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Stochastic optimization includes modeling, computing and decision making.
In practice, due to the limitation of mathematical tools or real budget, many prac-
tical solution methods are designed using approximation techniques or taking forms
that are efficient to compute and update. These models have shown their practical
benefits in different backgrounds, but many of them also lack rigorous theoreti-
cal support. Through interfacing with statistical tools, we analyze the asymptotic
properties of two important Bayesian models and show their validity by proving
consistency or other limiting results, which may be useful to algorithmic scientists
seeking to leverage these computational techniques for their practical performance.

The first part of the thesis is the consistency analysis of sequential learning al-
gorithms under approximate Bayesian inference. Approximate Bayesian inference is
a powerful methodology for constructing computationally efficient statistical mecha-

nisms for sequential learning from incomplete or censored information.Approximate



Bayesian learning models have proven successful in a variety of operations research
and business problems; however, prior work in this area has been primarily compu-
tational, and the consistency of approximate Bayesian estimators has been a largely
open problem. We develop a new consistency theory by interpreting approximate
Bayesian inference as a form of stochastic approximation (SA) with an additional
“bias” term. We prove the convergence of a general SA algorithm of this form, and
leverage this analysis to derive the first consistency proofs for a suite of approximate
Bayesian models from the recent literature.

The second part of the thesis proposes a budget allocation algorithm for the
ranking and selection problem. The ranking and selection problem is a well-known
mathematical framework for the formal study of optimal information collection.
Expected improvement (EI) is a leading algorithmic approach to this problem; the
practical benefits of EI have repeatedly been demonstrated in the literature, espe-
cially in the widely studied setting of Gaussian sampling distributions. However, it
was recently proved that some of the most well-known EI-type methods achieve sub-
optimal convergence rates. We investigate a recently-proposed variant of EI (known
as “complete EI"”) and prove that, with some minor modifications, it can be made to

converge to the rate-optimal static budget allocation without requiring any tuning.
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Chapter 1: Introduction

1.1 Sequential Learning: Approximate Bayesian Inference

Bayesian statistics allows decision-makers to estimate unknown parameters,
but also to include a detailed model of their uncertainty about these estimates.
In practice, instead of a fixed dataset, it is more likely to have a stochastic data
stream in many applications. For example, in online digital goods auctions [1], each
observation is the response of a buyer for a proposed price by the seller in every
potential transaction, clearly, the transactions must occur in a sequential manner
rather than all occur at the same time. Bayesian models allow the seller to represent
the potential for error in the demand model, which in turn allows for more robust
adaptive pricing methods. However, these models should be updated sequentially
in order to take advantage of new information as soon as it arrives. When the
observation comes from a distribution that is conjugate with the prior belief, the
posterior distribution then comes from the same distribution family as the prior does,
which makes it easy to update the model since it can be completely characterized by
the parameter set of this distribution family and updating the model only requires
updating the parameter set.

In many situations where the observation is censored or only partially avail-



able [2,3], it is impossible to have a conjugate Bayesian model. Approximate
Bayesian inference is a methodology to handle this issue through creating an ar-
tificial posterior distribution that comes from the prior’s distribution family and
letting it mimic the exact posterior distribution according to some criterion. There
are different approaches to build approximate Bayesian learning models. For exam-
ple, one approach is the moment-matching method [4] by solving moment-matching
equations in order to make the moments of the artificial posterior distribution equal
to corresponding moments of the exact posterior. Other methods include minimiz-
ing the Kullback-Leibler divergence between the two distributions [5] and variational
Bayesian inference [6,7] by approximating complicated functions using their Taylor
expansions.

Similar to conjugate Bayesian models, approximate Bayesian learning models
can be efficiently updated via recursive equations for a small set of parameters, thus
avoiding the difficulty for handling the complicated exact posteriors that even may
not come from any common distribution family. Simple statistical models make it
easy to interface with control policies, thus approximate Bayesian inference is applied
in a wide variety of problems, for example, the ranking and selection problem [5].
However, although the numerical advantage of approximate Bayesian models has
been repeatedly shown in the past literature, rigorous theoretical analysis of the
validity of these models was not studied in any of the prior work. Intuitively, one
can see that approximate Bayesian learning models bear a strong resemblance to
the classic stochastic approximation (SA) algorithm, whose convergence was fully

studied by [8]; however the classic SA framework cannot directly be applied to ana-



lyze these methods because of certain important differences. Thus the convergence
of the approximate Bayesian algorithms can not be simply explained by the classic

SA framework.

1.2 Ranking and Selection: Complete Expected Improvement

In the ranking and selection problem (R&S) problem with finitely many “al-
ternatives” (or “systems”), each alternative has an unknown system value (for sim-
plicity, suppose different alternatives have different system values), and we wish to
identify the optimal alternative that has the largest system value among all the
alternatives. For any alternative, we are able to observe noisy samples about the
unknown system value (population mean); however, we are limited to a fixed bud-
get, i.e., the total number of samples that could be allocated to the alternatives
is fixed. Under independent assumptions, the sample of one alternative does not
provide any information about other alternatives. After all the sampling budget has
been consumed, we select the alternative with the largest sample mean and we say
“correct selection” occurs if the selected alternative is the optimal alternative that
has the largest population mean. Since the total budget is fixed, we would like to
find an allocation strategy that could maximize the probability of correct selection.

With regard to maximizing the probability of correct selection, [9] gives the
optimal budget allocation, where the proportions of the total budget assigned to
the alternatives satisfy two optimality conditions. However, these optimality condi-

tions depend on the unknown system values, which makes it impossible to solve and



apply them directly. Thus the practitioners have preferred to use simple methods
that are easy to code and perform well in practice, and one of the most popular
methods of this type is the expected improvement (EI) algorithm [10]. EI is a se-
quential allocation strategy, where every time after an alternative is sampled, a new
observation is available and it provides information to help the decision-maker se-
lect the next alternative to be sampled. There are many variants of the EI criterion
designed for different settings under different sets of modeling assumptions, such as
the knowledge gradient criterion [11] and the LL; criterion [12]. Although the com-
putational advantage and practical benefit of these methods have been well studied,
the theoretical behavior was not fully learnt until [13]. It tuns out that these meth-
ods produce different asymptotic allocations, but none of them achieve the optimal
budget allocation. Aside from EI and its variants, [14] provides a way to recover the
optimal allocation through reverse-engineering the optimality conditions, but this
method requires extra computational effort compared to EI and it does not have a
natural interpretation as EI does. Recent work such as [15] has shown that it is pos-
sible to recover the optimal allocation, but involves an extra tuning parameter, and
the optimality conditions are only achieved when the tuning parameter is assigned
some specific value, which is, however, unknown without knowledge of the system
values.

Recently, [16] proposed complete expected improvement (CEI) criterion. Un-
like classic EI, which evaluates the expected improvement over the current-best
sample mean from sampling every alternative, CEI evaluates the expected improve-
ment over the current-best alternative from sampling every seemingly-suboptimal
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alternative. This feature gives CEI the potential to recover the optimal budget

allocation while no extra computational effort or tuning work is required.

1.3  Outline of Thesis

In Chapter 2, I present the consistency analysis of sequential learning algo-
rithms under approximate Bayesian inference. Through a motivating example, I
first establish a connection between the approximate Bayesian learning algorithm
and the traditional stochastic approximation algorithm by showing their similarities
as well as the differences. Then I point out the approximate Bayesian learning algo-
rithm does not fit the traditional stochastic approximation framework due to these
differences. After that, I define a general stochastic approximation algorithm with
some additional “bias” terms involved and show the convergence of this algorithm.
Finally, a suite of existing approximate Bayesian models from the recent literature
is studied, and by interpreting these algorithms as stochastic approximation algo-
rithms with “bias” terms, I show the convergence of each one under the general
framework.

In Chapter 3, I present the modified complete expected improvement algo-
rithm for the ranking and selection problem with finite systems. Complete expected
improvement is a recently-proposed criterion that can be viewed as a variant of
the expected improvement criterion. Expected improvement (EI) criterion has been
widely applied due to its practical benefit, but it was recently shown that some of

the well-known El-type methods are only suboptimal with respect to minimizing



the probability of incorrect selection. I propose an algorithm based on the com-
plete expected improvement criterion, which requires no additional tuning work or
computational effort than traditional El-type algorithms, and show this algorithm
achieves the optimal budget allocation strategy asymptotically. At last, I conduct
a numerical experiment comparing this algorithm with some other allocation algo-
rithms as well as the optimal allocation strategy for illustration.

Chapter 4 provides the conclusion to the thesis.



Chapter 2: Consistency Analysis of Sequential Learning under Ap-

proximate Bayesian Inference

2.1 Introduction

Approximate Bayesian inference is a statistical learning methodology with
wide-ranging applications in sequential information collection problems, particularly
those where a decision-maker must use incomplete or censored information to main-
tain and update a set of beliefs about one or more unknown population parameters.
Approximate Bayesian models are attractive for their computational tractability,
and often lead to compact belief representations that can interface with simple and
interpretable policies for related decision problems. In the recent literature, approx-

imate Bayesian methods have been successful in the following applications:

e Market design [2]. Many financial markets designate official market-makers
whose role is to increase liquidity and promote trading by being available to
buy and sell securities. By experimenting with bid and ask prices, a market-
maker can learn the market value of an asset by observing traders’ willingness

to buy and sell.

e Posted-price auctions [1]. A seller chooses a price for a digital good in order to



maximize expected revenue. Buyer valuations of the good cannot be observed
directly, and must be inferred from buyers’ yes/no responses to posted prices.
The seller’s problem is characterized by considerable uncertainty about the

valuation distribution.

e F-sports [4]. Large numbers of players log on to an online gaming service. In
order to promote fair and competitive play, the service seeks to match players
of similar skill levels. However, “skill” cannot be measured directly; rather,

the game master must infer it from a player’s win/loss history.

In these problems, sequential learning is needed for improved decision-making: for
instance, in the market-making application, each new transaction changes our per-
ception of the optimal bid and ask prices, which should lead to improved earnings
over time. Learning is broadly relevant in this way throughout any subdomain
of operations research in which decisions are made based on data. Approximate
Bayesian models specifically have proved themselves to be useful in the following

broad methodological areas:

e Big data analytics. Logistic regression is a standard statistical tool for fore-
casting [17], pricing [18], and order planning [19]. Approximate Bayesian
learning models our uncertainty about the regression coefficients and enables

us to update them in a computationally efficient manner [6, 20].

e Approzimate dynamic programming. Many resource allocation problems in
transportation [21] and energy [3] are subject to the curse of dimensionality,
rendering classic optimization methods intractable [22] and introducing the
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challenge of exploration in large state spaces [23]. A multivariate Bayesian
prior can be used to learn about large parts of the state space in fewer itera-

tions.

e Ranking and selection. In the ranking and selection problem [24,25], a limited
simulation budget is allocated sequentially in order to discover the best of a
finite set of design alternatives. Approximate Bayesian learning with corre-
lated beliefs can discover similarities between designs [5] and learn their values

more quickly.

The main contribution of the present paper is a theoretical framework that can be
leveraged to produce new consistency proofs in each of the above-listed method-
ological and application areas. Virtually all of the existing work on sequential ap-
proximate Bayesian learning is computational /algorithmic in nature: approximate
Bayesian models have repeatedly demonstrated significant practical benefits (see [26]
for an overview), but have remained mostly unamenable to the usual forms of consis-
tency analysis. Our work is among the first to provide broad theoretical support for
approximate Bayesian procedures: we prove, for the first time, the statistical con-
sistency of a wide variety of previously-proposed approximate Bayesian estimators,
providing insight into their good empirical performance. We also develop theoretical
tools that may be used by researchers to develop similar proofs for other problems

and applications.



2.1.1 Problem Background

In Bayesian analysis, the prior distribution of an unknown population param-
eter is an object of belief, chosen by the decision-maker based on past knowledge
or other considerations. Given a sample of data, the posterior distribution of the
parameter models the change in our beliefs resulting from the acquisition of infor-
mation. The property of conjugacy arises when the posterior belongs to the same
family as the prior (e.g., both are normal). If this is the case, the beliefs can be
compactly represented by a small number of parameters (such as a mean and a
variance), which can often be updated very efficiently.

The problem of approximate Bayesian inference occurs when conjugacy does
not hold, i.e., there is a mismatch between the prior distribution and the sampling
distribution (this easily happens when the data are censored). In such cases, the
traditional approach has been to apply approximate Bayesian computation [27, 28]
based on Markov chain Monte Carlo procedures [29]. These techniques are compu-
tationally expensive but provably convergent [30,31]. However, this entire literature
assumes that the problem is static: there is a single dataset and a single stage of
inference (i.e., only one posterior distribution to be computed). A rich asymptotic
theory has been developed for this class of procedures (see, e.g., recent advances
by [32] and [33]), but the underlying assumption is always that there is a single
inference problem to be solved.

In sharp contrast with the above, we consider a dynamic problem in which

information is collected sequentially. Our motivating applications all involve multi-
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stage optimization where the quality of each new decision (e.g., bid and ask prices)
may be improved using feedback from past decisions. In this paper, we do not
study the problem of how exactly these decisions should be made; however, any
optimization approach should benefit from adaptive learning. For this reason, we
would like to update our beliefs immediately after every new data point, meaning
that we are now faced with a sequence of inference problems, each of which has
a sample size of 1. Conjugacy now becomes much more valuable: the ability to
compactly model a distribution of belief using a small set of parameters enables the
decision-maker to create and apply tractable optimization methods that take the
belief parameters as inputs and return recommended decisions. Such parametric
methods may be required to run very quickly and produce recommendations in real
time. Because conjugate learning models are easy to store and update, they greatly
simplify the design of algorithms for adaptive decision-making.!

In all of the applications considered in this paper, there is no natural choice
of prior distribution that is conjugate with the observations. Although a conjugate
prior may technically be developed for any distribution belonging to an exponential
family [36], in our applications the data are not i.i.d., but rather depend on addi-
tional inputs that may be controllable by the decision-maker (for instance, a trader’s
response to a market-maker depends on both the market value of the asset and the

bid/ask prices). This structure may lead us to assume some particular functional

!Bayesian learning models in particular enable the design of anticipatory policies that have some
form of intelligent experimentation built in; see, e.g., the popular Thompson sampling method [34]

or the Gittins index approach of [35].
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form for the dependence of the observations on the controls and unknown parame-
ters, which may preclude the use of standard constructions of conjugate priors.
These factors motivate the development of sequential approximate Bayesian
models, which essentially impose conjugacy by creating an artificial posterior distri-
bution from the same family as the prior (e.g., normal), then choosing the param-
eters of that artificial distribution in a way that approximates (in some sense) the
exact posterior. The approximation may be built using strategies such as moment-
matching [37,38], density filtering [5], and variational bounds [6,39]. In many cases,
the approximate posterior parameters can be computed in closed form, which is quite
convenient for practical implementation and has been the main reason for continued
interest in this area. However, despite the large body of empirical evidence that
these models work well, they are quite difficult to analyze theoretically. In fact,
outside of a few special cases [40], it is unknown whether approximate Bayesian
estimators are even consistent. This has also imposed a limitation on algorithmic
research in this area, as it is not possible to provide any performance guarantees for

any optimization algorithm if the underlying statistical model is invalid.

2.1.2  Summary of Our Approach and Results

We present a new theoretical framework that enables rigorous study of the

2

consistency problem.” First, using a simple illustrative example in Section 2.2,

we observe that approximate Bayesian updates can be interpreted as a form of

2A brief summary version of our approach, without the full technical details, appeared in the

Proceedings of the 2016 Winter Simulation Conference [41].
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stochastic approximation (or SA; see [8]), a class of provably convergent, frequen-
tist algorithms that optimize nonlinear functions (e.g., likelihood functions) using
stochastic observations of their gradients at individual points. The approximate
Bayesian update can be viewed as SA with the addition of a “bias” term represent-
ing the difference between the frequentist and Bayesian versions of the stochastic
gradient. Intuitively, if this bias is “small,” the Bayesian procedure should converge.
In Section 2.3, we formalize this intuition by proposing a modified Robbins-Monro
SA algorithm with a similar bias term. Although there is a rich convergence theory
for SA, our algorithm does not fit into the standard convergence conditions [42—-44],
so we develop a new set of conditions and give a convergence proof.

Our approach should be contrasted with that of [45], which to our knowledge is
the only previous effort to address the general consistency problem. [45] also points
out the apparent similarity between approximate Bayesian updating and stochastic
gradient methods, and sketches out a convergence argument in the context of normal
priors and moment-matching. However, this argument assumes that the posterior
variance is negligible and that the posterior mean is “sharply peaked” around the
true value, i.e., from the start we are already arbitrarily close to the desired limit.
In marked contrast, we rigorously handle the asymptotic behaviour of the posterior
from any starting conditions, under a standard set of SA assumptions.

We demonstrate the versatility of our SA analogy by using it (in Sections 2.4-
2.5) to create consistency proofs for an entire suite of applications taken from existing
literature, including previously-proposed approximate Bayesian schemes for market
design [2], posted-price auctions [1], and e-sports [4]. In addition, we prove the

13



consistency of three previously-proposed multivariate approximate Bayesian schemes
for logistic regression [20], ranking and selection [38] and approximate dynamic
programming [46]. Bayesian learning is especially powerful in these examples since
the posterior covariance matrix allows us to learn about multiple unknown values
after sampling just one. This practical benefit often outweighs any statistical loss
incurred by using approximate posteriors [47,48].

We emphasize that, on one hand, every one of these applications comes from
an existing paper; these papers proposed the Bayesian models in question and con-
ducted extensive computational experiments and comparisons to other techniques.
Yet, on the other hand, none of this previous work attempted any rigorous con-
sistency analysis, even within the confines of the specific application of interest.
Our paper is the first to show the consistency of all of these previously-proposed
models, thus contributing to all of the corresponding application areas. We note
that our examples include at least one large-scale industry application [4] in which
approximate Bayesian inference was successfully deployed in practice, and we also
highlight our analysis of Bayesian logistic regression, a model that has existed for
nearly 30 years without any progress on consistency. Although there is no way to
guarantee that our framework is applicable to every possible approximate Bayesian
model, the variety of models and problem domains on display in Sections 2.4-2.5

speaks for itself with regard to applicability.
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2.2 Example: Learning from Censored Binary Observations

We first present a simple example that illustrates the main issues of this paper.
The goal of this problem is to estimate a single unknown parameter based on cen-
sored binary observations. We will use approximate Bayesian inference to construct
a computationally tractable estimator that can be easily updated. The analogy to
stochastic approximation will then become clear.

Let (Y,),—, be a sequence of i.i.d. samples from the common distribution
N (0, \?), where 6 is the unknown parameter to be learned, and A\? is assumed to be
known for simplicity. We impose the Bayesian model 8 ~ N (pg, 02), where p is an
estimate of  and o represents our uncertainty about that estimate. It is well-known
that, if Y1,Y5, ... are directly observable, then the posterior distribution of 6 given
Y1, ..., Y, is normal for any n [49]. In that case, the posterior distribution is always
completely characterized by the pair (p,,, 0,,), which can be updated recursively after
each observation. The consistency of the estimator pu,, follows trivially, as its update
is equivalent to recursive sample averaging.

Now suppose that Y7, Y5, ... are not directly observable. Instead, we observe a

sequence (B,,), ., of censored observations defined by

Bny1 = Ly <bnys

where the sequence (b,,).-, represents a control policy. For instance, b, could be a
dosage decision for a drug, with Y, representing the maximum allowable dosage

level before patient n+1 experiences adverse effects and B,,;; indicating the presence
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of those effects. For simplicity, we treat (b,) as a fixed (deterministic) sequence;
however, our convergence analysis will be unaffected if b, is allowed to be measurable
with respect to By, ..., B, as would be the case if the dosage were chosen adaptively
based on the outcomes of past trials.?

It is easily seen that the posterior density P (6 € dz | By) is not normal, even
after just one observation. As more samples are collected, the posterior will be-
come a more complicated mixture, increasingly difficult to store and update. We
will address this problem by using approximate Bayesian inference to create an
“approximately” normal posterior. After choosing the parameters of this artificial
posterior distribution, we will then discard the exact, non-normal posterior and pro-
ceed to the next sample using the approximation as our distribution of belief. By
doing this, we regain the ability to describe our beliefs using just two parameters,
but presumably incur statistical error due to the approximation.

To make the example more concrete, let us apply the method of moment-
matching, also known as expectation propagation [37,45]. This is not the only
possible approach (others will be seen in later examples), but in this particular
setting it is useful for illustration purposes. Assuming that 6 ~ N (uo,02) and that

By is given, let 0~N (p1,0%), where u; and oy are chosen to satisfy the equations

/Rxp@edx) - /Ra:P(HGd:U|Bl),

3The exact choice of (b,,) is exogenous to the estimation problem; for instance, one may choose

b, to keep the estimated probability of side effects below some tolerance level. However, the validity
of the underlying statistical mechanism, which is our main focus in this paper, is critical to the

overall performance of any such approach.
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/x2P<§€dx) = /xQP(GEdﬂBl).
R R

Thus, the first two moments of § are equal to those of the non-normal posterior.
We then move to the next stage of sampling and repeat the process with the next
observation B, under the assumption that 6 ~ N (u1,07). The following result
shows that, in the (n + 1)st stage of sampling, the approximate posterior parameters
(Hn+1,0n+1) may be efficiently computed from the parameters (p,,o0,) in the nth

stage and the next observation B, .

Proposition 2.2.1. The moment-matching equations in the (n + 1)st stage admit

a closed-form solution given by

1 ¢ (pn)
)\2 + 0'721 ¢ (pn)

~ (1~ Bus1) A21+ =1 fg’&» : (2.1)

Hn+1 = Hn — 0721 (Bn-i-l

o2 — 2 (1 _B Ta P (pn) ® (Pn) + &% (Pn)
n+1 n VI > B (pn)
‘772z ¢2 (Pn) — Pn® (pn) (1 — @ (py))
— (= Bun) 57 po 0 —® () ) . (22)

where ¢, ® are the standard normal pdf and cdf, and

bn_,un

e

Proof. Suppose at the (n + 1)st stage, the prior distribution of 6 is 6 ~ N (u,, 02).

(2.3)

If B,,+1 = 1, the moment-matching equations yield

SO0 () @ () o S 5t (2 ) @ (252 ab
o (meYo sty [ o () e () ds

Hnt1 = Hn +
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and

SRLC

N ( Fo(t) o

(b2=9) dg
- f 0n¢ ( ) (bre) 20 (:un—H - Hn)
J Ol () @ () do ([ S (S ) @ () ap

JRo () o (tyde [ o () @ (br2) g

We then evaluate the integrals
— d dd = ¢ ——
Fro(seye(s s - o).
/9—un¢(9—un)¢(bn—9) 0 — _ o2 5 by, — fin,
On On A VA2 + o2 NET Y
(e_lun)2 0 — pn b — 0 2 by, — fin
® = ¢ | ———
/ Tn i On x ) o VA2 + 02

_ 0';1;, bn_,un ¢ bn_,un
M+o2 /Nt \ N +o2)]

Mn) (bast —9) a0 2

) bn—G lun—i—l

=

whence
e = g V)
n+ n )\2 T 0'72l @(pn> 3
ot 2
o o) o) (o 6(p)
m ®(py) VA2 1 a2 (p,)
_ o2 On Pnd(n)®(pa) + ¥ (pn)
TNea @)
as required. A similar argument can be applied when B, ,; = 0 to obtain the
required result. O

It is not obvious whether u,, — 6. In fact, one may intuitively expect that this
will not happen: first, the censored observations (B,,) carry less information than
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the complete observations (Y,,), and second, each stage of sampling necessitates a
new approximation and thus may compound the statistical error of the model. Thus,
it is somewhat surprising that p, is, in fact, consistent; that is, it is guaranteed to
recover 0 w.p. 1.

A rigorous framework for proving this result will be given in Section 2.3. Here,
we provide additional intuition for our approach by pointing out that (2.1) can be

viewed as a Robbins-Monro stochastic approximation (SA) procedure of the form

Un+1 = Up — C(nGn (Bn+17 Hn, Un) ) (24)

2

with the posterior variance o

serving as the stepsize a,,. More specifically, (2.1)
is nearly identical to a version of SA, known as “online gradient descent” or OGD,
that was proposed by [50] for frequentist statistical estimation. In the context of

our example, OGD is applied as follows. Suppose that @ is fixed; then, the marginal

log-likelihood function of B, is given by

by, — by —
log L (Bps1; 1t) = By log ® ( . “) +(1— Byyy)log (1 — ( N “)) . (2.5)
The OGD algorithm is given by (2.4) with

1 ¢(qn) 1 ¢(qn)
B”“Xm — (1 = Bny1) XTM’ (2.6)

Gn (Bn—i—la ,un) =
where ¢, = WT’” In words, (2.6) is the gradient of (2.5) evaluated at the current
iterate p,. It is easy to see that E (G, (Bn11, ttn)) = 0 if and only if u,, = 0. Thus,

OGD solves a stochastic root-finding problem [51], and p,, — 6 almost surely under

the conditions
o0 (o]
Zan = 00, Z&i < 00, (2.7)
n=0 n=0
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which are usually imposed in SA theory [52]. Thus, the approximate Bayesian
update (2.1) can be viewed as a modification of OGD, with the posterior variance
o2 playing two roles: first, it is added to the noise A\? in the definition of G,,, and
second, it serves instead of the stepsize a,. Thus, if o2 satisfies (2.7), and if the
difference between the Bayesian and frequentist stochastic gradients is decreasing
sufficiently quickly, we may also expect (2.1) to converge.

Section 2.3 will formalize this approach; here, we provide a numerical illustra-
tion. Figure 2.1(a) shows the sequence p,, produced by (2.1)-(2.2) over 10° iterations.
We set A2 = 1.5, g = 0, 02 = 1, and the sequence b, = 8 + 0.000003n. The true

value of the parameter is set to § = 10. Convergence is observed after just 1000 iter-

a
a-+n

ations. We also plot trajectories for three versions of OGD with stepsizes «a,, =
with a € {1,2,10}. Figure 2.1(b) compares the trajectories of these three stepsizes
with that of the approximate posterior variance. We see that OGD exhibits a classic
bias/variance tradeoff: higher values of a lead the procedure to find § more quickly,

but induce less stable behavior in the iterate. By contrast, in the Bayesian proce-

2

= can be viewed as a kind of adaptive stepsize, whose declining behaviour

dure, o

speeds up in later iterations to produce a more stable iterate.

2.3 A General Convergent Stochastic Approximation Algorithm

Suppose that (R,) -, is a sequence of real measurable functions mapping
x € R™ into R™. Suppose, furthermore, that the equations R, (z) = 0 all have a

unique, common root 6 that does not depend on n. SA algorithms produce sequences

20



12
10
8 -
£ 6
_— Approximate Bayesian
4+ OGD with a,=1/(n+1)
OGD with a;=2/(n+3)
e OGD with a,=10/(n+11)
0 —
T T T T T T T
0 1 2 3 4 5 6
logso(n+1)
(a) Approximate posterior mean.
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(b) Approximate posterior variance (log-scale).

Figure 2.1: Empirical convergence of the approximate Bayesian estimator.
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(z,),—, of recursively updated iterates designed to converge to 6 in situations where,
for each n, a single stochastic (and not necessarily unbiased) observation of R, (z,,)
is available.

We study a general SA algorithm of the form

Tpt1 = Ty — Qp (Qn (Wn-l—la In) + Bn (Wn-l-lv Ty an)) , n=20,1,.. (28)

where 2y € R™ is an arbitrary m-vector, (a,) -, is a positive (deterministic or
random) stepsize sequence satisfying (2.7) almost surely, (W,) ", is a sequence
of random variables representing exogenous information, (Q,),—, is a sequence of
real measurable functions mapping (w,z) into R™ and representing the stochastic
observations of (R,), and (8,),_, is another sequence of real measurable functions
representing the “bias” of the observations.

The main difference between (2.8) and the SA procedures in [8] and other
references is the introduction of the bias term [,. In the example given in Section
2.2, the SA update @,, would be identical to the OGD gradient GG, in (2.6), while the

bias (3, would equal the difference between the OGD update and the approximate

2

= serves as the stepsize, which

Bayesian update in (2.1). The posterior variance o
means that the bias 3,, should be allowed to depend on the random variable «,. This
dependence does not fit into the standard SA convergence conditions, such as those
in Sec. 5.2 of [8], necessitating a new convergence proof. To prove the convergence
of a SA-type algorithm, one has to carefully examine the details of SA convergence

proofs to determine whether they can be applied in a particular situation. For

example, Assumption A.2.2 in Sec. 5.2.1 of [8] appears to allow a bias term similar
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to [, but the convergence proof requires the stepsize o, to be deterministic. To give
some more recent examples, [53] uses a recursive but deterministic stepsize; [54] uses
a random stepsize, but requires the bias to be deterministic; and [55] allows a bias
term but imposes a specific linear structure on it that does not apply in our setting.
The main differences between (2.8) and other provably convergent SA algorithms
are that 1) the bias term [, is random and may depend on the stepsize, and 2) the
stepsize itself may be random.

We define

o
>

B (W1, ooy, W T4, ey Ty Q1 ey Qi)

(>

Rn (x) E (Qn (Wn+17 :C) ‘ Fn) )

where B denotes the Borel sigma-algebra, and impose several conditions as follows.

First, we ensure that (2.8) is searching for a unique root 6.

Assumption 2.3.1. For any n, the equation R, () = 0 has a unique root 0, which

does not depend on n.

In the example from Section 2.2, the root is the unknown common mean of
(Y,). In the SA algorithm, however, we treat 6 as a fixed value (as in frequentist
statistics); thus, we develop a non-Bayesian analysis and later apply it to models
that were derived from Bayesian arguments.

The second condition is imposed in many standard SA convergence proofs
(e.g., [54]), the idea being that the expected value of the stochastic gradient should

point the algorithm toward the root.
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Assumption 2.3.2. Forn=1,2,... and any € > 0,

inf (v —0)"R,(z) > 0.

lz—0||2>€,nEN

The third condition bounds the growth of the second moments of ), and f3,.

Assumption 2.3.3. There exist positive constants C and Cy such that

SPE ([QuWn, 231 7)) < G+ le—03). (29
SUpE (|8, (Woer.w.00) [31 F) fa2 < Ca(L+ e —0]3)  (2.10)

neN

for all x.

Equation (2.9) controls the amount of noise in the SA update. Equation (2.10)
ensures that the bias of the update (recall that, in Section 2.2, we think of this as the
difference between frequentist OGD and approximate Bayesian inference) is “small.”

In the remainder of this section, we prove the convergence of (2.8); applica-
tions of this result will be given in the following section. Theorems 2.3.1 and 2.3.2
essentially state the same result in two ways; the second version uses an explicit pro-
jection operator to ensure the boundedness of the iterates, a widely-used approach

in SA convergence theory.

Theorem 2.3.1. Suppose that Assumptions 2.5.1-2.3.3 hold and (ov,) satisfies (2.7)

almost surely. Let x,, be defined by (2.8). Then x,, — 0 almost surely.

Proof. In all the proofs of this paper, we assume that a suitable set of measure 0
is discarded, so that we do not need to keep repeating the qualification “almost
surely”. Without loss of generality, let §# = 0. For any n € N, by (2.8) and (2.9), we

24



have

E(l|zns1l3] Fn)
= [zall3 = 20027 E((Qu(Wis1, ) + Ba (W, 2, ) | F)
A E(|Qn(Wasr, 2n) + Ba(Watr, T, )13 | Fin)
= N2all3 = 20020 E(Qu (W1, ) | Fo) + 0 E(|Qn(Was1, @) 13| Fn)
+200E((Qn(Wart, 20))" Ba(War, Tn, ) | Fu) + 0GE (B0 (W1, @, ) Iz | Fin)

_QO‘anE(ﬁn(Wn—Ha Ly, an) | Fn)

IA

a3 — 20020 B(Qu(Was1, ) | Fo) + 07, Cr(1 + [lall3)
200 E((Qn(Wai1, 20)) " Ba(Wast, Ty ) | Fa) + 00 B(| Ba(Was1, 2y ) 12| F)

—20, 2 B(By (Wit T, an) | Fn). (2.11)
By (2.10), there exists a positive constant C5 such that

BB (Wost, @ns 0n) 3| Fa) < 0ol + [[zall2)or,

< apCa(l+ [lza]l3), (2.12)
and, by Holder’s inequality, there exist positive constants Cy and C5 such that

_2anx5E(ﬁn<Wn+lu T,y an) ‘ Fn)

= —QOJnE(xgﬁn(WnJrla Ty Oén> | Fn)

IN

200, E(||2 B0 (W1, Ty o) |1 | Fra)

200, (E([[2al|2 | F)) 2 (E(| B (W1, T ) 13| F)) 2

IA

1
205n||xn||2(02(1 + Hang)ai)Q

IN

202|2,|2Cu(1 + ||, ]3)2

IA
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< 20,Ca(1 + [|zall3)

IN

a2Cs(1 + ||zal3)- (2.13)
Again applying Holder’s inequality with (2.9) and (2.12), there exists some positive
constant Cg such that
202 E((Qn(Was1, 20)) T Br(Ws1, Ty ) | F)
< 205 E(1Qn(Wast, @) [3] Fo))2 E(1Ba(Wart, @y ) 13| Fr))2
< 203(Ci(1+ [lal13)2 (Cs(1 + [l2all3))?
< b Co(1+ [laall3). (2.14)

Now, we combine (2.11) with (2.12), (2.13) and (2.14), yielding

E(l|lznsillz | Fu) < Mol — 2002, E(Qu(Wast, @n) | Fa)
+a5,(Cr 4+ C5 + Cs + Co) (1 + ||lza[3)-
Letting k = C; + C3 + C5 + Cg, we have
E(llznal3 | Fa) < ll2all3(1+ w07) + ko — 2002, E(Qu(Wast, ) | Fu)
= ||2a]|3(1 + ka?) + ka2 — 20,2L R, (1,,), (2.15)
where a,,z! R,,(,) is nonnegative by Assumption 2.3.2.

Then, by Theorem 1 in [56], (2.15) together with (2.7) implies that lim,, ., ||z,/|3

exists and is finite, and that

o0
ZaanRn(xn) < 00
n=1

almost surely. Hence, by (2.7), since Y | a,, = 00, we have lim inf,, o z1 R, (z,) =
0 almost surely. Then, by Assumptions 2.3.1 and 2.3.2, there must be a subsequence
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of (z,,) that converges to 0 almost surely. Finally, since lim,, o, ||7,]|3 exists and is

finite, we have x,, — 0 almost surely. [

Theorem 2.3.2. Suppose that Assumptions 2.3.1-2.3.3 hold and (o) satisfies (2.7)

almost surely. Define

Tp4+1 = I—[H (xn — Oy (Qn (Wn+17 xn) + 671 (Wn+17 L, an))) , = 07 17 (216)

where H = [—M, M]™ with a large enough constant M such that xy,0 € H, and

Iy : R™ — H s a projection operator defined by
(I ()" = 2@ Lipcnry ¥ M- 1p@onny — M- Lo <y
where £ denotes the ith element of a vector x. Then, x, — 0 almost surely.

Proof. Without loss of generality, let § = 0. Under Assumptions 2.3.1-2.3.3, simi-

larly as in Theorem 2.3.1, we have

E(|l$n+1||§ | Fn) = E(g (vn — an (Qn Wagr, zn) + Bo (Wait, Tn, an))) Hg | F)
S E(Hxn — Oy (Qn (Wn—l-lu xn) + Bn (Wn—l-lu L, an)) ||§ | -Fn)

< ”ang(l + “Oéi) + ’fai - ZO‘nngn(xn)a

where « is some positive constant. Then by Theorem 1 in [56], this together with

(2.7) implies that lim,, ., ||7,||3 exists and is finite, and that

o0
ZaanRn(xn) < 00
n=1

almost surely. Applying (2.7) and Assumptions 2.3.1 and 2.3.2, the desired result

follows. O]
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We also prove a version of Theorem 2.3.1 using a relaxed version of Assumption
2.3.3. This result will be useful in cases where Assumption 2.3.3 is too strict or

difficult to verify.

Assumption 2.3.4. There exists a positive constant C7 such that

supl2 (1Qu(Wasr, )13 + 180 (Wasr, 7, ) |12 | F)

< G (14— 0]3) (2.17)
for all x. Furthermore,

(S
>
n=1

(@0 = )" E (B (Wos1, @0, ) | F)| < 00 (2.18)

almost surely.

Theorem 2.3.3. Suppose that Assumptions 2.5.1, 2.3.2 and 2.3.4 hold and (o)
satisfies (2.7) almost surely. Let xz, be defined by (2.8) or (2.16). Then, x, — 0

almost surely.

Proof. Without loss of generality, let 6 = 0. Similarly as in Theorems 2.3.1 and

2.3.2, we have

E(||zns1ll3 | Fa) E(llzn — n (@n Wasr, ) + Bu (Wast, T, o)) [13] Fa)

IA

= Nzall3 = 20025 E(Qu (W1, ) | F)
R E(|Qn (Wit 2a)lI2 | Fa)
+200 E((Qu(Wat1, 20))" B (W1, Tn, ) | Fin)
R E( Bn(Was1, T, an) 3] F)
—20 2 E(Bn (W1, T, ) | Fin)
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< lzalls = 2002, E(Qu(Wit, 20) | Fa)
+onE(|Qn(Wair, 20)ll2 | Fn)
+200E((Qn(Wart, 20))" Ba(Wint1, Tn, o) | Fi)
R E( Bn(Was1, @, a3 F)

+2an ‘xZE(ﬁn(Wn+lu L, an) | Fn)’ .
Then by (2.17), there exists some positive constant x such that

“O‘Z (1 + Hifn“%) > O‘ZE(HQn(Wnﬁ-lvﬂfn)Hg ’ fn) + O‘iE(Hﬁn(Wnﬂ-la Ly O‘n)Hg ’ Fn)

+2aiE((Qn(Wn+17 xn))Tﬁn(Wn-f-l’ Ly a") | ‘F”)
It follows that

E([|zns1ll3 | Fn) lall3(1 + Kagy) + Ko + 200 |2, E (Ba(Wart, @n; an) | Fa)|

IN

_QO‘HQSZE (Qn(Wn+1> mn) ‘ ]:n)
= ||J:n||%(1 + K“O‘?z) + ’%ai + 20, ‘wZE (Bn(Whi1, T, an) |‘Fn)‘

—QQRIZRn(In),

where a,z! R, (x,) is nonnegative by Assumptions 2.3.1 and 2.3.2. Applying (2.18)

from Assumption 2.3.4 together with (2.7), we obtain

57 (w0 + 20, [e7E (B, (W1, 20,00) | )] < .

n=1

By Theorem 1 in [56], this together with (2.7) implies that lim,, . [|z,]|3 exists and

is finite, and that
o0
ZaanRn(xn) < 0
n=1

29



almost surely. By (2.7) and Assumptions 2.3.1 and 2.3.2, it follows that x,, — 0, as

desired. O

2.4 Univariate Applications

We now present four applications of our convergence analysis to recently-
studied problems where the goal is to learn a scalar quantity. First, Section 2.4.1
returns to the example in Section 2.2 and proves the consistency of a projected
version of (2.1). Sections 2.4.2-2.4.4 give convergence proofs for three computa-
tional learning schemes previously developed for applications in competitive online
gaming, market design, and posted-price auctions, respectively. While the compu-
tational forms of these schemes are taken from prior work, to our knowledge no
consistency results were previously available for any of them.

Applying the theory from Section 2.3 is non-trivial and often requires addi-
tional technical material. In addition, we provide in Section 2.5.4 an extension of
the example from Section 2.4.1 in which both the mean and variance of the under-
lying distribution are unknown and have to be learned using a provably consistent

approximate Bayesian scheme.
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2.4.1 Learning an Unknown Mean from Censored Binary Observa-

tions

We consider a slight modification of the example from Section 2.2. Suppose

that o2 is updated using (2.2), and the posterior mean ,, is updated using

_ o ¢pn) ¢ (Pn)
pnss = Tla (““ e (e -0 B"“)l—wpn)))’ 219

where H = [—M, M| for large enough M satisfying |ug| < M and || < M. We can

write I1y explicitly as
Iy () =x- Liwl<ary + M- Loy — M - 1pe_ary-

Thus, (2.19) is a projected version of (2.1) satisfying the conditions of Theorem

2

2.3.2. The projection operator ensures that o

satisfies (2.7) almost surely. Such
projections are widely used for similar purposes in the SA literature; see, e.g., Section
4.3 of [8]. Note that the use of a projection requires us to view 6 as a fixed (if
unknown) value, as in frequentist statistics. Thus, we used Bayesian arguments to
construct the learning model, but our convergence analysis (here and throughout
the paper) is non-Bayesian and views the model as searching for a fixed root.

We first state a technical lemma, which was proved in [2]. Theorem 2.3.2 will

then be applied to establish consistency. We impose the mild regularity condition

that (b,) is bounded, but otherwise allow any arbitrary control policy.

Lemma 2.4.1. For all pairs (z,y) € {—o00o <z <y < oo} \ {x =—00,y =0},

(®(y) — (2)) (yd(y) — x6(x)) + (d(y) — ¢(2))* > 0.
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Proposition 2.4.1. Suppose that i, and o2 are updated using (2.19) and (2.2),

n

and suppose that the sequence (by,) -~ is bounded. Then, p, — 0 almost surely.

Proof. Let p, be as in (2.3), and define

e 0
qn = U
1 ¢(gn 1 n
ulbatug) = Py =1~ Bo 2 gy
1 opa)  10(gn)
ﬁn(B”Jrl’bn’lun?UTQL) = Bn+1< )\Q—f—UTQL(I)(pn)_X(I)(Qn))

Let us rewrite (2.2) as

1 1
2 - o2 n n)P(pn 2(pn 2(pn)—pn n —P(pn
or o2 (1 ~ s (Ban o )@2(6)3)% () 4 (1 — B, )P (z{_sf:é?pg)()lg ( ))))
2 2 _ —
1 ey (B BRI 4 (1 B, Eeioppeed))
- _2 o2 n n)P(pn 2 n 2 n)—Pn n —®(pn .
OIS (Ban $(p Qéf,,,f# @) | (1~ B,,,)¢En &%3)()12 (» )))

By Lemma 2.4.1, for any x € R, we have

r(x)®(z) + () _ o < P@) —zg(@)(1 — () _

T e S f-e@r =

(2.20)

2

2) is positive and monotone decreasing.

whence it follows that the sequence (o
Since the sequence (b,),~, is bounded, and (u,) is constrained to a closed and

bounded interval by Ily, it follows that the sequence (p,) is also constrained to a

f @)+ g

closed and bounded interval of R. Then, by the continuity o 52(0)

¢2<x)?ﬁg()x()1);q)(m)), there exist constants ~,,~* > 0 such that, for all n € N,

1 & (D) ®(pn)+6*(Pn) 02 (pn) —Pnd(Pn) (1—2(pn))
b < Nto2 <Bn+1p . <I>2€pn) P2+ (1= Bpy)=F (][1)41;(01%))2 ’ ) <
* = 2 G (Pn) ®(Pn)+¢2(Pn) G2(pn)—Pnd(Pn) 1=2(Pn)) ) —
1~ g (B BBl 0n) (1 — B, ) Pt o0 )
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Therefore,
1 N < 1 < 1 4
— 4+ ny < — < — +ny",
R
whence
S 2o, 3 el <o
n=1 n=1
thus verifying (2.7).
Now, define
]: éB(Blv-"aBnaMOa"'7:un70-§7' ) nabOa"'ab )

| is a sequence of i.i.d. samples from the common distribution

Recalling that (Y;,),_

N (6, )?), we calculate

W

bn_g))i =3

(Qn(Bn—i-ly bn; LL’) | Fn)

Ru(z) =
by 16 (2:2)
= & —(1-9
( A > A (Lot ( ( A
It is easy to see that R,(x) = 0 if and only if = 6, thus verifying Assumption
o is bounded, it is straightforward to verify Assumption 2.3.2.

2.3.1. Since (b)), i
() are continuously differentiable, and their first

Observe that —% and —2
derivatives always take values in (0,1] by (2.20). Since (b,) is bounded, it follows

from the mean value theorem that there exist positive constants C, Cy satisfying
Ci(1+ |z —46]),

sup ’Qn(BnJrh bm :C)’

neN
< GCoy(L+ [z —0)).

sup |Bn(Buns1, bn, v, 02)| /0?2
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Consequently, there also exist positive constants C3, Cy such that

sup E(Q5 (Bni1,bn, 2) | Fo) < Ca(1 4 (z — 0)?),

neN

sup E(B}(Bus1, bn, v, 07) | Fu) o, < Ca(L+ (2 = 0)?),

neN

thus verifying Assumption 2.3.3. The desired result then follows by Theorem 2.3.2.

O

An interesting question is whether it is possible to develop a provably consis-
tent approximate Bayesian learning scheme for the case where both ¢ and A\ have to
be simultaneously learned from censored binary observations. In brief, the answer

is yes; this case is treated in Section 2.5.4.

2.4.2 Learning Player Skills in Competitive Online Gaming

References [57] and [4] describe an approximate Bayesian learning model that
was implemented in Microsoft’s Xbox Live online gaming service for inferring player
skills from the outcomes of competitive events. In this application, large numbers of
players log on to the service and ask to play a game; the system then seeks to match
players whose skill levels are likely to be similar, in order to promote fair play and
create a more rewarding experience.

We give a streamlined summary of the model, assuming without loss of gen-
erality that there are only two players, and prove a new consistency result. Let §(%)
represent the “skill” of player ¢ € {1,2}. Denote by Y, the “performance” of player

7 in the nth game, with the assumption that
Yn(Z+)1 ~ N (9(2)7 )‘2) )
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, . N
where the variance A2 is known. We use the Bayesian prior 8¢ ~ A/ <,u(()l), (J(()Z)> )
for © € {1,2} and assume that all skills and performance values are mutually in-
dependent. The game master cannot observe v, directly, but rather must infer

player skills from the binary outcome of the game, denoted by

BY
n+l = { +1<Y7«Ei>1

where j denotes the index of the opponent. In words, if player j wins the match
against ¢, we interpret this as v Jr)l > Yn( le It is assumed that no game can end in
a draw.

Reference [4] used moment-matching to derive the approximate Bayesian up-

dating equations

(0 G _ 00
7 i 2 Bn Hn™ — HUn
u’f‘b—)‘rl = ) - (Un)) — 2 = v N2 N 2
S+ () 20 (o) 4 (o) 20
(1 . BSL) LD 9
— v “ - . (2.21)
(i) () ) 0N
(A7) + (o) w22 (o) () 2
W (0 .
9N _ copl,._ D (an> IR
Opt1 = (Un) )2 2 w
<Un> —l—(anJ) +2)\2 \/(07(;')> +(07(13)) 19\
N\ 2
(1-B0) (o) M _0)
— — w /:" “”2 , (2.22)
(o) + (08) + 202 \/<m<;>> 4 (a9) 420
where
_ ¢(@)



(4)

As in Section 2.4.1, we can replace (2.21) by a projected version where ,uni is con-

strained to be within a suitably large interval.

Define
dp 2 D —p?,
5 2 9 93,

In this setting, the observable information is insufficient to learn 6 exactly, but
the quantity of primary interest to the game master is the difference ¢, as this is
what is used to evaluate the fairness of a match-up. We prove that d,, is a consistent

estimator of ¢.

Proposition 2.4.2. Suppose that ,ug) is updated using a projected version of (2.21),

while o) is updated using (2.22). Then, d,, — § almost surely.

Proof. Define

1 —d 1 d
1) o (1) n o\ _ p) n
Qn (Bn+17dn> - Bn-l—l 2)\27] (\/ﬁ) (1 Bn+1> 2)\2U (m)v
) — W 1 —dy, 1 v(—dn>
AVoZ 222\ o2 2N 207 \ V22
1 d 1 d
~(1-BY o[t )L, ( " ) |
( ”“) <\/ag 1202\ o2 1222 202\ V2)2

Then, with some algebra we can derive

i1 = dp = 02 (Qu (B dn) + B (B dno?))

from (2.21) and (2.22).
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If ,ug) is updated using a projected version of (2.21), the sequence (d,,) will also
be constrained to some closed and bounded interval. Then, from (2.22) it follows

that

| 0 _d, Q) d
1 Lo, T (Bn+1w (\/m) " (1 - B”“> (W))

<U(1)1>2 <0’(11)>2 1 () BW | —=tn 1- BY dy |
nt T 024232 n+1W \/ﬁ +(l—bpp)w NETse

and there exist two positive constants 7,,v* such that, for all n € N,
1 (1) —d 1) d
—— | B, jw L +(1—-8 w | ——2—
02+2)2 ( n+1 ( /0.2+2)\2> ( 77«+1> ( /02+2)\2>>
( (1)) n n S f}/*.
1 —dn (1 dn
L- o2 +2)2 (Bn+1 ( /—072#2/\2) + (1 - Bn+1> w ( /—UTQLH,\Q))

Consequently,

Vi <

@

S () = () <.
n=1

2
Similar arguments apply to ((m@) >, whence

o oo
E 2 E 4

O'n = 00, O-TL < 0
n=1 n=1

whence

thus verifying (2.7).

Now define
Fo = B<B§1),...,B(1),pgl),. ,u%”,( (1)>2,...,(07(11))2,
2 2
u’ ,/~b§?)7< (2)> s (02) )
-+ (7w ) 1 <\ﬁ_x)‘(1“b(\ﬁ_5 ) o ()
V22 2 2)2 2)\2 2)\2 2)\2
(o) 7 (72) -2 () o (%)
Ve ) v \vae 2)2 ) V2)2 222)
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It is clear that R,(x) = 0 if and only if x = 0, thus verifying Assumption (2.3.1).
Assumption 2.3.2 is straightforward to verify.

Since v(x) = o(n 18 continuously differentiable with — (v") taking values in
(0,1] (as in the proof of Proposition 2.4.1), it follows by the mean value theorem

that there exist positive constants C7, Cs satisfying

sup |Qu (Bl 2)| < a1+ 1w — o)),

neN

Jo2 < Cy(1+ |z —46]).

n

ﬂn <B7(11—217x70-721>

sup
neN

Consequently, there also exist positive constants C'3, Cy satisfying

sup E <Qi (Bfllll,x> |]:n) < Cs(14 (x—0)%),

neN

supE (62 (B, 02) | Fa) /oh < Cill+ (=0,

neN

whence Assumption 2.3.3 is verified. The desired result then follows by Theorem

2.3.2 [l

2.4.3 Learning the Market Value of an Asset

Reference [2] presents a model by which a market-maker may learn the un-
known value 0 of an asset after a market shock (see also [58] for a case application).
The market-maker interacts with a sequence of traders, each of whom may buy or
sell one unit of the asset. The sequence (Y},) 7, denotes the traders’ perceptions of
the unknown value, which are assumed to be i.i.d. A/ (6, \?) random variables with

A? known.

[eS)
n=0

The prior 0 ~ N (g, 03) reflects the market-maker’s initial belief. Let (b,,)
and (a,),_, denote sequences of fixed bid and ask prices. If Y,,11 < a,, the (n + 1)st
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trader buys one unit of the asset from the market-maker; if a, < Y,,; < b,, the
trader does not make any transaction; and, if Y;,.; > b,,, the trader sells one unit of

the asset to the market-maker. Let

1 2 3
B7(1-i)-1 = Ly, i<an)s B7(1-i)-1 = Lo, <V <t} Bﬁz—i)-l = Ly, 100}

represent the (n + 1)st trader’s actions (the three binary variables must sum to 1).

[2] proposed an approximate Bayesian learning model for this problem. We

define

Ap — Hn . bn_,un

pn:\/ﬁa Qn_\/ﬁa

and update our beliefs recursively using

1 ¢(pn) 2 1 ¢(Qn) B ¢(pn)
" — - 0.2 B(l) + B( )
fnt1 = ( 2L 02 ®(py) T A2 4 02 (gn) — P(pa)

1 (b(%z)
-B® 2.2
n+1 )\2 T 0_721 1— @(qn) 9 ( 3)

2 o 2 _ np@ U¢2L pn¢(pn)q)(pn) + ¢2<pn)
Oni1 = Op <1 Bn+1 22+ 07% (1)2(pn)
_B(2) 0721 (Qn¢(Qn> — pn¢(pn)) ((I)<Qn) — (I)<pn)) + <¢(Qn) — ¢(pn))2
"INt oy (®(gn) — @(pn))’
_ npB) 072L ¢2(Qn) - Qngb(Qn) (1 - (1)<QH))
By TR ) . (2.24)

As in previous examples, we can use a projected version of (2.23). Consistency of

the estimator pu, then follows.

Proposition 2.4.3. Suppose that (a,),—, and (b,),—, are bounded, and that p, is
updated using a projected version of (2.23), while o2 is updated using (2.24). Then,

n

L — 0 almost surely.
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Proof. Define

1 2 3
B?H—l = <B7(14)-1a Bq(m—gth(H)-l) )

r _ Qp — Hn
n \ 3
. bn — pin
n A )
1 ¢(rn) 2 P(sn) — d(rn) 5 1 o(sn)
B _ gl 2) g1
nlBuetsto bt = By, ) P X e —a(n) ~ PNT- a(s)
1L ¢pn)  16(rs)
n Bn y Any bna n702 = B(l) - N
/3 ( +1 H n) n+1 )\2 T 0_7% (I)(pn) A @(Tn>

Since (ay),-, and (by),, are bounded and () is constrained in some finite closed
interval of R, it can be shown (similarly to the proofs of Propositions 2.4.1 and

2.4.2) that there exist two positive constants v,,v* such that, for all n € N,

1 1 .
o
n n+1 n
whence
1 1 1 .
— +n < 5 < 5+,
0 On  0Op
and
o0 o0
S S at<oo
n=1 n=1

thus verifying (2.7).

Now, define

A 2 2
fn = B(B17"'7B7’L7/’L07"‘JI“’LTHO_O?‘ g CLO?"‘Jan?bOJ"'?bn)?

cey no
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Ro(z) £ E(Qu(Bus1, an,bn, ) | Fn)
- o (") S
(e () o (5 d
(e ()5 ey

It is easy to see that R, (x) = 0 if and only if x = 6, verifying Assumption 2.3.1. The

boundedness of (a,), -, and (b,),, straightforwardly implies Assumption 2.3.2.

an—x bpn—x\__ an—x bp—x
Observe that, for any n, i(( an*_z%, Igbnx—z;i(( an*_z)) and 1¢é(§n Z) are continu-
A A A

ously differentiable with first derivatives taking values in (0, X]' The boundedness
of (a,) and (b,), together with the mean value theorem, implies the existence of

positive constants C', Cy satisfying

sulNolQn(BnH,an,bn,x)\ < Cy(14 |z —0)),
ne

Sup'ﬁn(Bn—&-laamb x,0 )|/U < 02(1+|I—l9|).
neN

Consequently, there also exist positive constants C's3, Cy satisfying

SUp E(Q2(Bnt1, n, by, ) | F) < Cs(1+ (z —0)?),

neN

sup B85 (But1, tn, bn, ,07) | Fu) [0, < Ca(1+ (z = 0)?),

neN

whence Assumption 2.3.3 is verified. The desired result then follows by Theorem

2.3.2. [l

2.4.4 Learning Buyer Valuations in Online Posted-Price Auctions

Reference [1] describes the following model for dynamic pricing in online digital
goods auctions. The sequence (V)7 | represents independent buyer valuations of a
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product. The seller sets a sequence (g, ), -, of prices, and the nth price is accepted if
Y.11 > qn, i.e., the value of the item to the buyer exceeds the price. Otherwise, the
price is rejected and no revenue is earned. The term “demand curve” refers to the
acceptance probability p (q¢) = P (Y11 > q) viewed as a function of the price ¢; two
valuations are i.i.d. given the same price. In revenue management, a commonly-used

model is a linear demand curve [59]

pla)=1-"q

The slope 7 is unknown and must be learned. We suppose that the prices are
normalized, i.e., ¢, € [0, 1] for all n, and can then assume that v € (0,1). A natural
choice of prior in this setting is the beta distribution v ~ Beta (ag, by). Let I,,41 be
a binary variable that equals 1 if the (n + 1)st buyer accepts the price ¢,, and zero
otherwise.

The following learning mechanism, based on moment-matching, was proposed

by [1]. Define
Hn = an‘i‘bn’
Tn = Gp+ bna

By = 2(1=ga) + (3= 200 = 2ftnGn + )T + (1 = p1ngn) 7,
Cn = QnTn,un(l - Qn)(l + ,U/n7—n>7

Dy = qnTn(1 — pn) (14 (1 = pn)70),
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and apply the updating equations

Any+1 = Qp — In—l—lB_n + (1 - ]n—l-l)u

n

D
bn+1 = bn+[n+1_7

B,
Tptl = GOpi1+ anrla
i1 = fin— Ly —0 (= 1) 22 )
fir = m+1<+H—%M ( +DM>

(2.25)
(2.26)
(2.27)

(2.28)

Again, we make a slight modification to (2.28) by using a projection operator to

ensure that inf,, 4, > 0 and sup,, pt,, < 1. Consistency can then be obtained.

Proposition 2.4.4. Suppose that inf, ¢, > 0 and sup, ¢, < 1, and that u, is

updated using a suitable projected version of (2.28), while (2.25)-(2.27) are used to

update a,, b, and 7,,. Then, pu, — v a.s.

Proof. First, notice that Theorem 2.3.2 still holds if we replace R™ by the interval

(0,1) with H chosen to be a large enough closed interval in (0, 1) such that po,y € H.

Since we use a projected version of (2.28), the sequence (u,) is constrained in some

interval [, p*], where 0 < p, < p* < 1. Let

M = an(l - N*)2 + by,

En — nn + 1’
T, + 1
A, E.qn A, E,
Qn([n+17 Gn, An, En, ,Un> = [n+11— - (1 - [n+1) .

Then, the updating equation (2.28) can be rewritten as

1
Np + 1

HUn+1 = HUp — Qn(In+l7Qn7An7En7,un)7
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which is an SA algorithm with no bias term and nlﬁ as the step size. We observe

that

Mt — M = (Ang1 —an)(1 — N*)Q + (bny1 — D)

C, . D,
= (hg O T (= P L
D, — Co(1 — p*)?

= In + (1= L) (1= ),

By,

It is obvious that (1 — p*)? > 0 and B,,C,, D,, > 0. Then, since j, € [y, u*] and
0 < inf,q, < sup, ¢, < 1, we have D,, — C,,(1 — pu*)? > 0 and g—: < 1. By the
continuity of B,,,C,, and D,,, there exist positive constants 7, and n* such that, for

any n € N,

T« S Mn+1 — Tin S 77*;

whence it follows that the sequence (7,,) is monotone increasing and

oo 1 oo 1
= 00, — < 0.
;nn+1 ;(nm%)?
Now, define
-Fn é B([la"'7[n7q07"'>qn7,u07"'a,un77707"'77771)7

Ru(z) & E(Qu(Int1,qn, An, En, ) | F)
A Enqn AnEngn

1—guz ' gz

= (1 - Qn’}/)

Since 0 < A, < 1 and (1—p*)? < E, <1, we can see R,,(z) = 0 if and only if x = ~,
thus verifying Assumption 2.3.1. Assumption 2.3.2 is verified straightforwardly from

the facts u,, € [+, 1*] and 0 < inf,, ¢, < sup,, ¢, < 1. From the same facts, it follows
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that there exists a positive constant C such that

Sup |Qn<In+17 QTH ATH Enu SL’)| S Cl-

neN

Consequently, there exists another positive constant Cs such that

SUpE(Q2 (L1, Gny Any By ) | F) < O,

neN

thus verifying Assumption 2.3.3. The desired result follows by Theorem 2.3.2. [

2.5 Multivariate Applications

We present three more applications of our convergence analysis to problems
with multivariate priors in which covariance matrices are used to quantify similarities
or differences between unknown values. Section 2.5.1 gives the first consistency proof
for a Bayesian logistic regression method, thus solving a problem that has been
open since at least [20]. Section 2.5.2 proves, for the first time, the convergence
of an approximate value iteration algorithm in a Markov decision problem with
correlated Bayesian beliefs about the values of different states. Section 2.5.3 proves

a new result for ranking and selection with unknown correlation structures.’

2.5.1 Bayesian Logistic Regression

Let (X,,Y,),—, be a sequence of pairs consisting of a binary observation

Y, € {0,1} and a vector X,, € R¥ of covariates. We assume that the covariates

°It bears repeating that none of these applications fits into the framework of [45]. Sections 2.5.1
and 2.5.2 use multivariate normal priors, but not moment-matching. Section 2.5.3 uses a Wishart

prior to model unknown correlations.
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(Xn),—, are drawn independently from some common, but unknown distribution.

The observations (Y;,) are independent and satisfy P (Y,, = 1| X,,) = £(X,,;6) where

1
1+ exp(—276)’

l(x;0) = (2.29)

with # € RX being a vector of regression coefficients. Equation (2.29) denotes a
standard logistic regression model; in classical statistics, # has to be learned through
maximum likelihood estimation given a fixed sample of data.

Suppose, however, that we wish to update our estimate of 6 after each new
observation. This may happen if these estimates are being used to solve an opti-
mization problem (as in the setting of [60]; for instance, the covariates may rep-
resent product attributes, which help us learn about demand distributions, which
in turn are important for making stocking decisions). A multivariate normal prior
0 ~ N (10, Xo) allows us to model beliefs about similarities and differences between
the regression coefficients. For instance, suppose that two covariates X;, X; are
dummy variables representing two distinct products, and that product 7 is observed
much more frequently than product j. If the (i, j)th entry of 3, is positive, this
suggests a degree of similarity between ¢ and j, so that we can make use of what we
have learned about ¢ when we do finally observe j. See [7] for an example of such
an application.

Unfortunately, the multivariate normal prior is not conjugate with the binary
observations encountered in logistic regression. For this reason, researchers going
back to at least [20] have used approximate Bayesian methods to create tractable

updates. The predominant approach in this literature is to use an update of the
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form

Hn+1 = Hn — (£ (XTL7 ILLn) - Yn+1) En-f-an? (230)

T o= 2 HeX X (2.31)

It is easy to see that (2.30)-(2.31) are virtually identical to the well-known recur-
sive least squares update. In other words, the approximation strategy in this case
is to simply treat logistic regression as if it were linear regression; the quantity
0 (X ) — Yoi1 in (2.30) acts as a “residual,” whereas v > 0 is an artificial pa-
rameter standing in for the residual variance (there being no exact analog of this
concept in logistic regression). Later work by [6] showed that (2.30)-(2.31) can be
obtained by applying a first-order Taylor approximation (variational bound) to the
logistic likelihood function, in line with the idea of “linearizing” the logistic regres-
sion model. This and subsequent work focused on computational issues, such as
how to choose v optimally (see also [7]), and never formally studied the consistency
of the procedure.

Using our framework, we obtain (for the first time) the surprising result that
(2.30) is consistent, that is, g, — 6 almost surely under (2.30)-(2.31). We first give

the assumptions used in our analysis, then state the result and give the proof.

Assumption 2.5.1. The covariate vectors (X)), are drawn i.i.d. from a common
distribution satisfying E (XnXg) = A, where A is a positive definite symmetric

matriz.

Assumption 2.5.2. The sequence (X)), satisfies 0 < inf, || X,[l1 < sup, || X1 <
oo almost surely.
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Together, these assumptions lead to a law of large numbers for the data gener-

ating process, i.e., lim,,_, % Yoo X, XTI = A almost surely. For simplicity, we also

suppose that the noise parameter v > 0 in (2.30)-(2.31) is some fixed but arbitrary

constant.

Theorem 2.5.1. Suppose Assumptions 2.5.1-2.5.2 hold and ., is updated using

(2.30), while 3, is updated using (2.31). Then p, — 6 almost surely.

Proof. Without loss of generality, we assume that 6§ = 0. Recalling that v > 0 is a

fixed constant, we let B = vA, where A is the matrix from Assumption 2.5.1, and

rewrite (2.30) as

(2.32)

(2.33)

B%,un-&-l = B% (tn — (£ (X i) = Yg1) Bni1 Xn)
1 1
= B2 (:U’n - n4+1 (6 (Xn, Nn) - Yn+1) ((TL + 1)En+1 - Bil + Bil) Xn)
1 1 _1
= BQ:un - n +1 (6 (Xna,un> - Yn+1)B 2Xn
1 1 _
i (0 (X pn) — Yoi1) B2 (R + 1)E, 1 — B X,,.

We will demonstrate the convergence of the transformed sequence (B% un), which

implies the consistency of the original sequence. Equations (2.32)-(2.33) represent

a stochastic approximation algorithm; we define

F, 2

R, (1) £

B (1/17 "'7Yn7X07 "'7Xn7,u/07 Ry 207 ) 271) ’

E <(£ (Xo; 1) = Vo) B_%Xn]}"n)

1 1 11\
)iy C)Bix,
((1+6—X% >2+1+e—X$u2) ’

e Xiu
Hlmer gty
214 e Xan
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The structure of R,, poses the main technical challenge for the proof, as Assumption
2.3.1 is not applicable; instead of & = 0 being the unique root of R, for all n, we
have R,, (1) = 0 if and only if X'y = 0 individually for each n. This also introduces
complications for the other assumptions in Section 2.3, which are expressed in terms
of the unique root. Nonetheless, the overall structure of the proof is the same as that
of Theorem 2.3.3; we discuss how the remaining assumptions should be modified and
then complete the argument.

Convexity condition. We calculate the inner product of the iterate B2 1y and

the gradient in (2.32), yielding
AT
(Bglun) (€ (X ptn) = Yoy1) Bi%Xn = (0 (Xn; ptn) = Yoi1) ,ngn.

Taking the conditional expectation, we find

T
1 1 — e Xnhn

E ((€(Xn; tin) = Yoi1) pin Xn | Fn) = §M5Xnm > 0, (2.34)

and, for ¢ > 0 and n = 1,2, ..., we also have

—XT
nf Lyr lmet”
(Xr?#)2>€,n€N 2 1 + e_Xn 14

> 0, (2.35)

the relevant analog of the convexity condition in Assumption 2.3.2.
Bias condition. Recall that (2.33) serves as the bias term. From the LLN

obtained from Assumptions 2.5.1 and 2.5.2, we have
n+1)%,, —B ' —0, (2.36)

suggesting that the bias eventually vanishes. However, analogously to Assumption
2.3.4, it is necessary to ensure that this happens fast enough in some sense. This is
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established in the following auxiliary technical lemma, which is proved right after

the current proof,

Lemma 2.5.1. Forp=1,2,

S| mh B <
n=1 (n+ 1)1 |In+ I p
[e’e) 2
S |mh B <
n:l(n"‘l)Z n+1 p

Remainder of proof. Similarly to Theorem 2.3.3, we calculate

1 2
Bl
2
= MZ—HB/Ln—H
- HB% L Xm) -, )2HB—%X ’ (2.37)
- Hn 9 (n+1)2 ny Hn n+1 ain .
2 1 -~ 2
+(n + 1)2 (6 (Xnaﬂn) - Yn—i—l) HB2 ((n + 1)2n+1 —B 1) X, ) (238)
2
2
_Tl 41 (ﬁ (Xm ﬂn) - Yn+1) ,UZB ((n -+ 1)En+1 — Bil) X, (240)
sy Knitn) = Yor)) XI (n+ DZp = BN X, (241)

From (2.36) and the boundedness of (X,,) (Assumption 2.5.2), we can bound terms

in (2.37), (2.38), and (2.41): there must exist a positive constant C such that, for

all n,

1 2
(X ) = Yorr)* B3| <

2

1 2
(0 (X, in) — Vo) HB? (n+1Zp —B) X, | <
2(0 (X pin) = Yor)* X (0 + 1) - B X, <

20

Cla

Ch.



We now handle (2.40); applying the Cauchy-Schwarz inequality, we have

(€ (Xns pin) = Yy1) MEB ((n +1)301 — B_l) Xn

n-+1
2 1 1 1
< o (X pin) = Yo ]Bwn QHBQ (n+ 12,4 —B )X, ;
_ 2 (X ) - Y, |5t
(n+1)% ny Mn n+1 n, )
1 )
x| ——||B2 (n+1)X,.; — B X,
((n—i—l)g (( ) Bt ) 2)
4 o llr |2
< 5 (6 (XmNn) _Yn+1) HB2,Un
(n+1)1 2
1 1 2
+—— Bz ((n+1X,.; — B X, 2.42
(n+1)1 ( ) Znt1 ) 9 (2.42)

We now bound each of the terms in (2.42). First, there exists a positive constant
(5 such that

4 2

(n+1)%

2 C
< 2

EXn; n _Yn QHB% n NG
(X ) = Vo) [ B, <

Bz,

)
Second, by Assumption 2.5.2 together with (2.36), there exists a positive constant

(5 such that

ﬁ B: ((n+1)8,, —B) X, z
_ b Bt mrm,, (ngh—B) By
(n+1)% n+1 9
< B it vmeatt |t - B B i
(n+1)1 2 n+1 9
< %2 E;il—B27
(n+1)1[n+1 2

where the first inequality holds because of the submultiplicativity of the norm ||-|],.
Thus, the desired bound on (2.40) is given by

2
n+1

(€ (Xns pin) = Yoya) MZB ((n +1)2041 — Bil) Xn
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2

_ G
(n+1)i

Cs
n+1)i

1 -1

< by - B
- n4+ 1"t

1 2
BiunH +
2

Putting together the bounds on (2.37)-(2.41), we obtain

2 L2 30, 2
B3, < HB’ . _ (X ) — Yiut) X,
H 2 P41 — 2 2+(n+1)2 TL‘I—l( ( 7“) +1> n
C L2 C 1 2
2 Bop,|| +— 1 —B
(n+1)1 2 (n+1)t(n+1 )
2 3C C 1 2
N e T 2., -B
2 (n+ 1)1 (n+1)?  (n+1)i|ln+1 2
9
— (X ttn) — Yoin) XT 2.43
n+1(( ; n) +1) X, (2.43)

where the final term in (2.43) is carried over from (2.39). Taking the conditional

expectation, we obtain

2 2 C 3C
E(HBéunH Ifn) < HB%un 1+ —2 |+ —
2 2 (n+ 1)1 (n+1)
2
+ 03 3 ! E;-&l-l_B
(n+1)% n+1 2
_XZL"TL
n+11+e Xam "
It is obvious that
C
¥ oG
—~(n+ 1)
and by Lemma 2.5.1, we also have
3C C 1 2
Y o — ¥, —-B| <oo.
—~ (n+1)?  (n+1)iln+l 5

These facts together with (2.34) enable us to apply Theorem 1 of [56]. It

2
exists and
2

follows that lim,,_. HB%M"

11— e Xakn
Zn—i—ll—i—e—xfﬂn

n=0

X, < oo
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almost surely. Therefore, for every sample path, there must exist a subsequence
(XT an) of (XT,un) such that, as k£ — oo, Xnkunk — 0. On the other hand, since

2
exists, the sequence (u,,) is bounded (although the precise value of
2

lim o | B2

this bound depends on the sample path). Therefore, there must exist a subsequence

<pnk,> of (n,) such that, as j — oo, we have p,, — v where v is some fixed
J J

vector. Applying Assumption 2.5.2, we have

]h_}rgo ‘X;ijy‘ B ]h—>r£l<> ‘ngj <V — H, +“%>‘
it (v )| i
= 0.

Thus, for any arbitrary € > 0, there exists an integer J such that, for all j > J,

‘ng_u’ <e. (2.44)
J
o0
However, since <Xnkj> is also an infinite sequence of i.i.d. samples from the
j=J
distribution of X, there must exist K linearly independent vectors X, ..., X,,
J1 IK

from (Xnkjyo -

Jj=J

that can be a basis of R¥. To show this, suppose that all (Xnkj>
j=J
come from a subspace V of RX and V # RX; then, there must be a nonzero vector

v € V+ such that

T _ 1 T
1Ay = 4 Q%)ZXX>

where the first equality holds by Assumption 2.5.2; but the last line contradicts

Assumption 2.5.1, which holds that A is positive definite.
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Then, to satisfy (2.44), since € can be arbitrarily small, by Assumption 2.5.2,

v has to be the zero vector. Thus, p,, — 0, so
J

2

. 1
i [[B34, [, =0
) 2 2
but <l‘nk]-> is a subsequence of (u,) and lim,,_, . HBE Ll exists; therefore, —
2 2
0, whence p,, — 0 a.s., as desired. O

Proof of Lemma 2.5.1. For notational convenience, let M,, = vX,, XI. From (2.31),

we obtain

1 n
—1 _ : —1 T
o= T}E&nH(EO +v) Xka,)

k=0

= Unll—>rgon—|— ZXka

= VA
= B, (2.45)

where the third equality holds because of Assumption 2.5.2. For any two integers
i,j € {1,..., K}, denote the (i, j)th element of ¥ 1, by (Eg+1)(i’j). We will first

show that

o0

1

n+1 (5.1)" - B

< 00. (2.46)

3

n—i—li

n=1

By Kolmogorov’s three-series theorem [61], the convergence of (2.46) follows

from the convergence of the three series

YoPal =), Y EGlgeisa)s Y Var(Galyeise),

where ¢ is some positive constant and

1
(n+1)i

1 -1
n—+ 1 (EnJrl

£, = )(ivj) _ B

o4



n (4.9)
1 1 -1 T (4,5)

k=0
1 1 < > - 1 -
- MY — B ) 4 o)L (247
(n—i—l)% n—l—l%( F n+1( 0> (247)
To show the convergence of the first series, notice that by (2.45), £, = —250(1) =

o (n—i—l)%

0(1). Thus, there must exist a large enough positive constant ¢ such that ,, < ¢ for
all n. It then follows that P (|¢,| > ¢) = 0 for all n, whence the first series converges.

Next, we show convergence of the last (third) series. From (2.47), we have

D Var(éalye, <o)
= ) Var(&)

= ZV&T L 1 <M(i’j) _B(i,j)> + 1 (Eal)w)
n=0 (n_'_l)% n+1k:0 k n+1

= Z ! Var ! (M(”) — B(i,j)) + 1 (261)(113')
[e¢) 1 n . y ) g
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(n+1 —

To handle the second term on the last line, it is obvious that

% 9 (261)(1'&') 2
52(551)

< Q.
(n+1)%

n=0

To handle the first term, by Assumptions 2.5.1 and 2.5.2, there must exist a large
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enough positive constant C; such that

k=0
= E ( (MSJ) Bd) ) +2 ) <M<w (zj)) (MS’,J’) _ B(i,]')))
k=0 0<k<k’<n
= E (M](;J) —_ B(Z’])> + 2 Z E (Mg”]) _ B(%J)) E (MI(CZ’J) o B(z,]))
k=0 0<k<k'<n
- SE(ME - B)
k=0

where the second and third equality hold from Assumption 2.5.1 and the first in-

equality holds from Assumption 2.5.2. Thus, together we have

=0 (i s (3551
ZVar(fnlﬂgan}) S nz;mE (kz:% <M’(€’]) w )) +Z <n+1;)
o o 9 ((xn-1)E0)
B SIECI (<o>)<oo7

(n+1): “=  (n+1)2

Il
o

n

showing the convergence of the third series.

To show the convergence of the second series, from (2.47) we have

Y E(Glecg) = Y E(&)

S 1 1 & ‘ 1 )
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To handle the second term on the last line, we note that

i ’(2 )(%J)

o n—i—lE

To handle the first term, by (2.48) we have

n 2
E (Z (MgD _ B(iu’))) </ (n+1)Ch.

k=0

Thus, together we have

2 -1\ (4.9)

Y E(él ) < i; B i(Mu,j)_B(ij)) +i ‘(20 ) ‘

eisa) < 2 o 2 \Mi e
‘(261)(1’3')

NE
5
NE

proving the convergence of the second series. Therefore, (2.46) holds for any two

integers 7,7 € {1, ..., K}, so we have

o0 [e.o]

R 1 L i \GD) (i
~-B| < 1) - B6Y)
n:1n+1% n+17m 1 Z(n+1)iz n+1( w1
- S e s
7 1 n + 1 n+1 n
< 0Q.
Now from (2.45), there must exist a large enough integer NV such that, for all
n >N,
1
i —Bl <1
n+1 1

27



Then,

1 1 . ? 1 1
i1 — Bl < i 1
%(n+1)i n+17 " 1 r;v(n+1)i n+1" " 1
whence
00 1 . 2
i1 — B < oo.
nzjl n—|—1% n+1 ntl 1
For p = 2, since ||-||, < VK ||||;, we have the desired results. O

2.5.2 Reinforcement Learning with Correlated Beliefs

Consider a Markov decision process [62] with finite state space S, finite decision
space X', and single-period reward function C' : § x X — R with discount factor
€ (0,1). The maximum cumulative infinite-horizon discounted reward obtainable

from state s € S is given by the well-known Bellman equation [22]
V (s) = max C (s, z) +’yZP(s’\s,x) V(s).

In reinforcement learning [63], it is useful to redefine V' as a function of a state-action
pair, i.e.,

Vis,x)=C(s,z)+ 'yZP (s'|s, ) (rr?xV (3',95’)) : (2.49)

The optimal action to take in state s is given by argmax, V (s,z). In practice,
however, (2.49) is difficult to solve as the state and action spaces may be large and
the transition probabilities may be completely unknown.

Approximate value iteration algorithms address this issue by solving (2.49)

approximately. Suppose that we are in state s, in the nth stage of the algorithm,
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and choose the action z,. The next state s,,; is then drawn from the transition

distribution P (-|s,,x,) and observed. We then compute the quantity
Upi1 = C (8n, Tn) + ymax V,, (sp41, 1), (2.50)

and interpret this as an approximate observation of the unknown value V' (s,, z,),
bootstrapped from an existing approximation function V,. Some form of stochastic
approximation can then be used to smooth v, together with V,, (s,, z,). If every
state-action pair is visited infinitely often, SA is provably convergent [64-66] despite
the fact that (2.50) is a biased estimate of V' (s, z,,).

However, if the state and action spaces are large, convergence may be too
slow for any practical time horizon [67], driving interest in “spreading” methods
that are able to learn about multiple state-action pairs from one observation [68].
For this purpose, [46] proposed the following approximate Bayesian scheme. We
begin with the multivariate normal prior V ~ N (Vg, 20), where V; is our initial
approximation of V' and ¥, includes correlated beliefs about different state-action

pairs. After calculating (2.50), we update

Vi (s,2) = V,(s,7) (2.51)

B0 (5.2) (5. 20)) (Vi (50, 70) — vur)
A2+ 3 ((Sny ), (Sn, @) , (2.52)

T ((5,2),(5,27) = B ((s,2),(s,27)) (2.53)

~ Zn((:2) (50, 70)) B (50, 7)., (5, 2')) (2.54)

X2+ 3, ((Sny ), (Sny Tn))

for all state-action pairs (s,z) € § x X. If v,41 were an unbiased observation of
V (8p, x,) with variance A2, (2.52)-(2.54) would describe a conjugate model. How-
ever, no such unbiased observation is available, so we simply apply this update with
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the biased observation from (2.50), treating A\? as a tunable parameter (analogous to
a stepsize sequence). We note that, in practice, 3,, would be expensive to store if the
state and action spaces are large; however, the concept of the correlated Bayesian
model can potentially be extended to more compact belief representations [69]. Here,
we focus on applying our theory from Section 2.3 to show convergence in the base
model where the value function is represented by a lookup table.

If 3 is diagonal, (2.52) is equivalent to recursive sample averaging and thus
is provably convergent by standard SA theory [70]. We will prove convergence for
a modified version of (2.52)-(2.54) that includes correlations (non-diagonal priors).

For our analysis, we work with the sequence
A= (04 )0 (80, %) , (50, 70)) -

We also impose some additional assumptions on the prior covariance matrix 3.
The prior covariances are crucial to the asymptotic performance of the procedure
since they govern the magnitude of the effect that an observation of (s, x) can have
on other state-action pairs (this issue also arises in the analysis of conjugate models;

see [71]).
Assumption 2.5.3. The prior covariance matriz 3o satisfies

o ((s,2),(s,2)) > 0,V (s,z),

|20 ((57 x) ) (5/7 SC/)) /20 ((5717) ) (57 SE>>| < \/57 v (va) 7£ (8/71;/) )
where ¢ € [0,1) is a constant.

Given the state-action pair (s,,z,) visited in the nth stage, we propose the
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following update

_ _ 1
Vn+1 (Sn; xn) - Vn (Sna xn) -

(Vi (Sn, Tn) — Ung1) (2.55)

Vn+1 (57 IE) = Vn(87 $>

X (Vi (8, ) — funﬂ) , (2.56)
Y1 ((8ns@n) s (8ns20)) = Z i ;En ((8n,7n) , (80, Tn)) (2.57)
Bt (5:2) s (snsn) = 8 (52) (s 0). (259

En+1((s,x),(s,x)) = En((svx)=<s7x))

3 ((5,7) 5 (50, @0)) B (50, @) (Sv“")), (2.59)

(n+2)%, ((8n, n) 5 (Sn; Tn))
Y ((37 *T) ) (S/’ :L‘/)) = X, ((57 x) ) (3/7 x/))
3, ((8,2), (80, 70)) By (80, 70) , (87, 77))

B (051148 = 0 (B (0. .)
X min {'E (.2, (5/,2) B ((5,2) , (5',2))

’ 1 (s I)n (s,7)) %, ((s,7),(s',2)) ‘
2. ((s,2),(s,7)) 7
‘inﬂ ((s,2), (s, 2")) } (2.60)

for (s,z) # (s',2") # (sn, ), with sgn(z) being the sign function that equals zero
if x equals zero and z/|z| otherwise. These equations are mostly identical to (2.52)-
(2.54), with the exception of (2.60), which is slightly modified to ensure that the

absolute values of the ratios of the off-diagonal entries to the diagonal entries of 3,
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are decreasing in n and satisfy

X ((s,2),(s,2")
sup <. 2.61
neNY(s,z)# (s’ z") En <<S7 ZL‘) ) (37 :L‘)) ( )

This modification is needed to handle some technical issues in the convergence proof.
We note, however, that the modified update is not much harder to implement than
the original one, and there would be little difference to a practitioner looking to use
an approximate Bayesian method for its practical benefits.

Let I,,(s,z) be a binary variable that equals 1 if (s,,z,) = (s,z) and zero
otherwise, and define T,,(s,z) = 3.1, I;(s,z) to be the number of visits to (s, z) by
time n. Two more assumptions are imposed: Assumption 2.5.4 is trivially satisfied
for a finite state and action space, while Assumption 2.5.5 is a regularity condition

requiring sufficient exploration of each state-action pair.

Assumption 2.5.4.

sup |C(s,x)| < C™. (2.62)
V(s,x)

Assumption 2.5.5. For every state-action pair (s, x),

T.(s,z)+1

> 9.
T2\ VneN, (2.63)

where X € (0,1) is a constant.

Finally, we use a projected version of (2.55)-(2.56) given by

_ B _ 1 2,((s,2),(Sn, T0)) -
Vori(s,x) =1y <Vn(5,x) T2 () en)) (Vi (8, 20) — vn+1)) )

(2.64)
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where K is the cardinality of S x X and H = [-M, M|* with M taken to be
large enough such that V5,V € H. We prove that (2.64) is consistent. The proof

integrates Theorem 2.3.3 with the theoretical approach of [65].

Theorem 2.5.2. Suppose Assumptions 2.5.3-2.5.5 hold, and V,, is updated using

(2.64), while X, is updated using (2.57)-(2.60). Then V,, — V almost surely.

Proof. Without loss of generality, let V' = 0. Define
Fn é B(/Ula ovy Un, ‘_/07 seey Vn; 207 ceey En)a
fix an arbitrary state-action pair (s, x) and define

Qn(Vna En; Un+1> - (Vn(sa l’) —E (Un—l-l | F )) (S l’)
Qn<Vn7 3, Un+1> = (]E (UnJrl | ]:n) - Un+1> In(57 x>7

BV, B, Ung1) = Z <En(( ,2), (8, ,?))> (Vo (s',2) = vpsr) L (S x))

Xn((s, 2
(S/7x/)#(87$) ((S x ) (

Then, keeping (s, z) fixed, (2.64) can be rewritten as

Vosi(s, ) = Iy (Vn(sw) -

Qn(‘_/na Ena Un—i—l) + QH(Vna Ena /Un—i-l) + 571,(‘7717 En) Un+1)>
n+2 '

We first show the convergence of

Wn(sa x)ln<57 (L’) + qTL(VTM Ena Un—i—l) + ﬁn(vm Em Un—i—l)

WnJrl(S iL‘) = Wn(S,Q?) - n4+2

to zero, which will be needed for the convergence of V,. This auxiliary technical

lemma is proved right after the current proof.

Lemma 2.5.2. Suppose Assumptions 2.5.3-2.5.5 hold, and V, is updated using
(2.64), while ,, is updated using (2.57)-(2.60). Then, W, (s,x) — 0 a.s.
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We will now use Lemma 2.5.2 to show the convergence of V,,. For any ng > 0,

define W,y (s, 2) £ 0 and

Wn;no (3; x)In(57 SC) + QH(Vna Ena UnJrl) + 671(‘7717 Ena vn+1)

Wn+1;n0(57$) £ Wn;no(saﬁ) - n+ 9

for n > ng. Then, combining Lemma 2 in [65] with Lemma 2.5.2 above, it follows

that, for every p > 0, there exists some positive integer Ny such that
[Wiine (5, 2)] < (2.65)

for all ng > Ny and n > ng.

We now use an induction argument resembling that of [65]. Since sup |V;,(s, )| <
M, there exists some positive constant Dy such that ||V, |« < Dy for all n. Because
v € (0,1), we can take some small enough p € (0,1) such that y(1 4+ 3p) < 1. Let
Dyi1 = (1 4+ 3p)Dg. Then, it is obvious that Dy — 0, as k — oc.

Now suppose there exists some positive integer ny such that ||V, |l < Dy for

all n > ny. By (2.65), we can choose 7 > ny such that
’Wn;Tk(‘S? LE’)| S fprk

for all (s,z) and all n > 7. For n > 7, define Y, (s, z) £ Dj, and

1
n-+ 2

Yoi1(s,2) 2 Y,(s,1) — (Yo (s,z) —vDy) I,(s, ). (2.66)

Since v € (0, 1), it is obvious that (Y, (s,z)) is a decreasing sequence with respect

ton and

lim Y, (s,x) = vDj.

n—o0
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Furthermore, since we have Y,,(s,z) > vDy and |[W,,.., (s,2)| < ypDy (with 0 < p <

1) for all n > 7, it follows that
Yo (s,x) + Wiyr (s,2) > 0, =Y. (s,2) + Wyr (s,2) <0 (2.67)

for all n > 7.

Let
F (Vn, sn,xn) 2 E (Upy1 | Fp) = C (8n,20) +7E <max Vi (Sp41, ) ]]:n> .

For any V', V",

l>

|F (V' sp,20) — F (V" 8py 2| Y ‘E <max V' (sps1, ) — max V" (spy1, x)) ‘

< V/ _V//
< 7(5,31&)&;(' (s,2) (s,2)|,

whence F' (V') s,,z,) is a contraction mapping of V'’ with respect to the maximum
norm || - ||o. By Banach’s fixed-point theorem, F' has a unique fixed point, and from
the definition of F', the fixed point is the true value function V', which was assumed

at the beginning to equal zero. Hence we have
[E (V' snan)l = IF (Vispaa)llg <7V, VV' eRE (2.68)

Now, suppose that —Y,,(s, ) + Wy (5,2) < V,i(s,2) < You(s,2) + Wi, (s, 2)

holds for some n > 7. Then,

r Qn(‘_/na Ena /Un—H) + Qn(Vna En) Un+1) + ﬁn(‘_/ny En; Un-l—l)

Vals, z) — n+2
_ (Vn(sa {L‘) —E (Un—i—l | .Fn)) In(S, l') + qn(‘_/n, Zn7 Un+1) + Bn(‘Zm Ena Un-l-l)
= Vu(s,x) — "o
= Vn(S, l’) — Vn(37 :E) —E (Un—H |fn)]n(87 l’) — qn(vm X, Un+1> + Bn(v”’ Yin, U”‘H)

n-+ 2 n+2

65



IN

IN

IN

— I
Va(s, ) nt2 n(8,T)
F(Vn?snaxn) In(S,l’) B Qn(vna Enavn-i-l) + ﬁn(vna Znavn—i-l)
n+ 2 n—+2

 / Vn('S?x)

Vn(‘gu%‘) - n+ 92 [n(S,CL’>

+7 HVnHOOIn(S7 .’L’) . Qn(v'ru Enyvn-i-l) + /Bn(Vn, En, Un-i-l)

n+2 n+2

V. (s, 7) (1 - n%zfn(s,x))

7Dk Vna Ena Un—i—l) + Bn(‘_/na En: 'Un—l—l)
n+2 n+2

(Yo (s, 2) + Wi, (5, 2)) (1 _ %an(s, x))

P}/Dk Vna Ena anrl) + 571(‘7717 Ena UnJrl)
n+2 n+2

+ I,(s,x) — n

+ I,(s,x)— n

1
n+2
Wn;m(sy x)In(Sa ZL‘) + Qn<v’m Zna Un+1) + Bn(v;n Env Un—l—l)
n+ 2

Y, (s, x) (Yo (s,x) — vDy) L,(s, x)

+Wn§7'k (57 JI) -

Yn+1<$, .CL’) + Wn+1;Tk(87 l’),

where the first inequality holds because of (2.68). Together with (2.67), this implies

that

Vn+l(s> 3:) =

[ / n 7717 En? n n Vn72n7 n n VTL?ETL? n
HH(n(s,:c)—Q(v Un+1) + G n+2v+1)+5( UH))

< You(s,x) + Wigrr (s, 7).

Using a symmetrical argument, we can show that V,, 1 (s,2) > =Y, 11(8, 2)+Wyi1.0, (5, 7).

Thus, we have —Y,,11(8,2) + Wy i1, (8, 2) < Vo1 (8,2) < Yoyi(8,7) + W1, (5, 7).

When n = 74, we have Y7, (s,z) = Dy, and W, ., (s,z) = 0, hence

—Yo(5,2) + Wor, (8,2) < Vi(s,2) < You(s, ) + War, (8, )
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holds for n = 75. By induction, we have
~Yo(8,2) + Wor, (8,7) < Viu(s,2) < Yo(s,2) + Wir (5, 2) (2.69)

for all n > 7.
Since Y, (s,z) — vDy and |W,,.., (s,2)| < vpDy, for all n > 7, (2.69) implies

that

limsup [V (s, )] < 7(1+ 20) Dy < Dy

n— o0
for every state-action pair (s, z). Hence, there exists some positive integer ng; such
that ||V,|lee < Dy for all n > nyyq. Thus by induction, we conclude that for every

k, there exists some positive integer n; such that
Valloo < Di
for all n > ny. Since Dy — 0 as k — oo, we have V,, — 0, as required. O
Proof of Lemma 2.5.2. We introduce the additional notation
A(s,2) 2 {n: L,(s,z) =1}

and rank the elements of A(s, z) in ascending order to get an increasing sequence
(Ca(s,x)). That is, (¢,(s,z)) is the sequence of time indices for which we are in state

s and choose action z.

Let

R, (W,(s,x)) E(W,(s,2)L,(5,2) + ¢u(Vy, 0, Uns1) | F)

= E(W,.(s,2)1.(s,2) | Fn) + E(E (vpr1 | Fn) = Vny1) Ln(s, @) | Fn)
= Wu(s,x)L,(s,x),
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where the last equality holds since W, (s, x) is also F,-measurable. Then, for all
n € A(s,z), we have R, (z) = z, hence R,(z) = 0 if and only if z = 0, whence
Assumption 2.3.1 is verified. Assumption 2.3.2 is verified straightforwardly.

From (2.64), we know that V,, is uniformly bounded in n. Together with

Assumption 2.5.4, this implies the existence of a positive constant C; satisfying

SupE <(Z[n<37x) + Qn(Vn7 Ena Un+1))2 + (ﬂn(vna En,vn+1>>2 ’ fn) S Cl (1 + 22)

neN

for all z. Therefore, in order to apply Theorem 2.3.3, it only remains to show that
the condition (2.18) in Assumption 2.3.4 is satisfied. Due to the boundedness of V,

and C, it is sufficient to show that

Sl = (Sen s
120\ 2 (e N (520, (8,2))
Define

L, (¢, x’)) < 00. (2.70)

N 1 3.((s,2), (s, 2))
TSI (‘zn«s',f),(s',w»

(82" )#(s,2)
Then, by Kolmogorov’s three-series theorem [61], it is sufficient to show the conver-

gence of the three series

Z P([&nl = ¢ Fa-1), ZE(fnlﬂén\SC} | F-1), Z Var(&alqe, <cy | Fno1),

where ¢ is some positive constant.

From (2.61), by Chebyshev’s inequality, we have

0
ZP(|§n| ZC’fn—l)SZm<OO,

so the first series converges. Similarly, we can see that

Y Var(Glese | Fat) < D E (&)’ | Fact) < ﬁ < %,
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so the last series converges. It remains to show that the second series also converges.
Finally, we show the convergence of the second series. From (2.57)-(2.60), first
we can see that for all (s, 2") # (s, z), the ratio %)((i'?))) is decreasing in n.

Now, if (s, ) is the state-action pair observed at the nth stage, we have

E(&nrilge i< | Fn) < E(&uyr | Fn)

. 1 ]E En—l—l ((va)v(slax/))
= 3 Z ) 1ol 1ol
nt (s",2")#(s,x) il ((3,-’E)7(37$))

L(s, ') m) |

and

(s 1)

IN

2, (s.2) (s )| (1 — 1/(n +2)
& (zn (5, 2). (o)) (1 —5/n +2) )
‘ S, (s,2) . (s'.2'))

=, (s, 2) . (.27))

1—1/(n+2)
1—6/(n+2)

(2.71)

where the inequality holds because of (2.58), (2.59) and (2.61). Since 0 < § < 1,

there exists a large enough integer N such that

1
N> ——.
—A(1—-9)
Then, for any n, we have
1 1
1+— < 14+ ———-
+Tn(s,x)+1 - +)\(n+1)
< 4 NiZ0
n+1

(+i50)
< (1+
n+1
5 N
_ (1 - n_+2)
- ! ,
-k
where the first inequality holds because of (2.63). Consequently,

-5 < To(s,x)+1
“\Tu(s,z)+2

Z|=

Y
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whence (2.71) becomes

E (‘ En+1((ij),(€’: :E’l))))‘ |}.n> < ' 2, ((s,z), (s, 7)) ’ (Tn(S,x)+1)Jb‘

Yo (8, 27), X, ((s2), (s 2) | \Tu(s,z) +2
We can take a large enough integer N such that (s, ) is the state-action pair

observed at stage N; and, for all n > Ny,

E (‘ o ((s,7), (s, 27)) ' Ifn)
n
n

Yo (8,2, (s, 2))

< s ool (Fes ;> |
[ |palbat) (set)’ (tery
e nexo | Crorre 21)T
< oo oo Garrn)

N—

N1—|—2
\/g()\(n+1)+1

It follows that

Vo Ny +2
Z E(fn-i-ll{\inﬂ\ﬁc} | Fn) < Z n+3 ()\(n +1)+ 1) =

n>Ny n>Ny

2=

proving the convergence of the second series. Therefore, (2.70) holds and, by Theo-

rem 2.3.3, lim,,_,oo (ch(w)(s, x))2 exists and is finite, and

= 1 =1 )
Z;n+2Wn(s,x)Rn(Wn(s,x)) = 2 g Wals2))* In(s, @)

00 1 )
= ; (o) T2 (Weo (s (5, )

< o0

almost surely. Then, from (2.63), this implies

lim W, (s.2)(s,2) = 0.

n—oo
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Furthermore, from sup ‘Vn(s, :1:)‘ < M and Assumption 2.5.4, there must exist some

positive constant C5 such that

sup ‘Vn(s,x) — Un+1‘ < (.
neN,Y(s,z)

Together with (2.70), this implies that W, (s,z) — 0 for all (s, x), as required. [

To our knowledge, Theorem 2.5.2 is the first consistency result for a correlated
Bayesian belief model in the setting of approximate value iteration, where statistical
estimation takes place simultaneously with policy optimization, represented by the
max operator in (2.50). While [72, 73] have studied Gaussian process priors in
dynamic programming, this work dealt with the much simpler problem (from a
statistical perspective) of learning the value of a fized policy. Despite the richness
of the dynamic programming literature, convergence results for approximate value

iteration tend to be much more difficult to obtain.

2.5.3 Ranking and Selection with Unknown Correlation Structures

Ranking and selection is a fundamental problem class in the simulation lit-
erature [74] that provides a mathematical framework for the study of information
collection. We suppose that there are K design alternatives with unknown values
6 ..., 0% and that our goal is to identify arg max; #%) based on information col-
lected from a limited number of simulation experiments with individual alternatives.
Bayesian statistical models are widely used in this literature [75] because they of-
fer a way to express our uncertainty about the unknown values and quantify how
this uncertainty evolves as more information is collected. Much of the research in
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this area uses simple, conjugate Bayesian models and focuses on the development
of procedures for efficient allocation of the budget [76,77].

Suppose that we use a multivariate distribution to model our beliefs about 6§ =
(69, ...,0%)) I, for two designs i # j, the prior includes correlations between 6
and #Y), a single simulation experiment with design ¢ will also provide information
about design j. With sufficient correlation in the prior, we will be able to learn
about many alternatives from a much smaller number of simulations. For this
reason, correlated beliefs have a great deal of practical potential [11]; however, the
drawback is that prior correlations are even more difficult to specify accurately than
prior means. Approximate Bayesian models become useful here as a possible tool
for learning both the means and the correlations [5]. In the following, we give a
new analysis of a modified version of the approximate Bayesian procedure proposed
by [38,78].

Let (Y,,). 2, be a sequence of i.i.d. samples from the K-dimensional multivari-
ate normal distribution N (6, X), where both # and ¥ are unknown. We impose

the prior
0|2 ~ Nk (1o, 5" %), 3~ Wi (Bo, bo) -

Here, ¥ follows an inverse Wishart distribution [79] with by degrees of freedom and
scale matrix By. The conditional distribution of 6 given 3 is multivariate normal
with mean vector jo and covariance matrix ¢;'X. It is well-known that, if the
complete vectors (Y;,) can be observed, the above model is conjugate [49]. However,

suppose that we can only observe one element of Y,, during the nth stage of sampling,
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for instance the kth element Y,*. In this case, the normal-inverse-Wishart prior is
not conjugate with the scalar normal observation, an issue that we address using
approximate Bayesian inference.

The sequence (g, by, 1in, By,) of approximate posterior parameters is constructed

as follows. First, we let

¢ = n+1, (2.72)

by, = n+K+1. (2.73)

Suppose that Yn(i)l is the observation collected in the (n + 1)st stage of sampling

(i.e., only the kth component of Y, is observable). Then, we use the update

BUA ) _ y®)

n n+1
R (2.74)

Hn+1 = Hn —

Equations (2.72)-(2.74) are taken from [38]. In (2.74), we have already substituted
(2.72) for g, to simplify the computation.
It remains to set an update for B,,. We first impose some assumptions on the

starting prior By, as in Section 2.5.2.
Assumption 2.5.6. The prior scale matrix Bg satisfies
B > L v1<k<K,
BYY/BIY| < VIS VI<AR<K,
where L >0 and 6 € (%, 1} are constants.

If only the kth element of Y;,;; is observable in the (n + 1)st stage, we propose

the update
1 2
B\7) = max {Bff”“’ + Z j: : (uﬁf’ - Y,f_’?l) L(n+ 2)} , (2.75)
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G0 g (k)
BUH _ BGH 2 (B(j,ﬁ_ﬂ)

n+1 n n+1 n B7(lk k)
2
(kF) v .
(u —Yn+1) o) . BEYBE
2B BU9) 4+ S ) (2.76)
(j.k) (k)
Gk _ G e J BT nekk | | B oG
B, = sgn(BY"Y) mm{ B%k,k)Bn-&-l | B }7 (2.77)
(k) (ki)
260 _ RpUd L 2 Ga) _ Bi” B
Bn+1 Bn + n4+1 <Bn Bq(@k7k)
2
(/h(f) - Yn(ﬂ) oo . BYPBE)
! (n+2)B{™ Ba 4 BR )7 (2.78)
(i) ()
Gi) = (5.d) N pGo| B pia| B R
B,[1 = sen (an—H) -mm{)BjH ' BU) nit| Bg,i)BnH }a (2.79)

for i # j # k. This update is based on the moment-matching mechanism from [38];
in particular, (2.76) is taken directly from that work (substituting (2.72) and (2.73)
for g, and b,,), while (2.78) is the moment-matching update for ijﬁ, and the first
term inside the maximum in (2.75) is the moment-matching update for Bgﬁ’ﬁ). The
additional modifications that we have introduced are intended to handle technical
issues, as in Section 2.5.2: note that, from (2.77) and (2.79), it follows that the

absolute values of the ratios of the off-diagonal entries to the diagonal entries of B,,

are decreasing in n. From Assumption 2.5.6, it also follows that

B{"
sup | —ms | < VI - J. (2.80)
neNYi£k | By,

Furthermore, from (2.76), we can see that

(4:k) 1o (k.7)
B (142 (;_ B Ba™
2 5) > BUI) 1 + 1 :
n+1 " n+1
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which ensures, together with (2.75), that B/"" > [ (n+ 1) for all k. These modifi-
cations do not make the update much harder to implement, and would make little
difference to a practitioner.

We now present a convergence result for the approximate Bayesian update in
(2.72)-(2.79). Some last preliminary notation and assumptions are needed. Define
I to be a binary variable that equals 1 if the kth element is simulated at the nth
stage and zero otherwise. Define S 2 Yoo [t(k) to be the number of simulations

assigned to k up to time n.

Assumption 2.5.7.

S 41

>v, VneN,
n—+1 =7 "

where v € (0,1] is a constant.

Assumption 2.5.7 essentially requires every alternative to receive a non-zero
proportion of the simulation budget asymptotically. Many allocation policies satisfy
this condition, including optimal computing budget allocation [76] and knowledge
gradients [13].

Finally, we use a projected version of (2.74) given by

BOY )~ v
BFD nt2 |

pnt1 =g <Nn - (2'81)

where H = [—M, M]¥ with M taken to be large enough such that pg,0 € H (again

interpreting 6 as a fixed vector, as in previous examples).

Theorem 2.5.3. Let 0 = sup, Var (Y(k)). Suppose Assumptions 2.5.6 and 2.5.7
hold with §, M, L chosen to satisfy 20L > 4M?* + o%. Under the projected update
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(2.81) for the posterior mean, and the update (2.75)-(2.79) for the scale matriz, we

have i, — 6 a.s.

Proof. Without loss of generality, let § = 0. We introduce the additional notation
Ak £ {n LI = } and rank the elements of A®) in ascending order to get an
increasing sequence <C7(1k)>. That is, ((,S’“) is the sequence of time stages for which
the kth element is simulated.

Define

Qn(,una Bna Yn-i-l) = (M?&k) - YTL(-]T-)1> [ék)7

B(kJ) . R .
Bl B Vo) = S | oy (09 =) 197 )
7k

and rewrite (2.81) as

1
Mfml:)—l = HH (:ugzk) - n——i—Q (Qn(ﬂna Bm Yn+1) + Bn(,un; Bna Yn+1))) :

In words, if the kth alternative is simulated in the nth stage, we update our beliefs
about k£ through @),,. Otherwise, k£ is updated through the “bias” term.

Now define
Fn 2 B(Y1,...,Yo, tto, .. fin, Bo, .., Bn),

R, (P%(zk)) = E(Qn(ﬂm B,, Yn'i‘l) ’]:”)

= W

For all n € A% we have R,(z) = z, whence R,(x) = 0 if and only if z = 0, thus

verifying Assumption 2.3.1. Assumption 2.3.2 is straightforward to verify.

By (2.81), we have

sup !,ugf)| < M.
neN,1<k<K
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This, together with (2.80), implies that there exists a positive constant C; such that

supE ((Qn(xa B,, Yn+1))2 + <5n<x> B, Yn+1))2 ’ -;En) < O

neN

for all = satisfying sup; ‘x(k)‘ < M. Therefore, in order to apply Theorem 2.3.3,

it remains only to show that the condition (2.18) in Assumption 2.3.4 is satisfied.

( , it is sufficient to show that

n=0 j#k

Also, since sup,, ;

B |
IV ] ] < o0. (2.82)
Bgljd) n

The remainder of the proof will establish (2.82).

Define
(k,9)
e
JsJ n ’
n—+ 2 oy B,/

By Kolmogorov’s three-series theorem [61], it is sufficient to show the convergence

of the three series

Y P&l = el Facr), D EGalgenca | Fact), Y Var(Galye<e | Faoor),

where ¢ is some positive constant. From (2.80), by Chebyshev’s inequality, we have

ZP|€n|>C|~Fn1<ZCQn+2 < 00,

so the first series converges. Similarly, we can see that

1—-9
ZV(LT £n1{|§n\<c}|‘Fn 1 <ZE fn n 1) Szm < 00,

so the last series converges. It remains to show that the second series also converges.
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Recall that, by (2.75)-(2.79), the ratios ‘B%k’j)/B%j’j) are decreasing in n for

all j # k. If the kth element is chosen at the nth stage, we have

E(gnJrll{\E +1/<c} |Fn> < E(£n+1 |fn) =0 E | I} |'/Tn
" =¢ ( ) ) n ’
n+3 £k Bn]+]1
and
(k) _ (k) )2
(k.) (107 -v1h)
E ( BT(LJijl) |]:"> = E BUY) (1 25 | Fn
i W (1)
E((H%k)_yygi)l)g |fn>
y
< B% D1+ L(n+1)
= i 25
B}/ L+
k,‘ 4M2+0'2
< B | 1+ L(n+1) 5 83
S o5 (2.83)
Bn 1 + n+1

where the first inequality is due to (2.76), (2.77) and (2.80), and the last inequality

holds because

;AL’“) — 9(’“)‘ < 2M and sup;, Var (Y(k)) = 2. Since 2L > 4M?* + o2,

there exists a large enough integer N such that

1
v (20 — B

N >

Then, there exists some integer N; such that for all n > Ny,

4M2 2 4M2 2
n+1+%§]\77(25—%) (n+1),

whence

25 — AM? o2

L
1 < N’yn+1+4M2L+02(n+1)

25 — 4M3 42

< 7(n+1)<1+N TRTE 02>—7(n+1)
n 414 WMt
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< 26_4M2+a2 N
< An+1) (14 s | —(n+1)
n 414 Mt

N
n+14 26 ) ,

AM2 L2 B
n+ 14 2

N
< (9 41) ( n+1+20 ) .

= 7(n+1) (

4M?24-02
n+1+ -7

1+ 2
— (k) ntl _
= (S +1) <1+(4M2+02)/L> 1],
n+1

where the last inequality holds because of Assumption 2.5.7. Hence we have

1
1+%< <57(Lk)+1)N

L+ 2% S 42

and (2.83) becomes

B B [ (58 41\
El|=oa| 7] < |moo| | cw :
BUY) BY |\ s® 1o

We can take a large enough integer Ny such that Ny > N; and the kth element

is chosen at stage Ny. Then, for all n > N,

| . 1
g(|Ber| 7)) < [BE2](s 413"
goa | T = g |\ s,
n+1 " not
_ B (s}&gﬂ (M)
< . %
B%QJ) S](V2)+2 SH 49
' 1
_ B (Sw )"
By |\ s +2
_ BE\ZJ) ( Ny +2 )JIV
= |BW | G+ D41
o oy Nat? N
= y(n+1)+1 ’
whence
1
1-9 Ny+2 WV
Z E(&nt1Ljenirl<er [ Fn) < Z ( ) =
n>Na n>Na n+3 7(” N 1) !



so the second series converges and (2.82) holds.

2
Therefore, by Theorem 2.3.3, the limit lim,, . <9§Lk)> exists and is finite.

Furthermore,
0o 1 o) 1 ) 00 1 9
(k) (k)) — E (F))* [(k) — E : (k)
;”JFQ% ) = il ) 17 = Sl +2 (“df)) =0

o
almost surely. Then, from Assumption 2.5.7, there must exist a subsequence (,u?f,z))
"t /) t=1

00 2 00
of (/L(](C,Z>> X such that (,ué]f,z)) — 0. Since (pé’%) is also a subsequence of
n—= ng ng =1

o) 2
(;ﬁ{”) , and lim,, . <u7(zk)> exists, we conclude that

n=1

lim (,ug“))z =0,

n—oo

which concludes the proof. O]

2.5.4 Censored Binary Observations with Unknown Mean and Vari-
ance

In this section, we present an extension of the motivating example from Section
2.2 in which both the mean and the variance of the underlying distribution are
unknown and have to be learned from censored binary signals. Because our prior
is now a bivariate distribution, the learning model in Section 2.2 cannot be easily
extended and the moment-matching method no longer yields a tractable algorithm.
Instead, we use a variational bound technique (similar to [6] or [47]) to create a new
tractable approximate Bayesian model for this setting. Section 2.5.4.1 presents this
model and proves its consistency using our theoretical framework from Section 2.3.
Section 2.5.4.2 explains how the model was derived.
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2.5.4.1 Learning Model and Consistency Proof

Consider the normal distribution A (6, 77!), and suppose that both the mean
0 and precision 7 are unknown. A standard Bayesian model for this setting is the
normal-gamma prior [49]; under this model, we assume that 7 ~ Gamma (o, Bo)
and that the conditional distribution of 8, given 7, is N (o, (ko7)™!). These assump-
tions characterize the joint prior distribution of (#,7) using four belief parameters
(@, Bo, Ko, f1o)-

As in Section 2.2, we will assume that only censored samples from the normal
distribution are available. However, since there are now two unknown parameters,
we will need to observe two samples per time period, rather than just one; thus,
suppose that (Yn(l), Yn@))OO is a sequence of i.i.d. pairs, with both components of

n=1

each pair drawn independently from N (6,77!), and let

1 2
Bny1 = <BT(L-|217B7H)-1> = (1{Y,§21<b53’}’ 1{Yéi)1<b53)}>

be a pair of censored binary signals observed at time n. We now require two thresh-
olds bg), bff) per time period, with conditions on these two sequences to be specified
further down.

Essentially, the model in Section 2.2 allows us to learn the likelihood of the
censored signals. When there is only one unknown parameter (e.g., unknown mean
and known variance, as in Section 2.2, or known mean and unknown variance),
this is sufficient to learn its exact value. Now that there are two parameters to be

learned, we require two sequences of observations in order to learn both parameters
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exactly.

Since moment-matching does not yield a computationally tractable solution in
this model, we propose a new approximate Bayesian updating scheme in which the
conditional distribution of (, 7) at time n is assumed to be normal-gamma with four
recursively updated parameters (ay, By, £n, tin). We state the updating equations

here; see Section 2.5.4.2 for the details of how they were derived. First, we let

1
(07 5 (n + 1) s (284)

Fni1 = n+1, (2.85)

identically to the conjugate model in Section 9.6 of [49]. These two parameters
essentially count the number of observations, and we leave their role unchanged.

For the remaining two parameters, we first apply a transformation

>
)
3

En = Hny| 7 2.86
5, (2.86)
N Qp
Ny = —, 2.87
A, (2:87)
and update
i) (i)
3 p— 59, () (1-B0) () (2.88)
n+1 - n n+1 . - - n+1 . 9 .
n+11:1,2 ! o (]%”) 1-9 ( ﬁ?)
Th+1 = T
1 wo 50 ¢ () gy Y () 5 80
+n+ 1 22172 n n+1q) (p%”) - < - n+1) 1@ (pg)) 7( )

where pgf) = bgf)nn — &, for i = 1,2. The resulting scheme is statistically consistent,

as shown in the following result.

Proposition 2.5.1. Suppose that (a,, fn, &, Mn) are updated using (2.84)-(2.85)
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and (2.88)-(2.89). Suppose, furthermore, that both sequences (b%”) L and (bg?) »

are bounded, and inf, b — b2 > 0. Then, (&,,n,) — (0\/T,/T) almost surely.

Proof. Let

tn é (fna nn)Tv

v £ OvT,VT)T,
Fn 2 B(Bi,...,By,to, ...ty by, ..., by),
IR GV

Qn(Bn-‘rla tn)

>
5
©-
~
=
S
~—

lI>

i=1,2 o pn”) 1-9 (pﬁ?) ( !
R (tn) )
(

E(Qn(BnJrly tn) |-Fn

i=1,2 ¢ (]%(zi))

then (2.88) and (2.89) are equivalent to

1
ty =ty — —— an 7tn'
a= b 0Bt

First, as argued in the proof of Proposition 2.4.1, since <b,(11)> and <b,(12)>
0

are bounded, there exists a positive constant C'; such that

sup £ (”Qn(Bn—H?aj)”g ‘Fn) <G (1 + ||$ - 7”3) )

thus Assumption 2.3.3 is satisfied. Then we have

C C
T < — |1 ! .
B (It —1E15) < o=l (14 o0 ) + =
2
g (b = ) Ra(t). (2.90)
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where
(tn — )" Rn(tn)
4 ‘ ¢
= (@ =) | @ (¢)) ——%

i=1,2 @ <p£f)> 1-9 <p$zi)>
> 0, (2.91)

because, for both i =1 and i = 2,

i) (@)
mw%%%_@_mm»;%%% >0, (292)

Then, from the proof of Theorem 2.3.1, (2.90) together with (2.91) implies that

(¢ — p)

lim,, o ||t — 7||3 exists and is finite, and that

o0

2
tn — ) Ru(ty) <
; g (tn =) Ratn) < 00
almost surely. From (2.92), since (bg)) and <b7(12)> are bounded, there must
n=0 n=0
be a subsequence <q£1,3 — pgk), q,(fk) — pﬁ?,f) of (qg) — ps), qﬁf) — pf)) that con-
k=0 n=0

verges to 0. The subsequence can be written as

ah — i T
= (tnk - 7) )
2 2 2
qgg —-p%g 1 ——b%g
since inf,, b — b2 is positive, we have
2 1 1 1
" 1 -—b;g 522 qég _'pég
O VR E) ’
R W N O B W

then since (bg)) and (bﬁ?) are bounded, and inf,, bg) — b,(f) is positive, the

n=0 n=0

subsequence (t,, — ), also converges to 0, and we know that lim,_, ||t, — 7|[3
exists and is finite, thus we have lim, . ||t, — 7|3 = 0. Therefore, ¢, — 7 a.s., as
required. O
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2.5.4.2 Derivation of the Learning Model

Suppose that, at time n, (0, 7) follows a normal-gamma density, denoted by

B Fin

2
In (0,7 | o, By fin, i) = WTO”L_l/Q exp (-@J - M) :

2
Then, the posterior density given B, can be written as
gn (07 Tlan7 Bna My K, bn? Bn+1)

fn (97 7'|Oén, 6?“ :uTH Hn) w (97 7—7 bn7 BnJrl)
//fn (0. 7|, B o 1) W0 (60,7, by, B 1) dfdr

where

w (9,7’, bn7Bn+l) = H ((I) (ﬁ(b,(f) _ 9)))3211 (1 _® (\/F(bs) . 9))>17B£3_1 ‘

i=1,2
Obviously it is difficult to characterize this posterior density g, directly. There-
fore, we would like to approximate the posterior density ¢, by a normal-gamma
density frni1 (0, T|ni1, Bas1s ns1s K1), through minimizing the Kullback-Leibler
divergence D, = D(fn11||9n) = Ej,,, (log %), where Ey, ., (-) denotes the expec-
tation taken with respect to the density f,,1.

We work through the derivation for the case where B, 1 = (1,1); the other

three cases can be obtained similarly. In this case, we write

log forr 10g foi1 — l0g gn
In
1
= 3 (0 = p031)” K1 — (0 — o)’ Kn) 7

+ (an+1 - an) IOgT - (BnJrl - Bn)T
1
+(an+1 IOg ﬁn+1 — Op log ﬁn) + Q(IOg Rp41 — lOg ﬁn)
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+ (log I'(any1) — log I'(av,))

—~ Z log (¢ (v7(b) - 0))) + C1, (2.93)

where C is a constant that does not depend on (11, Bni1s ni1, Knt1). The ex-
pectation Ey, <log (@ <\/7_'(b$f) — 0)))) is still difficult to evaluate, so we approx-
imate log <<I) <b£f)\/_ — 0\/F>> by its first-order Taylor expansion with respect to
(0v/7,/7) around (fin/Tn,+/Tn), Where r,, = a,/3,. This is analogous to the tech-
nique used in [6], where a Taylor expansion is also used to “linearize” a difficult
posterior. We will use additional simplifications of the various expressions in order
to obtain a tractable scheme.

By using the first-order Taylor expansion, we have

log (@ (V7(b)) —0))) ~ log (@ (Vra(b)) — i)

A )
@ (Vb - ) o

L) o
o (\/ﬁ(bnl) - :un)>

By replacing log (CD (ﬁ(bﬁ) - 9))) in (2.93) by the above expression, we obtain
an approximation D,, of the KL divergence, given by

1
D, = Eyg,, (—5 ((0 = ptng1)” Fongr = (0 = pin)” i) 7
+ (OénJrl - an) lOgT - (5n+1 - 571)7_

1
+ant110g Bpr + 5 1082 fint1 +log (1)

.y (\/E(b“ ) e ¢<\/ﬁ(bﬁf)—un)>bi)ﬁ i
Sa\e (vt —p) @ (v - pw) 2
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1/ kn Oy
= 5 ( + (Hny1 — Mn)gﬁn—+l) + (ny1 — ) (Y(ny1) — log Bnyt)
2 \ Knt1 Brs1

O, 1
_(ﬁn—i-l ﬁn) = + Qi1 log 6n+1 + = lOg Rn+1 + IOg P(an—i-l)

Bn+1
.y o (Vi = 1) o (Vi —m)
i=1,2 <\/_(b — fin)

)Unqtl\/m - CI) (ﬁ(bg) _ un)) nZ)\/m

+C5, (2.94)

where v is the digamma function, and C5, C3 are two constants that do not depend

on (nt1, Butts Pnt1, fnt1). The expectation Ey, . (1/7) is also replaced by its point

estimate /7, 11.

By applying the transformation (2.86)-(2.87), we can simplify (2.94) as

_ 1 w1\ .
D, = §/€n (gn-i-l - fn%) — 20 IOg Mn+1 + ann e

02
(ne)  ofm-c)
+ 1212 < S)nn - §n> Ent1 — ( ) Mn+1
W

where C} is a constant that does not depend on (&1, 7n11)-

e further approximate

(2.95) as

- 1 T
Dn ~ 5'%71 (£n+1 - gn)z - 20471 IOg Nn+1 + Qp 77;_1

¢ (bg)nn - gn) ¢ (bg)nn B 5”) b(l)nnJrl + Cy. (2.96)

(0 S 7
i=1,2 P <bn N — 671) ) (bn MNn — fn)

Now, instead of updating (5, u,), we will update (&,,n,) through taking &, and

+

Nna1 such that the partial derivatives of f)n with respect to &,.1 and 7,.1 are both

equal to zero. From (2.96),

oD, ¢<b“ N — én)
g = (G =) +§2¢< sn)
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~ (3)
oD, Tt 6 (m — &)
- _2an/7]n + 20% - n
377n+1 o 77721 2212 P ( g”)

thus we have
1=1,2 <b£z)77n - §n>

@,
773L7In+1 ¢ (b” "I 6") b
20, £ = (bu = 5n>

1
bt = bnm—
R

77721+1 = nfﬂ— (2.97)

However, we can see that (2.97) is not linear, so we will instead use the update

¢ (080, — &,
7]n+1=77n+2; ZZ%@E ! fn%b

From (2.84) and (2.85), we know that x, = 2a, = n + 1. Repeating the above
analysis symmetrically for B, ;1 = (1,0),(0,1) and (0,0), we obtain the updates in

(2.88)-(2.89).

2.6  Conclusion

We have presented the first theoretical framework for proving the consistency
of estimators constructed using approximate Bayesian inference. Our approach in-
terprets many of these estimators as stochastic approximation procedures with the
addition of an extra “bias” term. We have proposed a convergent SA algorithm
of this form and demonstrated its versatility in creating entirely new consistency
proofs for a suite of previously-studied approximate Bayesian schemes that have
proven themselves in practical applications, but were previously unamenable to the-

oretical analysis. Notably, this includes three multivariate procedures with broad
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methodological applications in analytics, simulation and stochastic optimization.
We believe that our work offers new theoretical support for the use of approximate
Bayesian inference in complex learning problems, and that it provides researchers

with a set of tools for developing consistency proofs in other application areas.
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Chapter 3: Complete Expected Improvement Converges to an Opti-

mal Budget Allocation

3.1 Introduction

In the ranking and selection (R&S) problem, there are M “alternatives” (or
“systems”), and each alternative j € {1,..., M} has an unknown value x) € R (for
simplicity, suppose that p® # p0) for i # j). We wish to identify the unique best
alternative j* = arg max; 19, For any j, we have the ability to collect noisy samples
of the form W ~ N (u(j), ()\(j))z), but we are limited to a total of N samples
that have to be allocated among the alternatives, under independence assumptions
ensuring that samples of 7 do not provide any information about ¢ # j. After
the sampling budget has been consumed, we select the alternative with the highest
sample mean. We say that “correct selection” occurs if the selected alternative
is identical to j*. We seek to allocate the budget in a way that maximizes the
probability of correct selection.

R&S has a long history dating back to [80], and continues to be an active area
of research; see the tutorials by [24] and [25]. Most modern research on this problem

considers sequential allocation strategies, in which the decision-maker may spend
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part of the sampling budget, observe the results, and adjust the allocation of the
remaining samples accordingly. The literature has developed various algorithmic
approaches, including indifference-zone methods [81], optimal computing budget al-
location (or OCBA; see [82]), and expected improvement [10]. The related literature
on multi-armed bandits [83] has contributed other approaches such as Thompson
sampling [34], although the bandit problem uses a different objective function from
R&S and thus a good method for one problem may work poorly in the other [15].
Reference [9] gave a rigorous foundation for the notion of optimal budget allocation
with regard to probability of correct selection. Denote by 0 < N < N the num-
ber of samples assigned to alternative j (thus, Zj NU) = N), and take N — oo
while keeping the proportion a@ = N /N constant. The optimal proportions o’

(among all possible vectors a € RY, satisfying Y i o) = 1) satisfy two conditions:

e Proportion assigned to alternative j*:

QU a9\’
3 :; 30 (3.1)
J#I*

e Proportions assigned to arbitrary i, 7 # j*:

(u“) _ M(j*))Q (u(j) _ M(j*))Q
N2 /(D) N2 G AGN2 0 N2/ G (32)
(AD)/a” + (AU)" /o (Ao 4 (AUD)" /e

Under this allocation, the probability of incorrect selection will converge to zero at
the fastest possible rate (exponential with the best possible exponent). Of course,
(3.1)-(3.2) themselves depend on the unknown performance values. A common work-
around is to replace these values with plug-in estimators and repeatedly solve for the
optimal proportions in a sequential manner. Even then, the optimality conditions
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are cumbersome to solve, which may explain why researchers and practitioners prefer
suboptimal heuristics that are easier to implement. To give a recent example, [84]
uses large deviations theory to derive optimality conditions, analogous to (3.1)-
(3.2), for a general class of simulation-based optimization problems, but advocates
approximating the conditions to obtain a more tractable solution.

In this paper, we focus on one particular class of heuristics, namely expected
improvement (EI) methods, which have consistently demonstrated computational
and practical advantages in a wide variety of problem classes [85-87] ever since
their introduction in [10]. EI is a Bayesian approach to R&S that allocates samples
in a purely sequential manner: each successive sample is used to update the posterior
distributions of the values 1), and the next sample is adaptively assigned using the
so-called “value of information” criterion. This notion will be formalized in Section
3.2; here, we simply note that there are many competing definitions, such as the
classic EI criterion of [10], the knowledge gradient criterion [11], or the LL; criterion
of [12]. Reference [13] showed that the seemingly minor differences between these
variants produce very different asymptotic allocations, but also that all of these
allocations are suboptimal.

Recently, however, [16] proposed a new criterion called “complete expected
improvement” or CEI. The formal definition of CEI is given in Section 3.3, but
the main idea is that, when we evaluate the potential of a seemingly-suboptimal
alternative to improve over the current-best value, we treat both of the values in
this comparison as random variables (unlike classic EI, which only uses a plug-in
estimate of the best value). This idea was created and implemented in [16] in the
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context of Gaussian Markov random fields, a more sophisticated Bayesian learning
model than the version of R&S with independent normal samples that we consider
here. Although the Gaussian Markov model is far more scalable and practical, it
also presents greater difficulties for theoretical analysis: for example, no analog of
(3.1)-(3.2) is available for statistical models with Gaussian Markov structure. In the
present paper, we translate the CEI criterion to our simpler model, which enables
us to study its theoretical convergence rate, and ultimately leads to strong new
theoretical arguments in support of the CEI method.

Our main contribution in this paper is to prove that, with a slight modification
to the method as laid out in [16], this modified version of CEI achieves both (3.1)
and (3.2) asymptotically as N — oo. Not only is this a new result for El-type
methods, it is also one of the strongest guarantees for any R&S heuristic to date.
To compare it with the state of the art, [15] presents a class of heuristics, called
“top-two methods,” which can also achieve optimal allocations, but only when a
tuning parameter is set optimally. A more recent work by [88], which appeared
while the present paper was under review, extended the top-two approach to use
CEI calculations, but kept the requirement of a tunable parameter. By contrast,
our approach requires no tuning whatsoever. A different work by [14] finds a way to
reverse-engineer the EI calculations to optimize the rate, but this approach requires
one to first solve (3.1)-(3.2) with plug-in estimators, and the procedure does not have
a natural interpretation as an EI criterion. By contrast, CEI requires no additional
computational effort compared to classic EI, and has a very simple and intuitive
interpretation. In this way, our paper bridges the gap between theoretical notions
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of rate-optimality and the more practical concerns that motivate EI methods.

3.2 Preliminaries

We first provide some formal background for the optimality conditions (3.1)-
(3.2) derived in [9], and then give an overview of El-type methods. It is important
to note that the theoretical framework of [9], as well as the theoretical analysis
developed in the present paper, relies on a frequentist interpretation of R&S, in
which the value of alternative i is treated as a fixed (though unknown) constant.
On the other hand, EI methods are derived using Bayesian arguments; however, once
the derivation is complete, one is free to apply and study the resulting algorithm in
a frequentist setting (as we do in this paper). To avoid confusion, we first describe
the frequentist model, then introduce details of the Bayesian model where necessary.

In the frequentist model, the values p*) are fixed for i = 1,..., M. Let { Jntoeo
be a sequence of alternatives chosen for sampling. For each j,, we observe Wé{ﬁ) ~

N (,u(j"), ()\(j"))2> where A¥) > 0 is assumed to be known for all j. We let F, be the
sigma-algebra generated by jo, Wl(jO), oy Tn—1,s 7n=1)The allocation {Jn}Z, is said
to be adaptive if each j, is F,-measurable, and static if all j, are Fy-measurable.
We define I = 1yj,—jy and let N = ZZ:O I be the number of times that

alternative j is sampled up to time index n = 1,2, ....

At time n, we can calculate the statistics

n—1

0 = — S IOWEL, 3.3)
n m=0
, O
(o)’ (N(]? - (3.4)
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If our sampling budget is limited to n samples, then j; = arg max; 6% will be the
final selected alternative. Correct selection occurs at time index n if j; = j5*. The
probability of correct selection (PCS), written as P (j = j7*), depends on the rule
used to allocate the samples. Reference [9] proves that, for any static allocation that
assigns a proportion a?) > 0 of the budget to each alternative j, the convergence

rate of PCS can be expressed in terms of the limit

1
I'“=—lim —log P (j: #J%). (3.5)

n—oo 1

That is, the probability of incorrect selection converges to zero at an exponential
rate where the exponent includes a constant I'“ that depends on the vector a of
proportions. Equations (3.1)-(3.2) characterize the proportions that optimize the
rate (maximize I'*) under the assumption of independent normal samples. Although
[9] only considers static allocations, nonetheless, to date, (3.5) continues to be one
of the strongest rate results for R&S. Optimal static allocations derived through
this framework can be used as guidance for the design of dynamic allocations; see,
for example, [84] and [89].

We now describe EI, a prominent class of adaptive methods. EI uses a Bayesian
model of the learning process, which is very similar to the model presented above, but
makes the additional assumption that u0) ~ N (Qéj ), <aéj )>2), where Qéj ) and aéj )
are pre-specified prior parameters. It is also assumed that u®, u) are independent
for all i # j. Under these assumptions, it is well-known [49] that the posterior
distribution of p¥) given F, is N (97(3 ), (07(3') )2) where the posterior mean and

variance can be computed recursively. Under the non-informative prior o) = 0,
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the Bayesian posterior parameters oy ), o) are identical to the frequentist statistics

defined in (3.3)-(3.4), and so we can use the same notation for both settings.

One of the first (and probably the best-known) EI algorithms was introduced

by [10]. In this version of EI, as applied to our R&S model, we take j,, = arg max; o)

where

IC)NE (max {u(j) — HW, 0} |]:n)
05 — o35

50 ’

= oUf (3.6)

and f(z) = 2@ (2) + ¢(z) with ¢, ® being the standard Gaussian pdf and cdf,
respectively. We can view (3.6) as a measure of the potential that the true value
of 7 will improve upon the current-best estimate 0%, The FI criterion v may be
recomputed at each time stage n based on the most recent posterior parameters.
Reference [13] gave the first convergence rate analysis of this algorithm. Under

EI, we have

NG
lim = 1, (3.7)
n—oo N
. . . . 2
- NW A |N(J) — M(a*)‘ .
Ve T (w popscRTl IR (38)

where the limits hold almost surely. Clearly, (3.7)-(3.8) do not match (3.1)-(3.2)
except in the limiting case where o) = 1. Because NU) /n — 0 for j # j*, EI
will not achieve an exponential convergence rate for any finite M. The limiting

allocations for two other variants of EI are also derived in [13], but they do not

recover (3.1)-(3.2) either.
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3.3 Algorithm and Main Results
Reference [16] proposed to replace (3.6) with
v = E (max {p¥) — pU2) 0} | ), (3.9)

which can be written in closed form as

97(1]') . egjﬁ)

. \/ (Um)? N (Ug;:))Q

for any j # j:. In this way, the value of collecting information about j depends,

(3.10)

not only on our uncertainty about j, but also on our uncertainty about j*. [16]
considers a more general Gaussian Markov model with correlated beliefs, so the
original presentation of CEI included a term representing the posterior covariance
between ;¥) and 7). In this paper we only consider independent priors, so we
work with (3.10), which translates the CEI concept to our R&S model.

From (3.9), it follows that v§") = 0 for all n. Thus, we cannot simply assign
Jn = argmax; o because, in that case, j,; would never be chosen. It is necessary
to modify the procedure by introducing some additional logic to handle samples
assigned to j¥. To the best of our knowledge, this issue is not explicitly discussed
in [16]. In fact, many adaptive methods are unable to efficiently identify when
J& should be measured; thus, both the classic EI method of [10], and the popular
Thompson sampling algorithm [34], will sample j* too often. The class of top-two
methods, first introduced in [15], addresses this problem by essentially assigning a

fixed proportion 3 of samples to 7, while using Thompson sampling or other means
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to choose between the other alternatives. Optimal allocations can be attained if

is tuned correctly, but the optimal choice of § is problem-dependent and generally

difficult to find.

Let n = 0 and repeat the following:

. 2 . 2
NG N

If (3.11) holds, assign j, = jr. If (3.11) does not hold, assign j, =

1: Check whether

argmax;.;« v, where v{ is given by (3.10).

2: Observe Wéjfl) , update posterior parameters, and increment n by 1.

Figure 3.1: Modified CEI (mCEI) algorithm for R&S.

Based on these considerations, we give a modified CEI procedure in Figure 3.1.
The modification adds condition (3.11), which mimics (3.1) to decide whether j*
should be sampled. This condition is trivial to implement, and the mCEI algorithm
is completely free of tunable parameters. It is shown in [90] that mCEI samples
every alternative infinitely often as n — oo.

We now state our main results on the asymptotic rate-optimality of mCEIL
Essentially, these theorems state that conditions (3.1) and (3.2) will hold in the
limit as n — oo. Both theorems should be interpreted in the frequentist sense, that
is, u) is a fixed but unknown constant for each j.

98



Theorem 3.3.1 (Optimal alternative). Let o) = N,gj)/n. Under the mCEI algo-

G\ 2 G\ 2
. aﬂ, an
,}E&(W) —Z<W) =0
i

Theorem 3.3.2 (Suboptimal alternatives). For j # j*, define

rithm,

almost surely.

G _ (M(J‘) — M(J )) _
Tl + (A6) el

where o) = Nflj)/n. Under the mCEI algorithm,

. Tn
0 =

almost surely, for any i,7 # j*.

3.4 Proofs of Main Results

For notational convenience, we assume that j* = 1 is the unique optimal
alternative. Since, under mCEI, NY = o for all 7, on almost every sample path
we will always have j = 1 for all large enough n. It is therefore sufficient to prove
Theorems 3.3.1 and 3.3.2 for a simplified version of mCEI with (3.10) replaced by

= [T 07 o - ol
n N7(7,]) N7(Ll) \/()\(j))Q ()\(1))2

NG N

2 . 2
Nél) Néj)
J
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and (3.11) replaced by



To simplify the presentation of the key arguments, we treat the noise parameters
AU) as being known. If, in (3.4), we replace AY) by the standard sample deviation
(as recommended, e.g., by both [10] and [16]), then simply plug the resulting ap-
proximation into (3.10), the limiting allocation will not be affected. Because the
rate-optimality framework of [9] is frequentist and assumes that selection is based
only on sample means, it does not make any distinction between known and un-

known variance in terms of characterizing an optimal allocation.

3.4.1 Proof of Theorem 3.3.1

First, we define the quantity

L (NOAONT AL ND a0
Ol S _]Z:; R

and prove the following technical lemma. We remind the reader that, in this and

all subsequent proofs, we assume that sampling decisions are made by mCEI with

(3.12)-(3.13) replacing (3.10)-(3.11).

Lemma 3.4.1. If alternative 1 is sampled at time n, then A1 — A, > 0. If any

other alternative is sampled at time n, then A, 1 — A, <O.

Proof. Suppose that alternative 1 is sampled at time n. Then,

An+1 - An

2
(N£1)+1) /AD M NG A0
- n+1 -2 n+1

Jj=2

((5) -5 05)
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2

o (M7 +1) ( O ) ’

(AM)? n+1 n
M () 2 M )
Ny’ / A\ AV
(B () ()
j=2 j=2
> 0

If some alternative j' > 1 is sampled, then A,, > 0 and

A A — LAY -y NO D B (N},?” + 1) A
n+1 n. n+1 o n+1 nt 1
_ N'r(],l)/)\(l) 2 i ] J) 2N7(l]l) n 1
= n-+1 — n+1 (/\(j/)(n—f—l))Q
(N BOA ) i ND A0\’
n ~ n

2 (")
n 1
— (n—2 _ 1) A, — %
(n+1) (A (n + 1))

< 0,

which completes the proof. n

Let ¢ = min; A0 and recall that ¢ > 0 by assumption. Now, for all € > 0,
there exists a large enough n; such that n; > % — 1. Consider arbitrary n > n; and
suppose that A, < 0. This means that alternative 1 is sampled at time n, whence

A1 — A, >0 by Lemma 3.4.1. Furthermore,

(N£1)+1> /AW Y NP /AD
An—i—l = Z( )

n+1 n+1

7j=2
oNM 41
(AM(n 4 1))

n
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< 2
T A (g +1)
f2
< 5€
(/\(1)
< e

Similarly, suppose that A, > 0. This means that some j* > 1 is sampled, whence

Api1 — A, <0 by Lemma 3.4.1. Using similar arguments as before, we find

2 . . 2 -/
N NP AW\ i”: NP\ aNd) 11
s n+1 n+1 (A6 (n + 1))

oNY) 4

M\ (n+ 1))’
2n + 2

(A (n+1))°

> —c.

Thus, if there exists some large enough ns satisfying ny > n; and —e < A,,, < ¢, then
it follows that, for all n > ng, we have A,, € (—¢,¢), which implies lim,, o, A, =0
and completes the proof of Theorem 3.3.1. It only remains to show the existence of
such ns,.

Again, we consider two cases. First, suppose that A,, < 0. Since mCEI
samples every alternative infinitely often, we can let ny = inf{n > ny : A, > 0}.
Since ny will be the first time after n; that any j' > 1 is sampled, we have A,, 1 <0
and ny — 1 > ny. From the previous arguments, we have 0 < A,, < e. Similarly,
in the second case where A,, > 0, we let ny = inf{n > n; : A, < 0}, whence
A,,—1 > 0 and ny — 1 > ny. The previous arguments imply —e < A,,, < 0. Thus,
we can always find ny > n; satisfying —e < A,,, < ¢, as required.
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3.4.2 Proof of Theorem 3.3.2

The proof relies on several technical lemmas. For notational convenience, we

. . . N2
define d$) 2 |6 — V| and 6Y) = <d£f)) for all j > 1. Furthermore, for any j

and any positive integer m, we define

RO IPNINC)

(n,n+m) n+m

— N7(lj)

to be the number of samples allocated to alternative j from stage n to stage n+m—1.

The first technical lemma implies that, for any two alternatives ¢ and 7, N =
o (N}Lj))l and N = 0 (n).

S - (5)
Lemma 3.4.2. For any two alternatives i and j, limsup,,_, % < 00.

N

Proof. We proceed by contradiction. Suppose that ¢, j > 1 satisfy lim sup,, , o=

59 C(nD)—p)?

oo. Let ¢ = limy, o %5 = — > + 1. Then, there must exist a large enough
671 (M(Z)—u(l))

stage m such that

( A(z‘))Q +AMZ@
(AG))?

NS
N

> max {c, 1}

?

N© ) NG .
N(’”T)* > o But, at this stage m,

m—+1 m

and we will sample alternative i to make

b0 — JOOF Q0P d
N,Si) anl) (/\(i))2 (,\(1))2

—+
N N

\/ A2 ADAD 4

L f | - (3.14)
N NS \/ (D) A

N N

IFor two positive sequences (a,,) and (b,), we say a, = O(b,) if and only if a,, = O(b,) and

by, = O(ay).
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\/ (A®)? 4 ADAGD 4

N,(rf) B ()\(i))2+)\(1),\<i)
e
(A@)? d
< ) fl- — (3.15)
Npm (MJ))
NG

A

\/()@)2 ) (Au))?f a9

= o), (3.16)

where (3.14) holds because a suboptimal alternative is sampled at stage m, and

: G
(3.15) holds because lim,, % = M From the definition of the mCEI
Fio W=

algorithm, (3.16) implies that we cannot sample ¢ at stage m. We conclude that

. (1) . . . .
lim sup,, , % < oo for any two suboptimal alternatives ¢ and j.

From this result, we can see that, for 7,5 > 1, we have

{0 N
0 < liminf — < limsup — < oo.
noo NI T nsee N

Together with Theorem 3.3.1, this implies that, for any ¢ > 1, we have

7(Lz‘) Nr(zi)
0< liminfT < limsupw < 00,
n—o00 Nn n—00 Nn
completing the proof. O
Now let
()
M e
A(G) A1)
ST
(4)
) A (Z<j))2 _ O ‘
" " (Am‘)? (A)?
Né]) N.,<Ll>
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For any j, both 29 and ¢ go to infinity as n — oo. We apply an expansion of the

Mills ratio [91] to v For all large enough n,

oo W
v = mf (=)
Zn
@ “1—¢<£v
- J U
= Z(j)qﬁ(zn ) Zy j)) +1
n ¢ Zn
dy )1 1 1
- DY | =20 — —
= z“’¢<zn) S 1 ((ﬂ>2-+ ((ﬁ>4 +1| (3.17)
n n Zn Zn
d(j) 1
= 3 (Z 3 ) 1+0 2 ,
() )
where (3.17) comes from the Mills ratio. Then,
2log (vnj)) = 2logdY) —6log2Y) + 2log ¢ (27(1])) +2log |1+ 0 e
2z )

= logd) —3logt?) —log (2r) — tY) + 2log (1 +0 (—))

)
— (140 (testii )]

For any two suboptimal alternatives ¢ and j, define

21o (vﬁ?)
pld) & &
2log ( G ))
£
e 1+O<i )

= 2 : 3.18
W17 0 (=) o

5
and note that both 1+ O (log(f)” ) and 1+ O <1°g(f§ ) converge to 1 as n — oo. We

i, . . . 7 (@)
will show that 75 — 1 for any suboptimal ¢ and j; then, (3.18) will yield z?—” — 1,

completing the proof of Theorem 3.3.2.
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Note that, for any j, the CEI quantity v can change when either j or the

optimal alternative is sampled. Thus, it is necessary to characterize the relative fre-
quency of such samples. This requires three other technical lemmas. First, Lemma
3.4.3 shows that the number of samples that could be allocated to the optimal

alternative between two samples of any suboptimal alternatives (not necessarily

the same one) is O (1) and vice versa; next, Lemma 3.4.4 shows that k:(rll)n ) 38

O (v/nloglogn); finally, Lemma 3.4.6 bounds n®/* (5n+1 s

Lemma 3.4.3. Between two samples assigned to any suboptimal alternatives (i.e.,
two time stages when condition (3.13) fails), the number of samples that could be
allocated to the optimal alternative is at most equal to some fixed constant By; sym-
metrically, between two samples of alternative 1, the number of samples that could
be allocated to any suboptimal alternatives is at most equal to some fixed constant

Bs.

Proof. Define Q,, £ <N,(L1)/)\(1)>2 — Z]{Q <N,(Lj)/)\(j)>2. Suppose that, at some stage
n, @, < 0 and @,+; > 0, which means that the optimal alternative is sampled
at time n and then a suboptimal alternative is sampled at time n + 1. Let m =
inf {{ > 0: Q,y <0}, ie., stage n+m is the first time that alternative 1 is sampled
after stage n. Then, in order to show that between two samples of alternative 1, the
number of samples that could be allocated to suboptimal alternatives is O (1), it is

sufficient to show that m = O (1).

To show this, first we can see that

2
B N(” + 1 Ny
Qn+1 - )\(j
Jj=2
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- Nu 2 i N 2N7g1>+1
) TTooy

on{V 41
= Qn+—— 07
oNM 41
(AW
< NV, (3.19)

where (] is a suitable fixed positive constant and the first inequality holds because

@, < 0. Then, for any stage n + s, where 0 < s < m, we have
2 N
(LY ()
Qnts = O z; A\G)
]:
RN > 20
j=2
2 . 2 . 2
N?'(Ll) + 1 N(J M ] M Néj)
- D - Z Z Z NG
j=2 j=2 j=2
(J

M G \2 M )
N N,
1) n+s . n
< G, > ( 2G) ) Z (Ao)) )
J

Jj=2

where the inequality holds because of (3.19). We can also see that, after stage n,

) .
the increment of Z]MZQ <1/\\[(j)> obtained by allocating a sample to alternative j is

at least 2N Then, for all large enough n,

(o)™

MG NP M NG mingsq NS

S () -2 (Fr) = oamem b ca
J

j=2 =2 max ;>1y (AY)

where (5 is a suitable positive constant and the last inequality follows by Lemma
3.4.2. Therefore, for any 0 < s < m, we have Q,s < (C; — C3s) N, But, from
the definition of m, for any 0 < s < m, Q,+s > 0 must hold. Thus, any 0 < s <m
cannot be greater than C/Cs; in other words, we must have m < C7/Cy + 1, which
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implies m = O (1) for all large enough n. This proves the second claim of the lemma.

The first claim of the lemma can be proved in a similar way due to symmetry. [

Lemma 3.4.4. If some suboptimal alternative i > 1 is sampled at stage n > 3, then

k‘&?mm) =0 (\/nlog log n) for
méinf{l>0:[ﬂl:1}.

Proof. We first introduce a technical lemma, which establishes a relationship be-

tween k:éi)n ) and samples assigned to suboptimal alternatives. The lemma is

+m

proved right after the current proof.

Lemma 3.4.5. Let C be any positive constant, and take a large enough n such that

some suboptimal alternative i > 1 is sampled at stage n. Define
L 7@ Y (S
m=inf{l>0:17,=1¢, s=supql<m:I, 7, =0p¢.

Suppose that there exists a sufficiently large positive constant Cy (dependent on Ci,

but independent of n) for which

Csy/nloglogn < k:éi?nﬁ) <n

holds. Then, there exists a suboptimal alternative j # i and a time stage n + u,

where u < s, such that j is sampled at stage n + u and

: G L .06) G L .G)
140 vnloglogn Nqs,]) Ni'” + k(n,nJrU) < N+ k("yn+u) 3.20
! DR OO OO (3.20)
No™ NoZ kg Nol kg,

holds.
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Essentially, Lemma 3.4.5 will be used to prove the desired result by con-

tradiction; we will show that (3.20) cannot arise, and therefore kD must be

(n,n+m)
O (\/n log log n) :

For convenience, we abbreviate W

() by the notation /{;l(j ). We will prove

the lemma by contradiction. Suppose that the conclusion of the lemma does not
. 1) . . . .
hold, that is, m can be arbitrarily large. Since we sample ¢ > 1 at stage n,
then for any other suboptimal alternative j # i, we have
. log t$)
(]) ) oy = L
ti’ 140 ( vl )
ty

id) —

Then, by Lemma 3.4.2, there must exist positive constants C'; and C5 such that, for

all large enough n,

(@) 1o ) ()
tﬁl_j) <140 ( gj) + tg) ) + Oy o

that is, equivalently,

0 (AW)? (1 + ¢y lomn

50 (A 0 (AW)? _ o) (AD)? (1 + CyEm) n )(3 21)
v 3.

NG T ym S NO

+_

Then, at stage n + u, where 0 < u < m, there must exist positive constants C3 and

Cjy such that, for all large enough n,

()
y 140 [ Bl i i
(4,5) tsz—)ku " ( b tsl_),_u 1 tfl_)i_u 1
n+u == t(]) logt(J) S t( ) logt(l) logt(j) < t(]) 1 — O410gn .
e el =GO | =g+ o nu n
n+u n+u n+u

Thus, for all large enough n, in order to have TT(L +g < 1, it is sufficient to require

(@)

b <1_ C4logn
t(]) n
n+u
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or, equivalently,

89, (ANl (A
NI R N
e N ) N o), (A (1 — Cyleemy

N+ k) N+ kY

(3.22)

Note that k) = 1. By the convergence of 5 and oY ), for all large enough n,

we have
1 4
(69) — 50 (5 <1+02 Og”) —5,9) > 0,
n
(59) — 60 (5@ (1 o8 ”) _ 5@)) _—
n n n n n
If lim,, o0 % > 1, ie., p9 < u@, then by (3.21) we have
S, 00) oo (0
NO L D T 0T NG NG )
S, 8 (V0)* (14 ) Y
ot N N + k)
o, 8 (O)" (14 Cot) o) (0)*
5! NV NP 4 k)
G B (V0 (1 C1282) (1+ Co2) N 41 )
oty N 1 (1—cylem) N N(j) + kY
59 69 (A (14 Cplezmy — 50 (A N 4 kD N
57(11 N( ) + k(l) N7(ll) 7(ZJ') + k‘gj).

It follows that there must exist a positive constant C5 such that

St (AP < 00 7 (AD)” (1 — Cylosm) (1 +C logn) NP +1 N

NG Lo =5 N 1 > NGO N )
800, 08 (W) (14 Gy — 6 (AO)* N 4 kD NP
5y N+ k) N OND 4D

Thus, to satisfy (3.22), it is sufficient to have

o0, 8 | NO L1 N
niu (1 Cs Og”) il 1, (3.23)

5 §Y) N NP+ k)

n+u
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o0, 6 (14 Gy em) — 5 NV 4k NP X (3.24)
o oY), (1—cyleny 5t N NG kY ' '

Note that for all large enough n and any alternative ¢ # 1, by Lemma 3.4.2, we have

50— 50

n+u

)
= | (68— 082 + (60 — 0 || (651 - 60) - (6120, — o))
)

. ( eniiu — 0] 4 |07(j> u(z)} + ggu W) ’921) _ M(I)D
log log N\” log log N\
— 0 og 0,5.;;2) n L0 og 0%1)
Ny N,

where the fourth equality holds because of the law of the iterated logarithm, and

the last equality holds by Lemma 3.4.2. Then for all large enough n, we have

5@ 51(1in _ 55;) + &(j) B

—  = . _1+—6’ﬁ“f5g):1+0 \/—bglogn
oy 5 oy no )
n  _ 1+O< /10g10gn>,
5(]) n
0 (1 + Cyloam) — 51

57(Qu (1- 0410%) - 5£LZJ)ru
59 (1 + Gty 580, (1 cylem) — (50— 510,

and

= 1+

651, (1= Cylsmy =582,
05 — 60| + |05 Coton| 4 |of) Cutern| + o — 511,

< 1+ : -
- 890, (1 — ¢yloemy — 51

_ 1+O( /10g10gn>'
n
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Then together with Lemma 3.4.2, there exists a positive constant Cs such that, for

all large enough n, the LHS of (3.23) satisfies

() 56) (i)
Onsu On” (1 o dogn ) No” +1 ) )
50 50 ) N n

n—+u

<1+O (y/loglﬂ)) <1+O5logn> (1 +0 (l)) N — N
n n n

< (Cgy/nloglogn,

while the LHS of (3.24) satisfies

o, ) (1+ColEm) — 5 NIV 4k NP

o o), (1 Cyleany 500 N NG 4k

loglogn N+ kD N
= |1+0 0 D 1 .0
n Nn Ny + Ky

v/nloglog n> N+ kD NY
n NV NG 4D

< (1+06

Therefore, to satisfy (3.23), it is sufficient to have

Csy/nloglogn < kY. (3.25)

Now define
5 = sup {l <m: Ifllle = O} . (3.26)
(1)
Since % can be arbitrarily large, we can suppose that B > C7y/nloglogn,

where C'; is a positive constant to be specified. By Lemma 3.4.5, since Cy is a fixed
positive constant, there must exist a constant Cg such that, if C7 > Cy, there exists
a suboptimal 7 # i, and a stage n + u with u < s, such that j is sampled at stage

n + u and

\/nloglogn) N - N + kY < N + kY

<1 G NS NI DS
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Then, (3.24) holds at stage n + u. At the same time, since

N9 + k9 vnloglogn NY NP
IO G @ = o)

&) () . o
we have “(* > Ny (i) From Lemma 3.4.2, there must exist a positive constant Cy

S

such that, for all large enough n,

kgj) > Cgk:gl) > CyCry/nloglogn.

ow let U7 = maxqCyg, 2 ¢. en, bot . an .25) are satisfied at
Now let C Cs, €& ¢ Then, both (3.24) and (3.2 isfied

stage n + u, so (3.22) is satisfied, which means

<l = ul> ol

But the alternative j is sampled at stage n + w, which means U() < oY) The

n+u-
desired contradiction follows.
. . () . . .
Now, consider the other case where lim,, (;Z_; < 1,ie., u9 > p® By (3.21),
we have

59, (0) (- Ctmn) g, o) (0 (14 oy 1 - gyl

_ n+tu n
NY +1 5 Ny L+ G2t N 41
ik, 0 (M) 1 - Gt N

o NP 1+ CERND
; i 2 i 2 ogn
50,8 (W) =6 (W) (1+ Co'22)
57(1]') NS)
1—Cylen N

1+ Gyl N 4

Then, there must exist a positive constant C'o such that, for all large enough n,

@) i)\ 2 logn () Y\ 2 i
Ol AD)” (1 —citEm) ), 60 (AY) 1 Ny
N +1 T8 NY 14+ G N 41
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56,00 ) o) () (1 g
5T(Lj) Nf(zl)
1 N
1 4 Cppleen N,(Li) +1

n

Thus, to satisfy (3.22), for all large enough n, it is sufficient to have

§9) s 1 1 NS N 1

0 SO NI 1+ Cro 2t NO 11— N g
o), o8 — o (1+ ¢ty N B = S, (1 G
5y NyY 1+ CroE N 41 N+ k) ’

n

which can equivalently be rewritten as

W > % 5,% <1 N Cwlogn) Nél)(;r LN — NG, (3.27)
59, o n N
D > ﬁ <1 wlogn) 5&7‘ — 5’(‘2“ (1- G2 v 1y
T oW = o (L Gy N
N, (3.28)

Similarly as above, by Lemma 3.4.2, there exist positive constants C41, C12, Ci3 and

C14 such that, for all large enough n,

5 8) 1 N +1 | —
- et (]_ + 010 Ogn) * N,,(lj) - N,,(Zj) S 011 nlog log n,
n

Ot O N
and
() (@) _ s() v logny ar(9)
571 (1 +Ch logn) 5n+u 6n+u (1 Cy n ) Nn + lNr(Ll) _ NTEI)
59, o) — 6 (1+ Cylen)y N

1 log | NO 41
1+ Cio Og") (1 + Oy 2 Og”> A= N — N
n n NS

log 1 N 41
< <1+C13 ognogn> N(j)‘ NO _ N

< Cuv/nloglogn.
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Therefore, to satisfy (3.27) and (3.28), it is sufficient to have

K9 > Ciyy/nloglogn, (3.29)
kD > Cyuy/nloglogn. (3.30)

)
Again, define s as in (3.26). Since % can be arbitrarily large, we can

suppose that kY > Cis5v/nloglogn, where Cf5 is a positive constant to be specified.
By Lemma 3.4.5, since C; is a fixed positive constant, there must exist a constant
C16 such that, if C5 > C1g, there exists a suboptimal alternative j # ¢, and a stage

n +u with u < s, such that j is sampled at stage n + u and

(1 Lo \/nloglogn> N - N9 + k§ < N + k§
11 = )
NI N kT = N gD
whence
NY 4+ k9 vnloglogn NY N9
oo > \L+Cu M = N
Then, we have % > % From Lemma 3.4.2, there must exist a positive constant

C'7 such that for all large enough n,

D) > Ok > 017C154/nloglogn.
At the same time, by Lemma 3.4.3, for all large enough n, we also have

LD > k9 41 1> CizCisv/nloglogn +1 1> C17C154/nloglogn
B BQ N BQ o 232 '

Now, let Cj5 = max {Clﬁ, %’ %} Then both (3.29) and (3.30) are satis-

fied at stage n + u, so (3.22) is satisfied, which means that

A<l o >l
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But the alternative j is sampled at stage n + u, which means that U;Liu < viﬁu.

Again, we have the desired contradiction. O]

Proof of Lemma 3.4.5. For convenience, we abbreviate k:((i )n +m) by the notation )
for all 5. First, since (5 is a constant and lim,, @ = 0, it follows that, for
all large enough n, we must have Cyy/nloglogn < n. Intuitively, from the definition
of m and s, stage n + m is the first time that alternative ¢ is sampled after stage
n, and stage n + s is the last time that a suboptimal alternative is sampled before
stage n + m. Recall that, by assumption, we must have Cyy/nloglogn < kY

for some positive constant C5y to be specified.

At stage n, since we sample a suboptimal ¢ by assumption, we must have
M
(N(l)/)\(l) Z ])/)\(J (3.31)
Jj=2

At stage n + s, from the definition of s, it is also some suboptimal alternative that

is sampled. Repeating the arguments in the proof of Theorem 3.3.1, we obtain

(Né”+k§”> A (N”+k ) /AG)

n-+s - n-+s
Jj=2

C!
<
n

for some fixed positive constant C3. Note that kD = 1, whence

<N7(Lj) +k§j)) /)\(j) <N(Z )/)\(

_l_
j222,_j:;éi (Né” + kﬁ”) /AW (ME1 + kY ) /AW
2
+& nts 1.

(N 4 KD ) /A0
(1)

From Lemma 3.4.2, we know that lim inf,_, . N# > 0. Then, there must exist some
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constant Cy such that

n—+s
C3 §C47

(M0 + k) /A

whence
G 2D Ao\ (i) ~
(o ey
>1- - —,
sEaze \ (N 4+ KY) A0 (M2 + V) a0 )
and for all large enough n,
: . 2
s [(2e)ry ey

siagei | \ (N0 +K) 20 N /A

2

Z <NT(LJ')/)\(]’) > 2 B <Nr(f) + 1) /A0 c,
(

NI/ N+ kD) 20 o

Y
—_

J=2,5#1
; N 2 (4) i 2
Nél)/)\(l) (Nél) + k§1)> /)\(1) n

(3.32)

(N0 -+ K0)" (v "

() (e () () (0 4

S\ 2 2 2 . 2
<1>>2 (M) (M0 + k) = (V) (M0 + 1) ¢,

- (3.33)

1 ()\(1))2 1 N
2\\0 ( N k£1)>2 NO
where (3.32) holds due to (3.31), while (3.33) holds since liminf, . % > 0 and

" . .. (i)
kél) > (Cyy/nloglogn for a positive constant Cy. Since liminf, . % > 0 and
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Cﬁ, 077 08 and Og such

. (
lim inf,,_, ., X2

that, for all large enough n, we have

. 2
1 /M2 1 N 2 C
1 n W o (p0y2) _ 4
5 ( Au)) () (1))2 N (2NORD + (k)’) =

Nn’ + ks
> Ot (VPR 4 (1)) - S
(M2 + &) Nn
A ks
= Cs - | 2vOED + (k:gl))Q —C, ( tl) )
(MS1 + k) Na
> ( KD 4 () = 205N ) (3.34)
(N )
> k(l) C ) ND
Cs (k - 07)
> pee (3.35)
Cy (ng/nlog logn — 07)
B n
S CyCyv/nloglogn
_ n Y

where (3.34) and (3.35) hold because kY < n. Then,

@) 1. A\ 2 2
Z (NnJ + kS > JAV) - (Néﬂ)/)ﬁ)) N CoCor/nloglogn
322,57 (NT(}) + kgl)) /AWM N,(LI)/)\(U n

so there must be some suboptimal j such that

IR
(Nn” e ) JAU) N(y NG /2@ _ 1 GGynloglogn
(N 4+ KP) Ja W) M =2 " |

Let ClO M_ and Cl 01002 Then,
(1) 2
(N + ki ) 14 C1oCyv/nloglogn
N /N n ’
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and, for all large enough n, we have

() () (1) (1)
<N”j + ks’ ) / (N" + ks ) Ciiv/nloglogn
, > 1+ , (3.36)
N’rg,])/N?'(Ll) n
whence

() () ()

Ny’ + ks vnloglogn\ Ny

Nn + ks n Nn

For the alternative j that satisfies (3.37), let
uésup{l <s: I(])l = 1}

Then, stage n + u is the last time that alternative j is sampled before or at stage

n + m. Since kgj ) is monotonically increasing in s, we have

ngj) + kq(j) N7(zj) —l—kgﬁ
VIR T

N + kY

e 1 N + kY

- N Nr(zj) +k§j) Nél) +k§1)

1 1 L+ C vnloglogn Nflj)
N(j) + k'(j) H n ]\[T(Ll)7

V

where the last line follows from (3.37). By Lemma 3.4.2, there must exist a positive

constant C'5 such that, for all large enough n,

1 vnloglogn N,Ej)
b=y e ) (P o 0

1 e vnloglogn NY

- 11 n Nél)
\/nlog logn  Chs vnloglogn N9
= (1+Cp——7—— W C12C11 2 N

v

NV
Lo NZD 1og log n) NY

13

(1 L On Ci nloglogn) NY

N
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where Ci3 = % = %. Note that constants C'3 through Cyq are fixed and do not

depend on C4 or (5. Thus, for all large enough n, if we take 'y to be sufficiently

large, i.e., Cy > 8C}/C4g, to make Cy3 > C}, then

NT(Lj)—I—k:Q(Lj) > (1+C nloglogn N}Lj)
N + kD S

which completes the proof. O

Lemma 3.4.6. For any alternative i, n>/* 5,(31 — 69 = 0 almost surely asn — 0.

Proof. First, if an alternative j other than 1 or ¢ is sampled at stage n, it is obvious

that n3/* 0%, — 6| = 0.

Second, if alternative ¢ is sampled at stage n, then for all large enough n, there

exists a constant C such that

n3/4 5&11_5&) — 34 (dSL)Q— (dni))Q
< Om™* |, - df
- %n 97(511_955) )
where
n|0, — 0| = n\m(m@eguwﬁl) — g
< L‘g(i)}

]
Ny’ +1 Ny’ +1

= 0(1) <1+ ’Wr(fll )7

thus there exists a constant Cy such that

Cy (i)
< (e wikL]).
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Finally, if alternative 1 is sampled at stage n, then similarly as above, for all

large enough n, there exist constants C'3 and Cy such that

i - C!
3/ 57(14)& - 57(5) _1?4” 97(1111 - 97(11)
n

<

n
Cy 1)
= nl/4 (1 + ‘W”HD '

(1)
n+1

i) W
’ — 0 and ‘711—/4 — 0 almost surely. By

n+1
nl/4

Then it is sufficient to show

Markov’s inequality, for all € > 0,

‘W(Ql (W@l)S C
> e < E 5

nl/a = n2e8 = n2e8’

P

n+1

w®
where (5 is a fixed constant, thus ‘ —7r— — 0 in probability. Furthermore, by the

Borel-Cantelli lemma, since

‘W@l C
n 5
DP |z < X <o

()
WTL . . .
then we have ‘nl—/ﬁl — 0 almost surely. Using similar arguments, we also have

(1)
n+1

nl/4

— 0 almost surely, completing the proof. O

Let 7,7 > 1 and suppose that ¢ is sampled at stage n. We will first place

an O (#) bound on the increment rgﬂ — r$") . We will then place a bound of

O <—”L2)§/£3g’1> on the growth of (rq(f J )) in between two samples of 7 (note that, by
definition, r) < 1 at any stage n when i is sampled). As this bound vanishes to

zero as n — 00, it will then be shown to follow that rd ) 1.

If 7 is sampled at stage n, then {9 <1 and

o log <vﬁl> log <v7(f))
Y DR () _
e o < <j>) 1 ( <j>>
g\ Unt1 0g | Un
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log <v1(3rl> — log (vﬁ?)
log (vgj )>

‘log (vff}rl> — log (v@) ‘

s ()

IN

_ n'/t 1 5&11 5
™ 2fiog (o) 7\ 20T, 6O T Gy, oy
! NP+ N N N
Ot o
B R ) T S (N ED

NP+ N N N

_ (D" W)
—2|log |1+ 0O @ T
Ny’ +1 N,

(9 0
—log (1 +0 ( NG + NO

~ (tog ', — loge?) ‘ . (3.38)

By Lemma 3.4.2; there exists a positive constant C such that, for all large enough

2|og (o) 4 Lo 1)
- = 2 |(1+0( 2"
i/ i/ 0

n,

1 55
>
2nl/4 (A@0)*  (Aw)?
NG N
> (O o Cn3/4
= Y131 T mee.

On the other hand, for all large enough n, there also exists a positive constant Co

such that
Ce
ntA @)Y (m)T (@) ()’
N1 TN NO TN
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(s, 50, s, 5

< _ _
— a7 (W) (@) ()’ (@) (w) (@) (W)
NP+ NY N N N NV N N
1 ; .
- /A (O (1) + O(n) 51(111 — 6 )
1 : .
= 0(1) (W + 0?46l — W >
= O (1) S 027

where the first equality holds from Lemma 3.4.2 and the last equality holds from

Lemma 3.4.6. Then for all large enough n, we have

n/ LR G0 ey T B heyY oy
NP+ N NS N
(2) i
< 3 5n+1 o 57(1)
- pl/i4 (Mi))Q (Ml))? (w))z (Ml))Q
N1 T OND NS N
S 3027

and

9 (A@'))? (Au))? (Am)? (Am)?

1 ; ;
+W log (5211 — log 6@
9 (Aa))Q (Au))? (,\u))? (A(n)?
< i llog <1+O <N7(f)+1 + N +llog| 1+ 0 N0 + NO
1L og 69, — 1og 60
n1/4 0og n+1 0g 0y,
< .

We have now bounded all four terms in (3.38). Therefore, for all large enough n,

we have

(4,9) Pd) < 502/01

r
n+1 n — n3/4 )
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and

L 5Cy/C _5Cy/Cr

(i,9) (G.5)
< 1 n3/A =  p3/4

7’n-l—l

Thus, we have established a bound on the growth of " that can occur as a result
of sampling 7 at time n.

We now consider the growth of the ratio between stages n and n + m, where
méinf{z >0: 19, = 1}

as in the statement of Lemma 3.4.4. In words, n + m is the index of the next time

after n that we sample 7. For any stage n + s with 0 < s < m, the inequality

Tfjﬁi > Tngs) can only hold if alternative j or the optimal alternative is sampled at

stage n + s.

If alternative j is sampled at stage n + s, then

(i) (e,
T(m) . r(m) _ _

phetl s () ()

log (vnﬂﬂ) log (U

os (i8),)  tos (i

e (o) o8 (o2

tog (v, ) ‘log (09)11) — 1og (w12,

log <vffls +1> ’10g (vﬂs)

Using similar arguments as above, we have
‘log (Ufljlerl) - log (Ur(Lj-i)-s)
e (12

and, by Lemma 3.4.2,

=0 ((n + s)_3/4) =0 (n™34),

oe (1)
log <U7(1];&)—s+1>
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Thus, there exists a constant C3 such that

(4,9 (4,3) —3/4
Tnl—lzs-i—l_rnl—gs < an /

On the other hand, if alternative 1 is sampled at stage n + s, then

1 < Y ) 1 ( i) >
’I“(Z i T(z 7) _ 08 | Untst+1 og | Upis
n+s+1 n+s log ( +) +1> log ( —i)_ )
10g ( n+s+1> 10g ( 7(1J)rs> log <U£LZJ)rs> 10g <U£LZJ)FS>
S JR—

o oo (o9 N on (o9 log (9)
g n+s+l &\ Untst1 08 \ Un+ts+1 08 \ Un+ts
IOg (U ZJrer1> (Uéz—)i-s> IOg ( n—)i-s>
- ) + ()
IOg <Un+s+1> log <Un+s+1)
‘lOg </U’EL];|)>S+1> - IOg <U7(LJ;&)-5>
s (1)
Similarly as above, we have
10g < n—)&—s—&-l) - log (Uilz}rs>
9] —3/4
1 J) <n ) ’
0og n+s+1
tog (v1,) | [1os (..1) — log (w2,
IOg < n+)8+1) )log < n-?—s)

Then, there exists a constant C; such that

@) (n_3/4) .

=il < Ch

Therefore, in all cases, for all large enough n, we have

L) i) o s
n+s+1 n+s — 713/47

where C5 = max {5Cy/C}, Cs, Cy}. It follows that

irj irj Cs
-1 < wafs)—ler
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G5

(i) _ 0) 4
< PP =14+ (L+ kY + K )n?)/4

s

< (LR +RD)
However, from Lemma 3.4.4, we have S < Y =0 (W) forall 0 < s <
m, and at the same time, from Lemma 3.4.3, we know that at most B, samples could
be allocated to any suboptimal alternatives between two samples of alternative 1.
Then we also have k% < k9 < B, <k§,}b) + 1), whence k%) = O (\/m). It
follows that

r - 1< (1+ED + kD)

&_O<\/nloglogn>

n3/4 n3/4

whence limsup,,_, e =1, By symmetry,

lim inf TSJ ) = limsup rr(Lj”') =1,
n—o0 Nn—00

whence lim,,_, o rr(f 9 — 1. This completes the proof.

3.5 Numerical Example

We present a numerical illustration of the mCEI method on a small synthetic
problem. Two additional benchmarks were implemented. The first of these is the
classic EI method from [10], given in (3.6). From (3.7)-(3.8), we do not expect this
method to perform optimally in the long term; however, we include it because it is
the fundamental procedure in the EI class of methods and thus a natural benchmark
for mCEIL We also implemented the TTPS (“top-two probability sampling” ) method
from [15]. This method assigns a fixed proportion 8 of the sampling budget to
alternative j* and allocates the rest based on a Thompson sampling-like criterion.
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TTPS is an important benchmark since it can be made to achieve the optimal
convergence rate if § is chosen correctly; however, since tuning S may be time-
consuming in practice, [15] explicitly recommends setting 8 = 0.5 and derives a
bound on the gap between the resulting convergence rate and the optimal one. We
follow this recommendation in order to briefly comment on the tuning issue.

The synthetic example has five alternatives (systems) with true values p =
(0.5,0.4,0.3,0.2,0.1), standard deviations A = (1,0.6,0.6,1,1), the initial prior
means 0y = 0, and a budget of 5000 samples. Figure 2.1(a) shows the trajec-
tory of the probability of incorrect selection, averaged over 100 macro-replications.
Thus, the best alternative is j* = 1, but the noise is greater for alternative 1 than
for alternatives 2 and 3, which makes correct selection a bit more difficult.

By (3.7), we know that EI will not be able to achieve an exponential con-
vergence rate, so it is unsurprising that it is eventually outperformed by TTPS;
however, EI performs relatively well in the early stages. On the other hand, mCEI
lags slightly behind EI during the first 200 replications, but subsequently discovers
the best alternative very quickly. After 2500 samples, the empirical probability of
incorrect selection is virtually zero under mCEI.

Figure 2.1(b) compares the allocations made by each method (also averaged
over 100 macro-replications) to the optimal allocation, obtained by solving (3.1)-
(3.2). As expected from (3.7), the EI allocation is far from optimal since it assigns
most of the budget to the best alternative. The optimal proportion to assign to
alternative 1 is slightly larger than 0.5; as a result, TTPS is not tuned optimally
and thus consistently makes errors in all of the proportions. The allocation made
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by mCEI is very close to optimal.

Note that, even in this small problem, alternatives 3, 4 and 5 receive only
about 10% of the budget under the optimal allocation. This suggests that, in some
situations, the size of the problem may not necessarily determine its difficulty (aside
from increasing the computational effort required to run a procedure), as many or
even most of the alternatives may be similarly “irrelevant.” Identifying character-
istics that make problems more “difficult” may be an interesting subject for future
work. At present, however, we only wish to illustrate the potential of mCEI to
produce very close approximations of the optimal allocation, without any tuning, in

a relatively small number of samples.

3.6  Conclusion

We have considered a ranking and selection problem with independent normal
priors and samples, and shown that an El-type method (a modified version of the
CEI method of [16]) achieves the rate-optimality conditions of [9] asymptotically.
This is the first such result available for any El-type algorithm (previous rate re-
sults for other El-type methods have shown that those methods achieve suboptimal
allocations) that does not require any tuning.

This work strengthens the existing body of theoretical support for El-type
methods in general, and for the CEI method in particular. An interesting question
is whether CEI would continue to perform optimally in, e.g., the more general

Gaussian Markov framework of [16]. However, the current theoretical understanding
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of such models is quite limited, and more fundamental questions (for example, how
correlated Bayesian models impact the rate of convergence) should be answered

before any particular algorithm can be analyzed.
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Chapter 4: Conclusion

In this thesis we focus on the interface between stochastic optimization and
statistics. We apply statistical analysis to a suite of models that were established for
stochastic optimization but only numerically studied in the literature, and show the
theoretical validity of these models by showing the convergence of the algorithms.
We also propose a new algorithm for solving the classic ranking & selection (R&S)
problem, and show it is able to achieve the optimal budget allocation.

In Chapter 2, we propose a new general form of the stochastic approximation
(SA) algorithm with “bias” terms included, and prove the convergence of this general
algorithm. Then we apply this general framework to a suite of approximate Bayesian
learning models including four univariate models and three multivariate models, all
of which have proved their practical value for solving some realistic problem, and we
show the convergence of each. On one hand, this work provides rigorous theoretical
support for approximate Bayesian inference, as well as the inspiration for designing
new approximate Bayesian models. For example, we propose a new approximate
Bayesian model for learning through censored binary observations with unknown
mean and variance and prove its consistency. On the other hand, it also gives us

ideas about showing the convergence of other similar algorithms.
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In Chapter 3, we propose a new algorithm based on the complete expected
improvement (CEI) criterion for solving the R&S problem with finite alternatives
under independent normality condition. We prove this algorithm recovers the op-
timal budget allocation asymptotically with respect to maximizing the probability
of correct selection. This is the first El-type algorithm that achieves the optimality
condition, and it requires no extra computational effort or tuning work compared
to the classic EI. This work bridges the gap between El-type methods and the
theoretical optimal budget allocation, and may inspire future work on designing al-
gorithms that are able to recover the optimality condition in more general situations,
for example, without the limitation of finite alternatives or without the normality

assumption.
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