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Abstract

We illustrate a computational approach to practical
nonlinear balancing via the forced damped pendulum
example.

1 Introduction

The theory of balancing, introduced by Moore [1], was
extended by Scherpen [2] to a class of stable finite–
dimensional systems in the nonlinear setting

ẋ = f(x) + g(x)u (1)

y = h(x) (2)

where x = (x1, . . . , xn) are local coordinates for a
smooth state manifold, f , g, and h are of class C∞,
f(0) = 0, and h(0) = 0.

The existence of efficient computational methods has
been crucial in making balancing an effective and im-
portant tool for model reduction of linear systems. The
balancing change of coordinates can be computed us-
ing established matrix equation and decomposition al-
gorithms. In contrast, Scherpen’s procedure for non-
linear balancing presents computational difficulties. In
this paper we address these difficulties and illustrate
computational methods by means of an example.

2 Balancing for the Forced Damped Pendulum

We model a damped pendulum with torque input and
measured angular position by

ẋ1 = x2 ; ẋ2 = −a sin(x1)− b x2 + c u (3)

y = x1 (4)

where we choose a = 3, b = 1, and c = 0.1.
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The main objects involved in Scherpen’s theory are the
controllability and observability energy functions, Lc :
IRn → IR and Lo : IRn → IR, respectively, defined by

Lc(x0) = min
u ∈ L2(−∞, 0)
x(−∞) = 0
x(0) = x0

1

2

∫ 0
−∞
‖u(t)‖2 dt (5)

and

Lo(x0) =
1

2

∫ ∞
0

‖y(t)‖2 dt , (6)

x(0) = x0 , u(t) ≡ 0 , 0 ≤ t <∞.

Computation of Lc via (5) requires solution of an opti-
mal control problem at each point on a state space grid.
One alternative is to numerically solve the Hamilton–
Jacobi type partial differential equation (PDE) given
by [2] eqn. (12). Both of these methods are computa-
tionally intensive (if a numerical solution can be gener-
ated at all) and require apriori knowledge of f and g.
We offer an empirical approach which could be used in
the absence of accurate models.

In the linear case, Lc(x) = 1
2 x
T W−1c x, is quadratic

with Wc denoting the controllability Gramian matrix.
Injection of Gaussian white noise at the input termi-
nals produces a Gaussian asymptotic probability den-
sity function (PDF) for the state

p∞(x) = [(2π)n det(R∞)]−1/2 exp(−Lc(x)) (7)

where R∞ = Wc denotes the asymptotic state covari-
ance. Therefore, in the nonlinear setting, we estimate
Lc via

L̂c(x) = −log(p∞(x)) + constant. (8)

This suggests an empirical Monte–Carlo approach in
which the system response to Gaussian white noise is
recorded for a large number of sample paths, and the
data is histogrammed on an appropriate grid to com-
pute a PDF and estimate for Lc. The empirical ap-
proach is also used for determination of Lo via numeri-
cal integration of (6) where the input signal is null and



the initial condition x0 takes each value in the state
space grid. Figures 1–3 show results for the pendulum
system (3–4).
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Figure 1: Probability density function for asymptotic
state of pendulum system.
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Figure 2: Estimated controllability function for pendulum
system.
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Figure 3: Observability function for pendulum system.

The existence of the balancing transformation is proved
using the Morse–Palais lemma (see [3, 4]) which as-
serts that there exists a change of coordinates under
which a function is locally quadratic in a neighbor-
hood U of a nondegenerate critical point at 0, i.e.,
f(x) =< Aφ(x), φ(x) >, with φ a diffeomorphism
defined on U . Computation of φ requires the decom-
position f(x) =< H(x)x, x > (see [3]). It is shown
in [4] that φ(x) = C(x)x where C(x)2 = B(x) =
H(0)−1H(x). Such a C exists on a neighborhood of
0 since B(0) is the identity and a square root function
is defined in a neighborhood of the identity operator 1I
by a convergent power series. The algorithm we use is

S0 = 0 , Sk+1 =
1

2
[(1I−B) + S2k] , k = 0, 1, . . . (9)

with C = 1I − S∞. It is valid for x such that
‖1I−B(x)‖ < 1 thus providing an estimate of the neigh-
borhood U .

The relative input–output influence of each state in
the balanced realization is measured by the singular

value functions (SVF) (see [2]), which are the point–
dependent analogs of the Hankel singular values for
a linear system. Figure 4 shows the resulting SVFs
for the pendulum system (3–4). We see that in the
balanced realization, one state has roughly twice the
input–output influence as the other. The values of the
singular value functions at the origin are 0.0376 and
0.0193, respectively. As expected, these are in close
agreement with the Hankel singular values of the lin-
earized system, which are 0.0384 and 0.0217, respec-
tively.
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Figure 4: Singular value functions for pendulum system
in a small neighborhood of the origin (denoted
SVF 1 and SVF 2).

3 Conclusion

We have illustrated a computational approach for prac-
tical implementation of Scherpen’s nonlinear balancing
procedure via application to the forced damped pen-
dulum system. A Monte–Carlo approach provides an
estimate of the controllability energy function. The ob-
servability energy function is computed via numerical
integration and is also suitable as an empirical method.
Numerical implementation of the Morse-Palais lemma
is achieved using a successive approximation algorithm
for an operator square root which appears in Palais’
proof. The corresponding convergence criterion gives
an estimate of the neighborhood in which the given
function is locally quadratic. The balanced realization
for the pendulum system results in one state having
roughly double the input–output influence as the other
state.
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