variation. The inflow temperatures ranged between 3.0 and 11.0
○
C (38 and 52

○
F) during 

the months of February and March 2008. The outflow temperatures showed small or no 

difference from the inflow temperatures during these months. The inflow temperatures increased 

in the following months, and very high inflow temperatures were observed in June and July 2008. 

Some reduction in the temperatures was observed during the warmer periods. July was the hottest 

month and the runoff temperatures gradually decreased in the following months. 

4.1.3.1 Maximum, Minimum and Mean Monthly Temperatures 

The maximum, minimum, and flow-weighted mean inflow and outflow temperatures were 

computed for each storm (Appendix B). As mentioned earlier, two temperature thresholds, 

namely optimal water temperature for brook trout of 14
o
C (57.2

○
F) and the Maryland State Class 

III temperature standard of 20
○
C (68

○
F) for natural trout waters, were considered for evaluating 

the performance of the BMP. On some occasions, the upper limit of the optimum temperature 

range for brown trout, 17
○
C (62.6

○
F), was exceeded. Hence, the 17

○
C limit was considered as an 

additional check to evaluate the BMP. 

In order to depict the overall temperature reduction achieved in the underground storage 

BMP, the storm events were combined on a monthly basis. The computed monthly temperatures 

along with the monthly rainfall depths are summarized in Table 4-4a. ∆T was computed as the 

difference between the flow-weighted mean monthly outflow and inflow temperatures (Table 4-

4b). This value is a measure of the temperature reduction achieved in a particular month. Hence, a 

negative ∆T would suggest that the underground storage BMP aids in the reduction of the runoff 

temperature. However, the effectiveness of the BMP is based on the temperature reduction 

meeting defined goals. 
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Figure 4-2 shows the flow-weighted mean monthly inflow and outflow temperatures 

computed for the monitoring period. The optimum temperature ranges for brook trout and brown 

trout, and the MD Class III temperature level are shown in the figure. In Figure 4-2, a clear trend 

of increasing monthly mean temperatures is evident from February through July and then a 

decrease from August to September. While there was little or no difference between the mean 

inflow and outflow temperatures for the months February to May, reductions exhibited in June 

and July were 0.5
○
C and 1.4

○
C, respectively. The temperature difference again became small in 

August and September. 
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Figure 4-2. Flow-weighted mean monthly temperatures for BMP 3007 

 

The mean temperature of outflow runoff (see Table 4-4a) was slightly higher than that of 

inflow during February and March, which resulted in a positive ∆T. The ∆T for April and May 
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were small and negative (Table 4-4b). It can be hypothesized that during colder months, the 

outside air temperature is lower than the ambient underground temperature. Hence, little or no 

reduction in temperature occurs. It was observed that the air temperature was approximately 

7.2
○
C (45

○
F) or less and the ambient underground temperature approximately 4.4

○
C (40

○
F) in 

February and early March. The inflow temperatures ranged between 3.0 and 7.0
○
C (37 and 45

○
F). 

In most of the events, the outflow temperature was at least higher 0.3
○
C greater than the inflow 

temperature during the major part of the storm. Thus, the computed mean outflow EMT was 

greater than that of inflow. Since the ∆T values for these months are small, they can be 

considered to be insignificant. Also, the observed inflow and outflow temperatures fall within the 

optimum temperature range for survival of trout. This suggests that although the BMP is not 

effective in reducing the temperature during colder months, the outflow temperatures are not 

detrimental to trout. 

The inflow and outflow temperatures that exceeded the two threshold temperatures were 

recorded during the 2008 summer (Table 4-4). In June, the flow-weighted mean temperatures at 

the inlet and outlet were 16.1
○
C (60.9

○
F) and 15.5

○
C (59.9

○
F), respectively. Both the mean inflow 

and outflow temperatures exceeded the optimum temperature of 14
○
C for brook trout but were 

lower than the Maryland Class III threshold (Figure 4-2).  

A further increase in inflow temperature levels was observed in July. During this month, 

the inflow temperature ranged between 17
○
C and 25

○
C (63

○
F and 77

○
F). The high temperature 

range occurred because the majority of the storm events happened in late afternoon when the air 

and pavement temperatures were very high. The highest inflow temperature of 24.1
○
C (75.5

○
F) 

was observed in the July 13, 2008, storm. This was the only instance when the runoff temperature 

exceeded the Maryland Class IV standard of 23.8
○
C (75

○
F) for recreational trout waters. The 

flow-weighted mean inflow and outflow temperatures were computed as 21.7
○
C (71

○
F) and 

19.7
○
C (67.5

○
F), respectively, for this month. However, the mean outflow temperature surpassed 
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the 14
○
C optimum temperature threshold and is only 0.3

○
C less than the Maryland Class III 

threshold (Figure 4-2). 

The maximum and mean temperatures observed in August and September were lower than 

those of July. During these two months, the inflow temperature ranged between 14
○
C and 21

○
C 

(57.2
○
F and 70

○
F). The maximum inflow and outflow temperatures observed during these months 

were greater than the two threshold temperatures. The reduction in runoff temperatures observed 

during these months was small. As seen in Table 4-4b, the flow-weighted mean outflow 

temperature was only 0.2
○
C less than the mean inflow temperature in August and about 0.6

○
C 

lower in September. Although the mean inflow and outflow temperatures were at least 1.6
○
C 

lower than the MD Class III threshold, the temperatures were higher than the 14
○
C threshold in 

both months.  

4.1.3.2 Time of Exposure and Volume Analysis 

The exposure time to the inflow and outflow temperatures and the respective exposure 

volumes were computed for each storm event. For the exposure time analysis, the temperature 

data (2-minute intervals) at the two inlets were ranked from the highest to the lowest and plotted. 

For the volume analysis, the two inflow temperatures were combined and ranked from the highest 

to the lowest and their corresponding cumulative volumes were calculated based on flows 

determined over 2-minute intervals. For ease of representation, the events were combined on a 

monthly-basis and the time and volume of inflow and outflow water exceeding the two 

temperature thresholds are shown in the plots. Since summer is the critical period, more 

importance was placed on summer rainfall events. 

Firstly, the results of the analyses performed on storms recorded in a colder month are 

presented. Eight storm events occurred in March, with rainfall durations ranging between 1.4 and 

10.2 hours. On combining the flows from these events, BMP 3007 received inflow cumulatively 

for nearly 50 hours during the month. Figure 4-3a is a time-based plot of the inflow and outflow 

temperatures.  
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(b) 

Figure 4-3. a. Time-based and b. Volume-based plots of inflow and outflow temperatures 

of BMP 3007 in March, 2008 (All data points are plotted at 2-minute intervals) 
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As can be seen in Figure 4-3a, the outflow temperature was at least 0.5
o
C higher than the 

inflow temperature during most of the month. While the maximum outflow temperature was 

10.7
o
C (51.3

○
F), the maximum inflow temperature was 10.1

o
C (50.2

○
F). The combined volume of 

flow to inlet 1 and inlet 2 from the eight storms was 275 m
3
. Of this, almost 90 m

3
 outflow 

volume was nearly 0.6
o
C higher than the inflow volume for the temperature range 10.7 to 9

o
C 

(Figure 4-3b). The inflow temperature was cooled almost 2
o
C in the lower temperature ranges.

 

However, it is evident that both inflow and outflow temperatures lie well within the optimum 

temperature ranges of the trout species. Although the reduction in temperature is not considerable, 

if either the inflow or the outflow volume were to be introduced to the stream, no stress is 

expected to occur. 

The inflow temperature range increased in summer 2008 and high inflow temperatures 

were recorded during this period. The monthly flow and temperature for the month of June 2008 

are shown in Figure 4-4. BMP 3007 received runoff for nearly ten hours from the five storms that 

occurred during this month. About 14 m
3 
of the total runoff volume measured temperature greater 

than 20
o
C (68

o
F) for a period of nearly 45 minutes. The storage system cooled this volume by at 

least 2
o
C. Runoff measuring temperature in the range 16 to 14

o
C was cooled by less than one 

degree. The inflow and outflow volumes were at the same temperature for most of the period in 

this month. 

July was a hot month, with air temperatures measuring close to 32.2
o
C (90

o
F) before 

most events. Five storm events occurred during this month of which two storm events measured 

rainfall depths greater than 2.5 cm (1 in.). The duration of these events ranged from 0.3 to 12.2 

hours. The facility received a combined runoff volume of 515 m
3 
from the five events for a period 

of 20 hours in this month (Figure 4-5). Of the total volume, nearly 285 m
3
 of runoff had measured 

temperatures in the range from 20 to 24
o
C (68 to 75.2

 o
F) for a period of 13 hours. During this 

period, the runoff was cooled by nearly 2
o
C. Of the total outflow volume, around 70 m

3
 exhibited 

a temperature greater than 20
o
C and exited the system in 13 hours. The flow of a large volume of 
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high temperature runoff into the local stream for a certain period can be much more lethal than 

small flow volumes of the same temperature in the same period. For the rest of the month, the 

outflow was cooled to remain under the 20
o
C threshold but higher than the 17

o
C threshold. 
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(b) 

Figure 4-4. a. Time-based and b. Volume-based plots of inflow and outflow temperatures 

of BMP 3007 in June, 2008 (All data points are plotted at 2-minute intervals) 
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(b) 

Figure 4-5. a. Time-based and b. Volume-based plots of inflow and outflow temperatures 

of BMP 3007 in July, 2008 (All data points are plotted at 2-minute intervals) 
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In the month of August, out of the six observed events, only one event measured a 

rainfall depth greater than 2.5 cm (1 in.). The six events produced a runoff volume of 13 m
3 
with 

the measured temperatures greater than 20
o
C for a period of 30 minutes in the entire month. 

During this period, mean temperature reduction of less than 0.2
o
C was not sufficient to cool the 

runoff below 20
o
C. On average, the reduction in temperature was small and the outflow remained 

much higher than the threshold temperature of 14
o
C. September 2008 was the wettest month and 

recorded a total rainfall depth of 17.7 cm (7 in.) from eight events. The facility received a total 

runoff volume of 1013 m
3
 over a period of around 51 hours. Of the inflow volume, 95 m

3
 

exceeded the 20
o
C threshold over a period of 3.3 hours in the month.  

The impact of the BMP on runoff temperatures during a high intensity storm was 

observable in the month of September 2008. The majority of the events recorded during this 

month were typically high intensity, short duration events. During large events, the detention time 

of the runoff in the system ranged between 6 and 10 minutes. Figure 4-6 depicts the observations 

for a representative storm that occurred on September 27, 2008. The event measured a total 

rainfall depth of 8.64 cm (3.4 in.). Outflow was recorded ten minutes after the system began 

receiving inflow. The BMP received a total runoff volume of 562 m
3
 from the event over the 

duration of 18 hours. Outflow continued for more than three days. The plot shows the outflow 

volume until the next event which occurred on September 30, 2008. As seen in Figure 4-6, the 

short period of detention had little effect on the temperature. The outflow temperature is similar 

to the inflow temperature for a greater part of the storm. 
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(b) 

Figure 4-6. a. Time-based and b. Volume-based plots of inflow and outflow temperatures 

of BMP 3007 for 27 September, 2008, event (All data points are plotted at 2-

minute intervals) 
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4.1.3.3 Monthly Runoff Volume Exceedence of Threshold Temperatures 

In order to evaluate the overall performance of the BMP during each month, proportions 

of the total monthly inflow and outflow volumes exceeding the temperature thresholds of 14
o
C, 

17
o
C, and 20

o
C were computed and are shown in Figure 4-7. As seen in the figure, inflow and 

outflow temperatures did not exceed the three temperature threshold limits in February, March, 

and April. In May, less than 2% of the inflow volume was at a temperature greater than 14
o
C but 

lower than 17
o
C. The BMP did not aid in the cooling of this inflow volume. Thus, 2% of the 

outflow volume exceeded the 14
o
C threshold (Figure 4-7a). The months from February through 

May did not produce inflow temperatures greater than 16
o
C. 
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Figure 4-7a. Proportion of monthly inflow and outflow volumes exceeding 14
o
C threshold 

temperature 
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Figure 4-7b. Proportion of monthly inflow and outflow volumes exceeding 17
o
C threshold 

temperature 
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Figure 4-7c. Proportion of monthly inflow and outflow volumes exceeding 20
o
C threshold 

temperature 
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In June, more than 95% of inflow volume exceeded the 14
o
C threshold, of which less 

than 5% of this volume was cooled to temperature below 14
o
C. Nearly 25% of the total inflow 

volume was at a temperature above 17
o
C. However, after passing through the BMP, less than 

10% of the volume exceeded the 17
o
C threshold (Figure 4-7b). The conveyance of the runoff 

through the BMP enabled cooling of all of the 10% inflow volume having temperatures greater 

than 20
o
C (Figure 4-7c). These results indicate that the underground storage reduces higher 

temperatures more effectively than temperatures in the lower ranges. However, the detention of 

water does not completely mitigate the temperature of the runoff to desirable levels. 

High-temperature flows capable of stressing trout were observed in July 2008. The 

inflow temperatures during July were in the range from 17 to 25
o
C. This is evident in Figure 4-7, 

as 100% of the total inflow volume exceeded the 14
o
C and the 17

o
C thresholds. The temperature 

of this inflow volume was not reduced to below the threshold. However, significant exceedence 

reduction occurred at 20
o
C. While almost 55% of the inflow volume exceeded the 20

o
C threshold, 

only 20% of the total outflow volume had temperatures greater than 20
o
C. 

In August, a major portion of the total inflow and outflow volumes exhibited 

temperatures ranging between 16
o
C and the 18

o
C, thereby entirely exceeding the 14

o
C and 17

o
C 

thresholds. Less than 5% of the total inflow volume had temperatures that exceeded 20
o
C. About 

2% of the total outflow volume had temperatures that exceeded the 20
o
C threshold and was not 

cooled below 17
o
C. In September, a further decrease in the inflow temperature occurred. About 

10% of the inflow volume exhibited temperatures greater than 20
o
C and 71% of this volume was 

cooled below 20
o
C. While 82% of the inflow was at a temperature higher than 17

o
C, only about 

66% of the outflow volume exceeded this threshold. Runoff was not cooled below 14
o
C and 98% 

of the outflow exceeded the 14
o
C threshold. 

4.1.3.4 Summary and Mechanism of Temperature Reduction in the BMP 

Based on the time of exposure and volume analysis, it can be observed that during the 

cooler months (March and April 2008), the inflow volumes did not violate the 14, 17, and 20
o
C 
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thresholds. In May, less than 10% runoff volume measured temperatures greater between 14
o
C 

and 17
o
C. This volume exited the system without much reduction in temperature. This may be 

because the ambient underground temperature is nearly the same as the runoff temperature. 

Therefore, the heat loss to the surrounding air and pipe can be considered to be insignificant. Any 

heat transfer that occurs would be by mixing of the runoff. Thus, little or no cooling of the 

temperature would occur. 

 As it gets warmer in summer, the temperature of runoff also increases. The warmer 

months (June, July, and August) measured runoff temperature in the range 16 to 24
o
C (61 to 

75
o
F). The ambient temperature in the underground pipes was usually around 14.4

o
C (58

o
F), 

which is lower than the runoff temperature range. Heat loss can be expected to occur due to this 

difference in temperature. Any water stored from the antecedent event will be in equilibrium with 

the ambient temperature underground. Therefore mixing of the inflow runoff and cooler stored 

volume of water will result in buffering of the runoff temperature. Depending on the detention 

time of the runoff in the system, reduction in temperature would occur. As runoff flows through 

the system, it will lose some heat to the surrounding cooler air and pipe.  

From the above discussion, it can be hypothesized that the BMP is more effective in 

mitigating higher temperatures than at lower temperatures. Figure 4-8 is a plot of the event mean 

inflow and outflow temperatures at BMP 3007 for events from February through September 2008. 

The flow and temperature at the two inlets were combined to compute the event mean inflow 

temperature. As seen in the figure, temperature reduction occurred when the event mean inflow 

temperatures were greater than 20
o
C. Rainfall events during June, July, and August 2008 

produced event mean inflow temperatures between 20 and 23
o
C. During these events, the mean 

outflow temperature was, on an average, 2.3
o
C lower than the event mean inflow temperature. 

The distribution of the points along the 45
o
 line in the lower temperature ranges indicates that 

BMP did not have any significant impact on runoff temperature during cooler periods. 
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Figure 4-8. Relationship between event mean inflow and outflow temperatures at BMP 

3007 for February to September 2008 

 

4.1.3.5 Statistical Test on Temperature Reduction 

To support the hypothesis on the performance of the BMP at different inflow temperature 

ranges, a one-sample t-test was performed to test the significance of the temperature reduction 

achieved in each month (Ayyub and McCuen 2003). The averages of event mean inflow 

temperatures (EMT in) and event mean outflow temperatures (EMT out) for all the events in each 

month were computed. The mean temperature reduction (µ∆T) was computed as the difference 

between the two averages (EMT out –EMT in) and was subjected to a one-sided lower t-test. The 

value of µ∆T would be negative if the runoff temperature was reduced by the BMP. The objective 

of the hypothesis test was to determine whether the mean temperature reduction was significantly 

less than zero. Hence, rejection of the null hypothesis (Ho) would imply that the mean 

temperature reduction achieved is significant at the given level of significance. The results of the 

hypothesis test are summarized in Table 4-5. 
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Table 4-5. Results of t- test on significance of temperature reduction in BMP 3007 in each month 
(Ho: µ∆T = 0, HA: µ∆T <0) 

 

Month 

Number of events 

considered 

Mean temperature 

reduction µ∆T 

Rejection 

probability 

    

Mar-08 6 0.04 > 0.25 

Apr-08 8 0.09 > 0.25 

May-08 7 -0.05 > 0.25 

Jun-08 5 -1.42 0.0722 

Jul-08 5 -2.22 0.0074 

Aug-08 4 -0.39 0.0529 

Sep-08 7 -0.15 0.2180 

 

The mean runoff temperature reduction in March, April and May 2008 is insignificant. The 

rejection probability of the null hypothesis for these three months was greater than 25%. Inlet 

runoff temperature increased in June and the rejection probability of the null hypothesis for this 

month was 7.2%. The mean temperature reduction of 4.2
o
C in July has a rejection probability of 

about 0.4%, which is low. In the following months, the reduction achieved decreased and the 

rejection probability increased. The hypothesis test clearly indicates that the effectiveness of the 

BMP in reducing runoff temperature in the hotter months is much more significant than that in 

colder months.  

A one-sided lower t-test was conducted on the mean temperature reduction observed 

during the 12 summer events producing event mean inflow temperatures exceeding the Maryland 

Class III standard of 20
o
C. The hypothesis test showed that the mean reduction of 1.6

o
C for the 12 

events was statistically significant, with the rejection probability being less than 0.25%. This 

suggests that the thermal impact of the BMP is significant in summer.  

4.1.3.6 Depth- Duration- Temperature Reduction Analysis 

Since significant temperature reductions were observed during summer, influence of the 

depths and durations of the summer rainfall events on the runoff temperature was analyzed. The 

size of the storm determines the volume of runoff produced and the detention time in the BMP. 
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The detention time is critical in summer because the temperature reduction is influenced by the 

contact time of the runoff in the underground storage. Some observations were made during the 

14 storm events that displayed significant mean temperature reduction, which occurred in June 

through early September 2008. Runoff produced from small storm events were detained in the 

facility for longer periods which resulted in significant reduction in inflow temperature. For 

instance, four events measuring rainfall depth in the range 0.26- 0.64 cm (0.11- 0.25 in.) and 

duration less than one hour, showed a mean temperature reduction of 2.7
○
C. During some events, 

the BMP received large volumes of runoff in a short period of time. At higher inflow rates, runoff 

is quickly conveyed through the BMP and hence the mean temperature reduction achieved in the 

BMP is also smaller. Two events, measuring rainfall depth greater than 2.54 cm (1 in.) and 

duration between 4 and 12 hours, showed a mean temperature reduction of only 0.7
○
C. The 

number of storms in other ranges of depth and duration was only one or none. Due to the small 

number of sample storms, the relationship between different rainfall depths and durations and 

mean temperature reduction could not be quantitatively characterized. With a large sample size, a 

rigorous analysis can be performed to determine the impact of rainfall depth and duration on 

runoff temperature reduction. 

4.1.3.7 Temperature Exceedence Probability Plot 

The exceedence probability of the observed runoff temperature and outflow temperature at 

BMP 3007 is shown in Figure 4-9. The temperature data (2-minute intervals) were combined for 

all the events during the period from February through September, 2008, and the frequency 

distribution analysis was performed. As can be seen in the plot, the probability of the inlet runoff 

temperature exceeding the 20
o
C threshold is about 8%. The runoff temperature exceeded the 14

o
C 

threshold 40% of the time. Only one instance of exceedence of the Maryland Class IV standard of 

24
o
C was encountered at an inlet of BMP 3007 during the entire monitoring period. The 

probability of exceedence of temperatures above 20
o
C is less at the outlet compared to the inflow 
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temperature. The outflow temperature exceeded the 20
o
C threshold approximately 3% of the time. 

Outflow temperature did not exceed the Maryland Class IV temperature at any instance.  
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Figure 4-9. Plot showing the exceedence probability of inflow and outflow temperatures at 

BMP 3007 (Data points are plotted at 2-minute intervals) 

 

The probability plot in Figure 4-9 supports the previous discussion on temperature 

reduction. The lower probability of outflow temperatures exceeding higher temperature 

thresholds compared to the inflow temperature suggests that the BMP reduced the higher runoff 

temperatures more effectively. However, the inflow and outflow data points on the plot are not 

paired and hence information on temperature reduction achieved in the system cannot be deduced 

from the plot. 

4.1.3.8 Trout Temperature Requirements 

Most events in summer produced runoff temperatures lethal to trout. The trout can 

withstand thermal stress depending on its acclimation temperature. Based on the acclimation 
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temperature, the trout can survive for varying periods of time when exposed to different 

temperatures (Armour 1991). Sustained elevated water temperatures over 21
o
C (70

o
F) are 

stressful and those above 25
o
C (77

o
F) are lethal (Galli 1990). Figure 4-10 depicts the relationship 

between lethal temperature and time to 50% mortality of trout acclimated to different 

temperatures.  

 

 

Figure 4-10. Relationship between time, acclimation temperature and 50% mortality of 

brown trout (Source: Elliot 1981 as referenced from Galli 1990) 
 

As seen in Figure 4-10, brown trout acclimated at temperatures 15, 20, or 22.2
o
C (59, 68, 

or 72
o
F) would survive over 10 days at 24.4

o
C (76

o
F). Higher runoff temperatures were observed 

during July; the runoff temperature ranged between 20 to 24.1
o
C (68 to 75.5

 o
F) for a period of 13 
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hours. Based on Figure 4-10, brown trout acclimated to temperatures between 5 and 22.2
o
C (41 

and 72
o
F) would survive at the outlet of the BMP. 

4.2 Model 

Simulations were performed for a number of storm events considering the underground 

storage system as a n-CSTR model. The simulated flow rate and observed temperature at the inlet 

of BMP 3007 were given as the inputs to the model. The flow module of the model involves a 

number of parameters, such as the number of CSTRs (n), and flow coefficients for the outlet 

control of each CSTR, which required calibration. The simulations performed so far have not 

yielded satisfactory predictions of the flow from the system. Since the model-predicted outflow 

does not match the observed data, it is not possible to perform the heat balance of the system.  

If the system were to be considered as 1-CSTR, the outflow temperature predicted by the 

model was inaccurate. This is suggestive of a wrong model structure in the flow modeling; the n-

CSTR model should be a better representation of the behavior of the storage system. Nonetheless, 

the simulations have yielded some useful results regarding the heat transfer in the system. The 1-

CSTR simulations revealed that the temperature of the air and pipe do not change significantly 

from their initial conditions during the period of inflow. This is because the coefficients of 

convective heat transfer for the air and the HDPE pipe are small. This suggests that in the 

underground system, the heat loss to surrounding air and pipe may be small. 

It is necessary to perform calibration of the various coefficients involved in the model to 

achieve accurate flow predictions. Once flow balance is achieved, the heat transfer in the system 

can be modeled. 
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Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

Thermal enrichment of streams by urban stormwater runoff is a problem of serious concern, 

especially in summer. Underground storage and slow-release facilities are widely employed best 

management practices to attenuate peak flows. The purpose of this study was to determine the 

effectiveness of an underground storage BMP in mitigating stormwater runoff temperatures. 

Automated monitoring instruments were deployed in an underground storage facility in 

Timonium, Maryland, and flows and temperatures of runoff into and out of the facility were 

monitored for multiple storm events over a period of seven months.  

Runoff flow and temperature data were characterized to meet the goals of this research 

study. As expected, the inflow runoff temperatures were observed to have seasonal variations. In 

cooler months, the runoff temperatures were low, from 3 to 14
o
C. During summer, stormwater 

runoff that is conveyed over hot asphalt pavement exhibited temperature from 18 to 24
o
C. In 

addition, the temperature of the inflow was influenced by the time of the day that the rainfall 

occurred. Storms that occurred during hot summer afternoons produced warmer runoff compared 

to storms that occurred during the night. Runoff flowing into the underground storage facility was 

detained for some duration depending on its volume and was released at a small flow rate. 

February through May was a cooler period during which the event mean temperatures of 

inflow and outflow runoff were not significantly different. Although the temperature reductions 

were insignificant during cooler months, the temperatures were low and should be harmless to 

trout and other aquatic life. The temperature of runoff increased during the summer. In June and 

July, the event mean inflow temperature varied from 20 to 23
o
C. A mean temperature reduction 

up to 4
o
C was achieved through the BMP in summer. For rainfall events in June, the event mean 
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outflow temperature was 1.4
o
C less than the event mean inflow temperature, and this temperature 

reduction was statistically significant with a rejection probability of 7.2%. The mean temperature 

reduction was greatest in July (2.2
o
C) and was found to be statistically significant with a rejection 

probability of 0.74%. Although reduction in runoff temperature occurred in summer, it was not 

sufficient to meet Maryland temperature standards for natural trout waters. Some proportion of 

flow from the system exceeded the threshold temperatures. The runoff temperatures were lower 

in August and September than in June and July. During these months, the exceedence of the 

Maryland temperature threshold decreased as well. 

To summarize, the BMP did not have a significant impact on runoff temperatures during 

cooler periods. There was small or no reduction of runoff temperatures when they were less than 

17
o
C. However, runoff flowing into the system at temperatures above 19

o
C was buffered in the 

cooler environment of the underground storage. For events that produced mean runoff 

temperatures greater than 20
o
C, the event mean outflow temperatures were at least 1.9

o
C lower 

than the event mean inflow temperatures. Hence, the BMP can be considered to effectively 

reduce temperature of warm runoff compared to cooler runoff.  Nonetheless, the study findings 

demonstrate that although the underground storage facility mitigates runoff temperatures during 

the summer, the BMP did not aid in the reduction of temperatures below the threshold 

temperature 100% of the time. 

5.2 Recommendations 

From the data analyses and preliminary results of the heat transfer model, it can be inferred 

that detention time in the facility, contact surface area, and thermal conductivity of the pipe 

influence the temperature reduction achieved through the BMP. It would be interesting to explore 

the design aspects of the facility to increase the surface area and contact time of runoff to aid 

greater temperature reduction. Also, the performance of the underground storage facilities can be 

compared with other BMPs, such as sand filters and infiltration facilities to determine the 

effectiveness of these BMPs in reducing runoff temperatures. Other information such as the depth 
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and temperature of runoff in the storage pipes, underground ambient temperature, and soil and 

pipe temperatures can be collected in future studies. 

The present study covered February through September 2008. A longer period data 

collection covering the entire year and/or multiple years will enable more accurate 

characterization of the performance of the BMP during different seasons. Data collected to date 

indicate that summer is the critical period when runoff temperatures are high and possibly 

detrimental to trout. Runoff temperatures higher than the temperatures observed during the 

monitoring period may occur during an extreme high-temperature period. Flow and temperature 

data from multiple summer periods will provide a more quantitative view of the temperature 

reduction capacity of the BMP. In addition, with annual data, runoff temperature reductions for 

different depths and durations of rainfall across different seasons could be investigated. 

A heat transfer model will be instrumental in understanding the temperature reduction 

achieved in the system. Through simulation, the performance of the storage facility during storms 

of different size and duration, and runoff temperature range can be analyzed. Also, the effect of 

the size of the facility and detention time of runoff could be analyzed through the model. The 

model would be a useful tool to predict the efficiency of the system in reducing runoff 

temperature. 

It can be concluded that underground stormwater storage facilities can be employed for 

thermal reduction. If the underground system were absent, the warm runoff flowing into the local 

stream may increase the ambient stream temperature and exposure to high temperatures might 

stress trout and other species inhabiting the streams. However, modifying the design of the BMP 

to increase detention time and water contact surface area should improve the efficacy of the BMP 

in mitigating runoff temperatures. 
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APPENDIX A 

Simulation of Runoff  

Estimating Runoff by SCS Runoff Curve Number Method (USDA 1986) 

The SCS runoff equation is 

( )
( ) SIP

IP
Q

a

a

+−

−
=

2

    (A-1) 

where 

Q = runoff (in.) 

P = rainfall (in.) 

S = potential maximum retention after runoff begins (in.) and 

Ia = initial abstraction (in.) 

Initial abstraction (Ia) is all losses before runoff begins. It includes water retained in surface 

depressions, water intercepted by vegetation, evaporation, and infiltration. Ia is highly variable but 

generally correlated with soil and cover parameters. Through studies of many small agricultural 

watersheds, Ia was found to be approximated by the following empirical equation: 

SI a 2.0=      (A-2) 

Substituting equation A-2 into equation A-1 gives: 

( )
)8.0(

2.0
2

SP

SP
Q

+
−

=     (A-3) 

S is related to soil and cover conditions of the watershed through the CN. CN has a range of 0 to 

100, and S is related to CN by: 

10
1000

−=
CN

S      (A-4) 
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Development of Direct Runoff Hydrograph 

Based on the TR-55 method, runoff from the drainage area of each inlet of the BMP was 

simulated for each rainfall event. A FORTRAN code developed by Dr. Richard H. McCuen 

(University of Maryland, College Park) was employed. The inputs required by the program are 

listed in Table A-1. Given the inputs, the program generates runoff (cfs) at two-minute intervals. 

 

Table A-1. Input for runoff simulation program 

Input Input Format/ Unit Value for BMP 3007 

Rainfall depth (at 2-minute intervals) .txt or .dat file  

Drainage area mi
2
 0.00223 

Curve number - 98 

Time of concentration hr 0.10 

Number of rainfall ordinates -  

 

In the present study, it was assumed that runoff is generated from the impervious area 

only and the rainfall occurring over the grassy/pervious area is completely infiltrated for most 

common events. Based on this assumption, runoff to an inlet was computed using the fraction of 

impervious area as contributing drainage area and the corresponding curve number as input.  

For each event, a file containing rainfall depth (two-minute intervals) recorded at the 

study site was created. The simulation program was executed for each inlet of the BMP for all the 

storm events. The simulation performed for generating runoff to an inlet of BMP 3007 for August 

13, 2008 storm event is provided as a sample. 
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Input 

13AugRainfall.dat 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.01 

0.07 

0.06 

0.05 

0.08 

0.09 

0.06 

0.03 

0.03 

0.03 

0.02 

0 

0 

0.01 

0.01 

0.02 

0.04 

0.07 

0.06 

0.07 

0.04 

0.03 

0.02 

0.01 

0.01 

0.02 

0.05 

0.03 

0.03 

0.04 

0.01 

0.02 

0 

0.01 

0 



69 

0 

0 

0 

0.01 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.01 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Drainage area = 0.00223 

Curve number = 98 

Time of concentration = 0.10 

Program Output 

ANALYSIS TO DEVELOP DIRECT RUNOFF HYDROGRAPH 

 Version 08.01 

 

 Richard H. McCuen 

 Department of Civil Engineering 

 University of Maryland 

 College Park, MD  20742-3021 

 

 rhmccuen@eng.umd.edu    or    (301) 405-1949 

 

 Storm duration (hr) =     3.463        Time increment (hr) =     .0333 

 Rainfall depth (in.) =   1.15000        Runoff depth (in,) =    .93682 

 --------------------  Storm runoff  ------------------ 

      .000      .000      .000      .000      .000      .000      .000      .000 

      .000      .000      .000      .000      .049      .307      .735     1.282 

     2.014     2.469     2.256     1.735     1.388     1.170      .833      .422 

      .236      .274      .413      .745     1.389     2.046     2.420     2.444 

     2.042     1.544     1.077      .717      .603      .912     1.317     1.378 

     1.400     1.290      .987      .704      .442      .304      .159      .064 

      .021      .083      .160      .112      .050      .018      .005      .001 

      .000      .000      .000      .000      .000      .000      .000      .000 

      .000      .000      .000      .000      .000      .000      .000      .000 

      .000      .000      .000      .000      .000      .000      .000      .000 

      .000      .000      .000      .000      .000      .076      .158      .111 

      .050      .018      .005      .001      .000      .000      .000      .000 

      .000      .000      .000      .000      .000      .000      .000      .000 

      .000      .000      .000      .000      .000      .000      .000      .000 

      .000 
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