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In today's environment, in which WLAN technology is being deployed extensively, in order to 

improve the effectiveness of such deployments it is necessary to have a detailed understanding of 

WLAN signal characteristics. Radio signal attenuation and path losses depend on the 

environment and have been recognized to be difficult to calculate and predict. Past studies of the 

signal propagation, in both an indoor and in an outdoor environment have used several models

with varying degrees of success and/ or complexity. I present here a simple analytic model for an 

indoor environment, and use it for determining the signal strength in a 3-D environment with one

transmitter. The model is experimentally verified and is shown to yield a good match with the 

measurements. Several consequences of the model are studied and contour plots mapping signal 

strengths are generated. Signal strengths in the presence of an obstruction in the field of the 

transmitter are studied.
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Chapter 1. Introduction

 1.1 Motivation

Wireless LAN technology, in particular 802.11b and 802.11g technology, has been 

gaining prominence in its use and deployment. In this technology, wireless 

communication in the 2.4 GHz band is used for digital communication at the rates of 11 

Mbps for 802.11b and up to 54 Mbps for 802.11g. The current technology supports 

access to the wireless network through the deployment of Access Points (APs), which can 

be accessed within a radius of a few hundred feet (both indoors and outdoors). The range 

and the quality of the connection depend on the environment, the walls, and other 

obstructions, reflecting surfaces, etc., that are there in the path from the transmitter to the 

receiver.  In order to not only improve the digital communication in such environments,

but also to use the availability of these signals for other purposes such as determining 

locations, we need to understand the signal characteristics in detail. In this thesis I present 

the results of one such study in which I use an analytic model of signal propagation to 

determine signal strength at various locations in a 3-D region in the shape of a 

rectangular box. The models used in this study were empirically verified by making 

signal strength measurements. 

The study presented here is part of a larger project which is aimed at exploiting the 

detailed knowledge of the signal characteristics to better manage WiFi deployments and 

in improving the quality of digital communications in such environments.
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1.2 My Work

RF signal propagation follows well known laws of physics. An RF wave emitted by an 

antenna is attenuated due to distance in a direct line of sight (LoS) path. Also, the 

receiver may receive multiple such waves in an indoor environment due to reflection and 

other such phenomena [15]. The signal strength at the receiver depends on all such 

component waves; their amplitudes as well as their phases. In this study I take a 

simplistic view, taking into account the direct LoS signal, and signals received after a 

single reflection off of each of the available walls. I consider a rectangular box 

corresponding to a corridor in a building and develop an analytic model of the signal 

strength at various locations in this region when one transmitting antenna is deployed at a 

specified location. For verification of the model I measured the actual signal strengths in 

a corridor in the A.V. Williams building, University of Maryland, College Park, using the 

APs that are already deployed there and measuring the signal strength using a laptop with 

a network access card. The results of this study are presented in this thesis.

1.3 Thesis Outline

In Chapter 2, I present some past work and related reading. In Chapter 3, I discuss the 

basic physical concepts behind this problem. In Chapter 4, I delineate my theoretical 

model and some results. Some empirical studies conducted for verification of the model 

are presented in Chapter 5. Some theoretical implications of this model are presented in 



3

Chapter 6. In Chapter 7, I examine the effect of the presence of obstructions in the path of 

the RF radiation. I conclude in Chapter 8 and discuss future directions.
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Chapter 2. Related Work

The area of modeling radio wave propagation has been studied by many researchers and 

from a variety of perspectives. When such studies were conducted for supporting the 

design of a system, the aim usually was to come up with empirical models which could 

be used in practice to engineer the systems. Many of these studies have been conducted to 

support the design and implementation of cellular telephone systems [e.g. 17].  Recently 

some studies have been conducted looking at the signal propagation in an indoor 

environment also. 

In [1], a review of popular propagation models for the wireless communication channel is 

undertaken. Macrocell (typically a large outdoor area), microcell (a small outdoor area), 

and indoor environments are considered. In the first case, LoS conditions are usually not 

satisfied. The signal propagates by reflection, diffraction and refraction. Since there are 

so many factors, creating a model is difficult, but a few have been proposed. The 

microcell model is easier to formulate, both from empirical results, and by physical 

analysis. For example, an empirical model is proposed in [2]. A ‘ray-optic’ theoretical 

model is proposed in [3]. 

Several studies have indicated that indoor propagation models can be difficult to 

formulate and use. Field strength measurements [4] show that fluctuations can be very 

high (up to 80dB). Parameters used in empirical models require more compensation to fit 

experimental data than for the outdoor situations. This phenomenon is attributed to the 
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fact that at a particular point, the signal strength is determined by a much larger number 

of indirect components.

There are two types of models to fit behavior – experimental/statistical1 models, and 

theoretical models2. Many experimental models are based on measurements. A model is 

formulated to fit the data. For example [5] proposes:

PL(d) = PL(d0) + 10*n*log(d/d0) + A (2.1)

Where PL(d) is path loss in dB at distance d, PL(d0) is the known path loss at reference 

distance d0, n  is the exponent depending on propagation environment, A is uncertainty in 

model. Parameter n is very sensitive to propagation environment – type of construction 

material, type of interior, relative location within building etc. n ranges between 1.2 

(waveguide effect3) to 6. These models have a significant error rate.

A few studies have used analytic models. In the ray-tracing model (e.g. [6]), all possible 

signal paths from the transmitter to the receiver are calculated. Predictions can be based 

on free-space transmissions, reflections, diffraction, diffuse wall scattering, and 

transmission through various materials. At any point, the sum of all the components is 

taken to get the signal strength. This method can also be used to predict time dispersion 

1 In these the experiment is conducted, and mathematical formulae are inferred from the results.

2 The model is created using principals of physics.

3 Waveguides are typically tubular structures. Their characteristics are such that waves traveling in them are 
forced to follow their structure. This is an efficient mechanism for signal transmission, it reduces loss.
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(signal fluctuation across time at a particular location). This model needs a very detailed 

analysis and  can be computationally very expensive. Note that the approach I have taken 

in this thesis is similar to the one in this paper except that I do not use explicit ray tracing 

techniques.

In the finite-difference time-domain (FDTD) models, a numerical solution of Maxwell’s 

equations is undertaken [7]. Maxwell’s equations are approximated by a set of finite-

difference equations. A numerical solution is obtained by finite differencing. This is also 

a computationally demanding method. It is only suitable for small areas. For larger sizes, 

ray-tracing models are considered better.

The theoretical models are computationally very expensive, and the empirical models are 

not very accurate. These limitations can be overcome by an artificial neural network 

model. The ETF- Artificial Neural Network(ANN) model [4, 8] is based on multilayer 

perceptron feedforward neural networks. For a particular environment, the neural 

network has to be trained with measured data. While the training is expensive, it only 

needs to be done once. Experiments show that the accuracy of this model is comparable 

to the accuracy of the ray-tracing and FDTD models.

Other phenomena affecting signal transmission have been studied. E.g. in [4], it is seen 

that a receiver moving slowly within the indoor environment experiences Ricean or 

Rayleigh fading4. Faster moving receivers experience Doppler shifts. The presence of 

human beings in the experimental area affects the results also [9]. The user’s own body 

4 These are mathematical equations modeling the fading.
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(very close to the receiver) causes a drop in signal strength. Other people in the vicinity 

not only cause attenuation, but fluctuation also. These irregularities are hard to predict.

An interesting application of measurement and modeling of signal features is the field of 

indoor geolocation. (e.g. [10], [11]). Geolocation is the tracking of mobile human beings 

and objects within a building. An algorithm is introduced, (e.g. [11],[12]), signal 

measurements are made, and the locations are calculated. The measurements made may 

include [10] arrival distance of the signal, angle of arrival, signal strength, phase, time of 

arrival and so on. This is a complex scenario, so a variety of location finding algorithms 

have emerged e.g. [13].

We note that all these studies have looked at the RF propagation in different 

environments and have studied ways of predicting the signal characteristics taking into 

account the specific environment under study. In my study I consider a simple model of 

propagation in a 3D environment.
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Chapter 3. Background

3.1 Wave Propagation and the Free Space Model

The starting point in this study is the wave propagation in free space. The signal at 

distance x from the source, )(xJ , can be written as [18]-

)2(
0 )()( fxciD exJxJ π−=   (3.1.1)

where

x = distance from source

J0 = signal amplitude at source

f = frequency(2.4 GHz) 

D = Exponent value contributing to decay of signal 

 as a function of distance x

c = speed of light in free space

We note that for free space generally the value of D should be two. However, in several 

empirical studies researchers have proposed a number of other values for D, varying from 

1.2 to 4, which reflect the specific environment that they were considering. I will start 

with the value of D as 2. Further, the signal )(xJ  is treated as a complex variable and this 

aspect has to be taken into account when I manipulate this variable. 

The basic premise of this study involves a transmitter/antenna/AP(access point) called T

(this transmits the radio signal), and the receiver R, which is the recipient of this signal. 
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3.2 Indoor Environment

When a radio wave encounters objects in its path it gets affected by them. The most 

significant factors affecting the propagation of radio waves are reflection, absorption, 

diffraction, scattering, and refraction [15]. Let us consider these next.

3.2.1 Reflection

Reflection occurs when the radio wave is incident on a surface which has much larger 

dimensions than its wavelength. In an outdoor environment, these would occur off the 

surface of the earth, buildings etc. In an indoor environment, it would be walls, people 

and other obstructions. The reflected waves follow the typical laws of reflection in that 

the incident angle is equal to the angle of reflection and that the wave undergoes a phase 

change of 180 degrees. Depending on the material of the reflecting surface a portion of 

the signal may also be absorbed. Perfectly conducting materials are perfect reflectors, 

while poorer conductors involve more absorption of the signal before reflection. The 

conductivity of a material further depends on its dielectric properties.

3.2.2 Absorption

As the radio wave passes through a material, a portion of its energy is absorbed. The 

amount of absorption depends on the characteristics of the material. 
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3.2.3 Diffraction

This occurs when the radio path between the transmitter and the receiver is obstructed by 

a surface that has sharp irregularities (edges). The radio signal impinging on the edge 

results in secondary waves which propagate in all directions around the edge(including 

behind the obstacle.) This phenomenon is responsible for providing a path between the T

and the R even when there is no direct or reflected path. The diffraction depends on the 

geometry of the object, as well as on the amplitude, phase, and polarization of the 

incident wave at the point of diffraction.[15] 

3.2.4 Scattering

When there are objects of comparable dimensions to the wavelength of the radiation in 

the medium of transmission, scattering of the signal occurs off of these objects. If the 

number of such objects per unit volume is large, the effects of scattering can be 

appreciable. Scattering is particularly prevalent when there are rough and irregular 

surfaces present. 

3.2.5 Refraction

In an outdoor environment, the atmosphere has a refractive index, which curves the path 

of the signal. This changes the geometry of the situation. In an indoor environment, this 

effect is not significant. However, the signal does pass through objects, within which 
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refraction will occur. So the signal will come out at a different position than expected. 

Thus, obstructions change the path of the radiation.

3.3 The Multipath Effect

As a consequence of the factors noted in section 3.2, the receiver R may get multiple 

waves following different paths, from the source T to it. Each of these waves will have its 

own amplitude and phase, and will arrive at R with its own delay. Note that the signal 

received at R is the superposition of all these component waves obtained by adding the 

signal values treated as complex numbers. I can then determine the signal strength as the 

amplitude of the complex number.
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Chapter 4. Theoretical Model 

4.1 Basic Premise

Given a rectangular 3-D space whose dimensions are known, and with a radio wave 

transmitter and receiver of known coordinates, I calculate the field strength at every point 

in this space by taking into account the direct LoS ray and the reflected waves reaching 

the receiver. I only consider the waves reaching the receiver after one reflection. 

4.2 The Environment

In this study I consider a rectangular 3-D space to model a corridor in a building (this 

space is now called the ‘box’) in which one AP has been installed at a fixed location. The 

dimensions of the corridor and the location of the AP are known. I proceed to calculate 

the signal strength measured at a location in the box by taking into account the direct LoS 

path and 6 reflected waves.

I assume that the corridor walls are parallel to the axes of the coordinate system and that 

the origin is at one corner, x-axis is along the length, y-axis is along the width and z-axis 

vertical in this box. Further, 

• The corridor has dimensions A, B, C.

• The access point coordinates are x1, y1, z1. 

• The receiver coordinates are x2, y2, z2.  

• The walls have reflection coefficients of rc1. 
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• The floor has a reflection coefficient of rc2.

• The ceiling has a reflection coefficient of rc3.

• The original amplitude, as emitted by T, is given by J0.

4.3 Paths Traveled by the Waves

Let us look at the different paths taken by the rays to travel from transmitter to receiver as 

in Fig 4.1 and Fig. 4.2

• LoS (line of sight) path between T and R called T-R. Let this distance be d1.

Clearly this distance can be calculated as

 ________________________________
d1 =  √ (x2 – x1)2 + (y2- y1)2  + (z2 – z1) 2           (4.3.1)

• R also receives 6 different rays from reflections. These are paths traveled by 

rays from T to each separate plane in the box and then reflected back to R.

In order to consider the reflections let us examine one pair of reflections. They are off of 

2 planes – the y = 0 plane, and the y = B plane. Consider a ray that starts from T, then 

impinges on surface y = 0, undergoes reflection, and then reaches R , the receiver. The 

diagram(Fig. 4.1) shows this.
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Fig. 4.1 Reflection from y = 0 plane

The point of reflection is S(x, y, z). As we note from the equation for the signal strength, 

the main factor to consider for the reflected wave is the total distance traveled and the 

loss at the point of reflection. A phase change of π  also has to be added. In order to 

calculate the distance traveled I draw the ‘image’ of the transmitter on the other side of 

the x-axis. 

For the reflection, the distance traveled by the ray is T-S + S-R. Looking at the diagram, 

from simple geometry, it can be seen that this is equal to I1-R. So d, distance traveled by 

the ray reflecting off of y = 0 plane, is x2

222 )12()12()1x2( zzyyxd −+++−=                         (4.3.2)
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Now for the y = B plane. Refer to diagram Fig. 4.2.

Fig. 4.2 Reflection from y = B plane

The point of reflection is S’(x’,B,z’). So, d’, the distance traveled by the ray reflecting off 

of y = B  plane, is  I1’-R, which is        

222 )12()122()12( zzyByxxd −++−+−=′ (4.3.3) 

The other reflected distances (from the other planes) can be calculated analogously.
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4.4 Magnitude Calculation

As noted in Chapter 3, the signal strength at any point, with attenuation due to distance, is 

given by

)
2

(

0)( c

fx
DexJxJ

π
−=      (4.4.1)

Where

x = distance from source

J0 = signal amplitude at source

f = frequency(2.4 GHz) 

D = exponent value contributing to decay of signal 

    As a function of distance x

c = speed of light in free space

By Euler’s equation, this can be rewritten as 

)]
2

()
2

([)( 0 c

fx
iSin

c

fx
CosxJxJ D ππ += −                               (4.4.2)

• For the LoS path, using eqn (4.3.1), the amplitude at R due to this ray is given by

)
12

(
1)()( c

fd
D edTJRJ

π
−=

Or

)]
12

()
12

([1)()(
c

fd
iSin

c

fd
CosdTJRJ D ππ += −                  (4.4.3)
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• Consider the case of the reflections. 

The 2 rays travel distances of d and d’ respectively (as in  (4.3.2) and (4.3.3)).

The amplitude at R due to the reflected ray having traveled distance d is–

)
2

(
.)()(

ππ +−= c

fd
DedrcTJRJ (4.4.4)

This can also be written as(for a reflection off a wall which has reflection coefficient 

rc1)

)]
2

()
2

([)()( 1 ππππ +++= −
c

fd
iSin

c

fd
CosdrcTJRJ D   (4.4.5)

So we have seven rays arriving at R. We calculate the real and imaginary parts of each 

ray using the sine and cosine components .So we have r1….r7 real contributions, and 

im1….im7 imaginary contributions. 

Real = r1 + r2 + r3 + r4 + r5 + r6 + r7

Img = im1 + im2 + im3 + im4 + im5 + im6 + im7  (4.4.8)

The total magnitude is calculated as

____________
Magnitude =   √ Real2 + Img2  (4.4.9)

In this way we can calculate the magnitude of the signal received at any arbitrary point.
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Chapter 5. Experiments

In order to verify the applicability of the model developed in Chapters 3 and 4, I 

conducted some experiments by measuring signal strengths in a corridor in the AV 

Williams building. I used the AP installed in that corridor for the UMDnet and measured 

the signal strength by placing a laptop with a network interface card at measured 

locations. I used a software package called Horus5 to take the measurements. At each 

location, 300 readings of the signal strength were taken in 100 seconds. From these 

readings, I obtained the average signal strength as well as the standard deviation at each 

location.

Note that while the model used is deterministic, in practice there are noise factors that 

affect the signal strength. These include the movement of objects around the receiver 

during the measurement, and also receiver and antenna noise. These noise factors will 

give rise to variability in the results. I expect the model to capture the average behavior of 

the measurements. However, I will indicate the standard deviation of the measurements 

in my results.

When making the model calculations I used the following parameter values which are 

based on some published results:

• The decay exponent D = 2. This is as indicated for Eqn. 3.1.1.(Though I will 

modify this and indicate if I have done so)

5Developed by Dr. Moustafa A. Youssef, University of Maryland at College Park
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• The walls have reflection coefficients of  rc1 = 0.5.

• The floor has a reflection coefficients of rc2 = 0.3.

• The ceiling has a reflection coefficient of rc3 = 0.1.

(The reflection coefficients are as used as in [16].)

In a later section, I will look at the impact of model parameter values and how better 

values can be selected for my experiments.

There are some other factors that the model does not directly account for. These include 

antenna and receiver gain, system losses, absorption, and noise factors. I expect this to 

contribute to a linear shift, or difference between the model and experimental results. I 

will experimentally determine the magnitude of this shift, and will shift the value of the 

model plot accordingly.

5.1 Experiment 1

The experiments were conducted in a corridor on the 4th floor of the AVW Building.

5.1.1 Experimental Setup

The corridor layout is shown in Fig. 5.1.
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Fig

. 5.1    Room Layout

The corridor I used for the measurements had length 1923 cm and width 185 cm. The 

height of the room was 248 cm. The x- and y- axes were chosen as indicated in Fig. 5.1. 

The z-axis was chosen to be perpendicular to the floor. The 192 cm and 185 cm 

correspond to gaps in the walls for the corridors leading out of this space. (I chose 

measurement locations such that no reflected rays affecting the data points would be 

incident on those areas).  The AP is marked in the diagram and had coordinates of (1357, 

180, 230). The experimental setup was as in Fig. 5.2. 

(1357, 180,230)

AP

1923 cm 

x-axis 

y-axis 

185 cm 

192 cm 

185 cm 
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Fig. 5.2 Experimental setup

In Fig. 5.2, the x- and y- axes are as marked. The first position of the receiver was the 

green dot, and its position coordinates are shown. The subsequent positions were the red 

dots. All measurements were taken by placing the laptop on a trolley so that the NIC was 

at a height of 83 cm.

At the first point, the receiver coordinates were (480, 75, 83). I moved the cart to 

increment the x-position (by 31 cm each time), and measured the magnitude at each 

point. 

480 cm

75 cm

31 cm
x

y

Receiver positions

First position of 
receiver 

AP

(75, 480, 83)
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5.1.2 Results

The value of the signal strength at each point was measured. The experiment was 

repeated . So there are two sets of measurements. The results for the first set of 

experiments are plotted in Fig. 5.3.

Fig. 5.3 Signal values from Model and from Experiment

The errorbars show measured signal strength values within one sigma bound of the mean 

value. The rms error between experiment and model is 6.23 dBm.

I include the results from the second set of measurements(Fig. 5.4). This set of 

measurements was taken immediately after the first one. I take multiple sets to observe 

the variability of results for the same experiment repeated with the same setup.
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Fig. 5.4 Signal values from Model and from Experiment

The rms error between experiment and model is 6.08 dBm. The 5th data point has an 

unexpected dip in value.

It is noted that there is attenuation in the signal with increasing separation from the 

antenna, as expected. Also, data points exhibit dips and peaks in the signal strength, and 

this can be attributed to variations introduced by the multipath effect.

5.1.3 Model Parameter Adjustment

I shall examine if a better fit to experimental data can be obtained by adjusting the values 

of parameters used in the model.
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• Decay exponent, D

From first principles, the decay exponent should have value 2. However, it has been 

hypothesized in the literature [15] that a decay exponent other than 2 should be used. I 

shall vary the value of D until a good fit with experiment is observed.

• Reflection coefficients rc1, rc2, rc3 .

In the model plots that I have drawn so far, I used reflection coefficients of 0.5, 0.3, and 

0.1 as indicated in [16]. However, in our setup, these may consist of different values. So I 

should vary the values of these coefficients until a good fit with experiment is obtained.

I proceed  to vary all the parameters together until a best fit is obtained. I vary D from 0.2

to 2.0, and each of the rc values from 0.1 to 0.9. 

For the first set, I get a best fit at D = 0.6, rc1 = 0.1,  rc2 = 0.1 and  rc3 = 0.1. I  shift the 

graph by 32.87 dBm. The rms error is 2.26 dBm.(Fig.5.5)
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Fig 5.5 Signal values from Model and from Experiment 

It is seen that values predicted by the model now lie entirely within the range of 

experimentally measured values.

For the second set, I again vary the D and rc’s as previously. The best fit is obtained with 

at D = 0.8, rc1 = 0.1,  rc2 = 0.1 and  rc3 = 0.1. The graph has is  shifted by 29 dBm. The 

rms error is 3.82 dBm.(Fig.5.6)
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Fig. 5.6 Signal values from Model and from Experiment

Again, it is seen that values predicted by the model lie almost entirely within the range of 

experimentally measured values.

5.1. Both Sets of Data

I plot both datasets together to get Fig.5.7. I will use the average of the parameter values 

used so far(D = 0.7, rc1 = 0.1,  rc2 = 0.1 and  rc3 = 0.1, shift = 31 dBm). 
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Fig. 5.7 Signal values from 2 Datasets and from Model 

It is seen that (except for a few deviant points) data from the different datasets are 

relatively close together. Clearly there are other factors at work which impact the actual 

measured values. Let us look at some of them next.

5.1.5 Sources of Error

There are errors in my measurement process which have not been accounted for.

• Errors manifest as a result of receiver and antenna noise. Also there is error due 

to people walking around and obstructing the rays. These will manifest as the variance in 

the measurements made.
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• Positional errors

These are the errors in the measurement of room dimensions, and antenna and receiver 

coordinates. I shall consider only the last item, as the receiver position is constantly 

changed, and there is more chance of error.

I recalculate values generated by the re-parameterized model(with the optimal D , rc’s, 

and shift, as obtained from the last two sets of the experiment), and with the introduction 

of a jitter value in the receiver coordinates ( Fig. 5.8). I allow a jitter value of +- 7cm in 

each coordinate direction (y- and z- coordinates). 

Fig. 5.8 Values with jitter in receiver y- and z- coordinate values
[AKA1]

The values in the errorbars in the plot of the model indicate the range of values obtained 

by jittering the receiver coordinate values. It is seen that variability is introduced due to 
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position jitter. The range of model values still lie almost entirely within the range of 

experimentally observed values when the R position error is included in the graph.

I repeat this for the second set of measurements as shown in Fig. 5.9.

Fig. 5.9 Values with jitter in receiver  y- and z-coordinate values

Some variability is introduced due by position jitter.  Again, the model values still lie 

almost entirely within the range of experimental values.

It is seen that location error introduces some variability into the model results.
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5.2 Experiment 2

The experiment was repeated in the same corridor with different receiver locations. 

5.2.1 Experimental Setup

The receiver position was again varied only on the x-axis. As before, antenna coordinates 

were (1357, 180, 230). The first position of the receiver was at (345, 83, 91). The receiver 

was moved by 31 cm each time, and I had 40 data points. Two sets of measurement were 

made.

5.2.2 Results

I plot the results. I directly optimize the values of D, rc’s, and shift (Fig. 5.10).The results 

from the first set of experiments are plotted in Fig. 5.10 For the first set, the best fit is 

obtained with at D = 0.8, rc1 = 0.3,  rc2 = 0.3 and  rc3 = 0.1. The graph is shifted by 26.2

dBm. The rms error is 2.63 dBm.
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Fig. 5.10 Signal values from Model and from Experiment

There is excellent agreement between experiment and the adjusted model.

I took another set of measurements, as plotted in Fig. 5.11. the best fit is obtained with at 

D = 0.8, rc1 = 0.3,  rc2 = 0.1 and  rc3 = 0.1. The graph is shifted by 26.2 dBm. The rms 

error is 2.14 dBm.
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Fig. 5.11 Signal values from Model and from Experiment

Again, there is an excellent match between theory and experiment.

I plot both datasets together in Fig. 5.12. For the parameter values, I use the average of 

the last two sets and use D= 0.8, rc1 = 0.3,  rc2 = 0.2 and  rc3 = 0.1, shift = 26.2 dBm. I 

get Fig. 5.12.
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Fig. 5.12 Signal values from 2 Datasets and From Model

It is again seen that mostly, data from the different datasets are very close together. 

5.2.3 Location Jitter

I consider errors in the measurement of R as before. I introduce a jitter(of +- 7cm) in the 

receiver coordinate positions, and regenerate the model graph .(I use the average values 

of D , rc’s, and shift as obtained from the previous two sets of this experiment.)

For Set 1, I get Fig. 5.13
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Fig. 5.13 Values with jitter in receiver y- and z- coordinate values

It is seen that the model values lie almost entirely within the range of experimental 

values.

I repeat this procedure for Set 2 to get Fig. 5.14.
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Fig. 5.14 Values with jitter in receiver y- and z- coordinate values

Again, it is seen that the model values lie almost entirely within the range of experimental 

values.

5.3 Re-Parameterized Model 

So far, I adjusted some parameter values in my model to get a good fit to the data of 

Experiments 1 and 2. Over the two experiments, the average value of the decay exponent 

D is 0.75. The values of the reflection coefficients are 0.2, 0.15 and 0.1.The average 

value of the linear shift is 28.5 dBm. I shall use these values from now on.
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5.4 Model Verification

I shall verify my re-parameterized model against another experiment.

5.4.1 Experimental Setup

This was conducted in the same corridor as in the previous two experiments. The initial 

position of the receiver was at (348, 105, 98) with increments of 31 cm along the x-axis 

happening each time. 22 measurements were taken.

5.4.2 Results

For the first set, I plot the experimental and model results in Fig.5.15. ( The model uses 

the parameters as explained earlier.
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Fig. 5.15 Signal values from Model and from Experiment

The rms error is 3.6 dBm. The values predicted by this model lie somewhat within the 

range of values as measured by experiment.

Another set of measurements was taken as shown in Fig. 5.16.
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Fig. 5.16 Signal values from Model and Experiment

The rms error is 2.7 dBm. The values predicted by this model are largely within the range 

of values as measured by experiment.

5.5 Conclusions

It is seen that there is a good match of predictions of my model with experimental results. 

While the match is not perfect, it is well within experimental errors. Therefore I conclude 

that the model with adjusted parameters is useful in determining the signal strength in an 

indoor corridor.
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Chapter 6. Model-Based Analysis

In this chapter I undertake further investigation into the effects of the analytic model. 

First, this gives us insights into the working of the model. Next, it helps us understand the 

salient features of the 3-D signal strength topology. Since the model results match the 

measurements well, we can use my model to predict signal strengths in an indoor 

environment. Further, it gives us ideas into future improvements of the model. Note that I 

use the re-parameterized model of Chapter 5. (The value of the decay exponent D is set at

0.75, the reflection coefficients at 0.2, 0.15 and 0.1, and the linear shift at 28.5 dBm.)

6.1 One Axis Variations

For Fig. 6.1, I use the data (receiver coordinates, antenna location, room coordinates) 

from Experiment 1 in Section 5. However, I extend the range of the readings for receiver 

x-values continuing beyond that of the x-position of the antenna. Also, a finer-grained set 

of x-positions are considered.  I model the magnitude due to the LoS or direct line-of-

sight ray, and also the composite magnitude containing all 7 rays in the model.
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Fig. 6.1 Signal strength as predicted by model

Note that the AP is at x = 1357 cm. The model shows that the signal strength (both LoS 

and composite components) increase with proximity to the antenna, as expected. The LoS 

component is smooth, whereas the composite magnitude shows a lot of fluctuations due 

to the interference caused by the reflected waves. I evaluated signal strengths for this 

configuration for some other values of y and z, and found that a  similar variability is 

observed.

To understand the signal characteristics, I also consider the signal strengths for variations 

along the other axes. I vary the y-coordinate smoothly keeping the x and z constant at x = 

650 cm and z = 83 cm(Fig. 6.2)
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Fig. 6.2 Signal strength V. y-coordinate 

There is a repetitive variation across the y-axis. There are drops of ~ 2 dBm over 

distances of ~ 20 cm.

Next, x and y are kept constant at x = 950 cm, and y = 160 cm. Varying the z-coordinate, 

I get the results shown in Fig. 6.3.
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Fig. 6.3 Signal Strength v. z-coordinate 

The magnitude of the LoS signal is mostly greater than that of the composite signal. This 

can be attributed to the geometry of the situation again.. The gross trend of the LoS signal 

gradually increases with increase in z-coordinate (increasing proximity to AP which is at 

z = 230 cm There are many jagged variations across the z-axis. There are changes of ~ 3 

dBm over 20 cm.

Going back to Fig.6.1, I investigate the composite magnitude variations further. I zoom in 

on a portion of the graph to get Fig. 6.4. 
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Fig. 6.4 Zoomed in signal strength

There are sharp, repetitive variations over short distances. The signal strength is sensitive 

to position on x-axis and a change in position of  ~2 cm can cause a fluctuation of ~ 4 

dBm.

Next let us look at the reflected waves separately. It is interesting to see the constituent 

signal strengths, and to see how they add up.

I split up the magnitudes due to each pair of reflected rays (off of 2 facing walls). The 

results from the 3 sets of reflections are shown in Fig. 6.5 (a),(b) and (c). 
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Fig. 6.5(a) Constituent Signals
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Fig. 6.5(b) Constituent Signals

Fig. 6.5(c) Constituent Signals
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In all cases, the reflection signal strengths (due to one pair of reflections) are lower than 

the LoS magnitude. This is due to absorption losses at the point of reflection as well as 

the increased distance traveled by the wave. Clearly the components are complex 

numbers and have to be added up resulting in the composites as shown in the figures

indicating a considerable interference amongst the different rays. The composite signal 

always shows the most variation across the graph. 

Note that using the model we can examine the contributions of each of the seven 

components of the composite signal. However, what is seen by any receiver is the 

composite signal only.

6.2 Contour Graphs

I look at some contour graphs to gain a better understanding of the situation. I look at a y-

z plane parallel to the plane of the APs in Fig. 6.6. x is held at 500 cm, and the y, z 

coordinates are varied across their entire range. As before, the AP is at (1357, 180, 230).
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Fig. 6.6 Contour graph on y-z plane

There is a total variation of about 3 dBm across the plane. The distribution is due to the 

geometry of the situation.

I look at a y-z plane which is closer to the AP, with x = 1300(Fig. 6.7).    
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Fig. 6.7 Contour graph on y-z plane

The curves swirl towards the upper right corner, with successively higher signal 

strengths. This is because the AP is located in that region. There is a total variation of 6

dBm across the plane.

I look at a variation (Fig. 6.8) across the x-y plane(x is varied from 300 to 1600 cm, y 

from 0 to 185 cm), z is held constant at 92 cm. (This corresponds to values used in Expt. 

2).
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Fig. 6.8 Contour graph on x-y plane

Signal strengths increase with proximity to the AP, as in the experiment. There is a 

variation of 7 dBm across the plane.

Contour graphs are a useful tool in visualizing signal strength configurations in a given 

environment. Further, they can be used to predict the presence of ‘dead spots’ or regions 

of very low or non-appreciable signal strengths.
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Chapter 7. Obstructions

The signal strength configuration changes in the presence of an obstruction in the path of 

the waves. Obstructions can include walls, ceilings, humans (possibly moving), and so 

on. Thus, studying this gives us better estimates of signal strength configurations. 

Further, an interesting application can be the prediction of the presence of obstructions 

(and their locations) by the measurement of signal strengths. 

7.1 Theory and Models

Rays passing through an obstruction are attenuated [15]. (Note that this applies to rays in 

their LoS path between the transmitter and receiver, as well as to reflected rays.) The 

amount of absorption depends on the dielectric properties of the material. There are also 

diffraction and refraction effects which alter the signal strength configuration, but I will 

not consider that for now.

I modify my model to check if the rays from T to R fall within the coordinates of the 

obstruction. In those cases, eqn. 4.4.1 is modified as

)
2

(

0 .)( c

fx
DexJxJ

π
γ −= (7.1.1)

where γ is the transmission coefficient, the fraction of the magnitude transmitted through 

the material.
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 An attenuated signal configuration is expected in the presence of an obstruction. I plot 

some graphs to explore this.

First, I take a particular configuration, and plot signal strengths in the absence of (Fig. 

7.1), and in the presence of(Fig. 7.2), an obstruction. The obstruction is set to have a 

transmission coefficient of 0.1. 

Fig. 7.1   Signal strength configuration with no obstruction
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Fig. 7.2 Signal strength configuration with obstruction

It is seen that there is signal strength attenuation in Fig. 7.2 as compared to Fig. 7.1. 

I move the obstruction closer to the AP in the model to get Fig. 7.3.
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Fig. 7.3 Signal strength configuration with obstruction

For Fig. 7.4, I move the AP along the y-axis (in the model.)
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Fig. 7.4 Signal strength configuration with obstruction

The various non-symmetrical effects observed are because of the interference of the LoS 

and reflected rays.

7.2 Conclusions

There are very specific signal strength configurations that result depending on the 

presence and position of an obstruction. My model can be modified to include this effect 

to predict the resulting configuration with a good degree of accuracy.
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Chapter 8. Concluding Remarks and Future Work

In this study I developed an analytic model for determining the signal strength at various 

locations in a 3-D rectangular space containing one Access Point. In my model I used the 

standard wave propagation equation and took into account multipath effects due to 

reflected waves received from six sides of the rectangular box. My measurements, 

conducted to verify the model, indicate that the model with single reflections shows 

sufficient accuracy and can be used effectively. 

Using the model, I calculated signal strengths along several axes and on several planes. 

All of these calculations show significant variability in the signal strength. Of note is the 

fact that the signal strength can change by several dBms as the location changes by a few 

cms. Such changes in the signal strength may not have any serious consequences for data 

transmission. However, when the signal strength measurements are used for other 

purposes, such as determining the location, the consequences of such variability can be 

very far reaching. Also, as most WiFi systems use the signal strength to decide which AP 

to associate with, a significant change in the measured signal strength can trigger a 

handover where one may not be necessary. 

I looked at models of signal strength attenuation in the presence of an obstruction in the 

path of the RF waves.  These results indicate that the changes in the signal strength 

depend significantly on the location and type of the obstruction. This knowledge can be 

used for determining the location of an obstruction, such as a person, in the corridor. 
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The work presented in this thesis is the first step in developing detailed and workable 

analytic models for indoor space. Many additional practical details will have to be 

included in the enhanced models. This work can be extended in several directions. For 

example the model can be enhanced to:

• Include other effects such as refraction, scattering, and fading.

• Incorporate more detailed effects due to people walking by, and other obstructions 

in the room. 

• Study how the signal strength changes while an obstruction moves through the 

room.

• Study the effects of multiple reflections.

• Include effects due to the characteristics of the AP. I have made an approximation 

of the AP as a fixed point, radiating rays uniformly in all directions. This is not 

true in real life, but depends on the specific antenna involved. The distribution 

pattern of the antenna can also be reflected in the model.

• Study in greater detail the causes of discrepancies between the model and 

experiment. 
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