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Two-dimensional crystals such as graphene and transition metal 

dichalcogenides have emerged as a new class of materials. They serve as rich 

playgrounds for two-dimensional physics but also have great potential for a wide 

range of applications due to their exceptional tunability via external influences such 

as electric fields, light, chemical adsorbates, defects, and stress. This dissertation aims 

to understand, as a fundamental step toward their application, the response of two-

dimensional crystals to such external perturbations imposed by supporting substrates. 

First, the mechanical response of graphene supported on corrugated substrates 

is studied. I find that the structural evolution of graphene depends on the roughness of 

the substrate and the graphene thickness. On SiO2 substrates decorated with a low-

density of SiO2 nanoparticles, adhesion dominates graphene elasticity and, hence, 

graphene conforms to the substrate. With increasing nanoparticle density, however, 

the elastic stretching energy is reduced by the formation of wrinkles. As the graphene 



  

membrane is made thicker, graphene becomes stiffer and delaminates from the 

substrate. 

Second, the effect of substrates on chemical reactivity of graphene is probed. 

Single-layer graphene on low charge-trap density boron nitride is not etched and 

shows little doping after oxygen treatment, in sharp contrast with oxidation under 

similar conditions of graphene on high charge-trap density SiO2 and mica. 

Furthermore, bilayer graphene shows reduced reactivity compared to single-layer 

graphene regardless of its substrate-induced roughness. Together the observations 

indicate that graphene’s reactivity is predominantly controlled by charge- 

inhomogeneity-induced potential fluctuations rather than by surface roughness. 

Lastly, the oxidative reactivity of atomically thin molybdenum disulfide 

(MoS2) on SiO2 is studied. MoS2 is etched by oxygen treatment. However, unlike 

graphene on SiO2, the density of etch pits barely depends on MoS2 thickness, 

oxidation time, oxidation temperature, but varies significantly from sample to sample. 

The observations suggest that the oxidative etching of atomically thin MoS2 is 

initiated at native defect sites on the basal-plane surface rather than activated by 

substrate effects such as charged impurities and surface roughness. 

The findings provide insight into the mechanical and chemical properties of 

two-dimensional crystals and may have important implications for their applications. 
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Chapter 1: Introduction 

1.1 “Discovery” of graphene 

Graphene, a one-atom-thick sheet made of carbon atoms arranged in 

honeycomb lattice, was first theoretically considered by Wallace to understand the 

electronic properties of graphite, the stack of graphene layers, nearly 70 years ago [1, 

2]. In the 1980’s, graphene with its “massless” dispersion near Dirac points was 

highlighted as a condensed matter counterpart of quantum electrodynamics [1, 3], 

triggering further theoretical studies with a renewed interest. However, no compelling 

evidence for the presence of graphene had been reported until 2004. In 2004, Andre 

Geim and Kostya Novoselov at the University of Manchester isolated, for the first 

time, thin graphite (or few-layer graphene) from bulk graphite on SiO2 by using a 

strikingly simple technique, the so called “Scotch tape method”, and demonstrated an 

ambipolar field effect device based on graphene [4]. The exfoliated graphene flakes 

are amazingly stable even at room temperature, defect-free at the micrometer scale, 

and show high crystal quality. These have all propelled, in addition to the simplicity 

of the isolation technique and the fabrication of field-effect devices, a surge of 

experiments on graphene with a great emphasis on transport measurement. In 

particular, the observation of Dirac fermions in single-layer graphene in 2005 paved 

the way for a new realm of condensed matter physics [5, 6]. As a first truly 2D 

material, graphene has been extensively studied, demonstrating many unusual 

properties including extraordinary mechanical strength [7] and ultrahigh thermal 

conductivity [8]. 



 

 2 

 

1.2 Two-dimensional crystals beyond graphene 

After the first isolation of graphene in 2004 [4], Novoselov et al. applied a 

mechanical exfoliation method to other layered materials such as boron nitride (BN), 

molybdenum disulfide (MoS2), niobium diselenide (NbSe2), and Bi2Sr2CaCu2Ox [9]. 

Initially, these materials have drawn little attention, compared to graphene, likely 

because they show, at a glance, less remarkable electronic properties than graphene. 

However, the study of 2D materials beyond graphene has been spurred recently by 

several important observations. First, in 2010, Dean et al. reported a technique for 

transferring graphene onto BN and demonstrated high-quality graphene devices of 

which carrier mobility is an order of magnitude higher than typical SiO2-supported 

graphene devices [10]. This result emphasizes the importance of BN as a graphene 

support but also opens up the possibility of creating unconventional van der Waals 

heterostructures based on 2D materials [11-13]. 

Other inspiring observations are high-carrier mobility [14] and strong 

photoluminescence of single-layer MoS2 [15]. These observations have important 

implications for a wide variety of applications of 2D transition metal dichalcogenides 

in electronics and optoelectronics [16]. Furthermore, more recently, two groups 

independently demonstrated control of valley polarization in single-layer MoS2 by 

optical pumping [17, 18], pointing out the possibility of novel electronics exploiting 

the valley degree of freedom of matter ― valleytronics. As frontiers beyond graphene, 

2D materials such as BN and transition metal dichalcogenides and their 

heterostructures are of increasing interest in condensed matter physics and for 

applications [19]. 
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1.3 Two-dimensional crystals as “all-surface” materials 

One of the most interesting aspects of 2D materials is, obviously, that they are 

truly 2D electron systems and could provide unusual phenomena hidden in quasi-2D 

systems such as semiconductor inversion layers. However, another unique feature of 

2D crystals is that they consist entirely of surfaces. This “all-surface” aspect of 2D 

materials contributes to the exceptional sensitivity of their properties to external 

influences. For example, the width and the edge structures of a 2D crystal 

nanostructure determine the size of the band gap [20]. Disorder modifies significantly 

the electric and thermal conductivities [21, 22]. Point defects induce magnetism [23, 

24], and strain mimics the effect of a magnetic field in single-layer graphene [25]. 

Furthermore, various properties such as work function [26], infrared reflectivity [27], 

and the amplitude and the wavelength of plasmons [28, 29] in graphene are widely 

tunable via electric fields. The extraordinary sensitivity (or tunability) of 2D crystals 

suggests a wide variety of electronic applications ranging from chemical sensors [30] 

to photodetectors [31. 32]. 

This dissertation concerns the all-surface aspect of 2D crystals, particularly, 

how their morphology and reactivity are affected by supporting substrates due to the 

all-surface nature. The substrate has two major effects on a 2D crystal; potential 

fluctuations due to trapped charged impurities [33, 34] and surface roughness caused 

by adhesion [35, 36], both of which are expected to modify the physical and chemical 

properties of a 2D crystal in various manners. For example, charged impurities are 

observed to limit the carrier mobility of graphene [37], and surface roughness is 

predicted to diminish graphene’s electric and thermal conductivity [21, 22, 38]. 
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However, their effects on morphology and chemical reactivity have remained unclear, 

although the information is essential for mechanically- (or strain-) and chemically- 

tuning the electronic properties of 2D crystals. 

In this dissertation, I experimentally explore (i) structures of graphene 

membranes supported on surfaces of varying roughness, (ii) oxidative reactivity of 

graphene on various substrates with different surface roughnesses and charged 

impurities, and (iii) oxidative reactivity of atomically thin MoS2 on SiO2. This 

dissertation is organized as follows. Chapter 2 introduces the electronic, mechanical, 

and chemical properties of graphene and MoS2 and how they are coupled to each 

other. Chapter 3 describes experimental techniques used in this work. Chapter 4 

reviews the Raman spectroscopy of graphene and MoS2. Chapter 5 presents the study 

of morphology of graphene supported on rough substrates. Chapter 6 discusses the 

impact of substrates on chemical reactivity of graphene. Chapter 7 investigates the 

chemical reactivity of single- and few-layer MoS2 supported on SiO2. Lastly, Chapter 

8 summarizes this dissertation and provides some outlook on future work. 
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Chapter 2: Strain- and chemical-engineering of the electronic 

properties of two-dimensional crystals: Background 

Due to their “all-surface” nature, two-dimensional (2D) crystals exhibit 

exceedingly tunable electronic properties via external influences such as 

electric/magnetic fields, light, structural defects, chemical adsorbates, and mechanical 

deformations. In this chapter, I review how strain and chemical species affect and, 

hence, can be used to engineer the electronic properties of graphene and atomically 

thin MoS2. In Sections 2.1 and 2.2, I introduce the unusual electronic properties of 

single-layer graphene. Then, I discuss how its electronic structures can be modified 

by mechanical strain in Section 2.3 and chemical treatment in Sections 2.4. In Section 

2.5, I review the electronic structures of single-layer MoS2 and show potential 

applications of chemical functionalization of MoS2 in Section 2.6 

2.1 The band structure of graphene 

I begin this chapter by reviewing the electronic properties of graphene. 

Graphene is made of carbon atoms arranged in a honeycomb lattice as shown in Fig. 

2.1a. The honeycomb lattice consists of two triangular A and B sublattices described 

by two unit vectors a1 = (3a/2, 2/3a ) and a2 = (3a/2, 2/3a ), where a = 1.42 Å 

is the spacing between the nearest neighbor carbon atoms. The lattice constant of the 

unit cell is a3  ≈ 2.46 Å. Figure. 2.1b shows Brillouin zone of graphene with the 

first Brillouin zone depicted by shaded area. The unit vectors in momentum space are 

given by b1 = (2/3a, a3/2 ) and b2 = (2/3a, a3/2 ). Among the three high 
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symmetric points , K, and M in momentum space, K = (2/3a, a33/2 ) and K´= 

(2/3a, a33/2 ) are particularly called Dirac points because electrons behave as 

massless Dirac fermions near the points as shown below. 

In the tight-binding language,  electrons at atomic sites “hop” to neighboring 

atomic sites with hopping energies. When only nearest neighbor hopping is 

 

 

Figure 2.2: The band structure of graphene. (a) The energy spectrum for the first 

Brillouin zone and (b) the linear energy dispersion, “Dirac cone”, near a K point. 

 

 

Figure 2.1: The honeycomb lattice and Brillouin zone of single-layer graphene. 

(a) The unit cell is represented by dashed lines. (b) The first Brillouin zone is 

represented by the shaded area. 
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considered, the tight-binding Hamiltonian for  electrons can be approximately 

described as H.c.
,

†  
ji

ji batH , where a
†
(a) is the creation (the annihilation) 

operator for the A sublattice, b (b
†
) is the annihilation (the creation) operator for the B 

sublattices, and t ≈ 2.8 eV is the energy for nearest-neighbor hopping [21]. From this 

Hamiltonian, the energy band of graphene can be derived as 

21 akak
k




ii
eetE 1)(  [3, 21, 39], where the positive energy corresponds to an 

antibonding * band (particle band) and the negative energy corresponds to a bonding 

 band (hole band) [21, 39]. Figure 2.2 shows the energy spectrum of graphene for 

the first Brillouin zone. As shown in Fig. 2.2a, the valence and the conduction bands 

touch each other at K and K´ points. Hence, graphene is a zero-band-gap 

semiconductor or a semimetal. 

The zero energy gap of graphene critically hinders its applications in 

electronics. Opening the band gap of graphene is, thus, of central interest. An 

approach is to create a narrow graphene strip with a width of < 100 nm (graphene 

nanoribbons) so that electrons are confined in quasi-one-dimension. The band gap in 

a graphene nanoribbon depends on its width and the edge terminations [20, 40]. 

Furthermore, first-principles calculation predicts that uniaxial strain along zigzag 

directions of the graphene lattice breaks sublattices symmetry and opens the energy 

gap which increases nearly linearly with increasing magnitude of the strain [41]. 

Another theoretical prediction is that when graphene is commensurately deposited 

onto BN, the inequivalence of two A and B carbon atoms results in a computed gap of 

53 meV [42]. For bilayer graphene, an electric field perpendicular to the plane can 
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create a tunable band gap due to the lowering of the symmetry [43, 44]. Furthermore, 

chemical functionalization can be used to control the band gap of graphene as 

described in Section 2.4. 

2.2 Dirac fermions in graphene 

Since the Fermi energy intersects E(k) at the K and K´ points, the electrons 

around the points determine the low-energy electronic properties of graphene. By 

expanding E(k) around a point k = K + q with |q| << |K|, the energy dispersion can be 

written as ||)( qq FvE  , where 6100.12/3  tavF m/s is the Fermi velocity 

[21]. This linear energy dispersion near K (K´) points is similar to the energy 

spectrum of ultrarelativistic particles which are described by the massless Dirac 

equations and are, thus, called Dirac cones as depicted in Fig. 2.2b. Indeed, by 

expanding the electron operators a and b around K and K´ points, the tight-binding 

Hamiltonians are also described as massless Dirac Hamiltonians: 

 kσ 
















 F

yx

yx

FK v
ikk

ikk
vH 

0

0
 (2.1) 

around K and  

 kσ 
















 

F

yx

yx

FK v
ikk

ikk
vH 

0

0
'  (2.2) 

around K´ with eigenenergies being kk FvE )(  [21]. 

The Dirac-fermions in single-layer graphene were experimentally confirmed 

by the observations of a half-integer quantum Hall effect, Berry’s phase, and 

cyclotron mass which depends on the square root of carrier density [5, 6]. 

Furthermore, experimental studies have shown that graphene exhibits various unusual 
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properties such as ballistic transport with a mean free path of up to 1 m [4, 45, 46], 

Klein tunneling [47, 48], and a half-integer quantum Hall effect at room temperature 

[49] due to the nature of the Dirac fermions. 

2.3 Effects of strain on the electronic structures of graphene 

As illustrated in the previous section, graphene shows many peculiar 

electronic properties due to the Dirac fermion-like behavior of low-energy electrons. 

Of particular interest is that non-uniform strain in graphene can mimic the effect of a 

magnetic field on the electronic structure, suggesting the possibility of “strain-

engineering” of the electronic properties. In this section, I review how strain could 

perturb graphene’s Dirac fermions. 

Strain changes local carbon-carbon distances as shown in Fig. 2.3, leading to 

modification of hopping energy t between neighboring pz orbitals on lattice sites  Ri 

and Rj = Ri + (ab is the nearest neighbor vector and aa is the next-nearest neighbor 

vectorto t´ = t + tij. Therefore, the tight-binding Hamiltonian is also modified to 

 

 

Figure 2.3: The uniaxially stretched honeycomb lattice of graphene. The pristine 

and stretched graphene lattices are represented by the red dashed and the black 

solid lines, respectively. 
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,

††)(†)( H.c.  , (2.3) 

where the superscripts (ab) and (aa) correspond to the nearest-neighbor and the next-

nearest-neighbor hopping, respectively [21]. By expanding the electron operators 

around the Dirac points K and K´ in analogy with the approach in the previous 

section, the Dirac Hamiltonian can be obtained as 
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


ab

iab ertrA


 Kab
)()(  (2.6) 

and 

 



aa

iaa ertr


 Kaa
)()( . (2.7) 

Here(r) = 

(r) due to the inversion symmetry of the two triangular sublattices, 

while A(r) is complex because of a lack of inversion symmetry for nearest-neighbor 

hopping. These Dirac Hamiltonians indicate that low-energy electrons in strained 

graphene behave as if they were subject to both scalar and vector A = Ax + iAy 

potentials, along with pseudomagnetic fields A B )( Fc/ev= . On symmetry 

grounds, the vector and scalar potentials can be expressed by strain tensors uij [50, 

51]: 
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 )()( 1 yyxx uugr  , (2.8) 

 )(2 yyxxx uugA  , (2.9) 

 xyy ugA 22 , (2.10) 

where u(r) = (ux,uy) is the in-plane displacements, with the x-axis being a zigzag 

direction, g1 ≈ 3.0 eV, and g2 ≈ 2.3 eV [52]. When the transverse displacement of 

graphene h is small [53], two-dimensional strain elements uij are approximated by 
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By Eqs. (2.8)-(2.10), along with Eqs. (2.11)-(2.13), the effective scalar and 

vector potentials (or pseudomagnetic fields) can be directly related to strain fields uij 

or displacements of the lattice u(r) = (ux,uy), implying that one could, in principle, 

tailor graphene’s electronic structures by appropriately designing strain or, more 

simply, the associated morphology. Indeed, specific strain profiles are predicted to 

create confined states, quantum wires, and electron collimation in the electronic 

structure of graphene [54]. Additionally, a theoretical calculation has shown that 

when graphene is corrugated with triangular symmetry along the crystallographic 

directions, strain in graphene induces pseudomagnetic fields and creates energy gaps 

of greater than 100 K due to the quasi-Landau quantization [55]. 
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Experimentally, strain-induced pseudomagnetic fields have been observed by 

scanning tunneling spectroscopy in graphene nanobubbles formed on Pt(111) [25] and 

suspended graphene deformed by a STM tip [56]. In the graphene nanobubbles, large 

triangular symmetric strain generates pseudomagnetic fields exceeding 300 T, 

resulting in Landau quantization of the energy levels [25]. In deformed suspended 

graphene, pseudomagnetic fields were found to confine electrons to quantum dots 

with charging energies and level spacings both of order 10 meV [56]. Theoretical 

proposals together with these observations signify that strain-engineering could be a 

promising approach for controlling graphene’s electronic structures. 

2.4 Chemical functionalization of graphene 

Chemical functionalization is an approach to tailoring the physical and 

chemical properties of a material by either covalently or non-covalently bonding 

molecules or atoms to its surfaces or edges. Previous studies have shown that 

chemical modification is effective in engineering the electronic, thermal, and, 

 

 

Figure 2.4: Covalent functionalization of graphene. (a) Graphene and (b) 

hydrogenated or fluorinated graphene which has deformed hexagonal lattices. 
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mechanical properties of carbon nanotubes − rolled-up graphene sheets [57]. 

Chemical functionalization of graphene has been of great interest for, in particular, 

engineering its energy band gap. As shown in Fig. 2.2, graphene has no energy gap 

due to A and B sublattices symmetry, limiting its device applications. Covalent 

functionalization of graphene changes the hybridization of carbon bonds from sp
2
 to 

sp
3
, removes conducting -electrons, and, thus, opens the band gap. Indeed, semi-

metallic graphene was found to transform into an insulator by hydrogenation [58] or 

fluorination [59, 60], which are schematically represented in Fig. 2.4. Additionally, 

the optical band gap [61] as well as transport band gap [62] have been observed in 

graphene covalently-functionalized with aryl group. 

In addition to the band-gap engineering, chemical functionalization can be 

used to induce unique properties in graphene. For example, fluorination leads to spin-

half paramagnetism in graphene [63], and graphene doped with alkali metals is 

theoretically predicted to show superconductivity [64]. Alternatively, non-covalent 

functionalization of graphene has great potential for a wide range of applications such 

as chemical- and bio-sensing devices [65]. 

2.5 The electronic properties of MoS2 

Now I focus on atomic layers of molybdenum disulfide (MoS2). MoS2 is a 

layered material, of which neighboring layers are coupled by van der Waals 

interactions with an interlayer spacing of 0.65 nm. Each layer consists of a partially-

ionically-bonded S-Mo-S sandwich structure with S atoms arranged in two hexagonal 

planes and a plane of Mo atoms in between, as shown in Fig. 2.5 [16, 66]. Figure 2.5a 
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is the most stable crystal structure of 2H-MoS2, where trigonal prisms of adjacent 

layers are 180°-inverted relative to each other and, hence, two layers is a repeat unit. 

Bulk MoS2 is a semiconductor with an indirect gap of 1.2 eV, where the 

conduction band minimum is at the midpoint along -K symmetry lines and the 

valence band maximum is at the  point [68]. However, single-layer MoS2 has a 

direct band gap of 1.9 eV at the K point. The transition from the indirect- to direct-

band gap with decreasing thickness is due to quantum confinement and change in the 

electronic states at the  point, which is the combination of pz orbitals on the S atoms 

and the d orbitals on the M atoms [15, 16]. Due to its direct-band gap, single-layer 

MoS2 emits strong photoluminescence [15]. 

 

 

Figure 2.5: The crystal structure of 2H-MoS2. (a) Three consecutive S-Mo-S 

layers coupled by van der Waals interaction and (b) top view of the first and 

second hexagonal lattices, of which triangular lattices (shaded in blue) are 180°-

inverted relative to each other. 
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Figure 2.6 shows the band structure of single-layer MoS2. The valence band 

has two inequivalent valleys at the K (or K´) points because of strong spin-orbit 

coupling [67, 68]. The two split valleys correspond to two spin states, where the 

directions of the spins are opposite for different valleys as represented in pink (spin-

up) and blue (spin-down) in Fig.2.6. Furthermore, the spin directions are opposite for 

the K or K´ points. Recent experimental studies have demonstrated that electrons at a 

particular valley (or spin) can be populated selectively by optical pumping [17, 18], 

opening up the possibility of “valleytronics” [67]. 

2.6 Chemical functionalization of MoS2 

Chemical functionalization of single- and few-layer MoS2 has yet to be 

investigated in detail either experimentally or theoretically, compared to graphene. In 

this section, I point out a couple potential applications of chemical treatment for 

MoS2-based electronics, lubricants, and catalysts.  

 

 

Figure 2.6: The band structure of single-layer MoS2 for the first Brillouin zone. 

The conduction bands are represented in yellow. The valence bands are decoupled 

into two bands due to the spin-orbit coupling [67]. The pink and blue bands 

correspond to the spin-up and -down states, respectively. 
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Atomically thin MoS2 is a nonmagnetic semiconductor as shown in the 

previous section. Recent first-principles calculations have shown that single-layer 

MoS2 could exhibit magnetism when its surface is functionalized with atoms of 3d 

transition metals, silicon, or germanium [69]. Carrier transport in atomically thin 

MoS2 is very sensitive to chemical adsorbates, making it a candidate for chemical 

sensor applications. So far, single-layer MoS2 has been demonstrated to be a sensor 

for nitric oxide gas [70] and triethylamine vapor [71]. Chemical functionalization 

could open the further possibility of MoS2-based sensing devices such as biomolecule 

detectors. 

In addition to the electronic and optical properties, MoS2 has attracted much 

attention as a solid lubricant [72] and a catalyst for hydrogen evolution reaction (2H
+
 

+ 2e
- 
→ H2) [73]. The tribological and catalytic properties of MoS2 strongly depend 

on its surface and edges structures. Hence, surface and edge functionalization could 

enhance the tribological properties and catalytic activity of atomically thin MoS2 [69]. 
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Chapter 3: Experimental techniques 

This chapter outlines experimental techniques used in this dissertation work. 

In Section 3.1, I explain the preparation method of 2D crystals and, in Section 3.2, I 

show how to clean the prepared samples. In Sections 3.3 and 3.4, I review the 

principles of atomic force microscopy (AFM) and Raman spectroscopy. 

3.1 Preparation of 2D crystals 

The most common method to produce a 2D crystal is mechanical exfoliation 

[4, 9], where atomically thin crystals are exfoliated from bulk either by pressing an 

adhesive tape covered with thin flakes onto a substrate or by rubbing thin flakes 

against the substrate. Mechanical exfoliation yields high-quality crystals for graphene, 

as clearly demonstrated by observations of a half-integer [5, 6, 49] and fractional [74, 

75] quantum Hall effect. However, the method has major drawbacks for practical 

applications: the low yield of single-layer crystals (likely, less than 10 %) and the 

small sizes of the samples (at most ~ 1.0 × 10
4
 m

2
 in area). An alternative approach 

for high-yield production of 2D crystals is liquid-phase exfoliation [76-78], where a 

pristine or intercalated bulk crystal is dispersed in organic solvents and is exfoliated 

by sonication. This method leads to a high density of atomically thin crystals in 

suspensions and the suspensions can be drop-cast on an arbitrary substrate. However, 

the sizes of the chemically exfoliated flakes are typically < 1 m
2
 in area. An 

approach to consistently creating single-layer graphene is graphitization of Si-

terminated SiC(0001) in an Ar atmosphere, which results in a large domain size of ~ 

1.0 × 10
2
 m

2
 [79]. A more versatile route to large-size and high-quality 2D crystals 
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is chemical vapor deposition (CVD). It has been reported that CVD can yield large 

single-layers of graphene [80-82], BN [83], and MoS2 [84, 85], and, furthermore, 

these samples show high sample quality, nearly comparable to mechanically 

exfoliated crystals [86, 87]. 

Although various methods have been developed for the production of 2D 

crystals, mechanical exfoliation has remained the most commonly used technique 

since the first isolation of thin graphite [4] despite its low-yield. This is mainly 

because a mechanically exfoliated flake usually shows higher crystal quality than 

samples obtained by the other methods. Thus, in this work, I used the mechanical 

 

 

Figure 3.1: The procedure of mechanical exfoliation of a 2D crystal. (a) and (b) 

Peeling off the bulk crystal into thin flakes by water soluble tape. (c) Deposition of 

the tape covered with the thin flakes onto a substrate. (d) Dissolution of the tape. 

(e) and (f) Exfoliation of thin flakes by adhesive tape. 



 

 19 

 

exfoliation method to prepare samples. To enhance the productivity of 2D crystals, I 

developed an exfoliation method, as described below.  

Figure 3.1 summarizes the procedure of the modified mechanical exfoliation. 

First, a layered bulk material is peeled off by a water soluble tape (3M
TM

, Water 

Soluble Solder Tape 5414), as shown in Figs. 3.1a and b. Then, the tape covered with 

thin flakes is pressed onto a substrate (Fig. 3.1c). The tape is dissolved in boilng water, 

leaving a large number of thin flakes on the substrate (Fig. 3.1d). Then, the substrate-

supported flakes are further exfoliated by an adhesive tape (Figs. 3.1e and f). The last 

procedure leaves some ultrathin flakes on it. 

Figures 3.2a-d are typical optical images of various 2D crystals exfoliated by 

this method on SiO2; (a) single- and few-layer graphene films obtained from Kish 

graphite, (b) single- and bi-layer MoS2 from a single crystal geologic specimen of 

 

 

Figure 3.2: Optical images of mechanically exfoliated 2D crystals on SiO2. (a) 

Graphene, (b) MoS2, (c) BN, and (d) WSe2. Scale bars are 20 m. 
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molybdenite, (c) atomically thin BN from BN powder (Momentive, PolarTherm 

grade PT110), and (d) WSe2. The sizes of the 2D crystals depend on the initial size of 

the bulk crystals, but this method yields consistently single-layers of graphene with 

an area of ~ 1.0 × 10
3
 m

2
. In principle, this method can be used for any layered 

material and on any hydrophobic substrate. 

3.2 Sample cleaning 

The exfoliation method used here introduces more adhesive residue on the 

surfaces of 2D crystals than the usual method. Removing the residue is, thus, essential 

for investigating their morphology and chemical reactivity. In this research, I cleaned 

graphene samples by annealing in either H2/Ar mixture or vacuum. Hydrogen 

annealing was found to be effective to remove a typical electron-beam resist of 

poly(methyl methacrylate) (PMMA) on graphene [35] and is widely used as a final 

step of the device fabrication as well as after transfer of a 2D crystal from one 

substrate to another [10]. In vacuum, graphene is stable and can be heated to the 

higher temperature of 500 °C. MoS2 samples were annealed in H2/Ar at 350 °C before 

investigating their reactivity. This annealing causes no disorder or chemical 

modification in MoS2 as shown later in Chapter 6. The flow rates of Ar and H2 were 

1.7 L/min and 1.8 L/min, respectively. 

3.3 Atomic force microscopy 

In this research, I used ambient atomic force microscopy (AFM) in tapping 

mode to characterize the surfaces of graphene and MoS2. In this section, I briefly 

review the principle of AFM, in particular, tapping mode AFM. Figure 3.3 depicts 
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schematically the principle of AFM. To image a surface of interest, AFM uses forces 

exerted between the sample surface and a sharp tip. The forces range from van der 

Waals interactions to electrostatic forces. The tip is attached to a cantilever beam 

made of typically silicon or silicon nitride, and the response to the forces is measured 

through the change in deflection or oscillation of the oscillating cantilever. The 

deflection or the oscillation is detected by using a photodetector which collects 

reflected laser from the back of the cantilever. The collected information is fed back 

to the z-direction piezo control to actuate the cantilever at a set point value. The 

difference between the set point and measured values is translated into the height at a 

given position [88]. 

In tapping mode (or intermittent contact mode), the cantilever is oscillated 

near its resonance frequency with an amplitude of ~ 100 nm. When the tip gets close 

to the surface (“taps” the surface), the tip-sample forces change the amplitude of the 

oscillations (Fig. 3.4). Then, the z piezo is modulated such that the amplitude of the 

 

 

Figure 3.3: A schematic of the principle of AFM. 
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cantilever remains a set point value. The tapping mode is a more moderate technique 

than contact mode, where the tip is in continuous contact with a surface. Thus, it is 

especially effective for soft samples such as biomolecules or membranes. 

In this research, I used mainly Digital Instruments Multimode AFM and 

silicon cantilevers with a nominal tip radius of < 10 nm (Nanoworld, NCH-20 or 

Olympus, OMCL-AC160TS). 

3.4 Raman spectroscopy 

Raman spectroscopy provides information on chemical and physical structures 

of a matter. In this dissertation work, I used Raman spectroscopy to identify the 

thickness of graphene and atomically thin MoS2 films and to characterize their 

chemical reactivity. In this section, I introduce the principle underlying Raman 

spectroscopy and, therefore, the Raman spectrum of graphene and MoS2 will be 

discussed in detail in Chapter 4. 

 

 

Figure 3.4: Tip-sample force F as a function of tip-sample distance z for tapping-

mode AFM. The tapping mode is operated in a range across repulsive and 

attractive regime as indicated by the double arrow. 



 

 23 

 

When a material is illuminated by light, the incident photon interacts with 

electrons in the material in various manners. For example, the photon can be virtually 

absorbed by the material by shaking the electrons. The excited electrons scatter the 

energy back to another photon, emitting light with the same energy as the incident 

light. This elastic process is called Rayleigh scattering (Fig. 3.5a). However, if the 

excited electrons involve the vibrations of atoms at their natural vibration frequencies, 

the electrons scatter the photon energy back to another photon with either lower or 

higher energy than incident photon by the vibration energy. This inelastic scattering 

process with creation or annihilation of a phonon is called Raman scattering (Fig. 

3.5b). When the photon loses energy by creating a phonon, this is called a Stokes 

process, while when it gains energy by absorbing a phonon, it is called an anti-Stokes 

process [89]. 

In the Raman process, the incident and scattered photons have different 

 

 

Figure 3.5: Rayleigh and Raman scattering in electronic states. (a) In the Rayleigh 

scattering process, incident light with an energy hi is elastically scattered by 

electrons, emitting light with an enegy hs = hi. (b) In the Raman scattering 

process, the incident light creates a phonon with energy hq, is, thus, inelastically 

scattered, resulting in light with an energy hs = hi - hq. 
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frequencies by the frequency of the phonon normal mode; hs - hi = hq, where hs 

and hi, are the energies of scattered and incident photons and hq is the energy of 

the phonon normal mode. Since the normal mode is uniquely related to chemical and 

physical structures of a material, one can probe the chemical and physical properties 

by measuring the energy difference hq = hi - hs. The Raman spectrum plots the 

scattered intensity as a function of hq in units of cm
-1

, exhibiting peaks at Raman 

active modes of a material (1 cm
-1

 corresponds to approximately 0.124 meV). 

In this research, I mainly used an H-J-Y Raman microscope with excitation 

laser wavelengths 532 and 633 nm. 
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Chapter 4: Raman spectroscopy of graphene and MoS2 

As described in the previous chapter, Raman spectroscopy is a technique to 

characterize non-destructively chemical and physical properties of a material through 

light-matter interaction. In this chapter, I highlight prominent Raman features of 

graphene and MoS2 and show how they can be used to determine their thickness or to 

estimate the density of defects and the carrier density in single-layer crystals. 

4.1 Main Raman features of graphene 

Figure 4.1 shows the Raman spectrum of graphene with defects. Pristine 

graphene shows two marked Raman features; the G band at ~ 1580 cm
-1

 and the G´ 

band at ~ 2700 cm
-1

 [89]. Additionally, when defects are present in graphene, a mode 

appears at ~ 1350 cm
-1

 as shown in Fig. 4.1, which is called the D band after 

“defects” or “disorder” [89]. The G band is the first order Raman mode associated 

with in-plane C-C bond stretching (Fig. 4.2a), which creates the doubly degenerate 

 
 

Figure 4.1: The Raman spectrum of graphene with defects. The excitation energy 

is 1.9 eV. 
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in-plane transverse optical (iTO) and longitudinal optical (LO) phonons at the  point 

[90]. In contrast, the G´ and D bands are the second-order processes [90]. In the 

double resonance process of the D band, the photo-excited electrons at a K point are 

first elastically scattered by a defect to a K´ point (Fig. 4.2b). Then, the scattered 

electrons are inelastically scattered back to the K point by emitting an iTO phonon by 

electron-hole recombination (Fig. 4.2b) [90]. For the G´ band, the photo-excited 

electrons are inelastically scattered by an iTO phonon and are scattered back by an 

iTO phonon (Fig. 4.2c). 

Figure 4.3a shows the Raman spectra of graphene for excitation energies of 

1.9 eV (black line) and 2.3 eV (red line). Whereas the G band is insensitive to change 

in the excitation energy, the D and G´ bands upshift with increasing laser energy. In 

Fig. 4.3b, the frequencies of the D and G´ bands are plotted as functions of the 

excitation energy. The slopes are ~ 50 cm
-1

/eV for the D band and ~ 100 cm
-1

/eV for 

the G´ band. These dispersive behaviors are due to the nature of the double resonance 

 
 

Figure 4.2: The Raman G, D, and G´ modes of graphene. (a) The G band is the 

first order process. (b) The D band is the second-order process, which involves the 

defect scattering and phonon emitting. (c) The G´ band is the second-order 

process, involving two phonons. 
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process, where phonons are coupled by the electronic states [90]. In the following 

sections, I highlight each Raman mode of graphene in more detail. 

4.2 The dependence of the G´ band on the thickness of graphene 

As explained in the previous section, the G´ mode shows dispersive behavior, 

depending on graphene’s electronic structures. Since graphene shows markedly 

different electronic structures for different thicknesses, the G´ band energy varies, 

depending on the number of layers of graphene. For example, bilayer graphene has 

two conduction bands and two valence bands, resulting in four double-resonance 

processes for the G´ mode, as shown in Figs. 4.4a-d [91]. Thus, the G´ band of bilayer 

graphene consists of the superposition of the four modes (2641, 2676, 2695, and 2710 

cm
-1

) as shown in Fig. 4.4e. Similarly, the G´ band of trilayer graphene is calculated 

to consist of fifteen different modes [90]. 

Figure 4.5 shows the Raman G´ bands of single-, bi-, tri-, 4-, and 5-layer 

graphene. The shape of the peak is significantly different for different number of 

 
 

Figure 4.3: The dispersive behaviors of the D and G´ modes. (a) The Raman 

spectra of graphene for excitation energies of 1.9 and 2.3 eV. (b) The frequencies 

of D and G´ bands as functions of the excitation energy. 
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graphene layers. Thus, together with the optical contrast of graphene supported on a 

substrate, the G´ band can uniquely determine the thickness of graphene. 

Additionally, the Raman G´ band can be also used to identify the stacking 

order in few-layer graphene [89]. The stacking is an important degree of freedom of 

graphene, which directly determines its electronic structures. For example, Bernal- 

(ABA-) stacked trilayer graphene is semimetallic, while rhombohedral- (ABC-) 

stacked trilayer graphene is semiconducting [92-94]. Distinguishing the stacking 

order is, thus, essential. Recent Raman spectroscopy studies have demonstrated the 

identification of the stacking order in few-layer graphene using the Raman G´ band 

and have revealed that a proportion of mechanically exfoliated few-layer graphene 

has rhombohedral stacking rather than energetically-favorable Bernal stacking [95, 

96]. 

 
 

Figure 4.4: The G´ band of bilayer graphene. (a)-(d) Four different resonance 

processes. (e) The G´ band of bilayer graphene. The black dots are experimental 

results. The green curves are multi-peak fits of the experimental results. The red 

curve is fit obtained by the superposition of the four curves. The excitation energy 

is 2.3 eV. 
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4.3 Effect of doping on the Raman G mode 

In a metal, atomic vibrations are partially screened by the conduction 

electrons. The screening changes rapidly for phonons with a wave vector q such that 

q ~ 2kF (kF is a Fermi wavevector) and softens of the phonons. This anomalous 

behavior of the phonon dispersion is called the Kohn anomaly [97]. In graphene, the 

Kohn anomaly occurs for q =  and q = K (see Fig. 2.1), where the phonons for the  

and K points are associated with the Raman G and G´ bands, respectively. When 

graphene is doped and, hence, the Fermi surface changes, the Kohn anomaly is 

induced away from q = 0, resulting in the stiffening of the Raman G band [98]. The 

 
 

Figure 4.5: The G´ band of single- and few-layer graphene. From the bottom to 

the top, single-layer, bilayer, trilayer, 4-layer, and 5-layer graphene. 
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effect of doping on the Raman G band has been investigated through in-situ Raman 

spectroscopy of graphene with tunable carrier density via gate voltage [99-101]. The 

Raman G band energy is observed to increase linearly with increasing carrier density 

due to the electron-phonon coupling. The shift in frequency is symmetric relative to 

the Dirac point due to the particle-hole symmetry of graphene’s electronic structure. 

The experimental results provide phenomenological relation between the frequency 

shift of the Raman G band and the doping level in single-layer graphene. 

4.4 Determining the defect density in graphene through the Raman D mode 

As explained in Section 4.1, when defects or disorder are introduced in 

graphene, the Raman D peak appears at ~ 1350 cm
-1

. In a simple picture, the intensity 

of the D band ID is proportional to the total number of defects on the area illuminated 

by the laser; 2

DLD )/( LLI  , where LD is a characteristic length between neighboring 

defects and LL is the laser spot size. The G band intensity IG is proportional to the 

total area probed by the laser, 
2

LG LI  . Therefore, the intensity ratio ID /IG is 

proportional to the density of defects
2

DD /1/ LII G  . This simple relation agrees well 

with the observations for low-defect density regime (LD ≥ 10 nm) [102, 103]. Thus, 

using experimentally determined constant for 
2

DD /1/ LII G  and considering the 

dispersive behavior of the Raman D peak, the density of defects in graphene nD can 

be determined as a function of ID /IG as follows; 

 
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where L is the wavelength of excitation laser and the defect density is in units of cm
-2

 

[103]. 

4.5 The Raman E
1

2g and A1g modes of MoS2 

In this section, I review the main Raman features of MoS2 and introduce how 

these modes can be used to determine the MoS2 thickness and they are influenced by 

doping. MoS2 shows two prominent Raman features; the in-plane E
1

2g mode at ~ 385 

cm
-1

 (Fig. 4.6a) and the out-of-plane A1g mode at ~ 405 cm
-1

 (Fig. 4.6b). These two 

modes are sensitive to the number of MoS2 layers as shown in Fig. 4.6c. The A1g 

mode upshifts, while the E
1

2g mode downshifts with increasing thickness, as shown in 

Fig. 4.6d. The frequencies of the modes reach those of bulk MoS2 at ~ six layers 

 

 

Figure 4.6: The Raman spectra of atomically thin MoS2. (a) and (b) Vibrations of 

S and Mo atoms for the E
1

2g and A1g modes. (c) Raman spectra of single- (1L-), 

bi- (2L-), tri- (3L-), four- (4L-), and five- (5L-) layer MoS2. (d) The frequencies of 

the E
1

2g and A1g modes as functions of the number of layers. (e) The linewidths of 

the E
1

2g and A1g modes as functions of the number of layers. 
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[104]. The stiffening of the A1g mode with thickness can be explained qualitatively by 

the effect of the interlayer van der Waals attractions. However, the anomalous 

softening of the E
1

2g mode may be due to long-range Coulomb interlayer interactions 

[104]. Figure 4.6e shows the linewidths of the E
1

2g and A1g modes as functions of the 

number of layers. The linewidth of the A1g mode decreases with increasing thickness, 

while that of E
1

2g is nearly independent of thickness. Thus, the frequencies of the 

Raman E
1

2g and A1g modes, along with the linewidth of the A1g mode, can be used to 

determine the thickness of atomically thin MoS2. 

Next, I discuss the effect of doping on the Raman modes of MoS2. Previous 

Raman measurement of single-layer MoS2 using electrolyte gating, combined with 

the density functional theory calculations, have revealed that the Raman A1g mode 

downshifts and its linewidth increases with increasing electron density due to 

electron-phonon interactions [105]. The results relate the carrier concentrations n in 

single-layer MoS2 to the change in the frequency of the A1g mode  (in cm
-1

) by n = 

-4.5 × 10
12

 cm
-2

. Thus, the A1g mode can be used to estimate dopant concentrations 

in MoS2. In contrast, the E
1

2g phonon is insensitive to carrier density in MoS2. 
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Chapter 5:  Morphological transitions of graphene on nano-

patterned substrates
*
 

A first step toward strain-engineering is to regulate the morphology of 

graphene. The most feasible approach to control of graphene’s morphology is to use a 

patterned substrate. Graphene tends to adhere to an underlying substrate due to van 

der Waals interaction; hence, the substrate features largely determine graphene’s 

morphology. However, graphene’s elasticity is expected to act to hinder it from 

deforming because the mechanical deformation is energetically unfavorable, 

restricting the structure of graphene on a substrate. 

In this chapter, I explore the extent to which graphene’s morphology can be 

controlled through graphene-substrate adhesion. I use support substrates of varying 

roughness to probe the morphological response of graphene to substrate features and 

show that graphene’s morphology evolves from adhered to wrinkled to delaminated 

geometries with increasing magnitude of roughness or graphene thickness. The 

morphological transitions are described within a continuum elastic model and by 

statistical physical approaches. The findings, together with the theoretical models, 

offer an effective strategy to manipulate the strain of graphene via adhesion to 

patterned substrates. 

                                                 
*
 Adapted from “ʻThe Princess and the Pea’ at the nanoscale: Wrinkling and 

delamination of graphene on nanoparticles” by Mahito Yamamoto, Olivier Pierre-

Louis, Jia Huang, Michael S Fuhrer, Theodore L. Einstein, and William G. Cullen 

(Physical Review X, 2, 041018, 2012) 
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5.1 Morphology of graphene on substrates 

The morphology of graphene on a substrate is governed by two competing 

effects: graphene-substrate adhesion and graphene’s elasticity. Since graphene is an 

exceptionally flexible material with a bending rigidity ≈ 1 eV [106], it can adhere 

conformally to substrates ranging from atomically flat mica [107] and BN [108, 109] 

to nanoscopically rough SiO2 [35, 36, 110]. However, graphene also shows 

extraordinary in-plane stiffness, with a tensile rigidity E2D ≈ 2.12×10
3
 eV/nm

2
 [7], 

leading to an effective mechanical thickness teff = (12/E2D)
1/2

 of less than 1 Å [111]. 

Therefore, graphene is expected to undergo a transition from conformal to relaxed 

morphologies under stress on a substrate [112-115]. Indeed, graphene on a PMMA 

surface shows wrinkling under compressive stress induced by thermal cycling [116]. 

Additionally, graphene is observed to delaminate from uniaxially periodically 

corrugated surfaces with increasing graphene thickness [117, 118]. However, 

morphological behaviors of graphene on nano-patterned substrates have yet to be 

fully understood. In this chapter, we investigate systematically the morphological 

responses of graphene membranes to nanoscale rough features of substrates. 

5.2 Experimental details 

Rough substrates are prepared by placing SiO2 nanoparticles randomly onto 

SiO2 substrates. SiO2-nanoparticle colloidal dispersions (Nissan Chemical America 

Corp., Snowtex-O) are diluted to various concentrations of 0.5–3.0 wt% by deionized 

water (Fisher Scientific, Water HPLC Grade). The diluted suspensions are sonicated 

for 30 min in a water bath to break agglomerations before spin coating the 

nanoparticles onto a substrate. Spin coating is performed on Si substrates with a 300-
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nm-thick oxide layer at 4000 rpm for 30 sec. The density of nanoparticles on 

substrates ranges from 2 to 258 m
-2

, depending on the concentrations of the 

nanoparticle dispersions (Fig. 5.1). After spin coating, the samples are completely 

dried on a hotplate at 150 °C for 2 h. The mean diameter of nanoparticles is 7.4 ± 2.2 

nm as shown in Fig. 5.2. 

Graphene flakes are mechanically exfoliated from Kish graphite onto SiO2 

substrates covered with the SiO2 nanoparticles as described in Chapter 3. Thicknesses 

of graphene films are identified with an optical microscope, atomic force microscopy 

 
 

Figure 5.1: AFM images of SiO2-nanoparticle-decorated SiO2 substrates. The 

density of nanoparticles are (a) 6, (b) 36, and (c) 91 m
-2

. The scale bars are 3 m. 

 
 

Figure 5.2: Height distribution of SiO2 nanoparticles on SiO2 substrates. The red 

curve is a Gaussian fit with a mean value of 7.4 ± 2.2 nm and a standard deviation 

of 4.8 nm
2
. 
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(AFM), and/or Raman spectroscopy (see Chapter 4 for details). The sizes of graphene 

sheets are typically more than 10 m × 10 m, which is much larger than an 

estimated distance between nanoparticles of approximately 700 nm at the smallest 

nanoparticle density of 2 m
-2

. Thus, we rule out the possibility of finite size effects 

in the following analyses. The samples are annealed at 500 °C in vacuum for more 

than 5 h in order to remove any adhesive tape residue and to achieve equilibrium 

structures. After the annealing procedure, we observe surfaces of graphene 

membranes of various thicknesses in air using AFM in the tapping mode (see Chapter 

3 for details). 

5.3 Experimental results 

Figure 5.3 shows typical AFM images of single-layer graphene supported on 

 
 

Figure 5.3: AFM images of single-layer graphene on SiO2 nanoparticles/SiO2 

substrates for various nanoparticle densities. The nanoparticle densities are (a) 11 

(b) 22 (c) 49, and (d) 170m
-2

. The image sizes are 1 m × 1 m. 
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nanoparticles for various densities np. At np = 11 m
-2

 (Fig. 5.3a), graphene adheres 

conformally to the substrate, as noted previously [35, 36, 107-110], with 

predominantly isolated protrusions at the nanoparticle locations. At np = 22 m
-2

 (Fig. 

5.3b), some nanoparticle-induced protrusions are linked by wrinkles. Additional 

wrinkles with one free termination are also observed. With a further increase in 

nanoparticle density, the wrinkles connecting the protrusions proliferate (Fig. 5.3c), 

and ultimately a wrinkle network spans the sample (Fig. 5.3d). 

Next, we investigate morphology of graphene supported on nanoparticles as a 

function of graphene thickness. Figure 5.4 shows typical AFM images of single- and 

multi-layer graphene supported on nanoparticles of density np =160±24 m
-2

. In Fig. 

5.4a, wrinkles are formed in single-layer graphene. With increasing thickness, 

 
 

Figure 5.4: AFM images of graphene layers on SiO2 with nanoparticles of the 

density of 160±24 m
-2

. (a) Single-, (b) tri-, (c) 7-, (d) 10-, (e) 14-, and (f) 18-layer 

graphene. The scale bar in each image is 400 nm. The insets in (a), (d), and (f) are 

corresponding schematics of graphene supported on nanoparticles to the AFM 

images. 
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graphene is partially suspended over regions where the nanoparticles are dense, as 

indicated by arrows in Figs. 5.4b and c. The delaminated areas increase with further 

increase in the number of graphene layers (Figs. 5.4d and e), and, ultimately, 

graphene is completely delaminated from the substrate for 18-layers (Fig. 5.4f). The 

insets in Figs. 5.4a, d and e depict schematically the wrinkling, the partial 

delamination, and the global delamination of graphene. 

We confirm that graphene is indeed suspended over isolated nanoparticles by 

using AFM phase imaging (Fig. 5.5). The phase image records the varying phase 

angle of the (oscillating) AFM cantilever as it interacts with an inhomogeneous 

 
 

Figure 5.5: AFM height and phase images of a delaminated graphene multilayer 

on nanoparticles. (a) Height and (b) phase images (1×1 m
2
) of 4-layer graphene 

delaminated from the nanoparticle-decorated substrate. The scale bars are 200 nm. 

(c) Line profiles of the height and phase along the dashed red and blue lines shown 

in (a) and (b), respectively. The arrows correspond to those in (b), showing the 

locations of nanoparticles beneath graphene. 



 

 39 

 

sample surface. The phase angle increases with increasing local sample stiffness 

[120], allowing detection of the hidden nanoparticles under the flat graphene 

membrane. Figure 5.5b is an AFM phase image of graphene suspended over 

nanoparticles (Fig. 5.5a is a corresponding height image). The phase image of 4-layer 

graphene discriminates between rigid supported regions (larger phase) and flexible 

suspended regions (smaller phase). The high, flat regions in the topography show 

small, roughly circular regions of a large phase, indicating the locations of the 

nanoparticles (arrows) that support the surrounding suspended graphene (small phase). 

Figure 5.5c shows profiles along the dashed lines in the AFM images in Figs. 5.5a 

and b, clearly demonstrating the positions of the nanoparticles as indicated by arrows. 

We found that graphene membranes supported on nanoparticle-decorated 

substrates show structural transitions from conformal to wrinkled to delaminated 

geometries with increasing nanoparticle density or graphene thickness. Below, I 

present detailed analyses of the critical behaviors of graphene morphology within an 

elastic model and by using statistical approaches. 

5.4 Elastic analyses of structural transitions of graphene 

5.4.1 Wrinkling of single-layer graphene 

Our observations indicate the presence of a critical distance Xc between 

nanoparticles, below which wrinkling is induced. In this section, we analyze the 

critical nanoparticle separation Xc within a continuum elastic model, allowing for the 

graphene-substrate adhesion. The ridge running along the wrinkle between two 

nanoparticles of diameters d separated by X follows a catenary-like profile with a 

deflection 0 in the middle as shown in Fig. 5.6 (see also Fig. 5.7a). Additionally, as 
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represented in Fig. 5.7b, the profile of the ridge along the transverse (y-) direction can 

be characterized with the dihedral angle  and the curvature radius C0(x)
-1

. The 

contour of the wrinkle results from the balance between elasticity and adhesion. 

Assuming that the opening angle  is independent of x as validated in Ref. [121], the 

width of the deformed region and the deflection can be expressed by w(x) = ( - ) 

C0(x)
-1

 and (x) = [1/sin( /2)-1]C0(x)
-1

, respectively, within the effective one-

dimensional model. Furthermore, the stretching strain in the y-direction is irrelevant 

according to Ref. [121]. Then, the stretching strain is also given in one dimension (in 

the x-direction) by   2/)(1)(1 22/12  xxx  .We find the stretching energy 

Es and the bending energy Eb; 
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Figure 5.6: An AFM image of a wrinkle formed between two nanoparticles. The 

spacing between the nanoparticles is X and the deflection in the middle is 0. The 

scale bar is 20 nm. 
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The adhesion energy cost is proportional to the area of the substrate uncovered by 

graphene: 

 ),2/tan(2 XddxWE    (5.3) 

where  is the graphene-SiO2 adhesion energy per area and W is the base of the 

wrinkle profile as illustrated in Fig. 5.7b. In addition, bending and adhesion at the 

foot of the wrinkle cost bending energy Eb´ and adhesion energy E´: 

  ,
22

2

2/1

2

eq'   






 
 


XdyCdxEb  (5.4) 

 
 

Figure 5.7: Schematics of a wrinkle. (a) A wrinkle is formed between two 

nanoparticles with diameter d. (b) The wrinkle profile along the transverse 

direction as represented by shaded area in (a). 



 

 42 

 

 ,
4

tan)2(tan2 2/11

eq' 






 
 




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where 2 and Ceq are the angle and the curvature of the curved region as shown in Fig. 

5.7b. 

At equilibrium, 0tot E  , where Etot = Es +Eb + E + Eb´ + E´, leading to 

a differential equation for deflection : 

   01
)2/sin(

14
)(12)(3

2

2D

242 














E
xxxx  (5.6) 

with the two boundary conditions (±X/2)=0. We anticipate  to be symmetric with 

respect to x, so that ∂xshould vanish at x = 0. However, Eq.(5.6) indicates that if 

∂xvanishes at x = 0, either  or ∂xxshould diverge. Since the solution with 

 
 

Figure 5.8: The deflection of a wrinkle. (a) A profile of the wrinkle along the 

white dotted line in the AFM image shown in the inset. The scale bar in the inset is 

50 nm. The solid red lines are theoretical expectations. (b) The maximum 

deflection 0 as a function of the wrinkle length. The error bar indicates the 

uncertainty of 0 due to the height difference between the protrusions. The area 

shaded in red is the theoretical prediction for the scaling of 0 with  = 0.6-2.8 

eV/nm
2
. 
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diverging  is physically inconceivable, ∂xx should diverge. This indicates a 

discontinuity of the slope at x = 0. Physically this singularity would be regularized at 

small scales either by bending along the x-direction or by stretching along the y-

direction. These contributions are expected to be small. As a result, we obtain a 

simple solution for the deflection on both sides of the center of the wrinkle: 

 .
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Figure 5.8a shows the line profile along a wrinkle formed between two 

protrusions. As shown by the red lines in Fig.5.8a, the observed deflection is well 

fitted by   3/2
2/~)( xXx   with a prefactor of 0.32 nm

1/3
. The opening angle  

can be related to X by minimizing numerically the total energy Etot with respect to  

for a given X. Then, using the obtained relation between  and X and Eq. (5.7), we 

find the maximum deflection )0(0    as shown in Fig. 5.8b. The maximum 

deflection  monotonically increases with X, which is in good agreement with the 

observations (blue dots). Here, we used d = 7.4 ± 2.2 nm, E2D = 2.12 ×10
3
 eV/nm

2
 [7], 

 = 1 eV [106], and  = 0.6-2.8 eV/nm
2
 [35, 110, 122]. The theoretical model for a 

deflection is based on the assumption that a wrinkle is formed between two sharp 

peaks. The finite sizes of the nanoparticle-induced protrusions may be a cause of the 

decrease of the deflection below the theoretically expected range in Fig. 5.8b. 

Furthermore, we attribute the most likely source of uncertainty to the observed 

dispersion in nanoparticle sizes. 

Since a wrinkle is geometrically suppressed if (0) > d, the maximum length 

of the wrinkle can be determined by a condition that (0) = d. From Eq. (5.7), we find 
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the maximum length Xc = 104-65 nm along with  =35°-14° for the adhesion 

energy = 0.6-2.8 eV/nm
2
 [35, 110, 122], respectively, in rough agreement with the 

observed maximum wrinkle length of approximately 200 nm (Fig. 5.9). The 

discrepancy between the theoretical predictions and the observations is likely due to 

the fluctuations in the nanoparticle sizes d, which strongly influence the wrinkle 

length Xc (see Appendix A). 

5.4.2 Delamination of graphene multilayers 

In this section, we investigate morphological transitions which occur in 

multilayer graphene, shown in Fig. 5.4. Here, we use two quantities to characterize 

“conformity” of graphene to the substrate geometries; the areal fraction  of graphene 

in contact with the substrate and the characteristic length l of the delaminated regions. 

Figure 5.10a shows a typical AFM image of 6-layer graphene delaminated partially 

from a substrate, where the contact areas are surrounded by orange dashed lines and a 

 
 

Figure 5.9: The distribution of lengths of the wrinkles. The density of 

nanoparticles ranges from 18 to 34 m
-2

, where the wrinkles start forming. The red 

line is a log-normal fit as used for analyses of the distribution of the ridge lengths 

in a crumpled sheet of paper [123-125]. 
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characteristic length is represented by a double arrow. In Fig. 5.10b, we show the 

fractional area  and the characteristic length l as functions of number of graphene 

layers n. As n increases, a first transition occurs around n = 10, where l increases 

rapidly (see Fig. 5.4d, partial delamination); second, decreases and becomes 

negligibly small above n = 15 (see Fig. 5.4f, complete delamination). 

Surface-roughness-induced delamination of graphene has been studied 

theoretically [112-115] and experimentally [118, 119, 126]. Models assume the elastic 

energy is dominated either by bending [112] or stretching [115]. Here we consider 

each regime, and assume that the adhesion energy between SiO2 and n-layer graphene 

n is independent of n for n > 1 and has the value 1.9 eV/nm
2
 [122]. In the bending-

dominated model [112], delamination is controlled by a single dimensionless 

parameter    2/1

np

4/1
)(2/2 dnn   , where n is the bending rigidity of n-layer 

 
 

Figure 5.10: The conformed area and the characteristic length of delaminated 

graphene on nanoparticles. (a) An AFM image of 6-layer graphene on 

nanoparticles. The graphene film is in contact with the substrate in areas 

surrounded by orange dashed lines. The delaminated regions can be characterized 

with a length l. (b) The fractional area in contact with a substrate and the 

characteristic length l as functions of number of graphene layers n. 
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graphene for n > 1. Without interlayer sliding [127], continuum plate elasticity [53] 

gives  )1(12 233

gn nEt   , where t = 0.335 nm is the interlayer spacing, E ≈ 0.96 

TPa is Young’s modulus, and g ≈ 0.165 is Poisson’s ratio of single-layer graphene [7]. 

The threshold for partial delamination is predicted at 0.8 ≤  ≤ 1.3, or 3 ≤ n ≤ 6, with 

complete delamination at 0.55 ≤  ≤ 0.75, corresponding to 7 ≤ n ≤ 10 [112]. Thus, 

the bending-dominated model underestimates the critical value of n for delamination. 

The one-dimensional character of the bending model limits its ability to make 

quantitative predictions. Furthermore, given the small radii of curvature in our 

experiment, the bending energy might well be reduced by partial interlayer sliding. 

Perfect sliding would give n = n, leading to an delamination threshold for n a 

hundredfold larger; hence, interlayer sliding is extremely effective in relieving 

bending stress. 

We then consider a stretching-dominated model as described below. The 

simplest model would be a power-law solution of Schwerin’s equation for a 

membrane pushed by a point force [128]. However, in this model, the bending 

 
 

Figure 5.11: A schematic of graphene on a single nanoparticle. The diameter of 

the nanoparticle is d. The detachment length is R. The graphene membrane is 

pushed by the nanoparticle by a force F. The angle of the rotation is . 
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rigidity only contributes as boundary-layer effects at the attachment lines [129]. 

Consequently, the Schwerin solution does not match tangentially to the substrate and 

the nanoparticle. Assuming that the nanoparticle diameter d is much smaller than the 

radius R of the detachment zone (see Fig. 5.11 for the definition), the angle of rotation 

and the vertical distance can be obtained from the substrate by using Schwerin’s 

solution as   3/1

2D )9/(8)( rEFr    and   3/1

2D

2 )/(3 EFRZ   [128, 129], where F is 

the force exerted at the apex. However, the above solution does not match the 

boundary conditions as noted above, and a better approximate numerical solution is 

  3/1

2D

2 /)( EFRgZ g , where 215827.01462.00491.1)( gggg    [129]. For 

graphene, 165.0g and 029.1)( gg  is very close to 984.0)/3(   so that we can 

use directly Schwerin’s solution. 

The elastic-stretching energy can be calculated from a gedanken experiment, 

where the height Z is increased with the constant R: 
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Assuming that the apex height is equal to the diameter d of the nanoparticle, we have 

Z = d, and the total energy reads 

 2

2

4

2D
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)( R

R

dE
dE 


 . (5.9) 

Minimizing the total energy with respect to R, we find   4/1

2D 342  EdR  as 

suggested in Ref. [115]. 

Therefore, the diameter of the detachment zone in n-layer graphene around a 

protrusion is given by   4/1

2D 342 nnEdR  , where nE2D is the tensile rigidity of n-
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layer graphene. The detached area around each protrusion is R
2
, while the detached 

areas produced by the wrinkles are assumed to be negligible. Therefore, the typical 

length of the delaminated regions l is simply estimated to be 2R. The adhered-area 

fraction is equivalent to the probability of having no nanoparticle in a domain of an 

area of R
2
, leading to )exp( np

2 R . As shown in Fig. 5.10b, these predictions 

reproduce well the observed thickness dependence of  and l below n ≈ 10, indicating 

that the stretching-dominated model for isolated protrusions accurately describes the 

small-n limit where np << l
-2

. However, l increases and  decreases much more 

rapidly than these predictions for n > 10, indicating that collective effects have 

become important. In order to understand the collective delamination in the high-

nanoparticle-density regime np > l
-2

, we may need to solve full elastic membrane 

equations, i.e., the Föppl–von Kármán equations [53] allowing for multiple 

nanoparticles. 

5.5 Pseudomagnetic fields in graphene on nanoparticles 

Wrinkles and sharp points (i.e. conical singularities) are expected to affect 

markedly the electronic properties of graphene [130]. In this section, we discuss how 

inhomogeneous strain present in the protrusions and the wrinkles affects the 

electronic properties of graphene. 

We first evaluate the pseudomagnetic field generated by strain gradients in the 

absence of wrinkling, corresponding to the case of small thickness or small 

nanoparticle density. In this case, the elastic behavior of graphene on nanoparticles is 
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predominantly determined by stretching, resulting in significant strain. At 0 < r < R, 

the radial strain r  and the circumferential strain   are given by [129]: 
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(5.10) 

(5.11) 

Under axisymmetric strain, the strain-induced gauge fields Eqs. (2.8)-(2.10) can be 

rewritten as 
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(5.13) 

where 0 = 10
-15

 Wb is the flux quantum,  ≈ 2 is the change in the hopping 

amplitude between the neighboring atomic sites due to the lattice deformation [51], a 

= 0.142 nm is the lattice constant, and   is the azimuthal angle, with 0 in the 

zigzag direction [55]. Then, the strain-induced pseudomagnetic field is given by 
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Thus, from Eqs. (5.10)-(5.14), the pseudomagnetic field in graphene supported on an 

isolated nanoparticle is given by 
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Figure 5.12 plots Beff induced in a graphene protrusion formed on a 

nanoparticle with a diameter d = 7.4 nm. Here,  = 2.8 eV/nm
2
, E2D = 2.12×10

3
 

eV/nm
2
, g = 0.165. The origin corresponds to the apex of the protrusion, and the x-
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axis is along the zigzag direction of graphene. As shown in Fig. 5.12, the strain in 

graphene induces threefold-symmetric pseudomagnetic field profiles with maximum 

fields along the armchair directions. The pseudomagnetic field pattern is similar to an 

experiment, in which suspended graphene was deformed by a sharp tip [56]. The 

predicted pseudomagnetic field exceeds 600 T near the apex of the protrusion, which 

is likely overestimated due to the divergence of theoretical strain near r = 0. The 

divergence is cut off by the finite radius of the nanoparticles; thus, the maximum 

pseudomagnetic field is expected to appear at a radius comparable to the nanoparticle 

radius. Therefore, the maximum pseudomagnetic field Beff is estimated to be of order 

300 T for r = d/2, which is significantly greater than the value in Ref. [56], suggesting 

that the impact on electronic properties may be even more profound. 

Now we consider a trajectory of an electron subject to the strain-induced 

pseudomagnetic fields. The cyclotron radius rc for Dirac fermion is given by 

 
 

Figure 5.12: Strain-induced pseudomagnetic fields in graphene on an isolated 

nanoparticle. The diameter of the nanoparticle is 7.4 nm. The x-axis is in the 

zigzag direction. 
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where nvFF    is the Fermi energy with n being the carrier density, vF ≈ 10
6
 m/s 

is the Fermi velocity, and B is the magnetic field [131]. In Fig. 5.13, we plot the 

cyclotron radius rc as a function of n for B = 300 T. At a low carrier density, the 

cyclotron radius is of order 1 Å, which is much smaller than the width of the region in 

which pseudomagnetic fields exceed 300 T in the graphene protrusion (see Fig. 5.12). 

We further consider the magnetic length eBlB /  which roughly corresponds to 

the radius of a state in the n = 0 Landau level (in the symmetric gauge) [21]. For B = 

300 T, we find lB = 1.5 nm. This is approximately the length scale over which the 

pseudomagnetic field is 300 T as shown in Fig. 5.12. The above analysis suggests that 

Landau quantization effects due to pseudomagnetic fields may be observable in our 

strained graphene structures. However, a detailed study of the electronic structure in 

such strongly inhomogeneous fields is necessary to fully understand the effects of 

strain on electronic properties. 

 
 

Figure 5.13: The cyclotron radius for Dirac fermion as a function of carrier 

density for B = 300 T. 
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Next, we evaluate strain and strain-induced pseudomagnetic fields in a 

wrinkle. Strain along a wrinkle is given by  2 xx   and, thus, using Eq. (5.7), we 

find the strain distribution 3/23/1

2D )2/()/(~ xXEx  . The ridge direction (the x-

direction in Fig. 5.7a) with respect to the lattice cannot be determined experimentally 

and, thus, an accurate analysis for the pseudomagnetic field in a wrinkle is hindered. 

However, the pseudomagnetic field in wrinkled graphene can be roughly estimated to 

be )(0eff aWB x  [21, 115], where W is the typical wrinkle width as shown in 

Fig. 5. 7b. In the strong adhesion limit 1)/( 2/1  d , the wrinkle width W can be 

estimated to be 1)2/( 2/1   nm. Thus, in the middle of a wrinkle, the 

pseudomagnetic field has a broad minimum on the order of 10 T for X = 100 nm. 10 T 

is a large magnetic field compared to the disorder strength 1/ ~ 1 T in typical 

graphene samples ( being the electron mobility) and corresponds to an energy 

difference between zeroth and first Landau levels of approximately 1300 K. Hence, 

we expect pseudomagnetic-field effects due to wrinkles in graphene to be significant. 

The pseudomagnetic field near nanoparticles in the wrinkled case will 

generally be more complicated, depending on the number of wrinkles terminating on 

the particle and their direction with respect to each other and the lattice. However, 

qualitatively we expect that since wrinkling reduces the in-plane strain around the 

nanoparticles, the pseudomagnetic field is also reduced. Recent results of molecular 

dynamics simulations [132] have indeed demonstrated that when nanoscale pillars 

supporting graphene are located far away from each other, graphene is detached only 

around the pillars and threefold-symmetric pseudomagnetic fields are induced around 
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each pillar. However, with decreasing distance between the pillars, graphene 

delaminates in regions between the pillars, resulting in complicated pseudomagnetic 

field profiles. The observations of wrinkling and delamination combined with a 

theoretical analysis based on a continuum-elastic model can be used to place limits on 

strain distributions and, thus, on pseudomagnetic field maxima attainable in single-

layer graphene through adhesion to patterned surfaces. 

5.6 Statistical mechanical analyses of graphene wrinkling 

5.6.1 Random wrinkling model 

In this section, we focus on statistical mechanical aspects of wrinkling of 

graphene on nanoparticles. Figure 5.14 shows the density of wrinkles w as a function 

of the nanoparticle density np and the number of wrinkles per protrusion w/np as a 

function of np (inset). The wrinkle density w is almost zero below np ≈ 25 m
-2

 

(arrow b) and then begins to increase rather linearly with np above np ≈ 50 m
-2

 

 
 

Figure 5.14: The density of wrinkles as a function of nanoparticle density. Each 

arrow corresponds to the AFM images shown in Fig. 5.3. The solid red lines are 

fits described in the text. 
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(arrow c). We now analyze the behavior of the wrinkle density w versus the 

nanoparticle density np within a simple model. 

First, we investigate whether nanoparticles are static or not upon graphene 

deposition by measuring particle-particle correlation functions for uncovered SiO2 

nanoparticles on SiO2 and SiO2 nanoparticles covered with graphene. Fig. 5.15c 

shows particle-particle correlation functions G(x) defined as G(x) =< z(x0)z(x0 + x) >, 

where z(x) = 1 if there is a nanoparticle at x0, and z(x) = 0 if not, for both uncovered 

and covered nanoparticles measured along a fast scan line in AFM images (see Figs. 

5.15a and b). The density of nanoparticles is 160 ± 24 m
−2

, which corresponds to a 

mean spacing between neighboring nanoparticles of ~ 100 nm. We find no significant 

difference in the correlation functions between the covered and the uncovered 

nanoparticles around 100 nm, indicating the migration of the nanoparticles due to 

graphene is negligible. 

 
 

Figure 5.15: Particle-particle correlation functions of covered- and uncovered 

nanoparticles. (a-b) AFM images of (a) SiO2 nanoparticles on SiO2 and (b) 

graphene on SiO2 nanoparticle-decorated SiO2. (c) Particle-particle correlation 

functions for covered (black line) and uncovered (red line) nanoparticles. 
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We now consider a model in which nanoparticles are placed at random on the 

substrate beneath graphene. Then, graphene wrinkles are placed with a probability w 

between neighboring nanoparticles separated by less than a cutoff length Xc. With 

increasing nanoparticle density, the number of wrinkles propagating from single 

nanoparticles increases. However, as shown in Fig. 5.16, nanoparticles with more 

than three connected wrinkles are scarcely observed, even at a high nanoparticle 

density of more than 200 m
−2

. Thus, we set three as the maximum number of 

wrinkles in our analysis. Employing the probability density pi(r) for a nanoparticle to 

have the ith nearest nanoparticle (i =1, 2, and 3) at a distance r [133] 

   )exp(
!

2
)( 2

np

121

np rr
i

rp ii

i   
, (5.17) 

we find the density of wrinkles: 

 
 

Figure 5.16: The number of wrinkles propagating from single nanoparticles. (a) 

The distribution of the number of wrinkles propagating from single nanoparticles 

for various nanoparticle densities. (b) The average number of wrinkles 

propagating from a single protrusion as a function of the density of nanoparticles. 
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(5.18) 

The factor of 1/2 in w compensates for the double counting of each wrinkle (i.e., 

from the particles at each end). In the limit of small nanoparticle density np << Xc
-2

, 

the density of wrinkles is w = (1/2)w Xc
2np

2
, while in the large-density limit np 

>> Xc
-2

 , each nanoparticle has at least three neighboring nanoparticles within distance 

Xc, leading to w = (3/2)wnp. The red solid lines in Fig. 5.14 are fits to Eq. (5.18) 

with w = 0.54 and Xc =120 nm. The cutoff length is consistent with the observations 

(Fig. 5.9). Furthermore, the agreement with Xc predicted from the elastic analysis in 

Section 5.4.1 is good. The model indicates a significant increase of the wrinkle 

density for the nanoparticle density larger than ( Xc)
-2

, but also suggests that w does 

not exhibit any singularity; i.e., wrinkling is a crossover phenomenon rather than a 

sharp transition. 

5.6.2 Percolation transition in the wrinkle network 

With increasing np, the connectivity of the wrinkle network increases, and we 

find a percolation transition at a threshold density c (of order Xc
-2

) at which the 

wrinkle network spans the system (Fig. 5.17). The expansion of the network via 

wrinkling is a purely two-dimensional (2D) phenomenon. Thus, we analyze this 

behavior using a 2D percolation theory [134]. 

In Fig. 5.18a, we plot the probability P that a given protrusion belongs to the 

percolating cluster spanning a region of size L × L, where L ranges from 1 to 3 m. 
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Also plotted is the prediction from 2D percolation theory:  )(~ cnp P for np ≥ c 

with c = 87.5 m
-2

 as determined below and the ‘‘magnetization’’ exponent  = 5/36 

[134], which reproduces the observations well. In Fig. 5.18b, we show the probability 

 that a cluster connects opposite sides of a region of size L × L (L = 0.5, 1, 2, and 3 

m). For an infinite system,  = 1 for np ≥ c, while  = 0 for np < c [134]. Indeed, 

 displays a sharp transition around c = 87.5 m
-2

 for L = 3 m, indicating c is in 

that vicinity. Next, we probe the width  of the transition region, which is expected to 

scale as L
-1/

, where  = 4/3 is the correlation-length exponent [134]. We define  as 

the difference in density for  = 0.9 and  = 0.1 in Fig. 5.18b. The inset of Fig. 5.18b 

shows that the data are well fitted with  = 1.0±0.3, which is consistent with the 

theoretical expectation. 

Finally, we plot in Fig. 5.18c the mean size S of the clusters (excluding the 

percolation cluster) as a function of np with the theoretical prediction





 cnp~S , 

 
 

Figure 5.17: Percolation transition in the wrinkle network. An AFM image (L × L 

with L = 1 m) of wrinkled graphene with a percolating cluster, which is 

represented by the dashed line. 



 

 58 

 

where  = 43/18 is the ‘‘susceptibility’’ exponent [134]. Some Monte Carlo 

simulations predict a much larger prefactor for np ≤ c (e.g., a critical amplitude ratio 

of 50±26 for a continuum model [135]), which is in reasonable agreement with the 

observed ratio of approximately 30. Thus, all measurements strongly support the 

existence of a 2D percolation transition at a critical density c ≈ 87.5 m
-2

. 

Since the only length scale is Xc, we obtain a universal number (i.e., 

independent of model parameters such as , E2D, or d) characterizing the wrinkle 

percolation transition: cXc
2
≈ 0.9. In contrast, the simple continuum percolation of 

penetrable discs of diameter Xc leads to cXc
2
≈ 2.9 [35]. This difference is a 

consequence of unique structures of the wrinkle network; the number of the wrinkles 

propagating from single nanoparticles is at most three as shown in Fig. 5.16 and the 

threefold wrinkle junctions have one angle smaller and two angles larger than 120° as 

 
 

Figure 5.18: Percolation analyses of the wrinkle network. (a) P as a function of 

nanoparticle density for L =1, 2, and 3 m. (b)  as a function of the density of 

nanoparticles for L =0.5, 1, 2, and 3 m. Points for L = 0.5, 1, and 2 m represent 

averages in a bin of 10 m
-2

. The inset is a plot of log  as a function of log L; the 

red line indicates a best-fit power exponent of -1.0. (c) The mean finite cluster 

size S as a function of the density of nanoparticles (points represent averages in a 

bin of 2 m
-2

). The red dashed line is the theoretical expectation). 
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shown in Fig. 5.19a. (We find no clearly dominant peaks in the orientations of 

wrinkles as shown in Fig. 5.19b, indicating that the directions of the wrinkles are not 

determined by the crystallographic directions of graphene.) 

5.7 Conclusions 

In this chapter, I have presented a systematic study of morphology of 

graphene membranes supported on SiO2 substrates with randomly placed topographic 

perturbations produced by SiO2 nanoparticles. At low nanoparticle density np, single-

layer graphene largely conforms to the substrate except for small regions around the 

nanoparticles, where graphene is detached. Wrinkles form as np increases, 

connecting pairs of protrusions. Above a critical density, the wrinkles percolate to 

form a network spanning the entire sample. As the thickness of graphene increases, it 

stiffens and delaminates instead of wrinkling. These observations can be explained 

well within a continuum elastic model and by statistical physical approaches. Since 

the wrinkling acts to remove inhomogeneous in-plane elastic strains through out-of-

 
 

Figure 5.19: The orientations of wrinkles. (a) The distribution of opening angles 

produced by the neighboring wrinkles at single protrusions for the two (blue) and 

the three (orange) wrinkles as shown in the insets (more than four wrinkles are 

exceptionally rare). (b) The orientations of wrinkles. 
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plane buckling, the results can be used to place limits on the possible in-plane strain 

magnitudes that may be created in graphene to realize strain-engineered electronic 

structures. 
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Chapter 6: Oxidative reactivity of graphene on substrates
*
 

As described in Chapter 2, chemical functionalization is an approach to 

tailoring effectively electronic structures of graphene. A crucial step toward 

chemically engineering graphene’s electronic properties is to understand its chemical 

reactivity. Graphene’s reactivity is expected to be influenced significantly by a 

supporting substrate; charged impurities trapped in a substrate lead to potential 

fluctuations, while a non-flat substrate introduces a roughness into graphene as shown 

in the previous chapter. However, the impact of such substrate effects on graphene’s 

reactivity has remained unclear. 

In this chapter, I investigate oxidative reactivity of graphene membranes 

supported on substrates with various roughnesses and charged impurities and find that 

graphene’s reactivity is predominantly controlled by potential fluctuations induced by 

charged impurities rather than surface roughness. The observations may point to new 

strategies for using substrates to control the chemical functionalization and doping of 

graphene, and therefore graphene’s electronic properties. 

6.1 Chemical reactivity of graphene 

Pristine graphene is relatively inert chemically because of the absence of 

dangling bonds; in contrast, graphene nanoribbons [40] and graphene with defects 

[136] are reactive. Nonetheless, single-layer graphene (SLG) supported on SiO2 

shows anomalously large reactivity compared to thicker graphene [137-139]. One 

                                                 
*
 Adapted from “Charge inhomogeneity determines oxidative reactivity of graphene 

on substrates” by Mahito Yamamoto, Theodore L. Einstein, Michael S Fuhrer, and 

William G. Cullen (ACS Nano, 6, 8335-8341, 2012) 
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possible explanation for this enhanced reactivity is Fermi energy fluctuations in space, 

i.e., “electron-hole puddles” [33, 34], induced in graphene due to ionized impurities 

trapped on SiO2, which limit the carrier mobility of graphene [37, 140, 141]. The 

electron-hole puddles locally increase the electron (hole) density responsible for 

electron transfer chemistry [138]. The magnitude of the potential fluctuations, and 

hence the charged impurity-assisted electron transfer chemistry, decreases with 

increasing graphene thickness because of (1) higher density of states in multilayer 

graphene [142], and (2) interlayer screening of charged impurities, where the 

screening length corresponds to the thickness of bi- to few- layer graphene [138, 143, 

144]. 

Another plausible mechanism for the enhancement of the reactivity is 

topographic corrugations of graphene induced by coupling to the SiO2 surface [138, 

145]. Due to van der Waals adhesion, graphene deforms significantly on SiO2, 

resulting in local curvature and strain [35, 110]. The curvature may lead to the 

rehybridization of sp
2
 to sp

3
 bonds

 
[146] and the enhancement of reactivity. The 

impact of the structural deformations on the reactivity is also expected to attenuate 

with increasing graphene thickness because graphene layers become significantly 

stiffer and flatter over SiO2 [147], with curvature and strain decreasing with thickness. 

Since SiO2 induces both significant charge fluctuations
 
[33, 34] and structural 

deformations
 
in SLG [35, 110], either could account for the enhancement of reactivity 

of SLG on SiO2 [138, 148]. In this chapter, we explore which is the major factor 

determining chemical reactivity of graphene. 
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6.2 Experimental details 

We employ various substrates with different surface roughnesses and charged 

impurity densities; hexagonal boron nitride (hBN), mica, thermally-grown SiO2 on Si, 

and SiO2 nanoparticle thin films (Fig. 6.1). Graphene supported on hBN is atomically 

flat [108, 109], has remarkably high carrier mobility [10], and shows significantly 

reduced charge inhomogeneity, presumably due to lower concentrations of substrate-

trapped charge [108, 109]. Muscovite mica is expected to possess significant 

concentrations of K
+
 ions on its surface [149], and SLG on mica exhibits comparable 

carrier mobility to that of SiO2-supported SLG [150], implying similar concentrations 

of substrate-trapped charge. Furthermore the cleavage of mica exposes a silicate face 

[149], chemically very similar to that of amorphous SiO2. Thus, in common with SiO2, 

graphene is supposedly non-reactive to the mica surface. However, graphene 

deposited on mica is exceedingly flat [107]. SiO2 nanoparticles on a SiO2 substrate 

produce a graphene support with significantly higher roughness than, but similar 

chemical properties to, thermally-grown SiO2 on Si. 

 
 

Figure 6.1: Optical images of graphene on various substrates. (a) Single-layer 

graphene (SLG) on SiO2 and BN. (b) SLG on mica. (c) SLG on SiO2 nanoparticles 

(NPs). The scale bars are 20 m. 
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Figures 6.2a-d show typical AFM topographic images of SLG supported on 

(a) hBN ( ~ 9 nm thick supported on SiO2), (b) mica, (c) SiO2, (d) SiO2 nanoparticles. 

Additionally, Fig. 6.2e shows an AFM image of bilayer graphene (BLG) on SiO2 

nanoparticles. These samples were annealed in Ar/H2 flow at 400 °C for 6 hours to 

remove any adhesive residue and achieve equilibrium structures. Figure 6.2f shows 

the height histograms of the images in Figs. 6.2a-e; mica-supported graphene is the 

flattest, followed by graphene on hBN, SiO2, and SiO2 nanoparticles. 

Table 6.1 summarizes the root mean square (RMS) roughness  and the 

characteristic length l of graphene surfaces. We measure the RMS roughness and the 

characteristic length by employing the one-dimensional autocorrelation function for a 

uniformly rough surface, which is defined as
 

 )()()( 00 xxzxzxG , where z(x) is 

the height of the surface at position x. The autocorrelation function is often assumed 

 
 

Figure 6.2: AFM images of graphene supported on various substrates. SLG on (a) 

hBN, (b) mica, (c) SiO2, (d) a SiO2 nanoparticles thin film, and (e) BLG on a SiO2 

nanoparticle thin film. The scale bars are 40 nm. (f) Height histograms of 

graphene surfaces for the images shown in (a)-(e). Solid red lines are Gaussian 

fits. 
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to be )/exp()( 22

0

2

0 lxxG  , where  is the RMS roughness and l is the correlation 

length [151]. Thus, we determine  and l by fitting the autocorrelation function 

obtained from a number of 200 nm × 200 nm AFM images of graphene on each 

substrate to the theoretically expected form. 

Since graphene on mica is exceedingly flat, we expect that the RMS 

roughness and the characteristic length reflect the AFM height resolution limit and 

AFM noise, respectively, as previously noted [107]. In order to quantitatively assess 

the deformations present in graphene, we roughly estimate curvature and strain by  

/l
 2

 and ( /l)
2
, as shown in Table 6.1. By relative comparison, we find much larger 

deformations in SLG and BLG on SiO2 nanoparticles than in SLG on SiO2. We note, 

however, that nanometer-scale roughness of a substrate may produce sharp 

mechanical deformations (conical singularities) in graphene, which would be 

unresolved by our tapping-mode AFM. These localized deformations are expected to 

significantly perturb local density of states of graphene near the apex [130] and as a 

result may contribute to reactivity of graphene. 

 SLG/hBN SLG/mica SLG/SiO2 SLG/NPs BLG/NPs 

 (nm) 0.14±0.04 0.05±0.02 0.23±0.01 1.29±0.12 1.30± 0.11 

l (nm) 24±11 1.7±0.6 13±2 21±5 22±4 

/l
2
         

(×10
-4

 nm
-1

) 

2.4±2.2 N/A 14±5 30±15 27±10 

10
-5

×/l)
2
  3.2±3.5 N/A 31±11 389±208 352±145 

 

Table 6.1: The RMS roughness , the characteristic length l, the estimated 

curvature  /l
2
, and strain ( /l)

2
 of SLG on hBN, mica, SiO2, and SiO2 

nanoparticles (NPs) and BLG on NPs. 
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BN flakes were exfoliated onto Si substrates with a 300 nm oxide layer from 

commercially available BN powder (Momentive, Polartherm grade PT 110) [152].
 

Muscovite mica was cleaved in a N2 atmosphere to minimize the chance of a water 

layer on the mica surface [107, 153]. SiO2 nanoparticle thin films were prepared by 

spin-coating SiO2 nanoparticle dispersions (diameter 10-20 nm; Nissan Chemical 

America Corp., SNOWTEX-O) onto SiO2 substrates. Graphene was mechanically 

exfoliated from Kish graphite using water-soluble tape as described in Chapter 3. In 

this study, we investigate oxidative reactivity of graphene on each substrate. 

Graphene oxidation was carried out by annealing graphene in an Ar/O2 mixture for 2-

5 hours at temperatures ranging from 350 to 600 °C. We employed atomic force 

microscopy (AFM) in ambient and Raman spectroscopy with a fixed laser 

wavelength of 532 nm, unless otherwise noted, to characterize the oxidative reactivity 

of graphene on substrates. 

6.3 Experimental results and discussion 

Figure 6.3 shows AFM images of SLG on (a) SiO2, (b), BN, and (c) mica after 

oxidation at 500 °C for 2 hours. Oxidation results in circular etch pits in SLG in SiO2 

 
 

Figure 6.3: AFM images of SLG supported on various substrates after oxidation 

at 500 °C for 2 hours. (a) SiO2, (b) BN, and (c) mica. The scale bars are 1 m. 
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(Fig. 6.3a), as reported previously [138]. However, SLG on BN is non-reactive with 

oxygen molecules at the same temperature (Fig. 6.3b). SLG on mica is etched upon 

oxidation, as shown in Fig. 6.3c. 

In Fig. 6.4, we show typical Raman spectra of graphene supported on SiO2, 

hBN, and mica before (black solid lines) and after (red solid lines) oxidation at 

500 °C for 2 hours. Previous studies of graphene oxidation have reported hole-doping 

and disorder in reaction with oxygen [138, 151]. On SiO2, we find that the Raman G 

band upshifts from ~ 1582 to 1603 cm
-1

 which roughly corresponds to a dopant 

concentration of ~ 2 × 10
13

 cm
-2

 [137, 100, 101]. Additionally, the Raman D peak at ~ 

1350 cm
-1

 is activated after oxidation because of formation of etch pits (see Fig. 6.3a), 

as previously reported [137]. 

 
 

Figure 6.4: Raman spectra of SLG on various substrates before and after 

oxidation at 500 °C for 2 hours. (a) SiO2, (b) hBN, and (c) mica. The Raman 

spectra are normalized to the G´ peak intensities. 
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On hBN the upshift of the G band energy is minor (from 1580 cm
-1

 to 1585 

cm
-1

); furthermore, the Raman D peak is absent, indicating that doping in graphene is 

significantly suppressed and graphene is not etched, as can be seen in Fig. 6.3b. (hBN 

shows the E2g Raman mode at ~ 1360 cm
-1

 [154] but this non-dispersive mode can be 

distinguished from the dispersive graphene D mode by using longer-wavelength 

excitation as shown in Fig. 6.5.) 

The suppression of the reactivity of graphene was consistently observed on 

hBN for all samples at oxidative temperatures below 550 °C (we obtained no samples 

of hBN thickness < 9 nm). In contrast to hBN-supported SLG, SLG on mica is partly 

etched by oxidation as shown in Fig. 6.3c, which is also evidenced by the Raman D 

peak in Fig. 6.4c. 

In Fig. 6.6a, we plot the Raman G band energies of SiO2-, hBN-, and mica- 

supported SLG graphene as functions of temperature. The relatively large G band 

energy of pristine SLG on mica results from hole doping by preexisting surface 

charges on the substrate [155]. The G band energies of SLG on SiO2 and on mica 

 
 

Figure 6.5: Non-dispersive behavior of the Raman E2g mode of BN. (a) and (b) 

Raman spectra of SLG on (a) SiO2 and (b) hBN after oxidation at 450 °C for 5 

hours. (c) The Raman D band energy of graphene and the hBN E2g mode as a 

function of the laser excitation energy. The red solid line for the D band energy is 

a line fit with a slope of ~ 51 cm
-1

/eV. 
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increase with increasing temperature, indicating doping due to reaction with oxygen 

molecules, while hBN-supported graphene shows a nearly constant G band energy of 

~ 1585 cm
-1

 at 350-550 °C, indicating little doping. 

We also examine the G band energy as a function of graphene thickness in Fig. 

6.6b. On SiO2 and on mica, SLG shows the largest G-band shift (largest doping). The 

G-band energies diminish with thickness, indicating larger reactivity of SLG 

compared to thicker graphenes, while the G-band shift for graphene on hBN does not 

depend on thickness. These observations suggest that on hBN SLG is comparable to 

thick graphene in terms of oxidative doping. 

We now investigate the reactivity of graphene on hBN in terms of oxidative 

etching in detail. Figure 6.7a shows an optical image of SLG supported on BN and on 

 
 

Figure 6.6: The Raman G band energies of oxidized graphene on substrates as 

functions of temperature and graphene thickness. (a) The Raman G band energies 

of SLG on SiO2 (black square dots), hBN (red circular dots), and mica (blue 

triangular dots) as functions of oxygen treatment temperature. (b) The Raman G 

band energies of pristine graphene on SiO2 (black square dots) and on mica 

(yellow square dots) and 500 °C-oxidized graphene on SiO2 (red circular dots), on 

hBN (blue triangular dots), and on mica (green circular dots) as functions of 

number of graphene layers. 
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SiO2. After oxidation of this graphene film at 450 °C for 5 hours, graphene strongly 

couples to SiO2, making it difficult to distinguish graphene and uncovered SiO2 from 

an AFM height image as shown in Fig. 6.7b. We therefore use AFM phase imaging to 

distinguish SLG from etched regions. 

We first show that a phase image at edges of pristine SLG on SiO2 

discriminates clearly between graphene and the supporting SiO2. Figures 6.8a and b 

show the AFM height and phase images of graphene on SiO2 after H2 annealing to 

remove tape residues on graphene. In Fig. 6.8b, we find a clear phase difference 

between pristine graphene and SiO2. Figures 6.8c shows the phase histogram of the 

 
 

Figure 6.7: Oxidation of graphene on SiO2 and BN at 450 °C for 5 hours. (a) An 

optical image of graphene on SiO2 and BN before oxidation. (b-c)Typical AFM 

(b) height and (c) phase images of SLG on SiO2 near point A in panel (a) after 

oxidation at 450 °C for 5 hours. The scale bars are 200 nm. (d) Histogram of phase 

variations in (c). The red solid line is multi peak Gaussian fit, consisting of two 

peaks derived from graphene (blue) and SiO2 (orange) surfaces. AFM (e) height 

and (f) phase images of SLG on hBN after oxidation at 450 °C for 5 hours. The 

scale bars are 200 nm. (g) Phase histogram of the image in (f). The solid line is a 

Gaussian fit. 
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image in Fig. 6.8b. The histogram clearly consists of two components: graphene (blue 

solid curve) and SiO2 (orange solid curve). 

Now we show the phase image of oxidized SLG on SiO2. The phase image 

clearly shows variations, indicating that the scanned region is compositionally 

inhomogeneous. Furthermore, the multi-peak Gaussian fit of the phase histogram in 

Fig. 6.7d consists of two components; the smaller peak corresponds to graphene, 

while the larger peak corresponds to uncovered SiO2 where SLG has been etched. 

Figures 6.7e and f show AFM height and phase images of SLG on hBN, 

corresponding to point B in Fig. 6.7a after oxidation at 450 °C for 5 hours. In contrast 

to SiO2-supported graphene (Figs. 6.7c and d), the phase image is homogeneous (see 

also the phase histogram in Fig. 6.7g), which indicates the absence of any etch pits in 

graphene and the significantly reduced reactivity of hBN-supported graphene. 

 
 

Figure 6.8: An AFM phase image of pristine graphene on SiO2. (a-b) AFM (a) 

height and (b) phase images of graphene on SiO2. The scale bars are 1 m. (c) 

Histogram of phase variations in (b). The red solid line is a multi-peak Gaussian 

fit, consisting of two peaks derived from graphene (blue) and SiO2 (orange) 

surfaces. 
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Figure 6.9 shows the Raman spectra of SLG oxidized at 450 °C for 5 hours at 

different positions between A and B represented in Fig. 6.7a. The spacing between 

neighboring points is 0.3 m. Since the D band energy is dispersive with respect to 

the excitation energy of the laser and increases with the energy (see Fig. 6.5 and 

Chapter 4), we here used a laser wavelength of 633 nm to clearly distinguish the D 

peak of SLG and the peak derived from the hBN E2g mode. On SiO2 at point A, we 

see the graphene D peak, while on hBN at point B the graphene D peak is absent and 

the hBN E2g mode is present, suggesting the absence of defects in SLG on hBN. The 

region of coexistence of the D peak and the hBN E2g peak in the Raman spectra is of 

order 1 m wide, comparable to the laser spot size, indicating that both SiO2-, and 

hBN-supported graphene are illuminated in this region. We also observe a splitting of 

the graphene G band into two peaks G
-
 (1583 cm

-1
) and G

+
 (1610 cm

-1
) in the same 

intermediate region, resulting from undoped graphene on hBN and highly doped 

 
 

Figure 6.9: A series of Raman spectra of oxidized SLG supported on SiO2 and 

BN. The Raman spectra from A (on SiO2) to B (on hBN) shown in Fig. 6.7a. The 

spacing between points at which the Raman spectra are measured is 0.3 m. 
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graphene on SiO2, respectively. Splitting rather than shifting of the G peak again 

indicates an abrupt transition in doping from SiO2-supported to hBN-supported 

graphene. 

The observed reduced reactivity of SLG on hBN relative to SiO2 can be 

explained by either hBN’s flatness or its reduced charged inhomogeneity. To probe 

the impact of charge inhomogeneity on the oxidative reactivity, we further investigate 

the oxidation of graphene on mica, which is atomically flat (as shown in Fig. 6.2b) 

but presumably exhibits comparable charge inhomogeneity to SiO2-supported 

graphene as described above [150]. 

As shown in Fig. 6.3c, in contrast to hBN-supported SLG, SLG on mica is 

partly etched by oxidation. Thus, the flatness of graphene alone does not suppress its 

 
 

Figure 6.10: The Raman G´ modes of oxidized graphene on various substrates. (a) 

The Raman G´ band energies of SLG on mica, hBN, and SiO2 before and after 

oxidation at 500 °C as functions of the Raman G band energy. The dashed line is a 

line fit with a slope of 0.98 ± 0.05. (b) The intensity ratios of the Raman G´ peak 

to the G peak of graphene on mica, hBN, and SiO2 before and after oxidation at 

500 °C as functions of the Raman G band energy. The dashed curved line is a 

guide to the eye. 
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reactivity. We further examine doping behaviors of graphene on mica before and after 

oxidation. It has been empirically demonstrated that the Raman G´ band energy 

increases with increasing concentration of hole carriers, showing a nearly linear 

relationship with the G band energy [101]. Additionally, the relative intensity of the 

G´ band to the G band characteristically decreases with carrier concentration [101]. 

Figure 6.10a displays the G´ band energy of SLG on SiO2, hBN, and mica as a 

function of the G band energy before and after oxidation at 500 °C for 2 hours. Each 

data point is obtained from a different graphene flake on each substrate. With 

oxidation, the G´ band energies of graphene on SiO2 and on mica increase together 

with the G band energy. The nearly linear relationship between the G´ and G band 

energies, with a slope of 0.98 ± 0.05, is consistent with previous observations [101, 

155], indicating hole-doping of graphene by oxidation. Graphene on hBN shows the 

lowest G and G´ peak positions after oxidative treatment, consistent with low 

reactivity. Figure 6.10b shows the intensity ratio of the G´ peak (IG´) to the G peak 

(IG) as a function of the G band energy. Each data point again corresponds to a 

different graphene sample. The significant decrease of IG´/IG of graphene on mica and 

 
 

Figure 6.11: An AFM image of water islands trapped between SLG and mica. 

The scale bar is 2 m. 
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SiO2 after oxidation also strongly supports oxidative doping of these samples. In 

contrast, IG´/IG for graphene on hBN shows no clear trend upon oxidation, and the 

higher values of IG´/IG for graphene on hBN compared to mica or SiO2 are consistent 

with low oxidative reactivity. 

The large reactivity of SLG on mica and its diminution with thickness, as 

shown in Fig. 6.6b, indicates that flatness is not the reason for reduced reactivity of 

SLG on hBN, and we conclude that substrate charged impurities play the dominant 

role in controlling the reactivity of SLG on a substrate. Even though graphene is 

deposited onto freshly cleaved mica in a N2 atmosphere, water layers are often 

trapped on mica (see Fig. 6.11). The water layers act to block charge transfer between 

charged impurities on mica and graphene [155]. The distinct morphology of mica-

supported SLG after oxygen treatment in Fig. 6.3c is presumably because the regions 

 
 

Figure 6.12: Raman spectra of oxidized graphene on SiO2 nanoparticles. (a) 

Raman spectra of BLG (top) and SLG (bottom) on SiO2 nanoparticles before and 

after oxidation at 500 °C for 2 hours. (b) The intensity ratios of the Raman D peak 

to G peak of SLG and BLG on SiO2 and on SiO2 nanoparticles as functions of 

oxygen treatment temperature. 
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covering water layers in graphene are less reactive to oxygen molecules and so not 

etched. 

Finally, we probe the oxidative reactivity of graphene supported on an 

extremely corrugated substrate of a SiO2 nanoparticle thin film. Figure 6.12a shows 

typical Raman spectra of SLG and BLG on SiO2 nanoparticles before and after 

oxidation at 500 °C for 2 hours. After oxidation, the D peak of SLG is activated but is 

absent for BLG. In Fig. 6.12b, we plot the intensity ratio of the D peak (ID) to the G 

peak (IG) of graphene on SiO2 nanoparticles and, for comparison, on bare SiO2 as a 

function of oxygen treatment temperature. On both thermally-grown SiO2 and SiO2 

nanoparticle thin films, the D peaks of SLG are activated above 400 °C. In contrast, 

the D peaks of BLG are not activated below 500 °C regardless of substrate. Thus, the 

increased reactivity of SLG relative to BLG on SiO2 is not caused by increased 

corrugation on the few-nanometer length scale (see Table 6.1: BLG on SiO2 

nanoparticles is rougher than SLG on SiO2 in terms of curvature and strain). We 

cannot completely rule out the possibility that sharp conical singularities
 
[130] 

undetected by AFM are playing a role in the reactivity; however that scenario would 

not explain the similar reactivity of flat graphene on mica which should not exhibit 

conical singularities. The results indicate that the differences in reactivity are due to 

the difference in electronic structure. The increased reactivity of SLG relative to BLG 

is consistent with charge disorder cause: SLG has significantly lower density of 

electronic states and therefore larger fluctuations in chemical potential for a given 

charged impurity concentration [142]. 
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6.4 Conclusions 

In this chapter, I have measured the oxidative reactivity of SLG supported on 

substrates with different surface roughnesses and charged impurities. SLG on flat 

hBN with low charged impurities shows reduced oxygen reactivity comparable to 

multilayer graphene, while SLG on flat mica shows reactivity similar to SLG on SiO2, 

pinpointing charge disorder as the source of the increased reactivity of SLG. This is 

strongly supported by the observation that reactivity of graphene on SiO2 depends on 

layer number (SLG vs. BLG) but not on graphene roughness (SiO2 nanoparticle 

substrates vs. thermally-grown SiO2). Furthermore, similar results have been reported 

by other groups [156]. These observations may offer an approach to control of the 

chemical functionalization and doping of graphene using a substrate. 
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Chapter 7: Oxidative reactivity of atomically thin MoS2 on 

SiO2
*
 

In Chapter 6, I show that chemical reactivity of graphene on substrates is 

predominantly controlled by charge inhomogeneity rather than surface roughness. A 

natural question is whether other atomic crystals such as layered transition metal 

dichalcogenides show similar substrate-dependent reactivity. In this chapter, I explore 

oxidative reactivity of atomically thin MoS2 supported on SiO2. Oxygen exposure 

leads to etch pits on the basal plane surfaces of atomically thin MoS2 on SiO2. 

However, I find that, in striking contrast with graphene, the density of etch pits is 

independent of MoS2 thickness, exposure time, and oxidation temperature but varies 

significantly from sample to sample. The observations indicate that oxidative etching 

of atomically thin MoS2 is initiated at intrinsic defect sites in the crystal rather than 

being activated by substrate effects such as charged impurities and surface 

roughnesses. The results provide new insight into the reactivity of 2D transition metal 

dichalcogenides supported on substrates. 

7.1 Oxidative reactivity of MoS2 

MoS2 has attracted much attention as a solid lubricant due to its ultralow 

friction and wear [72, 157]. The tribological properties of MoS2 are affected strongly 

by oxidation and, hence, oxidative reactivity of MoS2 has been of central interest for a 

long time. Oxygen exposure to bulk MoS2 results in molybdenum oxide (MoO3) on 

                                                 
*
 Adapted from “Anisotropic etching of atomically thin MoS2” by Mahito Yamamoto, 

Theodore L. Einstein, Michael S Fuhrer, and William G. Cullen (submitted) 
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its basal plane surface as well as edges and, hence, raises its friction and reduces 

lifetime as a lubricant [157-160]. However, oxidative reactivity of atomically thin 

MoS2 has yet to be investigated. 

7.2 Experimental details 

Single- and few-layer MoS2 were mechanically exfoliated onto 300 nm-thick 

SiO2 from MoS2 bulk crystals using adhesive tape (see Chapter 3). The thicknesses of 

the MoS2 films were identified by optical contrast, atomic force microscopy (AFM), 

and Raman spectroscopy [104, 161]. To remove adhesive residue, all samples were 

annealed in an H2/Ar mixture for 2 hours at 350 °C unless otherwise noted. The flow 

rates of Ar and H2 are 1.7 L/min and 1.8 L/min, respectively. This hydrogen treatment 

leads to no chemical modification of the MoS2 basal plane, as shown in an AFM 

image and Raman spectra in Fig. 7.1. After pre-annealing MoS2 samples in H2, they 

were exposed to an Ar/O2 mixture at temperatures ranging from 27 to 400 °C. The 

flow rates of Ar and O2 are 1.0 L/min and 0.7 L/min, respectively. The nanoscale 

 
 

Figure 7.1: Atomically thin MoS2 on SiO2 after H2 annealing. (a) An AFM image 

after H2 treatment at 350 °C for 2 hours. The scale bar is 1 m. (b) Raman spectra 

of atomically thin MoS2 before (black line) and after (red line) H2 annealing. 
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structure of oxidized MoS2 was characterized by AFM in tapping mode, and the 

composition and oxidation state were determined using Raman spectroscopy with a 

fixed excitation wavelength of 532 nm and 2400 gratings per mm. 

7.3 Experimental results and discussion 

Figure 7.2a is a typical optical image of atomically thin MoS2 on SiO2. Figure 

7.2b shows an AFM image of this MoS2 flake after oxygen annealing at 320 °C for 3 

hours. The oxygen treatment results in etch pits on the surfaces of single- and few-

 
 

Figure 7.2: Atomically thin MoS2 on SiO2 after O2 annealing. (a) An optical 

image of a pristine MoS2 flake. (b) An AFM image of the MoS2 flake after 

oxidation at 320 °C for 3 hours, showing etch pits on the surface. 

 
 

Figure 7.3: AFM images of triangular etch pits on atomically thin MoS2. (a) 

single-, (b) bi-, (c) tri-, and (d) 4-layer MoS2. I-IV correspond to areas shown in 

Fig. 7.2b. The scale bars are 500 nm. 
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layer MoS2. Figures 7.3a-e magnify the areas I-IV in Fig. 7.2b, which are surrounded 

by white dashed lines. The shape of the pits is triangular and their orientations are 

identical over each atomically-flat terrace. These observations indicate that the 

triangular shapes of the pits reflect the lattice of the MoS2 basal plane surface and that 

the edges of the pits are along the zigzag directions with only a single chemical 

termination, i.e. terminated on either the Mo-edge (101̄ 0) or S-edge (1̄ 010) (see Fig. 

7.4). The observation of only three preferred edge orientations rules out armchair-

oriented edges, for which there are six possible identical edges. 

Our experiments are unable to resolve whether the preferred edge is the Mo-

edge or S-edge; however, evidence from other studies points to Mo-edge (101̄ 0) 

[162-165], though the exact structure of the reconstructed edge (and locations of 

additional sulfur atoms terminating the Mo-edge) likely depends on the chemical 

environment and substrate [163-165]. 

Control of edge structures is expected to lead to tunable properties of 

atomically-thin MoS2 nanostructures [162-168]. The prismatic edges of 

semiconducting MoS2 can exhibit metallic edge states [162, 167, 168]
 
and magnetism 

 
 

Figure 7.4: Schematic drawings of hexagonal lattice of the MoS2 structure with 

triangular pits. A pit with (a) (1̄ 01 0) S- and (b) (10 1̄ 0) Mo-edge terminations. 



 

 82 

 

[166-168], with the properties sensitively dependent on the edge orientation and 

atomic reconstruction [166, 167]. The edge structure [163, 165] and number of active 

edge sites [165, 169, 170]
 
are also crucial for electrocatalytic activity of MoS2. Our 

results may signify an approach to create MoS2 nanostructures with atomically-well 

defined edges by oxidation. Further work using high-resolution transmission electron 

microscopy or scanning tunneling microscopy could determine the edge structures 

and also elucidate the electronic and magnetic properties of these edges. 

Figure 7.5 shows the profiles of the pits along the dashed lines in Figs. 7.3a-d. 

 
 

Figure 7.5: The depth of the triangular pits. Profiles of pits along the dashed lines 

in Figs. 7.3a-d. 

 
 

Figure 7.6: An AFM image of atomically thin MoS2 on SiO2 after O2 annealing at 

320 °C for 3 hours. The etch pits have the same orientations on single- and bi-

layer parts. The scale bar is 2 m. 



 

 83 

 

The pits are mostly single-layer-deep (~ 0.7 nm) on single- and few-layer MoS2, 

indicating a very high degree of anisotropy in etching along the basal plane vs. the c-

axis, though we do occasionally observe double-layer-deep pits on few-layer MoS2 

samples (see Fig. 7.6). (The larger depth of the pits on single-layer MoS2 in Fig. 7.3a 

is an artifact caused by the limitation of the tapping mode AFM to determine the 

thickness of an atomically thin membrane on rough SiO2 [171].) 

Our MoS2 crystals are expected to have a 2H structure [16, 68], where the 

triangular lattices of adjacent layers are 180°-inverted relative to each other as shown 

in Fig. 2.5 in Chapter 2. Therefore, the triangular pits formed on the surfaces are also 

expected to have 180°-inverted orientations among even and odd numbers of layers. 

Such trends can be seen in Fig. 7.2b. However, we also observe the triangular pits 

with same orientations on even and odd layer-number-thickness regions, suggesting 

that it is the top surface which is continuous across the layer-number-thickness 

boundary. Figure 7.6 shows etch pits have the same orientations on both single-layer 

and bi-layer parts, but the orientation is 180°-inverted on tri-layer part. However, 

AFM is insufficient to determine whether the second layer lies above or below the 

 
 

Figure 7.7: A series of AFM images of single- and bi-layer MoS2 oxidized at 

320 °C. The exposure times are (a) 1, (b) 3, (c) 4, and (d) 6 hours. The scale bars 

are 2 m. 
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first layer. Because of this ambiguity, we cannot be certain of the correlation between 

the stacking order of MoS2 layers and the orientations of the triangular pits; however, 

the observations of only a single etch-pit orientation within a single terrace, and the 

observation of opposite orientations for different layer thicknesses within a single 

crystal, suggests strongly that the termination is globally determined to be along only 

one of the Mo or S terminated zigzag edges. 

In Figs. 7.7a-d, we show AFM images of a MoS2 flake of single- and bi-layer 

 
 

Figure 7.8: The growth rate of the triangular pits. The average distance r from the 

center to the apex of triangular pits as a function of oxidation time. The red line is 

fit. The inset is an AFM image of a typical triangular pit formed on single-layer 

MoS2 after oxidation for 4 hours. The scale bar is 300 nm. 

 
 

Figure 7.9: (a-d) AFM images of MoS2 samples of various thicknesses after 

oxidation at 320 °C for 2 hours. The scale bars are 2 m. The inset in (d) is a 1 m 

×1 m area in the 8L region, showing triangular pits. 
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thickness after oxidation at 320 °C for 1, 3, 4, and 6 hours. After oxidation for an hour, 

etch pits with an average size of 6.3 × 10
3
 nm

2
 are formed on the surfaces (Fig. 7.7a). 

Additional oxygen treatment leads to lateral growth of the triangular pits, as shown in 

Figs. 7.7b-d. The distance r from the center to the apex of the triangular pits increases 

monotonically with a growth rate of approximately 70 nm/h, as shown in Fig. 7.8, but 

the density of pits is nearly constant during the oxygen treatment, indicating that the 

oxidative etching is not initiated homogeneously but at specific sites on the surface of 

atomically thin MoS2. 

Figures 7.9a-d show AFM images of MoS2 samples of various thicknesses 

after oxidation at 320 °C for 1 hour. In Fig. 7.9a, the density of etch pits formed on 

the single-layer MoS2 film is 7.5 × 10
6
 cm

-2
, while the pit density on single-layer 

MoS2 in Fig. 7.9b is two orders of magnitude larger than that in Fig. 7.9a. Figure 7.9c 

shows a MoS2 flake of single- to 4-layer thickness with etch pits on the surfaces. The 

density of pits on 4-layer MoS2 is 3.5 × 10
8
 cm

-2
, which is larger than the densities on 

surfaces of single-layer (9.0 × 10
7
 cm

-2
) and tri-layer (2.7 × 10

8
 cm

-2
) parts. Figure 

 
 

Figure 7.10: AFM images of single- and bi-layer MoS2 oxidized at various 

temperatures. (a) 300 °C for 4 hours, (b) 320 °C for 3 hours, and (c) 340 °C for 2 

hours. The scale bars are 2 m. 
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7.9d shows an example of a large pit density of ~ 10
9
 cm

-2
 observed on 8- and 9-layer 

MoS2. These observations suggest that the density of pits formed upon oxidation has 

no obvious correlation with MoS2 thickness but shows significant sample-to-sample 

variations. 

Figures 7.10a-c show AFM images of single- and bi-layer MoS2 after 

oxidation at 300 °C for 4 hours, 320 °C for 3 hours, and 340 °C for 2 hours, 

respectively. Higher-temperature oxygen annealing leads to larger etch pits on the 

surfaces. However, the density of pits on single-layer MoS2 oxidized at 340 °C is one 

order of magnitude smaller than when oxidized at 300 °C and 320 °C. Hence, the 

density of pits exhibits no obvious simple correlation with the oxidation temperature. 

The observed oxidative behaviors of atomically thin MoS2 on SiO2 are in 

sharp contrast with oxidation of graphene supported on the same SiO2 surface. 

Oxygen treatment of graphene on SiO2 results in circular etch pits on the surface 

[137]. However, unlike atomically thin MoS2, the oxidative etching of SiO2-supported 

graphene is strongly thickness-dependent, with single-layer being the most reactive. 

Furthermore, the etch pits in single-layer graphene on SiO2 form homogeneously on 

 
 

Figure 7.11: Histogram of the density of pits formed on single- and few-layer 

MoS2 oxidized at various temperatures. 
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the surface, and the number of pits increases with oxidation time and temperature. 

The anomalous reactivity of single-layer graphene on SiO2 is due to charge 

inhomogeneity induced by charged impurities in SiO2 [156, 172]. The effect of the 

charged impurities is significantly reduced with increasing graphene thickness. Thus, 

for thicker graphene (or graphite), the etching is predominantly activated by native 

defects in the crystal, and the etch pits have nearly uniform lateral sizes and are 

mostly one-layer deep [173]. 

The oxidation of atomically thin MoS2 appears similar in character to the 

oxidation of graphite crystal surfaces, rather than graphene on SiO2. We thus suppose 

that the oxidative etching of atomically thin MoS2 is similarly initiated at defect sites 

on the surfaces. In Fig. 7.11, we show histogram of the density of pits formed on 

single- and few-layer MoS2 after oxidation at various temperatures. The pit density 

ranges from 10
6
 to 10

9
 cm

-2
, which is comparable with the previously reported density 

of intrinsic vacancy defects and substitutional atoms such as tungsten and vanadium 

in the natural MoS2 crystal [174, 175], indicating that such defects could be 

responsible for initiating etching. 

Previous scanning probe microscopy [158] and X-ray photoemission 

measurements
 
[159] have shown that high-temperature oxidation leads to the 

formation of thin MoO3 films on the basal plane surface of bulk MoS2. The Raman 

investigations of microcrystalline MoS2 have revealed that oxygen exposure results in 

a peak at 820 cm
-1

 that is a stretching mode of the terminal oxygen atoms (O-M-O) in 

MoO3, and the  normalized intensity of the mode increases with increasing oxidation 

temperature above 100 °C [160]. 
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We observe a peak at 820 cm
-1

 in pristine single-layer MoS2, as shown in Fig. 

7.12a (black line). However, the peak intensity at 820 cm
-1

 relative to the Si peak at ~ 

520 cm
-1

 rarely changes after oxygen treatment, even at 340 °C for 2 hours as shown 

in Fig. 7.12a (red line). Thus, the peak at 820 cm
-1

 in oxidized MoS2 is not the 

stretching mode in MoO3 but rather the 2×A1g mode of MoS2 [176]. Hence, we 

conclude that no MoO3 structure is produced in atomic layers of MoS2 by oxygen 

treatment below 340 °C. This is also supported by the absence of other MoO3-related 

peaks such as 285 cm
-1

 and 995 cm
-1

 in the Raman spectrum of oxidized MoS2. 

Furthermore, we observe no signatures of MoO3 films on the surface of atomically 

thin MoS2 by AFM after oxidation below 340 °C, as shown in Fig. 7.12b. 

We find that oxidation above 350 °C rapidly etches away single- and few-

layer MoS2. However, we find that high-temperature oxidation of thicker MoS2 (> 40 

nm in thickness) above 400 °C leads to significant structural and chemical 

modification. Figure. 7.13a is an AFM image of 40 nm-thick MoS2 oxidized at 

 
 

Figure 7.12: Raman spectra of oxidized atomically thin MoS2. (a) Raman spectra 

of single-layer MoS2 before (black line) and after (red line) oxidation at 340 °C for 

2 hours. The inset on the right close-ups the Raman spectra near 820 cm
-1

. (b) An 

AFM image of single-layer (1L) and bi-layer (2L) MoS2. The scale bar is 1m. 
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400 °C for 10 min. The thick MoS2 decomposes into smaller crystals with a lateral 

size of about 300 nm in length. The Raman spectrum of the crystal (Fig. 7.13b) shows 

MoO3-related modes of 189, 285, 820, and 995 cm
-1

 [160], corroborating that MoO3 

is formed by high-temperature oxidation of thick MoS2 

Oxygen treatment is expected to modify significantly the electronic properties 

of atomically thin MoS2. Indeed, exposing few-layer MoS2 FET devices to oxygen 

gas leads to considerable decrease in carrier density and conductivity [177, 178]. We 

investigate the effects of oxygen on the carrier concentrations in MoS2 using Raman 

spectroscopy. Previous Raman measurement of single-layer MoS2 using electrolyte 

gating, combined with density functional theory calculations, has revealed that the 

Raman A1g mode downshifts and its linewidth increases with increasing electron 

density due to electron-phonon interactions [105]. In contrast, the E
1

2g phonon is less 

sensitive to electron concentration than the A1g phonon. In Fig. 7.14a, we show the 

Raman E
1

2g and A1g modes of single-layer MoS2 before and after oxidation at 

 
 

Figure 7.13: An AFM image and a Raman spectrum of thick MoS2 oxidized at a 

high temperature. (a) An AFM image of oxidized thick MoS2 crystals at 400 °C. 

The scale bar is 1m. (b) A Raman spectrum of thick MoS2 oxidized at 400 °C for 

10 minutes, showing MoO3-related peaks. 
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temperatures of 200 °C, 300 °C, and 340 °C for 2 hour. Oxygen treatment above 

200 °C results in the upshift of the frequency and the increase of the linewidth of the 

A1g mode, indicating that electrons transfer from MoS2 by oxygen treatment. Figures 

7.14b and c show the frequencies and linewidths of the Raman E
1

2g and A1g modes as 

functions of the oxidation temperature. The positions of the E
1

2g and the A1g peaks do 

not shift measurably after oxygen annealing below 200 °C. However, above 200 °C, 

the E
1

2g mode slightly decreases while the A1g mode increases with temperature up to 

404.5 cm
-1

 at 340 °C. Furthermore, as shown in Fig. 7.14c, the linewidth of the A1g 

mode abruptly decreases above 200 °C, while the E
1

2g mode shows nearly constant 

linewidth over temperature. 

 Although the cause of the shift in the E
1

2g mode is unclear, these results 

suggest that below 200 °C the electron transfer upon oxidation is minor, but with 

increasing temperature there is sizable electron withdrawal by oxygen treatment. 

Using the results by Chakraborty et al. [105],
 
we estimate the density of electrons 

withdrawn to be of order 10
13

 cm
-2

 for oxidation at 340 °C. 

 
 

Figure 7.14: The Raman E
1

2g and A1g modes of oxidized single-layer MoS2. (a) 

The Raman E
1

2g and A1g modes of single-layer MoS2 before (black) and after (red) 

oxidation at 200 °C, 300 °C, and 340 °C for 2 hours. (b-c) Frequencies (b) and 

linewidths (c) of the E
1

2g and A1g modes versus oxidation temperature. 
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In Fig. 7.15a, we show the Raman E
1

2g and A1g modes of single-, bi-, tri-, and 

four-layer MoS2 after oxidation at 320 °C for 2 hours. The oxidation results in upshift 

of the A1g mode and downshift of the E
1

2g mode of single- and few-layer MoS2. 

However, as shown in Fig. 7.15b, the shifts of the E
1

2g and A1g modes decrease with 

increasing thickness. This indicates that electron transfer from atomically thin MoS2 

by oxygen treatment is a surface effect, which is consistent with observations that 

atomically thin MoO3 is not formed upon oxidation below 340 °C. 

7.4 Conclusions 

In this chapter, we have investigated oxidative reactivity of atomically thin 

MoS2 supported on SiO2. We find that oxygen treatment of atomically thin MoS2 

results in triangular etch pits whose edges are along zigzag directions which other 

evidence suggest have Mo orientations. The pit density is uncorrelated with oxidation 

temperature, time, and MoS2 thickness, indicating that the oxidative etching is 

initiated via intrinsic defects in MoS2 rather than substrate effects such as charged 

 
 

Figure 7.15: The Raman E
1

2g and A1g modes of oxidized single- and few-layer 

MoS2. (a) Raman E
1

2g and A1g modes of single-layer (1L), bi-layer (2L), tri-layer 

(3L), and 4-layer (4L) MoS2 after oxidation at 320 °C for 2 hours. (b) Shifts in the 

peak position of the E
1

2g and A1g modes as functions of thickness. 
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impurities, in contrast with graphene. The difference in reactivity between graphene 

and atomically thin MoS2 is most likely because graphene is a semimetal with a linear 

energy dispersion but MoS2 is an ordinary semiconductor. 

We further find that oxygen exposure leads to sizable electron transfer from 

MoS2 surfaces above 200 °C but produces no MoO3 below 340 °C. Our results can 

provide insight into the oxidative reactivity of atomically thin MoS2 on substrates. 
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Chapter 8: Conclusions and outlook 

In this dissertation, I have explored experimentally how the morphology and 

chemical reactivity of 2D crystals are influenced by substrates. 

In Chapter 5, I studied the morphology of graphene membranes supported on 

SiO2 substrates decorated with SiO2 nanoparticles. I found that when the nanoparticle 

density is small, graphene adheres conformally to the substrate. However, with 

increasing nanoparticle density, wrinkling is induced to connect the nanoparticle-

induced protrusions. Above a critical nanoparticle density, the wrinkling network 

spans the entire sample. Furthermore, graphene delaminates from the nanoparticle-

decorated substrates with increasing graphene thickness. These morphological 

transitions can be described within a continuum elastic model and by statistical 

mechanical approaches. The wrinkling and the delamination both act to remove in-

plane strain in graphene. Therefore, the observations along with the theoretical results 

can be used to place upper limits on the magnitude of strain and, hence, 

pseudomagnetic fields attainable in graphene through adhesion to patterned surfaces. 

There are some potentially important experiments which can be done by using 

nanoparticle-patterned substrates. As shown in Chapter 5, wrinkles and nanoscale-

protrusions could produce sizable pseudomagnetic fields in graphene and could affect 

its electronic properties. To detect the signature of pseudomagnetic fields in such 

graphene nanostructures, we may use scanning tunneling spectroscopy [25].  

Additionally, electronic transport measurements of graphene on nanoparticles 

are also interesting. Theoretical studies have predicted that microscopic corrugations 

(or ripples) of graphene could be scattering centers [38]. However, the carrier 
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scattering from ripples has yet to be experimentally determined and has remained 

controversial. The detailed investigations on the correlation between tuned roughness 

of graphene on nanoparticles and its electron mobility may lead to an answer to this 

controversial problem. 

In Chapter 6, I investigated the impact of the substrates on oxidative reactivity 

of graphene by employing thermally-grown SiO2, SiO2 nanoparticle thin films, hBN 

and mica as graphene supports. I found single-layer graphene on low charge-trap 

density hBN is not etched and shows little doping after oxygen treatment at 

temperatures up to 550 °C, in sharp contrast with oxidative etching under similar 

conditions of graphene on high charge-trap density SiO2 and on mica. Furthermore, 

bilayer graphene shows reduced reactivity compared to single-layer graphene, 

regardless of its substrate-induced roughness. Together the observations indicate that 

graphene’s reactivity is predominantly controlled by charge inhomogeneity-induced 

potential fluctuations rather than surface roughness. 

The findings suggest a strategy to functionalize graphene or to manipulate 

dopant concentrations in graphene locally by using a patterned substrate. For example, 

when graphene is deposited onto SiO2 with narrow strips of BN on it and is 

functionalized with oxygen molecules at a moderate temperature, graphene pnp 

junctions can be created. This method may be easier than fabricating top gates. 

Similarly, tunnel and Josephson junctions may be created by appropriate chemical 

functionalization of graphene on such a patterned substrate [58, 64]. 

Lastly, in Chapter 7, I investigated oxidative reactivity of atomically thin 

MoS2 on SiO2. I found that exposure to oxygen at 300-340 °C results in triangular 
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etch pits with uniform orientation on the surfaces of atomically thin MoS2, indicating 

anisotropic etching terminating on lattice planes. The triangular pits expand laterally 

with oxidation time. The density of pits scarcely depends on oxidation time, 

temperature, and MoS2 thickness, but varies significantly from sample to sample. 

These observations indicate that etching is initiated at native defect sites on the basal 

plane surface rather than activated by substrate effects such as charged impurities, in 

contrast with graphene. 

The results can offer insight into reactivity of atomically thin transition metal 

dichalcogenides. Future work will be to functionalize transition metal 

dichalcogenides with other chemical species such as transition metals and organic 

molecules. The observations of anisotropic etching suggest an approach to creating 

MoS2 nanostructures with atomically well-defined edges via oxidation. 

In conclusion, the present studies provide insight into the morphology and 

reactivity of 2D crystals supported on substrates and serve as an important first step 

toward strain- and chemical-engineering their electronic properties. A next step will 

be to create strain- and chemical-engineered electronic devices based on the results. 
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Appendix A: Scaling analysis of the wrinkle length 
 

Here we show that Xc scales as Xc ~ d(E2D/)1/4
, analogous to scaling for the 

diameter detachment zones surrounding a local protuberance as shown in Chapter 5.
 

We design a scaling analysis, neglecting E’ and Eb’. The total energy is of the form 
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The minimization of Eq. (A1) with respect to leads to 
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As discussed in Chapter 5, the critical spacing Xc is given by a condition that (0) = d: 

 

 

  ,

)(

1)2/)(sin(/1
3

2

3/26/1

2D

6/5

34

4/1

2D2/3

4

4/1

2D2/3

2/1

4/1

2D

4/3

2/3
2/3

c

cc

XEdff
E

d

f
E

d

X
E

dX












































 (A6) 

where 
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
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One can check by substitution that 
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with f6(u) = f5(uf6(u)
2/3

) and f5(u) = f4(f3(u)). We now define the elastic thickness hel = 

(/E2D)
1/2 

and the equilibrium contact curvature Ceq = (/)
1/2

. Letting f7(u) = f6(u
2
/2), 

we rewrite Xc as 

 ),(72/1

2/3

dCf
h

d
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el

c   (A9) 

which is the general scaling form of the solution. 

We now consider two asymptotic limits; the strong adhesion limit Ceq >> 1 and 

the weak adhesion limit Ceq << 1. In the strong adhesion limit, the opening angle of 

the wrinkle  goes to zero. Then, one has f1() ~ -2/3
and f2() ~ Hence f3(u) ~ u

-3/5
. 

Since f4() ~ 1/2
, one has f5(u) = f4(f3(u)) ~ [f3(u)]

1/2
 ~ u

-3/10
, and finally f6(u) ~ u

-1/4
. 

Therefore, one has: 
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and 

 ,)(~ 1dCeq  (A11) 

which also confirms that the small  limit corresponds to the large Ceqd limit (strong 

adhesion limit). 

     Alternatively, setting  =  - , we redo the above scaling analysis in the weak 

adhesion limit Ceq << 1 with the argument of f1, f2, and f4 being  instead of . Then 
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f1() ~ 
7/3

, and f2() ~ 1/, so that f3(u) ~ u
3/10

. Also f4() ~ 1/, leading to f5(u) ~ 

u
-3/10

 and f6(u) ~ u
-1/4

. Consequently, we obtain 

 
2/1

2/1

2/3

)(~ dC
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d
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and 

 .)(~ 2/1dCeq  (A13) 

This solution is consistent with the weak adhesion limit because  << 1 implies Ceqd 

<< 1. 
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