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Chapter 1

Introduction

1.1 Background

Bose-Einstein condensation (BEC) is the phenomenon in which a large number

of particles of integer spin (“Bosons”) occupy a macroscopic quantum state. Let

t ∈ R be the time variable and −→xN = (x1,x2, ...,xN) ∈ RnN be the position vector

of the N particles in Rn. Then BEC naively means that the N-body wave function

ψN(t,−→xN) satisfies

ψN(t,−→xN) =
N∏
j=1

φ(t,xj) (1.1)

up to a phase factor solely depending on t, for some one particle state φ. In other

words, every particle is in the same quantum state. BEC was first predicted theoret-

ically by Einstein for non-interacting particles. The first experimental observation

of BEC in an interacting atomic gas did not occur until 1995 using laser cooling

technique [1, 11]. E. A. Cornell, W. Ketterle, and C. E. Wieman were awarded

the 2001 Nobel Prize in Physics for observing BEC. Many similar successful exper-

iments were performed later on[10, 26, 37]. These observations have stimulated the

further study of the theory of many-body Boson systems in the presence of a trap

(as explained below).

Gross [23, 24] and Pitaevskii [34], proposed to model the many-body effects by

a nonlinear on-site self interaction of a complex order parameter (the "condensate
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wave function"). The Gross-Pitaevskii equation is given by

i∂tu = −4u+ σ |u|2 u =
δE(u, ū)

δū

∣∣∣∣
u

, E(u, ū) =

∫ (
|∇u|2 +

σ |u|4

2

)

where E is the Gross-Pitaevskii energy functional. The Gross-Pitaevskii equation is

a phenomenological mean field type equation and its validity needs to be established

from the Schrödinger equation with the Hamiltonian given by the pair interaction.

In the laboratory experiments of BEC, the particles are initially confined by

traps, e.g., the magnetic fields in [1, 11], then the traps are switched in order to

enable measurement or direct observation. To be more precise about the word

"switch": in [1, 11] the trap is removed, in [37] the initial magnetic trap is switched

to an optical trap, in [10] the trap is turned off in 2 spatial directions to generate

a 2d Bose gas. The dynamics during this process are highly nontrivial. To model

the evolution, we use a quadratic potential multiplied by a switch function in each

spatial direction for analysis. In other words, we assume the external potential to

be

Vtrap(t, x) =

n∑
l=1

ηl(t)x
2
l

with the switch functions ηl(t), l = 1, ..., n. This simplified yet reasonably general

model is expected to capture the salient features of the actual traps: on the one

hand, the quadratic potential varies slowly and tends to ∞ as |x| → ∞; on the

other hand, the switch functions describe the space-time anisotropic properties of

the confining potential.

In the physics literature, Lieb, Seiringer and Yngvason remarked in [31] that

the confining potential is typically ∼ |x|2 in the available experiments. Mathemat-

2



ically speaking, the strongest trap we can deal with in the usual regularity setting

of the nonlinear Schrödinger equations is the quadratic trap since the work [38] by

Yajima and Zhang points out that the ordinary Strichartz estimates start to fail as

the trap grows faster than quadratic.

Motivated by the above considerations, we aim to investigate the evolution of

a many-body Boson system in anisotropic switchable quadratic traps. The N -body

wave function ψN(t,−→xN) satisfies the N -body Schrödinger equation with anisotropic

switchable quadratic traps:

i∂tψN =
1

2
H−→xN (t)ψN + VNψN (1.2)

with initial data

ψN(0,−→xN) =
N∏
j=1

φ0(xj),

where VN models the interaction between particles, and

H−→xN (t) : =
N∑
j=1

Hxj(t) :=
N∑
j=1

(
−4xj + Vtrap(t,xj)

)
. (1.3)

: =
N∑
j=1

n∑
l=1

(
− ∂2

∂x2
j,l

+ ηl(t)x
2
j,l

)
.

When the trap is fully on, Lieb, Seiringer, Solovej and Yngvason showed that

the ground state of the Hamiltonian exhibits complete BEC [32], provided that

the trapping potential Vtrap(x) satisfies inf |x|>R Vtrap(x) → ∞ for R → ∞ and the

interaction potential is spherically symmetric. To be more precise, let ψN,0 be the

ground state, then

γ
(1)
N,0 → |φGP 〉 〈φGP | as N →∞
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where γ(1)
N,0 is the corresponding one particle marginal density defined via formula

(1.4) and φGP minimizes the Gross-Pitaevskii energy functional∫
( |∇φ|2 + Vtrap(x) |φ|2 + 4πa0 |φ|4 )dx.

Because we are now considering the evolution while the trap is changing, we start

with a BEC state / factorized state in equation (1.2).

Though equation (1.2) is linear and the initial data is very special, it is highly

nontrivial to see how it is related to BEC, which means the N -body wave function

ψN is a product of one particles states. On the one hand, ψN does not remain a

product of one-particle states i.e.

ψN(t,−→xN) 6=
N∏
j=1

φ(t,xj), t > 0

for some one particle state φ. On the other hand, it is unrealistic to solve equation

(1.2) for large N . Thence, to prove BEC, we need an appropriate mathematical

framework to explain how the N -body wave function ψN is close to
N∏
j=1

φ(t,xj) for

some one particle state φ, where φ is expected to solve some nonlinear Schrödinger

equation.

Notice that when φ 6= φ′, we have∥∥∥∥∥
N∏
j=1

φ(t,xj)−
N∏
j=1

φ′(t,xj)

∥∥∥∥∥
2

L2

→ 2 as N →∞.

In other words, our desired limit (the BEC state) is not stable against small pertur-

bations. One way to circumvent this diffi culty is to use the concept of the k-particle

marginal density γ(k)
N associated with ψN defined as

γ
(k)
N (t,−→xk;

−→
x′k) =

∫
ψN(t,−→xk,−−−→xN−k)ψN(t,

−→
x′k,
−−−→xN−k))d

−−−→xN−k,
−→xk,
−→
x′k ∈ Rnk, (1.4)
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and show that

γ
(k)
N (t,−→xk;

−→
x′k) ∼

k∏
j=1

φ(t,xj)φ(t,x′j).

Penrose and Onsager [33] suggested such a formulation in. Another way is to add

a second order correction to the mean-field approximation,
N∏
j=1

φ(t,xj), so that we

can approximately solve for ψN directly, without taking marginals. The idea of the

second-order correction comes from Wu [39, 40], and was rigorously formulated in

a slightly different context by Grillakis, Machedon, and Margetis (GMM) [21, 22].

These two methods stand for the two main directions of this thesis. In the following,

we use two separate sections to state and discuss briefly our main theorems regarding

both directions.

1.2 The Rigorous Derivation of the 2d Cubic Nonlinear Schrödinger

Equation with Anisotropic Switchable Quadratic Traps

Consider equation (1.2) when n = 2 and let

VN =
1

N

∑
i<j

N2βV (Nβ (xi − xj)), β ∈
(

0,
3

4

)
.

Notice that this is a "mean field" interaction because of the the factor 1/N and

VN is a 2-body interaction which approaches the Dirac delta function as N →

∞. Furthermore, we assume that the switch functions ηl ∈ C1(R+
0 → R+

0 ) in the

Hermite-like operator (1.3) satisfy the following conditions.

Condition 1 η̇l(0) = 0 i.e. The trap is not at a switching stage initially.

Condition 2 η̇l is supported in [0, T0] and T0

√
supt |ηl(t)| < π

2
.
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We take the marginal density approach and establish the following theorem.

Theorem 1 Assume the nonnegative interaction potential V is integrable and be-

longs to W 2,∞ and the switch functions ηl satisfy Conditions 1 and 2. Moreover,

suppose the initial data has bounded energy per particle, that is,

sup
N

1

N
〈ψN , HN(t)ψN〉

∣∣∣∣
t=0

<∞,

where the Hamiltonian HN(t) is

HN(t) =
1

2

N∑
j=1

(
2∑
l=1

(
− ∂2

∂x2
j,l

+ ηl(t)x
2
j,l

))
+

1

N

∑
i<j

N2βV (Nβ (xi − xj)).

If
{
γ

(k)
N

}
are the marginal densities associated with ψN , the solution of the N-body

Schrödinger equation (1.2), and φ solves the 2d Gross-Pitaevskii equation,

i∂tφ−
1

2
Hx(t)φ = b0 |φ|2 φ

φ(0,x) = φ0(x),

where Hx(t) is the operator defined via formula (1.3) and b0 =
∫
V (x)dx, then

∀t ∈ [0, T0] and k > 1, we have the following convergence:∥∥∥∥∥γ(k)
N (t,−→xk;

−→
x′k)−

k∏
j=1

φ(t,xj)φ(t,x′j)

∥∥∥∥∥
L2(d−→xkd

−→
x′k)

→ 0 as N →∞.

Example 1 We give a simple example to explain the switching process we are con-

sidering here: say

η1(τ) = C1 when t ∈ (−∞, 1

2
], C2 when t ∈ [1,∞),

η2(τ) = C3 when t ∈ (−∞, 1

4
], C4 when t ∈ [

3

2
,∞).
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Then our switching process contains the cases: turning off / on: C2 = 0 / C1 = 0

and tuning up / down: C1 6 C2 / C2 6 C1. As long as η1(τ) ∈ C1 and satisfies

Condition 2, η1 can behave as one likes inside [1
2
, 1]. Same comment applies to η2.

Furthermore, Theorem 1 addresses the time intervals (−∞, 0] and [3
2
,∞) as well.

Since the equation is time translation invariant in these two intervals, we can use

Theorem 1 iteratively in each suffi ciently small time interval.

Remark 1 Technically, one should interpret Conditions 1 and 2 in the following

way. Due to Condition 1, we have a C1 even extension of ηl i.e. we define ηl(t) =

ηl(−t) for τ < 0. The fast switching condition 2 in fact ensures that βl defined via

equation (2.9) is nonzero in [0, T0] which is crucial in the analysis. See Claim 1 for

the proof.

Remark 2 We assume β ∈
(
0, 3

4

)
to use the tools from Kirkpatrick-Schlein-Staffi lani

[27] in which the authors studied the ηl = 0 case. The case with β = 0 will yield a

Hartree equation instead of the cubic NLS.

The approach with γ(k)
N has been proven to be successful in the ηl = 0 and

n = 3 case, which corresponds to the evolution after the removal of the traps, in the

fundamental papers [12, 13, 14, 15, 16, 17, 18] by Elgart, Erdös, Schlein, and Yau.

Their program, motivated by a kinetic formulaion of Spohn [36], consists of two

principal parts: ine one part, they prove that an appropriate limit of the sequence{
γ

(k)
N

}N
k=1

as N →∞ solves the Gross-Pitaevskii hierarchy

(
i∂t +

1

2
4−→xk −

1

2
4−→
x′k

)
γ(k) = b0

k∑
j=1

Bj,k+1

(
γ(k+1)

)
, k = 1, ..., n, ... (1.5)

7



where Bj,k+1 are in formula (1.8); in another part, they show that hierarchy (1.5)

has a unique solution which is therefore a completely factored state. However, the

uniqueness theory for hierarchy (1.5) is surprisingly delicate due to the fact that

it is a system of infinitely many coupled equations over an unbounded number of

variables. In [29], by assuming a space-time bound, Klainerman and Machedon gave

another proof of the uniqueness in [15] through a collapsing estimate and a board

game argument. We call the space-time estimates of the solution of Schrödinger

equations restricted to a subspace of Rn "collapsing estimates". We can interpret

them as local smoothing estimates for which integrating in time results in a gain of

one hidden derivative in the sense of the trace theorem. To be specific, the collapsing

estimate of [29] reads: Suppose u(k+1) solves(
i∂t +

1

2
4−−−→xk+1 −

1

2
4−−−→
x′k+1

)
u(k+1) = 0;

then, there is C > 0, independent of j, k or u(k+1)(0,−−→xk+1;
−−→
x′k+1) s.t.∥∥∥∥∥

(
k∏
j=1

(
∇xj∇x′j

))
u(k+1)(t,−→xk,x1;

−→
x′k,x1)

∥∥∥∥∥
L2(R×R3k×R3k)

(1.6)

6 C

∥∥∥∥∥
(
k+1∏
j=1

(
∇xj∇x′j

))
u(k+1)(0,−−→xk+1;

−−→
x′k+1)

∥∥∥∥∥
L2(R3(k+1)×R3(k+1))

.

Later, the method in Klainerman and Machedon [29] was taken up by Kirkpatrick,

Schlein, and Staffi lani [27], who studied the corresponding problem in 2d; and by

Chen, Pavlovíc and Tzirakis [4, 5, 6], who considered the 1d and 2d 3-body inter-

action problem and the general existence theory of hierarchy (1.5).

We are interested in the case ηl 6= 0. So, we study the Gross-Pitaevskii hier-

archy with anisotropic switchable quadratic traps. That is a sequence of functions

8



{
γ(k)(t,−→xk;

−→
x′k)
}∞
k=1
, where τ ∈ R, −→xk,

−→
x′k ∈ Rnk, which are symmetric, in the sense

that γ(k)(t,−→xk;
−→
x′k) = γ(k)(t,

−→
x′k;
−→xk) and

γ(k)(t,xσ(1),xσ(2), ...,xσ(k);x
′
σ(1),x

′
σ(2), ...,x

′
σ(k)) = γ(k)(t,x1,x2, ...,xk;x

′
1,x

′
2, ...,x

′
k)

for any permutation σ, since we focus on Bosons, and satisfy the anisotropic switch-

able quadratic traps Gross-Pitaevskii infinite hierarchy of equations:

(
i∂t −

1

2
H−→xk(t) +

1

2
H−→
x′k

(t)

)
γ(k) = b0

k∑
j=1

Bj,k+1

(
γ(k+1)

)
. (1.7)

In the above, Bj,k+1 = B1
j,k+1 −B2

j,k+1 are defined as

B1
j,k+1

(
γ(k+1)

)
(t,−→xk;

−→
x′k) (1.8)

=

∫ ∫
δ(xj − xk+1)δ(xj − x′k+1)γ(k+1)(t,−−→xk+1;

−−→
x′k+1)dxk+1dx

′
k+1

B2
j,k+1

(
γ(k+1)

)
(t,−→xk;

−→
x′k)

=

∫ ∫
δ(x′j − xk+1)δ(x′j − x′k+1)γ(k+1)(t,−−→xk+1;

−−→
x′k+1)dxk+1dx

′
k+1.

These Dirac delta functions in Bj,k+1 are the reason we consider the collapsing

estimates like estimate (1.6).

If the initial data is a BEC / factorized state

γ(k)(0,−→xk;
−→
x′k) =

k∏
j=1

φ0(xj)φ0(x′j),

hierarchy (1.7) admits one solution

γ(k)(t,−→xk;
−→
x′k) =

k∏
j=1

φ(t,xj)φ(t,x′j),

9



which is also a BEC state, provided φ solves the n− d Gross-Pitaevskii equation

i∂tφ−
1

2
Hx(t)φ = b0 |φ|2 φ

φ(0,x) = φ0(x).

Hence we would like to have uniqueness theorems of hierarchy (1.7). In Chapter 2,

we will state the uniqueness theorem and the other tools we need in order to prove

Theorem 1.

1.3 Second-order Corrections to the Mean-field Approximation

Throughout this section, we consider n = 3 and let

ηl = 0

VN =
1

N2

∑
i<j<k

v3(xi − xj,xi − xk),

where

v3(x−y,x−z) = v0(x−y)v0(x−z)+v0(x−y)v0(y−z)+v0(x−z)v0(y−z). (1.9)

Here, v3 is built of a nonnegative regular potential, v0, which decays fast enough

away from the origin and has the property

v0(x) = v0(−x).

Accordingly, equation (1.2) becomes

i∂tψN =

(
N∑
j=1

4xj −
1

N2

∑
i<j<k

v3(xi − xj,xi − xk)
)
ψN in R3N+1(1.10)

ψN(0,−→xN) =

N∏
j=1

φ0(xj).
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Notice that we are now considering the evolution with a 3-body interaction and no

external potential. Our goal is to build a second-order correction to the the mean-

field approximation based on the Fock space formalism of equation (1.10). This

type of second-order correction was used by GMM [21, 22] for the 2-body interaction

case. The main motivation for considering the 3-body particle interaction is to point

out that when we apply the GMM approximation to the Hamiltonian evolution of

many-particle systems equipped with 3-body interactions, the error between GMM

approximation and the actual many-body Hamiltonian evolutions can be controlled

uniformly in time. (See Knowles and Pickl [30] for another type of uniform error

bound.) We will discuss the difference between the 2-body and 3-body cases in the

end of this section.

First, we set up the Boson Fock space F following [21, 22, 35].

Definition 1 The Hilbert space Boson Fock space F based on L2(R3) contains vec-

tors of the form ψ = (ψ0, ψ1(x1), ψ2(x1,x2), · · · ) where ψ0 ∈ C and ψn ∈ L2
s(R3n)

are symmetric in x1, . . . ,xn. The Hilbert space structure of F is given by (φ,ψ) =∑
n

∫
φnψndx.

Definition 2 For f ∈ L2(R3), we define the (unbounded, closed, densely defined)

creation operator a∗(f) : F → F and annihilation operator a(f̄) : F → F by

(
a∗(f)ψn−1

)
(x1,x2, · · · ,xn) =

1√
n

n∑
j=1

f(xj)ψn−1(x1, · · · ,xj−1,xj+1, · · · ,xn),

(
a(f)ψn+1

)
(x1,x2, · · · ,xn) =

√
n+ 1

∫
ψn+1(x,x1, · · · ,xn)f(x)dx.

11



The operator valued distributions a∗x and ax are then defined by

a∗(f) =

∫
f(x)a∗xdx,

a(f) =

∫
f(x)axdx.

These distributions satisfy the canonical commutation relations

[ax, a
∗
y] = δ(x− y), (1.11)

[ax, ay] = [a∗x, a
∗
y] = 0.

Thus, we compute(∫
a∗x∆axdx

)
ψn(x1,x2, · · · ,xn) =

n∑
j=1

∆xjψn(x1,x2, · · · ,xn)

and (∫
v3(x− y,x− z)a∗xa∗ya∗zaxayazdxdydz

)
ψn(x1,x2, · · · ,xn)

=
∑
i,j,k

v3(xi − xj,xi − xk)ψn(x1,x2, · · · ,xn).

These relations give us the right-hand side of the many-body Schrödinger equation

(1.10). So, we define the Fock space Hamiltonian with 3-body interaction to be

HN =

∫
a∗x∆axdx−

1

6N2

∫
v3(x− y,x− z)a∗xa∗ya∗zaxayazdxdydz

= H0 −
1

6N2
V. (1.12)

Then, of course, we want to apply the evolution operator eitHN to a BEC / factorized

state initial data. To obtain the factorized state initial data in Fock space, define

the vacuum state Ω ∈ F and the skew-Hermitian unbounded operator A by

Ω = (1, 0, 0, · · · )

A(φ) = a(φ)− a∗(φ). (1.13)
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Then,

e−
√
NA(φ0)Ω = e−N‖φ‖

2/2

(
1, · · · ,

(
Nn

n!

)1/2

φ0(x1) · · ·φ0(xn), · · ·
)
,

i.e., e−
√
NA(φ0)Ω renders the Fock space analogue of the initial data

ψN |t=0 =

N∏
i=1

φ0(xi)

in equation (1.10). Whence the Fock space representation of equation (1.10) is the

Hamiltonian evolution

eitHN e−
√
NA(φ0)Ω.

Let the one-particle wave function φ(t, x) solve the quintic Hartree equation

i
∂

∂t
φ+4φ− 1

2
φ

∫
v3(x− y,x− z) |φ(y)|2 |φ(z)|2 dydz = 0 (1.14)

subject to the initial condition φ(0, x) = φ0(x). Accordingly, then the mean field

approximation for eitHN e−
√
NA(φ0)Ω is the tensor product of φ(t, x), or, more specif-

ically,

ψMeanField = e−
√
NA(φ(t,·))Ω. (1.15)

A derivation of equation (1.14) is given in Section 3.2.

By assuming that the Hamiltonian HN is subject to the two body interaction

HN,2 =

∫
a∗x∆axdx−

1

2N

∫
v2(x− y)a∗xa

∗
yaxaydxdy

= H0 −
1

N
V2,

by the Fock space formalism of equation (1.10) with the two body interaction, Rodni-

anski and Schlein [35] derived a cubic Hartree equation for φ(t, x) (equation (1.17)).

13



They showed in [35] that the mean-field approximation works (under suitable as-

sumptions on v) in the sense that

1

N
‖
(
eitHN,2ψ0, a

∗
yaxe

itHN,2ψ0

)
−
(
e−
√
NA(φ(t,·))Ω, a∗yaxe

−
√
NA(φ(t,·))Ω

)
‖Tr

= O(
eCt

N
) N →∞ ;

where ‖ ·‖Tr stands for the trace norm in x ∈ R3 and y ∈ R3, and ψ0 = e−
√
NA(φ0)Ω.

For the precise statement of the problem and details of the proof, see Theorem 3.1 of

Rodnianski and Schlein [35]. Later, in [21, 22], GMM introduced a second-order cor-

rection (GMM type correction) to the mean field approximation of eitHN,2e−
√
NA(φ0)Ω

which greatly improved the error.

Instead of delving into the results in [21, 22], we state our main theorem first.

This makes it easier to compare our results with the ones in [21, 22].

Remark 3 For simplicity, let us write A(φ) as A, A(φ(t, ·)) as A(t), v3(x−y, x−z)

as v3,1−2,1−3, and φ(y) as φ2.

Theorem 2 If φ0, the initial datum, satisfies the conditions of

(i) finite mass:

‖φ0‖L2x = 1,

(ii) finite energy:

E0 =
1

2

∫
|∇φ0|

2 dx+
1

6

∫
v3(x− y,x− z) |φ0(x)|2 |φ0(y)|2 |φ0(z)|2 dxdydz

6 C1,

(iii) finite variance:

‖|·|φ0‖L2x 6 C2,
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then, based on the mean-field approximation, we can construct ψGMM , an improved

approximation of the wave functionthrough a kernel k(t,x,y) which satisfies an evo-

lution equation derived using the metaplectic representation. Moreover, ψGMM is a

second order approximation to the Hamiltonian evolution eitHN e−
√
NA(φ0)Ω for HN

defined in formula (1.12) and the following uniform in time error estimate holds

‖ψGMM − eitHN e−
√
NA(φ0)Ω ‖F 6

C√
N
,

where F is the Boson Fock space defined in Definition 1, and C depends only on v,

C1 and C2.

We remark that Theorem 2 also works when v0 has a proper singularity at the

origin. To be specific, if for some ε ∈ (0, 1
2
), we have

v0(x) =
χ(|x|)
|x|1−ε

, or G2+ε(x) (1.16)

where χ ∈ C∞0 (R+∪{0}) is nonnegative and decreasing and Gα the kernel of Bessel

potential, then Theorems 2 holds. Though we currently do not know the physical

meaning for such potentials if ε 6= 0, we would like to understand the analysis when

singularities appear since the derivation of the quintic NLS uses an interaction which

goes to a delta function when N → ∞. Due to the technicality of treating the

singularities, we restrict our analysis to the case of smooth potentials so that the

differences between the 2-body and 3-body interactions are easier to see.
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1.3.1 Comparison with Results in [21, 22]

In Theorem 2, if we change HN to HN,2, and equation (1.14) to

i
∂

∂t
φ+4φ− φ

∫
v2(x− y) |φ(y)|2 dy = 0, (1.17)

and make the corresponding changes in the construction of ψGMM , then the main

theorem in [21, 22] reads

‖ψGMM − eitHN,2e−
√
NA(0)Ω ‖F (1.18)

6 C(1 + t)
1
2

√
N

,

if v2(x) = χ(|x|)
|x| .

Compared with the above long time estimate, Theorem 2 demonstrates that

there is a substantial difference between the 3-body interaction case and 2-body

interaction. Technically speaking, the main difference between the 2-body and 3-

body interactions lies in the error terms that they produce for the respective many-

body wave functions. Though the analysis is more involved even if we assume

smooth potential and the formulas are considerably longer, the more complicated

error terms in the 3-body interaction case in fact allow more room to play. On the

one hand, an error term in the 3-body case carries at least a pair of u, p or φ which

satisfy some Schrödinger equations; for instance, the term

‖v3(x1 − y1, x1 − z1)ū(t, x2, x1)ū(t, y1, z1)‖L1tL2

in formula (3.25), can be estimated by Lemma 16. A typical error term in the

2-body case can carry only one term of u, p or φ; for example, the term

‖v2(x1 − y1)u(t, y1, x1)‖L1t ([0,T ])L2
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implicitly inside formula (47) of [21]. On the other hand, the error estimate in the

construction of the second-order correction involves L1
t , and we have no L

1
t dispersive

estimates for the Schrödinger equation. Therefore, due to the endpoint Strichartz

estimates [25], we can construct a L1
t (R+) estimate for the 3-body case which is

Lemma 16, without having the t
1
2 in the 2-body case which is necessary to apply

the L2
t Kato estimate in [21, 22]. Or in other words, we do Cauchy-Schwarz in time

differently.

For the reason stated above, one can not employ the 3-body case error estimate

in the 2-body case. Furthermore, the tools of error estimates in the 2-body case

[21, 22], do not apply to the 3-body case, regardless of whether v3 is regular or

singular like formula (1.16).

1.4 Organization of the Thesis

The rest of this thesis is devoted to the proofs of Theorems 1 and 2. First, in

Chapter 2, we establish Theorem 1. Then, in Chapter 3, we show Theorem 2.

1.5 Conclusion and Further Questions

In this thesis, we have derived rigorously the 2d cubic NLS with anisotropic

switchable quadratic traps through a modified Elgart-Erdös-Schlein-Yau procedure.

We also derived a 2nd order correction to the mean field approximation subject to

3-body interaction and no external potential.

The main novelty of the work regarding the 2d cubic NLS with anisotropic
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switchable quadratic traps is that I allow a quadratic trap in the analysis while

previous work was done without a trap. I also allow switches on the trap. Even if

all the switches are constant 1, it is a new result.

The main novelty of the work regarding 2nd order correction to the mean field

approximation is that the error estimate holds uniformly in time.

There are many interesting problems and there is room for refinements in this

field. Here are a few of the questions that I am working on and are future avenues

for research.

After looking at Theorem 1, it is natural to wonder what we can say about

the 3d case. The 3d case is the most physically interesting.

There are also many question to ask on the second-order correction to the

mean-field approximation in Theorem 2 since it is fairly new. I would like to continue

the study in these two directions:

1) Consider the second-order correction with more singular potentials. It is

interesting to use the potential of the form we used in Theorem 1 and ask whether

one can derive the cubic or quintic nonlinear Schrödinger equations through the

second order correction. The error estimate in [8] shows an unexpected application

of the endpoint Strichartz estimate in [25]. We might understand this connection

better by considering more singular potentials.

2) Construct the second order correction in the presence of a time-dependent

trap and give a deeper explanation of the construction of it. When a time-dependent

trap appears in the Hamiltonian like Theorem 1, the evolution is no longer an

exponential which is a structure easier to deal with in the Lie algebra settings.
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Moreover, the construction in [8] in fact applies to more general initial data other

than factorized states.
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Chapter 2

Proof of Theorem 1

2.1 Main Auxiliary Theorems

To obtain Theorem 1, we need the auxiliary theorems in this subsection which

are of independent interest. We show them in 3d as well. On the one hand, the

general idea for the 2d case is derived from the higher dimensional case. On the

other hand, the 2d and 3d cases are dramatically different when they are viewed

in the context of Theorem 1. We will explain this difference between the 2d and

3d case in Section 2.7. For the moment, notice that the uniqueness theorems in

2d and 3d address two different Gross-Pitaevskii hierarchies which stand for the

two sides of the lens transform. Also, we currently do not have a 3d version of the

2d convergence / Theorem 1. We state our auxiliary theorems regarding different

dimensions separately for comparison.

First, we have the following collapsing estimates which generalizes estimate

1.6.

Theorem 3 (3*n-d optimal collapsing estimate) Let n = 2 or 3, write

Lx(t) =
n∑
l=1

al(t)
∂2

∂x2
l

, (2.1)

where the L1
loc functions al satisfy

al > c0 > 0 a.e.
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Furthermore, assume that u(t,x1,x2,x
′
2) solves the Schrödinger equation

iut + Lx1(t)u+ Lx2(t)u± Lx′2(t)u = 0 in R3n+1 (2.2)

u(0,x1,x2,x
′
2) = f(x1,x2,x

′
2).

Then,

∫
Rn+1

∣∣∣|∇x|n−12 u(t,x,x,x)
∣∣∣2 dxdt 6 C

∥∥∥|∇x1|n−12 |∇x2|n−12 ∣∣∇x′2∣∣n−12 f
∥∥∥2

2
.

Theorem 3 is a scale invariant estimate when al = 1 hence it is optimal. In

fact, it holds for all n > 2. The proof is different for n = 2 and n > 3. We name

the third spatial variables x′2 to match the uniqueness theorems. We point out that

Kirkpatrick, Schlein and Staffi lani [27] proved the almost optimal result for the 2d

constant coeffi cient case. Some other collapsing estimates were attained in [7, 20].

2.1.1 2d Auxiliary Theorems

Theorem 3 is the key to show the following uniqueness theorem.

Theorem 4 (Uniqueness of 2d GP with time-dependent coeffi cients) Let Lxk be in

formula (2.1) and Bj,k+1 be defined via formula (1.8). Say
{
u(k)(τ ,−→yk;

−→
y′k)
}∞
k=1

solves

the Gross-Pitaevskii hierarchy with variable coeffi cients

(
i∂t + L−−−→xk+1(t)− L−−−→x′k+1

(t)
)
u(k) = b0

k∑
j=1

Bj,k+1

(
u(k+1)

)
,

subject to zero initial data and the space-time bound

∫ T

0

∥∥∥∥∥
k∏
j=1

(∣∣∇xj ∣∣ 12 ∣∣∣∇x′j ∣∣∣ 12)Bj,k+1u
(k+1)(t, ·; ·)

∥∥∥∥∥
L2(R2k×R2k)

dt 6 Ck
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for some C > 0 and all 1 6 j 6 k. Then ∀k, t ∈ [0, T ],∥∥∥∥∥
k∏
j=1

(∣∣∇xj ∣∣ 12 ∣∣∣∇x′j ∣∣∣ 12)u(k)(t, ·; ·)
∥∥∥∥∥
L2(R2k×R2k)

= 0.

In contrast to the standard Elgart-Erdös-Schlein-Yau program, we do not

need a uniqueness theorem regarding the Gross-Pitaevskii hierarchy with anisotropic

switchable quadratic traps (hierarchy (1.7)) to establish Theorem 1. It is enough to

have Theorem 4 which has no quadratic potential inside. At a glance, the analysis of

the above hierarchy based on the Laplacian is unrelated to the hierarchy (1.7) based

on a Hermite like operator Hy(τ). However, Carles’generalized lens transform [3]

links them together. In fact, the generalized lens transform preserves the L2 critical

NLS and thus the 2d Gross-Pitaevskii hierarchies. The specific version of the lens

transform we need is provided in Section 2.4.

2.1.2 3d Auxiliary Theorems

As mentioned before, the uniqueness theorem here addresses a different hierar-

chy from Theorem 4. Of course we can prove a 3d version of Theorem 4. However,

the disparity between the 2d and 3d case renders such a theorem of little value

because the lens transform does not preserve the 3d cubic NLS. See Section 2.7 for

details.

We consider the norm

∥∥R(k)
τ γ(k)(τ , ·; ·)

∥∥
L2(R3k×R3k)

(2.3)

in which

R(k)
τ =

(∏k
j=1 Pyj(τ)Py′j(−τ)

)
,
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Py(τ) =


iβ1(τ) ∂

∂y1
+ β̇1(τ)y1

iβ2(τ) ∂
∂y2

+ β̇2(τ)y2

iβ3(τ) ∂
∂y3

+ β̇3(τ)y3

 ,

where βl solves

β̈l(τ) + ηl(τ)βl(τ) = 0, βl(0) = 1, β̇l(0) = 0. (2.4)

The operator iβl(τ) ∂
∂yl

+ β̇l(τ)yl was introduced by Carles in [3]. Lemma 3 and

relation (2.12) indicate that the norm (2.3) is natural. That is because this operator

is in fact the evolution of the momentum operator −i∇. We will compute it in

Section 2.8.

Through a specific generalized lens transform (Proposition 3) we produce the

collapsing estimate which is the key estimate to our 3d uniqueness theorem regarding

hierarchy (1.7) when n = 3.

Theorem 5 Let [s, T ] ⊂ [0, T0] and βl be defined through equation (2.4), assume

that γ(k+1)(τ ,yk+1;y′k+1) satisfies the homogeneous equation

(
i∂τ −

1

2
H−−−→yk+1(τ) +

1

2
H−−−→
y′k+1

(τ)

)
γ(k+1) = 0 (2.5)

γ(k+1)(0,−−→yk+1;
−−→
y′k+1) = γ

(k+1)
0 (−−→yk+1;

−−→
y′k+1).

Then there exists a C > 0 independent of γ(k+1)
0 , j, k, s, and T s.t.

∥∥R(k)
τ Bj,k+1

(
γ(k+1)

)∥∥2

L2([s,T ]×R3k×R3k)

6 C

(
inf

τ∈[0,T0]

3∏
l=2

β2
l (τ)

)−1 ∥∥R(k+1)
τ γ(k+1)

∥∥2

L2(R3(k+1)×R3(k+1)) ,

where the τ on the RHS of the above estimate can be chosen freely in [s, T ],
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From Theorem 5, we can state the following.

Theorem 6 (Uniqueness of 3d GP with anisotropic switchable quadratic traps) Let{
γ(k)(τ ,−→yk;

−→
y′k)
}∞
k=1

solve the 3d Gross-Pitaevskii hierarchy with anisotropic switch-

able quadratic traps (hierarchy 1.7 when n = 3) subject to zero initial data and the

space-time bound ∫ T0

0

∥∥R(k)
τ Bj,k+1γ

(k+1)(τ , ·; ·)
∥∥
L2(R3k×R3k)

dτ 6 Ck (2.6)

for some C > 0 and all 1 6 j 6 k. Then ∀k, τ ∈ [0, T0],

∥∥R(k)
τ γ(k)(τ , ·; ·)

∥∥
L2(R3k×R3k)

= 0.

Remark 4 It is currently unknown how to show directly that the limit of γ(k)
N in 3d

satisfies the space-time bound (2.6).

2.2 Proof of Theorem 3 when n = 3 / 3*3d Collapsing Estimate

We will make use of the lemma.

Lemma 1 [29]Let ξ ∈ R3 and P be a 2d plane or sphere in R3 with the usual

induced surface measure dS.

(1) Say 0 < a, b < 2, a+ b > 2, then∫
P

dS(η)

|ξ − η|a |η|b
6 C

|ξ|a+b−2
.

(2) Say ε = 1
10
, then∫

P

dS(η)∣∣ξ
2
− η

∣∣ |ξ − η|2−ε |η|2−ε 6 C

|ξ|3−2ε .

Both constants in the above estimates are independent of P.
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Proof. See pages 174 - 175 of [29].

By duality, to gain Theorem 3 when n = 3, it suffi ces to prove∣∣∣∣∫
R3+1
|∇x|u(t,x,x,x)h(t,x)dxdt

∣∣∣∣ 6 C ‖h‖2

∥∥∇x1∇x2∇x′2f∥∥2
.

Let

At =


∫ t

0
a1(s)ds 0 0

0
∫ t

0
a2(s)ds 0

0 0
∫ t

0
a3(s)ds

 ,

then it brings the solution of equation (2.2)

u(t,x1,x2,x
′
2) =

∫
ei(ξ

T
1 Atξ1+ξT2 Atξ2±(ξ′2)TAtξ

′
2)eix1ξ1eix2ξ2eix

′
2ξ
′
2 f̂(ξ1, ξ2, ξ

′
2)dξ1dξ2dξ

′
2.

Accordingly, the spatial Fourier transform of |∇x|u(t,x,x,x) is

|ξ1|
∫
ei((ξ1−ξ2−ξ

′
2)TAt(ξ1−ξ2−ξ′2)+ξT2 Atξ2±(ξ′2)TAtξ

′
2)f̂(ξ1 − ξ2 − ξ′2, ξ2, ξ

′
2)dξ2dξ

′
2,

which allows us to compute∣∣∣∣∫ |∇x|u(t,x,x,x)h(t,x)dxdt

∣∣∣∣2
=

∣∣∣∣ ∫ |ξ1| ei((ξ1−ξ2−ξ
′
2)TAt(ξ1−ξ2−ξ′2)+ξT2 Atξ2±(ξ′2)TAtξ

′
2)f̂(ξ1 − ξ2 − ξ′2, ξ2, ξ

′
2)

ĥ(t, ξ1)dtdξ1dξ2dξ
′
2

∣∣∣∣2 (spatial Fourier transform on h)

=

∣∣∣∣ ∫ (∫ |ξ1| ei((ξ1−ξ2−ξ
′
2)TAt(ξ1−ξ2−ξ′2)+ξT2 Atξ2±(ξ′2)TAtξ

′
2)ĥ(t, ξ1)dt

)
f̂(ξ1 − ξ2 − ξ′2, ξ2, ξ

′
2)dξ1dξ2dξ

′
2

∣∣∣∣2
6 I(h)

∥∥∇x1∇x2∇x′2f∥∥2

L2
(Cauchy-Schwarz),

where

I(h) =

∫ |ξ1|
2
∣∣∣∫ ei((ξ1−ξ2−ξ′2)TAt(ξ1−ξ2−ξ′2)+ξT2 Atξ2±(ξ′2)TAtξ

′
2)ĥ(t, ξ1)dt

∣∣∣2
|ξ1 − ξ2 − ξ′2|

2 |ξ2|
2 |ξ′2|

2 dξ1dξ2dξ
′
2.
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So the target of the remainder of this section is to show

I(h) 6 C ‖h‖2
L2 .

Noticing that the integral I(h) is symmetric in |ξ1 − ξ2 − ξ′2| and |ξ2| , it suffi ces

that we deal with the region |ξ1 − ξ2 − ξ′2| > |ξ2| only. We separate this region into

two parts, which we refer to as Cases I and II.

When the "±" sign in equation (2.2) is ” + ”, Case I is suffi cient. To show the

estimate for the ”− ” sign, we need both Cases I and II.

Away from |ξ1 − ξ2 − ξ′2| > |ξ2|, there are other restrictions on the integration

regions in Cases I and II. We state the restrictions in the beginning of both Cases I

and II. Due to the limited space near "
∫
", we omit the actual region. The reader

should bear this in mind during reading.

2.2.1 Case I: I(h) restricted to the region
∣∣ξ′2∣∣ < |ξ2| with integration

order dξ2 prior to dξ
′
2

Write the phase function of the dt integral inside I(h) as

(ξ1 − ξ2 − ξ′2)
T
At (ξ1 − ξ2 − ξ′2) + ξT2Atξ2 ± (ξ′2)

T
Atξ

′
2

=
(ξ1 − ξ′2)

T
At (ξ1 − ξ′2)

2
+ 2

(
ξ2 −

ξ1 − ξ′2
2

)T
At

(
ξ2 −

ξ1 − ξ′2
2

)
± (ξ′2)

T
Atξ

′
2.

The change of variable

ξ2,new = ξ2,old −
ξ1 − ξ′2

2
(2.7)
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leads to

I(h) =

∫ |ξ1|
2

∣∣∣∣∫ ei( (ξ1−ξ
′
2)TAt(ξ1−ξ

′
2)

2
+2ξT2 Atξ2±(ξ′2)TAtξ

′
2)ĥ(t, ξ1)dt

∣∣∣∣2∣∣∣ξ2 −
ξ1−ξ′2

2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2 |ξ′2|2 dξ1dξ2dξ
′
2

=

∫ |ξ1|
2∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2 |ξ′2|2 e
i(2

(ξ1−ξ
′
2)TAt(ξ1−ξ

′
2)

2
+2ξT2 Atξ2±(ξ′2)TAtξ

′
2)

e−i(
(ξ1−ξ

′
2)TAt′ (ξ1−ξ

′
2)

2
+2ξT2 At′ξ2±(ξ′2)TAt′ξ

′
2)ĥ(t, ξ1)ĥ(t′, ξ1)dtdt′dξ1dξ2dξ

′
2

=

∫
dξ1

∫
J(ĥ)(t, ξ1)ĥ(t, ξ1)dt

where

J(ĥ)(t, ξ1) =

∫ |ξ1|
2 ei2ξ

T
2 Atξ2e−i2ξ

T
2 At′ξ2∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2 |ξ′2|2
ei(

(ξ1−ξ
′
2)T (At−At′)(ξ1−ξ

′
2)

2
±(ξ′2)T (At−At′ )ξ′2)ĥ(t′, ξ1)dt′dξ2dξ

′
2.

Assume for the moment that∫ ∣∣∣J(ĥ)(t, ξ1)
∣∣∣2 dt 6 C

∥∥∥ĥ(·, ξ1)
∥∥∥2

L2t

with C independent of h or ξ1, then

I(h) 6 C

∫
dξ1

∥∥∥ĥ(·, ξ1)
∥∥∥2

L2t

.

Hence we end Case I by this proposition.

Proposition 1 ∫
|J(f)(t, ξ1)|2 dt 6 C ‖f(·, ξ1)‖2

L2t

where C is independent of f or ξ1.

Remark 5 To avoid confusing notation in the proof of the proposition, we use

f(t′, ξ1) to replace ĥ(t′, ξ1).
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Proof. Again, by duality, we just need to prove

∣∣∣∣∫ J(f)(t, ξ1)g(t)dt

∣∣∣∣ 6 C ‖f(·, ξ1)‖L2t ‖g‖L2t .

For convenience, let

φ(t, ξ1, ξ
′
2) =

(ξ1 − ξ′2)
T
At (ξ1 − ξ′2)

2
± (ξ′2)

T
Atξ

′
2.

Then

∣∣∣∣∫ J(f)(t, ξ1)g(t)dt

∣∣∣∣
=

∣∣∣∣ ∫ dtdt′dξ2dξ
′
2

|ξ1|
2 ei2ξ

T
2 Atξ2e−i2ξ

T
2 At′ξ2∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2 |ξ′2|2
(
e−iφ(t,ξ1,ξ

′
2)g(t)

)
(
e−iφ(t′,ξ1,ξ

′
2)f(t′, ξ1)

) ∣∣∣∣
=

∣∣∣∣ ∫ |ξ1|
2 dξ2dξ

′
2∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2 |ξ′2|2
(∫

e2iξT2 Atξ2

(
e−iφ(t,ξ1,ξ

′
2)g(t)

)
dt

)
(∫

e−2iξT2 At′ξ2
(
e−iφ(t′,ξ1,ξ

′
2)f(t′, ξ1)

)
dt′
) ∣∣∣∣

6
∫ |ξ1|

2 dξ′2

|ξ′2|
2

∫
dξ2∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2∣∣∣∣∫ e2iξT2 Atξ2

(
e−iφ(t,ξ1,ξ

′
2)g(t)

)
dt

∣∣∣∣ ∣∣∣∣∫ e−2iξT2 At′ξ2
(
e−iφ(t′,ξ1,ξ

′
2)f(t′, ξ1)

)
dt′
∣∣∣∣

To deal with the dt and dt′ integrals, for every fixed ξ2, let

u(t) = 2
ξT2Atξ2

|ξ2|
2

then

du

dt
= 2

a1(t)ξ2
2,1 + a2(t)ξ2

2,2 + a3(t)ξ2
2,3

|ξ2|
2 > 2c0 > 0

which provides a well-defined inverse t(u).
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Consequently, the integral

∫
e2iξT2 Atξ2

(
e−iφ(t,ξ1,ξ

′
2)g(t)

)
dt =

∫
e−iu|ξ2|

2

(
e−iφ(t(u),ξ1,ξ

′
2)g(t(u))

∣∣∣∣ dtdu
∣∣∣∣) du,

is indeed the Fourier transform of

G(u) = e−iφ(t(u),ξ1,ξ
′
2)g(t(u))

∣∣∣∣ dtdu
∣∣∣∣ .

This is well-defined since

∫
R
|G(u)|2 du =

∫
R

∣∣∣∣e−iφ(t(u),ξ1,ξ2)g(t(u))

∣∣∣∣ dtdu
∣∣∣∣∣∣∣∣2 du =

∫
R
|g(t)|2

∣∣∣∣ dtdu
∣∣∣∣ dt

6 1

2c0

‖g(·)‖2
L2t
.

Hence

∣∣∣∣∫ J(f)(t, ξ1)g(t)dt

∣∣∣∣
6

∫ |ξ1|
2 dξ′2

|ξ′2|
2

∫
dξ2∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2∣∣∣∣∫ e2iξT2 Atξ2

(
e−iφ(t,ξ1,ξ2)g(t)

)
dt

∣∣∣∣ ∣∣∣∣∫ e−2iξT2 At′ξ2
(
e−iφ(t′,ξ1,ξ2)f(t′, ξ1)

)
dt′
∣∣∣∣

=

∫ |ξ1|
2 dξ′2

|ξ′2|
2

∫ ∣∣∣Ĝ(|ξ2|
2)F̂ (|ξ2|

2 , ξ1)
∣∣∣∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2dξ2

=

∫ |ξ1|
2 dξ′2

|ξ′2|
2

∫ ∣∣∣F̂ (ρ2, ξ1)Ĝ(ρ2)
∣∣∣∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2ρ2dρdσ

(spherical coordinate in ξ2)

6
∫ |ξ1|

2 dξ′2

|ξ′2|
2 sup

ρ

∫ ρ2dσ

ρ
∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2


(∫ ∣∣∣F̂ (ρ2, ξ1)
∣∣∣2 ρdρ) 1

2
(∫ ∣∣∣Ĝ(ρ2)

∣∣∣2 ρdρ) 1
2

(Hölder in ρ)
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6 C ‖f(·, ξ1)‖L2t ‖g‖L2t


∫ |ξ1|

2

|ξ′2|
2 sup

ρ

∫ ρ2dσ

ρ
∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2
 dξ′2


However,

∫ |ξ1|
2

|ξ′2|
2 sup

ρ

∫ ρ2dσ

ρ
∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 ∣∣∣ξ2 + ξ1−ξ′2
2

∣∣∣2
 dξ′2

=

∫ |ξ1|
2

|ξ′2|
2 sup

ρ

∫
∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 dσ∣∣∣ξ2 −
ξ1−ξ′2

2

∣∣∣ |ξ1 − ξ2 − ξ′2|
2 |ξ2|

2

 dξ′2

(Reverse the change of variable in formula (2.7) .)

= |ξ1|
2

∫
dξ′2

|ξ′2|
2+2ε sup

ρ

∫
∣∣∣ξ2 −

ξ1−ξ′2
2

∣∣∣2 dσ∣∣∣ξ2 −
ξ1−ξ′2

2

∣∣∣ |ξ1 − ξ2 − ξ′2|
2−ε |ξ2|

2−ε


6 C |ξ1|

2

∫
dξ′2

|ξ′2|
2+2ε |ξ1 − ξ′2|

3−2ε (Second part of Lemma 1)

6 C.

In the above calculation, the σ in the first line lives on the unit sphere centered

at the origin while the σ in the second line is on a unit sphere centered at ξ1−ξ
′
2

2
.

We use the same symbol because Lebesgue measure is translation invariant.

Thus, ∣∣∣∣∫ J(f)(t, ξ1)g(t)dt

∣∣∣∣ 6 C ‖f(·, ξ1)‖L2t ‖g‖L2t .

Remark 6 Because the integral I(h) is also symmetric in ξ2 and ξ
′
2 when the "±"

in equation (2.2) is "+", we have acquired the estimate in that case. In Case II, we

will assume that "±" is "−".
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2.2.2 Case II: I(h) restricted to the region
∣∣ξ′2∣∣ > |ξ2| with integra-

tion order dξ′2 prior to dξ2

This time we write the phase function to be

(ξ1 − ξ2 − ξ′2)
T
At (ξ1 − ξ2 − ξ′2) + ξT2Atξ2 − (ξ′2)

T
Atξ

′
2

= (ξ1 − ξ2)T At (ξ1 − ξ2)− 2 (ξ1 − ξ2)T Atξ
′
2 + ξT2Atξ2

= φ(t, ξ1, ξ2)− 2 (ξ1 − ξ2)T Atξ
′
2.

and let

J
(
ĥ
)

(t, ξ1) =

∫ |ξ1|
2 e−2i(ξ1−ξ2)TAtξ

′
2e2i(ξ1−ξ2)TAt′ξ

′
2

|ξ1 − ξ2 − ξ′2|
2 |ξ2|

2 |ξ′2|
2

e−iφ(t′,ξ1,ξ2)e−iφ(t,ξ1,ξ
′
2)ĥ(t′, ξ1)dt′dξ′2dξ2.

Again, we want to prove

Proposition 2 ∫
|J(f)(t, ξ1)|2 dt 6 C ‖f(·, ξ1)‖2

L2t

where C is independent of f or ξ1.

Proof. We calculate∣∣∣∣∫ J(f)(t, ξ1)g(t)dt

∣∣∣∣
=

∣∣∣∣ ∫ |ξ1|
2 e−2i(ξ1−ξ2)TAtξ

′
2e2i(ξ1−ξ2)TAt′ξ

′
2

|ξ1 − ξ2 − ξ′2|
2 |ξ2|

2 |ξ′2|
2

(
e−iφ(t,ξ1,ξ2)g(t)

)
(
e−iφ(t′,ξ1,ξ2)f(t′, ξ1)

)
dtdt′dξ′2dξ2

∣∣∣∣
=

∣∣∣∣ ∫ |ξ1|
2 dξ2dξ

′
2

|ξ1 − ξ2 − ξ′2|
2 |ξ2|

2 |ξ′2|
2

(∫
e−2i(ξ1−ξ2)TAtξ

′
2

(
e−iφ(t,ξ1,ξ2)g(t)

)
dt

)
(∫

e2i(ξ1−ξ2)TAt′ξ2
(
e−iφ(t′,ξ1,ξ2)f(t′, ξ1)

)
dt′
) ∣∣∣∣
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6
∫ |ξ1|

2 dξ2

|ξ2|
2

∫
dξ′2

|ξ1 − ξ2 − ξ′2|
2 |ξ′2|

2

∣∣∣∣∫ e−2i(ξ1−ξ2)TAtξ
′
2

(
e−iφ(t,ξ1,ξ2)g(t)

)
dt

∣∣∣∣∣∣∣∣∫ e2i(ξ1−ξ2)TAt′ξ
′
2

(
e−iφ(t′,ξ1,ξ2)f(t′, ξ1)

)
dt′
∣∣∣∣

Fix ξ1 − ξ2 and ξ
′
2, write∫

e−2i(ξ1−ξ2)TAtξ
′
2

(
e−iφ(t,ξ1,ξ

′
2)g(t)

)
dt =

∫
e−2i|ξ1−ξ2|ωTAtξ′2

(
e−iφ(t,ξ1,ξ

′
2)g(t)

)
dt

where ω = (ω1, ω2, ω3) is a unit vector in R3. Without loss of generality, we assume

max {|ω1| , |ω2| , |ω3|} = |ω1|

which implies

1√
3
6 |ω1| 6 1.

Let us further assume that ω1 > 0 (the proof works exactly the same for the ω1 < 0

case), then we can write

ξ′2 = (x, 0, 0) + (0, y1, y2)

u(t) = 2ω1

∫ t

0

a1(s)ds.

Again u is invertible with

du

dt
> 2c0√

3
> 0.

So we have

∫
e−2i(ξ1−ξ2)TAtξ

′
2

(
e−iφ(t,ξ1,ξ

′
2)g(t)

)
dt

=

∫
e−2i|ξ1−ξ2|ωTAt′ξ′2

(
e−iφ(t,ξ1,ξ

′
2)g(t)

)
dt

=

∫
e−iu(ω1|ξ1−ξ2|x)

(
e−2i|ξ1−ξ2|(0,ω2,ω3)TAt(u)(0,y1,y2)e−iφ(t(u),ξ1,ξ

′
2)g(t(u))

∣∣∣∣ dtdu
∣∣∣∣) du

= Ĝ(−ω1 |ξ1 − ξ2|x)
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where

G(u) = e−2i|ξ1−ξ2|(0,ω2,ω3)TAt(u)(0,y1,y2)e−iφ(t(u),ξ1,ξ
′
2)g(t(u))

∣∣∣∣ dtdu
∣∣∣∣

which still has the property that

∫
|G(u)|2 du 6

√
3

2c0

∫
|g(t)|2 dt.

Just as in case 1, this procedure hands us∣∣∣∣∫ J(f)(t, ξ1)g(t)dt

∣∣∣∣
6

∫ |ξ1|
2 dξ2

|ξ2|
2

∫
dξ′2

|ξ1 − ξ2 − ξ′2|
2 |ξ′2|

2

∣∣∣∣∫ e−2i(ξ1−ξ2)TAtξ
′
2

(
e−iφ(t,ξ1,ξ2)g(t)

)
dt

∣∣∣∣∣∣∣∣∫ e2i(ξ1−ξ2)TAt′ξ
′
2

(
e−iφ(t′,ξ1,ξ2)f(t′, ξ1)

)
dt′
∣∣∣∣

=

∫ |ξ1|
2

|ξ2|
2dξ2(∫

dxdy1dy2

|ξ1 − ξ2 − ξ′2|
2 |ξ′2|

2

∣∣∣Ĝ(−ω1 |ξ1 − ξ2|x)F̂ (−ω1 |ξ1 − ξ2|x, ξ1)
∣∣∣)

=

∫ (∫
dxdy1dy2

|ξ1 − ξ2 − ξ′2|
2 |ξ′2|

2

∣∣∣Ĝ(x)F̂ (x, ξ1)
∣∣∣) |ξ1|

2

|ω1| |ξ1 − ξ2| |ξ2|
2dξ2

6 C

∫ |ξ1|
2

|ξ1 − ξ2| |ξ2|
2

(
sup
x

∫
dy1dy2

|ξ1 − ξ2 − ξ′2|
2 |ξ′2|

2

)
(∫ ∣∣∣F̂ (x, ξ1)

∣∣∣2 dx) 1
2
(∫ ∣∣∣Ĝ(x)

∣∣∣2 dx) 1
2

dξ2 (Hölder in x)

6 C ‖f(·, ξ1)‖L2t ‖g‖L2t

∫ |ξ1|
2

2 |ξ1 − ξ2| |ξ2|
2

(
sup
x

∫
dy1dy2

|ξ1 − ξ2 − ξ′2|
2 |ξ′2|

2

)
dξ2

The first part of Lemma 1 and the restrictions that |ξ1 − ξ2 − ξ′2| > |ξ2| and |ξ′2| <

|ξ2| show ∫ |ξ1|
2

2 |ξ1 − ξ2| |ξ2|
2

(
sup
x

∫
dy1dy2

|ξ1 − ξ2 − ξ′2|
2 |ξ′2|

2

)
dξ2

6
∫ |ξ1|

2

2 |ξ1 − ξ2| |ξ2|
2+2ε

(
sup
x

∫
dy1dy2

|ξ1 − ξ2 − ξ′2|
2−ε |ξ′2|

2−ε

)
dξ2
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6 C

∫ |ξ1|
2 dξ2

2 |ξ1 − ξ2|
3−2ε |ξ2|

2+2ε

6 C,

which finishes the proposition.

2.3 Proof of Theorem 3 when n = 2 / 3*2d Collapsing Estimate

By the proof of the n = 3 case in Section 2.2, we only need to show these two

estimates:

Case I Under the restrictions
∣∣ξ1 − ξ2,old − ξ′2

∣∣ > ∣∣ξ2,old

∣∣ and |ξ′2| < ∣∣ξ2,old

∣∣, we have
∫ |ξ1|
|ξ′2|

sup
ρ

∫ dσ(ξ2,new)∣∣∣ξ2,new −
ξ1−ξ′2

2

∣∣∣ ∣∣∣ξ2,new + ξ1−ξ′2
2

∣∣∣
 dξ′2 6 C

where ξ2,new and ξ2,old are related by formula (2.7) and we write

ξ2,new=ρσ with σ ∈ S1.

Case II Under the restrictions |ξ1 − ξ2 − ξ′2| > |ξ2| and |ξ′2| > |ξ2|, we have∫ |ξ1|
|ξ1 − ξ2| |ξ2|

(
sup
x

∫
dy

|ξ1 − ξ2 − ξ′2| |ξ′2|

)
dξ2 6 C.

where ξ′2 = (x, y).

Lemma 1 plays an important role in giving the corresponding estimates in

Section 2.2. In the 2d case, the subsequent lemma provides its replacement.

Lemma 2 Let ξ ∈ R2 and L be a 1d line or circle in R2 with the usual induced line

element dS.
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(1) Say 0 < a, b < 1, a+ b > 1, then there exists a C independent of L s.t.∫
L

dS(η)

|ξ − η|a |η|b
6 C

|ξ|a+b−1
.

(2) Let ε = 1
80
, then

sup
|η|

(∫
S1

dσ(η)

|ξ − η|1−ε |ξ + η|1−ε
)
6 C

|ξ|2−2ε .

Proof. We will show the second part in the end of this section. The first part

shares the exact same proof with Lemma 2.2 in [29].

2.3.1 Proof of Case I

The change of variable (2.7) turns the restrictions into∣∣∣∣ξ2,new −
ξ1 − ξ′2

2

∣∣∣∣ =
∣∣ξ1 − ξ2,old − ξ′2

∣∣ > ∣∣ξ2,old

∣∣ > |ξ′2| ,∣∣∣∣ξ2,new +
ξ1 − ξ′2

2

∣∣∣∣ =
∣∣ξ2,old

∣∣ > |ξ′2| .
Notice that ξ2,new=ρσ, we in fact have∫ |ξ1|

|ξ′2|
sup
ρ

∫ dσ
(
ξ2,new

)∣∣∣ξ2,new −
ξ1−ξ′2

2

∣∣∣ ∣∣∣ξ2,new + ξ1−ξ′2
2

∣∣∣
 dξ′2

6
∫ |ξ1|
|ξ′2|

1+2ε sup
ρ

∫
S1

dσ
(
ξ2,new

)∣∣∣ξ2,new −
ξ1−ξ′2

2

∣∣∣1−ε ∣∣∣ξ2,new + ξ1−ξ′2
2

∣∣∣1−ε
 dξ′2

6 C |ξ1|
∫

1

|ξ′2|
1+2ε

1

|ξ1 − ξ′2|
2−2εdξ

′
2 (Second part of Lemma 2)

6 C.

2.3.2 Proof of Case II

Recall that ξ′2 = (x, y), we estimate
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∫ |ξ1|
|ξ1 − ξ2| |ξ2|

(
sup
x

∫
dy

|ξ1 − ξ2 − ξ′2| |ξ′2|

)
dξ2

6
∫ |ξ1|
|ξ1 − ξ2| |ξ2|

1+2ε

(
sup
x

∫
dy

|ξ1 − ξ2 − ξ′2|
1−ε |ξ′2|

1−ε

)
dξ2

6 C |ξ1|
∫

1

|ξ1 − ξ2|
2−2ε |ξ2|

1+2εdξ2 (First part of Lemma 2)

6 C.

2.3.3 Proof of the Second Part of Lemma 2

Due to

|ξ| 6 |ξ − η|+ |ξ + η| ,

we can separate the integral as

sup
|η|

(∫
S1

dσ(η)

|ξ − η|1−ε |ξ + η|1−ε
)

6 sup
|η|

(∫
S1 and |ξ−η|> |ξ|

2

)
+ sup
|η|

(∫
S1 and |ξ+η|> |ξ|

2

)
.

We will only show

sup
|η|

(∫
S1 and |ξ+η|> |ξ|

2

dσ(η)

|ξ − η|1−ε |ξ + η|1−ε

)
6 C

|ξ|2−2ε

since the other part is similar. It is clear that

sup
|η|

(∫
S1 and |ξ+η|> |ξ|

2

dσ(η)

|ξ − η|1−ε |ξ + η|1−ε

)
6 C

|ξ|1−ε
sup
|η|

(∫
S1

dσ(η)

|ξ − η|1−ε
)
. (2.8)

Rotate S1 such that ξ is on the positive x axis, then write η = ρeiθ for (ρ cos θ, ρ sin θ)

and observe:
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• When θ ∈ [0, π
2
] ∪ [3π

2
, 2π],

∣∣ρeiθ − (|ξ| , 0)
∣∣ > |ξ| |sin θ|

because |ξ| |sin θ| is the distance between the point (|ξ| , 0) and the line (angle =

θ).

• When θ ∈ [π
2
, 3π

2
], ∣∣ρeiθ − (|ξ| , 0)

∣∣ > |ξ|
because ρeiθ− (|ξ| , 0) is the longest edge in the obtuse triangle which consists

of ρeiθ, (|ξ| , 0) and ρeiθ − (|ξ| , 0).

Insert these two elementary observations into estimate (2.8), we have

sup
|η|

(∫
S1 and |ξ+η|> |ξ|

2

dσ(η)

|ξ − η|1−ε |ξ + η|1−ε

)

6 C

|ξ|1−ε
sup
|η|

(∫
S1

dσ(η)

|ξ − η|1−ε
)

6 C

|ξ|1−ε

[
sup
ρ

(∫ 3π
2

π
2

dθ

|ρeiθ − (|ξ| , 0)|1−ε

)
+ 2 sup

ρ

(∫ π
2

0

dθ

|ρeiθ − (|ξ| , 0)|1−ε

)]

6 C

|ξ|1−ε

[(∫ 3π
2

π
2

dθ

|ξ|1−ε

)
+ 2

(∫ π
2

0

dθ

||ξ| sin θ|1−ε

)]
6 C

|ξ|2−2ε .

To show the other part, namely

sup
|η|

(∫
S1 and |ξ−η|> |ξ|

2

dσ(η)

|ξ − η|1−ε |ξ + η|1−ε

)
6 C

|ξ|2−2ε ,

one just needs to notice

|ξ + η| =
∣∣(|ξ| , 0)− ρei(θ+π)

∣∣ ,
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then one can proceed as above. Therefore we conclude the proof of the second part

of Lemma 2.

2.4 The Lens Transform / Preparation for Theorem 5

From now on, we enter the proof of Theorems 5 and 6. We set n = 3 until

Section 2.7. In this section, we set up the tools involved in the proof of Theorem 5.

We build the lens transform we need and state the related properties. For simplicity

of notations, we write U (k+1)(τ ; s) to be the solution operator of equation (2.5) and

Uy(τ ; s) to be the solution operator of(
i∂τ −

1

2
Hy(τ)

)
u = 0

u(s,y) = us(y).

i.e. U (k+1)(τ ; s)γ
(k+1)
0 solves equation (2.5). By definition,

U (k)(τ ; s) =
k∏
j=1

(
Uyj(τ ; s)Uy′j(−τ ;−s)

)
.

To be specific, we need this version of the generalized lens transform:

Proposition 3 There is an operator Lx(t) which satisfies the hypothesis in Theorem

3 such that

U (k+1)(τ ; 0)γ
(k+1)
0

=
k+1∏
j=1

 3∏
l=1

e
i
β̇l(τ)

βl(τ)

(
|yj,l|2−|y′j,l|2

)
2

βl(τ)


u(k+1)(

α1(τ)

β1(τ)
,
y1,1

β1(τ)
,
y1,2

β2(τ)
,
y1,3

β3(τ)
, ...,

yk+1,1

β1(τ)
,
yk+1,2

β2(τ)
,
yk+1,3

β3(τ)
;

y′1,1
β1(τ)

,
y′1,2
β2(τ)

,
y′1,3
β3(τ)

, ...,
y′k+1,1

β1(τ)
,
y′k+1,2

β2(τ)
,
y′k+1,3

β3(τ)
)
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in [−T0, T0], where αl and βl are defined as in Claim 1, and u(k+1)(t,−−→xk+1;
−−→
x′k+1) is

the solution of

(
i∂t + L−−−→xk+1(t)− L−−−→x′k+1

(t)
)
u(k+1) = 0 in R(6k+6)+1

u(k+1)(0,−−→xk+1;
−−→
x′k+1) = γ

(k+1)
0 .

The proposition will be a corollary of a sequence of claims.

Claim 1 Assuming Conditions 1 and 2, for l = 1, 2, 3, the system

α̈l(τ) + ηl(τ)αl(τ) = 0, αl(0) = 0, α̇l(0) = 1, (2.9)

β̈l(τ) + ηl(τ)βl(τ) = 0, βl(0) = 1, β̇l(0) = 0.

defines an odd αl and an even βl ∈ C2(R) with the following properties

(1) βl is nonzero in [−T0, T0];

(2) The Wronskian of αl and βl is constant 1 i.e.

α̇l(τ)βl(τ)− αl(τ)β̇l(τ) = 1;

(3) The odd function

υl(τ) =
αl(τ)

βl(τ)

is invertible in [−T0, T0] because

υ̇l(τ) =
1

(βl(τ))2 > 0 in [−T0, T0].

Proof. We show (1) only since all other statements are fairly trivial.

Suppose βl(τ 0) = 0 for some τ 0 in [−T0, T0] then βl(−τ 0) = 0 via βl is even.

Of course τ 0 6= 0 because βl(0) = 1. Notice that cos
(
τ
√

supτ |ηl(τ)|
)
is a nontrivial
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solution of

v̈(τ) + sup
τ
|ηl(τ)| v(τ) = 0.

Since cos
(
τ
√

supτ |ηl(τ)|
)
is not a multiple of βl, cos

(
τ
√

supτ |ηl(τ)|
)
must have

at least one zero in [−τ 0, τ 0] due to the Sturm—Picone comparison theorem. But

this creates a contradiction.

Though Claim 1 is elementary, its consequences lying below make our proce-

dure well-defined.

Definition 3 (A reminder of the norm) Let βl be defined via equation (2.9). We

define

Py(τ) =


iβ1(τ) ∂

∂y1
+ β̇1(τ)y1

iβ2(τ) ∂
∂y2

+ β̇2(τ)y2

iβ3(τ) ∂
∂y3

+ β̇3(τ)y3


and

Rk
τ =

∏k
j=1 Pyj(τ)Py′j(−τ).

Lemma 3 Py(τ) commutes with the linear operator

i∂τ −
1

2

(
−4yk + η(τ) |yk|2

)
.

Moreover,

Py(τ)Uy(τ ; s)f = Uy(τ ; s)Py(s)f.

Lemma 4 Say K1(t, x0, y0) is the Green’s function of the 1d free Schrödinger equa-

tion (
i∂t +

1

2

∂2

∂x2

)
v = 0,
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then

Uy(τ ; 0)u0 =

 3∏
l=1

e
i
β̇l(τ)

βl(τ)

y2l
2

(βl(τ))
1
2

 (2.10)

∫ ( 3∏
l=1

K1(
αl(τ)

βl(τ)
,
yl

βl(τ)
, y0l)

)
u0(y01, y02, y03)dy01dy02dy03,

valid in the interval [−T, T ] in which ηl are Lipschitzian and βl(τ) 6= 0.

Proof. Carles computed the isotropic case of formula (2.10) in [3]. We include a

proof of Lemmas 3 and 4 using the metaplectic representation in Section 2.8.

We can now prove Proposition 3. On the one hand, via Claim 1, we can invert

t(τ) = υ1(τ) =
α1(τ)

β1(τ)
in [−T0, T0].

Therefore, the integral part of formula (2.10)

φ(t,x) =

∫ (
K1(t, x1, y01)K1(υ2(υ−1

1 (t)), x2, y02)K1(υ3(υ−1
1 (t)), x3, y03)

)
u0(y01, y02, y03)dy01dy02dy03

in fact solves (
i∂t + L̃x(t)

)
φ = 0 in R3 × [−υ−1

1 (T0), υ−1
1 (T0)]

φ(0,x) = u0,

where

L̃x(t) =
1

2

∂2

∂x2
1

+
1

2

β2
1(υ−1

1 (t))

β2
2(υ−1

1 (t))

∂2

∂x2
2

+
1

2

β2
1(υ−1

1 (t))

β2
3(υ−1

1 (t))

∂2

∂x2
3

.

On the other hand, plugging −τ into formula (2.10) yields

Uy(−τ ; 0)u0 =

 3∏
l=1

e
−i β̇l(τ)

βl(τ)

y2l
2

(βl(τ))
1
2


∫ ( 3∏

l=1

K1(−αl(τ)

βl(τ)
,
yl

βl(τ)
, y0l)

)
u0(y01, y02, y03)dy01dy02dy03
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because αl and β̇l are odd while βl are even.

Whence in [−T0, T0]

U (k+1)(τ ; 0)γ
(k+1)
0 =

k+1∏
j=1

(
Uyj(τ ; 0)Uy′j(−τ ; 0)

)
γ

(k+1)
0

=
k+1∏
j=1

 3∏
l=1

e
i
β̇l(τ)

βl(τ)

(
|yj,l|2−|y′j,l|2

)
2

βl(τ)


u(k+1)(

α1(τ)

β1(τ)
,
y1,1

β1(τ)
,
y1,2

β2(τ)
,
y1,3

β3(τ)
, ...,

yk+1,1

β1(τ)
,
yk+1,2

β2(τ)
,
yk+1,3

β3(τ)
;

y′1,1
β1(τ)

,
y′1,2
β2(τ)

,
y′1,3
β3(τ)

, ...,
y′k+1,1

β1(τ)
,
y′k+1,2

β2(τ)
,
y′k+1,3

β3(τ)
)

if u(k+1)(t,−−→xk+1;
−−→
x′k+1) solves

(
i∂t + L̃−−−→xk+1(t)− L̃−−−→x′k+1

(t)
)
u(k+1) = 0 in R6k+6 × [−υ−1

1 (T0), υ−1
1 (T0)]

u(k+1)(0,−−→xk+1;
−−→
x′k+1) = γ

(k+1)
0 .

At long last, define

Lx(t) = {
L̃x(t), when t ∈ [−υ−1

1 (T0), υ−1
1 (T0)]

L̃x(υ−1
1 (T0)), when t > υ−1

1 (T0) or t 6 −υ−1
1 (T0)

then we obtain the desired variant of the generalized lens transform i.e. Proposition

3.
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2.5 Proof of Theorem 5

Without loss of generality, we show Theorem 5 for B1
j,k+1 in Bj,k+1 when j is

taken to be 1. This corresponds to the estimate:

∫ T

s

dτ

∫
R3k×R3k

∣∣∣R(k)
τ γ(k+1)(τ ,−→yk,y1;

−→
y′k,y1)

∣∣∣2 d−→ykd−→y′k (2.11)

6 C

(
inf

τ∈[0,T0]

3∏
l=2

β2
l (τ)

)−1 ∫
R3(k+1)×R3(k+1)

∣∣∣R(k+1)
τ γ(k+1)(τ ,−−→yk+1;

−−→
y′k+1)

∣∣∣2 d−−→yk+1d
−−→
y′k+1,

∀τ ∈ [s, T ], if γ(k+1) satisfies equation (2.5).

By Proposition 3, we compute

R(k)
τ γ(k+1)(τ ,−→yk,y1;

−→
y′k,y1) (2.12)

=

(
3∏
l=1

1

βl(τ)

)
k∏
j=1

 3∏
l=1

e
i
β̇l(τ)

βl(τ)

(
|yj,l|2−|y′j,l|2

)
2

βl(τ)


((

k∏
j=1

(
∇xj∇x′j

))
u(k+1)(

α1(τ)

β1(τ)
,−→xk,x1;

−→
x′k,x1)

)
,

if we let

xj,l =
yj,l
βl(τ)

and x′j,l =
y′j,l
βl(τ)

,

because of the relations

iβl(τ)
∂

∂yj,l

(
e
i
β̇l(τ)

βl(τ)

|yj,l|2
2

)
+ β̇l(τ)yj,l

(
e
i
β̇l(τ)

βl(τ)

|yj,l|2
2

)
= 0,

βl(τ)
∂

∂yj,l
=

∂

∂xj,l
.

Consequently,

∫ T

s

dτ

∫
R3k×R3k

∣∣∣R(k)
τ γ(k+1)(τ ,−→yk,y1;

−→
y′k,y1)

∣∣∣2 d−→ykd−→y′k
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=

∫ T

s

dτ

∫
R6k

∣∣∣∣
(

3∏
l=1

1

βl(τ)

)k+1

(
k∏
j=1

(
∇xj∇x′j

))
u(k+1)(

α1(τ)

β1(τ)
,−→xk,x1;

−→
x′k,x1)

∣∣∣∣2d−→ykd−→y′k
=

∫ T

s

dτ

(β1(τ))2

∫
R6k

(
3∏
l=2

1

βl(τ)

)2

∣∣∣∣∣
(

k∏
j=1

(
∇xj∇x′j

))
u(k+1)(

α1(τ)

β1(τ)
,−→xk,x1;

−→
x′k,x1)

∣∣∣∣∣
2

d−→xkd
−→
x′k

6
(

inf
τ∈[0,T0]

3∏
l=2

β2
l (τ)

)−1 ∫ T

s

dτ

(β1(τ))2

∫
R6k

∣∣∣∣∣
(

k∏
j=1

(
∇xj∇x′j

))
u(k+1)(

α1(τ)

β1(τ)
,−→xk,x1;

−→
x′k,x1)

∣∣∣∣∣
2

d−→xkd
−→
x′k

6
(

inf
τ∈[0,T0]

3∏
l=2

β2
l (τ)

)−1

∫ ∞
−∞

dt

∫
R6k

∣∣∣∣∣
(

k∏
j=1

(
∇xj∇x′j

))
u(k+1)(t,−→xk,x1;

−→
x′k,x1)

∣∣∣∣∣
2

d−→xkd
−→
x′k

where we used the fact that the Wronskian of αl and βl is constant 1, i.e.

dt

dτ
=
α̇1(τ)β1(τ)− α1(τ)β̇1(τ)

(β1(τ))2 =
1

(β1(τ))2

as shown in Claim 1.

A corollary of Theorem 3 tells us that

Corollary 1 Let Lx(t) be the same as in Theorem 3 and u(k+1) verify

(
i∂t + L−−−→xk+1(t)− L−−−→x′k+1

(t)
)
u(k+1) = 0.
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Then there is a C > 0, independent of j, k, and u(k+1) s.t.∥∥∥∥∥
(

k∏
j=1

(
∇xj∇x′j

))(
B1
j,k+1u

(k+1)
)

(t,−→xk;
−→
x′k)

∥∥∥∥∥
L2(R×R3k×R3k)

=

∥∥∥∥∥
(

k∏
j=1

(
∇xj∇x′j

))
u(k+1)(t,−→xk,x1;

−→
x′k,x1)

∥∥∥∥∥
L2(R×R3k×R3k)

6 C

∥∥∥∥∥
(
k+1∏
j=1

(
∇xj∇x′j

))
u(k+1)(0,−−→xk+1;

−−→
x′k+1)

∥∥∥∥∥
L2(R3(k+1)×R3(k+1))

,

Whence inequality 2.11 follows.

2.6 The Uniqueness of Hierarchy 1.7

To get Theorem 6, we of course use the Klainerman-Machedon board game

argument to group the terms. For convenience, we assume b0 = 1 here.

Lemma 5 One can express γ(1)(τ 1, ·; ·) in the Gross-Pitaevskii hierarchy 1.7 as a

sum of at most 4n terms of the form

∫
D

J(τn+1, µm)dτn+1,

or in other words,

γ(1)(τ 1, ·; ·) =
∑
m

∫
D

J(τn+1, µm)dτn+1. (2.13)

Here τn+1 = (τ 2, τ 3, ..., τn+1), D ⊂ [s, τ 1]n, µm are a set of maps from {2, ..., n+ 1}

to {1, ..., n} satisfying µm(2) = 1 and µm(j) < j for all j, and

J(τn+1, µm) = U (1)(τ 1; τ 2)B1,2U
(2)(τ 2; τ 3)Bµm(3),2...

U (n)(τn; τn+1)Bµm(n+1),n+1(γ(n+1)(τn+1, ·; ·)).
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Proof. The RHS of formula (2.13) is in fact a Duhamel principle. This lemma

follows from the proof of Theorem 3.4 in [29] which uses a board game inspired

by the Feynman graph argument in [15]. One just needs to replace ei(t1−t2)4y by

Uy(t1; t2), and ei(t1−t2)4(k) by U (k)(t1; t2).

Let Dτ2 = {(τ 3, ..., τn+1) | (τ 2, τ 3, ..., τn+1) ∈ D} where D is as in Lemma 5.

Assuming that we have already verified

∥∥R(1)
s γ(1)(s, ·)

∥∥
L2(R3×R3)

= 0,

applying Lemma 5 to [s, τ 1] ⊂ [0, T0], we have

∥∥R(1)
τ1
γ(1)(τ 1, ·)

∥∥
L2(R3×R3)

=

∥∥∥∥R(1)
τ1

∫
D

U (1)(τ 1; τ 2)B1,2U
(2)(τ 2; τ 3)Bµm(3),2...dτ 2...dτn+1

∥∥∥∥
L2(R3×R3)

=

∣∣∣∣∣∣∣∣ ∫ τ1

s

U (1)(τ 1; τ 2)(∫
Dτ2

R(1)
τ2
B1,2U

(2)(τ 2; τ 3)Bµm(3),2...dτ 3...dτn+1

)
dτ 2

∣∣∣∣∣∣∣∣
L2(R3×R3)

(Lemma 3)

6
∫ τ1

s

∥∥∥∥∥
∫
Dτ2

R(1)
τ2
B1,2U

(2)(τ 2; τ 3)Bµm(3),2...dτ 3...dτn+1

∥∥∥∥∥
L2(R3×R3)

dτ 2

6
∫

[s,τ1]n

∥∥R(1)
τ2
B1,2U

(2)(τ 2; τ 3)Bµm(3),2...
∥∥
L2(R3×R3)

dτ 2dτ 3...dτn+1

6 (τ 1 − s)
1
2

∫
[s,τ1]n−1

dτ 3...dτn+1∥∥R(1)
τ2
B1,2U

(2)(τ 2; τ 3)Bµm(3),2...
∥∥
L2(τ2∈[s,τ1]×R3×R3)

6 C (τ 1 − s)
1
2

∫
[s,τ1]n−1

∥∥R(2)
τ2
U (2)(τ 2; τ 3)Bµm(3),2...

∥∥
L2(R6×R6)

dτ 3...dτn+1

(Theorem 5)

(Same procedure n− 2 times)
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6 C (C (τ 1 − s))
n−1
2

∫ τ1

s

∥∥R(n)
τn+1

Bµm(n+1),n+1γ
(n+1)(τn+1, ·)

∥∥
L2(R3n×R3n)

dτn+1

6 C (C (τ 1 − s))
n−1
2 .

Let (τ 1 − s) be suffi ciently small, and n→∞, we infer that

∥∥R(1)
τ1
γ(1)(τ 1, ·)

∥∥
L2(R3×R3)

= 0 in [s, τ 1].

Similar arguments show that
∥∥∥R(k)

τ γ(k)(τ , ·)
∥∥∥
L2(R3×R3)

= 0, ∀k, τ ∈ [0, T0]. Hence we

have attained Theorem 6.

2.7 Derivation of the 2d Cubic NLS with Anisotropic Switchable

Quadratic Traps / Proof of Theorem 1

For a more comprehensible presentation, let us suppose

Hy(τ) =
n∑
l=1

(
− ∂2

∂y2
j,l

+ ηl(τ)y2
j,l

)

is the ordinary Hermite operator

Hy = −4y + |y|2

in this section to make formulas shorter and more explicit. We will add two remarks

in the proof to address the small modifications needed for the general case.

We start by reviewing the standard Elgart-Erdös-Schlein-Yau program in this

setting.

Step A. Observe that, by definition,
{
γ

(k)
N

}
solves the quadratic trap Bogoliubov—
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Born—Green—Kirkwood—Yvon (BBGKY) hierarchy(
i∂τ −

1

2

(
−4−→yk +

∣∣−→yk∣∣2)+
1

2

(
−4−→

y′k
+
∣∣∣−→y′k∣∣∣2)) γ(k)

N (2.14)

=
1

N

∑
16i<j6k

(
VN(yi − yj)− VN(y′i − y′j)

)
γ

(k)
N

+
N − k
N

k∑
j=1

∫
dyk+1[(VN(yi − yk+1)− VN(y′i − yk+1))

γ
(k+1)
N (τ ,−→yk,yk+1;

−→
y′k,yk+1)]

where VN(x) = NnβV
(
Nβx

)
. It converges (at least formally) to the quadratic

trap Gross-Pitaevskii infinite hierarchy(
i∂τ −

1

2

(
−4−→yk +

∣∣−→yk∣∣2)+
1

2

(
−4−→

y′k
+
∣∣∣−→y′k∣∣∣2)) γ(k) (2.15)

= b0

k∑
j=1

Bj,k+1

(
γ(k+1)

)
.

Prove rigorously that the sequence
{
γ

(k)
N

}
is compact with respect to the weak*

topology on the trace class operators and every limit point
{
γ(k)
}
satisfies

hierarchy 2.15.

Step B. Utilize a suitable uniqueness theorem of hierarchy 2.15 to conclude that

γ(k)(τ ,−→yk;
−→
y′k) =

k∏
j=1

φ(τ ,yj)φ(τ ,y′j),

where φ solves the 2d quadratic trap cubic NLS

i∂τφ =
1

2

(
−4+ |y|2

)
φ+ b0φ |φ|2 .

So the compact sequence
{
γ

(k)
N

}
has only one limit point, i.e.

γ
(k)
N →

k∏
j=1

φ(τ ,yj)φ(τ ,y′j)
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in the weak* topology. Since γ(k) is an orthogonal projection, the convergence

in the weak* topology is equivalent to the convergence in the trace norm

topology.

We modify this procedure to show Theorem 1. We remark that the main

additional tool is the lens transform. When Hy(τ) is the Hermite operator, αl =

sin τ , βl = cos τ and T0 <
π
2
i.e. the lens transform and its inverse reads as follow.

Definition 4 We define the lens transform Tl : L2(d−→xkd
−→
x′k)→ L2(d−→ykd

−→
y′k) and its

inverse by

(
Tlu

(k)
)

(τ ,−→yk;
−→
y′k) =

e
−i tan τ

2
(|−→yk|2−

∣∣∣−→y′k∣∣∣2)

(cos τ)nk
u(k)(tan τ ,

−→yk
cos τ

;

−→
y′k

cos τ
)

(
T−1
l γ(k)

)
(t,−→xk;

−→
x′k) =

e
it

2(1+t2)

(
|−→xk|2−

∣∣∣−→x′k∣∣∣2)

(1 + t2)
nk
2

γ(k)(arctan t,
−→xk√

1 + t2
;

−→
x′k√

1 + t2
).

Tl is unitary by definition and the variables are related by

τ = arctan t, yk =
xk√

1 + t2
and y′k =

x′k√
1 + t2

.

Remark 7 For the general anisotropic case, we still need the 2d version of Propo-

sition 3.

Let us write

(
T−1
l γ(k)

)
(t,−→xk;

−→
x′k) = γ(k)(τ ,−→yk;

−→
y′k)

e
it

2(1+t2)

(
|xk|2−|x′k|2

)
(1 + t2)

nk
2

= γ(k)(τ ,−→yk;
−→
y′k)h

(k)
n (t,−→xk;

−→
x′k),

then we have a more explicit version of Proposition 3.
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Proposition 4

(
i∂t +

1

2
4−→xk −

1

2
4−→
x′k

)(
T−1
l γ(k)

)
(t,−→xk;

−→
x′k)

=
h

(k)
n

1 + t2

[(
i∂τ −

1

2

(
−4−→yk +

∣∣−→yk∣∣2)+
1

2

(
−4−→

y′k
+
∣∣∣−→y′k∣∣∣2)) γ(k)(τ ,−→yk;

−→
y′k)

]

Proof. This is a direct computation.

Via this proposition, we understand how the lens transform acts on hierarchies

2.14 and 2.15.

Lemma 6 (Gross-Pitaevskii hierarchy under the lens transform)
{
γ(k)
}
solves the

quadratic trap Gross-Pitaevskii hierarchy 2.15 if and only if
{
u(k) = T−1

l γ(k)
}
solves

the infinite hierarchy

(
i∂t +

1

2
4−→xk −

1

2
4−→
x′k

)
u(k) =

(1 + t2)
n
2

1 + t2
b0

k∑
j=1

Bj,k+1

(
u(k+1)

)
. (2.16)

In particular, when n = 2, the lens transform preserves the Gross-Pitaevskii hierar-

chy.

Lemma 7 (BBGKY hierarchy under the lens transform)
{
γ

(k)
N

}
solves the quadratic

trap BBGKY hierarchy 2.14 if and only if
{
u

(k)
N = T−1

l γ
(k)
N

}
solves the hierarchy

(
i∂t +

1

2
4−→xk −

1

2
4−→
x′k

)
u

(k)
N (2.17)

=
1

N

1

1 + t2

∑
16i<j6k

(
VN(

xi − xj√
1 + t2

)− VN(
x′i − x′j√

1 + t2
)

)
u

(k)
N

+
N − k
N

1

1 + t2

k∑
j=1

∫
dxk+1[

(
VN(

xi − xk+1√
1 + t2

)− VN(
x′i − xk+1√

1 + t2
)

)
u

(k+1)
N (t,−→xk,xk+1;

−→
x′k,xk+1)],

We can now prove Theorem 1.
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2.7.1 Proof of Theorem 1

Step 1. Let n = 2, consider
{
u

(k)
N = T−1

l γ
(k)
N

}
which solves hierarchy 2.17.

Step 2. Write

Ṽ (x) =
1

1 + t2
V (

x√
1 + t2

),

then

1

(1 + T 2)1− 1
p

‖V ‖p 6
∥∥∥Ṽ ∥∥∥

p
6 ‖V ‖p when T <∞ and p > 1.

Therefore we can employ the proof in Kirkpatrick-Schlein-Staffi lani [27] to

show that the sequence
{
u

(k)
N

}
is compact with respect to the weak* topology

on the trace class operators and every limit point
{
u(k)
}
satisfies the Gross-

Pitaevskii hierarchy 2.16. Moreover, based on a fixed time trace theorem

argument as in [27], for α < 1, we have

∫ T

0

dt

∥∥∥∥∥
k∏
j=1

(〈
∇xj

〉α 〈∇xj〉α)Bj,k+1

(
u(k+1)

)∥∥∥∥∥
L2(R2k×R2k)

6 Ck.

for every limit point
{
u(k)
}
. To be more precise, the proof in [27] involves a

smooth approximation. We omit this detail here.

Remark 8 The auxiliary Hamiltonian

H̃N(t) =
1

2

N∑
j=1

LXj(t) +
1

N

∑
i<j

N2βṼ (Nβ (xi − xj)).

which corresponds to the anisotropic quadratic potential case does not lead to the

conservation of the quantity

〈
ψN ,

(
H̃N(t)

)k
ψN

〉
.
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On the other hand, the following estimate controls the energy.

d

dt

〈
ψN ,

(
H̃N(t)

)k
ψN

〉
=

〈
ψN ,

[
d

dt
,
(
H̃N(t)

)](
H̃N(t)

)k−1

ψN

〉
+ ...

+

〈
ψN ,

(
H̃N(t)

)k−1
[
d

dt
,
(
H̃N(t)

)]
ψN

〉
6 Ck

〈
ψN ,

(
H̃N(t)

)k
ψN

〉

since a1 and a2, the coeffi cients of LX, are C1 in the context of Theorem 1. Thus

Gronwall’s inequality takes care of the problem for us as long as we are considering

finite time.

Step 3. By Theorem 4 (2d uniqueness) or Theorem 7.1 in [27], we deduce that

u(k)(t,−→xk;
−→
x′k) =

k∏
j=1

φ̃(t,xj)φ̃(t,x′j)

where φ̃ solves the 2d cubic NLS

i∂tφ̃ = −1

2
4φ̃+ b0φ̃

∣∣∣φ̃∣∣∣2 .
Hence the compact sequence

{
u

(k)
N

}
has only one limit point, so

u
(k)
N →

k∏
j=1

φ̃(t,xj)φ̃(t,x′j)

in the weak* topology. Since u(k) is an orthogonal projection, the convergence

in the weak* topology is equivalent to the convergence in the trace norm

topology.

Remark 9 It is necessary to use Theorem 4 in this paper for the general anisotropic

quadratic traps case.
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Step 4. Let φ solve the 2d quadratic trap cubic NLS

i∂τφ =
1

2

(
−4+ |y|2

)
φ+ b0φ |φ|2 ,

then the lens transform of u(k) is

γ(k)(τ ,−→yk;
−→
y′k) =

k∏
j=1

φ(τ ,yj)φ(τ ,y′j),

due to the fact that the lens transform preserves mass critical NLS, which is

the cubic NLS in 2d.

Step 5. The convergence

u
(k)
N → u(k)

in the trace norm indicates the convergence in the Hilbert-Schmidt norm. But

the lens transform

Tl : L2(d−→x d
−→
x
′
)→ L2(d−→y d

−→
y
′
)

is unitary (so preserves the norm) and thus

γ
(k)
N = Tlu

(k)
N → Tlu

(k) = γ(k).

Thence we conclude that γ(k)
N converges to

γ(k)(τ ,−→yk;
−→
y′k) =

k∏
j=1

φ(τ ,yj)φ(τ ,y′j),

in the Hilbert-Schmidt norm, which is Theorem 1.

53



2.7.2 Comments about the 3d case

It is natural to wonder what we can say about the 3d case using the above

method. Visiting Lemma 6 again yields the hierarchy

(
i∂t +

1

2
4−→xk −

1

2
4−→
x′k

)
u(k) =

(
1 + t2

) 1
2 b0

k∑
j=1

Bj,k+1

(
u(k+1)

)
. (2.18)

Due to the factor (1 + t2)
1
2 , it is diffi cult to see of what use a 3d version of Theorem

4 might be. We can certainly give a uniqueness theorem regarding hierarchy 2.18

with the techniques in this paper. But it is unknown how to verify the space-time

bound when n = 3 as stated earlier,

Another possibility to attack the 3d case is the standard Elgart-Erdos-Schlein-

Yau procedure, but we presently know very little about the analysis of the Hermite

like operator Hy(τ).

Finally, we remark that it is not clear whether the Feynman diagrams argu-

ment, the key to the uniqueness theorem in [15] on which [14, 15, 16, 17, 18] are

based, leads to a 3d uniqueness theorem of hierarchy 1.7 or 2.18, which represent

the two sides of the lens transform.

2.8 the Generalized Lens Transform and the Metaplectic Represen-

tation

In this section, we prove Lemmas 3 and 4 via the metaplectic representation.

The 3d anisotropic case drops out once we show the 1d case. Before we delve into

the proof, we remark that we currently do not have an explanation away from direct
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computations for Proposition 4 or for the fact that the generalized lens transform

preserves L2 critical NLS. The group theory proof presented in this section only

shows the linear case: Lemmas 3 and 4.

Through out this section, we consider the metaplectic representation

µ : Sp (2,R)→ Unitary Operators on L2(R).

which has the property:

dµ


 0 1

−η(τ) 0


 = i

(
−1

2
∂2
y + η(τ)

y2

2

)
.

For more information regarding µ and dµ, we refer the readers to Folland’s mono-

graph [19]. We comment that µ is not a well-defined group homomorphism on all

of Sp (2,R) , but the fact that it is well-defined in a neighborhood of the identity of

Sp (2,R) is good enough for our purpose here.

2.8.1 Proof of Lemma 4 / the Generalized Lens Transform

Proposition 5 Define α and β through the system

α̈(τ) + η(τ)α(τ) = 0, α(0) = 0, α̇(0) = 1,

β̈(τ) + η(τ)β(τ) = 0, β(0) = 1, β̇(0) = 0,

and let

B(τ) =

 β(τ) −α(τ)

−β̇(τ) α̇(τ)

 .
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Assume β is nonzero in some time interval [0, T ], then µ (B (τ)) f solves the Schrödinger

equation with switchable quadratic trap:

i∂τu =

(
−1

2
∂2
y + η(τ)

y2

2

)
u in R× [0, T ] (2.19)

u(0, y) = f(y) ∈ L2(R).

Proof. We calculate

∂τ |τ=0µ (B (τ 0 + τ)) f = (∂τ |τ=0µ (B (τ 0 + τ))) f

=
(
∂τ |τ=0µ

(
B (τ 0 + τ)B−1 (τ 0)B (τ 0)

))
f

=
(
∂τ |τ=0µ

(
B (τ 0 + τ)B−1 (τ 0)

))
µ (B (τ 0)) f

= dµ(B′(τ 0)B−1 (τ 0))µ (B (τ 0)) f.

where

B′(τ 0)B−1 (τ 0)

=

 β̇(τ 0) −α̇(τ 0)

−β̈(τ 0) α̈(τ 0)


α̇(τ 0) α(τ 0)

β̇(τ 0) β(τ 0)



=

 β̇(τ 0) −α̇(τ 0)

η(τ 0)β(τ 0) −η(τ 0)α(τ 0)


α̇(τ 0) α(τ 0)

β̇(τ 0) β(τ 0)



=

 0 β̇(τ 0)α(τ 0)− α̇(τ 0)β(τ 0)

η(τ 0)
(
α̇(τ 0)β(τ 0)− β̇(τ 0)α(τ 0)

)
0

 .

Notice that the Wronskian of α and β is constant 1 i.e.

α̇(τ)β(τ)− α(τ)β̇(τ) = 1.
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So

dµ(B′(τ 0)B−1 (τ 0)) = dµ


 0 −1

η(τ 0) 0




= − i
2

(
−∂2

y + η(τ 0)y2
)
.

In other words,

∂τ (µ (B (τ)) f) = − i
2

(
−∂2

y + η(τ)y2
)

(µ (B (τ)) f) .

Before we end the proof, we remark that β 6= 0 is required for the metaplectic

representation to be well-defined.

Through the LDU decomposition of the matrix B, we derive the generalized

lens transform. The LDU decomposition of the matrix B is

B(τ) =

 β(τ) −α(τ)

−β̇(τ) α̇(τ)



=

 β(τ) −α(τ)

−β̇(τ) α(τ) β̇(τ)
β(τ)

+ 1
β(τ)



=

 1 0

− β̇(τ)
β(τ)

1


β(τ) 0

0 1
β(τ)


1 −α(τ)

β(τ)

0 1

 .

Hence we have

µ (B(τ)) f = µ


 1 0

− β̇(τ)
β(τ)

1


µ


β(τ) 0

0 1
β(τ)


µ


1 −α(τ)

β(τ)

0 1


 f, (2.20)
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where

µ


 1 0

− β̇(τ)
β(τ)

1


 f(y) = ei

β̇(τ)
β(τ)

y2

2 f(y) by (4.25) in [19]

µ


β(τ) 0

0 1
β(τ)


 f(y) =

1

(β(τ))
1
2

f(
y

β(τ)
) by (4.24) in [19]

µ


1 −α(τ)

β(τ)

0 1


 f(y) = ei

α(τ)
β(τ)

∂2y
2 f by (4.54) in [19].

Due to the definition of µ, equality 2.20 in fact holds up to a ” ± ” sign which

depends on the time interval. However, the LHS and the RHS of equality 2.20 agree

for suffi ciently small τ . By continuity, they must agree on the time interval [0, T ]

where β 6= 0. So we conclude the following lemma concerning the generalized lens

transform.

Lemma 8 [3] Assume β is nonzero in the time interval [0, T ], then the solution of

the Schrödinger equation with switchable quadratic trap (equation (2.19)) in [0, T ] is

given by

u(τ , y) =
ei
β̇(τ)
β(τ)

y2

2

(β(τ))
1
2

v(
α(τ)

β(τ)
,
y

β(τ)
),

if v(t, x) solves the free Schrördinger equation

i∂tv = −1

2
∂2
xv in R1+1

v(0, x) = f(x) ∈ L2(R).

The anisotropic case, Lemma 4, follows from the above lemma.
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2.8.2 Proof of Lemma 3 / Evolution of Momentum

Using the metaplectic representation, we can also compute the evolution of

momentum and position.

Lemma 9 The evolution of momentum and position is given by

P (τ) = µ (B(τ)) ◦ (−i∂y) ◦ (µ (B(τ)))−1 = −iβ(τ)∂y − β̇(τ)y

Y (τ) = µ (B(τ)) ◦ y ◦ (µ (B(τ)))−1 = iα(τ)∂y + α̇(τ)y.

Proof. Let us only compute the momentum, position can be obtained similarly.

µ (B(τ)) (−i∂y) (µ (B(τ)))−1

= µ (B(τ))

(
1 0

)−i∂y
y

 (µ (B(τ)))−1

=

(
1 0

)
(B(τ))T

−i∂y
y

 (Theorem 2.15 in [19])

=

(
1 0

) β(τ) −β̇(τ)

−α(τ) α̇(τ)


−i∂y

y


= −iβ(τ)∂y − β̇(τ)y

Remark 10 We select −i∂y to be the momentum to match the canonical commu-

tation relations in Folland [19] which is

[−i∂y, y] = −iI.
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The above lemma reproduces the following result in Carles [3].

Lemma 10 [3] The operators P (τ) and Y (τ) commute with the linear operator

i∂τ +
1

2
∂2
y − η(τ)

y2

2

Moreover,

P (τ)U(τ ; s) = U(τ ; s)P (s)

Y (τ)U(τ ; s) = U(τ ; s)Y (s)

if we let Uy(τ ; s) be the solution operator of

i∂τu =

(
−1

2
∂2
y + η(τ)

y2

2

)
u in R1+1

u(s, y) = us(y) ∈ L2(R),

or in other words

Uy(τ ; s) = µ (B(τ))µ (B(s))−1 .

Thence we have shown Lemma 3.

2.9 Conclusion of Chapter 2

In this chapter, we have derived rigorously the 2d cubic NLS with anisotropic

switchable quadratic traps through a modified Elgart-Erdös-Schlein-Yau procedure.

We have attained partial results in 3d as well. Unfortunately, when n = 3, we still

have unsolved problems as stated in Section 2.7.2.
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Chapter 3

Proof of Theorem 2

3.1 Outline of the Proof of Theorem 2

We prove Theorem 2 via Theorems 7 and 8 stated below. They deal with

the construction of ψGMM and the error estimate separately. However, it is worth

pointing out that Theorem 2 is a special case of Theorems 7 and 8, which apply to

a more general setting beyond initial data of the form e−
√
NA(φ0)Ω.

Theorem 7 Let φ be a suffi ciently smooth solution of the quintic Hartree equation

i
∂

∂t
φ+4φ− 1

2
φ

∫
v3(x− y, x− z) |φ(y)|2 |φ(z)|2 dydz = 0 (3.1)

with initial data φ0 and the 3-body interaction potential v3 being symmetric in x, y,

and z. Assume the following:

(1) Let a complex kernel k(t, x, y) ∈ L2
s(dxdy) for almost all t, solve the equa-

tion

iut + ugT + gu− (I + p)m = (ipt + [g, p] + um) (I + p)−1 u, (3.2)

with

u(t, x, y) := sinh(k) := k +
1

3!
kkk + . . . ,

cosh(k) := I + p(t, x, y) := δ(x− y) +
1

2!
kk + . . . ,
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g(t, x, y) : = −4δ(x− y) +

(∫
v3(x− y, x− z) |φ(z)|2 dz

)
φ(x)φ(y)

+
1

2

(∫
v3(x− y, x− z) |φ(y)|2 |φ(z)|2 dydz

)
δ(x− y),

m(t, x, y) : = −
(∫

v3(x− y, x− z) |φ(z)|2 dz
)
φ(x)φ(y),

where the products ugT , kk etc. stand for compositions of operators.

(2) For V defined as in formula (1.12), the functions,

‖eBV e−BΩ‖F , ‖eB[A, V ]e−BΩ‖F , ‖eB[A, [A, V ]]e−BΩ‖F , ‖eB[A, [A, [A, V ]]]e−BΩ‖F ,

are locally integrable in time, where

B(t) :=
1

2

∫ (
k(t, x, y)axay − k(t, x, y)a∗xa

∗
y

)
dxdy. (3.3)

(3)
∫
d(t, x, x) dx is also locally integrable in time, where

d(t, x, y) :=
(
i sinh(k)t + sinh(k)gT + g sinh(k)

)
sinh(k) (3.4)

− (i cosh(k)t + [g, cosh(k)]) cosh(k)

− sinh(k)m cosh(k)− cosh(k)msinh(k).

Then we define

ψGMM := e−
√
NA(φ(t,·))e−B(t)e−i

∫ t
0 (Nχ0(s)+χ1(s))dsΩ

where

χ0(t) : = −1

3

∫
v3(x− y, x− z) |φ(x)|2 |φ(y)|2 |φ(z)|2 dxdydz,

χ1(t) : =
1

2

∫
d(t, x, x)dx.
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This definition of ψGMM yields the error estimate

‖ψGMM − eitHN e−
√
NA(φ0)e−B(0)Ω ‖F

6
∫ t

0
‖eBV e−BΩ‖Fds

6N2
+

∫ t
0
‖eB[A, V ]e−BΩ‖Fds

6N
3
2

+

∫ t
0
‖eB[A, [A, V ]]e−BΩ‖Fds

12N
+

∫ t
0
‖eB[A, [A, [A, V ]]]e−BΩ‖Fds

36N
1
2

.

Theorem 8 Assume v3(x− y, x− z) = v(x− y, x− z) i.e. equation (3.1) becomes

i
∂

∂t
φ+4φ− 1

2
φ

∫
v(x− y, x− z) |φ(y)|2 |φ(z)|2 dydz = 0. (3.5)

If φ0, the initial data of quintic Hartree equation (3.5), satisfies (i), (ii), and (iii),

then the hypotheses in Theorem 7 are satisfied globally in time. Moreover, we have

the error estimate uniformly in time that

‖ψGMM − eitHN e−
√
NA(φ0)e−B(0)Ω ‖F 6

C√
N

where C depends only on v, C1, C2 and ‖u(0, ·, ·)‖L2
(x,y)
.

We deduce Theorem 2 from Theorems 7 and 8 by setting

k(0, x, y) = 0.

The proof of Theorem 8 relies on the following theorem regarding the long

time behavior of the solution to the Hartree equation.

Theorem 9 If φ solve the Hartree equation (3.5) subject to (i), (ii), and (iii), then

‖φ‖L6x 6
C

t
, for t > 1,

where C is a function of v, C1 and C2 only.
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3.2 The Derivation of 2nd Order Corrections / Proof of Theorem 7

3.2.1 Derivation of The Quintic Hartree equation

We first derive the quintic Hartree equation (3.1) for the one-particle wave

function φ as needed in Theorem 7.

Lemma 11 The following commutating relations hold, where A denotes A(φ), and

A , V are defined by formulas (1.13) and (1.12):

[A, V ]

= 3

∫
v3(x− y, x− z)(φ(x)a∗ya

∗
zaxayaz + φ(x)a∗xa

∗
ya
∗
zayaz)dxdydz

[A, [A, V ]]

= 6

∫
v3(x− y, x− z)(φ(x)φ(y)a∗zaxayaz + 2φ(x)φ(y)a∗xa

∗
zayaz

+φ(x)φ(y)a∗xa
∗
ya
∗
zaz)dxdydz

+6

∫
v3(x− y, x− z) |φ(x)|2 a∗ya∗zayazdxdydz

[A, [A, [A, V ]]]

= 36

∫
v3(x− y, x− z) |φ(x)|2 (φ(y)a∗zayaz + φ(y)a∗ya

∗
zaz)dxdydz

+6

∫
v3(x− y, x− z)(φ(x)φ(y)φ(z)axayaz + φ(x)φ(y)φ(z)a∗xa

∗
ya
∗
z)dxdydz

+18

∫
v3(x− y, x− z)(φ(x)φ(y)φ(z)a∗zaxay + φ(x)φ(y)φ(z)a∗xa

∗
yaz)dxdydz
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[A, [A, [A, [A, V ]]]]

= 72

∫
v3(x− y, x− z) |φ(x)|2 (φ(y)φ(z)ayaz + φ(y)φ(z)a∗ya

∗
z)dxdydz

+144

∫
v3(x− y, x− z) |φ(x)|2 φ(y)φ(z)a∗zaydxdydz

+72

∫
v3(x− y, x− z) |φ(x)|2 |φ(y)|2 a∗zazdxdydz

[A, [A, [A, [A, [A, V ]]]]]

= 360

∫
v3(x− y, x− z) |φ(x)|2 |φ(y)|2 (φ(z)az + φ(z)a∗z)dxdydz

[A, [A, [A, [A, [A, [A, V ]]]]]]

= 720

∫
v3(x− y, x− z) |φ(x)|2 |φ(y)|2 |φ(z)|2 dxdydz

Proof. This is a direct calculation using the canonical commutation relation

(1.11).

Now, we write Ψ0(t) = e
√
NA(t)eitHN e−

√
NA(0)e−B(0)Ω for which we carry out

the calculation in the spirit of equation (3.7) in Rodnianski and Schlein [35].

Proposition 6 Let φ solve the Hartree equation

i
∂

∂t
φ+4φ− 1

2
φ

∫
v3(x− y, x− z) |φ(y)|2 |φ(z)|2 dydz = 0

then Ψ0(t) satisfies

1

i

∂

∂t
Ψ0(t) =

(
H0 −

1

4!

1

6
[A, [A, [A, [A, V ]]]]− 1

6
N−2V − 1

6
N−3/2[A, V ] (3.6)

− 1

12
N−1[A, [A, V ]]− 1

36
N−

1
2 [A, [A, [A, V ]]]

+
N

3

∫
v3(x− y, x− z) |φ(x)|2 |φ(y)|2 |φ(z)|2 dxdydz

)
Ψ0(t) .
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Proof. Applying the formulas

(
∂

∂t
eC(t)

)(
e−C(t)

)
= Ċ +

1

2!
[C, Ċ] +

1

3!

[
C, [C, Ċ]

]
+ . . .

eCHe−C = H + [C,H] +
1

2!
[C, [C,H]] + . . . .

to C =
√
NA and H = HN , we obtain

1

i

∂

∂t
Ψ0(t) = L0Ψ0 , (3.7)

where

L0 =
1

i

(
∂

∂t
e
√
NA(t)

)
e−
√
NA(t) + e

√
NA(t)HNe

−
√
NA(t)

=
1

i

(
N1/2Ȧ+

N

2
[A, Ȧ]

)
+H0 +N1/2[A,H0] +

N

2!
[A, [A,H0]]− 1

6

(
N−2V

+N−3/2[A, V ] +
N−1

2!
[A, [A, V ]] +

N−
1
2

3!
[A, [A, [A, V ]]]

+
1

4!
[A, [A, [A, [A, V ]]]] +

N
1
2

5!
[A, [A, [A, [A, [A, V ]]]]]

+
N

6!
[A, [A, [A, [A, [A, [A, V ]]]]]]

)
.

The Hartree equation (3.1) is equivalent to setting terms of order
√
N to zero

i.e.

1

i
Ȧ+ [A,H0]− 1

6

1

5!
[A, [A, [A, [A, [A, V ]]]]] = 0 .

Or more explicitly, the above equation is

0 = a(iφt +4φ− 1

2
φ

∫
v3,1−2,1−3 |φ2|

2 |φ3|
2 dydz)

+a∗(iφt +4φ− 1

2
φ

∫
v3,1−2,1−3 |φ2|

2 |φ3|
2 dydz),

via Lemma 11 and the fact that [∆xax, a
∗
y] = (∆δ)(x− y).
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Thus

1

i
[A, Ȧ] + [A, [A,H0]]− 1

5!

1

6
[A, [A, [A, [A, [A, [A, V ]]]]]] = 0 ,

i.e. equation (3.7) simplifies to

1

i

∂

∂t
Ψ0(t) =

(
H0 −

1

4!

1

6
[A, [A, [A, [A, V ]]]]− 1

6
N−2V − 1

6
N−3/2[A, V ]

− 1

12
N−1[A, [A, V ]]− 1

36
N−

1
2 [A, [A, [A, V ]]]

+
N

3

∫
v3,1−2,1−3 |φ1|

2 |φ2|
2 |φ3|

2 dxdydz

)
Ψ0(t) .

which is equation (3.6).

Because
∫
v3,1−2,1−3 |φ1|

2 |φ2|
2 |φ3|

2 dxdydz only contributes a phase when φ0 is

suffi ciently smooth, we write

N

3

∫
v3(x− y, x− z) |φ(x)|2 |φ(y)|2 |φ(z)|2 dxdydz := −Nχ0 .

Then the first two terms on the right-hand side of equation (3.6) are the main ones

we need to consider, since the next four terms are at most O
(

1/
√
N
)
.

In order to kill the terms involving "only creation operators" i.e. a∗xa
∗
y in

1
4!

1
6
[A, [A, [A, [A, V ]]]], we introduce B (see 3.3) and denote

Ψ = eBΨ0 = eBe
√
NA(t)eitHN e−

√
NA(0)e−B(0)Ω.

Hence we have

1

i

∂

∂t
Ψ = LΨ ,

where
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L =
1

i

(
∂

∂t
eB
)
e−B + eBL0e

−B

= LQ −
1

6
N−2eBV e−B − 1

6
N−3/2eB[A, V ]e−B − 1

12
N−1eB[A, [A, V ]]e−B

− 1

36
N−

1
2 eB[A, [A, [A, V ]]]e−B −Nχ0 ,

and the quadratic terms

LQ =
1

i

(
∂

∂t
eB
)
e−B + eB

(
H0 −

1

4!

1

6
[A, [A, [A, [A, V ]]]]

)
e−B . (3.8)

At this point, we proceed to seek a equation for k s.t. the coeffi cient of a∗xa
∗
y

in 1
4!

1
6
eB[A, [A, [A, [A, V ]]]]e−B is eliminated.

Remark 11 One might be concerned of the pure creation a∗xa
∗
ya
∗
z in [A, [A, [A, V ]]].

Lemma 16 and the factor 1/
√
N will take care of that. Note that [21, 22] do not

have terms like this.

3.2.2 Equation for k

3.2.2.1 The infinitesimal metaplectic representation[21]

Let sp be the infinite dimensional Lie algebra of matrices of the form

S(d, k, l) =

d k

l −dT


where k and l are symmetric, andQuad be the Lie algebra consisting of homogeneous

quadratics of the form

68



Q(d, k, l) :=
1

2

(
ax a∗x

)d k

l −dT


−a∗y
ay


= −

∫
d(x, y)

axa
∗
y + a∗yax

2
dxdy +

1

2

∫
k(x, y)axaydxdy

− 1

2

∫
l(x, y)a∗xa

∗
ydxdy

equipped with Poisson bracket. In the spirit of page 185, Folland [19], we define the

infinitesimal metaplectic representation: a Lie algebra isomorphism I : sp→ Quad

by Q(d, k, l) = I(S(d, k, l)). Then we see that

B = I(K) ,

for

K =

 0 k(t, x, y)

k(t, x, y) 0

 , (3.9)

and it follows that

(i)

I
(
eSCe−S

)
= eI(S)I (C) e−I(S)

if I (C) ∈ sp.

(ii)

I
((

∂

∂t
eS
)
e−S
)

=

(
∂

∂t
eI(S)

)
e−I(S)

if I(S) is skew-Hermitian.

(iii)

eI(S)

(
ax a∗x

)f
g

 e−I(S) =

(
ax a∗x

)
eS

f
g


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if I(S) is skew-Hermitian.

Remark 12 Properties (i) and (ii) will be used below. (iii) will be used in Section

3.4.

3.2.2.2 Derivation of Equation (3.2)

Use the simplifications noted in Remark 3, recall that

1

4!6
[A, [A, [A, [A, V ]]]]

=
1

2

∫
v3,1−2,1−3 |φ1|

2 (φ2φ3ayaz + φ2φ3a
∗
ya
∗
z)dxdydz

+

∫
v3,1−2,1−3 |φ1|

2 φ2φ3a
∗
zaydxdydz

+
1

2

∫
v3,1−2,1−3 |φ1|

2 |φ2|
2 a∗zazdxdydz ,

and

H0 =

∫
a∗x∆axdx

we write

G =

g 0

0 −gT

 and M =

 0 m

−m 0


with

g = −4δ1−2 +

(∫
v3,1−2,1−3 |φ3|

2 dz

)
φ1φ2 +

1

2

(∫
v3,1−2,1−3 |φ2|

2 |φ3|
2 dydz

)
δ1−2

and

m = −
(∫

v3,1−2,1−3 |φ3|
2 dz

)
φ1φ2.

Of course, we would like to be able to write
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H0 −
1

4!

1

6
[A, [A, [A, [A, V ]]]] = I (G) + I (M) .

Unfortunately, the above equality is not true. For example

I


−4δ1−2 0

0 4δ1−2


 =

∫
a∗x4ax + ax4a∗x

2
dx.

However, the commutators of I (G) , I (M) and H0 − 1
4!

1
6
[A, [A, [A, [A, V ]]]] with B

are the same as in the discussion in page 287 in [21]. The same idea applies here.

Split

H0 −
1

4!

1

6
[A, [A, [A, [A, V ]]]] = HG + I(M)

where

HG = H0−
∫
v3,1−2,1−3 |φ3|

2 φ2φ1a
∗
xaydxdydz−

1

2

∫
v3,1−2,1−3 |φ2|

2 |φ3|
2 a∗xaxdxdydz

which has the property that

[HG, B] = [I (G) , B].

Now, LQ from formula (3.8) reads

LQ =
1

i

(
∂

∂t
eB
)
e−B + eB

(
H0 −

1

4!

1

6
[A, [A, [A, [A, V ]]]]

)
e−B

= I
((

1

i

∂

∂t
eK
)
e−K

)
+ eBHGe

−B + I
(
eKMe−K

)
= I

((
1

i

∂

∂t
eK
)
e−K

)
+HG +

(
eBHGe

−B −HG

)
+ I

(
eKMe−K

)
= HG + I

((
1

i

∂

∂t
eK
)
e−K

)
+ [eB, HG]e−B + I

(
eKMe−K

)
= HG + I

((
1

i

∂

∂t
eK
)
e−K + [eK , G]e−K + eKMe−K

)
= HG + I(M1 +M2 +M3) .
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Then by the definition of the isomorphism I, the coeffi cient of axay is −(M1 +

M2 +M3)12, and the coeffi cient of a∗xa
∗
y is (M1 +M2 +M3)21. To write it explicitly:

− (M1 +M2 +M3)12 (3.10)

= (M1 +M2 +M3)21

= (i sinh(k)t + sinh(k)gT + g sinh(k))cosh(k)

− (i cosh(k)t − [cosh(k), g] sinh(k)

− sinh(k)m sinh(k)− cosh(k)mcosh(k) .

Setting formula (3.10) to 0 confers equation (3.2). This implies that

I(M1 +M2 +M3) = −
∫

(M1 +M2 +M3)11

axa
∗
y + a∗yax

2
dxdy

= −
∫
d(t, x, y)

axa
∗
y + a∗yax

2
dxdy

= −
∫
d(t, x, y)a∗yaxdxdy −

1

2

∫
d(t, x, x)dx

where d(t, x, y) is given by formula (3.4).

Remark 13 (M1 +M2 +M3)ij means the entry on the ith row and the jth column

of the matrix (M1 +M2 +M3).

We summarize the computations we have done so far in this proposition:

Proposition 7 If φ and k solve equations (3.1) and (3.2), then the coeffi cients of

axay and a∗xa
∗
y in e

B[A, [A, [A, [A, V ]]]]e−B are 0 and LQ becomes

LQ =H0 −
∫
v3(x− y, y − z) |φ(z)|2 φ(y)φ(x)a∗xaydxdydz

− 1

2

∫
v3(x− y, y − z) |φ(y)|2 |φ(z)|2 a∗xaxdxdydz

−
∫
d(t, x, y)a∗yaxdxdy −

1

2

∫
d(t, x, x)dx .
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Recall that Ψ = eBΨ0 = eBe
√
NA(t)eitHN e−

√
NA(0)e−B(0)Ω solves

1

i

∂

∂t
Ψ = LΨ.

We can now write out

L = LQ −
1

6
N−2eBV e−B − 1

6
N−3/2eB[A, V ]e−B − 1

12
N−1eB[A, [A, V ]]e−B

− 1

36
N−

1
2 eB[A, [A, [A, V ]]]e−B −Nχ0

= H0 −
∫
v3(x− y, y − z) |φ(z)|2 φ(y)φ(x)a∗xaydxdydz

−1

2

∫
v3(x− y, y − z) |φ(y)|2 |φ(z)|2 a∗xaxdxdydz

−
∫
d(t, x, y)a∗yaxdxdy −

1

6
N−2eBV e−B − 1

6
N−3/2eB[A, V ]e−B

− 1

12
N−1eB[A, [A, V ]]e−B − 1

36
N−

1
2 eB[A, [A, [A, V ]]]e−B − 1

2

∫
d(t, x, x)dx

−Nχ0

= L̃− χ1 −Nχ0

if we write

χ0(t) = −1

3

∫
v3(x− y, x− z) |φ(x)|2 |φ(y)|2 |φ(z)|2 dxdydz

χ1(t) =
1

2

∫
d(t, x, x)dx.

Remark 14 Note that
(
L̃
)∗

= L̃ and L̃ commutes with functions of time. This is

needed in the proof of Theorem 7 which is below.
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3.2.2.3 The proof of Theorem 7

Applying the above proposition, we can give the proof of Theorem 7 at this

point.

‖e−
√
NA(t)e−B(t)e−i

∫ t
0 (Nχ0(s)+χ1(s))dsΩ− eitHN e−

√
NA(0)e−B(0)Ω ‖F

= ‖Ω− ei
∫ t
0 (Nχ0(s)+χ1(s))dseB(t)e

√
NA(t)eitHN e−

√
NA(0)e−B(0)Ω ‖F

= ‖Ω− ei
∫ t
0 (Nχ0(s)+χ1(s))dsΨ ‖F

since e−
√
NA(t) and e−B(t) are unitary.

But

∂

∂t
‖Ω− ei

∫ t
0 (Nχ0(s)+χ1(s))dsΨ ‖2

F

= 2 Re

(
∂

∂t

(
ei
∫ t
0 (Nχ0(s)+χ1(s))dsΨ− Ω

)
, ei

∫ t
0 (Nχ0(s)+χ1(s))dsΨ− Ω

)
= 2 Re

((
∂

∂t
− iL̃

)(
ei
∫ t
0 (Nχ0(s)+χ1(s))dsΨ− Ω

)
, ei

∫ t
0 (Nχ0(s)+χ1(s))dsΨ− Ω

)
= 2 Re

(
iL̃Ω, ei

∫ t
0 (Nχ0(s)+χ1(s))dsΨ− Ω

)
6 2‖L̃Ω ‖F‖ei

∫ t
0 (Nχ0(s)+χ1(s))dsΨ− Ω ‖F

due to the fact that

(
1

i

∂

∂t
− L̃

)
(ei

∫ t
0 (Nχ0(s)+χ1(s))dsΨ− Ω) = L̃Ω.

Notice that

L̃Ω = −
(

1

6N2
eBV e−B +

1

6
N−3/2eB[A, V ]e−B +

1

12
N−1eB[A, [A, V ]]e−B +

1

36
N−

1
2 eB[A, [A, [A, V ]]]e−B

)
Ω,
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we reach

∂

∂t
‖Ω− ei

∫ t
0 (Nχ0(s)+χ1(s))dsΨ ‖F

6 ‖eBV e−BΩ‖F
6N2

+
‖eB[A, V ]e−BΩ‖F

6N
3
2

+
‖eB[A, [A, V ]]e−BΩ‖F

12N
+
‖eB[A, [A, [A, V ]]]e−BΩ‖F

36N
1
2

Whence we complete the proof of Theorem 7 because eitHN e−
√
NA(0)e−B(0)Ω and

e−
√
NA(t)e−B(t)e−i

∫ t
0 (Nχ0(s)+χ1(s))dsΩ share the same initial data e−

√
NA(0)e−B(0)Ω.

3.3 Solving Equation (3.2) / Proof of Theorem 8 (Part I)

Starting from this section, we begin the proof of Theorem 8. In other words,

we are assuming that

v3(x− y, x− z) = v(x− y, x− z)

where v is defined in formula (1.9).

We first study equation (3.2). We prove an apriori estimate for u = sinh(k)

and use it in a Duhamel iteration argument to show global existence. Finally we

verify that
∫
d(t, x, x)dx is locally integrable in time.

Written in the notations in Remark 3, equation (3.2) reads

(
iut + ugT + gu− (I + p)m

)
= (ipt + [g, p] + um) (I + p)−1 u,

where

u(t, x, y) = sinh(k) = k +
1

3!
kkk + . . . ,

cosh(k)(t, x, y) = I + p(t, x, y) = δ1−2 +
1

2!
kk + . . . ,
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g(t, x, y) = −4δ1−2 +

(∫
v1−2,1−3 |φ3|

2 dz

)
φ1φ2

+
1

2

(∫
v1−2,1−3 |φ2|

2 |φ3|
2 dydz

)
δ1−2

m(t, x, y) = −
(∫

v1−2,1−3 |φ3|
2 dz

)
φ1φ2.

As mentioned in Theorem 7, we write composition of kernels as products in the

above e.g.

kk(x, y) =

∫
k(x, z)k(z, y)dz.

Observe that g(t, x, y) = g(t, y, x), i.e. g∗ = g; and m(t, x, y) = m(t, y, x), i.e.

mT = m. Moreover, uT = u, p∗ = p because k ∈ L2
s(dxdy).

Via eKe−K = I with K defined in formula (3.9), we obtain the trigonometric

identity

uu = cosh(k)cosh(k)− I

= 2p+ p2

which is a relation between u and p.

3.3.1 An Apriori Estimate of u

Theorem 10 Let v3(x− y, x− z) = v(x− y, x− z). If u = sinh(k) is a solution of

equation (3.2) on some time interval [0, T ], then there exists a C > 0, independent

of T, s.t.

‖u(T )‖L2
(x,y)

6 C
(

1 + ‖u(0)‖L2
(x,y)

)
.

The major observation is the following lemma which is also the cornerstone to

showing Theorem 11.
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Lemma 12 [22]From equation (3.2), we deduce

(ipt + [g, p] + um)(I + p)−1 = −(I + p)−1 (ipt + [g, p]−mū) (3.11)

and consequently

i(uu)t + [g, uu] = mū(I + p)− (I + p)um. (3.12)

Proof. Multiply equation (3.2) on the right by u, it reads

(
iut + ugT + gu

)
u− (I + p)mu = (ipt + [g, p] + um)(I + p)−1uu. (3.13)

Take the adjoint in the operator kernel sense of equation (3.2), multiply on

the left by u, i.e.

u
(
−iūt + gT ū+ ūg

)
− um(I + p) = uu(I + p)−1 (−ipt − [g, p] +mu) . (3.14)

Subtracting equations (3.13) and (3.14), we have

i(uu)t + [g, uu]− (I + p)mu+ um(I + p) (3.15)

= (ipt + [g, p] + um)(I + p)−1uu− uu(I + p)−1 (−ipt − [g, p] +mu)

With uu = cosh(k)cosh(k)− I and uu = 2p+ p2, we compute

(I + p)−1uu− (I + p) = (I + p)−1 = uu(I + p)−1 − (I + p)

and

(I + p)−1uu = (I + p)−1p+ p = uu(I + p)−1

which transform equation (3.15) to

i(2p+ p2)t + [g, 2p+ p2] + um(I + p)−1 − (I + p)−1mu

= (ipt + [g, p])((I + p)−1p+ p)− ((I + p)−1p+ p) (−ipt − [g, p])
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i.e.

2(ipt + [g, p]) + um(I + p)−1 − (I + p)−1mu

= (ipt + [g, p])(I + p)−1p+ (I + p)−1p (ipt + [g, p])

which is equation (3.11) due to I − (I + p)−1p = (I + p)−1.

Multiplying equation (3.11) on the right and left by (I + p) produces

(I + p)(ipt + [g, p] + um) = − (ipt + [g, p]−mū) (I + p)

i.e. equation (3.12):

i(uu)t + [g, uu] = mū(I + p)− (I + p)um

because uu = 2p+ p2.

Taking the trace in formula (3.12) yields

d

dt
‖u‖2

L2 = Tr
[
(1/i)

(
mu(1 + p)− (1 + p)um

)]
.

Note that

‖u‖2
L2 = Tr (uu)

= 2Tr (p) + Tr
(
p2
)

> ‖p‖2
L2

because p(t, x, y) = 1
2!
kk + . . . must have a nonnegative trace. So

d

dt
‖u‖2

L2 6 2 (‖m‖L2‖u‖L2 + ‖m‖L2‖u‖L2‖p‖L2)

6 2
(
‖m‖L2‖u‖L2 + ‖m‖L2‖u‖2

L2

)
.
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By a Gronwall’s inequality, we deduce

‖u(T )‖L2
(x,y)

6
(∫ T

0

‖m‖L2
(x,y)

dt+ ‖u(0)‖L2
(x,y)

)
exp

 T∫
0

‖m‖L2
(x,y)

dt

 .

The following lemma gives us Theorem 10.

Lemma 13 If v3(x− y, x− z) = v(x− y, x− z), then

‖m‖L1t (R+)L2
(x,y)

6 C <∞

Proof. Because

v(x− y, x− z)

= v0(x− y)v0(x− z) + v0(x− y)v0(y − z) + v0(x− z)v0(y − z),

we have

‖m‖2
L2
(x,y)

=

∫ (∫
v(x− y, x− z) |φ3|

2 dz

)2

|φ1|2|φ2|2dxdy

6 C

∫
|φ1|2|φ2|2v2

0(x− y)

(∫
v0(x− z) |φ3|

2 dz

)2

dxdy

+C

∫
|φ1|2|φ2|2v2

0(x− y)

(∫
v0(y − z) |φ3|

2 dz

)2

dxdy

+C

∫
|φ1|2|φ2|2

(∫
v0(x− z)v0(y − z) |φ3|

2 dz

)2

dxdy

= I + II + III.

A combination of Hölder and interpolation gives the following estimates

I + II = 2C

∫
|φ1|2

(∫
v2

0(x− y)|φ2|2dy
)(∫

v0(x− z) |φ3|
2 dz

)2

dx

6 C ‖φ‖2
L6

∥∥∥∥∫ v2
0(· − y)|φ2|2dy

∥∥∥∥
L∞

∥∥∥∥∫ v0(· − z) |φ3|
2 dz

∥∥∥∥2

L3

6 C ‖φ‖2
L6 ‖φ0‖

2
L2 ‖φ‖

4
L6 6 C ‖φ0‖

2
L2 ‖φ‖

6
L6 ,
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III = C

∫
v0(x− z1)v0(y − z1)v0(x− z2)v0(y − z2)

|φ1|2|φ2|2 |φ(z1)|2 |φ(z2)|2 dxdydz1dz2

6 C

∫
dz1dz2 |φ(z1)|2 |φ(z2)|2

(∫
v2

0(x− z1)v2
0(y − z1)|φ1|2|φ2|2dxdy

) 1
2

(∫
v2

0(x− z2)v2
0(y − z2)|φ1|2|φ2|2dxdy

) 1
2

= C

(∫
dz |φ(z)|2

(∫
v2

0(x− z)|φ1|2dx
))2

6 C
∥∥|φ|2∥∥2

L3

∥∥∥∥∫ v2
0(x− z)|φ1|2dx

∥∥∥∥2

L
3
2

6 C ‖φ‖4
L6 ‖φ‖

4
L3 6 C ‖φ0‖

2
L2 ‖φ‖

6
L6 .

i.e. ‖m‖L2
(x,y)

6 C ‖φ‖3
L6 6 Ct−3, for t > 1, by Theorem 9. So we conclude the

lemma.

Remark 15 Theorem 10 also has consequences on p because ‖p‖L2 6 ‖u‖L2 .

3.3.2 The Existence of u

Because equation (3.2)

(
iut + ugT + gu− (I + p)m

)
= (ipt + [g, p] + um) (I + p)−1 u,

is fully nonlinear in k, it is not easy to solve for k directly from the equation.

However, if we put in

I + p = cosh(k) =
√
I + uu

in the operator sense, equation (3.2) becomes a quasilinear NLS equation in u =

sinh(k). In fact, written out explicitly, the left hand side of equation (3.2) is
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iut + ugT + gu =

(
i
∂

∂t
−∆x −∆y

)
u(t, x, y) (3.16)

+φ1

∫ (∫
v(x− y1, x− z) |φ3|

2 dz

)
φ(y1)u(t, y1, y)dy1

+φ2

∫
u(t, x, y1)

(∫
v(y1 − y, x− z) |φ3|

2 dz

)
φ(y1)dy1

+
1

2

(∫
v·−2,·−3 |φ2|

2 |φ3|
2 dydz

)
(x)u(t, x, y)

+
1

2

(∫
v·−2,·−3 |φ2|

2 |φ3|
2 dydz

)
(y)u(t, x, y)

and the main term of the right hand side

ipt + [g, p] =

(
i
∂

∂t
−∆x + ∆y

)
p(t, x, y) (3.17)

+φ1

∫ (∫
v(x− y1, x− z) |φ3|

2 dz

)
φ(y1)p(t, y1, y)dy1

−φ2

∫
p(t, x, y1)

(∫
v(y1 − y, x− z) |φ3|

2 dz

)
φ(y1)dy1

+
1

2

(∫
v·−2,·−3 |φ2|

2 |φ3|
2 dydz

)
(x)p(t, x, y)

−1

2

(∫
v·−2,·−3 |φ2|

2 |φ3|
2 dydz

)
(y)p(t, x, y).

For our purpose, obtaining some reasonable estimates of u and p = cosh(k)−I

is enough. So we would like to get around solving for k and go to u directly.

But at first, we ask the following: k certainly determines u, but does u deter-

mine k? The proof of Theorem 7 actually needs a well-defined k.

We answer the above question by the following lemma:

Lemma 14 [22]The map

k 7→ u = sinh(k)

is one to one, onto, continuous, with a continuous inverse, from symmetric Hilbert-

Schmidt kernels k onto symmetric Hilbert-Schmidt kernels u.
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Proof. The proof of this lemma is in [22].

Now we consider the existence of u satisfying equation (3.2). As asserted, equa-

tion (3.2) is a quasilinear NLS of u. However, we can transform it into a semilinear

equation which is easier to deal with, through the following lemma.

Lemma 15 [22]The following equations are equivalent for a symmetric, Hilbert-

Schmidt u:

iut + ugT + gu = (I + p)m+ (ipt + [g, p] + um) (I + p)−1 u

iut + ugT + gu = (I + p)m+
1

2

(
(I + p)−1mu+ um (I + p)−1)u

+
1

2

[
ipt + [g, p], (I + p)−1]u (3.18)

iut + ugT + gu = (I + p)m+
1

2

(
(I + p)−1mu+ um (I + p)−1)u

+
1

2

[
W, (I + p)−1]u (3.19)

if we set

W : =
1

2πi

∫
Γ

(uu− z)−1 F (uu− z)−1
√
I + zdz

F : = mu(I + p)− (I + p)um

Here, Γ is a contour enclosing the spectrum of the non-negative Hilbert-Schmidt

operator uu.

Proof. (Sketch) Equation (3.18) is the same as equation (3.2), suitably re-written.

The keystone of the proof is

ipt + [g, p] = W.
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But

ipt + [g, p] = i
(√

I + uu
)
t
+ [g,

√
I + uu]

=
1

2πi

∫
Γ

(uu− z)−1 (i(uu)t + [g, uu]) (uu− z)−1
√
I + zdz

because

√
I + uu = − 1

2πi

∫
Γ

(uu− z)−1
√
I + zdz

i
(
(uu− z)−1)

t
+ [g, (uu− z)−1] = − (uu− z)−1 (i(uu)t + [g, uu]) (uu− z)−1 .

The result follows from equation (3.12)

i(uu)t + [g, uu] = F = mu(I + p)− (I + p)um.

Whence, we only need to show the existence for equation (3.19) which is of

the form

iut + ugT + gu = m+N(u)

where the nonlinear partN(u) involves no derivatives of u. Via the ordinary iteration

procedure, we conclude the following existence theorem:

Theorem 11 [22]Given u0 ∈ L2
(x,y)(R6) symmetric, there exists ε0 such that if

‖m‖L1t ([0,T ])L2
(x,y)

6 ε0

then there exists u ∈ L∞t ([0, T ])L2
(x,y) solving equation (3.19) and hence equation

(3.2) with prescribed initial condition u(0, x, y) = u0(x, y) ∈ L2
(x,y)(R6).
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Since we have shown ‖m‖L1t (R+)L2
(x,y)

<∞ in Lemma 13, we can divide R+ into

countably many time intervals [Tn, Tn+1] such that ‖m‖L1t ([Tn,Tn+1])L2
(x,y)

6 ε0. So the

above existence theorem in fact implies the global existence of u and thus p.

Via Theorem 10, we have

‖u‖L∞t (R+)L2
(x,y)

6 C,

which implies

‖p‖L∞t (R+)L2
(x,y)

6 C.

Moreover, the following estimates hold.

Theorem 12 Let u ∈ L∞t (R+)L2
(x,y) be the solution of equation (3.2) subject to

u0 ∈ L2
(x,y)(R6) described in Theorem 11. Then u satisfies the following additional

properties:

‖
(
i
∂

∂t
−∆x −∆y

)
u‖L1t (R+)L2

(x,y)
6 C (3.20)

‖
(
i
∂

∂t
−∆x + ∆y

)
p‖L1t (R+)L2

(x,y)
6 C (3.21)

where C only depends on v, C1, C2 and ‖u0‖L2
(x,y)
. See Theorem 2 for C1 and C2.

Proof. We will only show estimate 3.20. Estimate 3.21 can be shown similarly

from

ipt + [g, p] = W.

The proof is separated into 2 parts.

On the one hand we show

‖iut + ugT + gu‖L1t (R+)L2
(x,y)

6 ‖m‖L1t (R+)L2
(x,y)

+ ‖N(u)‖L1t (R+)L2
(x,y)

6 Cε.
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On the other hand we control the terms in iut +ugT + gu different from (i ∂
∂t
−∆x−

∆y)u, namely

∫ (∫
v(x− y1, x− z) |φ3|

2 dz

)
φ(x)φ(y1)u(y1, y)dy1

and

1

2

(∫
v(x− y, x− z) |φ2|

2 |φ3|
2 dydz

)
u.

One sees the above two terms from formula (3.16).

Part I. Recall that

N(u) = pm+
1

2

(
(I + p)−1mu+ um (I + p)−1)u+

1

2

[
W, (I + p)−1]u.

We have proven

‖p‖L∞t (R+)L2
(x,y)

6 ‖u‖L∞t (R+)L2
(x,y)

6 Cε.

Together with the fixed time estimate:

‖kl‖H−S 6 ‖k‖op ‖l‖H−S (3.22)

these take care of most of the terms in N(u) because (I + p)−1 and (uu− z)−1 |z∈Γ

have uniformly bounded operator norms. In inequality 3.22, ‖·‖H−S stands for the

Hilbert-Schmidt norm and ‖·‖op stands for the operator norm. We only need to

account for W. However, the fact that |z| 6 C‖u‖2
L2
(x,y)
on Γ implies

‖W‖L1t (R+)L2
(x,y)

6 C
(

1 + ‖u‖6
L∞t (R+)L2

(x,y)

)
‖m‖L1t (R+)L2

(x,y)
6 C.

i.e. ‖N(u)‖L1t (R+)L2
(x,y)

6 C.

Part II.
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Using Hölder, it is not diffi cult to see the estimate

∥∥∥∥∫ (∫ v(x− y1, x− z) |φ3|
2 dz

)
φ(x)φ(y1)u(y1, y)dy1

∥∥∥∥
L1t (R+)L2

(x,y)

=

∥∥∥∥∥∥
{∫ ∣∣∣∣∫ (∫ v(x− y1, x− z) |φ3|

2 dz

)
φ(x)φ(y1)u(y1, y)dy1

∣∣∣∣2 dxdy
} 1

2

∥∥∥∥∥∥
L1t (R+)

6
∣∣∣∣∣∣∣∣( ∫ ∣∣φ(x)

∣∣2(∫ (∫ v(x− y1, x− z) |φ3|
2 dz

)2

|φ(y1)|2 dy1

)
(∫
|u(y1, y)|2 dy1

)
dxdy

) 1
2
∣∣∣∣∣∣∣∣
L1t (R+)

=

∥∥∥∥∥∥
{∫ (∫

v(x− y1, x− z) |φ3|
2 dz

)2 ∣∣φ(x)
∣∣2 |φ(y1)|2 dxdy1

} 1
2

‖u‖L2
(x,y)

∥∥∥∥∥∥
L1t (R+)

6 ‖m‖L1t (R+)L2
(x,y)
‖u‖L∞t (R+)L2

(x,y)

6 C.

It remains to show:

∥∥∥∥(∫ v(x− y, x− z) |φ2|
2 |φ3|

2 dydz

)
u

∥∥∥∥
L1t (R+)L2

(x,y)

6 C. (3.23)

Write

∥∥∥∥(∫ v(x− y, x− z) |φ2|
2 |φ3|

2 dydz

)
u

∥∥∥∥
L2
(x,y)

=

(∫
|u(t, x, y)|2

(∫
v(x− y, x− z) |φ2|

2 |φ3|
2 dydz

)2

dxdy

) 1
2

6 C

(∫
|u(t, x, y)|2

(∫
v0(x− y)v0(x− z) |φ2|

2 |φ3|
2 dydz

)2

dxdy

) 1
2

+C

(∫
|u(t, x, y)|2

(∫
v0(x− y)v0(y − z) |φ2|

2 |φ3|
2 dydz

)2

dxdy

) 1
2

+C

(∫
|u(t, x, y)|2

(∫
v0(x− z)v0(y − z) |φ2|

2 |φ3|
2 dydz

)2

dxdy

) 1
2
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= I + II + III.

According to the estimate

∣∣∣∣∫ v0(x− y) |φ(y)|2 dy
∣∣∣∣ 6 C ‖φ‖2

L6 6 Ct−2

we acquire, for t > 1,

I = C

(∫
|u(t, x, y)|2

(∫
v0(x− y) |φ2|

2 dy

)4

dxdy

) 1
2

6 Ct−4‖u‖L∞t (R+)L2
(x,y)

II + III = 2C

(∫
|u(t, x, y)|2

(∫
v0(x− y)v0(y − z) |φ2|

2 |φ3|
2 dydz

)2

dxdy

) 1
2

6 2C

(∫
|u(t, x, y)|2

(∫
v0(x− y) |φ2|

2 dy

)2

C ‖φ‖4
L6 dxdy

) 1
2

6 Ct−4‖u‖L∞t (R+)L2
(x,y)
.

i.e. estimate 3.23

∥∥∥∥(∫ v(x− y, x− z) |φ2|
2 |φ3|

2 dydz

)
u

∥∥∥∥
L1t (R+)L2

(x,y)

6 C.

3.3.3 The Trace
∫
d(t, x, x) dx

Recall that

d(t, x, y) =
(
i sinh(k)t + sinh(k)gT + g sinh(k)

)
sinh(k)

− (i cosh(k)t + [g, cosh(k)]) cosh(k)

− sinh(k)m cosh(k)− cosh(k)msinh(k).
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defined by Formula (3.4). Rewrite it as

d(t, x, y) =
(
iut + ugT + gu

)
u− (ipt + [g, p]) (I + p)

−um(I + p)− (I + p)mu

because I commutes with everything and It = 0.

Notice that if k1(x, y) ∈ L2
(x,y) and k2(x, y) ∈ L2

(x,y) then∫
|k1k2|(x, x)dx =

∫
|
∫
k1(x, y)k2(y, x)dy|dx 6 ‖k1‖L2

(x,y)
‖k2‖L2

(x,y)
.

At this point, we have already shown that m, iut + ugT + gu, ipt + [g, p] and

um ∈ L1
t (R+)L2

(x,y) and u, p ∈ L∞t (R+)L2
(x,y). So except (ipt + [g, p]) I, all traces in

Formula (3.4) are well-defined and integrable on R+.

However,

ipt + [g, p] = W,

for

W =
1

2πi

∫
Γ

(uu− z)−1 F (uu− z)−1
√
I + zdz

F = mu(I + p)− (I + p)um.

Inside the contour integral of W , since (uu− z)−1 |z∈Γ has uniformly bounded op-

erator norm and
∣∣√I + z

∣∣ 6 C
(

1 + ‖u‖L∞t (R+)L2
(x,y)

)
, we are in fact dealing with

(Bounded)(H − S)(H − S)(Bounded)

where H−S stands for Hilbert-Schmidt. But (Bounded)(H−S) is Hilbert-Schmidt.

So we are looking at (H − S)(H − S) which has a trace well-defined and locally

integrable in time.
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3.4 Error Estimates / Proof of Theorem 8 (Part II)

We finish the proof of Theorem 8 with the proposition below whose proof

consists of classical techniques.

Proposition 8 Let φ to be the solution of the Hartree equation subject to (i), (ii),

and (iii). Assume we have

‖
(
i
∂

∂t
+ ∆x

)
φ‖L1t (R+)L2x

6 C3 ,

‖
(
i
∂

∂t
−∆x −∆y

)
u‖L1t (R+)L2

(x,y)
6 C4 ,

‖
(
i
∂

∂t
−∆x + ∆y

)
p‖L1t (R+)L2

(x,y)
6 C5 ,

then we have the error estimates: ∫
‖eBV e−BΩ‖F dt 6 C∫

‖eB[A, V ]e−BΩ‖F dt 6 C∫
‖eB[A, [A, V ]]e−BΩ‖F dt 6 C∫

‖eB[A, [A, [A, V ]]]e−BΩ‖F dt 6 C

where C only depends on v, φ, C3, C4, C5, and ‖u0‖L2
(x,y)
.

Remark 16 We can prove

‖
(
i
∂

∂t
+ ∆x

)
φ‖L1t (R+)L2x

6 C.

with the same method to show estimate 3.23.

Remark 17 Theorem 12 shows that C4, C5 depends only on v, C1, C2 and ‖u0‖L2
(x,y)
.

So C here is determined by v, C1, C2 and ‖u0‖L2
(x,y)
.
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Remark 18 For Theorem 2, we take k(0, x, y) = 0 i.e. u0 = 0.

Ideally, we would like to prove Proposition 8 in complete details. However,

eBa∗x0e
−B = eB

(
ax a∗x

)0

1

 e−B =

(
ax a∗x

)
eK

0

1


=

∫ (
u(x1, x0)ax0 + cosh(k)(x1, x0)a∗x0

)
dx1,

eBax0e
−B = eB

(
ax a∗x

)1

0

 e−B =

(
ax a∗x

)
eK

1

0


=

∫ (
cosh(k)(x2, x0)ax2 + u(x2, x0)a∗x2

)
dx2,

and

cosh(k)(x, y) = δ(x− y) + p(x, y),

their products generate a large number of terms. The fact that we will always

commute the annihilations to the right, e.g. a∗x1ay2a
∗
z2

= δ(y2−z2)a∗x1 +a∗x1a
∗
z2
ay2 , to

avoid k(x, x) or related traces, produces even more terms. Hence it is impractical

to list every single term in eBV e−BΩ etc., instead, we prove a key lemma and do a

typical estimate.

Lemma 16 (Key Lemma) Let x1, y1, y2 ∈ R3, x2 ∈ Rn1 , y3 ∈ Rn2 with the possibility

that n1 or n2 is zero. Assume f , g satisfy

‖
(
i
∂

∂t
±∆x1 ±∆x2

)
f(t, x1, x2)‖L1t (R+)L2x

6 C,

‖
(
i
∂

∂t
± (∆y1 + ∆y2)±∆y3

)
g(t, y1, y2, y3)‖L1t (R+)L2y

6 C.

Moreover suppose f |t=0, g|t=0 ∈ L2.
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Then

∫
dt

(∫
v2(x1 − y1, x1 − y2) |f(t, x1, x2)|2 |g(t, y1, y2, y3)|2 dx1dx2dy1dy2dy3

) 1
2

6 C.

Remark 19 Specializing to the case n1, n2 = 0, 3,or 6, we will apply Lemma 16 to

prove Proposition 8.

In addition to the endpoint Strichartz estimates [25] which are necessary, we

need the following estimate to prove Lemma 16.

Claim 2

∥∥∥∥∫ v2
0(x− y)v2

0(x− z)f(y, z)dydz

∥∥∥∥
L
3
2 (R3,dx)

6 C ‖f‖
L
3
2 (R6,dydz)

Proof.

∥∥∥∥∫ v2
0(x− y)v2

0(x− z)f(y, z)dydz

∥∥∥∥
L
3
2 (R3,dx)

6
∥∥∥∥∫ v2

0(x− y)
∥∥v2

0

∥∥
L3
‖f(y, ·)‖

L
3
2
dy

∥∥∥∥
L
3
2

6
∥∥v2

0

∥∥
L1

∥∥v2
0

∥∥
L3
‖f‖

L
3
2

= C ‖f‖
L
3
2
.

We can prove Lemma 16 now.

Proof. By Duhamel’s principle, it suffi ces to prove

∫
dt

(∫ ∣∣eit(±4x1±4x2 )f(x1, x2)
∣∣2 ∣∣∣eit(±(∆y1+∆y2)±∆y3 )g(y1, y2, y3)

∣∣∣2
v2(x1 − y1, x1 − y2)dx1dx2dy1dy2dy3

) 1
2

6 C ‖f‖L2 ‖g‖L2
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because we have

‖
(
i
∂

∂t
±∆x1 ±∆x2 ± (∆y1 + ∆y2)±∆y3

)
f(t, x1, x2)g(t, y1, y2, y3)‖L1t (R+)L2

(x,y)

6 C

with f |t=0, g|t=0 ∈ L2 which also guarantees f, g ∈ L∞t L2
x by the energy estimate.

The proof is divided into two steps.

Step I: Write the partial Fourier transform to be

f ′ξ2(x1) =

∫
eix1ξ1 f̂(ξ1, ξ2)dξ1,

then we have

∫
dx2

∣∣eit(±4x1±4x2 )f(x1, x2)
∣∣2

=

∫
dx2

∫
dξ1dξ

′
1dξ2dξ

′
2e
ix1(ξ1−ξ′1)eit(±1)(|ξ1|2−|ξ′1|

2)eix2(ξ2−ξ′2)eit(±1)(|ξ2|2−|ξ′2|
2)

f̂(ξ1, ξ2)f̂(ξ′1, ξ
′
2)

=

∫
dξ1dξ

′
1dξ2dξ

′
2e
ix1(ξ1−ξ′1)eit(±1)(|ξ1|2−|ξ′1|

2)δ(ξ2 − ξ′2)eit(±1)(|ξ2|2−|ξ′2|
2)

f̂(ξ1, ξ2)f̂(ξ′1, ξ
′
2)

=

∫
dξ2

∫
dξ1dξ

′
1e
ix1(ξ1−ξ′1)eit(±1)(|ξ1|2−|ξ′1|

2)f̂(ξ1, ξ2)f̂(ξ′1, ξ2)

=

∫
dξ2

∣∣∣e±it4x1f ′ξ2(x1)
∣∣∣2 .

Step II: Let ξ2, η3 be the phase variables corresponding to x2, y3. Utilizing

Hölder and Claim 2, we get

∫
dt(

∫ ∣∣eit(±4x1±4x2 )f(x1, x2)
∣∣2 ∣∣∣eit(±(∆y1+∆y2)±∆y3 )g(y1, y2, y3)

∣∣∣2
v2(x1 − y1, x1 − y2)dx1dx2dy1dy2dy3)

1
2
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6 3

∫
dt

(∫ ∣∣∣e±it4x1f ′ξ2(x1)
∣∣∣2 ∣∣∣e±it(∆y1+∆y2)g′η3(y1, y2)

∣∣∣2
v2

0(x1 − y1)v2
0(x1 − y2)dx1dy1dy2dξ2dη3

) 1
2

6 C

∫ (∫
dξ2

∥∥∥∥∣∣∣e±it4x1f ′ξ2(x1)
∣∣∣2∥∥∥∥

L3x1

) 1
2

(∫
dη3

∥∥∥∥∫ ∣∣∣e±it(∆y1+∆y2)g′η3(y1, y2)
∣∣∣2 v2

0(x1 − y1)v2
0(x1 − y2)dy1dy2

∥∥∥∥
L
3
2
x1

) 1
2

dt

6 C

∫
dt

(∫
dξ2

∥∥∥e±it4x1f ′ξ2(x1)
∥∥∥2

L6x1

) 1
2

(∫
dη3

∥∥∥e±it(∆y1+∆y2)g′η3(y1, y2)
∥∥∥2

L3
(y1,y2)

) 1
2

6 C

(∫
dt

∫
dξ2

∥∥∥e±it4x1f ′ξ2(x1)
∥∥∥2

L6x1

) 1
2

(∫
dt

∫
dη3

∥∥∥e±it(∆y1+∆y2)g′η3(y1, y2)
∥∥∥2

L3
(y1,y2)

) 1
2

6 C ‖f‖L2 ‖g‖L2 (endpoint Strichartz [25])

The endpoint Strichartz estimates we used in the last line are the 3d L2
tL

6
x and the

6d L2
tL

3
x estimates.

3.4.1 Error term eBV e−BΩ, An Example

Write

eBV e−B

=

∫
dx0dy0dz0v(x0 − y0, x0 − z0)

eBa∗x0e
−BeBa∗y0e

−BeBa∗z0e
−BeBax0e

−BeBay0e
−BeBaz0e

−B (3.24)
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=

∫
dx0dy0dz0dx1dy1dz1dx2dy2dz2v(x0 − y0, x0 − z0)(
u(x1, x0)ax1 + cosh(k)(x1, x0)a∗x1

)(
u(y1, y0)ay1 + cosh(k)(y1, y0)a∗y1

)
(
u(z1, z0)az1 + cosh(k)(z1, z0)a∗z1

) (
cosh(k)(x2, x0)ax2 + u(x2, x0)a∗x2

)
(
cosh(k)(y2, y0)ay2 + u(y2, y0)a∗y2

) (
cosh(k)(z2, z0)az2 + u(z2, z0)a∗z2

)
Because we are applying eBV e−B to Ω, we neglect the terms in product 3.24 which

have more annihilation operators than creation operators. It is also unnecessary to

consider terms ending with az2 or ax2ay2a
∗
z2
. These facts imply that eBV e−BΩ has

nonzero elements solely in its 0th, 2nd, 4th and 6th Fock space slots. To exemplify

the use of Lemma 16, we estimate two typical terms: the order 6 term

∫
dx0dy0dz0dx1dy1dz1dx2dy2dz2

v(x0 − y0, x0 − z0)cosh(k)(x1, x0)cosh(k)(y1, y0)cosh(k)

(z1, z0)u(x2, x0)u(y2, y0)u(z2, z0)a∗x1a
∗
y1
a∗z1a

∗
x2
a∗y2a

∗
z2

which contributes to the 6th Fock space slot of eBV e−BΩ as

ψ6(x1, y1, z1, x2, y2, z2)

=

∫
dx0dy0dz0v(x0 − y0, x0 − z0)

cosh(k)(x1, x0)cosh(k)(y1, y0)cosh(k)(z1, z0)

u(x2, x0)u(y2, y0)u(z2, z0),
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and an order 4 term

∫
dx0dy0dz0dx1dy1dz1dx2dy2dz2v(x0 − y0, x0 − z0)

cosh(k)(x1, x0)cosh(k)(y1, y0)cosh(k)(z1, z0)u(x2, x0) cosh(k)(y2, y0)u(z2, z0)

a∗x1a
∗
y1
a∗z1a

∗
x2
ay2a

∗
z2

=

∫
dx0dy0dz0dx1dy1dz1dx2dy2dz2v(x0 − y0, x0 − z0)

cosh(k)(x1, x0)cosh(k)(y1, y0)cosh(k)(z1, z0)u(x2, x0) cosh(k)(y2, y0)u(z2, z0)

(δ(y2 − z2)a∗x1a
∗
y1
a∗z1a

∗
x2

+ a∗x1a
∗
y1
a∗z1a

∗
x2
a∗z2ay2)

which contributes to the 4th Fock space slot of eBV e−BΩ as

ψ4(x1, y1, z1, x2) =

∫
dx0dy0dz0dy2v(x0 − y0, x0 − z0)

cosh(k)(x1, x0)cosh(k)(y1, y0)cosh(k)(z1, z0)

cosh(k)(y2, y0)u(x2, x0)u(y2, z0)

neglecting symmetrization and normalization.

3.4.1.1 Estimate of ψ6, a triple product involving one u

Via the fact that

cosh(k)(x, y) = δ(x− y) + p(x, y)

we write out the product in ψ6 as

ψ6 = ψ6,δδδ + ψ6,pδδ + ψ6,ppδ + ψ6,ppp
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according to the factors of cosh carried in each term i.e.

ψ6,δδδ =

∫
v(x0 − y0, x0 − z0)δ(x1 − x0)δ(y1 − y0)δ(z1 − z0)

u(x2, x0)u(y2, y0)u(z2, z0)dx0dy0dz0

= v(x1 − y1, x1 − z1)u(x2, x1)u(y2, y1)u(z2, z1)

and

ψ6,ppp =

∫
v(x0 − y0, x0 − z0)p(x1, x0)p(y1, y0)p(z1, z0)

u(x2, x0)u(y2, y0)u(z2, z0)dx0dy0dz0

etc. We proceed to estimate the worst term:

∫
dt

(∫ ∣∣ψ6,δδδ

∣∣2 dx1dy1dz1dx2dy2dz2

) 1
2

=

∫
dt

(∫
|v(x1 − y1, x1 − z1)u(x2, x1)u(y2, y1)u(z2, z1)|2 dx1dy1dz1dx2dy2dz2

) 1
2

6 C

where u(y2, y1)u(z2, z1) takes the place of g in Lemma 16.

For terms in ψ6 involving p, we deal with them as the following: By Cauchy-

Schwarz on dx0dy0dz0, we obtain∫ (∫ ∣∣ψ6,ppp

∣∣2 dx1dy1dz1dx2dy2dz2

) 1
2

dt

6 sup
t

(

∫
|p(x1, x0)p(y1, y0)p(z1, z0)|2 dx0dy0dz0dx1dy1dz1)

1
2∫ (∫

|v(x0 − y0, x0 − z0)u(x2, x0)u(y2, y0)u(z2, z0)|2 dx0dy0dz0dx2dy2dz2

) 1
2

dt

where the first integral is majorized by the energy estimate of p, the second integral

is the same as the one appearing in ψ6,δδδ and can be taken care of by Lemma 16.
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Remark 20 In the estimate regarding ψ6,ppp, we can do Cauchy-Schwarz in another

way:

∫ (∫ ∣∣ψ6,ppp

∣∣2 dx1dy1dz1dx2dy2dz2

) 1
2

dt

6 sup
t

(

∫
|p(x1, x0)u(y2, y0)u(z2, z0)|2 dx0dy0dz0dx1dy2dz2)

1
2∫ (∫

|v(x0 − y0, x0 − z0)u(x2, x0)p(y1, y0)p(z1, z0)|2 dx0dy0dz0dy1dz1dx2

) 1
2

dt

which also works by Lemma 16. Because ‖u‖ > ‖p‖

3.4.1.2 Estimate of ψ4, a double product involving one u

ψ4(x1, y1, z1, x2) =

∫
dx0dy0dz0dy2v(x0 − y0, x0 − z0)

cosh(k)(x1, x0)cosh(k)(y1, y0)cosh(k)(z1, z0)

cosh(k)(y2, y0)u(x2, x0)u(y2, z0)

= ψ4,δδδδ + ...+ ψ4,pppp

where the worst term is

ψ4,δδδδ =

∫
dx0dy0dz0dy2v(x0 − y0, x0 − z0) (3.25)

δ(x1 − x0)δ(y1 − y0)δ(z1 − z0)δ(y2 − y0)u(x2, x0)u(y2, z0)

= v(x1 − y1, x1 − z1)ū(x2, x1)u(y1, z1).

Letting u(y1, z1) be g in Lemma 16, we derive the desired estimate

∫
dt

(∫
dx1dy1dz1dx2

∣∣ψ4,δδδδ

∣∣2) 1
2

6 C.
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3.4.2 Remark for all other error terms

At a glance, we can handle all terms using Lemma 16, except

∫
v(x− y, x− z)φ(x)φ(y)φ(z)a∗xa

∗
ya
∗
zdxdydz

in [A, [A, [A, V ]]], since all other terms end with a instead of a∗. This observation

allows the application of Lemma 16. But Lemma 16 also applies to

eB
(∫

v(x− y, x− z)φ(x)φ(y)φ(z)a∗xa
∗
ya
∗
zdxdydz

)
e−BΩ.

because we can let φ(x1) be f(x1), φ(y1)φ(y2) be g(y1, y2)

Therefore we have established Proposition 8 and thus Theorem 8.

3.5 The Long Time Behavior of The Hartree Equation / Proof of

Theorem 9

In this section, we discuss the Hartree equation (3.5)

i
∂

∂t
φ+4φ− 1

2
φ

∫
v(x− y, x− z) |φ(y)|2 |φ(z)|2 dydz = 0

where

v(x− y, x− z) = v0(x− y)v0(x− z) + v0(x− y)v0(y − z) + v0(x− z)v0(y − z).

We assume the nonnegative regular potential v0 decays fast enough away from the

origin and has the property that

v0(x) = v0(−x).
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Throughout this section, we write

A =

∫
v0(x− y)v0(x− z) |φ(y)|2 |φ(z)|2 dydz

B =

∫
v0(x− y)v0(y − z) |φ(y)|2 |φ(z)|2 dydz

C =

∫
v0(x− z)v0(y − z) |φ(y)|2 |φ(z)|2 dydz,

for convenience i.e. equation (3.5) becomes

i
∂

∂t
φ+4φ− 1

2
(Aφ−Bφ− Cφ) = 0. (3.26)

So (ii) becomes

E(t)|t=0 =

(
1

2

∫
|∇φ|2 +

1

6

∫
(A+B + C) |φ|2

)
|t=0 <∞ .

and (i)-(iii) implies

Ec(t) =

∫
t2

(∣∣∣∣∇(ei
|x|2
4t φ)

∣∣∣∣2 +
1

6
(A+B + C) |φ|2

)
<∞

To prove Theorem 9, we are going to argue that

Ėc(t) 6 0 for t > 1

which leads to

‖φ‖L6 6 C

∥∥∥∥∇(ei
|x|2
4t φ)

∥∥∥∥
L2
6 C

(
Ec(t)

t2

) 1
2

6 C

t
for t > 1.

Here are the details of Theorem 9.

3.5.1 Conservation of Mass, Momentum, and Energy

First, it is not diffi cult to see the conservation law of the L2 mass

∂tρ−∇jp
j = 0 (3.27)
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where

ρ :=
1

2
|φ|2

and

pj :=
1

2i
(φ∇jφ̄− φ̄∇jφ)

because equation (3.26) is of the form

i
∂

∂t
φ+4φ = F (|φ|2)φ.

Times −φ̄ to equation (3.26), we acquire

−p0 +
1

2
σ −4ρ+ (A+B + C)ρ = 0

where

p0 : =
1

2i
(φφ̄t − φ̄φt)

σ : = tr(σjk) = tr(∇jφ̄∇kφ+∇kφ̄∇jφ)

Moreover, letting

λ : = (−p0 +
1

2
σ +

1

3
(A+B + C)ρ) = 4ρ− 2

3
(A+B + C)ρ

e : =
1

2
σ +

1

3
(A+B + C)ρ

produces the conservation law of energy

∂te−∇jσ
j
0 + l0 = 0 (3.28)

where

σj0 : = φt∇jφ̄+ φ̄t∇jφ

l0 =
2

3
(A+B + C)ρt −

1

3
(A+B + C)tρ.
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A direct computation shows that

∫
Atρ =

∫
v0(x− y)v0(x− z)(|φ(y)|2 |φ(z)|2)t(

|φ(x)|2

2
)dxdydz

=

∫
v0(x− y)v0(y − z) |φ(y)|2 |φ(z)|2 (

|φ(x)|2

2
)tdxdydz

+

∫
v0(x− z)v0(y − z) |φ(y)|2 |φ(z)|2 (

|φ(x)|2

2
)tdxdydz

and

∫
Btρ =

∫
v0(x− y)v0(x− z) |φ(y)|2 |φ(z)|2 (

|φ(x)|2

2
)tdxdydz

+

∫
v0(x− z)v0(y − z) |φ(y)|2 |φ(z)|2 (

|φ(x)|2

2
)tdxdydz

∫
Ctρ =

∫
v0(x− y)v0(y − z) |φ(y)|2 |φ(z)|2 (

|φ(x)|2

2
)tdxdydz

+

∫
v0(x− y)v0(x− z) |φ(y)|2 |φ(z)|2 (

|φ(x)|2

2
)tdxdydz

i.e. ∫
(A+B + C)tρ = 2

∫
(A+B + C)ρt

which implies
∫
l0 = 0 i.e. the conservation of energy

E(t) =
1

2

∫
|∇φ|2 +

1

6

∫
(A+B + C) |φ|2

Similarly, we derive the conservation law of momentum:

∂tpj −∇k

{
σjj − δkjλ

}
+ lj = 0 (3.29)

where

lj :=
2

3
(A+B + C)ρj −

1

3
(A+B + C)jρ.
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3.5.2 Conformal Identity

At this point, if we multiply conservation law 3.27 by |x|
2

2
, 3.29 by txj and 3.28

by t2 and add the resulting identities, we obtain the conformal identity:

∂tec −∇jτ
j + r = 0

where

ec : = (
|x|2

2
)ρ+ txjpj + t2e = t2

(∣∣∣∣∇(ei
|x|2
4t φ)

∣∣∣∣2 +
1

3
(A+B + C)ρ

)

τ j : = (
|x|2

2
)pj + txkσjk + txj

(
−4ρ+

2

3
(A+B + C)ρ

)
+ t2σj0

r : = t2l0 + txjlj − nt4ρ+ t(n− 1)
2

3
(A+B + C)ρ.

This suggests

Ėc +Rc = 0 (3.30)

where

Rc := t

∫ (
(n− 1)

2

3
(A+B + C)ρ+ xjlj

)
dx.

To determine Ėc, we calculate

∫
xjljdx

=
8

3

∫
xjv(x− y, x− z)(ρ1)jρ2ρ3 −

8

3

∫
xjv(x− y, x− z)ρ1(ρ2)jρ3

=
8

3

∫
ρ3v(x− y, x− z)xj[(ρ1)jρ2 − ρ1(ρ2)j]

=
16

3

∫
ρ3v(x− y, x− z)x · ∇1−2(ρ1ρ2)

=
8

3

∫
ρ3v(x− y, x− z)(x+ y) · ∇1−2(ρ1ρ2)

+
8

3

∫
ρ3v(x− y, x− z)(x− y) · ∇1−2(ρ1ρ2)

102



= −8

3

∫
ρ1ρ2ρ3∇1−2v(x− y, x− z) · (x+ y)

−8

3

∫
ρ1ρ2ρ3∇1−2v(x− y, x− z) · (x− y)

−8

3
n

∫
ρ1ρ2ρ3v(x− y, x− z)

where ∇1−2 = ∇x−y = 1
2
(∇x −∇y).

Insert formula (1.9)

v(x− y, x− z) = v0(x− y)v0(x− z) + v0(x− y)v0(y − z) + v0(x− z)v0(y − z)

to the above computation, it is∫
xjljdx+

2

3
n

∫
(A+B + C)ρ

= −8

3

∫
ρ1ρ2ρ3v0(x− z) (∇1−2v0(x− y)) · (x+ y)

−4

3

∫
ρ1ρ2ρ3v0(x− y) (∇xv0(x− z)) · (x+ y)

−8

3

∫
ρ1ρ2ρ3v0(y − z) (∇1−2v0(x− y)) · (x+ y)

+
4

3

∫
ρ1ρ2ρ3v0(x− y) (∇yv0(y − z)) · (x+ y)

−4

3

∫
ρ1ρ2ρ3v0(y − z) (∇xv0(x− z)) · (x+ y)

+
4

3

∫
ρ1ρ2ρ3v0(x− z) (∇yv0(y − z)) · (x+ y)

−8

3

∫
ρ1ρ2ρ3v0(x− z) (∇1−2v0(x− y)) · (x− y)

−4

3

∫
ρ1ρ2ρ3v0(x− y) (∇xv0(x− z)) · (x− y)

−8

3

∫
ρ1ρ2ρ3v0(y − z) (∇1−2v0(x− y)) · (x− y)

+
4

3

∫
ρ1ρ2ρ3v0(x− y) (∇yv0(y − z)) · (x− y)

−4

3

∫
ρ1ρ2ρ3v0(y − z) (∇xv0(x− z)) · (x− y)

+
4

3

∫
ρ1ρ2ρ3v0(x− z) (∇yv0(y − z)) · (x− y).
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Notice that, in the above calculation.

1st+ 3rd = 0

(4th+ 11th) + (6th+ 13th) = 0

(2nd+ 9th) + (5th+ 12th) = −8

3

∫
ρ1ρ2ρ3v0(y − z) (∇xv0(x− z)) · (x− z).

So
∫
xjljdx simplifies to∫

xjljdx = −2

3
n

∫
(A+B + C)ρ

−8

3

∫
ρ1ρ2ρ3v0(x− z) ((∇v0) (x− y)) · (x− y)

−8

3

∫
ρ1ρ2ρ3v0(y − z) ((∇v0) (x− y)) · (x− y)

−8

3

∫
ρ1ρ2ρ3v0(y − z) ((∇v0) (x− z)) · (x− z).

Hence

Rc = t

∫ (
(n− 1)

2

3
(A+B + C)ρ+ xjlj

)
dx

= −8

3
t

∫
ρ1ρ2ρ3v0(x− z) {v0(x− y) + ((∇v0) (x− y)) · (x− y)}

−8

3
t

∫
ρ1ρ2ρ3v0(y − z) {v0(x− y) + ((∇v0) (x− y)) · (x− y)}

−8

3
t

∫
ρ1ρ2ρ3v0(y − z) {v0(x− z) + ((∇v0) (x− z)) · (x− z)} .

When v0 decays fast enough, we have

Rc > 0,

or in other words

Ėc 6 0 for t > 1,

which implies Ec(t) does not increase as claimed.
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