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Stochastic optimization includes modeling, computing and decision making.

In practice, due to the limitation of mathematical tools or real budget, many prac-

tical solution methods are designed using approximation techniques or taking forms

that are efficient to compute and update. These models have shown their practical

benefits in different backgrounds, but many of them also lack rigorous theoreti-

cal support. Through interfacing with statistical tools, we analyze the asymptotic

properties of two important Bayesian models and show their validity by proving

consistency or other limiting results, which may be useful to algorithmic scientists

seeking to leverage these computational techniques for their practical performance.

The first part of the thesis is the consistency analysis of sequential learning al-

gorithms under approximate Bayesian inference. Approximate Bayesian inference is

a powerful methodology for constructing computationally efficient statistical mecha-

nisms for sequential learning from incomplete or censored information.Approximate



Bayesian learning models have proven successful in a variety of operations research

and business problems; however, prior work in this area has been primarily compu-

tational, and the consistency of approximate Bayesian estimators has been a largely

open problem. We develop a new consistency theory by interpreting approximate

Bayesian inference as a form of stochastic approximation (SA) with an additional

“bias” term. We prove the convergence of a general SA algorithm of this form, and

leverage this analysis to derive the first consistency proofs for a suite of approximate

Bayesian models from the recent literature.

The second part of the thesis proposes a budget allocation algorithm for the

ranking and selection problem. The ranking and selection problem is a well-known

mathematical framework for the formal study of optimal information collection.

Expected improvement (EI) is a leading algorithmic approach to this problem; the

practical benefits of EI have repeatedly been demonstrated in the literature, espe-

cially in the widely studied setting of Gaussian sampling distributions. However, it

was recently proved that some of the most well-known EI-type methods achieve sub-

optimal convergence rates. We investigate a recently-proposed variant of EI (known

as “complete EI”) and prove that, with some minor modifications, it can be made to

converge to the rate-optimal static budget allocation without requiring any tuning.
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Chapter 1: Introduction

1.1 Sequential Learning: Approximate Bayesian Inference

Bayesian statistics allows decision-makers to estimate unknown parameters,

but also to include a detailed model of their uncertainty about these estimates.

In practice, instead of a fixed dataset, it is more likely to have a stochastic data

stream in many applications. For example, in online digital goods auctions [1], each

observation is the response of a buyer for a proposed price by the seller in every

potential transaction, clearly, the transactions must occur in a sequential manner

rather than all occur at the same time. Bayesian models allow the seller to represent

the potential for error in the demand model, which in turn allows for more robust

adaptive pricing methods. However, these models should be updated sequentially

in order to take advantage of new information as soon as it arrives. When the

observation comes from a distribution that is conjugate with the prior belief, the

posterior distribution then comes from the same distribution family as the prior does,

which makes it easy to update the model since it can be completely characterized by

the parameter set of this distribution family and updating the model only requires

updating the parameter set.

In many situations where the observation is censored or only partially avail-

1



able [2, 3], it is impossible to have a conjugate Bayesian model. Approximate

Bayesian inference is a methodology to handle this issue through creating an ar-

tificial posterior distribution that comes from the prior’s distribution family and

letting it mimic the exact posterior distribution according to some criterion. There

are different approaches to build approximate Bayesian learning models. For exam-

ple, one approach is the moment-matching method [4] by solving moment-matching

equations in order to make the moments of the artificial posterior distribution equal

to corresponding moments of the exact posterior. Other methods include minimiz-

ing the Kullback-Leibler divergence between the two distributions [5] and variational

Bayesian inference [6,7] by approximating complicated functions using their Taylor

expansions.

Similar to conjugate Bayesian models, approximate Bayesian learning models

can be efficiently updated via recursive equations for a small set of parameters, thus

avoiding the difficulty for handling the complicated exact posteriors that even may

not come from any common distribution family. Simple statistical models make it

easy to interface with control policies, thus approximate Bayesian inference is applied

in a wide variety of problems, for example, the ranking and selection problem [5].

However, although the numerical advantage of approximate Bayesian models has

been repeatedly shown in the past literature, rigorous theoretical analysis of the

validity of these models was not studied in any of the prior work. Intuitively, one

can see that approximate Bayesian learning models bear a strong resemblance to

the classic stochastic approximation (SA) algorithm, whose convergence was fully

studied by [8]; however the classic SA framework cannot directly be applied to ana-
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lyze these methods because of certain important differences. Thus the convergence

of the approximate Bayesian algorithms can not be simply explained by the classic

SA framework.

1.2 Ranking and Selection: Complete Expected Improvement

In the ranking and selection problem (R&S) problem with finitely many “al-

ternatives” (or “systems”), each alternative has an unknown system value (for sim-

plicity, suppose different alternatives have different system values), and we wish to

identify the optimal alternative that has the largest system value among all the

alternatives. For any alternative, we are able to observe noisy samples about the

unknown system value (population mean); however, we are limited to a fixed bud-

get, i.e., the total number of samples that could be allocated to the alternatives

is fixed. Under independent assumptions, the sample of one alternative does not

provide any information about other alternatives. After all the sampling budget has

been consumed, we select the alternative with the largest sample mean and we say

“correct selection” occurs if the selected alternative is the optimal alternative that

has the largest population mean. Since the total budget is fixed, we would like to

find an allocation strategy that could maximize the probability of correct selection.

With regard to maximizing the probability of correct selection, [9] gives the

optimal budget allocation, where the proportions of the total budget assigned to

the alternatives satisfy two optimality conditions. However, these optimality condi-

tions depend on the unknown system values, which makes it impossible to solve and
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apply them directly. Thus the practitioners have preferred to use simple methods

that are easy to code and perform well in practice, and one of the most popular

methods of this type is the expected improvement (EI) algorithm [10]. EI is a se-

quential allocation strategy, where every time after an alternative is sampled, a new

observation is available and it provides information to help the decision-maker se-

lect the next alternative to be sampled. There are many variants of the EI criterion

designed for different settings under different sets of modeling assumptions, such as

the knowledge gradient criterion [11] and the LL1 criterion [12]. Although the com-

putational advantage and practical benefit of these methods have been well studied,

the theoretical behavior was not fully learnt until [13]. It tuns out that these meth-

ods produce different asymptotic allocations, but none of them achieve the optimal

budget allocation. Aside from EI and its variants, [14] provides a way to recover the

optimal allocation through reverse-engineering the optimality conditions, but this

method requires extra computational effort compared to EI and it does not have a

natural interpretation as EI does. Recent work such as [15] has shown that it is pos-

sible to recover the optimal allocation, but involves an extra tuning parameter, and

the optimality conditions are only achieved when the tuning parameter is assigned

some specific value, which is, however, unknown without knowledge of the system

values.

Recently, [16] proposed complete expected improvement (CEI) criterion. Un-

like classic EI, which evaluates the expected improvement over the current-best

sample mean from sampling every alternative, CEI evaluates the expected improve-

ment over the current-best alternative from sampling every seemingly-suboptimal

4



alternative. This feature gives CEI the potential to recover the optimal budget

allocation while no extra computational effort or tuning work is required.

1.3 Outline of Thesis

In Chapter 2, I present the consistency analysis of sequential learning algo-

rithms under approximate Bayesian inference. Through a motivating example, I

first establish a connection between the approximate Bayesian learning algorithm

and the traditional stochastic approximation algorithm by showing their similarities

as well as the differences. Then I point out the approximate Bayesian learning algo-

rithm does not fit the traditional stochastic approximation framework due to these

differences. After that, I define a general stochastic approximation algorithm with

some additional “bias” terms involved and show the convergence of this algorithm.

Finally, a suite of existing approximate Bayesian models from the recent literature

is studied, and by interpreting these algorithms as stochastic approximation algo-

rithms with “bias” terms, I show the convergence of each one under the general

framework.

In Chapter 3, I present the modified complete expected improvement algo-

rithm for the ranking and selection problem with finite systems. Complete expected

improvement is a recently-proposed criterion that can be viewed as a variant of

the expected improvement criterion. Expected improvement (EI) criterion has been

widely applied due to its practical benefit, but it was recently shown that some of

the well-known EI-type methods are only suboptimal with respect to minimizing
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the probability of incorrect selection. I propose an algorithm based on the com-

plete expected improvement criterion, which requires no additional tuning work or

computational effort than traditional EI-type algorithms, and show this algorithm

achieves the optimal budget allocation strategy asymptotically. At last, I conduct

a numerical experiment comparing this algorithm with some other allocation algo-

rithms as well as the optimal allocation strategy for illustration.

Chapter 4 provides the conclusion to the thesis.
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Chapter 2: Consistency Analysis of Sequential Learning under Ap-

proximate Bayesian Inference

2.1 Introduction

Approximate Bayesian inference is a statistical learning methodology with

wide-ranging applications in sequential information collection problems, particularly

those where a decision-maker must use incomplete or censored information to main-

tain and update a set of beliefs about one or more unknown population parameters.

Approximate Bayesian models are attractive for their computational tractability,

and often lead to compact belief representations that can interface with simple and

interpretable policies for related decision problems. In the recent literature, approx-

imate Bayesian methods have been successful in the following applications:

• Market design [2]. Many financial markets designate official market-makers

whose role is to increase liquidity and promote trading by being available to

buy and sell securities. By experimenting with bid and ask prices, a market-

maker can learn the market value of an asset by observing traders’ willingness

to buy and sell.

• Posted-price auctions [1]. A seller chooses a price for a digital good in order to
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maximize expected revenue. Buyer valuations of the good cannot be observed

directly, and must be inferred from buyers’ yes/no responses to posted prices.

The seller’s problem is characterized by considerable uncertainty about the

valuation distribution.

• E-sports [4]. Large numbers of players log on to an online gaming service. In

order to promote fair and competitive play, the service seeks to match players

of similar skill levels. However, “skill” cannot be measured directly; rather,

the game master must infer it from a player’s win/loss history.

In these problems, sequential learning is needed for improved decision-making: for

instance, in the market-making application, each new transaction changes our per-

ception of the optimal bid and ask prices, which should lead to improved earnings

over time. Learning is broadly relevant in this way throughout any subdomain

of operations research in which decisions are made based on data. Approximate

Bayesian models specifically have proved themselves to be useful in the following

broad methodological areas:

• Big data analytics. Logistic regression is a standard statistical tool for fore-

casting [17], pricing [18], and order planning [19]. Approximate Bayesian

learning models our uncertainty about the regression coefficients and enables

us to update them in a computationally efficient manner [6, 20].

• Approximate dynamic programming. Many resource allocation problems in

transportation [21] and energy [3] are subject to the curse of dimensionality,

rendering classic optimization methods intractable [22] and introducing the
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challenge of exploration in large state spaces [23]. A multivariate Bayesian

prior can be used to learn about large parts of the state space in fewer itera-

tions.

• Ranking and selection. In the ranking and selection problem [24,25], a limited

simulation budget is allocated sequentially in order to discover the best of a

finite set of design alternatives. Approximate Bayesian learning with corre-

lated beliefs can discover similarities between designs [5] and learn their values

more quickly.

The main contribution of the present paper is a theoretical framework that can be

leveraged to produce new consistency proofs in each of the above-listed method-

ological and application areas. Virtually all of the existing work on sequential ap-

proximate Bayesian learning is computational/algorithmic in nature: approximate

Bayesian models have repeatedly demonstrated significant practical benefits (see [26]

for an overview), but have remained mostly unamenable to the usual forms of consis-

tency analysis. Our work is among the first to provide broad theoretical support for

approximate Bayesian procedures: we prove, for the first time, the statistical con-

sistency of a wide variety of previously-proposed approximate Bayesian estimators,

providing insight into their good empirical performance. We also develop theoretical

tools that may be used by researchers to develop similar proofs for other problems

and applications.

9



2.1.1 Problem Background

In Bayesian analysis, the prior distribution of an unknown population param-

eter is an object of belief, chosen by the decision-maker based on past knowledge

or other considerations. Given a sample of data, the posterior distribution of the

parameter models the change in our beliefs resulting from the acquisition of infor-

mation. The property of conjugacy arises when the posterior belongs to the same

family as the prior (e.g., both are normal). If this is the case, the beliefs can be

compactly represented by a small number of parameters (such as a mean and a

variance), which can often be updated very efficiently.

The problem of approximate Bayesian inference occurs when conjugacy does

not hold, i.e., there is a mismatch between the prior distribution and the sampling

distribution (this easily happens when the data are censored). In such cases, the

traditional approach has been to apply approximate Bayesian computation [27, 28]

based on Markov chain Monte Carlo procedures [29]. These techniques are compu-

tationally expensive but provably convergent [30,31]. However, this entire literature

assumes that the problem is static: there is a single dataset and a single stage of

inference (i.e., only one posterior distribution to be computed). A rich asymptotic

theory has been developed for this class of procedures (see, e.g., recent advances

by [32] and [33]), but the underlying assumption is always that there is a single

inference problem to be solved.

In sharp contrast with the above, we consider a dynamic problem in which

information is collected sequentially. Our motivating applications all involve multi-
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stage optimization where the quality of each new decision (e.g., bid and ask prices)

may be improved using feedback from past decisions. In this paper, we do not

study the problem of how exactly these decisions should be made; however, any

optimization approach should benefit from adaptive learning. For this reason, we

would like to update our beliefs immediately after every new data point, meaning

that we are now faced with a sequence of inference problems, each of which has

a sample size of 1. Conjugacy now becomes much more valuable: the ability to

compactly model a distribution of belief using a small set of parameters enables the

decision-maker to create and apply tractable optimization methods that take the

belief parameters as inputs and return recommended decisions. Such parametric

methods may be required to run very quickly and produce recommendations in real

time. Because conjugate learning models are easy to store and update, they greatly

simplify the design of algorithms for adaptive decision-making.1

In all of the applications considered in this paper, there is no natural choice

of prior distribution that is conjugate with the observations. Although a conjugate

prior may technically be developed for any distribution belonging to an exponential

family [36], in our applications the data are not i.i.d., but rather depend on addi-

tional inputs that may be controllable by the decision-maker (for instance, a trader’s

response to a market-maker depends on both the market value of the asset and the

bid/ask prices). This structure may lead us to assume some particular functional

1Bayesian learning models in particular enable the design of anticipatory policies that have some

form of intelligent experimentation built in; see, e.g., the popular Thompson sampling method [34]

or the Gittins index approach of [35].
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form for the dependence of the observations on the controls and unknown parame-

ters, which may preclude the use of standard constructions of conjugate priors.

These factors motivate the development of sequential approximate Bayesian

models, which essentially impose conjugacy by creating an artificial posterior distri-

bution from the same family as the prior (e.g., normal), then choosing the param-

eters of that artificial distribution in a way that approximates (in some sense) the

exact posterior. The approximation may be built using strategies such as moment-

matching [37,38], density filtering [5], and variational bounds [6,39]. In many cases,

the approximate posterior parameters can be computed in closed form, which is quite

convenient for practical implementation and has been the main reason for continued

interest in this area. However, despite the large body of empirical evidence that

these models work well, they are quite difficult to analyze theoretically. In fact,

outside of a few special cases [40], it is unknown whether approximate Bayesian

estimators are even consistent. This has also imposed a limitation on algorithmic

research in this area, as it is not possible to provide any performance guarantees for

any optimization algorithm if the underlying statistical model is invalid.

2.1.2 Summary of Our Approach and Results

We present a new theoretical framework that enables rigorous study of the

consistency problem.2 First, using a simple illustrative example in Section 2.2,

we observe that approximate Bayesian updates can be interpreted as a form of

2A brief summary version of our approach, without the full technical details, appeared in the

Proceedings of the 2016 Winter Simulation Conference [41].
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stochastic approximation (or SA; see [8]), a class of provably convergent, frequen-

tist algorithms that optimize nonlinear functions (e.g., likelihood functions) using

stochastic observations of their gradients at individual points. The approximate

Bayesian update can be viewed as SA with the addition of a “bias” term represent-

ing the difference between the frequentist and Bayesian versions of the stochastic

gradient. Intuitively, if this bias is “small,” the Bayesian procedure should converge.

In Section 2.3, we formalize this intuition by proposing a modified Robbins-Monro

SA algorithm with a similar bias term. Although there is a rich convergence theory

for SA, our algorithm does not fit into the standard convergence conditions [42–44],

so we develop a new set of conditions and give a convergence proof.

Our approach should be contrasted with that of [45], which to our knowledge is

the only previous effort to address the general consistency problem. [45] also points

out the apparent similarity between approximate Bayesian updating and stochastic

gradient methods, and sketches out a convergence argument in the context of normal

priors and moment-matching. However, this argument assumes that the posterior

variance is negligible and that the posterior mean is “sharply peaked” around the

true value, i.e., from the start we are already arbitrarily close to the desired limit.

In marked contrast, we rigorously handle the asymptotic behaviour of the posterior

from any starting conditions, under a standard set of SA assumptions.

We demonstrate the versatility of our SA analogy by using it (in Sections 2.4-

2.5) to create consistency proofs for an entire suite of applications taken from existing

literature, including previously-proposed approximate Bayesian schemes for market

design [2], posted-price auctions [1], and e-sports [4]. In addition, we prove the

13



consistency of three previously-proposed multivariate approximate Bayesian schemes

for logistic regression [20], ranking and selection [38] and approximate dynamic

programming [46]. Bayesian learning is especially powerful in these examples since

the posterior covariance matrix allows us to learn about multiple unknown values

after sampling just one. This practical benefit often outweighs any statistical loss

incurred by using approximate posteriors [47,48].

We emphasize that, on one hand, every one of these applications comes from

an existing paper; these papers proposed the Bayesian models in question and con-

ducted extensive computational experiments and comparisons to other techniques.

Yet, on the other hand, none of this previous work attempted any rigorous con-

sistency analysis, even within the confines of the specific application of interest.

Our paper is the first to show the consistency of all of these previously-proposed

models, thus contributing to all of the corresponding application areas. We note

that our examples include at least one large-scale industry application [4] in which

approximate Bayesian inference was successfully deployed in practice, and we also

highlight our analysis of Bayesian logistic regression, a model that has existed for

nearly 30 years without any progress on consistency. Although there is no way to

guarantee that our framework is applicable to every possible approximate Bayesian

model, the variety of models and problem domains on display in Sections 2.4-2.5

speaks for itself with regard to applicability.
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2.2 Example: Learning from Censored Binary Observations

We first present a simple example that illustrates the main issues of this paper.

The goal of this problem is to estimate a single unknown parameter based on cen-

sored binary observations. We will use approximate Bayesian inference to construct

a computationally tractable estimator that can be easily updated. The analogy to

stochastic approximation will then become clear.

Let (Yn)∞n=1 be a sequence of i.i.d. samples from the common distribution

N (θ, λ2), where θ is the unknown parameter to be learned, and λ2 is assumed to be

known for simplicity. We impose the Bayesian model θ ∼ N (µ0, σ
2
0), where µ0 is an

estimate of θ and σ0 represents our uncertainty about that estimate. It is well-known

that, if Y1, Y2, ... are directly observable, then the posterior distribution of θ given

Y1, ..., Yn is normal for any n [49]. In that case, the posterior distribution is always

completely characterized by the pair (µn, σn), which can be updated recursively after

each observation. The consistency of the estimator µn follows trivially, as its update

is equivalent to recursive sample averaging.

Now suppose that Y1, Y2, ... are not directly observable. Instead, we observe a

sequence (Bn)∞n=1 of censored observations defined by

Bn+1 = 1{Yn+1<bn},

where the sequence (bn)∞n=0 represents a control policy. For instance, bn could be a

dosage decision for a drug, with Yn+1 representing the maximum allowable dosage

level before patient n+1 experiences adverse effects and Bn+1 indicating the presence

15



of those effects. For simplicity, we treat (bn) as a fixed (deterministic) sequence;

however, our convergence analysis will be unaffected if bn is allowed to be measurable

with respect to B1, ..., Bn, as would be the case if the dosage were chosen adaptively

based on the outcomes of past trials.3

It is easily seen that the posterior density P (θ ∈ dx |B1) is not normal, even

after just one observation. As more samples are collected, the posterior will be-

come a more complicated mixture, increasingly difficult to store and update. We

will address this problem by using approximate Bayesian inference to create an

“approximately” normal posterior. After choosing the parameters of this artificial

posterior distribution, we will then discard the exact, non-normal posterior and pro-

ceed to the next sample using the approximation as our distribution of belief. By

doing this, we regain the ability to describe our beliefs using just two parameters,

but presumably incur statistical error due to the approximation.

To make the example more concrete, let us apply the method of moment-

matching, also known as expectation propagation [37, 45]. This is not the only

possible approach (others will be seen in later examples), but in this particular

setting it is useful for illustration purposes. Assuming that θ ∼ N (µ0, σ
2
0) and that

B1 is given, let θ̃ ∼ N (µ1, σ
2
1), where µ1 and σ1 are chosen to satisfy the equations

∫
R

xP
(
θ̃ ∈ dx

)
=

∫
R

xP (θ ∈ dx |B1) ,

3The exact choice of (bn) is exogenous to the estimation problem; for instance, one may choose

bn to keep the estimated probability of side effects below some tolerance level. However, the validity

of the underlying statistical mechanism, which is our main focus in this paper, is critical to the

overall performance of any such approach.
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∫
R

x2P
(
θ̃ ∈ dx

)
=

∫
R

x2P (θ ∈ dx |B1) .

Thus, the first two moments of θ̃ are equal to those of the non-normal posterior.

We then move to the next stage of sampling and repeat the process with the next

observation B2 under the assumption that θ ∼ N (µ1, σ
2
1). The following result

shows that, in the (n+ 1)st stage of sampling, the approximate posterior parameters

(µn+1, σn+1) may be efficiently computed from the parameters (µn, σn) in the nth

stage and the next observation Bn+1.

Proposition 2.2.1. The moment-matching equations in the (n+ 1)st stage admit

a closed-form solution given by

µn+1 = µn − σ2
n

(
Bn+1

1√
λ2 + σ2

n

φ (pn)

Φ (pn)

− (1−Bn+1)
1√

λ2 + σ2
n

φ (pn)

1− Φ (pn)

)
, (2.1)

σ2
n+1 = σ2

n

(
1−Bn+1

σ2
n

λ2 + σ2
n

pnφ (pn) Φ (pn) + φ2 (pn)

Φ2 (pn)

− (1−Bn+1)
σ2
n

λ2 + σ2
n

φ2 (pn)− pnφ (pn) (1− Φ (pn))

(1− Φ (pn))2

)
, (2.2)

where φ,Φ are the standard normal pdf and cdf, and

pn =
bn − µn√
λ2 + σ2

n

. (2.3)

Proof. Suppose at the (n+ 1)st stage, the prior distribution of θ is θ ∼ N (µn, σ
2
n).

If Bn+1 = 1, the moment-matching equations yield

µn+1 =

∫
θ 1
σn
φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ∫

1
σn
φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ

= µn +

∫
θ−µn
σn

φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ∫

1
σn
φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ
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and

σ2
n+1 =

∫
θ2 1

σn
φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ∫

1
σn
φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ
− µ2

n+1

=

∫ (θ−µn)2

σn
φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ∫

1
σn
φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ

− (µn+1 − µn)2

=

∫ (θ−µn)2

σn
φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ∫

1
σn
φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ

−

∫ θ−µn
σn

φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ∫

1
σn
φ
(
θ−µn
σn

)
Φ
(
bn−θ
λ

)
dθ

2

.

We then evaluate the integrals

∫
1

σn
φ

(
θ − µn
σn

)
Φ

(
bn − θ
λ

)
dθ = Φ

(
bn − µn√
λ2 + σ2

n

)
,

∫
θ − µn
σn

φ

(
θ − µn
σn

)
Φ

(
bn − θ
λ

)
dθ = − σ2

n√
λ2 + σ2

n

φ

(
bn − µn√
λ2 + σ2

n

)
,

∫
(θ − µn)2

σn
φ

(
θ − µn
σn

)
Φ

(
bn − θ
λ

)
dθ = σ2

nΦ

(
bn − µn√
λ2 + σ2

n

)

− σ4
n

λ2 + σ2
n

bn − µn√
λ2 + σ2

n

φ

(
bn − µn√
λ2 + σ2

n

)
,

whence

µn+1 = µn −
σ2
n√

λ2 + σ2
n

φ (pn)

Φ(pn)
,

σ2
n+1 =

σ2
nΦ (pn)− σ4

n

λ2+σ2
n
pnφ (pn)

Φ(pn)
−

(
σ2
n√

λ2 + σ2
n

φ (pn)

Φ(pn)

)2

= σ2
n −

σ4
n

λ2 + σ2
n

pnφ(pn)Φ(pn) + φ2(pn)

Φ2(pn)
,

as required. A similar argument can be applied when Bn+1 = 0 to obtain the

required result.

It is not obvious whether µn → θ. In fact, one may intuitively expect that this

will not happen: first, the censored observations (Bn) carry less information than
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the complete observations (Yn), and second, each stage of sampling necessitates a

new approximation and thus may compound the statistical error of the model. Thus,

it is somewhat surprising that µn is, in fact, consistent; that is, it is guaranteed to

recover θ w.p. 1.

A rigorous framework for proving this result will be given in Section 2.3. Here,

we provide additional intuition for our approach by pointing out that (2.1) can be

viewed as a Robbins-Monro stochastic approximation (SA) procedure of the form

µn+1 = µn − αnGn (Bn+1, µn, σn) , (2.4)

with the posterior variance σ2
n serving as the stepsize αn. More specifically, (2.1)

is nearly identical to a version of SA, known as “online gradient descent” or OGD,

that was proposed by [50] for frequentist statistical estimation. In the context of

our example, OGD is applied as follows. Suppose that θ is fixed; then, the marginal

log-likelihood function of Bn+1 is given by

logL (Bn+1;µ) = Bn+1 log Φ

(
bn − µ
λ

)
+(1−Bn+1) log

(
1− Φ

(
bn − µ
λ

))
. (2.5)

The OGD algorithm is given by (2.4) with

Gn (Bn+1, µn) = Bn+1
1

λ

φ (qn)

Φ (qn)
− (1−Bn+1)

1

λ

φ (qn)

1− Φ (qn)
, (2.6)

where qn = bn−µn
λ

. In words, (2.6) is the gradient of (2.5) evaluated at the current

iterate µn. It is easy to see that E (Gn (Bn+1, µn)) = 0 if and only if µn = θ. Thus,

OGD solves a stochastic root-finding problem [51], and µn → θ almost surely under

the conditions
∞∑
n=0

αn =∞,
∞∑
n=0

α2
n <∞, (2.7)
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which are usually imposed in SA theory [52]. Thus, the approximate Bayesian

update (2.1) can be viewed as a modification of OGD, with the posterior variance

σ2
n playing two roles: first, it is added to the noise λ2 in the definition of Gn, and

second, it serves instead of the stepsize αn. Thus, if σ2
n satisfies (2.7), and if the

difference between the Bayesian and frequentist stochastic gradients is decreasing

sufficiently quickly, we may also expect (2.1) to converge.

Section 2.3 will formalize this approach; here, we provide a numerical illustra-

tion. Figure 2.1(a) shows the sequence µn produced by (2.1)-(2.2) over 106 iterations.

We set λ2 = 1.5, µ0 = 0, σ2
0 = 1, and the sequence bn = 8 + 0.000003n. The true

value of the parameter is set to θ = 10. Convergence is observed after just 1000 iter-

ations. We also plot trajectories for three versions of OGD with stepsizes αn = a
a+n

with a ∈ {1, 2, 10}. Figure 2.1(b) compares the trajectories of these three stepsizes

with that of the approximate posterior variance. We see that OGD exhibits a classic

bias/variance tradeoff: higher values of a lead the procedure to find θ more quickly,

but induce less stable behavior in the iterate. By contrast, in the Bayesian proce-

dure, σ2
n can be viewed as a kind of adaptive stepsize, whose declining behaviour

speeds up in later iterations to produce a more stable iterate.

2.3 A General Convergent Stochastic Approximation Algorithm

Suppose that (Rn)∞n=0 is a sequence of real measurable functions mapping

x ∈ Rm into Rm. Suppose, furthermore, that the equations Rn (x) = 0 all have a

unique, common root θ that does not depend on n. SA algorithms produce sequences
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(a) Approximate posterior mean.

(b) Approximate posterior variance (log-scale).

Figure 2.1: Empirical convergence of the approximate Bayesian estimator.
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(xn)∞n=0 of recursively updated iterates designed to converge to θ in situations where,

for each n, a single stochastic (and not necessarily unbiased) observation of Rn (xn)

is available.

We study a general SA algorithm of the form

xn+1 = xn − αn (Qn (Wn+1, xn) + βn (Wn+1, xn, αn)) , n = 0, 1, ... (2.8)

where x0 ∈ Rm is an arbitrary m-vector, (αn)∞n=0 is a positive (deterministic or

random) stepsize sequence satisfying (2.7) almost surely, (Wn)∞n=1 is a sequence

of random variables representing exogenous information, (Qn)∞n=0 is a sequence of

real measurable functions mapping (w, x) into Rm and representing the stochastic

observations of (Rn), and (βn)∞n=0 is another sequence of real measurable functions

representing the “bias” of the observations.

The main difference between (2.8) and the SA procedures in [8] and other

references is the introduction of the bias term βn. In the example given in Section

2.2, the SA update Qn would be identical to the OGD gradient Gn in (2.6), while the

bias βn would equal the difference between the OGD update and the approximate

Bayesian update in (2.1). The posterior variance σ2
n serves as the stepsize, which

means that the bias βn should be allowed to depend on the random variable αn. This

dependence does not fit into the standard SA convergence conditions, such as those

in Sec. 5.2 of [8], necessitating a new convergence proof. To prove the convergence

of a SA-type algorithm, one has to carefully examine the details of SA convergence

proofs to determine whether they can be applied in a particular situation. For

example, Assumption A.2.2 in Sec. 5.2.1 of [8] appears to allow a bias term similar
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to βn, but the convergence proof requires the stepsize αn to be deterministic. To give

some more recent examples, [53] uses a recursive but deterministic stepsize; [54] uses

a random stepsize, but requires the bias to be deterministic; and [55] allows a bias

term but imposes a specific linear structure on it that does not apply in our setting.

The main differences between (2.8) and other provably convergent SA algorithms

are that 1) the bias term βn is random and may depend on the stepsize, and 2) the

stepsize itself may be random.

We define

Fn , B (W1, ...,Wn, x1, ..., xn, α1, ..., αn) ,

Rn (x) , E (Qn (Wn+1, x) | Fn) ,

where B denotes the Borel sigma-algebra, and impose several conditions as follows.

First, we ensure that (2.8) is searching for a unique root θ.

Assumption 2.3.1. For any n, the equation Rn (x) = 0 has a unique root θ, which

does not depend on n.

In the example from Section 2.2, the root is the unknown common mean of

(Yn). In the SA algorithm, however, we treat θ as a fixed value (as in frequentist

statistics); thus, we develop a non-Bayesian analysis and later apply it to models

that were derived from Bayesian arguments.

The second condition is imposed in many standard SA convergence proofs

(e.g., [54]), the idea being that the expected value of the stochastic gradient should

point the algorithm toward the root.
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Assumption 2.3.2. For n = 1, 2, ... and any ε > 0,

inf
‖x−θ‖22>ε,n∈N

(x− θ)TRn(x) > 0.

The third condition bounds the growth of the second moments of Qn and βn.

Assumption 2.3.3. There exist positive constants C1 and C2 such that

sup
n∈N

E
(
‖Qn(Wn+1, x)‖2

2 | Fn
)
≤ C1

(
1 + ‖x− θ‖2

2

)
, (2.9)

sup
n∈N

E
(
‖βn (Wn+1, x, αn) ‖2

2 | Fn
)
/α2

n ≤ C2

(
1 + ‖x− θ‖2

2

)
(2.10)

for all x.

Equation (2.9) controls the amount of noise in the SA update. Equation (2.10)

ensures that the bias of the update (recall that, in Section 2.2, we think of this as the

difference between frequentist OGD and approximate Bayesian inference) is “small.”

In the remainder of this section, we prove the convergence of (2.8); applica-

tions of this result will be given in the following section. Theorems 2.3.1 and 2.3.2

essentially state the same result in two ways; the second version uses an explicit pro-

jection operator to ensure the boundedness of the iterates, a widely-used approach

in SA convergence theory.

Theorem 2.3.1. Suppose that Assumptions 2.3.1-2.3.3 hold and (αn) satisfies (2.7)

almost surely. Let xn be defined by (2.8). Then xn → θ almost surely.

Proof. In all the proofs of this paper, we assume that a suitable set of measure 0

is discarded, so that we do not need to keep repeating the qualification “almost

surely”. Without loss of generality, let θ = 0. For any n ∈ N, by (2.8) and (2.9), we
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have

E(‖xn+1‖2
2 | Fn)

= ‖xn‖2
2 − 2αnx

T
nE((Qn(Wn+1, xn) + βn(Wn+1, xn, αn)) | Fn)

+α2
nE(‖Qn(Wn+1, xn) + βn(Wn+1, xn, αn)‖2

2 | Fn)

= ‖xn‖2
2 − 2αnx

T
nE(Qn(Wn+1, xn) | Fn) + α2

nE(‖Qn(Wn+1, xn)‖2
2 | Fn)

+2α2
nE((Qn(Wn+1, xn))Tβn(Wn+1, xn, αn) | Fn) + α2

nE(‖βn(Wn+1, xn, αn)‖2
2 | Fn)

−2αnx
T
nE(βn(Wn+1, xn, αn) | Fn)

≤ ‖xn‖2
2 − 2αnx

T
nE(Qn(Wn+1, xn) | Fn) + α2

nC1(1 + ‖xn‖2
2)

+2α2
nE((Qn(Wn+1, xn))Tβn(Wn+1, xn, αn) | Fn) + α2

nE(‖βn(Wn+1, xn, αn)‖2
2 | Fn)

−2αnx
T
nE(βn(Wn+1, xn, αn) | Fn). (2.11)

By (2.10), there exists a positive constant C3 such that

α2
nE(‖βn(Wn+1, xn, αn)‖2

2 | Fn) ≤ α2
nC2(1 + ‖xn‖2

2)α2
n

≤ α2
nC3(1 + ‖xn‖2

2), (2.12)

and, by Hölder’s inequality, there exist positive constants C4 and C5 such that

−2αnx
T
nE(βn(Wn+1, xn, αn) | Fn)

= −2αnE(xTnβn(Wn+1, xn, αn) | Fn)

≤ 2αnE(‖xTnβn(Wn+1, xn, αn)‖1 | Fn)

≤ 2αn(E(‖xn‖2
2 | Fn))

1
2 (E(‖βn(Wn+1, xn, αn)‖2

2 | Fn))
1
2

≤ 2αn‖xn‖2(C2(1 + ‖xn‖2
2)α2

n)
1
2

≤ 2α2
n‖xn‖2C4(1 + ‖xn‖2

2)
1
2
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≤ 2α2
nC4(1 + ‖xn‖2

2)

≤ α2
nC5(1 + ‖xn‖2

2). (2.13)

Again applying Hölder’s inequality with (2.9) and (2.12), there exists some positive

constant C6 such that

2α2
nE((Qn(Wn+1, xn))Tβn(Wn+1, xn, αn) | Fn)

≤ 2α2
n(E(‖Qn(Wn+1, xn)‖2

2 | Fn))
1
2 (E(‖βn(Wn+1, xn, αn)‖2

2 | Fn))
1
2

≤ 2α2
n(C1(1 + ‖xn‖2

2))
1
2 (C3(1 + ‖xn‖2

2))
1
2

≤ α2
nC6(1 + ‖xn‖2

2). (2.14)

Now, we combine (2.11) with (2.12), (2.13) and (2.14), yielding

E(‖xn+1‖2
2 | Fn) ≤ ‖xn‖2

2 − 2αnx
T
nE(Qn(Wn+1, xn) | Fn)

+α2
n(C1 + C3 + C5 + C6)(1 + ‖xn‖2

2).

Letting κ = C1 + C3 + C5 + C6, we have

E(‖xn+1‖2
2 | Fn) ≤ ‖xn‖2

2(1 + κα2
n) + κα2

n − 2αnx
T
nE(Qn(Wn+1, xn) | Fn)

= ‖xn‖2
2(1 + κα2

n) + κα2
n − 2αnx

T
nRn(xn), (2.15)

where αnx
T
nRn(xn) is nonnegative by Assumption 2.3.2.

Then, by Theorem 1 in [56], (2.15) together with (2.7) implies that limn→∞ ‖xn‖2
2

exists and is finite, and that

∞∑
n=1

αnx
T
nRn(xn) <∞

almost surely. Hence, by (2.7), since
∑∞

n=1 αn =∞, we have lim infn→∞ x
T
nRn(xn) =

0 almost surely. Then, by Assumptions 2.3.1 and 2.3.2, there must be a subsequence
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of (xn) that converges to 0 almost surely. Finally, since limn→∞ ‖xn‖2
2 exists and is

finite, we have xn → 0 almost surely.

Theorem 2.3.2. Suppose that Assumptions 2.3.1-2.3.3 hold and (αn) satisfies (2.7)

almost surely. Define

xn+1 = ΠH (xn − αn (Qn (Wn+1, xn) + βn (Wn+1, xn, αn))) , n = 0, 1, ... (2.16)

where H = [−M,M ]m with a large enough constant M such that x0, θ ∈ H, and

ΠH : Rm → H is a projection operator defined by

(ΠH (x))(i) = x(i) · 1{|x(i)|≤M} +M · 1{x(i)>M} −M · 1{x(i)<−M},

where x(i) denotes the ith element of a vector x. Then, xn → θ almost surely.

Proof. Without loss of generality, let θ = 0. Under Assumptions 2.3.1-2.3.3, simi-

larly as in Theorem 2.3.1, we have

E(‖xn+1‖2
2 | Fn) = E(‖ΠH (xn − αn (Qn (Wn+1, xn) + βn (Wn+1, xn, αn))) ‖2

2 | Fn)

≤ E(‖xn − αn (Qn (Wn+1, xn) + βn (Wn+1, xn, αn)) ‖2
2 | Fn)

≤ ‖xn‖2
2(1 + κα2

n) + κα2
n − 2αnx

T
nRn(xn),

where κ is some positive constant. Then by Theorem 1 in [56], this together with

(2.7) implies that limn→∞ ‖xn‖2
2 exists and is finite, and that

∞∑
n=1

αnx
T
nRn(xn) <∞

almost surely. Applying (2.7) and Assumptions 2.3.1 and 2.3.2, the desired result

follows.
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We also prove a version of Theorem 2.3.1 using a relaxed version of Assumption

2.3.3. This result will be useful in cases where Assumption 2.3.3 is too strict or

difficult to verify.

Assumption 2.3.4. There exists a positive constant C1 such that

sup
n∈N

E
(
‖Qn(Wn+1, x)‖2

2 + ‖βn (Wn+1, x, αn) ‖2
2 | Fn

)
≤ C1

(
1 + ‖x− θ‖2

2

)
(2.17)

for all x. Furthermore,

∞∑
n=1

αn

∣∣∣(xn − θ)T E (βn (Wn+1, xn, αn) | Fn)
∣∣∣ <∞ (2.18)

almost surely.

Theorem 2.3.3. Suppose that Assumptions 2.3.1, 2.3.2 and 2.3.4 hold and (αn)

satisfies (2.7) almost surely. Let xn be defined by (2.8) or (2.16). Then, xn → θ

almost surely.

Proof. Without loss of generality, let θ = 0. Similarly as in Theorems 2.3.1 and

2.3.2, we have

E(‖xn+1‖2
2 | Fn) ≤ E(‖xn − αn (Qn (Wn+1, xn) + βn (Wn+1, xn, αn)) ‖2

2 | Fn)

= ‖xn‖2
2 − 2αnx

T
nE(Qn(Wn+1, xn) | Fn)

+α2
nE(‖Qn(Wn+1, xn)‖2

2 | Fn)

+2α2
nE((Qn(Wn+1, xn))Tβn(Wn+1, xn, αn) | Fn)

+α2
nE(‖βn(Wn+1, xn, αn)‖2

2 | Fn)

−2αnx
T
nE(βn(Wn+1, xn, αn) | Fn)
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≤ ‖xn‖2
2 − 2αnx

T
nE(Qn(Wn+1, xn) | Fn)

+α2
nE(‖Qn(Wn+1, xn)‖2

2 | Fn)

+2α2
nE((Qn(Wn+1, xn))Tβn(Wn+1, xn, αn) | Fn)

+α2
nE(‖βn(Wn+1, xn, αn)‖2

2 | Fn)

+2αn
∣∣xTnE(βn(Wn+1, xn, αn) | Fn)

∣∣ .
Then by (2.17), there exists some positive constant κ such that

κα2
n

(
1 + ‖xn‖2

2

)
≥ α2

nE(‖Qn(Wn+1, xn)‖2
2 | Fn) + α2

nE(‖βn(Wn+1, xn, αn)‖2
2 | Fn)

+2α2
nE((Qn(Wn+1, xn))Tβn(Wn+1, xn, αn) | Fn).

It follows that

E(‖xn+1‖2
2 | Fn) ≤ ‖xn‖2

2(1 + κα2
n) + κα2

n + 2αn
∣∣xTnE (βn(Wn+1, xn, αn) | Fn)

∣∣
−2αnx

T
nE (Qn(Wn+1, xn) | Fn)

= ‖xn‖2
2(1 + κα2

n) + κα2
n + 2αn

∣∣xTnE (βn(Wn+1, xn, αn) | Fn)
∣∣

−2αnx
T
nRn(xn),

where αnx
T
nRn(xn) is nonnegative by Assumptions 2.3.1 and 2.3.2. Applying (2.18)

from Assumption 2.3.4 together with (2.7), we obtain

∞∑
n=1

(
κα2

n + 2αn
∣∣xTnE (βn(Wn+1, xn, αn) | Fn)

∣∣) <∞.
By Theorem 1 in [56], this together with (2.7) implies that limn→∞ ‖xn‖2

2 exists and

is finite, and that

∞∑
n=1

αnx
T
nRn(xn) <∞
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almost surely. By (2.7) and Assumptions 2.3.1 and 2.3.2, it follows that xn → 0, as

desired.

2.4 Univariate Applications

We now present four applications of our convergence analysis to recently-

studied problems where the goal is to learn a scalar quantity. First, Section 2.4.1

returns to the example in Section 2.2 and proves the consistency of a projected

version of (2.1). Sections 2.4.2-2.4.4 give convergence proofs for three computa-

tional learning schemes previously developed for applications in competitive online

gaming, market design, and posted-price auctions, respectively. While the compu-

tational forms of these schemes are taken from prior work, to our knowledge no

consistency results were previously available for any of them.

Applying the theory from Section 2.3 is non-trivial and often requires addi-

tional technical material. In addition, we provide in Section 2.5.4 an extension of

the example from Section 2.4.1 in which both the mean and variance of the under-

lying distribution are unknown and have to be learned using a provably consistent

approximate Bayesian scheme.
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2.4.1 Learning an Unknown Mean from Censored Binary Observa-

tions

We consider a slight modification of the example from Section 2.2. Suppose

that σ2
n is updated using (2.2), and the posterior mean µn is updated using

µn+1 = ΠH

(
µn −

σ2
n√

λ2 + σ2
n

(
Bn+1

φ (pn)

Φ (pn)
− (1−Bn+1)

φ (pn)

1− Φ (pn)

))
, (2.19)

where H = [−M,M ] for large enough M satisfying |µ0| < M and |θ| < M . We can

write ΠH explicitly as

ΠH (x) = x · 1{|x|≤M} +M · 1{x>M} −M · 1{x<−M}.

Thus, (2.19) is a projected version of (2.1) satisfying the conditions of Theorem

2.3.2. The projection operator ensures that σ2
n satisfies (2.7) almost surely. Such

projections are widely used for similar purposes in the SA literature; see, e.g., Section

4.3 of [8]. Note that the use of a projection requires us to view θ as a fixed (if

unknown) value, as in frequentist statistics. Thus, we used Bayesian arguments to

construct the learning model, but our convergence analysis (here and throughout

the paper) is non-Bayesian and views the model as searching for a fixed root.

We first state a technical lemma, which was proved in [2]. Theorem 2.3.2 will

then be applied to establish consistency. We impose the mild regularity condition

that (bn) is bounded, but otherwise allow any arbitrary control policy.

Lemma 2.4.1. For all pairs (x, y) ∈ {−∞ ≤ x < y ≤ ∞} \ {x = −∞, y =∞},

(Φ(y)− Φ(x)) (yφ(y)− xφ(x)) + (φ(y)− φ(x))2 > 0.
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Proposition 2.4.1. Suppose that µn and σ2
n are updated using (2.19) and (2.2),

and suppose that the sequence (bn)∞n=0 is bounded. Then, µn → θ almost surely.

Proof. Let pn be as in (2.3), and define

qn =
bn − µn

λ
,

Qn(Bn+1, bn, µn) = Bn+1
1

λ

φ(qn)

Φ(qn)
− (1−Bn+1)

1

λ

φ(qn)

1− Φ(qn)
,

βn(Bn+1, bn, µn, σ
2
n) = Bn+1

(
1√

λ2 + σ2
n

φ(pn)

Φ(pn)
− 1

λ

φ(qn)

Φ(qn)

)

−(1−Bn+1)

(
1√

λ2 + σ2
n

φ(pn)

1− Φ(pn)
− 1

λ

φ(qn)

1− Φ(qn)

)
.

Let us rewrite (2.2) as

1

σ2
n+1

=
1

σ2
n

(
1− σ2

n

λ2+σ2
n

(
Bn+1

pnφ(pn)Φ(pn)+φ2(pn)
Φ2(pn)

+ (1−Bn+1)φ
2(pn)−pnφ(pn)(1−Φ(pn))

(1−Φ(pn))2

))
=

1

σ2
n

+

1
λ2+σ2

n

(
Bn+1

pnφ(pn)Φ(pn)+φ2(pn)
Φ2(pn)

+ (1−Bn+1)φ
2(pn)−pnφ(pn)(1−Φ(pn))

(1−Φ(pn))2

)
1− σ2

n

λ2+σ2
n

(
Bn+1

pnφ(pn)Φ(pn)+φ2(pn)
Φ2(pn)

+ (1−Bn+1)φ
2(pn)−pnφ(pn)(1−Φ(pn))

(1−Φ(pn))2

) .
By Lemma 2.4.1, for any x ∈ R, we have

0 <
xφ(x)Φ(x) + φ2(x)

Φ2(x)
≤ 1, 0 <

φ2(x)− xφ(x)(1− Φ(x))

(1− Φ(x))2
≤ 1, (2.20)

whence it follows that the sequence (σ2
n) is positive and monotone decreasing.

Since the sequence (bn)∞n=0 is bounded, and (µn) is constrained to a closed and

bounded interval by ΠH , it follows that the sequence (pn) is also constrained to a

closed and bounded interval of R. Then, by the continuity of xφ(x)Φ(x)+φ2(x)
Φ2(x)

and

φ2(x)−xφ(x)(1−Φ(x))
(1−Φ(x))2

, there exist constants γ∗, γ
∗ > 0 such that, for all n ∈ N,

γ∗ ≤
1

λ2+σ2
n

(
Bn+1

pnφ(pn)Φ(pn)+φ2(pn)
Φ2(pn)

+ (1−Bn+1)φ
2(pn)−pnφ(pn)(1−Φ(pn))

(1−Φ(pn))2

)
1− σ2

n

λ2+σ2
n

(
Bn+1

pnφ(pn)Φ(pn)+φ2(pn)
Φ2(pn)

+ (1−Bn+1)φ
2(pn)−pnφ(pn)(1−Φ(pn))

(1−Φ(pn))2

) ≤ γ∗.
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Therefore,

1

σ2
0

+ nγ∗ ≤
1

σ2
n

≤ 1

σ2
0

+ nγ∗,

whence

∞∑
n=1

σ2
n =∞,

∞∑
n=1

σ4
n <∞,

thus verifying (2.7).

Now, define

Fn , B(B1, ..., Bn, µ0, ..., µn, σ
2
0, ..., σ

2
n, b0, ..., bn).

Recalling that (Yn)∞n=1 is a sequence of i.i.d. samples from the common distribution

N (θ, λ2), we calculate

Rn(x) , E(Qn(Bn+1, bn, x) | Fn)

= Φ

(
bn − θ
λ

)
1

λ

φ
(
bn−x
λ

)
Φ
(
bn−x
λ

) − (1− Φ

(
bn − θ
λ

))
1

λ

φ
(
bn−x
λ

)
1− Φ

(
bn−x
λ

) .
It is easy to see that Rn(x) = 0 if and only if x = θ, thus verifying Assumption

2.3.1. Since (bn)∞n=0 is bounded, it is straightforward to verify Assumption 2.3.2.

Observe that − φ(x)
Φ(x)

and φ(x)
1−Φ(x)

are continuously differentiable, and their first

derivatives always take values in (0, 1] by (2.20). Since (bn) is bounded, it follows

from the mean value theorem that there exist positive constants C1, C2 satisfying

sup
n∈N
|Qn(Bn+1, bn, x)| ≤ C1(1 + |x− θ|),

sup
n∈N
|βn(Bn+1, bn, x, σ

2
n)|/σ2

n ≤ C2(1 + |x− θ|).
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Consequently, there also exist positive constants C3, C4 such that

sup
n∈N

E(Q2
n(Bn+1, bn, x) | Fn) ≤ C3(1 + (x− θ)2),

sup
n∈N

E(β2
n(Bn+1, bn, x, σ

2
n) | Fn)/σ4

n ≤ C4(1 + (x− θ)2),

thus verifying Assumption 2.3.3. The desired result then follows by Theorem 2.3.2.

An interesting question is whether it is possible to develop a provably consis-

tent approximate Bayesian learning scheme for the case where both θ and λ have to

be simultaneously learned from censored binary observations. In brief, the answer

is yes; this case is treated in Section 2.5.4.

2.4.2 Learning Player Skills in Competitive Online Gaming

References [57] and [4] describe an approximate Bayesian learning model that

was implemented in Microsoft’s Xbox Live online gaming service for inferring player

skills from the outcomes of competitive events. In this application, large numbers of

players log on to the service and ask to play a game; the system then seeks to match

players whose skill levels are likely to be similar, in order to promote fair play and

create a more rewarding experience.

We give a streamlined summary of the model, assuming without loss of gen-

erality that there are only two players, and prove a new consistency result. Let θ(i)

represent the “skill” of player i ∈ {1, 2}. Denote by Y
(i)
n the “performance” of player

i in the nth game, with the assumption that

Y
(i)
n+1 ∼ N

(
θ(i), λ2

)
,
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where the variance λ2 is known. We use the Bayesian prior θ(i) ∼ N
(
µ

(i)
0 ,
(
σ

(i)
0

)2
)

for i ∈ {1, 2} and assume that all skills and performance values are mutually in-

dependent. The game master cannot observe Y
(i)
n directly, but rather must infer

player skills from the binary outcome of the game, denoted by

B
(i)
n+1 = 1{

Y
(i)
n+1<Y

(j)
n+1

},

where j denotes the index of the opponent. In words, if player j wins the match

against i, we interpret this as Y
(j)
n+1 > Y

(i)
n+1. It is assumed that no game can end in

a draw.

Reference [4] used moment-matching to derive the approximate Bayesian up-

dating equations

µ
(i)
n+1 = µ(i)

n −
(
σ(i)
n

)2

 B
(i)
n+1√(

σ
(i)
n

)2

+
(
σ

(j)
n

)2

+ 2λ2

v

 µ
(j)
n − µ(i)

n√(
σ

(i)
n

)2

+
(
σ

(j)
n

)2

+ 2λ2



−

(
1−B(i)

n+1

)
√(

σ
(i)
n

)2

+
(
σ

(j)
n

)2

+ 2λ2

v

 µ
(i)
n − µ(j)

n√(
σ

(i)
n

)2

+
(
σ

(j)
n

)2

+ 2λ2


 , (2.21)

(
σ

(i)
n+1

)2

=
(
σ(i)
n

)2

1−
B

(i)
n+1

(
σ

(i)
n

)2

(
σ

(i)
n

)2

+
(
σ

(j)
n

)2

+ 2λ2

w

 µ
(j)
n − µ(i)

n√(
σ

(i)
n

)2

+
(
σ

(j)
n

)2

+ 2λ2



−

(
1−B(i)

n+1

)(
σ

(i)
n

)2

(
σ

(i)
n

)2

+
(
σ

(j)
n

)2

+ 2λ2

w

 µ
(i)
n − µ(j)

n√(
σ

(i)
n

)2

+
(
σ

(j)
n

)2

+ 2λ2


 , (2.22)

where

v(x) =
φ(x)

Φ(x)
,

w(x) = v(x)(v(x) + x).
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As in Section 2.4.1, we can replace (2.21) by a projected version where µ
(i)
n is con-

strained to be within a suitably large interval.

Define

dn , µ(1)
n − µ(2)

n ,

δ , θ(1) − θ(2).

In this setting, the observable information is insufficient to learn θ(i) exactly, but

the quantity of primary interest to the game master is the difference δ, as this is

what is used to evaluate the fairness of a match-up. We prove that dn is a consistent

estimator of δ.

Proposition 2.4.2. Suppose that µ
(i)
n is updated using a projected version of (2.21),

while σ
(i)
n is updated using (2.22). Then, dn → δ almost surely.

Proof. Define

σ2
n =

(
σ(1)
n

)2
+
(
σ(2)
n

)2
,

Qn

(
B

(1)
n+1, dn

)
= B

(1)
n+1

1√
2λ2

v

(
−dn√

2λ2

)
−
(

1−B(1)
n+1

) 1√
2λ2

v

(
dn√
2λ2

)
,

βn

(
B

(1)
n+1, dn, σ

2
n

)
= B

(1)
n+1

(
1√

σ2
n + 2λ2

v

(
−dn√
σ2
n + 2λ2

)
− 1√

2λ2
v

(
−dn√

2λ2

))

−
(

1−B(1)
n+1

)( 1√
σ2
n + 2λ2

v

(
dn√

σ2
n + 2λ2

)
− 1√

2λ2
v

(
dn√
2λ2

))
.

Then, with some algebra we can derive

dn+1 = dn − σ2
n

(
Qn

(
B

(1)
n+1, dn

)
+ βn

(
B

(1)
n+1, dn, σ

2
n

))
from (2.21) and (2.22).

36



If µ
(i)
n is updated using a projected version of (2.21), the sequence (dn) will also

be constrained to some closed and bounded interval. Then, from (2.22) it follows

that

1(
σ

(1)
n+1

)2 =
1(

σ
(1)
n

)2 +

1
σ2
n+2λ2

(
B

(1)
n+1w

(
−dn√
σ2
n+2λ2

)
+
(

1−B(1)
n+1

)
w

(
dn√
σ2
n+2λ2

))
1−

(
σ
(1)
n

)2
σ2
n+2λ2

(
B

(1)
n+1w

(
−dn√
σ2
n+2λ2

)
+
(

1−B(1)
n+1

)
w

(
dn√
σ2
n+2λ2

)) ,
and there exist two positive constants γ∗, γ

∗ such that, for all n ∈ N,

γ∗ ≤

1
σ2
n+2λ2

(
B

(1)
n+1w

(
−dn√
σ2
n+2λ2

)
+
(

1−B(1)
n+1

)
w

(
dn√
σ2
n+2λ2

))
1−

(
σ
(1)
n

)2
σ2
n+2λ2

(
B

(1)
n+1w

(
−dn√
σ2
n+2λ2

)
+
(

1−B(1)
n+1

)
w

(
dn√
σ2
n+2λ2

)) ≤ γ∗.

Consequently,

1(
σ

(1)
0

)2 + nγ∗ ≤
1(

σ
(1)
n

)2 ≤
1(

σ
(1)
0

)2 + nγ∗,

whence

∞∑
n=1

(
σ(1)
n

)2
=∞,

∞∑
n=1

(
σ(1)
n

)4
<∞.

Similar arguments apply to

((
σ

(2)
n

)2
)

, whence

∞∑
n=1

σ2
n =∞,

∞∑
n=1

σ4
n <∞,

thus verifying (2.7).

Now define

Fn , B
(
B

(1)
1 , ..., B(1)

n , µ
(1)
0 , ..., µ(1)

n ,
(
σ

(1)
0

)2

, ...,
(
σ(1)
n

)2
,

µ
(2)
0 , ..., µ(2)

n ,
(
σ

(2)
0

)2

, ...,
(
σ(2)
n

)2
)
,

Rn(x) , E
(
Qn

(
B

(1)
n+1, x

)
| Fn

)
= Φ

(
−δ√
2λ2

)
1√
2λ2

v

(
−x√
2λ2

)
−
(

1− Φ

(
−δ√
2λ2

))
1√
2λ2

v

(
x√
2λ2

)
= Φ

(
−δ√
2λ2

)
1√
2λ2

v

(
−x√
2λ2

)
− Φ

(
δ√
2λ2

)
1√
2λ2

v

(
x√
2λ2

)
.
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It is clear that Rn(x) = 0 if and only if x = δ, thus verifying Assumption (2.3.1).

Assumption 2.3.2 is straightforward to verify.

Since v(x) = φ(x)
Φ(x)

is continuously differentiable with − (v′) taking values in

(0, 1] (as in the proof of Proposition 2.4.1), it follows by the mean value theorem

that there exist positive constants C1, C2 satisfying

sup
n∈N

∣∣∣Qn

(
B

(1)
n+1, x

)∣∣∣ ≤ C1(1 + |x− δ|),

sup
n∈N

∣∣∣βn (B(1)
n+1, x, σ

2
n

)∣∣∣ /σ2
n ≤ C2(1 + |x− δ|).

Consequently, there also exist positive constants C3, C4 satisfying

sup
n∈N

E
(
Q2
n

(
B

(1)
n+1, x

)
| Fn

)
≤ C3(1 + (x− δ)2),

sup
n∈N

E
(
β2
n

(
B

(1)
n+1, x, σ

2
n

)
| Fn

)
/σ4

n ≤ C4(1 + (x− δ)2),

whence Assumption 2.3.3 is verified. The desired result then follows by Theorem

2.3.2

2.4.3 Learning the Market Value of an Asset

Reference [2] presents a model by which a market-maker may learn the un-

known value θ of an asset after a market shock (see also [58] for a case application).

The market-maker interacts with a sequence of traders, each of whom may buy or

sell one unit of the asset. The sequence (Yn)∞n=1 denotes the traders’ perceptions of

the unknown value, which are assumed to be i.i.d. N (θ, λ2) random variables with

λ2 known.

The prior θ ∼ N (µ0, σ
2
0) reflects the market-maker’s initial belief. Let (bn)∞n=0

and (an)∞n=0 denote sequences of fixed bid and ask prices. If Yn+1 < an, the (n+ 1)st
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trader buys one unit of the asset from the market-maker; if an ≤ Yn+1 ≤ bn, the

trader does not make any transaction; and, if Yn+1 > bn, the trader sells one unit of

the asset to the market-maker. Let

B
(1)
n+1 = 1{Yn+1<an}, B

(2)
n+1 = 1{an≤Yn+1≤bn}, B

(3)
n+1 = 1{Yn+1>bn}

represent the (n+ 1)st trader’s actions (the three binary variables must sum to 1).

[2] proposed an approximate Bayesian learning model for this problem. We

define

pn =
an − µn√
λ2 + σ2

n

, qn =
bn − µn√
λ2 + σ2

n

,

and update our beliefs recursively using

µn+1 = µn − σ2
n

(
B

(1)
n+1

1√
λ2 + σ2

n

φ(pn)

Φ(pn)
+B

(2)
n+1

1√
λ2 + σ2

n

φ(qn)− φ(pn)

Φ(qn)− Φ(pn)

−B(3)
n+1

1√
λ2 + σ2

n

φ(qn)

1− Φ(qn)

)
, (2.23)

σ2
n+1 = σ2

n

(
1−B(1)

n+1

σ2
n

λ2 + σ2
n

pnφ(pn)Φ(pn) + φ2(pn)

Φ2(pn)

−B(2)
n+1

σ2
n

λ2 + σ2
n

(qnφ(qn)− pnφ(pn)) (Φ(qn)− Φ(pn)) + (φ(qn)− φ(pn))2

(Φ(qn)− Φ(pn))2

−B(3)
n+1

σ2
n

λ2 + σ2
n

φ2(qn)− qnφ(qn) (1− Φ(qn))

(1− Φ(qn))2

)
. (2.24)

As in previous examples, we can use a projected version of (2.23). Consistency of

the estimator µn then follows.

Proposition 2.4.3. Suppose that (an)∞n=0 and (bn)∞n=0 are bounded, and that µn is

updated using a projected version of (2.23), while σ2
n is updated using (2.24). Then,

µn → θ almost surely.
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Proof. Define

Bn+1 ,
(
B

(1)
n+1, B

(2)
n+1, B

(3)
n+1

)
,

rn =
an − µn

λ
,

sn =
bn − µn

λ
,

Qn(Bn+1, an, bn, µn) = B
(1)
n+1

1

λ

φ(rn)

Φ(rn)
+B

(2)
n+1

1

λ

φ(sn)− φ(rn)

Φ(sn)− Φ(rn)
−B(3)

n+1

1

λ

φ(sn)

1− Φ(sn)
,

βn(Bn+1, an, bn, µn, σ
2
n) = B

(1)
n+1

(
1√

λ2 + σ2
n

φ(pn)

Φ(pn)
− 1

λ

φ(rn)

Φ(rn)

)

+B
(2)
n+1

(
1√

λ2 + σ2
n

φ(qn)− φ(pn)

Φ(qn)− Φ(pn)
− 1

λ

φ(sn)− φ(rn)

Φ(sn)− Φ(rn)

)

−B(3)
n+1

(
1√

λ2 + σ2
n

φ(qn)

1− Φ(qn)
− 1

λ

φ(sn)

1− Φ(sn)

)
.

Since (an)∞n=0 and (bn)∞n=0 are bounded and (µn) is constrained in some finite closed

interval of R, it can be shown (similarly to the proofs of Propositions 2.4.1 and

2.4.2) that there exist two positive constants γ∗, γ
∗ such that, for all n ∈ N,

1

σ2
n

+ γ∗ ≤
1

σ2
n+1

≤ 1

σ2
n

+ γ∗,

whence

1

σ2
0

+ nγ∗ ≤
1

σ2
n

≤ 1

σ2
0

+ nγ∗,

and

∞∑
n=1

σ2
n =∞,

∞∑
n=1

σ4
n <∞,

thus verifying (2.7).

Now, define

Fn , B
(
B1, ..., Bn, µ0, ..., µn, σ

2
0, ..., σ

2
n, a0, ..., an, b0, ..., bn

)
,
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Rn(x) , E(Qn(Bn+1, an, bn, x) | Fn)

= Φ

(
an − θ
λ

)
1

λ

φ
(
an−x
λ

)
Φ
(
an−x
λ

)
+

(
Φ

(
bn − θ
λ

)
− Φ

(
an − θ
λ

))
1

λ

φ
(
bn−x
λ

)
− φ

(
an−x
λ

)
Φ
(
bn−x
λ

)
− Φ

(
an−x
λ

)
−
(

1− Φ

(
bn − θ
λ

))
1

λ

φ
(
bn−x
λ

)
1− Φ

(
bn−x
λ

) .
It is easy to see that Rn(x) = 0 if and only if x = θ, verifying Assumption 2.3.1. The

boundedness of (an)∞n=0 and (bn)∞n=0 straightforwardly implies Assumption 2.3.2.

Observe that, for any n,
φ(an−xλ )
Φ(an−xλ )

,
φ( bn−xλ )−φ(an−xλ )
Φ( bn−xλ )−Φ(an−xλ )

and
φ( bn−xλ )

1−Φ( bn−xλ )
are continu-

ously differentiable with first derivatives taking values in
(
0, 1

λ

]
. The boundedness

of (an) and (bn), together with the mean value theorem, implies the existence of

positive constants C1, C2 satisfying

sup
n∈N
|Qn(Bn+1, an, bn, x)| ≤ C1(1 + |x− θ|),

sup
n∈N
|βn(Bn+1, an, bn, x, σ

2
n)|/σ2

n ≤ C2(1 + |x− θ|).

Consequently, there also exist positive constants C3, C4 satisfying

sup
n∈N

E(Q2
n(Bn+1, an, bn, x) | Fn) ≤ C3(1 + (x− θ)2),

sup
n∈N

E(β2
n(Bn+1, an, bn, x, σ

2
n) | Fn)/σ4

n ≤ C4(1 + (x− θ)2),

whence Assumption 2.3.3 is verified. The desired result then follows by Theorem

2.3.2.

2.4.4 Learning Buyer Valuations in Online Posted-Price Auctions

Reference [1] describes the following model for dynamic pricing in online digital

goods auctions. The sequence (Yn)∞n=1 represents independent buyer valuations of a
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product. The seller sets a sequence (qn)∞n=0 of prices, and the nth price is accepted if

Yn+1 > qn, i.e., the value of the item to the buyer exceeds the price. Otherwise, the

price is rejected and no revenue is earned. The term “demand curve” refers to the

acceptance probability ρ (q) = P (Yn+1 > q) viewed as a function of the price q; two

valuations are i.i.d. given the same price. In revenue management, a commonly-used

model is a linear demand curve [59]

ρ (q) = 1− γq.

The slope γ is unknown and must be learned. We suppose that the prices are

normalized, i.e., qn ∈ [0, 1] for all n, and can then assume that γ ∈ (0, 1). A natural

choice of prior in this setting is the beta distribution γ ∼ Beta (a0, b0). Let In+1 be

a binary variable that equals 1 if the (n+ 1)st buyer accepts the price qn, and zero

otherwise.

The following learning mechanism, based on moment-matching, was proposed

by [1]. Define

µn =
an

an + bn
,

τn = an + bn,

An = µn(1− µn),

Bn = 2(1− qn) + (3− 2qn − 2µnqn + µn)τn + (1− µnqn)2τ 2
n,

Cn = qnτnµn(1− qn)(1 + µnτn),

Dn = qnτn(1− µn)(1 + (1− µn)τn),
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and apply the updating equations

an+1 = an − In+1
Cn
Bn

+ (1− In+1), (2.25)

bn+1 = bn + In+1
Dn

Bn

, (2.26)

τn+1 = an+1 + bn+1, (2.27)

µn+1 = µn −
1

τn + 1

(
In+1

Anqn
1− qnµn

− (1− In+1)
An
µn

)
. (2.28)

Again, we make a slight modification to (2.28) by using a projection operator to

ensure that infn µn > 0 and supn µn < 1. Consistency can then be obtained.

Proposition 2.4.4. Suppose that infn qn > 0 and supn qn < 1, and that µn is

updated using a suitable projected version of (2.28), while (2.25)-(2.27) are used to

update an, bn and τn. Then, µn → γ a.s.

Proof. First, notice that Theorem 2.3.2 still holds if we replace Rm by the interval

(0, 1) with H chosen to be a large enough closed interval in (0, 1) such that µ0, γ ∈ H.

Since we use a projected version of (2.28), the sequence (µn) is constrained in some

interval [µ∗, µ
∗], where 0 < µ∗ < µ∗ < 1. Let

ηn = an(1− µ∗)2 + bn,

En =
ηn + 1

τn + 1
,

Qn(In+1, qn, An, En, µn) = In+1
AnEnqn
1− qnµn

− (1− In+1)
AnEn
µn

.

Then, the updating equation (2.28) can be rewritten as

µn+1 = µn −
1

ηn + 1
Qn(In+1, qn, An, En, µn),
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which is an SA algorithm with no bias term and 1
ηn+1

as the step size. We observe

that

ηn+1 − ηn = (an+1 − an)(1− µ∗)2 + (bn+1 − bn)

=

(
−In+1

Cn
Bn

+ (1− In+1)

)
(1− µ∗)2 + In+1

Dn

Bn

= In+1
Dn − Cn(1− µ∗)2

Bn

+ (1− In+1)(1− µ∗)2.

It is obvious that (1 − µ∗)2 > 0 and Bn, Cn, Dn > 0. Then, since µn ∈ [µ∗, µ
∗] and

0 < infn qn ≤ supn qn < 1, we have Dn − Cn(1 − µ∗)2 > 0 and Dn
Bn
≤ 1. By the

continuity of Bn, Cn and Dn, there exist positive constants η∗ and η∗ such that, for

any n ∈ N,

η∗ ≤ ηn+1 − ηn ≤ η∗,

whence it follows that the sequence (ηn) is monotone increasing and

∞∑
n=1

1

ηn + 1
=∞,

∞∑
n=1

1

(ηn + 1)2
<∞.

Now, define

Fn , B(I1, ..., In, q0, ..., qn, µ0, ..., µn, η0, ..., ηn),

Rn(x) , E(Qn(In+1, qn, An, En, x) | Fn)

= (1− qnγ)
AnEnqn
1− qnx

− qnγ
AnEnqn
qnx

.

Since 0 < An < 1 and (1−µ∗)2 ≤ En ≤ 1, we can see Rn(x) = 0 if and only if x = γ,

thus verifying Assumption 2.3.1. Assumption 2.3.2 is verified straightforwardly from

the facts µn ∈ [µ∗, µ
∗] and 0 < infn qn ≤ supn qn < 1. From the same facts, it follows
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that there exists a positive constant C1 such that

sup
n∈N
|Qn(In+1, qn, An, En, x)| ≤ C1.

Consequently, there exists another positive constant C2 such that

sup
n∈N

E(Q2
n(In+1, qn, An, En, x) | Fn) ≤ C2,

thus verifying Assumption 2.3.3. The desired result follows by Theorem 2.3.2.

2.5 Multivariate Applications

We present three more applications of our convergence analysis to problems

with multivariate priors in which covariance matrices are used to quantify similarities

or differences between unknown values. Section 2.5.1 gives the first consistency proof

for a Bayesian logistic regression method, thus solving a problem that has been

open since at least [20]. Section 2.5.2 proves, for the first time, the convergence

of an approximate value iteration algorithm in a Markov decision problem with

correlated Bayesian beliefs about the values of different states. Section 2.5.3 proves

a new result for ranking and selection with unknown correlation structures.5

2.5.1 Bayesian Logistic Regression

Let (Xn, Yn)∞n=0 be a sequence of pairs consisting of a binary observation

Yn ∈ {0, 1} and a vector Xn ∈ RK of covariates. We assume that the covariates

5It bears repeating that none of these applications fits into the framework of [45]. Sections 2.5.1

and 2.5.2 use multivariate normal priors, but not moment-matching. Section 2.5.3 uses a Wishart

prior to model unknown correlations.

45



(Xn)∞n=0 are drawn independently from some common, but unknown distribution.

The observations (Yn) are independent and satisfy P (Yn = 1 |Xn) = ` (Xn; θ) where

` (x; θ) =
1

1 + exp (−x>θ)
, (2.29)

with θ ∈ RK being a vector of regression coefficients. Equation (2.29) denotes a

standard logistic regression model; in classical statistics, θ has to be learned through

maximum likelihood estimation given a fixed sample of data.

Suppose, however, that we wish to update our estimate of θ after each new

observation. This may happen if these estimates are being used to solve an opti-

mization problem (as in the setting of [60]; for instance, the covariates may rep-

resent product attributes, which help us learn about demand distributions, which

in turn are important for making stocking decisions). A multivariate normal prior

θ ∼ N (µ0,Σ0) allows us to model beliefs about similarities and differences between

the regression coefficients. For instance, suppose that two covariates Xi, Xj are

dummy variables representing two distinct products, and that product i is observed

much more frequently than product j. If the (i, j)th entry of Σ0 is positive, this

suggests a degree of similarity between i and j, so that we can make use of what we

have learned about i when we do finally observe j. See [7] for an example of such

an application.

Unfortunately, the multivariate normal prior is not conjugate with the binary

observations encountered in logistic regression. For this reason, researchers going

back to at least [20] have used approximate Bayesian methods to create tractable

updates. The predominant approach in this literature is to use an update of the
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form

µn+1 = µn − (` (Xn;µn)− Yn+1) Σn+1Xn, (2.30)

Σ−1
n+1 = Σ−1

n + vXnX
T
n . (2.31)

It is easy to see that (2.30)-(2.31) are virtually identical to the well-known recur-

sive least squares update. In other words, the approximation strategy in this case

is to simply treat logistic regression as if it were linear regression; the quantity

` (Xn;µn) − Yn+1 in (2.30) acts as a “residual,” whereas v > 0 is an artificial pa-

rameter standing in for the residual variance (there being no exact analog of this

concept in logistic regression). Later work by [6] showed that (2.30)-(2.31) can be

obtained by applying a first-order Taylor approximation (variational bound) to the

logistic likelihood function, in line with the idea of “linearizing” the logistic regres-

sion model. This and subsequent work focused on computational issues, such as

how to choose v optimally (see also [7]), and never formally studied the consistency

of the procedure.

Using our framework, we obtain (for the first time) the surprising result that

(2.30) is consistent, that is, µn → θ almost surely under (2.30)-(2.31). We first give

the assumptions used in our analysis, then state the result and give the proof.

Assumption 2.5.1. The covariate vectors (Xn)∞n=0 are drawn i.i.d. from a common

distribution satisfying E
(
XnX

T
n

)
= A, where A is a positive definite symmetric

matrix.

Assumption 2.5.2. The sequence (Xn)∞n=0 satisfies 0 < infn ‖Xn‖1 ≤ supn ‖Xn‖1 <

∞ almost surely.
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Together, these assumptions lead to a law of large numbers for the data gener-

ating process, i.e., limn→∞
1
n

∑∞
n=0 XnX

T
n = A almost surely. For simplicity, we also

suppose that the noise parameter v > 0 in (2.30)-(2.31) is some fixed but arbitrary

constant.

Theorem 2.5.1. Suppose Assumptions 2.5.1-2.5.2 hold and µn is updated using

(2.30), while Σn is updated using (2.31). Then µn → θ almost surely.

Proof. Without loss of generality, we assume that θ = 0. Recalling that v > 0 is a

fixed constant, we let B = vA, where A is the matrix from Assumption 2.5.1, and

rewrite (2.30) as

B
1
2µn+1 = B

1
2 (µn − (` (Xn;µn)− Yn+1) Σn+1Xn)

= B
1
2

(
µn −

1

n+ 1
(` (Xn;µn)− Yn+1)

(
(n+ 1)Σn+1 −B−1 + B−1

)
Xn

)
= B

1
2µn −

1

n+ 1
(` (Xn;µn)− Yn+1) B−

1
2Xn (2.32)

− 1

n+ 1
(` (Xn;µn)− Yn+1) B

1
2

(
(n+ 1)Σn+1 −B−1

)
Xn. (2.33)

We will demonstrate the convergence of the transformed sequence
(
B

1
2µn

)
, which

implies the consistency of the original sequence. Equations (2.32)-(2.33) represent

a stochastic approximation algorithm; we define

Fn , B (Y1, ..., Yn, X0, ..., Xn, µ0, ..., µn,Σ0, ...,Σn) ,

Rn (µ) , E
(

(` (Xn;µ)− Yn+1) B−
1
2Xn|Fn

)
=

((
1

1 + e−XT
n µ
− 1

)
1

2
+

1

1 + e−XT
n µ

1

2

)
B−

1
2Xn

=
1

2

1− e−XT
n µ

1 + e−XT
n µ

B−
1
2Xn.
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The structure of Rn poses the main technical challenge for the proof, as Assumption

2.3.1 is not applicable; instead of θ = 0 being the unique root of Rn for all n, we

have Rn (µ) = 0 if and only if XT
n µ = 0 individually for each n. This also introduces

complications for the other assumptions in Section 2.3, which are expressed in terms

of the unique root. Nonetheless, the overall structure of the proof is the same as that

of Theorem 2.3.3; we discuss how the remaining assumptions should be modified and

then complete the argument.

Convexity condition. We calculate the inner product of the iterate B
1
2µn and

the gradient in (2.32), yielding

(
B

1
2µn

)T
(` (Xn;µn)− Yn+1) B−

1
2Xn = (` (Xn;µn)− Yn+1)µTnXn.

Taking the conditional expectation, we find

E
(
(` (Xn;µn)− Yn+1)µTnXn | Fn

)
=

1

2
µTnXn

1− e−XT
n µn

1 + e−XT
n µn
≥ 0, (2.34)

and, for ε > 0 and n = 1, 2, ..., we also have

inf
(XT

n µ)2>ε,n∈N

1

2
XT
n µ

1− e−XT
n µ

1 + e−XT
n µ

> 0, (2.35)

the relevant analog of the convexity condition in Assumption 2.3.2.

Bias condition. Recall that (2.33) serves as the bias term. From the LLN

obtained from Assumptions 2.5.1 and 2.5.2, we have

(n+ 1) Σn+1 −B−1 → 0, (2.36)

suggesting that the bias eventually vanishes. However, analogously to Assumption

2.3.4, it is necessary to ensure that this happens fast enough in some sense. This is

49



established in the following auxiliary technical lemma, which is proved right after

the current proof,

Lemma 2.5.1. For p = 1, 2,

∞∑
n=1

1

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥
p

< ∞,

∞∑
n=1

1

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥2

p

< ∞.

Remainder of proof. Similarly to Theorem 2.3.3, we calculate

∥∥∥B 1
2µn+1

∥∥∥2

2

= µTn+1Bµn+1

=
∥∥∥B 1

2µn

∥∥∥2

2
+

1

(n+ 1)2
(` (Xn;µn)− Yn+1)2

∥∥∥B− 1
2Xn

∥∥∥2

2
(2.37)

+
1

(n+ 1)2
(` (Xn;µn)− Yn+1)2

∥∥∥B 1
2

(
(n+ 1)Σn+1 −B−1

)
Xn

∥∥∥2

2
(2.38)

− 2

n+ 1
(` (Xn;µn)− Yn+1)XT

n µn (2.39)

− 2

n+ 1
(` (Xn;µn)− Yn+1)µTnB

(
(n+ 1)Σn+1 −B−1

)
Xn (2.40)

+
2

(n+ 1)2
(` (Xn;µn)− Yn+1)2XT

n

(
(n+ 1)Σn+1 −B−1

)
Xn. (2.41)

From (2.36) and the boundedness of (Xn) (Assumption 2.5.2), we can bound terms

in (2.37), (2.38), and (2.41): there must exist a positive constant C1 such that, for

all n,

(` (Xn, µn)− Yn+1)2
∥∥∥B− 1

2Xn

∥∥∥2

2
≤ C1,

(` (Xn, µn)− Yn+1)2
∥∥∥B 1

2

(
(n+ 1)Σn+1 −B−1

)
Xn

∥∥∥2

2
≤ C1,

2 (` (Xn, µn)− Yn+1)2XT
n

(
(n+ 1)Σn+1 −B−1

)
Xn ≤ C1.
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We now handle (2.40); applying the Cauchy-Schwarz inequality, we have

− 2

n+ 1
(` (Xn, µn)− Yn+1)µTnB

(
(n+ 1)Σn+1 −B−1

)
Xn

≤ 2

n+ 1
|` (Xn, µn)− Yn+1|

∥∥∥B 1
2µn

∥∥∥
2

∥∥∥B 1
2

(
(n+ 1)Σn+1 −B−1

)
Xn

∥∥∥
2

=

(
2

(n+ 1)
5
8

|` (Xn, µn)− Yn+1|
∥∥∥B 1

2µn

∥∥∥
2

)

×

(
1

(n+ 1)
3
8

∥∥∥B 1
2

(
(n+ 1)Σn+1 −B−1

)
Xn

∥∥∥
2

)
≤ 4

(n+ 1)
5
4

(` (Xn, µn)− Yn+1)2
∥∥∥B 1

2µn

∥∥∥2

2

+
1

(n+ 1)
3
4

∥∥∥B 1
2

(
(n+ 1)Σn+1 −B−1

)
Xn

∥∥∥2

2
. (2.42)

We now bound each of the terms in (2.42). First, there exists a positive constant

C2 such that

4

(n+ 1)
5
4

(` (Xn, µn)− Yn+1)2
∥∥∥B 1

2µn

∥∥∥2

2
≤ C2

(n+ 1)
5
4

∥∥∥B 1
2µn

∥∥∥2

2
.

Second, by Assumption 2.5.2 together with (2.36), there exists a positive constant

C3 such that

1

(n+ 1)
3
4

∥∥∥B 1
2

(
(n+ 1)Σn+1 −B−1

)
Xn

∥∥∥2

2

=
1

(n+ 1)
3
4

∥∥∥∥B 1
2 (n+ 1)Σn+1

(
1

n+ 1
Σ−1
n+1 −B

)
B−1Xn

∥∥∥∥2

2

≤ 1

(n+ 1)
3
4

∥∥∥B 1
2

∥∥∥2

2
‖(n+ 1)Σn+1‖2

2

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥2

2

∥∥B−1
∥∥2

2
‖Xn‖2

2

≤ C3

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥2

2

,

where the first inequality holds because of the submultiplicativity of the norm ‖·‖2.

Thus, the desired bound on (2.40) is given by

− 2

n+ 1
(` (Xn;µn)− Yn+1)µTnB

(
(n+ 1)Σn+1 −B−1

)
Xn
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≤ C2

(n+ 1)
5
4

∥∥∥B 1
2µn

∥∥∥2

2
+

C3

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥2

2

.

Putting together the bounds on (2.37)-(2.41), we obtain

∥∥∥B 1
2µn+1

∥∥∥2

2
≤

∥∥∥B 1
2µn

∥∥∥2

2
+

3C1

(n+ 1)2
− 2

n+ 1
(` (Xn;µn)− Yn+1)XT

n µn

+
C2

(n+ 1)
5
4

∥∥∥B 1
2µn

∥∥∥2

2
+

C3

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥2

2

≤
∥∥∥B 1

2µn

∥∥∥2

2

(
1 +

C2

(n+ 1)
5
4

)
+

3C1

(n+ 1)2
+

C3

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥2

2

− 2

n+ 1
(` (Xn;µn)− Yn+1)XT

n µn, (2.43)

where the final term in (2.43) is carried over from (2.39). Taking the conditional

expectation, we obtain

E
(∥∥∥B 1

2µn+1

∥∥∥2

2
|Fn
)
≤

∥∥∥B 1
2µn

∥∥∥2

2

(
1 +

C2

(n+ 1)
5
4

)
+

3C1

(n+ 1)2

+
C3

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥2

2

− 1

n+ 1

1− e−XT
n µn

1 + e−XT
n µn

XT
n µn.

It is obvious that

∑
n

C2

(n+ 1)
5
4

<∞,

and by Lemma 2.5.1, we also have

∑
n

3C1

(n+ 1)2
+

C3

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥2

2

<∞.

These facts together with (2.34) enable us to apply Theorem 1 of [56]. It

follows that limn→∞

∥∥∥B 1
2µn

∥∥∥2

2
exists and

∞∑
n=0

1

n+ 1

1− e−XT
n µn

1 + e−XT
n µn

XT
n µn <∞
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almost surely. Therefore, for every sample path, there must exist a subsequence(
XT
nk
µnk
)

of
(
XT
n µn

)
such that, as k →∞, XT

nk
µnk → 0. On the other hand, since

limn→∞

∥∥∥B 1
2µn

∥∥∥2

2
exists, the sequence (µn) is bounded (although the precise value of

this bound depends on the sample path). Therefore, there must exist a subsequence(
µnkj

)
of (µnk) such that, as j → ∞, we have µnkj → ν where ν is some fixed

vector. Applying Assumption 2.5.2, we have

lim
j→∞

∣∣∣XT
nkj
ν
∣∣∣ = lim

j→∞

∣∣∣XT
nkj

(
ν − µnkj + µnkj

)∣∣∣
≤ lim

j→∞

∣∣∣XT
nkj

(
ν − µnkj

)∣∣∣+ lim
j→∞

∣∣∣XT
nkj
µnkj

∣∣∣
= 0.

Thus, for any arbitrary ε > 0, there exists an integer J such that, for all j ≥ J ,∣∣∣XT
nkj
ν
∣∣∣ < ε. (2.44)

However, since
(
Xnkj

)∞
j=J

is also an infinite sequence of i.i.d. samples from the

distribution of X, there must exist K linearly independent vectors Xnkj1
, ..., XnkjK

from
(
Xnkj

)∞
j=J

that can be a basis of RK . To show this, suppose that all
(
Xnkj

)∞
j=J

come from a subspace V of RK and V 6= RK ; then, there must be a nonzero vector

γ ∈ V ⊥ such that

γTAγ = γT

(
lim
J ′→∞

1

J ′

J ′∑
j=J

Xnkj
XT
nkj

)
γ

= lim
J ′→∞

1

J ′

J ′∑
j=J

(
XT
nkj
γ
)2

= 0,

where the first equality holds by Assumption 2.5.2, but the last line contradicts

Assumption 2.5.1, which holds that A is positive definite.
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Then, to satisfy (2.44), since ε can be arbitrarily small, by Assumption 2.5.2,

ν has to be the zero vector. Thus, µnkj → 0, so

lim
j→∞

∥∥∥B 1
2µnkj

∥∥∥2

2
= 0,

but
(
µnkj

)
is a subsequence of (µn) and limn→∞

∥∥∥B 1
2µn

∥∥∥2

2
exists; therefore,

∥∥∥B 1
2µn

∥∥∥2

2
→

0, whence µn → 0 a.s., as desired.

Proof of Lemma 2.5.1. For notational convenience, let Mn = vXnX
T
n . From (2.31),

we obtain

lim
n→∞

1

n+ 1
Σ−1
n+1 = lim

n→∞

1

n+ 1

(
Σ−1

0 + v
n∑
k=0

XkX
T
k

)

= v lim
n→∞

1

n+ 1

n∑
k=0

XkX
T
k

= vA

= B, (2.45)

where the third equality holds because of Assumption 2.5.2. For any two integers

i, j ∈ {1, ..., K}, denote the (i, j)th element of Σ−1
n+1 by

(
Σ−1
n+1

)(i,j)
. We will first

show that

∞∑
n=1

1

(n+ 1)
3
4

∣∣∣∣ 1

n+ 1

(
Σ−1
n+1

)(i,j) −B(i,j)

∣∣∣∣ <∞. (2.46)

By Kolmogorov’s three-series theorem [61], the convergence of (2.46) follows

from the convergence of the three series

∑
P (|ξn| ≥ c),

∑
E(ξn1{|ξn|≤c}),

∑
V ar(ξn1{|ξn|≤c}),

where c is some positive constant and

ξn =
1

(n+ 1)
3
4

∣∣∣∣ 1

n+ 1

(
Σ−1
n+1

)(i,j) −B(i,j)

∣∣∣∣
54



=
1

(n+ 1)
3
4

∣∣∣∣∣∣ 1

n+ 1

(
Σ−1

0 + v

n∑
k=0

XkX
T
k

)(i,j)

−B(i,j)

∣∣∣∣∣∣
=

1

(n+ 1)
3
4

∣∣∣∣∣ 1

n+ 1

n∑
k=0

(
M

(i,j)
k −B(i,j)

)
+

1

n+ 1

(
Σ−1

0

)(i,j)

∣∣∣∣∣ . (2.47)

To show the convergence of the first series, notice that by (2.45), ξn = 1

(n+1)
3
4
O(1) =

o(1). Thus, there must exist a large enough positive constant c such that ξn < c for

all n. It then follows that P (|ξn| ≥ c) = 0 for all n, whence the first series converges.

Next, we show convergence of the last (third) series. From (2.47), we have

∑
V ar(ξn1{|ξn|≤c})

=
∑

V ar(ξn)

=
∞∑
n=0

V ar

(
1

(n+ 1)
3
4

∣∣∣∣∣ 1

n+ 1

n∑
k=0

(
M

(i,j)
k −B(i,j)

)
+

1

n+ 1

(
Σ−1

0

)(i,j)

∣∣∣∣∣
)

=
∞∑
n=0

1

(n+ 1)
3
2

V ar

(∣∣∣∣∣ 1

n+ 1

n∑
k=0

(
M

(i,j)
k −B(i,j)

)
+

1

n+ 1

(
Σ−1

0

)(i,j)

∣∣∣∣∣
)

=
∞∑
n=0

1

(n+ 1)
7
2

V ar

(∣∣∣∣∣
n∑
k=0

(
M

(i,j)
k −B(i,j)

)
+
(
Σ−1

0

)(i,j)

∣∣∣∣∣
)

≤
∞∑
n=0

1

(n+ 1)
7
2

E

(
n∑
k=0

(
M

(i,j)
k −B(i,j)

)
+
(
Σ−1

0

)(i,j)

)2

≤
∞∑
n=0

2

(n+ 1)
7
2

E

(
n∑
k=0

(
M

(i,j)
k −B(i,j)

))2

+
((

Σ−1
0

)(i,j)
)2


=

∞∑
n=0

2

(n+ 1)
7
2

E

(
n∑
k=0

(
M

(i,j)
k −B(i,j)

))2

+
∞∑
n=0

2
((

Σ−1
0

)(i,j)
)2

(n+ 1)
7
2

.

To handle the second term on the last line, it is obvious that

∞∑
n=0

2
((

Σ−1
0

)(i,j)
)2

(n+ 1)
7
2

<∞.

To handle the first term, by Assumptions 2.5.1 and 2.5.2, there must exist a large
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enough positive constant C1 such that

E

(
n∑
k=0

(
M

(i,j)
k −B(i,j)

))2

= E

(
n∑
k=0

(
M

(i,j)
k −B(i,j)

)2

+ 2
∑

0≤k<k′≤n

(
M

(i,j)
k −B(i,j)

)(
M

(i,j)
k′ −B(i,j)

))

=
n∑
k=0

E
(
M

(i,j)
k −B(i,j)

)2

+ 2
∑

0≤k<k′≤n

E
(
M

(i,j)
k −B(i,j)

)
E
(
M

(i,j)
k′ −B(i,j)

)
=

n∑
k=0

E
(
M

(i,j)
k −B(i,j)

)2

≤ (n+ 1)C1, (2.48)

where the second and third equality hold from Assumption 2.5.1 and the first in-

equality holds from Assumption 2.5.2. Thus, together we have

∑
V ar(ξn1{|ξn|≤c}) ≤

∞∑
n=0

2

(n+ 1)
7
2

E

(
n∑
k=0

(
M

(i,j)
k −B(i,j)

))2

+
∞∑
n=0

2
((

Σ−1
0

)(i,j)
)2

(n+ 1)
7
2

≤
∞∑
n=0

2C1

(n+ 1)
5
2

+
∞∑
n=0

2
((

Σ−1
0

)(i,j)
)2

(n+ 1)
7
2

<∞,

showing the convergence of the third series.

To show the convergence of the second series, from (2.47) we have

∑
E(ξn1{|ξn|≤c}) =

∑
E(ξn)

=
∞∑
n=0

E

(
1

(n+ 1)
3
4

∣∣∣∣∣ 1

n+ 1

n∑
k=0

(
M

(i,j)
k −B(i,j)

)
+

1

n+ 1

(
Σ−1

0

)(i,j)

∣∣∣∣∣
)

=
∞∑
n=0

1

(n+ 1)
3
4

E

(∣∣∣∣∣ 1

n+ 1

n∑
k=0

(
M

(i,j)
k −B(i,j)

)
+

1

n+ 1

(
Σ−1

0

)(i,j)

∣∣∣∣∣
)

=
∞∑
n=0

1

(n+ 1)
7
4

E

(∣∣∣∣∣
n∑
k=0

(
M

(i,j)
k −B(i,j)

)
+
(
Σ−1

0

)(i,j)

∣∣∣∣∣
)

≤
∞∑
n=0

1

(n+ 1)
7
4

(
E

∣∣∣∣∣
n∑
k=0

(
M

(i,j)
k −B(i,j)

)∣∣∣∣∣+
∣∣∣(Σ−1

0

)(i,j)
∣∣∣)
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≤
∞∑
n=0

1

(n+ 1)
7
4


√√√√E

(
n∑
k=0

(
M

(i,j)
k −B(i,j)

))2

+
∣∣∣(Σ−1

0

)(i,j)
∣∣∣


=
∞∑
n=0

1

(n+ 1)
7
4

√√√√E

(
n∑
k=0

(
M

(i,j)
k −B(i,j)

))2

+
∞∑
n=0

∣∣∣(Σ−1
0

)(i,j)
∣∣∣

(n+ 1)
7
4

.

To handle the second term on the last line, we note that

∞∑
n=0

∣∣∣(Σ−1
0

)(i,j)
∣∣∣

(n+ 1)
7
4

<∞.

To handle the first term, by (2.48) we have√√√√E

(
n∑
k=0

(
M

(i,j)
k −B(i,j)

))2

≤
√

(n+ 1)C1.

Thus, together we have

∑
E(ξn1{|ξn|≤c}) ≤

∞∑
n=0

1

(n+ 1)
7
4

√√√√E

(
n∑
k=0

(
M

(i,j)
k −B(i,j)

))2

+
∞∑
n=0

∣∣∣(Σ−1
0

)(i,j)
∣∣∣

(n+ 1)
7
4

≤
∞∑
n=0

√
C1

(n+ 1)
5
4

+
∞∑
n=0

∣∣∣(Σ−1
0

)(i,j)
∣∣∣

(n+ 1)
7
4

<∞,

proving the convergence of the second series. Therefore, (2.46) holds for any two

integers i, j ∈ {1, ..., K}, so we have

∞∑
n=1

1

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥
1

≤
∞∑
n=1

1

(n+ 1)
3
4

∑
i,j

∣∣∣∣ 1

n+ 1

(
Σ−1
n+1

)(i,j) −B(i,j)

∣∣∣∣
=

∑
i,j

∞∑
n=1

1

(n+ 1)
3
4

∣∣∣∣ 1

n+ 1

(
Σ−1
n+1

)(i,j) −B(i,j)

∣∣∣∣
< ∞.

Now from (2.45), there must exist a large enough integer N such that, for all

n ≥ N , ∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥
1

≤ 1.
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Then,

∑
n≥N

1

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥2

1

≤
∑
n≥N

1

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥
1

,

whence

∞∑
n=1

1

(n+ 1)
3
4

∥∥∥∥ 1

n+ 1
Σ−1
n+1 −B

∥∥∥∥2

1

< ∞.

For p = 2, since ‖·‖2 ≤
√
K ‖·‖1, we have the desired results.

2.5.2 Reinforcement Learning with Correlated Beliefs

Consider a Markov decision process [62] with finite state space S, finite decision

space X , and single-period reward function C : S × X → R with discount factor

γ ∈ (0, 1). The maximum cumulative infinite-horizon discounted reward obtainable

from state s ∈ S is given by the well-known Bellman equation [22]

V (s) = max
x

C (s, x) + γ
∑
s′

P (s′|s, x)V (s′) .

In reinforcement learning [63], it is useful to redefine V as a function of a state-action

pair, i.e.,

V (s, x) = C (s, x) + γ
∑
s′

P (s′|s, x)
(

max
x′

V (s′, x′)
)
. (2.49)

The optimal action to take in state s is given by arg maxx V (s, x). In practice,

however, (2.49) is difficult to solve as the state and action spaces may be large and

the transition probabilities may be completely unknown.

Approximate value iteration algorithms address this issue by solving (2.49)

approximately. Suppose that we are in state sn in the nth stage of the algorithm,
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and choose the action xn. The next state sn+1 is then drawn from the transition

distribution P (·|sn, xn) and observed. We then compute the quantity

vn+1 = C (sn, xn) + γmax
x

V̄n (sn+1, x) , (2.50)

and interpret this as an approximate observation of the unknown value V (sn, xn),

bootstrapped from an existing approximation function V̄n. Some form of stochastic

approximation can then be used to smooth vn+1 together with V̄n (sn, xn). If every

state-action pair is visited infinitely often, SA is provably convergent [64–66] despite

the fact that (2.50) is a biased estimate of V (sn, xn).

However, if the state and action spaces are large, convergence may be too

slow for any practical time horizon [67], driving interest in “spreading” methods

that are able to learn about multiple state-action pairs from one observation [68].

For this purpose, [46] proposed the following approximate Bayesian scheme. We

begin with the multivariate normal prior V ∼ N
(
V̄0,Σ0

)
, where V̄0 is our initial

approximation of V and Σ0 includes correlated beliefs about different state-action

pairs. After calculating (2.50), we update

V̄n+1 (s, x) = V̄n (s, x) (2.51)

−
Σn ((s, x) , (sn, xn))

(
V̄n (sn, xn)− vn+1

)
λ2
n + Σn ((sn, xn) , (sn, xn))

, (2.52)

Σn+1 ((s, x) , (s′, x′)) = Σn ((s, x) , (s′, x′)) (2.53)

−Σn ((s, x) , (sn, xn)) Σn ((sn, xn) , (s′, x′))

λ2
n + Σn ((sn, xn) , (sn, xn))

, (2.54)

for all state-action pairs (s, x) ∈ S × X . If vn+1 were an unbiased observation of

V (sn, xn) with variance λ2
n, (2.52)-(2.54) would describe a conjugate model. How-

ever, no such unbiased observation is available, so we simply apply this update with
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the biased observation from (2.50), treating λ2
n as a tunable parameter (analogous to

a stepsize sequence). We note that, in practice, Σn would be expensive to store if the

state and action spaces are large; however, the concept of the correlated Bayesian

model can potentially be extended to more compact belief representations [69]. Here,

we focus on applying our theory from Section 2.3 to show convergence in the base

model where the value function is represented by a lookup table.

If Σ0 is diagonal, (2.52) is equivalent to recursive sample averaging and thus

is provably convergent by standard SA theory [70]. We will prove convergence for

a modified version of (2.52)-(2.54) that includes correlations (non-diagonal priors).

For our analysis, we work with the sequence

λ2
n = (n+ 1)Σn ((sn, xn) , (sn, xn)) .

We also impose some additional assumptions on the prior covariance matrix Σ0.

The prior covariances are crucial to the asymptotic performance of the procedure

since they govern the magnitude of the effect that an observation of (s, x) can have

on other state-action pairs (this issue also arises in the analysis of conjugate models;

see [71]).

Assumption 2.5.3. The prior covariance matrix Σ0 satisfies

Σ0 ((s, x) , (s, x)) > 0, ∀ (s, x),

|Σ0 ((s, x) , (s′, x′)) /Σ0 ((s, x) , (s, x))| ≤
√
δ, ∀ (s, x) 6= (s′, x′) ,

where δ ∈ [0, 1) is a constant.

Given the state-action pair (sn, xn) visited in the nth stage, we propose the
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following update

V̄n+1 (sn, xn) = V̄n (sn, xn)− 1

n+ 2

(
V̄n (sn, xn)− vn+1

)
, (2.55)

V̄n+1(s, x) = V̄n(s, x)

− 1

n+ 2

Σn ((s, x) , (sn, xn))

Σn ((sn, xn) , (sn, xn))

×
(
V̄n (sn, xn)− vn+1

)
, (2.56)

Σn+1 ((sn, xn) , (sn, xn)) =
n+ 1

n+ 2
Σn ((sn, xn) , (sn, xn)) , (2.57)

Σn+1 ((s, x) , (sn, xn)) =
n+ 1

n+ 2
Σn ((s, x) , (sn, xn)) , (2.58)

Σn+1 ((s, x) , (s, x)) = Σn ((s, x) , (s, x))

−Σn ((s, x) , (sn, xn)) Σn ((sn, xn) , (s, x))

(n+ 2)Σn ((sn, xn) , (sn, xn))
, (2.59)

Σ̃n+1 ((s, x) , (s′, x′)) = Σn ((s, x) , (s′, x′))

−Σn ((s, x) , (sn, xn)) Σn ((sn, xn) , (s′, x′))

(n+ 2)Σn ((sn, xn) , (sn, xn))
,

Σn+1 ((s, x) , (s′, x′)) = sgn
(
Σ̃n+1 ((s, x) , (s′, x′))

)
×min

{∣∣∣∣Σn+1 ((s′, x′) , (s′, x′)) Σn ((s, x) , (s′, x′))

Σn ((s′, x′) , (s′, x′))

∣∣∣∣ ,∣∣∣∣Σn+1 ((s, x) , (s, x)) Σn ((s, x) , (s′, x′))

Σn ((s, x) , (s, x))

∣∣∣∣ ,∣∣∣Σ̃n+1 ((s, x) , (s′, x′))
∣∣∣} , (2.60)

for (s, x) 6= (s′, x′) 6= (sn, xn), with sgn(x) being the sign function that equals zero

if x equals zero and x/|x| otherwise. These equations are mostly identical to (2.52)-

(2.54), with the exception of (2.60), which is slightly modified to ensure that the

absolute values of the ratios of the off-diagonal entries to the diagonal entries of Σn
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are decreasing in n and satisfy

sup
n∈N,∀(s,x)6=(s′,x′)

∣∣∣∣Σn ((s, x) , (s′, x′))

Σn ((s, x) , (s, x))

∣∣∣∣ ≤ √δ. (2.61)

This modification is needed to handle some technical issues in the convergence proof.

We note, however, that the modified update is not much harder to implement than

the original one, and there would be little difference to a practitioner looking to use

an approximate Bayesian method for its practical benefits.

Let In(s, x) be a binary variable that equals 1 if (sn, xn) = (s, x) and zero

otherwise, and define Tn(s, x) ,
∑n

t=0 It(s, x) to be the number of visits to (s, x) by

time n. Two more assumptions are imposed: Assumption 2.5.4 is trivially satisfied

for a finite state and action space, while Assumption 2.5.5 is a regularity condition

requiring sufficient exploration of each state-action pair.

Assumption 2.5.4.

sup
∀(s,x)

|C(s, x)| ≤ C∗. (2.62)

Assumption 2.5.5. For every state-action pair (s, x),

Tn(s, x) + 1

n+ 1
≥ λ, ∀ n ∈ N, (2.63)

where λ ∈ (0, 1) is a constant.

Finally, we use a projected version of (2.55)-(2.56) given by

V̄n+1(s, x) = ΠH

(
V̄n(s, x)− 1

n+ 2

Σn ((s, x) , (sn, xn))

Σn ((sn, xn) , (sn, xn))

(
V̄n (sn, xn)− vn+1

))
,

(2.64)
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where K is the cardinality of S × X and H = [−M,M ]K with M taken to be

large enough such that V̄0, V ∈ H. We prove that (2.64) is consistent. The proof

integrates Theorem 2.3.3 with the theoretical approach of [65].

Theorem 2.5.2. Suppose Assumptions 2.5.3-2.5.5 hold, and V̄n is updated using

(2.64), while Σn is updated using (2.57)-(2.60). Then V̄n → V almost surely.

Proof. Without loss of generality, let V = 0. Define

Fn , B(v1, ..., vn, V̄0, ..., V̄n,Σ0, ...,Σn),

fix an arbitrary state-action pair (s, x) and define

Qn(V̄n,Σn, vn+1) =
(
V̄n(s, x)− E (vn+1 | Fn)

)
In(s, x),

qn(V̄n,Σn, vn+1) = (E (vn+1 | Fn)− vn+1) In(s, x),

βn(V̄n,Σn, vn+1) =
∑

(s′,x′)6=(s,x)

(
Σn((s, x), (s′, x′))

Σn((s′, x′) , (s′, x′))

(
V̄n (s′, x′)− vn+1

)
In (s′, x′)

)
.

Then, keeping (s, x) fixed, (2.64) can be rewritten as

V̄n+1(s, x) = ΠH

(
V̄n(s, x)− Qn(V̄n,Σn, vn+1) + qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

)
.

We first show the convergence of

Wn+1(s, x) , Wn(s, x)− Wn(s, x)In(s, x) + qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

to zero, which will be needed for the convergence of V̄n. This auxiliary technical

lemma is proved right after the current proof.

Lemma 2.5.2. Suppose Assumptions 2.5.3-2.5.5 hold, and V̄n is updated using

(2.64), while Σn is updated using (2.57)-(2.60). Then, Wn(s, x)→ 0 a.s.
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We will now use Lemma 2.5.2 to show the convergence of V̄n. For any n0 ≥ 0,

define Wn0;n0(s, x) , 0 and

Wn+1;n0(s, x) , Wn;n0(s, x)− Wn;n0(s, x)In(s, x) + qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

for n ≥ n0. Then, combining Lemma 2 in [65] with Lemma 2.5.2 above, it follows

that, for every µ > 0, there exists some positive integer N2 such that

|Wn;n0(s, x)| ≤ µ (2.65)

for all n0 ≥ N2 and n ≥ n0.

We now use an induction argument resembling that of [65]. Since sup
∣∣V̄n(s, x)

∣∣ ≤
M , there exists some positive constant D0 such that ‖V̄n‖∞ ≤ D0 for all n. Because

γ ∈ (0, 1), we can take some small enough ρ ∈ (0, 1) such that γ(1 + 3ρ) < 1. Let

Dk+1 = γ(1 + 3ρ)Dk. Then, it is obvious that Dk → 0, as k →∞.

Now suppose there exists some positive integer nk such that ‖V̄n‖∞ ≤ Dk for

all n ≥ nk. By (2.65), we can choose τk ≥ nk such that

|Wn;τk(s, x)| ≤ γρDk

for all (s, x) and all n ≥ τk. For n ≥ τk, define Yτk(s, x) , Dk and

Yn+1(s, x) , Yn(s, x)− 1

n+ 2
(Yn(s, x)− γDk) In(s, x). (2.66)

Since γ ∈ (0, 1), it is obvious that (Yn(s, x)) is a decreasing sequence with respect

to n and

lim
n→∞

Yn(s, x) = γDk.
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Furthermore, since we have Yn(s, x) ≥ γDk and |Wn;τk(s, x)| ≤ γρDk (with 0 < ρ <

1) for all n ≥ τk, it follows that

Yn(s, x) +Wn;τk(s, x) ≥ 0, −Yn(s, x) +Wn;τk(s, x) ≤ 0 (2.67)

for all n ≥ τk.

Let

F
(
V̄n, sn, xn

)
, E (vn+1 | Fn) = C (sn, xn) + γE

(
max
x

V̄n (sn+1, x) | Fn
)
.

For any V ′, V ′′,

|F (V ′, sn, xn)− F (V ′′, sn, xn)| , γ
∣∣∣E(max

x
V ′ (sn+1, x)−max

x
V ′′ (sn+1, x)

)∣∣∣
≤ γ max

(s,x)∈S×X
|V ′(s, x)− V ′′(s, x)| ,

whence F (V ′, sn, xn) is a contraction mapping of V ′ with respect to the maximum

norm ‖ ·‖∞. By Banach’s fixed-point theorem, F has a unique fixed point, and from

the definition of F , the fixed point is the true value function V , which was assumed

at the beginning to equal zero. Hence we have

|F (V ′, sn, xn)| = ‖F (V ′, sn, xn)‖∞ ≤ γ ‖V ′‖∞ , ∀ V ′ ∈ RK . (2.68)

Now, suppose that −Yn(s, x) + Wn;τk(s, x) ≤ V̄n(s, x) ≤ Yn(s, x) + Wn;τk(s, x)

holds for some n ≥ τk. Then,

V̄n(s, x)− Qn(V̄n,Σn, vn+1) + qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

= V̄n(s, x)−
(
V̄n(s, x)− E (vn+1 | Fn)

)
In(s, x) + qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

= V̄n(s, x)− V̄n(s, x)− E (vn+1 | Fn)

n+ 2
In(s, x)− qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2
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= V̄n(s, x)− V̄n(s, x)

n+ 2
In(s, x)

+
F (V̄n, sn, xn)

n+ 2
In(s, x)− qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

≤ V̄n(s, x)− V̄n(s, x)

n+ 2
In(s, x)

+
γ
∥∥V̄n∥∥∞
n+ 2

In(s, x)− qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

≤ V̄n(s, x)

(
1− 1

n+ 2
In(s, x)

)
+
γDk

n+ 2
In(s, x)− qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

≤ (Yn(s, x) +Wn;τk(s, x))

(
1− 1

n+ 2
In(s, x)

)
+
γDk

n+ 2
In(s, x)− qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

= Yn(s, x)− 1

n+ 2
(Yn(s, x)− γDk) In(s, x)

+Wn;τk(s, x)− Wn;τk(s, x)In(s, x) + qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

= Yn+1(s, x) +Wn+1;τk(s, x),

where the first inequality holds because of (2.68). Together with (2.67), this implies

that

V̄n+1(s, x) = ΠH

(
V̄n(s, x)− Qn(V̄n,Σn, vn+1) + qn(V̄n,Σn, vn+1) + βn(V̄n,Σn, vn+1)

n+ 2

)
≤ Yn+1(s, x) +Wn+1;τk(s, x).

Using a symmetrical argument, we can show that V̄n+1(s, x) ≥ −Yn+1(s, x)+Wn+1;τk(s, x).

Thus, we have −Yn+1(s, x) +Wn+1;τk(s, x) ≤ V̄n+1(s, x) ≤ Yn+1(s, x) +Wn+1;τk(s, x).

When n = τk, we have Yτk(s, x) = Dk and Wτk;τk(s, x) = 0, hence

−Yn(s, x) +Wn;τk(s, x) ≤ V̄n(s, x) ≤ Yn(s, x) +Wn;τk(s, x)
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holds for n = τk. By induction, we have

−Yn(s, x) +Wn;τk(s, x) ≤ V̄n(s, x) ≤ Yn(s, x) +Wn;τk(s, x) (2.69)

for all n ≥ τk.

Since Yn(s, x) → γDk and |Wn;τk(s, x)| ≤ γρDk for all n ≥ τk, (2.69) implies

that

lim sup
n→∞

∣∣V̄n(s, x)
∣∣ ≤ γ(1 + 2ρ)Dk < Dk+1

for every state-action pair (s, x). Hence, there exists some positive integer nk+1 such

that ‖V̄n‖∞ ≤ Dk+1 for all n ≥ nk+1. Thus by induction, we conclude that for every

k, there exists some positive integer nk such that

‖V̄n‖∞ ≤ Dk

for all n ≥ nk. Since Dk → 0 as k →∞, we have Vn → 0, as required.

Proof of Lemma 2.5.2. We introduce the additional notation

A(s, x) , {n : In(s, x) = 1}

and rank the elements of A(s, x) in ascending order to get an increasing sequence

(ζn(s, x)). That is, (ζn(s, x)) is the sequence of time indices for which we are in state

s and choose action x.

Let

Rn (Wn(s, x)) , E(Wn(s, x)In(s, x) + qn(V̄n,Σn, vn+1) | Fn)

= E(Wn(s, x)In(s, x) | Fn) + E((E (vn+1 | Fn)− vn+1) In(s, x) | Fn)

= Wn(s, x)In(s, x),
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where the last equality holds since Wn(s, x) is also Fn-measurable. Then, for all

n ∈ A(s, x), we have Rn(z) = z, hence Rn(z) = 0 if and only if z = 0, whence

Assumption 2.3.1 is verified. Assumption 2.3.2 is verified straightforwardly.

From (2.64), we know that V̄n is uniformly bounded in n. Together with

Assumption 2.5.4, this implies the existence of a positive constant C1 satisfying

sup
n∈N

E
((
zIn(s, x) + qn(V̄n,Σn, vn+1)

)2
+ (βn(V̄n,Σn, vn+1))2 | Fn

)
≤ C1

(
1 + z2

)
for all z. Therefore, in order to apply Theorem 2.3.3, it only remains to show that

the condition (2.18) in Assumption 2.3.4 is satisfied. Due to the boundedness of V̄n

and C, it is sufficient to show that

∞∑
n=0

 1

n+ 2

∑
(s′,x′)6=(s,x)

(∣∣∣∣ Σn((s, x), (s′, x′))

Σn((s′, x′) , (s′, x′))

∣∣∣∣ In (s′, x′)

) <∞. (2.70)

Define

ξn ,
1

n+ 2

∑
(s′,x′)6=(s,x)

(∣∣∣∣ Σn((s, x), (s′, x′))

Σn((s′, x′) , (s′, x′))

∣∣∣∣ In (s′, x′)

)
.

Then, by Kolmogorov’s three-series theorem [61], it is sufficient to show the conver-

gence of the three series

∑
P (|ξn| ≥ c | Fn−1),

∑
E(ξn1{|ξn|≤c} | Fn−1),

∑
V ar(ξn1{|ξn|≤c} | Fn−1),

where c is some positive constant.

From (2.61), by Chebyshev’s inequality, we have

∑
P (|ξn| ≥ c | Fn−1) ≤

∑ δ

c2(n+ 2)2
<∞,

so the first series converges. Similarly, we can see that

∑
V ar(ξn1{|ξn|≤c} | Fn−1) ≤

∑
E
(
(ξn)2 | Fn−1

)
≤
∑ δ

(n+ 2)2
<∞,
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so the last series converges. It remains to show that the second series also converges.

Finally, we show the convergence of the second series. From (2.57)-(2.60), first

we can see that for all (s′, x′) 6= (s, x), the ratio
∣∣∣ Σn((s,x),(s′,x′))
Σn((s′,x′),(s′,x′))

∣∣∣ is decreasing in n.

Now, if (s, x) is the state-action pair observed at the nth stage, we have

E(ξn+11{|ξn+1|≤c} | Fn) ≤ E(ξn+1 | Fn)

=
1

n+ 3

∑
(s′,x′)6=(s,x)

E
(∣∣∣∣ Σn+1 ((s, x) , (s′, x′))

Σn+1 ((s′, x′) , (s′, x′))

∣∣∣∣ In (s′, x′) | Fn
)
,

and

E
(∣∣∣∣ Σn+1 ((s, x) , (s′, x′))

Σn+1 ((s′, x′) , (s′, x′))

∣∣∣∣ | Fn) ≤ E
(
|Σn ((s, x) , (s′, x′))| (1− 1/(n+ 2))

Σn ((s′, x′) , (s′, x′)) (1− δ/(n+ 2))
| Fn

)
=

∣∣∣∣ Σn ((s, x) , (s′, x′))

Σn ((s′, x′) , (s′, x′))

∣∣∣∣ 1− 1/(n+ 2)

1− δ/(n+ 2)
, (2.71)

where the inequality holds because of (2.58), (2.59) and (2.61). Since 0 ≤ δ < 1,

there exists a large enough integer N such that

N ≥ 1

λ (1− δ)
.

Then, for any n, we have

1 +
1

Tn(s, x) + 1
≤ 1 +

1

λ(n+ 1)

≤ 1 +N
1− δ
n+ 1

≤
(

1 +
1− δ
n+ 1

)N
=

(
1− δ

n+2

1− 1
n+2

)N

,

where the first inequality holds because of (2.63). Consequently,

1− 1
n+2

1− δ
n+2

≤
(
Tn(s, x) + 1

Tn(s, x) + 2

) 1
N

,
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whence (2.71) becomes

E
(∣∣∣∣ Σn+1 ((s, x) , (s′, x′))

Σn+1 ((s′, x′) , (s′, x′))

∣∣∣∣ | Fn) ≤ ∣∣∣∣ Σn ((s, x) , (s′, x′))

Σn ((s′, x′) , (s′, x′))

∣∣∣∣ (Tn(s, x) + 1

Tn(s, x) + 2

) 1
N

.

We can take a large enough integer N1 such that (s, x) is the state-action pair

observed at stage N1 and, for all n ≥ N1,

E
(∣∣∣∣ Σn+1 ((s, x) , (s′, x′))

Σn+1 ((s′, x′) , (s′, x′))

∣∣∣∣ | Fn)
≤

∣∣∣∣ Σn ((s, x) , (s′, x′))

Σn ((s′, x′) , (s′, x′))

∣∣∣∣ (Tn(s, x) + 1

Tn(s, x) + 2

) 1
N

≤
∣∣∣∣ ΣN1 ((s, x) , (s′, x′))

ΣN1 ((s′, x′) , (s′, x′))

∣∣∣∣ (TN1(s, x) + 1

TN1(s, x) + 2

) 1
N

· · ·
(
Tn(s, x) + 1

Tn(s, x) + 2

) 1
N

=

∣∣∣∣ ΣN1 ((s, x) , (s′, x′))

ΣN1 ((s′, x′) , (s′, x′))

∣∣∣∣ (TN1(s, x) + 1

Tn(s, x) + 2

) 1
N

≤
∣∣∣∣ ΣN1 ((s, x) , (s′, x′))

ΣN1 ((s′, x′) , (s′, x′))

∣∣∣∣ ( N1 + 2

λ(n+ 1) + 1

) 1
N

≤
√
δ

(
N1 + 2

λ(n+ 1) + 1

) 1
N

.

It follows that

∑
n≥N1

E(ξn+11{|ξn+1|≤c} | Fn) ≤
∑
n≥N1

√
δ

n+ 3

(
N1 + 2

λ(n+ 1) + 1

) 1
N

<∞,

proving the convergence of the second series. Therefore, (2.70) holds and, by Theo-

rem 2.3.3, limn→∞
(
Wζn(s,x)(s, x)

)2
exists and is finite, and

∞∑
n=1

1

n+ 2
Wn(s, x)Rn (Wn(s, x)) =

∞∑
n=1

1

n+ 2
(Wn(s, x))2 In(s, x)

=
∞∑
n=1

1

ζn(s, x) + 2

(
Wζn(s,x)(s, x)

)2

< ∞

almost surely. Then, from (2.63), this implies

lim
n→∞

Wζn(s,x)(s, x) = 0.
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Furthermore, from sup
∣∣V̄n(s, x)

∣∣ ≤M and Assumption 2.5.4, there must exist some

positive constant C2 such that

sup
n∈N,∀(s,x)

∣∣V̄n(s, x)− vn+1

∣∣ ≤ C2.

Together with (2.70), this implies that Wn(s, x)→ 0 for all (s, x), as required.

To our knowledge, Theorem 2.5.2 is the first consistency result for a correlated

Bayesian belief model in the setting of approximate value iteration, where statistical

estimation takes place simultaneously with policy optimization, represented by the

max operator in (2.50). While [72, 73] have studied Gaussian process priors in

dynamic programming, this work dealt with the much simpler problem (from a

statistical perspective) of learning the value of a fixed policy. Despite the richness

of the dynamic programming literature, convergence results for approximate value

iteration tend to be much more difficult to obtain.

2.5.3 Ranking and Selection with Unknown Correlation Structures

Ranking and selection is a fundamental problem class in the simulation lit-

erature [74] that provides a mathematical framework for the study of information

collection. We suppose that there are K design alternatives with unknown values

θ(1), ..., θ(K), and that our goal is to identify arg maxi θ
(i) based on information col-

lected from a limited number of simulation experiments with individual alternatives.

Bayesian statistical models are widely used in this literature [75] because they of-

fer a way to express our uncertainty about the unknown values and quantify how

this uncertainty evolves as more information is collected. Much of the research in
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this area uses simple, conjugate Bayesian models and focuses on the development

of procedures for efficient allocation of the budget [76, 77].

Suppose that we use a multivariate distribution to model our beliefs about θ =(
θ(1), ..., θ(K)

)
. If, for two designs i 6= j, the prior includes correlations between θ(i)

and θ(j), a single simulation experiment with design i will also provide information

about design j. With sufficient correlation in the prior, we will be able to learn

about many alternatives from a much smaller number of simulations. For this

reason, correlated beliefs have a great deal of practical potential [11]; however, the

drawback is that prior correlations are even more difficult to specify accurately than

prior means. Approximate Bayesian models become useful here as a possible tool

for learning both the means and the correlations [5]. In the following, we give a

new analysis of a modified version of the approximate Bayesian procedure proposed

by [38,78].

Let (Yn)∞n=1 be a sequence of i.i.d. samples from the K-dimensional multivari-

ate normal distribution NK (θ,Σ), where both θ and Σ are unknown. We impose

the prior

θ|Σ ∼ NK
(
µ0, q

−1
0 Σ

)
, Σ ∼ W−1

K (B0, b0) .

Here, Σ follows an inverse Wishart distribution [79] with b0 degrees of freedom and

scale matrix B0. The conditional distribution of θ given Σ is multivariate normal

with mean vector µ0 and covariance matrix q−1
0 Σ. It is well-known that, if the

complete vectors (Yn) can be observed, the above model is conjugate [49]. However,

suppose that we can only observe one element of Yn during the nth stage of sampling,
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for instance the kth element Y
(k)
n . In this case, the normal-inverse-Wishart prior is

not conjugate with the scalar normal observation, an issue that we address using

approximate Bayesian inference.

The sequence (qn, bn, µn,Bn) of approximate posterior parameters is constructed

as follows. First, we let

qn = n+ 1, (2.72)

bn = n+K + 1. (2.73)

Suppose that Y
(k)
n+1 is the observation collected in the (n+ 1)st stage of sampling

(i.e., only the kth component of Yn+1 is observable). Then, we use the update

µn+1 = µn −
B

(·,k)
n

B
(k,k)
n

µ
(k)
n − Y (k)

n+1

n+ 2
. (2.74)

Equations (2.72)-(2.74) are taken from [38]. In (2.74), we have already substituted

(2.72) for qn to simplify the computation.

It remains to set an update for Bn. We first impose some assumptions on the

starting prior B0, as in Section 2.5.2.

Assumption 2.5.6. The prior scale matrix B0 satisfies

B
(k,k)
0 ≥ L, ∀ 1 ≤ k ≤ K,∣∣∣B(j,k)

0 /B
(k,k)
0

∣∣∣ ≤ √
1− δ, ∀ 1 ≤ j 6= k ≤ K,

where L > 0 and δ ∈
(

1
2
, 1
]

are constants.

If only the kth element of Yn+1 is observable in the (n+ 1)st stage, we propose

the update

B
(k,k)
n+1 = max

{
B(k,k)
n +

n+ 1

n+ 2

(
µ(k)
n − Y

(k)
n+1

)2

, L(n+ 2)

}
, (2.75)
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B
(j,j)
n+1 = B(j,j)

n +
2

n+ 1

(
B(j,j)
n − B

(j,k)
n B

(k,j)
n

B
(k,k)
n

)

+

(
µ

(k)
n − Y (k)

n+1

)2

(n+ 2)B
(k,k)
n

(
B(j,j)
n + n

B
(j,k)
n B

(k,j)
n

B
(k,k)
n

)
, (2.76)

B
(j,k)
n+1 = sgn

(
B(j,k)
n

)
·min

{∣∣∣∣∣B(j,k)
n

B
(k,k)
n

B
(k,k)
n+1

∣∣∣∣∣ ,
∣∣∣∣∣B(j,k)

n

B
(j,j)
n

B
(j,j)
n+1

∣∣∣∣∣
}
, (2.77)

B̃
(j,i)
n+1 = B(j,i)

n +
2

n+ 1

(
B(j,i)
n − B

(j,k)
n B

(k,i)
n

B
(k,k)
n

)

+

(
µ

(k)
n − Y (k)

n+1

)2

(n+ 2)B
(k,k)
n

(
B(j,i)
n + n

B
(j,k)
n B

(k,i)
n

B
(k,k)
n

)
, (2.78)

B
(j,i)
n+1 = sgn

(
B̃

(j,i)
n+1

)
·min

{∣∣∣B̃(j,i)
n+1

∣∣∣ , ∣∣∣∣∣B(j,i)
n

B
(j,j)
n

B
(j,j)
n+1

∣∣∣∣∣ ,
∣∣∣∣∣B(j,i)

n

B
(i,i)
n

B
(i,i)
n+1

∣∣∣∣∣
}
, (2.79)

for i 6= j 6= k. This update is based on the moment-matching mechanism from [38];

in particular, (2.76) is taken directly from that work (substituting (2.72) and (2.73)

for qn and bn), while (2.78) is the moment-matching update for B
(j,i)
n+1, and the first

term inside the maximum in (2.75) is the moment-matching update for B
(k,k)
n+1 . The

additional modifications that we have introduced are intended to handle technical

issues, as in Section 2.5.2: note that, from (2.77) and (2.79), it follows that the

absolute values of the ratios of the off-diagonal entries to the diagonal entries of Bn

are decreasing in n. From Assumption 2.5.6, it also follows that

sup
n∈N,∀j 6=k

∣∣∣∣∣B(j,k)
n

B
(k,k)
n

∣∣∣∣∣ ≤ √1− δ. (2.80)

Furthermore, from (2.76), we can see that

B
(j,j)
n+1 ≥ B(j,j)

n

(
1 +

2

n+ 1

(
1− B

(j,k)
n B

(k,j)
n

B
(j,j)
n B

(k,k)
n

))

≥ B(j,j)
n

(
1 +

2

n+ 1
δ

)
≥ B(j,j)

n

(
1 +

1

n+ 1

)
,
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which ensures, together with (2.75), that B
(k,k)
n ≥ L (n+ 1) for all k. These modifi-

cations do not make the update much harder to implement, and would make little

difference to a practitioner.

We now present a convergence result for the approximate Bayesian update in

(2.72)-(2.79). Some last preliminary notation and assumptions are needed. Define

I
(k)
n to be a binary variable that equals 1 if the kth element is simulated at the nth

stage and zero otherwise. Define S
(k)
n ,

∑n
t=0 I

(k)
t to be the number of simulations

assigned to k up to time n.

Assumption 2.5.7.

S
(k)
n + 1

n+ 1
≥ γ, ∀ n ∈ N,

where γ ∈ (0, 1] is a constant.

Assumption 2.5.7 essentially requires every alternative to receive a non-zero

proportion of the simulation budget asymptotically. Many allocation policies satisfy

this condition, including optimal computing budget allocation [76] and knowledge

gradients [13].

Finally, we use a projected version of (2.74) given by

µn+1 = ΠH

(
µn −

B
(·,k)
n

B
(k,k)
n

µ
(k)
n − Y (k)

n+1

n+ 2

)
, (2.81)

where H = [−M,M ]K with M taken to be large enough such that µ0, θ ∈ H (again

interpreting θ as a fixed vector, as in previous examples).

Theorem 2.5.3. Let σ2 = supk V ar
(
Y (k)

)
. Suppose Assumptions 2.5.6 and 2.5.7

hold with δ,M,L chosen to satisfy 2δL > 4M2 + σ2. Under the projected update
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(2.81) for the posterior mean, and the update (2.75)-(2.79) for the scale matrix, we

have µn → θ a.s.

Proof. Without loss of generality, let θ = 0. We introduce the additional notation

A(k) ,
{
n : I

(k)
n = 1

}
and rank the elements of A(k) in ascending order to get an

increasing sequence
(
ζ

(k)
n

)
. That is,

(
ζ

(k)
n

)
is the sequence of time stages for which

the kth element is simulated.

Define

Qn(µn,Bn, Yn+1) =
(
µ(k)
n − Y

(k)
n+1

)
I(k)
n ,

βn(µn,Bn, Yn+1) =
∑
j 6=k

(
B

(k,j)
n

B
(j,j)
n

(
µ(j)
n − Y

(j)
n+1

)
I(j)
n

)
,

and rewrite (2.81) as

µ
(k)
n+1 = ΠH

(
µ(k)
n −

1

n+ 2
(Qn(µn,Bn, Yn+1) + βn(µn,Bn, Yn+1))

)
.

In words, if the kth alternative is simulated in the nth stage, we update our beliefs

about k through Qn. Otherwise, k is updated through the “bias” term.

Now define

Fn , B(Y1, ..., Yn, µ0, ..., µn,B0, ...,Bn),

Rn

(
µ(k)
n

)
, E(Qn(µn,Bn, Yn+1) | Fn)

= µ(k)
n I(k)

n .

For all n ∈ A(k), we have Rn(x) = x, whence Rn(x) = 0 if and only if x = 0, thus

verifying Assumption 2.3.1. Assumption 2.3.2 is straightforward to verify.

By (2.81), we have

sup
n∈N,1≤k≤K

∣∣µ(k)
n

∣∣ ≤M.
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This, together with (2.80), implies that there exists a positive constant C1 such that

sup
n∈N

E
(
(Qn(x,Bn, Yn+1))2 + (βn(x,Bn, Yn+1))2 | Fn

)
≤ C1

for all x satisfying supk
∣∣x(k)

∣∣ ≤ M . Therefore, in order to apply Theorem 2.3.3,

it remains only to show that the condition (2.18) in Assumption 2.3.4 is satisfied.

Also, since supn,k

∣∣∣µ(k)
n

∣∣∣ ≤M , it is sufficient to show that

∞∑
n=0

(
1

n+ 2

∑
j 6=k

(∣∣∣∣∣B(k,j)
n

B
(j,j)
n

∣∣∣∣∣ I(j)
n

))
<∞. (2.82)

The remainder of the proof will establish (2.82).

Define

ξn ,
1

n+ 2

∑
j 6=k

(∣∣∣∣∣B(k,j)
n

B
(j,j)
n

∣∣∣∣∣ I(j)
n

)
.

By Kolmogorov’s three-series theorem [61], it is sufficient to show the convergence

of the three series

∑
P (|ξn| ≥ c | Fn−1),

∑
E(ξn1{|ξn|≤c} | Fn−1),

∑
V ar(ξn1{|ξn|≤c} | Fn−1),

where c is some positive constant. From (2.80), by Chebyshev’s inequality, we have

∑
P (|ξn| ≥ c | Fn−1) ≤

∑ 1− δ
c2(n+ 2)2

<∞,

so the first series converges. Similarly, we can see that

∑
V ar(ξn1{|ξn|≤c} | Fn−1) ≤

∑
E
(
(ξn)2 | Fn−1

)
≤
∑ 1− δ

(n+ 2)2
<∞,

so the last series converges. It remains to show that the second series also converges.

77



Recall that, by (2.75)-(2.79), the ratios
∣∣∣B(k,j)

n /B
(j,j)
n

∣∣∣ are decreasing in n for

all j 6= k. If the kth element is chosen at the nth stage, we have

E(ξn+11{|ξn+1|≤c} | Fn) ≤ E(ξn+1 | Fn) =
1

n+ 3

∑
j 6=k

E

(∣∣∣∣∣B(k,j)
n+1

B
(j,j)
n+1

∣∣∣∣∣ I(j)
n | Fn

)
,

and

E

(∣∣∣∣∣B(k,j)
n+1

B
(j,j)
n+1

∣∣∣∣∣ | Fn
)
≤ E


∣∣∣B(k,j)

n

∣∣∣(1 +

(
µ
(k)
n −Y

(k)
n+1

)2
B

(k,k)
n

)
B

(j,j)
n

(
1 + 2δ

n+1

) | Fn



≤

∣∣∣∣∣B(k,j)
n

B
(j,j)
n

∣∣∣∣∣ 1 +
E
((

µ
(k)
n −Y

(k)
n+1

)2
| Fn

)
L(n+1)

1 + 2δ
n+1

≤

∣∣∣∣∣B(k,j)
n

B
(j,j)
n

∣∣∣∣∣ 1 + 4M2+σ2

L(n+1)

1 + 2δ
n+1

, (2.83)

where the first inequality is due to (2.76), (2.77) and (2.80), and the last inequality

holds because
∣∣∣µ(k)
n − θ(k)

∣∣∣ ≤ 2M and supk V ar
(
Y (k)

)
= σ2. Since 2δL > 4M2 +σ2,

there exists a large enough integer N such that

N >
1

γ
(
2δ − 4M2+σ2

L

) .
Then, there exists some integer N1 such that for all n ≥ N1,

n+ 1 +
4M2 + σ2

L
≤ Nγ

(
2δ − 4M2 + σ2

L

)
(n+ 1),

whence

1 ≤ Nγ
2δ − 4M2+σ2

L

n+ 1 + 4M2+σ2

L

(n+ 1)

≤ γ(n+ 1)

(
1 +N

2δ − 4M2+σ2

L

n+ 1 + 4M2+σ2

L

)
− γ(n+ 1)
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≤ γ(n+ 1)

(
1 +

2δ − 4M2+σ2

L

n+ 1 + 4M2+σ2

L

)N

− γ(n+ 1)

= γ(n+ 1)

( n+ 1 + 2δ

n+ 1 + 4M2+σ2

L

)N

− 1


≤

(
S(k)
n + 1

)( n+ 1 + 2δ

n+ 1 + 4M2+σ2

L

)N

− 1


=

(
S(k)
n + 1

)( 1 + 2δ
n+1

1 + (4M2+σ2)/L
n+1

)N

− 1

 ,

where the last inequality holds because of Assumption 2.5.7. Hence we have

1 + (4M2+σ2)/L
n+1

1 + 2δ
n+1

≤

(
S

(k)
n + 1

S
(k)
n + 2

) 1
N

,

and (2.83) becomes

E

(∣∣∣∣∣B(k,j)
n+1

B
(j,j)
n+1

∣∣∣∣∣ | Fn
)
≤

∣∣∣∣∣B(k,j)
n

B
(j,j)
n

∣∣∣∣∣
(
S

(k)
n + 1

S
(k)
n + 2

) 1
N

.

We can take a large enough integer N2 such that N2 ≥ N1 and the kth element

is chosen at stage N2. Then, for all n ≥ N2,

E

(∣∣∣∣∣B(k,j)
n+1

B
(j,j)
n+1

∣∣∣∣∣ | Fn
)
≤

∣∣∣∣∣B(k,j)
n

B
(j,j)
n

∣∣∣∣∣
(
S

(k)
n + 1

S
(k)
n + 2

) 1
N

≤

∣∣∣∣∣B
(k,j)
N2

B
(j,j)
N2

∣∣∣∣∣
(
S

(k)
N2

+ 1

S
(k)
N2

+ 2

) 1
N

· · ·

(
S

(k)
n + 1

S
(k)
n + 2

) 1
N

=

∣∣∣∣∣B
(k,j)
N2

B
(j,j)
N2

∣∣∣∣∣
(
S

(k)
N2

+ 1

S
(k)
n + 2

) 1
N

≤

∣∣∣∣∣B
(k,j)
N2

B
(j,j)
N2

∣∣∣∣∣
(

N2 + 2

γ(n+ 1) + 1

) 1
N

≤
√

1− δ
(

N2 + 2

γ(n+ 1) + 1

) 1
N

,

whence

∑
n≥N2

E(ξn+11{|ξn+1|≤c} | Fn) ≤
∑
n≥N2

√
1− δ
n+ 3

(
N2 + 2

γ(n+ 1) + 1

) 1
N

<∞,
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so the second series converges and (2.82) holds.

Therefore, by Theorem 2.3.3, the limit limn→∞

(
θ

(k)
n

)2

exists and is finite.

Furthermore,

∞∑
n=1

1

n+ 2
µ(k)
n Rn

(
µ(k)
n

)
=
∞∑
n=1

1

n+ 2

(
µ(k)
n

)2
I(k)
n =

∞∑
n=1

1

ζ
(k)
n + 2

(
µ

(k)

ζ
(k)
n

)2

<∞

almost surely. Then, from Assumption 2.5.7, there must exist a subsequence

(
µ

(k)

ζ
(k)
nt

)∞
t=1

of
(
µ

(k)

ζ
(k)
n

)∞
n=1

such that

(
µ

(k)

ζ
(k)
nt

)2

→ 0. Since

(
µ

(k)

ζ
(k)
nt

)∞
t=1

is also a subsequence of(
µ

(k)
n

)∞
n=1

, and limn→∞

(
µ

(k)
n

)2

exists, we conclude that

lim
n→∞

(
µ(k)
n

)2
= 0,

which concludes the proof.

2.5.4 Censored Binary Observations with Unknown Mean and Vari-

ance

In this section, we present an extension of the motivating example from Section

2.2 in which both the mean and the variance of the underlying distribution are

unknown and have to be learned from censored binary signals. Because our prior

is now a bivariate distribution, the learning model in Section 2.2 cannot be easily

extended and the moment-matching method no longer yields a tractable algorithm.

Instead, we use a variational bound technique (similar to [6] or [47]) to create a new

tractable approximate Bayesian model for this setting. Section 2.5.4.1 presents this

model and proves its consistency using our theoretical framework from Section 2.3.

Section 2.5.4.2 explains how the model was derived.
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2.5.4.1 Learning Model and Consistency Proof

Consider the normal distribution N (θ, τ−1), and suppose that both the mean

θ and precision τ are unknown. A standard Bayesian model for this setting is the

normal-gamma prior [49]; under this model, we assume that τ ∼ Gamma (α0, β0)

and that the conditional distribution of θ, given τ , isN (µ0, (κ0τ)−1). These assump-

tions characterize the joint prior distribution of (θ, τ) using four belief parameters

(α0, β0, κ0, µ0).

As in Section 2.2, we will assume that only censored samples from the normal

distribution are available. However, since there are now two unknown parameters,

we will need to observe two samples per time period, rather than just one; thus,

suppose that
(
Y

(1)
n , Y

(2)
n

)∞
n=1

is a sequence of i.i.d. pairs, with both components of

each pair drawn independently from N (θ, τ−1), and let

Bn+1 =
(
B

(1)
n+1, B

(2)
n+1

)
=

(
1{

Y
(1)
n+1<b

(1)
n

}, 1{
Y

(2)
n+1<b

(2)
n

})

be a pair of censored binary signals observed at time n. We now require two thresh-

olds b
(1)
n , b

(2)
n per time period, with conditions on these two sequences to be specified

further down.

Essentially, the model in Section 2.2 allows us to learn the likelihood of the

censored signals. When there is only one unknown parameter (e.g., unknown mean

and known variance, as in Section 2.2, or known mean and unknown variance),

this is sufficient to learn its exact value. Now that there are two parameters to be

learned, we require two sequences of observations in order to learn both parameters
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exactly.

Since moment-matching does not yield a computationally tractable solution in

this model, we propose a new approximate Bayesian updating scheme in which the

conditional distribution of (θ, τ) at time n is assumed to be normal-gamma with four

recursively updated parameters (αn, βn, κn, µn). We state the updating equations

here; see Section 2.5.4.2 for the details of how they were derived. First, we let

αn+1 =
1

2
(n+ 1) , (2.84)

κn+1 = n+ 1, (2.85)

identically to the conjugate model in Section 9.6 of [49]. These two parameters

essentially count the number of observations, and we leave their role unchanged.

For the remaining two parameters, we first apply a transformation

ξn , µn

√
αn
βn
, (2.86)

ηn ,
√
αn
βn
, (2.87)

and update

ξn+1 = ξn −
1

n+ 1

∑
i=1,2

B(i)
n+1

φ
(
p

(i)
n

)
Φ
(
p

(i)
n

) − (1−B(i)
n+1

) φ
(
p

(i)
n

)
1− Φ

(
p

(i)
n

)
 ,(2.88)

ηn+1 = ηn

+
1

n+ 1

∑
i=1,2

b(i)
n

B(i)
n+1

φ
(
p

(i)
n

)
Φ
(
p

(i)
n

) − (1−B(i)
n+1

) φ
(
p

(i)
n

)
1− Φ

(
p

(i)
n

)
 ,(2.89)

where p
(i)
n = b

(i)
n ηn − ξn for i = 1, 2. The resulting scheme is statistically consistent,

as shown in the following result.

Proposition 2.5.1. Suppose that (αn, κn, ξn, ηn) are updated using (2.84)-(2.85)
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and (2.88)-(2.89). Suppose, furthermore, that both sequences
(
b

(1)
n

)∞
n=0

and
(
b

(2)
n

)∞
n=0

are bounded, and infn

∣∣∣b(1)
n − b(2)

n

∣∣∣ > 0. Then, (ξn, ηn)→ (θ
√
τ ,
√
τ) almost surely.

Proof. Let

tn , (ξn, ηn)T ,

γ , (θ
√
τ ,
√
τ)T ,

Fn , B(B1, ..., Bn, t0, ..., tn, b0, ..., bn),

q(i)
n , b(i)

n

√
τ − θ

√
τ ,

Qn(Bn+1, tn) ,
∑
i=1,2

B(i)
n+1

φ
(
p

(i)
n

)
Φ
(
p

(i)
n

) − (1−B(i)
n+1

) φ
(
p

(i)
n

)
1− Φ

(
p

(i)
n

)
(1,−b(i)

n

)T
,

Rn(tn) , E(Qn(Bn+1, tn)|Fn)

=
∑
i=1,2

Φ
(
q(i)
n

) φ(p(i)
n

)
Φ
(
p

(i)
n

) − (1− Φ
(
q(i)
n

)) φ
(
p

(i)
n

)
1− Φ

(
p

(i)
n

)
(1,−b(i)

n

)T
,

then (2.88) and (2.89) are equivalent to

tn+1 = tn −
1

n+ 1
Qn(Bn+1, tn).

First, as argued in the proof of Proposition 2.4.1, since
(
b

(1)
n

)∞
n=0

and
(
b

(2)
n

)∞
n=0

are bounded, there exists a positive constant C1 such that

sup
n

E
(
‖Qn(Bn+1, x)‖2

2 |Fn
)
≤ C1

(
1 + ‖x− γ‖2

2

)
,

thus Assumption 2.3.3 is satisfied. Then we have

E
(
‖tn+1 − γ‖2

2 |Fn
)
≤ ‖tn − γ‖2

2

(
1 +

C1

(n+ 1)2

)
+

C1

(n+ 1)2

− 2

n+ 1
(tn − γ)TRn(tn), (2.90)
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where

(tn − γ)TRn(tn)

=
∑
i=1,2

(
q(i)
n − p(i)

n

)Φ
(
q(i)
n

) φ(p(i)
n

)
Φ
(
p

(i)
n

) − (1− Φ
(
q(i)
n

)) φ
(
p

(i)
n

)
1− Φ

(
p

(i)
n

)


≥ 0, (2.91)

because, for both i = 1 and i = 2,

(
q(i)
n − p(i)

n

)Φ
(
q(i)
n

) φ(p(i)
n

)
Φ
(
p

(i)
n

) − (1− Φ
(
q(i)
n

)) φ
(
p

(i)
n

)
1− Φ

(
p

(i)
n

)
 ≥ 0. (2.92)

Then, from the proof of Theorem 2.3.1, (2.90) together with (2.91) implies that

limn→∞ ‖tn − γ‖2
2 exists and is finite, and that

∞∑
n=1

2

n+ 1
(tn − γ)TRn(tn) <∞

almost surely. From (2.92), since
(
b

(1)
n

)∞
n=0

and
(
b

(2)
n

)∞
n=0

are bounded, there must

be a subsequence
(
q

(1)
nk − p

(1)
nk , q

(2)
nk − p

(2)
nk

)∞
k=0

of
(
q

(1)
n − p(1)

n , q
(2)
n − p(2)

n

)∞
n=0

that con-

verges to 0. The subsequence can be written as q
(1)
nk − p

(1)
nk

q
(2)
nk − p

(2)
nk

 =

 1 −b(1)
nk

1 −b(2)
nk

 (tnk − γ) ,

since infn

∣∣∣b(1)
n − b(2)

n

∣∣∣ is positive, we have

tnk − γ =
1

b
(1)
nk − b

(2)
nk

 −b
(2)
nk b

(1)
nk

−1 1


 q

(1)
nk − p

(1)
nk

q
(2)
nk − p

(2)
nk

 ,

then since
(
b

(1)
n

)∞
n=0

and
(
b

(2)
n

)∞
n=0

are bounded, and infn

∣∣∣b(1)
n − b(2)

n

∣∣∣ is positive, the

subsequence (tnk − γ)∞k=0 also converges to 0, and we know that limn→∞ ‖tn − γ‖2
2

exists and is finite, thus we have limn→∞ ‖tn − γ‖2
2 = 0. Therefore, tn → γ a.s., as

required.
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2.5.4.2 Derivation of the Learning Model

Suppose that, at time n, (θ, τ) follows a normal-gamma density, denoted by

fn (θ, τ |αn, βn, µn, κn) =
βαnn
√
κn

Γ(αn)
√

2π
ταn−1/2 exp

(
−βnτ −

κnτ(θ − µn)2

2

)
.

Then, the posterior density given Bn+1 can be written as

gn (θ, τ |αn, βn, µn, κn, bn, Bn+1)

=
fn (θ, τ |αn, βn, µn, κn)w (θ, τ, bn, Bn+1)∫ ∫
fn (θ, τ |αn, βn, µn, κn)w (θ, τ, bn, Bn+1) dθdτ

,

where

w (θ, τ, bn, Bn+1) =
∏
i=1,2

(
Φ
(√

τ(b(i)
n − θ)

))B(i)
n+1
(
1− Φ

(√
τ(b(i)

n − θ)
))1−B(i)

n+1 .

Obviously it is difficult to characterize this posterior density gn directly. There-

fore, we would like to approximate the posterior density gn by a normal-gamma

density fn+1 (θ, τ |αn+1, βn+1, µn+1, κn+1), through minimizing the Kullback-Leibler

divergence Dn = D(fn+1||gn) = Efn+1

(
log fn+1

gn

)
, where Efn+1 (·) denotes the expec-

tation taken with respect to the density fn+1.

We work through the derivation for the case where Bn+1 = (1, 1); the other

three cases can be obtained similarly. In this case, we write

log
fn+1

gn
= log fn+1 − log gn

= −1

2

(
(θ − µn+1)2 κn+1 − (θ − µn)2 κn

)
τ

+ (αn+1 − αn) log τ − (βn+1 − βn)τ

+(αn+1 log βn+1 − αn log βn) +
1

2
(log κn+1 − log κn)
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+ (log Γ(αn+1)− log Γ(αn))

−
∑
i=1,2

log
(
Φ
(√

τ(b(i)
n − θ)

))
+ C1, (2.93)

where C1 is a constant that does not depend on (αn+1, βn+1, µn+1, κn+1). The ex-

pectation Efn+1

(
log
(

Φ
(√

τ(b
(i)
n − θ)

)))
is still difficult to evaluate, so we approx-

imate log
(

Φ
(
b

(i)
n
√
τ − θ

√
τ
))

by its first-order Taylor expansion with respect to

(θ
√
τ ,
√
τ) around

(
µn
√
rn,
√
rn
)
, where rn = αn/βn. This is analogous to the tech-

nique used in [6], where a Taylor expansion is also used to “linearize” a difficult

posterior. We will use additional simplifications of the various expressions in order

to obtain a tractable scheme.

By using the first-order Taylor expansion, we have

log
(
Φ
(√

τ(b(i)
n − θ)

))
≈ log

(
Φ
(√

rn(b(i)
n − µn)

))
−
φ
(√

rn(b
(i)
n − µn)

)
Φ
(√

rn(b
(i)
n − µn)

)(θ
√
τ − µn

√
rn)

+
φ
(√

rn(b
(i)
n − µn)

)
Φ
(√

rn(b
(i)
n − µn)

)b(i)
n (
√
τ −
√
rn).

By replacing log
(

Φ
(√

τ(b
(i)
n − θ)

))
in (2.93) by the above expression, we obtain

an approximation D̃n of the KL divergence, given by

D̃n = Efn+1

(
−1

2

(
(θ − µn+1)2 κn+1 − (θ − µn)2 κn

)
τ

+ (αn+1 − αn) log τ − (βn+1 − βn)τ

+αn+1 log βn+1 +
1

2
log κn+1 + log Γ(αn+1)

+
∑
i=1,2

φ
(√

rn(b
(i)
n − µn)

)
Φ
(√

rn(b
(i)
n − µn)

)θ√τ − φ
(√

rn(b
(i)
n − µn)

)
Φ
(√

rn(b
(i)
n − µn)

)b(i)
n

√
τ

+ C2
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=
1

2

(
κn
κn+1

+ (µn+1 − µn)2κn
αn+1

βn+1

)
+ (αn+1 − αn)(ψ(αn+1)− log βn+1)

−(βn+1 − βn)
αn+1

βn+1

+ αn+1 log βn+1 +
1

2
log κn+1 + log Γ(αn+1)

+
∑
i=1,2

φ
(√

rn(b
(i)
n − µn)

)
Φ
(√

rn(b
(i)
n − µn)

)µn+1
√
rn+1 −

φ
(√

rn(b
(i)
n − µn)

)
Φ
(√

rn(b
(i)
n − µn)

)b(i)
n

√
rn+1


+C3, (2.94)

where ψ is the digamma function, and C2, C3 are two constants that do not depend

on (αn+1, βn+1, µn+1, κn+1). The expectation Efn+1(
√
τ) is also replaced by its point

estimate
√
rn+1.

By applying the transformation (2.86)-(2.87), we can simplify (2.94) as

D̃n =
1

2
κn

(
ξn+1 − ξn

ηn+1

ηn

)2

− 2αn log ηn+1 + αn
η2
n+1

η2
n

+
∑
i=1,2

φ
(
b

(i)
n ηn − ξn

)
Φ
(
b

(i)
n ηn − ξn

)ξn+1 −
φ
(
b

(i)
n ηn − ξn

)
Φ
(
b

(i)
n ηn − ξn

)b(i)
n ηn+1

+ C4, (2.95)

where C4 is a constant that does not depend on (ξn+1, ηn+1). We further approximate

(2.95) as

D̂n ≈
1

2
κn (ξn+1 − ξn)2 − 2αn log ηn+1 + αn

η2
n+1

η2
n

+
∑
i=1,2

φ
(
b

(i)
n ηn − ξn

)
Φ
(
b

(i)
n ηn − ξn

)ξn+1 −
φ
(
b

(i)
n ηn − ξn

)
Φ
(
b

(i)
n ηn − ξn

)b(i)
n ηn+1

+ C4. (2.96)

Now, instead of updating (βn, µn), we will update (ξn, ηn) through taking ξn+1 and

ηn+1 such that the partial derivatives of D̂n with respect to ξn+1 and ηn+1 are both

equal to zero. From (2.96),

∂D̂n

∂ξn+1

= κn (ξn+1 − ξn) +
∑
i=1,2

φ
(
b

(i)
n ηn − ξn

)
Φ
(
b

(i)
n ηn − ξn

) ,
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∂D̂n

∂ηn+1

= −2αn/ηn+1 + 2αn
ηn+1

η2
n

−
∑
i=1,2

φ
(
b

(i)
n ηn − ξn

)
Φ
(
b

(i)
n ηn − ξn

)b(i)
n ,

thus we have

ξn+1 = ξn −
1

κn

∑
i=1,2

φ
(
b

(i)
n ηn − ξn

)
Φ
(
b

(i)
n ηn − ξn

) ,
η2
n+1 = η2

n +
η2
nηn+1

2αn

∑
i=1,2

φ
(
b

(i)
n ηn − ξn

)
Φ
(
b

(i)
n ηn − ξn

)b(i)
n . (2.97)

However, we can see that (2.97) is not linear, so we will instead use the update

ηn+1 = ηn +
1

2αn

∑
i=1,2

φ
(
b

(i)
n ηn − ξn

)
Φ
(
b

(i)
n ηn − ξn

)b(i)
n .

From (2.84) and (2.85), we know that κn = 2αn = n + 1. Repeating the above

analysis symmetrically for Bn+1 = (1, 0), (0, 1) and (0, 0), we obtain the updates in

(2.88)-(2.89).

2.6 Conclusion

We have presented the first theoretical framework for proving the consistency

of estimators constructed using approximate Bayesian inference. Our approach in-

terprets many of these estimators as stochastic approximation procedures with the

addition of an extra “bias” term. We have proposed a convergent SA algorithm

of this form and demonstrated its versatility in creating entirely new consistency

proofs for a suite of previously-studied approximate Bayesian schemes that have

proven themselves in practical applications, but were previously unamenable to the-

oretical analysis. Notably, this includes three multivariate procedures with broad
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methodological applications in analytics, simulation and stochastic optimization.

We believe that our work offers new theoretical support for the use of approximate

Bayesian inference in complex learning problems, and that it provides researchers

with a set of tools for developing consistency proofs in other application areas.
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Chapter 3: Complete Expected Improvement Converges to an Opti-

mal Budget Allocation

3.1 Introduction

In the ranking and selection (R&S) problem, there are M “alternatives” (or

“systems”), and each alternative j ∈ {1, ...,M} has an unknown value µ(j) ∈ R (for

simplicity, suppose that µ(i) 6= µ(j) for i 6= j). We wish to identify the unique best

alternative j∗ = arg maxj µ
(j). For any j, we have the ability to collect noisy samples

of the form W (j) ∼ N
(
µ(j),

(
λ(j)
)2
)

, but we are limited to a total of N samples

that have to be allocated among the alternatives, under independence assumptions

ensuring that samples of j do not provide any information about i 6= j. After

the sampling budget has been consumed, we select the alternative with the highest

sample mean. We say that “correct selection” occurs if the selected alternative

is identical to j∗. We seek to allocate the budget in a way that maximizes the

probability of correct selection.

R&S has a long history dating back to [80], and continues to be an active area

of research; see the tutorials by [24] and [25]. Most modern research on this problem

considers sequential allocation strategies, in which the decision-maker may spend
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part of the sampling budget, observe the results, and adjust the allocation of the

remaining samples accordingly. The literature has developed various algorithmic

approaches, including indifference-zone methods [81], optimal computing budget al-

location (or OCBA; see [82]), and expected improvement [10]. The related literature

on multi-armed bandits [83] has contributed other approaches such as Thompson

sampling [34], although the bandit problem uses a different objective function from

R&S and thus a good method for one problem may work poorly in the other [15].

Reference [9] gave a rigorous foundation for the notion of optimal budget allocation

with regard to probability of correct selection. Denote by 0 ≤ N (j) ≤ N the num-

ber of samples assigned to alternative j (thus,
∑

j N
(j) = N), and take N → ∞

while keeping the proportion α(j) = N (j)/N constant. The optimal proportions α
(j)
∗

(among all possible vectors α ∈ RM
++ satisfying

∑
j α

(j) = 1) satisfy two conditions:

• Proportion assigned to alternative j∗:(
α

(j∗)
∗

λ(j∗)

)2

=
∑
j 6=j∗

(
α

(j)
∗

λ(j)

)2

(3.1)

• Proportions assigned to arbitrary i, j 6= j∗:(
µ(i) − µ(j∗)

)2

(λ(i))
2
/α

(i)
∗ + (λ(j∗))

2
/α

(j∗)
∗

=

(
µ(j) − µ(j∗)

)2

(λ(j))
2
/α

(j)
∗ + (λ(j∗))

2
/α

(j∗)
∗

(3.2)

Under this allocation, the probability of incorrect selection will converge to zero at

the fastest possible rate (exponential with the best possible exponent). Of course,

(3.1)-(3.2) themselves depend on the unknown performance values. A common work-

around is to replace these values with plug-in estimators and repeatedly solve for the

optimal proportions in a sequential manner. Even then, the optimality conditions
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are cumbersome to solve, which may explain why researchers and practitioners prefer

suboptimal heuristics that are easier to implement. To give a recent example, [84]

uses large deviations theory to derive optimality conditions, analogous to (3.1)-

(3.2), for a general class of simulation-based optimization problems, but advocates

approximating the conditions to obtain a more tractable solution.

In this paper, we focus on one particular class of heuristics, namely expected

improvement (EI) methods, which have consistently demonstrated computational

and practical advantages in a wide variety of problem classes [85–87] ever since

their introduction in [10]. EI is a Bayesian approach to R&S that allocates samples

in a purely sequential manner: each successive sample is used to update the posterior

distributions of the values µ(j), and the next sample is adaptively assigned using the

so-called “value of information” criterion. This notion will be formalized in Section

3.2; here, we simply note that there are many competing definitions, such as the

classic EI criterion of [10], the knowledge gradient criterion [11], or the LL1 criterion

of [12]. Reference [13] showed that the seemingly minor differences between these

variants produce very different asymptotic allocations, but also that all of these

allocations are suboptimal.

Recently, however, [16] proposed a new criterion called “complete expected

improvement” or CEI. The formal definition of CEI is given in Section 3.3, but

the main idea is that, when we evaluate the potential of a seemingly-suboptimal

alternative to improve over the current-best value, we treat both of the values in

this comparison as random variables (unlike classic EI, which only uses a plug-in

estimate of the best value). This idea was created and implemented in [16] in the
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context of Gaussian Markov random fields, a more sophisticated Bayesian learning

model than the version of R&S with independent normal samples that we consider

here. Although the Gaussian Markov model is far more scalable and practical, it

also presents greater difficulties for theoretical analysis: for example, no analog of

(3.1)-(3.2) is available for statistical models with Gaussian Markov structure. In the

present paper, we translate the CEI criterion to our simpler model, which enables

us to study its theoretical convergence rate, and ultimately leads to strong new

theoretical arguments in support of the CEI method.

Our main contribution in this paper is to prove that, with a slight modification

to the method as laid out in [16], this modified version of CEI achieves both (3.1)

and (3.2) asymptotically as N → ∞. Not only is this a new result for EI-type

methods, it is also one of the strongest guarantees for any R&S heuristic to date.

To compare it with the state of the art, [15] presents a class of heuristics, called

“top-two methods,” which can also achieve optimal allocations, but only when a

tuning parameter is set optimally. A more recent work by [88], which appeared

while the present paper was under review, extended the top-two approach to use

CEI calculations, but kept the requirement of a tunable parameter. By contrast,

our approach requires no tuning whatsoever. A different work by [14] finds a way to

reverse-engineer the EI calculations to optimize the rate, but this approach requires

one to first solve (3.1)-(3.2) with plug-in estimators, and the procedure does not have

a natural interpretation as an EI criterion. By contrast, CEI requires no additional

computational effort compared to classic EI, and has a very simple and intuitive

interpretation. In this way, our paper bridges the gap between theoretical notions
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of rate-optimality and the more practical concerns that motivate EI methods.

3.2 Preliminaries

We first provide some formal background for the optimality conditions (3.1)-

(3.2) derived in [9], and then give an overview of EI-type methods. It is important

to note that the theoretical framework of [9], as well as the theoretical analysis

developed in the present paper, relies on a frequentist interpretation of R&S, in

which the value of alternative i is treated as a fixed (though unknown) constant.

On the other hand, EI methods are derived using Bayesian arguments; however, once

the derivation is complete, one is free to apply and study the resulting algorithm in

a frequentist setting (as we do in this paper). To avoid confusion, we first describe

the frequentist model, then introduce details of the Bayesian model where necessary.

In the frequentist model, the values µ(i) are fixed for i = 1, ...,M . Let {jn}∞n=0

be a sequence of alternatives chosen for sampling. For each jn, we observe W
(jn)
n+1 ∼

N
(
µ(jn),

(
λ(jn)

)2
)

where λ(j) > 0 is assumed to be known for all j. We let Fn be the

sigma-algebra generated by j0,W
(j0)
1 , ..., jn−1,W

(jn−1)
n . The allocation {jn}∞n=0 is said

to be adaptive if each jn is Fn-measurable, and static if all jn are F0-measurable.

We define I
(j)
n = 1{jn=j} and let N

(j)
n =

∑n−1
m=0 I

(j)
m be the number of times that

alternative j is sampled up to time index n = 1, 2, ....

At time n, we can calculate the statistics

θ(j)
n =

1

N
(j)
n

n−1∑
m=0

I(j)
m W

(j)
m+1, (3.3)

(
σ(j)
n

)2
=

(
λ(j)
)2

N
(j)
n

. (3.4)
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If our sampling budget is limited to n samples, then j∗n = arg maxj θ
(j)
n will be the

final selected alternative. Correct selection occurs at time index n if j∗n = j∗. The

probability of correct selection (PCS), written as P (j∗n = j∗), depends on the rule

used to allocate the samples. Reference [9] proves that, for any static allocation that

assigns a proportion α(j) > 0 of the budget to each alternative j, the convergence

rate of PCS can be expressed in terms of the limit

Γα = − lim
n→∞

1

n
logP (j∗n 6= j∗) . (3.5)

That is, the probability of incorrect selection converges to zero at an exponential

rate where the exponent includes a constant Γα that depends on the vector α of

proportions. Equations (3.1)-(3.2) characterize the proportions that optimize the

rate (maximize Γα) under the assumption of independent normal samples. Although

[9] only considers static allocations, nonetheless, to date, (3.5) continues to be one

of the strongest rate results for R&S. Optimal static allocations derived through

this framework can be used as guidance for the design of dynamic allocations; see,

for example, [84] and [89].

We now describe EI, a prominent class of adaptive methods. EI uses a Bayesian

model of the learning process, which is very similar to the model presented above, but

makes the additional assumption that µ(j) ∼ N
(
θ

(j)
0 ,
(
σ

(j)
0

)2
)

, where θ
(j)
0 and σ

(j)
0

are pre-specified prior parameters. It is also assumed that µ(i), µ(j) are independent

for all i 6= j. Under these assumptions, it is well-known [49] that the posterior

distribution of µ(j) given Fn is N
(
θ

(j)
n ,
(
σ

(j)
n

)2
)

where the posterior mean and

variance can be computed recursively. Under the non-informative prior σ
(j)
0 = ∞,
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the Bayesian posterior parameters θ
(j)
n , σ

(j)
n are identical to the frequentist statistics

defined in (3.3)-(3.4), and so we can use the same notation for both settings.

One of the first (and probably the best-known) EI algorithms was introduced

by [10]. In this version of EI, as applied to our R&S model, we take jn = arg maxj v
(j)
n

where

v(j)
n = E

(
max

{
µ(j) − θ(j∗n)

n , 0
}
| Fn

)
= σ(j)

n f

−
∣∣∣θ(j)
n − θ(j∗n)

n

∣∣∣
σ

(j)
n

 , (3.6)

and f (z) = zΦ (z) + φ (z) with φ,Φ being the standard Gaussian pdf and cdf,

respectively. We can view (3.6) as a measure of the potential that the true value

of j will improve upon the current-best estimate θ
(j∗n)
n . The EI criterion v

(j)
n may be

recomputed at each time stage n based on the most recent posterior parameters.

Reference [13] gave the first convergence rate analysis of this algorithm. Under

EI, we have

lim
n→∞

N
(j∗)
n

n
= 1, (3.7)

lim
n→∞

N
(i)
n

N
(j)
n

=

(
λ(i)
∣∣µ(j) − µ(j∗)

∣∣
λ(j) |µ(i) − µ(j∗)|

)2

, i, j 6= j∗, (3.8)

where the limits hold almost surely. Clearly, (3.7)-(3.8) do not match (3.1)-(3.2)

except in the limiting case where α
(j∗)
∗ → 1. Because N (j)/n → 0 for j 6= j∗, EI

will not achieve an exponential convergence rate for any finite M . The limiting

allocations for two other variants of EI are also derived in [13], but they do not

recover (3.1)-(3.2) either.
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3.3 Algorithm and Main Results

Reference [16] proposed to replace (3.6) with

v(j)
n = E

(
max

{
µ(j) − µ(j∗n), 0

}
| Fn

)
, (3.9)

which can be written in closed form as

v(j)
n =

√(
σ

(j)
n

)2

+
(
σ

(j∗n)
n

)2

f

−
∣∣∣θ(j)
n − θ(j∗n)

n

∣∣∣√(
σ

(j)
n

)2

+
(
σ

(j∗n)
n

)2

 (3.10)

for any j 6= j∗n. In this way, the value of collecting information about j depends,

not only on our uncertainty about j, but also on our uncertainty about j∗n. [16]

considers a more general Gaussian Markov model with correlated beliefs, so the

original presentation of CEI included a term representing the posterior covariance

between µ(j) and µ(j∗n). In this paper we only consider independent priors, so we

work with (3.10), which translates the CEI concept to our R&S model.

From (3.9), it follows that v
(j∗n)
n = 0 for all n. Thus, we cannot simply assign

jn = arg maxj v
(j)
n because, in that case, j∗n would never be chosen. It is necessary

to modify the procedure by introducing some additional logic to handle samples

assigned to j∗n. To the best of our knowledge, this issue is not explicitly discussed

in [16]. In fact, many adaptive methods are unable to efficiently identify when

j∗n should be measured; thus, both the classic EI method of [10], and the popular

Thompson sampling algorithm [34], will sample j∗n too often. The class of top-two

methods, first introduced in [15], addresses this problem by essentially assigning a

fixed proportion β of samples to j∗n, while using Thompson sampling or other means
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to choose between the other alternatives. Optimal allocations can be attained if β

is tuned correctly, but the optimal choice of β is problem-dependent and generally

difficult to find.

Let n = 0 and repeat the following:

1: Check whether (
N

(j∗n)
n

λ(j∗n)

)2

<
∑
j 6=j∗n

(
N

(j)
n

λ(j)

)2

. (3.11)

If (3.11) holds, assign jn = j∗n. If (3.11) does not hold, assign jn =

arg maxj 6=j∗n v
(j)
n , where v

(j)
n is given by (3.10).

2: Observe W
(jn)
n+1 , update posterior parameters, and increment n by 1.

Figure 3.1: Modified CEI (mCEI) algorithm for R&S.

Based on these considerations, we give a modified CEI procedure in Figure 3.1.

The modification adds condition (3.11), which mimics (3.1) to decide whether j∗n

should be sampled. This condition is trivial to implement, and the mCEI algorithm

is completely free of tunable parameters. It is shown in [90] that mCEI samples

every alternative infinitely often as n→∞.

We now state our main results on the asymptotic rate-optimality of mCEI.

Essentially, these theorems state that conditions (3.1) and (3.2) will hold in the

limit as n→∞. Both theorems should be interpreted in the frequentist sense, that

is, µ(j) is a fixed but unknown constant for each j.
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Theorem 3.3.1 (Optimal alternative). Let α
(j)
n = N

(j)
n /n. Under the mCEI algo-

rithm,

lim
n→∞

(
α

(j∗)
n

λ(j∗)

)2

−
∑
j 6=j∗n

(
α

(j)
n

λ(j)

)2

= 0

almost surely.

Theorem 3.3.2 (Suboptimal alternatives). For j 6= j∗, define

τ (j)
n =

(
µ(j) − µ(j∗)

)2

(λ(j))
2
/α

(j)
n + (λ(j∗))

2
/α

(j∗)
n

.

where α
(j)
n = N

(j)
n /n. Under the mCEI algorithm,

lim
n→∞

τ
(i)
n

τ
(j)
n

= 1

almost surely, for any i, j 6= j∗.

3.4 Proofs of Main Results

For notational convenience, we assume that j∗ = 1 is the unique optimal

alternative. Since, under mCEI, N
(j)
n → ∞ for all j, on almost every sample path

we will always have j∗n = 1 for all large enough n. It is therefore sufficient to prove

Theorems 3.3.1 and 3.3.2 for a simplified version of mCEI with (3.10) replaced by

v(j)
n =

√
(λ(j))

2

N
(j)
n

+
(λ(1))

2

N
(1)
n

f

−
∣∣∣θ(j)
n − θ(1)

n

∣∣∣√
(λ(j))

2

N
(j)
n

+
(λ(1))

2

N
(1)
n

 . (3.12)

and (3.11) replaced by (
N

(1)
n

λ(1)

)2

<
∑
j>1

(
N

(j)
n

λ(j)

)2

. (3.13)
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To simplify the presentation of the key arguments, we treat the noise parameters

λ(j) as being known. If, in (3.4), we replace λ(j) by the standard sample deviation

(as recommended, e.g., by both [10] and [16]), then simply plug the resulting ap-

proximation into (3.10), the limiting allocation will not be affected. Because the

rate-optimality framework of [9] is frequentist and assumes that selection is based

only on sample means, it does not make any distinction between known and un-

known variance in terms of characterizing an optimal allocation.

3.4.1 Proof of Theorem 3.3.1

First, we define the quantity

∆n ,

(
N

(1)
n /λ(1)

n

)2

−
M∑
j=2

(
N

(j)
n /λ(j)

n

)2

and prove the following technical lemma. We remind the reader that, in this and

all subsequent proofs, we assume that sampling decisions are made by mCEI with

(3.12)-(3.13) replacing (3.10)-(3.11).

Lemma 3.4.1. If alternative 1 is sampled at time n, then ∆n+1 −∆n > 0. If any

other alternative is sampled at time n, then ∆n+1 −∆n < 0.

Proof. Suppose that alternative 1 is sampled at time n. Then,

∆n+1 −∆n

=


(
N

(1)
n + 1

)
/λ(1)

n+ 1

2

−
M∑
j=2

(
N

(j)
n /λ(j)

n+ 1

)2

−

(N (1)
n /λ(1)

n

)2

−
M∑
j=2

(
N

(j)
n /λ(j)

n

)2

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=
1

(λ(1))
2



(
N

(1)
n + 1

)
n+ 1

2

−

(
N

(1)
n

n

)2


+

 M∑
j=2

(
N

(j)
n /λ(j)

n

)2

−
M∑
j=2

(
N

(j)
n /λ(j)

n+ 1

)2


> 0.

If some alternative j′ > 1 is sampled, then ∆n ≥ 0 and

∆n+1 −∆n =

(
N

(1)
n /λ(1)

n+ 1

)2

−
∑
j 6=j′

(
N

(j)
n /λ(j)

n+ 1

)2

−


(
N

(j′)
n + 1

)
/λ(j′)

n+ 1

2

−

(N (1)
n /λ(1)

n

)2

−
M∑
j=2

(
N

(j)
n /λ(j)

n

)2


=

(
N

(1)
n /λ(1)

n+ 1

)2

−
M∑
j=2

(
N

(j)
n /λ(j)

n+ 1

)2

− 2N
(j′)
n + 1

(λ(j′)(n+ 1))
2

−

(N (1)
n /λ(1)

n

)2

−
M∑
j=2

(
N

(j)
n /λ(j)

n

)2


=

(
n2

(n+ 1)2
− 1

)
∆n −

2N
(j′)
n + 1

(λ(j′)(n+ 1))
2

< 0,

which completes the proof.

Let ` = minj λ
(j) and recall that ` > 0 by assumption. Now, for all ε > 0,

there exists a large enough n1 such that n1 >
2
`2ε
−1. Consider arbitrary n ≥ n1 and

suppose that ∆n < 0. This means that alternative 1 is sampled at time n, whence

∆n+1 −∆n > 0 by Lemma 3.4.1. Furthermore,

∆n+1 =


(
N

(1)
n + 1

)
/λ(1)

n+ 1

2

−
M∑
j=2

(
N

(j)
n /λ(j)

n+ 1

)2

= ∆n +
2N

(1)
n + 1

(λ(1)(n+ 1))
2
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<
2n+ 2

(λ(1)(n+ 1))
2

≤ 2

(λ(1))
2

(n1 + 1)

<
`2

(λ(1))
2 ε

≤ ε.

Similarly, suppose that ∆n ≥ 0. This means that some j′ > 1 is sampled, whence

∆n+1 −∆n < 0 by Lemma 3.4.1. Using similar arguments as before, we find

∆n+1 =

(
N

(1)
n /λ(1)

n+ 1

)2

−
M∑
j=2

(
N

(j)
n /λ(j)

n+ 1

)2

− 2N
(j′)
n + 1

(λ(j′)(n+ 1))
2

= ∆n −
2N

(j′)
n + 1

(λ(j′)(n+ 1))
2

≥ − 2n+ 2

(λ(j′)(n+ 1))
2

≥ −ε.

Thus, if there exists some large enough n2 satisfying n2 ≥ n1 and−ε < ∆n2 < ε, then

it follows that, for all n ≥ n2, we have ∆n ∈ (−ε, ε), which implies limn→∞∆n = 0

and completes the proof of Theorem 3.3.1. It only remains to show the existence of

such n2.

Again, we consider two cases. First, suppose that ∆n1 < 0. Since mCEI

samples every alternative infinitely often, we can let n2 = inf{n > n1 : ∆n ≥ 0}.

Since n2 will be the first time after n1 that any j′ > 1 is sampled, we have ∆n2−1 < 0

and n2 − 1 ≥ n1. From the previous arguments, we have 0 ≤ ∆n2 < ε. Similarly,

in the second case where ∆n1 ≥ 0, we let n2 = inf{n > n1 : ∆n < 0}, whence

∆n2−1 ≥ 0 and n2 − 1 ≥ n1. The previous arguments imply −ε < ∆n2 < 0. Thus,

we can always find n2 ≥ n1 satisfying −ε < ∆n2 < ε, as required.
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3.4.2 Proof of Theorem 3.3.2

The proof relies on several technical lemmas. For notational convenience, we

define d
(j)
n ,

∣∣∣θ(j)
n − θ(1)

n

∣∣∣ and δ
(j)
n =

(
d

(j)
n

)2

for all j > 1. Furthermore, for any j

and any positive integer m, we define

k
(j)
(n,n+m) , N

(j)
n+m −N (j)

n

to be the number of samples allocated to alternative j from stage n to stage n+m−1.

The first technical lemma implies that, for any two alternatives i and j, N
(i)
n =

Θ
(
N

(j)
n

)
1 and N

(i)
n = Θ (n).

Lemma 3.4.2. For any two alternatives i and j, lim supn→∞
N

(i)
n

N
(j)
n

<∞.

Proof. We proceed by contradiction. Suppose that i, j > 1 satisfy lim supn→∞
N

(i)
n

N
(j)
n

=

∞. Let c = limn→∞
δ
(j)
n

δ
(i)
n

+ 1 =
(µ(j)−µ(1))

2

(µ(i)−µ(1))
2 + 1. Then, there must exist a large enough

stage m such that

N
(i)
m

N
(j)
m

> max {c, 1}
(
λ(i)
)2

+ λ(1)λ(i)

(λ(j))
2 ,

and we will sample alternative i to make
N

(i)
m+1

N
(j)
m+1

> N
(i)
m

N
(j)
m

. But, at this stage m,

v(i)
m =

√
(λ(i))

2

N
(i)
m

+
(λ(1))

2

N
(1)
m

f

− d
(i)
m√

(λ(i))
2

N
(i)
m

+
(λ(1))

2

N
(1)
m



≤

√
(λ(i))

2

N
(i)
m

+
λ(1)λ(i)

N
(i)
m

f

− d
(i)
m√

(λ(i))
2

N
(i)
m

+ λ(1)λ(i)

N
(i)
m

 (3.14)

1For two positive sequences (an) and (bn), we say an = Θ(bn) if and only if an = O(bn) and

bn = O(an).
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=

√
(λ(i))

2
+ λ(1)λ(i)

N
(i)
m

f

− d
(i)
m√

(λ(i))
2
+λ(1)λ(i)

N
(i)
m



<

√
(λ(j))

2

N
(j)
m

f

− d
(j)
m√

(λ(j))
2

N
(j)
m

 (3.15)

<

√
(λ(j))

2

N
(j)
m

+
(λ(1))

2

N
(1)
m

f

− d
(j)
m√

(λ(j))
2

N
(j)
m

+
(λ(1))

2

N
(1)
m


= v(j)

m , (3.16)

where (3.14) holds because a suboptimal alternative is sampled at stage m, and

(3.15) holds because limm→∞
d
(j)
m

d
(i)
m

=
|µ(j)−µ(1)|
|µ(i)−µ(1)| . From the definition of the mCEI

algorithm, (3.16) implies that we cannot sample i at stage m. We conclude that

lim supn→∞
N

(i)
n

N
(j)
n

<∞ for any two suboptimal alternatives i and j.

From this result, we can see that, for i, j > 1, we have

0 < lim inf
n→∞

N
(i)
n

N
(j)
n

≤ lim sup
n→∞

N
(i)
n

N
(j)
n

<∞.

Together with Theorem 3.3.1, this implies that, for any i > 1, we have

0 < lim inf
n→∞

N
(i)
n

N
(1)
n

≤ lim sup
n→∞

N
(i)
n

N
(1)
n

<∞,

completing the proof.

Now let

z(j)
n ,

d
(j)
n√

(λ(j))
2

N
(j)
n

+
(λ(1))

2

N
(1)
n

,

t(j)n ,
(
z(j)
n

)2
=

δ
(j)
n

(λ(j))
2

N
(j)
n

+
(λ(1))

2

N
(1)
n

.
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For any j, both z
(j)
n and t

(j)
n go to infinity as n→∞. We apply an expansion of the

Mills ratio [91] to v
(j)
n . For all large enough n,

v(j)
n =

d
(j)
n

z
(j)
n

f
(
−z(j)

n

)
=

d
(j)
n

z
(j)
n

φ
(
z(j)
n

)−z(j)
n

1− Φ
(
z

(j)
n

)
φ
(
z

(j)
n

) + 1


=

d
(j)
n

z
(j)
n

φ
(
z(j)
n

)−z(j)
n

1

z
(j)
n

1− 1(
z

(j)
n

)2 +O

 1(
z

(j)
n

)4


+ 1

 (3.17)

=
d

(j)
n(

z
(j)
n

)3φ
(
z(j)
n

)1 +O

 1(
z

(j)
n

)2


 ,

where (3.17) comes from the Mills ratio. Then,

2 log
(
v(j)
n

)
= 2 log d(j)

n − 6 log z(j)
n + 2 log φ

(
z(j)
n

)
+ 2 log

1 +O

 1(
z

(j)
n

)2




= log δ(j)
n − 3 log t(j)n − log (2π)− t(j)n + 2 log

(
1 +O

(
1

t
(j)
n

))
= −t(j)n

(
1 +O

(
log t

(j)
n

t
(j)
n

))
.

For any two suboptimal alternatives i and j, define

r(i,j)
n ,

2 log
(
v

(i)
n

)
2 log

(
v

(j)
n

)
=

t
(i)
n

t
(j)
n

1 +O
(

log t
(i)
n

t
(i)
n

)
1 +O

(
log t

(j)
n

t
(j)
n

) , (3.18)

and note that both 1 +O
(

log t
(i)
n

t
(i)
n

)
and 1 +O

(
log t

(j)
n

t
(j)
n

)
converge to 1 as n→∞. We

will show that r
(i,j)
n → 1 for any suboptimal i and j; then, (3.18) will yield t

(i)
n

t
(j)
n

→ 1,

completing the proof of Theorem 3.3.2.
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Note that, for any j, the CEI quantity v
(j)
n can change when either j or the

optimal alternative is sampled. Thus, it is necessary to characterize the relative fre-

quency of such samples. This requires three other technical lemmas. First, Lemma

3.4.3 shows that the number of samples that could be allocated to the optimal

alternative between two samples of any suboptimal alternatives (not necessarily

the same one) is O (1) and vice versa; next, Lemma 3.4.4 shows that k
(1)
(n,n+m) is

O
(√

n log log n
)
; finally, Lemma 3.4.6 bounds n3/4

∣∣∣δ(i)
n+1 − δ

(i)
n

∣∣∣.
Lemma 3.4.3. Between two samples assigned to any suboptimal alternatives (i.e.,

two time stages when condition (3.13) fails), the number of samples that could be

allocated to the optimal alternative is at most equal to some fixed constant B1; sym-

metrically, between two samples of alternative 1, the number of samples that could

be allocated to any suboptimal alternatives is at most equal to some fixed constant

B2.

Proof. Define Qn ,
(
N

(1)
n /λ(1)

)2

−
∑M

j=2

(
N

(j)
n /λ(j)

)2

. Suppose that, at some stage

n, Qn < 0 and Qn+1 ≥ 0, which means that the optimal alternative is sampled

at time n and then a suboptimal alternative is sampled at time n + 1. Let m ,

inf {l > 0 : Qn+l < 0}, i.e., stage n+m is the first time that alternative 1 is sampled

after stage n. Then, in order to show that between two samples of alternative 1, the

number of samples that could be allocated to suboptimal alternatives is O (1), it is

sufficient to show that m = O (1).

To show this, first we can see that

Qn+1 =

(
N

(1)
n + 1

λ(1)

)2

−
M∑
j=2

(
N

(j)
n

λ(j)

)2
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=

(
N

(1)
n

λ(1)

)2

−
M∑
j=2

(
N

(j)
n

λ(j)

)2

+
2N

(1)
n + 1

(λ(1))
2

= Qn +
2N

(1)
n + 1

(λ(1))
2

<
2N

(1)
n + 1

(λ(1))
2

≤ C1N
(1)
n , (3.19)

where C1 is a suitable fixed positive constant and the first inequality holds because

Qn < 0. Then, for any stage n+ s, where 0 < s < m, we have

Qn+s =

(
N

(1)
n+s

λ(1)

)2

−
M∑
j=2

(
N

(j)
n+s

λ(j)

)2

=

(
N

(1)
n+1

λ(1)

)2

−
M∑
j=2

(
N

(j)
n+s

λ(j)

)2

=

(
N

(1)
n + 1

λ(1)

)2

−
M∑
j=2

(
N

(j)
n

λ(j)

)2

−

 M∑
j=2

(
N

(j)
n+s

λ(j)

)2

−
M∑
j=2

(
N

(j)
n

λ(j)

)2


< C1N
(1)
n −

 M∑
j=2

(
N

(j)
n+s

λ(j)

)2

−
M∑
j=2

(
N

(j)
n

λ(j)

)2
 ,

where the inequality holds because of (3.19). We can also see that, after stage n,

the increment of
∑M

j=2

(
N

(j)
n

λ(j)

)2

obtained by allocating a sample to alternative j is

at least 2N
(j)
n

(λ(j))
2 . Then, for all large enough n,

M∑
j=2

(
N

(j)
n+s

λ(j)

)2

−
M∑
j=2

(
N

(j)
n

λ(j)

)2

≥ 2s
min{j>1}N

(j)
n

max{j>1} (λ(j))
2 ≥ C2sN

(1)
n ,

where C2 is a suitable positive constant and the last inequality follows by Lemma

3.4.2. Therefore, for any 0 < s < m, we have Qn+s < (C1 − C2s)N
(1)
n . But, from

the definition of m, for any 0 < s < m, Qn+s ≥ 0 must hold. Thus, any 0 < s < m

cannot be greater than C1/C2; in other words, we must have m ≤ C1/C2 + 1, which
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implies m = O (1) for all large enough n. This proves the second claim of the lemma.

The first claim of the lemma can be proved in a similar way due to symmetry.

Lemma 3.4.4. If some suboptimal alternative i > 1 is sampled at stage n ≥ 3, then

k
(1)
(n,n+m) = O

(√
n log log n

)
for

m , inf
{
l > 0 : I

(i)
n+l = 1

}
.

Proof. We first introduce a technical lemma, which establishes a relationship be-

tween k
(1)
(n,n+m) and samples assigned to suboptimal alternatives. The lemma is

proved right after the current proof.

Lemma 3.4.5. Let C1 be any positive constant, and take a large enough n such that

some suboptimal alternative i > 1 is sampled at stage n. Define

m , inf
{
l > 0 : I

(i)
n+l = 1

}
, s , sup

{
l < m : I

(1)
n+l = 0

}
.

Suppose that there exists a sufficiently large positive constant C2 (dependent on C1,

but independent of n) for which

C2

√
n log log n ≤ k

(1)
(n,n+s) ≤ n

holds. Then, there exists a suboptimal alternative j 6= i and a time stage n + u,

where u ≤ s, such that j is sampled at stage n+ u and

(
1 + C1

√
n log log n

n

)
N

(j)
n

N
(1)
n

<
N

(j)
n + k

(j)
(n,n+u)

N
(1)
n + k

(1)
(n,n+s)

≤
N

(j)
n + k

(j)
(n,n+u)

N
(1)
n + k

(1)
(n,n+u)

, (3.20)

holds.
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Essentially, Lemma 3.4.5 will be used to prove the desired result by con-

tradiction; we will show that (3.20) cannot arise, and therefore k
(j)
(n,n+m) must be

O
(√

n log log n
)
.

For convenience, we abbreviate k
(j)
(n,n+m) by the notation k

(j)
l . We will prove

the lemma by contradiction. Suppose that the conclusion of the lemma does not

hold, that is, k
(1)
m√

n log logn
can be arbitrarily large. Since we sample i > 1 at stage n,

then for any other suboptimal alternative j 6= i, we have

r(i,j)
n =

t
(i)
n

t
(j)
n

1 +O
(

log t
(i)
n

t
(i)
n

)
1 +O

(
log t

(j)
n

t
(j)
n

) ≤ 1.

Then, by Lemma 3.4.2, there must exist positive constants C1 and C2 such that, for

all large enough n,

t
(i)
n

t
(j)
n

≤ 1 + C1

(
log t

(j)
n

t
(j)
n

+
log t

(i)
n

t
(i)
n

)
≤ 1 + C2

log n

n
,

that is, equivalently,

δ
(i)
n

(
λ(j)
)2

N
(j)
n

+
δ

(i)
n

(
λ(1)
)2

N
(1)
n

≤
δ

(j)
n

(
λ(i)
)2 (

1 + C2
logn
n

)
N

(i)
n

+
δ

(j)
n

(
λ(1)
)2 (

1 + C2
logn
n

)
N

(1)
n

.(3.21)

Then, at stage n+ u, where 0 < u < m, there must exist positive constants C3 and

C4 such that, for all large enough n,

r
(i,j)
n+u =

t
(i)
n+u

t
(j)
n+u

1 +O

(
log t

(i)
n+u

t
(i)
n+u

)
1 +O

(
log t

(j)
n+u

t
(j)
n+u

) ≤ t
(i)
n+u

t
(j)
n+u

1

1− C3

(
log t

(i)
n+u

t
(i)
n+u

+
log t

(j)
n+u

t
(j)
n+u

) <
t
(i)
n+u

t
(j)
n+u

1

1− C4
logn
n

.

Thus, for all large enough n, in order to have r
(i,j)
n+u < 1, it is sufficient to require

t
(i)
n+u

t
(j)
n+u

≤ 1− C4
log n

n
,
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or, equivalently,

δ
(i)
n+u

(
λ(j)
)2

N
(j)
n + k

(j)
u

+
δ

(i)
n+u

(
λ(1)
)2

N
(1)
n + k

(1)
u

≤
δ

(j)
n+u

(
λ(i)
)2 (

1− C4
logn
n

)
N

(i)
n + k

(i)
u

+
δ

(j)
n+u

(
λ(1)
)2 (

1− C4
logn
n

)
N

(1)
n + k

(1)
u

. (3.22)

Note that k
(i)
u = 1. By the convergence of δ

(i)
n and δ

(j)
n , for all large enough n,

we have

(
δ(j)
n − δ(i)

n

)(
δ(j)
n

(
1 + C2

log n

n

)
− δ(i)

n

)
> 0,(

δ(j)
n − δ(i)

n

)(
δ(j)
n

(
1− C4

log n

n

)
− δ(i)

n

)
> 0.

If limn→∞
δ
(j)
n

δ
(i)
n

> 1, i.e., µ(j) < µ(i), then by (3.21) we have

δ
(i)
n+u

(
λ(j)
)2

N
(j)
n + k

(j)
u

=
δ

(i)
n+u

δ
(i)
n

δ
(i)
n

(
λ(j)
)2

N
(j)
n

N
(j)
n

N
(j)
n + k

(j)
u

≤ δ
(i)
n+u

δ
(i)
n

δ
(j)
n

(
λ(i)
)2 (

1 + C2
logn
n

)
N

(i)
n

N
(j)
n

N
(j)
n + k

(j)
u

+
δ

(i)
n+u

δ
(i)
n

δ
(j)
n

(
λ(1)
)2 (

1 + C2
logn
n

)
− δ(i)

n

(
λ(1)
)2

N
(1)
n

N
(j)
n

N
(j)
n + k

(j)
u

=
δ

(i)
n+u

δ
(i)
n

δ
(j)
n

(
λ(i)
)2 (

1− C4
logn
n

)
N

(i)
n + 1

(
1 + C2

logn
n

)(
1− C4

logn
n

)N (i)
n + 1

N
(i)
n

N
(j)
n

N
(j)
n + k

(j)
u

+
δ

(i)
n+u

δ
(i)
n

δ
(j)
n

(
λ(1)
)2 (

1 + C2
logn
n

)
− δ(i)

n

(
λ(1)
)2

N
(1)
n + k

(1)
u

N
(1)
n + k

(1)
u

N
(1)
n

N
(j)
n

N
(j)
n + k

(j)
u

.

It follows that there must exist a positive constant C5 such that

δ
(i)
n+u

(
λ(j)
)2

N
(j)
n + k

(j)
u

≤ δ
(i)
n+u

δ
(i)
n

δ
(j)
n

(
λ(i)
)2 (

1− C4
logn
n

)
N

(i)
n + 1

(
1 + C5

log n

n

)
N

(i)
n + 1

N
(i)
n

N
(j)
n

N
(j)
n + k

(j)
u

+
δ

(i)
n+u

δ
(i)
n

δ
(j)
n

(
λ(1)
)2 (

1 + C2
logn
n

)
− δ(i)

n

(
λ(1)
)2

N
(1)
n + k

(1)
u

N
(1)
n + k

(1)
u

N
(1)
n

N
(j)
n

N
(j)
n + k

(j)
u

.

Thus, to satisfy (3.22), it is sufficient to have

δ
(i)
n+u

δ
(i)
n

δ
(j)
n

δ
(j)
n+u

(
1 + C5

log n

n

)
N

(i)
n + 1

N
(i)
n

N
(j)
n

N
(j)
n + k

(j)
u

≤ 1, (3.23)
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δ
(i)
n+u

δ
(i)
n

δ
(j)
n

(
1 + C2

logn
n

)
− δ(i)

n

δ
(j)
n+u

(
1− C4

logn
n

)
− δ(i)

n+u

N
(1)
n + k

(1)
u

N
(1)
n

N
(j)
n

N
(j)
n + k

(j)
u

≤ 1. (3.24)

Note that for all large enough n and any alternative i 6= 1, by Lemma 3.4.2, we have∣∣∣δ(i)
n+u − δ(i)

n

∣∣∣ =

∣∣∣∣(d(i)
n+u

)2

−
(
d(i)
n

)2
∣∣∣∣

=

∣∣∣∣(θ(i)
n+u − θ

(1)
n+u

)2

−
(
θ(i)
n − θ(1)

n

)2
∣∣∣∣

=
∣∣∣(θ(i)

n+u − θ
(1)
n+u

)
+
(
θ(i)
n − θ(1)

n

)∣∣∣ ∣∣∣(θ(i)
n+u − θ(i)

n

)
−
(
θ

(1)
n+u − θ(1)

n

)∣∣∣
≤

∣∣∣(θ(i)
n+u − θ

(1)
n+u

)
+
(
θ(i)
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(i)
n

N
(i)
n

+O

√ log logN
(1)
n

N
(1)
n


= O

(√
log log n

n

)
,

where the fourth equality holds because of the law of the iterated logarithm, and

the last equality holds by Lemma 3.4.2. Then for all large enough n, we have

δ
(i)
n+u

δ
(i)
n

=
δ

(i)
n+u − δ

(i)
n + δ

(i)
n

δ
(i)
n

= 1 +
δ
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n

δ
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n
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(√
log log n

n

)
,

δ
(j)
n

δ
(j)
n+u

= 1 +O

(√
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)
,

and

δ
(j)
n

(
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n

)
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n

δ
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1− C4
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)
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δ
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n

(
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)
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(
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(
δ
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)
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(
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)
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n+u

≤ 1 +

∣∣∣δ(j)
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n C2
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n
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n+uC4
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n
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∣∣∣δ(i)
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∣∣∣
δ

(j)
n+u

(
1− C4
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n

)
− δ(i)

n+u

= 1 +O

(√
log log n

n

)
.
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Then together with Lemma 3.4.2, there exists a positive constant C6 such that, for

all large enough n, the LHS of (3.23) satisfies

δ
(i)
n+u

δ
(i)
n

δ
(j)
n

δ
(j)
n+u

(
1 + C5

log n

n

)
N

(i)
n + 1

N
(i)
n

N (j)
n −N (j)

n

=

(
1 +O

(√
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n

))(
1 + C5

log n

n

)(
1 +O

(
1

n

))
N (j)
n −N (j)

n

≤ C6

√
n log log n,

while the LHS of (3.24) satisfies

δ
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δ
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n

δ
(j)
n

(
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n

)
− δ(i)

n

δ
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(
1− C4
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)
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N
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u

N
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n

N
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n

N
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u

=

(
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(√
log log n

n

))
N

(1)
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(1)
u

N
(1)
n

N
(j)
n

N
(j)
n + k

(j)
u

≤
(

1 + C6

√
n log log n

n

)
N

(1)
n + k

(1)
u

N
(1)
n

N
(j)
n

N
(j)
n + k

(j)
u

.

Therefore, to satisfy (3.23), it is sufficient to have

C6

√
n log log n ≤ k(j)

u . (3.25)

Now define

s , sup
{
l < m : I

(1)
n+l = 0

}
. (3.26)

Since k
(1)
m√

n log logn
can be arbitrarily large, we can suppose that k

(1)
s > C7

√
n log log n,

where C7 is a positive constant to be specified. By Lemma 3.4.5, since C6 is a fixed

positive constant, there must exist a constant C8 such that, if C7 ≥ C8, there exists

a suboptimal j 6= i, and a stage n + u with u ≤ s, such that j is sampled at stage

n+ u and (
1 + C6

√
n log log n

n

)
N

(j)
n

N
(1)
n

<
N

(j)
n + k

(j)
u

N
(1)
n + k

(1)
s

≤ N
(j)
n + k

(j)
u

N
(1)
n + k

(1)
u

.
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Then, (3.24) holds at stage n+ u. At the same time, since

N
(j)
n + k

(j)
u

N
(1)
n + k

(1)
s

>

(
1 + C6

√
n log log n

n

)
N

(j)
n

N
(1)
n

≥ N
(j)
n

N
(1)
n

,

we have k
(j)
u

k
(1)
s

≥ N
(j)
n

N
(1)
n

. From Lemma 3.4.2, there must exist a positive constant C9

such that, for all large enough n,

k(j)
u ≥ C9k

(1)
s ≥ C9C7

√
n log log n.

Now let C7 = max
{
C8,

C6

C9

}
. Then, both (3.24) and (3.25) are satisfied at

stage n+ u, so (3.22) is satisfied, which means

r
(i,j)
n+u < 1 ⇒ v

(i)
n+u > v

(j)
n+u.

But the alternative j is sampled at stage n + u, which means v
(i)
n+u ≤ v

(j)
n+u. The

desired contradiction follows.

Now, consider the other case where limn→∞
δ
(j)
n

δ
(i)
n

< 1, i.e., µ(j) > µ(i). By (3.21),

we have

δ
(j)
n+u

(
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)2 (
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n

)
N

(i)
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=
δ

(j)
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δ
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(
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N
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n

1− C4
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n

N
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n

N
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(j)
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δ
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n

δ
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n

(
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N
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n
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n
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n

N
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n

N
(i)
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+
δ
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δ
(j)
n

δ
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n

(
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n

(
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)2 (
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n

)
N

(1)
n

·
1− C4

logn
n

1 + C2
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n

N
(i)
n

N
(i)
n + 1

.

Then, there must exist a positive constant C10 such that, for all large enough n,

δ
(j)
n+u

(
λ(i)
)2 (

1− C4
logn
n

)
N

(i)
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≥ δ
(j)
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δ
(j)
n

δ
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n

(
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1
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+
δ

(j)
n+u

δ
(j)
n

δ
(i)
n

(
λ(1)
)2 − δ(j)

n

(
λ(1)
)2 (

1 + C2
logn
n

)
N

(1)
n

· 1

1 + C10
logn
n

N
(i)
n

N
(i)
n + 1

.

Thus, to satisfy (3.22), for all large enough n, it is sufficient to have

δ
(j)
n+u

δ
(j)
n

δ
(i)
n

δ
(i)
n+u

1
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(j)
n

1

1 + C10
logn
n

N
(i)
n

N
(i)
n + 1

≥ 1

N
(j)
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(j)
u

,

δ
(j)
n+u

δ
(j)
n

δ
(i)
n − δ(j)

n

(
1 + C2

logn
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N

(1)
n

1

1 + C10
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n

N
(i)
n

N
(i)
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≥
δ

(i)
n+u − δ
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n+u

(
1− C4

logn
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)
N

(1)
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,

which can equivalently be rewritten as

k(j)
u ≥ δ

(j)
n

δ
(j)
n+u

δ
(i)
n+u

δ
(i)
n

(
1 + C10

log n

n

)
N

(i)
n + 1

N
(i)
n

N (j)
n −N (j)

n , (3.27)

k(1)
u ≥ δ

(j)
n

δ
(j)
n+u

(
1 + C10

log n

n

)
δ

(i)
n+u − δ

(j)
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(
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)
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n

(
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logn
n

) N
(i)
n + 1

N
(i)
n

N (1)
n

−N (1)
n . (3.28)

Similarly as above, by Lemma 3.4.2, there exist positive constants C11, C12, C13 and

C14 such that, for all large enough n,

δ
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n
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√
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and

δ
(j)
n

δ
(j)
n+u

(
1 + C10

log n

n

)
δ

(i)
n+u − δ

(j)
n+u

(
1− C4

logn
n

)
δ

(i)
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√
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Therefore, to satisfy (3.27) and (3.28), it is sufficient to have

k(j)
u ≥ C11

√
n log log n, (3.29)

k(1)
u ≥ C14

√
n log log n. (3.30)

Again, define s as in (3.26). Since k
(1)
m√

n log logn
can be arbitrarily large, we can

suppose that k
(1)
s > C15

√
n log log n, where C15 is a positive constant to be specified.

By Lemma 3.4.5, since C11 is a fixed positive constant, there must exist a constant

C16 such that, if C15 ≥ C16, there exists a suboptimal alternative j 6= i, and a stage

n+ u with u ≤ s, such that j is sampled at stage n+ u and(
1 + C11

√
n log log n

n

)
N

(j)
n

N
(1)
n

<
N

(j)
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(j)
u

N
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(1)
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≤ N
(j)
n + k

(j)
u

N
(1)
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(1)
u

,

whence

N
(j)
n + k

(j)
u

N
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(
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√
n log log n

n

)
N

(j)
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N
(1)
n
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(j)
n

N
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Then, we have k
(j)
u

k
(1)
s

≥ N
(j)
n

N
(1)
n

. From Lemma 3.4.2, there must exist a positive constant

C17 such that for all large enough n,

k(j)
u ≥ C17k

(1)
s ≥ C17C15

√
n log log n.

At the same time, by Lemma 3.4.3, for all large enough n, we also have

k(1)
u ≥

k
(j)
u + 1

B2

− 1 ≥ C17C15

√
n log log n+ 1

B2

− 1 ≥ C17C15

√
n log log n

2B2

.

Now, let C15 = max
{
C16,

C11

C17
, 2B2C14

C17

}
. Then both (3.29) and (3.30) are satis-

fied at stage n+ u, so (3.22) is satisfied, which means that

r
(i,j)
n+u < 1 ⇒ v

(i)
n+u > v

(j)
n+u.
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But the alternative j is sampled at stage n + u, which means that v
(i)
n+u ≤ v

(j)
n+u.

Again, we have the desired contradiction.

Proof of Lemma 3.4.5. For convenience, we abbreviate k
(j)
(n,n+m) by the notation k

(j)
m

for all j. First, since C2 is a constant and limn→∞
√
n log logn

n
= 0, it follows that, for

all large enough n, we must have C2

√
n log log n ≤ n. Intuitively, from the definition

of m and s, stage n + m is the first time that alternative i is sampled after stage

n, and stage n + s is the last time that a suboptimal alternative is sampled before

stage n + m. Recall that, by assumption, we must have C2

√
n log log n ≤ k

(1)
s ≤ n

for some positive constant C2 to be specified.

At stage n, since we sample a suboptimal i by assumption, we must have

(
N (1)
n /λ(1)

)2 ≥
M∑
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(
N (j)
n /λ(j)

)2
. (3.31)

At stage n+ s, from the definition of s, it is also some suboptimal alternative that

is sampled. Repeating the arguments in the proof of Theorem 3.3.1, we obtain
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From Lemma 3.4.2, we know that lim infn→∞
N

(1)
n

n
> 0. Then, there must exist some
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constant C4 such that
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and for all large enough n,
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where (3.32) holds due to (3.31), while (3.33) holds since lim infn→∞
N

(i)
n

N
(1)
n

> 0 and

k
(1)
s ≥ C2

√
n log log n for a positive constant C2. Since lim infn→∞

N
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N
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> 0 and
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lim infn→∞
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n

n
> 0, there must exist positive constants C5, C6, C7, C8 and C9 such

that, for all large enough n, we have
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where (3.34) and (3.35) hold because k
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s ≤ n. Then,
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so there must be some suboptimal j such that
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and, for all large enough n, we have(
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N

(1)
n + k

(1)
s

)
N
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n /N
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√
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n
, (3.36)

whence

N
(j)
n + k

(j)
s

N
(1)
n + k

(1)
s

>

(
1 + C11

√
n log log n

n

)
N

(j)
n

N
(1)
n

. (3.37)

For the alternative j that satisfies (3.37), let

u , sup
{
l ≤ s : I

(j)
n+l = 1

}
.

Then, stage n + u is the last time that alternative j is sampled before or at stage

n+m. Since k
(j)
s is monotonically increasing in s, we have

N
(j)
n + k

(j)
u

N
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(1)
u

≥ N
(j)
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(j)
u

N
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=
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N
(j)
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N
(1)
n

,

where the last line follows from (3.37). By Lemma 3.4.2, there must exist a positive

constant C12 such that, for all large enough n,(
1− 1

N
(j)
n + k
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s

)(
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√
n log log n

n

)
N
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(
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=
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√
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where C13 = C11

2
= C10C2

8
. Note that constants C3 through C10 are fixed and do not

depend on C1 or C2. Thus, for all large enough n, if we take C2 to be sufficiently

large, i.e., C2 ≥ 8C1/C10, to make C13 ≥ C1, then

N
(j)
n + k

(j)
u

N
(1)
n + k

(1)
s

>

(
1 + C1

√
n log log n

n

)
N

(j)
n

N
(1)
n

,

which completes the proof.

Lemma 3.4.6. For any alternative i, n3/4
∣∣∣δ(i)
n+1 − δ

(i)
n

∣∣∣→ 0 almost surely as n→∞.

Proof. First, if an alternative j other than 1 or i is sampled at stage n, it is obvious

that n3/4
∣∣∣δ(i)
n+1 − δ

(i)
n

∣∣∣ = 0.

Second, if alternative i is sampled at stage n, then for all large enough n, there

exists a constant C1 such that

n3/4
∣∣∣δ(i)
n+1 − δ(i)

n

∣∣∣ = n3/4

∣∣∣∣(d(i)
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)2

−
(
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n

)2
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≤ C1n
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n
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n

∣∣∣ ,
where
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n

∣∣∣ = n
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n + 1
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n +W
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∣∣+
n

N
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n + 1

∣∣∣W (i)
n+1

∣∣∣
= O (1)

(
1 +

∣∣∣W (i)
n+1

∣∣∣) ,
thus there exists a constant C2 such that

n3/4
∣∣∣δ(i)
n+1 − δ(i)

n

∣∣∣ ≤ C2

n1/4

(
1 +

∣∣∣W (i)
n+1

∣∣∣) .
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Finally, if alternative 1 is sampled at stage n, then similarly as above, for all

large enough n, there exist constants C3 and C4 such that

n3/4
∣∣∣δ(i)
n+1 − δ(i)

n

∣∣∣ ≤ C3

n1/4
n
∣∣∣θ(1)
n+1 − θ(1)

n

∣∣∣
≤ C4

n1/4

(
1 +

∣∣∣W (1)
n+1

∣∣∣) .
Then it is sufficient to show

∣∣∣W (i)
n+1

∣∣∣
n1/4 → 0 and

∣∣∣W (1)
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n1/4 → 0 almost surely. By

Markov’s inequality, for all ε > 0,
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≥ ε
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n2ε8

 ≤ C5

n2ε8
,

where C5 is a fixed constant, thus

∣∣∣W (i)
n+1

∣∣∣
n1/4 → 0 in probability. Furthermore, by the

Borel-Cantelli lemma, since

∑
n

P


∣∣∣W (i)

n+1

∣∣∣
n1/4

≥ ε
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∑
n

C5
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then we have

∣∣∣W (i)
n+1

∣∣∣
n1/4 → 0 almost surely. Using similar arguments, we also have∣∣∣W (1)

n+1

∣∣∣
n1/4 → 0 almost surely, completing the proof.

Let i, j > 1 and suppose that i is sampled at stage n. We will first place

an O
(

1
n3/4

)
bound on the increment r

(i,j)
n+1 − r

(i,j)
n . We will then place a bound of

O
(√

n log logn
n3/4

)
on the growth of

(
r

(i,j)
n

)
in between two samples of i (note that, by

definition, r
(i,j)
n ≤ 1 at any stage n when i is sampled). As this bound vanishes to

zero as n→∞, it will then be shown to follow that r
(i,j)
n → 1.

If i is sampled at stage n, then r
(i,j)
n ≤ 1 and

r
(i,j)
n+1 − r(i,j)

n =
log
(
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(i)
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)
log
(
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) − log
(
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)
log
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)
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By Lemma 3.4.2, there exists a positive constant C1 such that, for all large enough

n,

2
∣∣∣log

(
v

(j)
n

)∣∣∣
n1/4

=
t
(j)
n

n1/4

(
1 +O

(
log t

(j)
n

t
(j)
n

))

>
1

2n1/4

δ
(j)
n

(λ(j))
2

N
(j)
n

+
(λ(1))

2

N
(1)
n

≥ C1
n

n1/4
= C1n

3/4.

On the other hand, for all large enough n, there also exists a positive constant C2

such that
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where the first equality holds from Lemma 3.4.2 and the last equality holds from
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We have now bounded all four terms in (3.38). Therefore, for all large enough n,

we have

r
(i,j)
n+1 − r(i,j)

n ≤ 5C2/C1

n3/4
,
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and

r
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.

Thus, we have established a bound on the growth of r
(i,j)
n that can occur as a result

of sampling i at time n.

We now consider the growth of the ratio between stages n and n+m, where

m , inf
{
l > 0 : I

(i)
n+l = 1

}
as in the statement of Lemma 3.4.4. In words, n+m is the index of the next time

after n that we sample i. For any stage n + s with 0 < s ≤ m, the inequality
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Thus, there exists a constant C3 such that
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Similarly as above, we have∣∣∣∣∣∣
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Then, there exists a constant C4 such that
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Therefore, in all cases, for all large enough n, we have
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where C5 = max {5C2/C1, C3, C4}. It follows that
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However, from Lemma 3.4.4, we have k
(1)
s ≤ k

(1)
m = O

(√
n log log n

)
for all 0 < s ≤

m, and at the same time, from Lemma 3.4.3, we know that at most B2 samples could

be allocated to any suboptimal alternatives between two samples of alternative 1.

Then we also have k
(j)
s ≤ k

(j)
m ≤ B2

(
k

(1)
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)
, whence k

(j)
m = O
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follows that
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whence lim supn→∞ r
(i,j)
n = 1. By symmetry,

lim inf
n→∞

r(i,j)
n = lim sup

n→∞
r(j,i)
n = 1,

whence limn→∞ r
(i,j)
n = 1. This completes the proof.

3.5 Numerical Example

We present a numerical illustration of the mCEI method on a small synthetic

problem. Two additional benchmarks were implemented. The first of these is the

classic EI method from [10], given in (3.6). From (3.7)-(3.8), we do not expect this

method to perform optimally in the long term; however, we include it because it is

the fundamental procedure in the EI class of methods and thus a natural benchmark

for mCEI. We also implemented the TTPS (“top-two probability sampling”) method

from [15]. This method assigns a fixed proportion β of the sampling budget to

alternative j∗n and allocates the rest based on a Thompson sampling-like criterion.
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TTPS is an important benchmark since it can be made to achieve the optimal

convergence rate if β is chosen correctly; however, since tuning β may be time-

consuming in practice, [15] explicitly recommends setting β = 0.5 and derives a

bound on the gap between the resulting convergence rate and the optimal one. We

follow this recommendation in order to briefly comment on the tuning issue.

The synthetic example has five alternatives (systems) with true values µ =

(0.5, 0.4, 0.3, 0.2, 0.1), standard deviations λ = (1, 0.6, 0.6, 1, 1), the initial prior

means θ0 = 0, and a budget of 5000 samples. Figure 2.1(a) shows the trajec-

tory of the probability of incorrect selection, averaged over 100 macro-replications.

Thus, the best alternative is j∗ = 1, but the noise is greater for alternative 1 than

for alternatives 2 and 3, which makes correct selection a bit more difficult.

By (3.7), we know that EI will not be able to achieve an exponential con-

vergence rate, so it is unsurprising that it is eventually outperformed by TTPS;

however, EI performs relatively well in the early stages. On the other hand, mCEI

lags slightly behind EI during the first 200 replications, but subsequently discovers

the best alternative very quickly. After 2500 samples, the empirical probability of

incorrect selection is virtually zero under mCEI.

Figure 2.1(b) compares the allocations made by each method (also averaged

over 100 macro-replications) to the optimal allocation, obtained by solving (3.1)-

(3.2). As expected from (3.7), the EI allocation is far from optimal since it assigns

most of the budget to the best alternative. The optimal proportion to assign to

alternative 1 is slightly larger than 0.5; as a result, TTPS is not tuned optimally

and thus consistently makes errors in all of the proportions. The allocation made
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(a) Probability of incorrect selection.

(b) Simulation allocations after 5000 samples.

Figure 3.2: Comparison between mCEI and benchmark methods on the example

problem.
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by mCEI is very close to optimal.

Note that, even in this small problem, alternatives 3, 4 and 5 receive only

about 10% of the budget under the optimal allocation. This suggests that, in some

situations, the size of the problem may not necessarily determine its difficulty (aside

from increasing the computational effort required to run a procedure), as many or

even most of the alternatives may be similarly “irrelevant.” Identifying character-

istics that make problems more “difficult” may be an interesting subject for future

work. At present, however, we only wish to illustrate the potential of mCEI to

produce very close approximations of the optimal allocation, without any tuning, in

a relatively small number of samples.

3.6 Conclusion

We have considered a ranking and selection problem with independent normal

priors and samples, and shown that an EI-type method (a modified version of the

CEI method of [16]) achieves the rate-optimality conditions of [9] asymptotically.

This is the first such result available for any EI-type algorithm (previous rate re-

sults for other EI-type methods have shown that those methods achieve suboptimal

allocations) that does not require any tuning.

This work strengthens the existing body of theoretical support for EI-type

methods in general, and for the CEI method in particular. An interesting question

is whether CEI would continue to perform optimally in, e.g., the more general

Gaussian Markov framework of [16]. However, the current theoretical understanding
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of such models is quite limited, and more fundamental questions (for example, how

correlated Bayesian models impact the rate of convergence) should be answered

before any particular algorithm can be analyzed.
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Chapter 4: Conclusion

In this thesis we focus on the interface between stochastic optimization and

statistics. We apply statistical analysis to a suite of models that were established for

stochastic optimization but only numerically studied in the literature, and show the

theoretical validity of these models by showing the convergence of the algorithms.

We also propose a new algorithm for solving the classic ranking & selection (R&S)

problem, and show it is able to achieve the optimal budget allocation.

In Chapter 2, we propose a new general form of the stochastic approximation

(SA) algorithm with “bias” terms included, and prove the convergence of this general

algorithm. Then we apply this general framework to a suite of approximate Bayesian

learning models including four univariate models and three multivariate models, all

of which have proved their practical value for solving some realistic problem, and we

show the convergence of each. On one hand, this work provides rigorous theoretical

support for approximate Bayesian inference, as well as the inspiration for designing

new approximate Bayesian models. For example, we propose a new approximate

Bayesian model for learning through censored binary observations with unknown

mean and variance and prove its consistency. On the other hand, it also gives us

ideas about showing the convergence of other similar algorithms.
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In Chapter 3, we propose a new algorithm based on the complete expected

improvement (CEI) criterion for solving the R&S problem with finite alternatives

under independent normality condition. We prove this algorithm recovers the op-

timal budget allocation asymptotically with respect to maximizing the probability

of correct selection. This is the first EI-type algorithm that achieves the optimality

condition, and it requires no extra computational effort or tuning work compared

to the classic EI. This work bridges the gap between EI-type methods and the

theoretical optimal budget allocation, and may inspire future work on designing al-

gorithms that are able to recover the optimality condition in more general situations,

for example, without the limitation of finite alternatives or without the normality

assumption.
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