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In this dissertation two approaches were used to increase the knowledge of 

elasmobranch population dynamics and life history: (1), the comparative approach 

and (2), the species-specific approach.  In the comparative approach I constructed 

standardized three-stage matrix models for 55 species of sharks and rays.  Using these 

models I (1) conducted elasticity analyses to determine how the vital rates of 

mortality (M) and fertility (f) influence elasmobranch population growth rate r, (2) 

estimated sensitivity of elasticity to perturbation in vital rates, and (3) examined the 

taxonomic distribution of model inputs and species vital rates, such as size at maturity 

(Lmat), and total length (Lmax).  I found positive relationships between the elasticity of 

λ (population growth rate) to changes in juvenile and adult stages to longevity and 

age at maturity; however, the age at maturity and the elasticity of λ to changes in the 

adult stage relationship appeared to be invariant.  Combining vital rates and 



  

elasticities, I found similar suites of life histories and demographics within taxonomic 

groups at various levels.   

Further I examined where (or if) elasmobranchs fall in the evolved triangular 

ordination of life history strategies proposed by Winemiller and Rose (1992).  My 

results indicate that when plotted using only the teleost ordination, elasmobranchs 

appear to be periodic strategists, outside the limits of the teleost ordination.  However, 

when elasmobranch data is included in the ordination they form the extreme range of 

equilibrium strategists and are grouped by order.   

In the species-specific approach, I found evidence for a strong latitudinal trend 

in maximum size (l∞) and size at maturation (lmat) in little skate with individuals in 

northern regions reaching a larger size at maturity and maximum length and growing 

slower than little skate from more southern regions.  No similar trend was found in 

winter skate.  Little skate is smaller, reaches maturity at a younger age is faster 

growing and shorter lived then winter skate (Little skate: l∞ = 56.1 cm, k = 0.19/yr, 

Tmax = 12.5, Tmat = 7; Winter skate: l∞ = 122.1 cm, k = 0.07/yr, Tmax = 20.5, Tmat = 

12.5).  Winter skate has higher annual fecundity then little skate of 26-101 and 21-57 

eggs per year respectively.  

Using estimated vital rates for winter skate and National Marine Fisheries 

Service’s survey data an age-structured model was constructed for winter skate from 

1963-1998.  The model indicated that the western Atlantic population of winter skate 

was rebuilding in the 1980’s following overfishing in the 1960’s and 1970’s. 
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Chapter 1: 

INTRODUCTION 

Chondrichthyans first appeared in the Silurian period (350 million ybp) and 

are believed to have evolved in marine environments (Moyle and Cech, 2000).  

Chondrichthyan fishes comprise two subclasses: the Elasmobranchii and Holocephali 

(Moyle and Cech, 2000).  The focus of this work is on the elasmobranchs (sharks, 

skates and rays), which are characterized by a cartilaginous skeleton, the lack of 

ossified otoliths, the presence of claspers for reproduction in males and internal 

fertilization.  The dissertation has two goals: to understand life history patterns within 

elasmobranchs generally, and to understand the population dynamics of two 

representative species of elasmobranchs – winter skate and little skate. 

Evolutionary evidence suggests that egg laying is the ancestral form in 

elasmobranchs with most species transitioning to live-bearing.  In elasmobranchs, 

live-bearing is the form of parity in 60% of species, egg laying is found in 25% and 

the rest have some combination of the two (Dulvy and Reynolds, 1997).  In Rajidae 

(skates and rays) it appears that egg laying is also an ancestral form, however, skates 

transitioned to live bearing and then back to egg laying (Dulvy and Reynolds, 1997).   

In general, elasmobranchs have very low fecundity compared to most teleost species, 

delayed maturity and long life-spans (Frisk et al., 2001).  The life history of 

elasmobranchs, especially for large species, places them at risk of overexploitation 

(Frisk at al., 2001).  

Current research suggests that many of the large predatory shark species of the 

western Atlantic have dramatically declined due to commercial and recreational 
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fishing (Baum et al., 2003; Myers and Worm, 2003).  The recent declines in skate and 

shark populations in the western Atlantic are believed to have resulted from increases 

in commercial, recreational and by-catch harvests (NEFSC, 1999).  Casey and Myers 

(1998) described the possible extirpation of the barndoor skate, Dipturus laevis, in the 

western Atlantic.  Additionally, the 1999 National Marine Fisheries Service (NEFSC, 

1999) assessment of the Northeast region skate complex highlighted the overfishing 

of winter skate and barndoor skate and the decline of thorny skate, Amblyraja 

radiata, (NEFSC, 1999).  This report also expressed concern about the paucity of 

information on the vital rates of skates (Rajidae), a problem common in efforts to 

understand the resilience of elasmobranch populations to harvest (Frisk et al., 2001).  

While declines in many shark and skate populations have been well documented, 

much is left to be accomplished in the development of sound methodology for their 

conservation.  In addition, there are many differences between elasmobranchs and 

bony fish that make it challenging to fit them into present population dynamic 

models.   

Fish populations have evolved the capacity to overcompensate reproductive 

output in the face of variability in annual mortality (Pitcher and Hart, 1982).  This 

surplus production provides for the sustainable harvests (Pitcher and Hart, 1982).  

Elasmobranch fishes exhibit egg-laying or live-bearing and produce large offspring, 

presumably with high survival rates, and have delayed maturity.  These facts combine 

to produce low surplus productions in elasmobranch populations.  Using Jenning’s et 

al. (1998) index of potential reproductive output at the onset of maturation, Frisk et 

al. (2001) showed that elasmobranchs had much lower potentials for stock 
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replenishment at the onset of maturation compared to teleost species.  Moreover, high 

offspring survival and low fecundity likely means stock recruitment relationships for 

sharks, skates and rays are strong and less variable than for teleost species (Smith et 

al., 1998). 

Nothing in the above paragraphs would eliminate the use of common fishery 

models from being used for elasmobranchs.  After all, in order for a species to persist 

it must have at least a minimal capacity to recover from population declines (i.e. 

surplus production).  However, what it does suggest is that elasmobranchs are a group 

that are often not adequately managed and have not been fully examined in terms of 

life history theory and population dynamics.  Importantly, the comparative method 

that has yielded considerable insight into the ecology and management of teleost 

species (e.g., Beverton and Holt, 1959; Beverton, 1963; Pauly, 1978; Hoenig, 1983; 

Beverton, 1992) has yet to be fully developed for elasmobranchs.  I suggest that 

combining insights from comparative analyses with analyses of individual species 

will lead to the development of new conservation measures for elasmobranchs.  The 

remainder of this introduction and the details provided in this dissertation will 

highlight the approaches I will use to improve our understanding of life history traits, 

vital rates, and the population dynamics of elasmobranchs and the development of 

conservation measures for the subclass. 

 

Sustaining elasmobranch resources: The comparative approach 

Comparative analyses have proven to be a powerful approach for assessing 

the sustainability of species and the study of life history evolution for diverse taxa 
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(Harvey and Pagel, 1991; Stearns, 1992; Charnov, 1993).  For example, ecologists 

have used the behavior of the logistic equation to examine the life histories and 

evolutionary dynamics of species from a broad range of animal taxa (Pianka, 1970; 

Mertz, 1975; Caswell, 1982; Hall, 1988).  The use of comparative analysis in fishery 

science dates back to pioneers of the field including Beverton and Holt (1959).  Later, 

Pauly (1978) and Hoenig (1983) used the approach in their popular analyses for 

estimating mortality rates.  More recently, Winemiller and Rose (1992) provided a 

classification scheme for teleost taxa, without a prior theoretical model, based on a 

comprehensive analysis of life history traits of fishes.  In my dissertation I will 

conduct two comparative analyses of elasmobranch life histories to provide guidance 

to managers in their efforts to conserve elasmobranch stocks. 

In the second chapter, I present results of an analysis of vital rates of 

elasmobranchs using matrix-based projection models.  The analyses are based on 

previously published estimates of vital rates of 45 elasmobranch species.  Stage-based 

projection models are used to estimate the intrinsic rate of natural increase, r.  

Subsequently, I use elasticity and sensitivity of elasticity analyses to quantify the 

relative susceptibility to exploitation of the species and use elasticity to provide 

information on important aspects of the species life history.   This work has been 

submitted and accepted for publication in the Journal of the Northwest Atlantic 

Fisheries Organization.  The paper is authored by myself, Thomas Miller and 

Nicholas Dulvy, a colleague at the Center for Environment, Fisheries and 

Aquacultural Science in Lowestoft, UK. 
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In the third chapter, I present a second example of the application of the 

comparative approach to understanding elasmobranch life histories.  Using 

multivariate statistical analyses, Winemiller and Rose (1992) expanded the r-K 

continuum to a triangular ordination of three evolved strategies in teleost fishes: (1) 

small, rapidly maturing, short-lived species (opportunistic strategists), (2) larger, 

highly fecund fishes with longer life-spans (periodic strategists), and (3) fishes of 

intermediate size that often exhibit parental care and produce fewer but large 

offspring (equilibrium strategists).   Few studies on the life history patterns of 

elasmobranchs exist in the literature (Cortes, 2000; Frisk et al., 2001).  To address the 

need of further comparative life history analysis for elasmobranchs, I expanded the 

Winemiller and Rose analysis by the addition of data for skates, sharks and rays.  I 

estimated where elasmobranchs fit into the combined teleost and cartilaginous fish 

ordination.  I anticipate that this work will be submitted as a manuscript to either 

Transactions of the American Fisheries Society or to Copeia as a sole-authored paper. 

 

Sustaining elasmobranch resources: The species-specific approach  

Frisk et al. (2002) combined data on little skate, barndoor skate and winter 

skate and parameter estimates from an empirical analysis of elasmobranch life 

histories (Frisk et al., 2001), and used a matrix model to estimate fishing limits for the 

three western Atlantic skate species.  The approach of Frisk et al. (2002) utilized both 

known and empirically estimated vital rates for size at maturity, age at maturity and 

natural mortality; parameters that are necessary to properly set conservation 

measures.  Still, without field-derived data for individual species, sound conservation 
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polices are difficult to form.  Comparative analyses are a proven resource; however, 

nothing is more reliable than species-specific, field-derived data.  

Little skate and winter skate occur in the western Atlantic from the mid-

Atlantic region to Canadian waters (McEachran, 2002).  Skates are caught both as by-

catch and targeted in bottom trawl fisheries in the Northern Atlantic.  Skates 

experienced changes in the harvesting pressure over the last 50 years with harvest 

peaks in the 1970’s and during the late 1980’s and 1990’s (Fogarty and Murawski, 

1998).  During the 1960’s and 1970’s, skates were targeted largely by foreign fishing 

fleets (Overholtz and Tyler, 1986; Fogarty and Murawski, 1998).  The United States 

extended its jurisdiction to the 200-mile limit in 1976, effectively removing all 

foreign fishing.  The result was lower landings of skates during the late 1970’s and 

early 1980’s until the domestic fleet began keeping skates for the market during the 

late 1980’s and 1990’s (NEFSC, 1999).  During the 1980’s, following the removal of 

foreign fishing pressure, the NMFS annual survey indicated that winter skate 

exhibited a ten-fold increase in abundance (NEFSC, 1999).  Little is known of actual 

harvest rates of skates in the western Atlantic.  Length-based estimates (Beverton and 

Holt, 1959; Hoenig, 1983) indicate recent fishing mortality is approximately 0.3-0.4 

for little skate, below the F0.1 threshold of 0.71, and 0.2-0.3 for winter skate, above the 

F0.1 threshold of 0.1-0.2 (NEFSC, 1999).    

Very little is known of the vital rates in little skate and winter skate.  Six age 

and growth studies have been conducted on western Atlantic skate species.  Johnson 

(1979), Richards et al. (1963), Waring (1984) and Natanson (1990) provide data on 

little skate.  Sulikowski et al. (2003) and Simon and Frank (1996) provide 
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information on winter skate.  Gedamke, (on going) is currently working on barndoor 

skate.  Knowledge of egg production in skates in the western Atlantic is also not well 

developed.  Studies by Johnson (1979) and Richards et al. (1963) are the only 

attempts to estimate annual fecundity for western Atlantic skates.  The effects of 

latitude and the resulting environmental conditions on the vital rates in terrestrial 

animals have been explained by Allen’s and Bergman’s rules.  These rules note 

general trends apparent in terrestrial animals: as latitude increases, appendage size 

decreases, while body size increases.  In many marine fish, similar trends have been 

observed with species’ populations in higher latitudes exhibiting slower growth, later 

age at maturity, longer life-span and increased longevity (Taylor, 1958; Beverton and 

Holt, 1959; Beverton, 1992).  Latitudinal variation in vital rates and energetics is not 

always as straightforward as the examples presented above.  Conover (1990) suggests 

that the potential for growth varies inversely with latitude and the length of the 

growing season.   This counter-gradient variation has been hypothesized in American 

shad, Alosa sapidissima, striped bass, Morone saxatilis, and the mummichog, 

Fundulus heteroclitus.  In these species adult body size is independent of latitude 

while the growing season is shorter in higher latitudes.  This suggests that populations 

in higher latitudes grow faster during a shortened growing season whereas 

populations in lower latitudes grow slower for a longer duration, with both 

populations reaching the same size at the completion of the first year of life.   

Evidence suggests that in higher latitudes individuals of little and winter skate reach a 

larger size, indicating that they may have slower growth, delayed maturity, and longer 

life-spans.  Length at maturity in winter skate varies from 70 to 109 cm, with 
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individuals maturing at larger lengths in higher latitudes (McEachran, 2002).  Total 

length also varies in skates with larger species found in more northern populations.  

Delayed age/size at maturity, low population growth rate and values of the intrinsic 

rate of population increase all have been associated with a low resilience to 

exploitation in elasmobranch species (Frisk et al., 2001).  A central question of my 

dissertation is whether skates exhibit latitudinal gradients in their life histories. 

In Chapters 4 and 5 I present results of the analysis of age at maturation and growth 

rates (Chapter 4) and fecundity (Chapter 5) of little skate and winter skate collected 

from Cape Hatteras, N.C. to Canadian waters.  It is anticipated that both papers will 

be submitted for publication to the Canadian Journal of Fisheries and Aquatic 

Sciences as jointly authored papers with Thomas Miller. 

In the final chapter of the dissertation I use the data developed in Chapters 4 

and 5 and data derived from the fishery directly (catch/effort data) to understand the 

population dynamics of winter skate.  I use an age-structured model based on 

National Marine Fisheries Service’s annual fall and spring bottom trawl survey data, 

landings data, effort data for the groundfishery and vital rates to model winter skate’s 

relative abundance trends from 1963-1998.  The model is used to predict biomass 

from 1963 to 1998 to observe how winter skate responded to varying fishing levels 

over the time series.  I use the model to explain the historic fishing and abundance 

patterns of winter skate and address possible compensatory mechanisms in the 

species.  It is anticipated that this chapter will be submitted for publication to the 

Canadian Journal of Fisheries and Aquatic Sciences as a paper coauthored by myself, 

Drs. Steve Martell (Uuniversity of British Columbia), and Thomas Miller. 
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Summary 

I have undertaken two comparative analyses to enhance the conservation of 

elasmobranchs: (1), using a three stage matrix model, analyzed elasticity trends in 45 

elasmobranch species (Chapter 2); and (2), compared the vital rates in elasmobranchs 

in relation to the Winemiller and Rose (1992) ordination of evolved life histories in 

teleost species (Chapter 3).  

I have developed a better understanding of the population dynamics of little 

and winter skates in the western Atlantic to improve conservation measures for 

elasmobranchs by: (1), estimating life history parameter estimates for age, growth, 

maturation (Chapter 4) and fecundity (Chapter 5) for little skate and winter skate: (2), 

using survey data, landings data, and effort data to develop an age-structured 

population dynamics model for winter skate from 1963-1998 (Chapter 6).  
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Chapter 2: 

LIFE HISTORIES AND VUNERABILITY TO EXPLOITATION OF 
ELASMOBRANCHS: INFERENCES FROM ELASTICITY, 

PERTURBATION AND PHYLOGENETIC ANALYSES 
 

Introduction 

Several species of elasmobranchs have been shown to be vulnerable to 

population declines and even local extinction (Casey and Myers, 1998; Stevens et al., 

2000; Simpfendorfer, 2000; Dulvy et al., 2000; Frisk et al., 2001; 2002).   The key 

parameter for determining the vulnerability of a species to population declines when 

exploited is the intrinsic rate of population increase, r.  Species exhibiting a high r are 

more resilient to exploitation and likely recover more rapidly once harvesting ceases 

than species with a low r.  The degree of vulnerability of individual species has also 

been linked to life history traits, such that species exhibiting the combination of large 

maximum body size, slow growth, late maturation (at a large size), and long lifespan 

appear to be most vulnerable (Walker and Hislop, 1998; Dulvy et al., 2000; Stevens 

et al., 2000; Frisk et al., 2001).  Life histories are constrained by trade-offs; slow-

growing species tend to be large bodied and mature later in life and have lower 

annual reproductive output (Charnov, 1993; Reynolds et al., 2001; Frisk et al., 2002; 

Roff, 2002).  It should not be surprising then to find that species with 'slow' life 

histories also have low r values (Fenchel, 1974; Musick, 1999; Denney et al., 2002).  

However, the link between life history and population dynamics and specifically the 

link to the population-level response of the additional mortality resulting from 

exploitation remains unclear.   
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Demography, the schedule of survival and reproduction of each age class or 

life stage in a population, links life history and population dynamics.  Matrix models 

are used often to understand demography because they provide both a convenient 

method for integrating vital rates (survival and fertility) and extrinsic anthropogenic 

factors such as exploitation or pollution across age or stage classes, and a means to 

calculate parameters useful for understanding population dynamics, e.g. (λ = er) 

(Cortés, 1998; Walker and Hislop, 1998; Heppell et al., 1999; Brewster-Geisz and 

Miller, 2000; Caswell, 2001; Cortés, 2002; Frisk et al., 2002; Mollet and Cailliet, 

2002).  However, estimates of the rate of population growth vary with population 

density.  Consequently estimates of population growth rate that currently characterize 

exploited populations are unfortunately not necessarily representative of the 

performance of virgin populations (Jennings et al., 1998; Smith et al., 1998; Reynolds 

et al., 2001; Cortés, 2002).   

Sensitivity analysis of such matrix models can be used to help identify which 

life history stages contribute most to variation in the population growth rate (r).  Two 

common forms of analyses are typically used: sensitivity and elasticity (Benton & 

Grant, 1999).  Sensitivity measures the effect of an absolute change in a vital rate 

upon population growth rate, whereas elasticity measures the effect of a proportional 

change in a vital rate on population growth rate (Benton & Grant, 1999; Caswell, 

2001).  Both sensitivity and elasticity elucidate critical aspects of a species life 

history, provide insight for the focus of natural selection and indicate where 

management actions may be most successful.  When using sensitivity or elasticity 

analyses, exact estimates of population growth rates are not needed to understand 
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how management actions, which act via manipulation of vital rates, will generally 

influence population growth.  However, the sensitivities and elasticities calculated 

only apply to the initial vital rates used to define the projection matrix.  To understand 

how elasticity changes as vital rates vary, the sensitivity of elasticity must be 

estimated (Caswell, 1996).  Sensitivities of elasticity allow for analysis of the 

population-level consequences of dynamic changes in vital rates that result from 

perturbation of the vital rates. 

The pattern and extent of responses to external factors exhibited by an 

individual species may be constrained by its phylogeny.  Species that share a subset 

of traits derived from a common ancestor often exhibit similar suites of life histories 

even though they may live in very different habitats (Pagel and Harvey, 1988; Harvey 

and Pagel, 1991).  Thus, phylogenetic influences on variations in life histories and 

demography must be considered.  Elasmobranchs are divided between two 

contrasting superorders: Galea and Batoidea.  The Galea is represented in my 

analyses by predatory, shallow-water species of requiem sharks (Carcharhinidae) and 

hound sharks (Triakidae).  The Batoidea includes both skates (Rajidae) and rays 

(Myliobatidae).   

Here I examine links between elasmobranch demography and life history, 

using comparative analysis of the outputs of a standardized stage-based matrix 

projection model parameterized for 55 elasmobranch species.  Specifically I: (1) 

examine how vital rates (juvenile and adult survival and fertility elasticities) vary 

with life history traits (longevity, age of maturity and body size), (2) examine how 

elasticities respond to varying levels of exploitation, using four representative species, 
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and (3) test whether suites of life histories and demographic traits are linked to 

phylogenetic relationships.  I report results at the superorder, order and family levels.  

My results are not intended to estimate limits to exploitation, but rather to explore 

how different species and phylogenetic groups of species are potentially influenced 

by exploitation.   I hope to add to the discussion of where in the elasmobranch life 

cycle potential compensatory responses may occur under exploitative or 

environmental changes and how these may differ across species groupings.  My 

primary goal is to link elasmobranch phylogeny, life history, and conservation. 
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Methods 

The Data 

I extracted estimates of age of maturity (Tmat), longevity (Tmax), and fecundity 

(F) from the literature (Table 1).   All published data I obtained were included in my 

analyses.  Adequate data were available for 55 species from 12 families, namely: 

Carcharhinidae (22 species), Rajidae (9), Triakidae (9), Alopiidae (3), Lamnidae (3), 

Sphyrnidae (2), Squalidae (2 stocks), Urolophidae (2), Dasyatidae (1), 

Odontaspididae (1), Scyliorhinidae (1), and Myliobatidae (1).  Reported estimates of 

age of maturity (Tmat), length of maturity (Lmat), maximum length (Lmax) and 

longevity (Tmax) were usually point estimates.  However, if a range was available, the 

mid-point was used.  Reported estimates of fecundity were either the average egg 

production per year, as for many skates, or the mean number of neonates born per 

year based on the size and frequency of litters for live-bearing species.  Natural 

mortality rates were estimated using Hoenig's (1983) method, an empirical approach 

that determines total mortality (Z) using species’ maximum age (Tmax) as a predictor.  

Data used in my analyses and references are available at 

http://hjort.cbl.umces.edu/elasmo.htm.  

 

The Models 

Several species had sufficient estimates of vital rates to justify using age-

based (Leslie) projection matrix models, but this was not true of all species.  

Accordingly, I chose to use stage-based models for all species considered here to 

standardize methodologies among species.  All models ran on an annual time step and 
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involved three stages: an egg/neonate stage, a juvenile stage, and an adult stage.  The 

egg or neonate stage lasted for a duration of one time step, while the juvenile and 

adult stages may have lasted several years.  All models were programmed in 

MATHCAD (v11. Mathsoft Corp. Cambridge, MA).   

In each model, individuals had three possible fates: they could survive and 

stay in the same stage, they could survive and grow into the next stage or they could 

die.  The projection matrix took the form: 
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Where P was the probability of surviving and remaining in the same stage, G was the 

probability of surviving and growing to the next stage and ƒ was fertility. 

I assumed a post-breeding census for all species; thus, fecundity had to be weighted 

by the probability of adult survival (Caswell, 2001).   Fertilities were calculated with 

the following function:  

(2)               FPf •=  

where F was annual fecundity.   

G and P values were calculated using estimates of the probability that an 

individual survived (σ) and the probability that an individual grew to the next stage 

(γi) (Caswell, 2001).  To determine the P’s and G’s to be used in the models, I 

assumed individuals within a stage have the same probability of survival, regardless 

of age.  Following Caswell (2001), I iterated values of λint in the equation: 
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until λint equaled the value for population growth rate (λ) in the eigen analysis of the 

projection matrix.  The resulting value of γi was used to estimate appropriate values 

of Pi and Gi. 

 Egg/neonate mortality was calculated by assuming that every female must, on 

average, have one female offspring survive to ensure population persistence.  This 

condition was empirically estimated by calculating the level of first year mortality 

(M1) necessary to sustain a positive growth rate given values of lifetime fecundity and 

mortality rates (Fogarty et al. 1987).  This was calculated by satisfying the constraint 

that: 
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where M was a vector of stage-specific mortalities and all other inputs were as 

defined above.  In several species, the vital rates of fecundity, age of maturity, and 

longevity did not allow for any mortality in the egg/neonate stage.  This may have 

resulted from low estimates of longevity or fecundity.  In these cases I used a value of 

M1 = 0.0.  My approach to estimating M1 yielded estimates of population growth rate 
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(λ) that were correlated with estimates of neonate/egg stage mortality.  However, as I 

was interested in the relationship between vital rates and their influence on growth 

rate and not estimates of population growth per se, this covariation is not a critical 

concern.     

Population growth rate (λ) was determined from the dominant eigen-value of 

matrix A (eq. 1).  The intrinsic rate of population increase was calculated as r = ln(λ).    

 

Elasticity analyses 

 Elasticity was calculated as: 
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where ai,j was the element in the ith row and jth column of the projection matrix and λ 

was the population growth rate.  

I developed regressions and multivariate analyses with model inputs, (Tmax, 

Tmat, Lmax, Lmat), and elasticity values to elucidate underlying associations within the 

data to identify key aspects of the species life histories and phylogenic associations.   

 

Sensitivity of elasticity  

   Sensitivity of elasticity determines the magnitude and direction of the effect of 

changes in individual transition elements in A on elasticity (ei,j).  Sensitivity of the 

elasticity for ai,j is a measure of the rate of change of elasticity to changes in 
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underlying matrix transitions.  Sensitivities of ei,j provide an understanding of how 

life histories have shaped elasticity patterns (Caswell, 1996).  For example, a positive 

sensitivity of the elasticity (e3,3) with respect to a3,3 (adult survival) would indicate 

that increasing the probability of remaining in the adult stage would increase the 

elasticity of the adult stage, whereas increasing the probability of death (i.e., 

decreasing a3,3) would have a negative effect on the elasticity of the adult stage (e3,3).  

If values of sensitivity of elasticities with respect to ai,j were negative, then reducing 

ai,j would increase ei,j and vice versa. 

The sensitivity was calculated by taking the second derivative of ei,j with 

respect to the element (ai,j) in the elasticity matrix which had the greatest contribution 

to growth rate (Caswell, 1996; 2001), so that: 
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where δi,k δj,l are Kronecker delta functions.  

 

Response to Exploitation  

Exploitation can change average vital rates over the short-term as a result of 

gear selectivity favoring particular age classes or life stages and possibly over the 

long-term if fishing is applied at a constant level.  To understand the dynamics of 

elasticity for varying fishing levels, I ran models in which the fishing mortality rate 

ranged from 0-3.0 for juveniles and adults.  Here I selected little skate, Leucoraja 

erinacea, common skate, Dipturus batis, dusky shark, Carcharhinus obscurus, and 
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Atlantic sharpnose shark, Rhizoprionodon terraenovae, to be representative of the 

range of elasmobranch life histories.   

 

Phylogenetic Analysis  

I used multidimensional scaling (MDS) and analysis of similarities 

(ANOSIM) to test for differences in suites of demographic and life history traits 

among taxonomic groupings.  ANOSIM is a non-parametric permutation test, 

analogous to multivariate analysis of variance, that computes a test statistic (Global 

R) reflecting difference between factors (superorder, order, family), contrasted among 

species within each factor (Clarke & Warwick, 1994).  The test was implemented 

using PRIMER v5 (Clarke & Gorely, 2001).  Both analyses were based on a matrix of 

Bray-Curtis similarities of fourth root transformed and standardized data.  In order to 

maximize the taxonomic breadth of species included in this analysis, I used the 

following traits: annual fecundity, Tmat, Tmax, Lmax, juvenile elasticity, adult elasticity 

and the interstage elasticity. 
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Results 

Variation in elasticity with life history traits 

Positive relationships were found between longevity (Tmax) and the elasticity 

of λ to changes in the juvenile and adult stages (survivals) for all elasmobranchs 

combined (Figures 1 & 2).  A significant relationship was found between age of 

maturity (Tmat) and the elasticity of λ to changes in juvenile survival (Figure 3).  The 

relationship between elasticity of λ to changes in adult survival and age of maturity 

was not significant (Figure 4).  Longer-lived species and later-maturing species tend 

to have higher elasticities of juvenile and adult survival, although the rate of increase 

in elasticity decreases as longevity increases beyond 25 years (Figures 1-4).  These 

associations suggest that population growth rates (λ) of short-lived, early-maturing 

elasmobranch species are less sensitive to changes in survival during juvenile and 

adult stages than longer-lived, later-maturing species.   

Due to the structure of the matrices used, the estimated elasticities of λ to 

changes in the inter-stage transitions, including fertility, were equal.  The elasticity of 

λ to changes in inter-stage transitions was negatively related to both longevity and 

age of maturity (Figures 5 & 6).  These relationships indicate that longer-lived species 

have lower elasticity of λ to changes in the inter-stage transitions while short-lived 

and early maturing species have higher elasticity of λ values for changes in inter-

stage transitions.  Taken all together, these relationships (Figures 1-6) indicate a 

trade-off between survival and reproduction.  Long-lived species may be investing 

more energy for survival in the juvenile and adult stages, while in short-lived species 
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there appears to be selection pressure to advance rapidly through the stages and 

reproduce. 

 

Sensitivity of Elasticity  

In 25 of 34 species of Carcharhinidae, elasticity of λ to changes in the adult 

stage contributed most to overall elasticity of population growth rates, while 8 

showed larger contributions for the juvenile stage, and 1 for the fertility and transition 

stages.  Of the 7 (Triakidae) species, 3 showed the greatest elasticity of λ to changes 

in the adult stage and 4 for the juvenile stage.  Of the 9 Rajidae species, 6 showed the 

greatest elasticity of λ to changes in the adult stage and 3 for the juvenile stage.  In 

total for species in the superorder Galea, 28 had the greatest elasticity of λ to changes 

in matrix elements for the adult stage and 12 for the juvenile stage and 1 for inter-

stage transitions.  For the species in the superorder Batoidea, 12 had the greatest 

elasticity of λ to changes in matrix elements for the adult stage and 3 for the juvenile 

stage. 

 Sensitivity of elasticity was calculated for the adult stage (stage with the 

greatest elasticity) of species from the superorder Galea.  Figures 7 and 8 show the 

sensitivity of elasticity values on a percent scale.  Increases in survival of the adult 

stage would have the greatest positive effect of e3,3 for Galea species (Figure 7).  

Increases in the probability of transition from juvenile to the adult stage or juvenile 

survival would have large negative effects of e3,3.  In some cases, increases in the 

probability of transition to the juvenile stage had large negative effects on e3,3, but 

importantly, changes to fertility would have little effect.   
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Patterns in the sensitivities of e3,3 to changes in transition elements ai,j for 

species from the superorder Batoidea are similar to those found for Galea, with 

increases in the adult stage having large positive impacts and changes in the juvenile 

stage and the transitional stages and fertility element having negative effects (Figure 

8).  For Batoidea and Galea species, the sensitivity of elasticity of species for the 

juvenile stage was positive, indicating that increased survival would have a positive 

effect on e2,2 (Figure 9).  Changes in the transition to adulthood would have large 

negative effects on e2,2.  Smaller negative effects would result from perturbations of 

fertility, transition to juveniles and the adult stage survival.   

 

The response of elasticities to exploitation 

Estimates of elasticity varied little as (fishing) mortality rates were increased 

from low to moderate levels (0-0.4).  I illustrate the general pattern by showing 

details for little skate, common skate, dusky shark and the Atlantic Sharpnose shark 

(Table 3).  When considering reasonable fishing mortality rates for little skate (0-0.4), 

elasticity changed by 2 % or less.  Similar results can be seen for the short-lived, 

Atlantic sharpnose shark and the long-lived common skate and dusky shark.  In 

probable management scenarios with fishing mortality in juvenile and adult stages 

ranging from (0-0.4), elasticity stays relatively constant.  

 

Variation of life histories and elasticities with phylogeny 

A good MDS ordination was achieved with a low stress value (Figure 10).  

The ordination clearly suggests a continuous gradation across the life histories-
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demography constraint space.  High Lmax values are associated with the right of the 

ordination, exemplified by Lamniformes such as the white shark, Carcharodon 

carcharias, and the thintail thresher shark, Alopias vulpinus (Figure 11).  High values 

of Tmax are associated with the top of the ordination, exemplified by the spurdog, 

Squalus acanthias, the common skate, Dipturus batis, and the dusky shark, 

Carcharhinus obscurus (Figure 11).  High annual fecundities are associated with egg-

laying species in the lower left of the ordination such as the lesser spotted catshark, 

Scyliorhinus canicula, the thornback ray, Raja clavata, and the cuckoo ray, Leucoraja 

naevus (Figure 11).  The elasticity of λ to changes in the juvenile stage does not 

appear to vary systematically over the ordination.  Adult elasticity appeared to be 

highest in the middle, whereas the elasticity of λ to changes in the interstage 

transitions was greatest in species at the bottom of this ordination (Figure 11). 

There were significant differences among superorders, orders and families in the 

ordination of their life histories and demography (Figure 12A; superorder - Global R 

= 0.45, P < 0.001; order - Global R = 0.5, P <0.001; family - Global R = 0.58, P < 

0.001).  Both superorders appear distinct, exhibiting only a small degree of overlap.  

The Lamniformes form a clear group on the right side of the order-level ordination 

(Figure 12B).  Some of the dorso-ventrally flattened skates and rays (Myliobatiformes 

and Rajiformes) overlap with Carcharhiniformes in this ordination (Figure 12C).  In 

the order-level analysis there were significant (P < 0.05) pairwise differences between 

Carcharhiniformes and both Lamniformes and Rajiformes.  Lamniformes were 

significantly different from all other families.  There were no significant pairwise 

differences between Carcharhiniformes and Myliobatiformes or between Rajiformes 
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and Myliobatiformes.  There was no significant pairwise difference between 

Carcharhiniformes and Myliobatiformes and also Rajiformes and Myliobatiformes.  

There was considerable overlap in the life histories and demography of families at the 

centre of the ordination particularly among the shark families Carcharhinidae, 

Sphyrnidae, and the live-bearing ray families Myliobatidae, Dasyatidae, and  

Urolophidae. The families around the centre of the ordination included the egg-laying 

skates Rajidae and a catshark (Scyliorhinidae), the long-lived spurdog (Squalus 

acanthias, Squalidae), and the large pelagic predators of the mackerel (Lamnidae) 

and thresher sharks (Alopiidae).  
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Discussion 

Insights into how elasmobranch population dynamics are regulated can be 

gained from the combination of elasticity, perturbation and phylogenetic analyses.  

My analyses revealed three fundamental features of elasmobranch demography and 

population dynamics.  Most fundamentally, I found evidence for a trade-off between 

survival and reproductive investment (elasticity analysis).  Additionally, I observed 

that in the majority of species growth (survival) into adult stages appeared most 

important in regulating a species response to exploitation (sensitivity of elasticity).  

Finally, I found that life history and demographic patterns are phylogenetically 

constrained, such that the population dynamics and responses to exploitation of 

related species will be more similar than those of distantly related species 

(phylogenetic analysis).  However, my results suggest considerable overlap of 

families and orders across the life history-demography range. 

In my models, juvenile elasticity increased (or was invariant) with increasing 

age at maturity and maximum age.  This is in contrast to Cortés (2002), who, using an 

age-based Leslie type model, found that adult elasticity tended to decline with 

generation time.  However, the model presented here, which uses collapsed age 

classes as stages, and the age-structured model of Cortés (2002) do produce similar 

results when age-based elasticities are added together to form each stage.  Both 

analyses provide evidence that the trends observed in elasticity patterns apply to 

sharks and to the additional species of skates and rays that were included in the 

present analysis.   
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Elasticity analysis provided insights into what aspects of a species’ life history 

will play important roles in understanding population level changes in response to 

both short-term changes in harvest policies and to longer term evolutionary pressures 

(de Kroon et al., 2000).  I showed evidence for a trade-off between survival and 

reproductive investment.  Generally, short-lived species had higher elasticities of λ to 

changes in inter-stage transitions (selection pressure on age of maturity and fertility), 

whereas long-lived species tended to have higher elasticities of λ to changes in adult 

and juvenile survival.  These are relative differences, and it should be noted that the 

elasticity of λ to changes in inter-stage transitions is usually less than that of survival 

for short- and long-lived species.  My findings broaden the support of a continuum of 

life histories for elasmobranchs (Cortés, 2002). While this had previously been 

described in univariate terms (Smith et al., 2000, Cortés, 2000, 2002), I show that the 

pattern is clearly multivariate and may be described as a slow–fast life history-

demography continuum.  In particular, there is a high degree of overlap or 

convergence in the life histories and demography of morphologically and 

phylogenetically distinct taxa such as skates and rays. 

The elasmobranchs studied here generally do not show high levels of variation 

in demographic vital rates, despite widely varying life history traits.  However, 

reproductive mode does emerge as a life history trait that differs markedly among 

elasmobranchs.  Live-bearing evolved 9-10 times from egg-laying ancestors and is 

found in 60% of elasmobranch species (Wourms, 1977; Wourms & Lombardi, 1992; 

Dulvy and Reynolds, 1997).  In addition, elasmobranchs exhibit a broad diversity in 

the extent of maternal provisioning of neonates, ranging from yolk-only to uterine 
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cannibalism to complex placentation (Wourms, 1977; Wourms & Lombardi, 1992; 

Dulvy and Reynolds, 1997).  The transition from egg-laying to live-bearing possibly 

reflects a trade-off occurring when the benefits of increased offspring survival 

exceeds the cost of reduced fecundity (Goodwin et al., 2002).  Live-bearing 

elasmobranchs are larger than their egg-laying relatives (Goodwin et al., 2002).  

There are significant differences between live-bearing and egg-laying species in their 

life history and demography (Global R = 0.688, P <0.0001; Figure 13).  However, the 

differences in life history and demography between an ancestral egg-layer and the 

skates which derived egg-laying from a live-bearing ancestor (Dulvy and Reynolds, 

1997) appear to be minimal.   

There is considerable overlap in my ordination results between live-bearers 

which provide limited maternal investment, by provisioning the embryo only via the 

yolk of the ovum (leicithotrophy) and those which provide additional maternal input 

through placentation, uterine milk, or oophagy (matrotrophy).  My finding of a 

survival-fertility trade-off and the relative importance of juvenile elasticities, 

particularly in larger-bodied, later-maturing species, would be consistent with the 

hypothesis that larger-bodied species might have evolved live-bearing to maximize 

offspring survival.  The key question of what has driven the evolution toward large 

body sizes in elasmobranchs remains largely open.  However, a plausible hypothesis 

would be that body size constrains the maximum internal volume that offspring can 

occupy during gestation (Qualls and Shine, 1998; Goodwin et al., 2002). 

The evolutionary history of elasmobranchs, particularly their reproductive 

modes, suggests the possibility that elasticity patterns may reflect phylogenetic 
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constraints.  The multivariate analysis suggested that at the superorder and order 

level, patterns in elasticity and demographics in elasmobranch species broadly 

conformed to phylogenetic relationships.  At the family level, Rajidae species formed 

a group separate from other elasmobranchs and were clearly distinguishable from 

Carcharhinidae.  These findings suggest that phylogeny, demographics and 

population dynamics are indeed linked.  Thus, similar conservation efforts may be 

applied successfully to closely related species. 

 A clear separation between Rajidae and the other elasmobranch families 

indicated a divide between egg-layers and live-bearers, but may also indicate that 

skates are a particularly unusual group.  Fecundity estimates were higher in Rajidae 

than in other elasmobranchs, while age at maturity and longevity were not 

significantly different (Average fecundity: Rajidae, n = 9, mean (± CL95%) = 27.2 ± 

12.4; Other elasmobranchs, n = 47, 5.4 ± 2.36).  With further research, it may be 

possible to determine if energetic expenses in reproductive effort differ between egg-

layers and live-bearers, both at the level of individual offspring and with regard to 

total investment.  With this caveat, my results suggest that energy per offspring is 

smaller in egg-layers provided total annual reproductive investment is the same for 

both groups (Smith & Fretwell, 1974; Einum & Fleming, 2000).  This suggests that 

egg-layers may invest less energy to ensure early juvenile survival and more in 

fecundity, i.e. utilize a bet-hedging strategy (Stearns, 1992).  Yet, demography of 

only a few egg-laying species has been studied.  Clearly data and models for egg-

layers, from taxa other than the Rajidae, are required to answer these questions.  



 29 
 

Elasticity is robust for the range of exploitation levels likely in elasmobranchs 

and using a “snapshot approach” (relatively fixed vital rates) should suffice in most 

management schemes unless extreme changes in survival are expected to occur in 

individual populations.  While there were differences in the response to exploitation, 

elasticity of all species showed less than a 5 % change in values with exploitation 

levels of fishing mortality < 1.0.  While elasticity provided a “snapshot” view, the 

sensitivity of elasticity allowed for a more flexible view of the impact of variation in 

vital rates.  I calculated the sensitivity of elasticity for the stage that had the greatest 

elasticity of λ in order to observe how that stage’s elasticity is affected by 

perturbation of other stages.  This goes beyond the simple observation of elasticity 

and instead views the consequences of the dynamics in vital rates.  I showed both 

negative and positive effects of perturbing vital rates.  However, the magnitudes of 

change and not the direction are of importance.  For all species, the transition from 

the juvenile to the adult stage was high, indicating the importance of attaining 

maturity in elasmobranchs.   

Contributions of fertility to the stage with the greatest elasticity of λ were low 

for all species.  Long-lived species, often have low elasticity of λ to changes in 

fertility, and the perturbation analyses further indicated that the dynamics of 

elasmobranchs are not strongly influenced by egg/neonate production.  These 

findings are contrary to what intuitively might be expected, and other authors have 

suggested that matrix models provide unreasonable elasticity of λ values for changes 

in fertility (Mollet and Cailliet, 2002).  However, there is evidence to suggest there 

may be little scope or potential for varying fecundity.   Firstly, demographic modeling 
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suggests that further increases in egg production would have diminishing returns for 

three western Atlantic skates (Frisk et al., 2002).  Secondly, body cavity limitation 

and energetic constraints may impose phenotypic canalization on fecundity in 

elasmobranchs (Brander, 1981).  Therefore, I suggest that compensatory responses in 

changes in fecundity are not likely to occur.  This is consistent with a recent age-

based comparative analysis (Cortés, 2002).  However, compensatory responses 

decreasing the age of maturity may increase lifetime egg production, while average 

fecundity remains constant.  It appears that elasmobranch population dynamics are 

strongly influenced by juvenile and adult survival and the age of maturity but not 

fertility (Walker and Hislop, 1998; Heppell et al., 1999; Musick, 1999; Brewter-Geisz 

and Miller, 2000; Frisk et al., 2002).   

Recent research on population regulation has given supporting evidence that 

compensatory responses in fertility are not likely.  Density-dependence in life 

histories has been suggested for the sharpose shark and spiny dogfish (Carlson and 

Baremore, 2004; Sosebee, 2004).  In both cases, fecundity values were not density-

dependent.  Rather, the spiny dogfish showed a decrease in age of maturity and the 

sharpnose shark showed an increase in growth after a period of high exploitation 

(Carlson and Baremore this issue; Sosebee, 2004).   

Elasticity provides a convenient measure of life history trade-offs.  Thus, 

trade-offs between vital rates (for example, reproduction vs. survival) may be 

reflected in the partitioning of elasticity.  Elasticity also provides a measure of the 

intensity of selection pressure in each stage of a model (Caswell, 2001).  I assumed 

that all species in this analysis can be represented with my three-stage model, which 
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will, to some extent, produce similar patterns in elasticity.  A similar approach to 

mine was successfully used for analyzing elasticity trends and trade-offs in plant 

species (Silvertown et al., 1993; Silvertown et al., 1994; but see Shea et al., 1994).  

Caswell (2001) pointed out that the assumption of one model structure representing 

all species introduces bias, and this limitation should be borne in mind.  The central 

concern centers on annualizing trade-offs among related species using elasticity from 

a single model structure that may or may not capture the diversity of life histories of 

the species.  However, I feel that trade-offs can be expressed in my analyses and that 

the life histories of elasmobranchs do not deviate sufficiently from the basic three-

stage structure to apply similar criticisms of Shea et al. (op cit.) and Caswell (op cit.).   

My results provide a method of prioritizing stages of a species life history that will 

effectively respond to management options, particularly efforts to increase juvenile 

and adult survival that would have the greatest impact on population protection (see 

Cortés, 2002 for similar results using uncertainty in demographic models for 41 shark 

populations).  I agree with Cortés (2002) and Heppell et al. (1999) that caution should 

be used when setting management policy with elasticity analysis alone, as they do not 

adequately show the impact on other life stages of targeting a certain stage.  The 

method I used to calculate elasticities here and used by Cortés (2002) does not reflect 

density-dependent dynamics.  However, my sensitivity of elasticity results does add 

some insight into potential interactions between life stages and potential stages for 

compensatory behavior. 
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Table 1.  Data for matrix analyses: minimum and maximum fecundity or batch size = 
Fmin and Fmax, respectively; period between egg production in years = Fperiod; average 
fecundity = Fave (which was calculated as the mid point between minimum and 
maximum fecundity adjusted for yearly reproductive cycle assuming a 50:50 sex 
ration); longevity = Tmax; age of maturity = Tmat; natural mortality = M; and 
egg/neonate survival = M1.  NEP and NWA indicate Atlantic and Pacific stocks in 
reference to Squalus acanthias. 
 

Family Genera Species Fmin Fmax Fper Fave Tmax Tmat M M1 References 

Alopiidae Alopias pelagicus * 2 1 1 16 8.6 0.280.00Cortés 2002. 

Alopiidae Alopias superciliosus * 2 1 1 20 12.80.220.00Cortés 2002. 

Alopiidae Alopias vulpinus 2 4 1 1.5 15 5 0.300.00Cortés 2002. 

Carcharhinidae Carcharhinus brachyurus 8 20 1 7 25 19.50.180.00Walter & Ebert 1991; Kailola et al. 1993; Cortés 2000. 

Carcharhinidae Carcharhinus leucas 6 12 2 2.25 27 15 0.170.00
Hoenig 1979; Branstetter & Stiles; 1987;  
Cliff & Dudley 1991; Smith et al. 1998. 

Carcharhinidae Carcharhinus obscurus 3 14 2 2.12540 21 0.110.00Hoenig 1979; Compagno 1984; Smith et al. 1998. 

Carcharhinidae Carcharhinus brevipinna 6 10 2 2 12 7.5 0.370.00Cortés 2002. 

Carcharhinidae Carcharhinus amblyrhynchos 1 6 1 1.75 18 7 0.250.00
Compagno 1984; DeCrosta et al. 1984; Smith et al. 1998; 
Myers 1999. 

Carcharhinidae Carcharhinus falciformis 10 12 1 5.5 25 9 0.180.45Branstetter 1987; Bonfil et al. 1993; Smith et al. 1998. 

Carcharhinidae Carcharhinus galapagensis 4 16 1 5 24 8 0.190.49
DeCrosta et al. 1984; Last & Stevens 1994;  
Wetherbee et al. 1996; Smith et al. 1998.  

Carcharhinidae Carcharhinus limbatus 1 11 2 1.5 18 7 0.250.00
Lillam and Parsons 1989; Castro 1996; Smith et al. 1998; 
Meyer 1999; Cortés 2000.  

Carcharhinidae Carcharhinus longimanus 1 15 2 2 22 5 0.200.09
Compagno 1984; Seki et al. 1998; Smith et al. 1998;  
Myers 1999.  

Carcharhinidae Carcharhinus plumbeus 5 12 2 2.12 30 15 0.150.00
Compagno 1984; Grove & Lavenberg 1997;  
Smith et al. 1998. 

Carcharhinidae Carcharhinus porosus 2 7 1 2.25 12 6 0.370.00Lessa & Santana 1998; Cortés 2000. 

Carcharhinidae Carcharhinus sorrah 3 8 1 2.75 8 2.5 0.551.01Davenport & Stevens 1988; Kailola et al. 1993.  

Carcharhinidae Galeocerdo cuvier 10 82 2 11.5 28 9 0.161.32De Crosta et al. 1984; Randall 1992; Smith et al. 1998.  

Carcharhinidae Isogomphodon oxyrhynchus 4 8 2 1.5 12 6.5 0.370.00Lessa et al. 2000.  

Carcharhinidae Negaprion brevirostris 4 17 2 2.62 25 12.70.180.00
Hoenig 1979; Compagno 1984; Smith et al. 1998;  
Feldheim et al. 2000.  

Carcharhinidae Prionace glauca 5 135 2 17.5 20 6 0.221.97Stevens 1975; Tanaka et al. 1990; Smith et al. 1998. 

Carcharhinidae Rhizoprionodon taylori 1 10 1 2.75 7 1 0.621.47Simpfendorfer 1993; Cortés 2000.  

Carcharhinidae Rhizoprionodon terraenovae 1 12 1 3.25 10 4 0.440.30
Parsons 1983; Compagno 1984; Cortez 1995;  
Smith et al. 1998. 

Carcharhinidae Scoliodon laticaudus 1 14 1 3.75 6 2 0.731.32Compagno 1984 

Carcharhinidae Triaenodon obesus 1 5 1 1.5 16 8 0.280.00Compagno 1984; Smith et al. 1998.  

Carcharhinidae Carcharhinus tilstoni 1 6 1 1.75 12 3.5 0.370.19Davenport & Stevens 1988; Cortés 2002. 

Carcharhinidae Carcharhinus acronotus 3 6 1 2.25 4.5 3 0.960.00Compagno 1984; Carlson et al. 1999; Cortez 2000.  

Dasyatidae Dasyatis  vioacea * 6 1 3 10 3 0.440.66Mollet & Caillet 2002. 

Lamnidae Carcharodon carcharias 8 10 2 2.25 15 9.5 0.300.00Cortés 2002 

Lamnidae L   amna nasus 2 5 1 1.75 22 14 0.200.00Cortés 2002 

Lamnidae Isurus oxyrinchus 9 18 2 3.37 17 7 0.260.00Cortés 2002 

Myliobatidae Myliobatis californicus 2 12 1 3.5 24 5.5 0.190.70Martin & Cailliet 1988a; Martin & Cailliet 1988b.  

Odontaspididae Carcharias taurus * 2 2 0.5 17 6 0.260.00Cortés 2002. 

Rajidae Raja brachyura 40 90 1 32.5 15 9 0.301.41Holden 1972.  

Rajidae Raja montagui 24 61 1 21.2516.3 11.40.270.61Holden et al. 1971; Holden 1972; Holden 1974. 

Rajidae Leucoraja  naevus 71 150 1 55.2511.3 7.5 0.392.06Du Buit 1975; 1976; 1977; Walker 1998. 

Rajidae Dipturus batis * 40 1 20 50 11 0.092.18Du Buit 1972. 
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Rajidae Raja clavata 52 153 1 51.2523 11 0.192.19Holden 1972; Ryland & Ajayi 1984.  

Rajidae Leucoraja  erinacea * 30 1 15 8 4 0.551.61Johnson 1979; Waring 1984.  

Rajidae Dipturus laevis * 47 1 23.5 50 12 0.092.25Casey & Myers 1998; Frisk et al. 2001; Frisk et al. 2002. 

Rajidae Amblyraja radiata * 17 1 8.5 20 5 0.221.47
Templeman 1984; Vinther 1989; Walker 1995;  
McEachran 2002.  

Rajidae Leucoraja ocellata * 35 1 17.5 20 9 0.221.30McEachran 2002; Frisk et al. 2002. 

Scyliorhinidae Scyliorhinus  canicula 96 115 1 52.759 4 0.492.99Cortés 2002. 

Sphyrnidae Sphyrna  lewini 30 40 1 17.5 17 15 0.260.00Cortés 2002. 

Sphyrnidae Sphyrna  tiburo 3 15 1 4.5 7 2.5 0.621.51Cortés 2002. 

Squalidae  Squalus  acanthias (NEP) 2 17 0.5 9.5 81 35 0.060.39Cortés 2002. 

Squalidae  Squalus  acanthias (NWA) 1 15 0.5 8 40 12 0.110.95Cortés 2002. 

Triakidae  Mustelus griseus 5 30 1 8.75 9 5.650.490.71Wang & Chen 1981; Compagno 1984. 

Triakidae  Mustelus mustelus 2 23 2 3.12 24 13.50.190.00
Compagno 1984; Smale & Compagno 1997;  
Goosen & Smale 1997.  

Triakidae  Triakis semifasciata 4 36 1 10 24 13 0.190.26Kusher et al. 1992. 

Triakidae  Mustelus antarcticus 1 31 1 8 13 6.9 0.340.72Lenanton et al. 1990. 

Triakidae  Mustelus californicus 2 5 1 1.75 9 2 0.490.56
Compagno 1984; Yudin & Cailliet 1990;  
Smith et al. 1998; 

Triakidae  Mustelus canis 4 20 1 6 7 2.5 0.621.79
Moss 1972; Worms 1977; Francis 1981; Compagno 1984; 
Vooren 1992. 

Triakidae  Galeorhinus galeus 6 52 2 7.25 40 12 0.110.85Compagno 1984; Vooren 1992; Smith et al. 1998. 

Triakidae  Mustelus henlei 3 5 1 2 15 2.5 0.300.69
Yudin & Cailliet 1990; Francis & Francis 1992; 
 Smith et al. 1998. 

Triakidae  Mustelus manazo 2 19 1 5.25 10 2.250.441.66
Tanaka & Mizue 1979; Francis & Francis 1992;  
Yamaguchi et al 2000.  

Urolophidae Urolophus lobatus 2 6 1 2 14 4 0.320.06White et al. 2001.  

Urolophidae Urolophus paucimaculatus 2 6 0.5 4 10 3 0.440.95Edwards 1980. 
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Table 2.  Relationships of vital rates of elasmobranchs species with elasticity of 
model parameters.  Where (juv) = juvenile stage; (adult) = adult stage and (f,tr1,tr2) = 
fertility and the transition stages.  * indicates that the relationship was not significant.   
 

Species groups Equation r2 N F p 
Elasmobranchs e(juv) = 0.15•Ln(Tmax) - 0.16 0.51 56 55.48 0.000 
Elasmobranchs e(adult) = 0.16•Ln(Tmax) + 0.17 0.38 56 33.49 0.000 
Elasmobranchs e(f,tr1,tr2) = - 0.07•Ln(Tmax) + 0.34 0.79 56 204.34 0.000 
Elasmobranchs e(juv) = 0.17•Ln(Tmat) - 0.05 0.92 56 611.00 0.000 
Elasmobranchs e(adult) = 0.02•Ln(Tmat) + 0.29 0.05 56 2.82 0.099* 
Elasmobranchs e(f,tr1,tr2) = - 0.06•Ln(Tmat) + 0.26 0.86 56 323.56 0.000 
Requiem sharks e(juv) = 0.19•Ln(Tmax) – 0.26 0.57 34 43.34 0.000 
Requiem sharks e(adult) = 0.07•Ln(Tmax) + 0.13 0.30 34 13.71 0.001 
Requiem sharks e(f,tr1,tr2) = - 0.09•Ln(Tmax) + 0.37 0.86 34 196.89 0.000 
Requiem sharks e(juv) = 0.18•Ln(Tmat) – 0.07 0.94 34 487.07 0.000 
Requiem sharks e(adult) = 0.01•Ln(Tmat) + 0.26 0.02 34 00.60 0.44* 
Requiem sharks e(f,tr1,tr2) = - 0.06•Ln(Tmat) + 0.26 0.87 34 208.13 0.000 
Houndsharks e(juv) = 0.39•Ln(Tmax) - 0.76 0.45 7 4.03 0.101 
Houndsharks e(adult) = 0.00•Ln(Tmax) + 0.34 0.00 7 0.00 0.99* 
Houndsharks e(f,tr1,tr2) = - 0.13•Ln(Tmax) + 0.47 0.57 7 6.59 0.050 
Houndsharks e(juv) = 0.22Ln•(Tmat) - 0.12 0.96 7 135.84 0.000 
Houndsharks e(adult) = -0.06•Ln(Tmat) + 0.47 0.22 7 1.45 0.28* 
Houndsharks e(f,tr1,tr2) = - 0.05•Ln(Tmat) + 0.22 0.68 7 10.46 0.023 
Skates e(juv) = 0.06•Ln(Tmax) + 0.14 0.37 9 4.10 0.08* 
Skates e(adult) = 0.10•Ln(Tmax) + 0.02 0.89 9 54.64 0.000 
Skates e(f,tr1,tr2) = - 0.05•Ln(Tmax) + 0.28 0.89 9 57.18 0.000 
Skates e(juv) = 0.14•Ln(Tmat) + 0.00 0.97 9 263.73 0.000 
Skates e(adult) = 0.08•Ln(Tmat) + 0.15 0.23 9 2.08 0.19* 
Skates e(f,tr1,tr2) = - 0.07Ln•(Tmat) + 0.28 0.74 9 20.34 0.003 
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Table 3. The results of varying exploitation levels and elasticity patterns for shark 
and skate species, where (juv) = juvenile stage; (adult) = adult stage and (f,tr1,tr2) = 
fertility and the transition stages. 
 

 Little skate  Common 
skate  Dusky shark  Atlantic Sharpnose shark 

F e(juv) E(adult) e(f,tr1,tr2) e(juv) e(adult)e(f,tr1,tr2)e(juv) e(adult) e(f,tr1,tr2)e(juv) e(adult) e(f,tr1,tr2)
0 0.19 0.24 0.19 0.34 0.40 0.09 0.42 0.42 0.05 0.19 0.28 0.18 
0.2 0.19 0.23 0.19 0.34 0.39 0.09 0.42 0.42 0.05 0.19 0.27 0.18 
0.4 0.19 0.22 0.20 0.34 0.38 0.09 0.42 0.42 0.05 0.19 0.26 0.19 
0.6 0.18 0.22 0.20 0.34 0.38 0.09 0.41 0.41 0.06 0.18 0.25 0.19 
0.8 0.18 0.21 0.20 0.34 0.37 0.10 0.42 0.42 0.05 0.18 0.24 0.19 
1 0.17 0.20 0.21 0.34 0.37 0.10 0.42 0.41 0.06 0.18 0.23 0.20 
1.2 0.17 0.20 0.21 0.34 0.36 0.10 0.43 0.42 0.05 0.17 0.23 0.20 
1.4 0.17 0.19 0.21 0.34 0.36 0.10 0.43 0.43 0.05 0.17 0.22 0.20 
1.6 0.17 0.19 0.22 0.35 0.36 0.10 0.44 0.44 0.04 0.17 0.21 0.21 
1.8 0.16 0.18 0.22 0.35 0.36 0.10 0.45 0.45 0.03 0.17 0.20 0.21 
2 0.16 0.18 0.22 0.36 0.37 0.09 0.45 0.45 0.03 0.16 0.20 0.21 
2.2 0.16 0.17 0.22 0.37 0.37 0.09 0.46 0.46 0.02 0.16 0.19 0.22 
2.4 0.15 0.17 0.23 0.36 0.37 0.09 0.48 0.48 0.02 0.16 0.19 0.22 
2.6 0.15 0.16 0.23 0.35 0.35 0.10 0.48 0.48 0.01 0.16 0.18 0.22 
2.8 0.15 0.16 0.23 0.40 0.40 0.07 0.49 0.49 0.01 0.16 0.18 0.22 
3 0.15 0.16 0.23 0.41 0.41 0.06 0.50 0.50 0.00 0.15 0.17 0.23 
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Figure 1.  The relationship between elasticity of λ to changes in the juvenile stage and 
longevity (Tmax).  The least-squares relationship is given by e(juvenile) = 
0.16•Ln(Tmax) - 0.17 (n = 56, r2 = 0.51, p = 0.00). 
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Figure 2.  The relationship between elasticity of λ to changes in the adult stage and 
longevity (Tmax).  The least-squares relationship is given by e(adult) = 0.07•Ln(Tmax) 
+ 0.13 (n = 56, r2 = 0.38, p = 0.00). 
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Figure 3.  The relationship between elasticity of λ to changes in the juvenile stage and 
age of maturity (Tmat).  The least-squares relationship is given by e(juvenile) = 
0.17•Ln(Tmat) - 0.05 (n = 56, r2 = 0.92, p = 0.00). 
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Figure 4.  The relationship between elasticity of λ to changes in the adult stage and 
age of maturity (Tmat).  The least-squares relationship is given by e(adult) = 
0.02•Ln(Tmat) + 0.29 (n = 56, r2 = 0.05, p = 0.10). 
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Figure 5.  The relationship between elasticity of fertility and the transition between 
stages and longevity (Tmax).  Note: in a three-stage model the elasticity of λ to 
changes of both the transitional stages and fertility stage will be the same.  The least-
squares relationship is given by e(inter-stage transitions) = - 0.07•Ln(Tmax) + 0.34 (n 
= 56, r2 = 0.79, p = 0.00). 
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Figure 6.  The relationship between elasticity of λ to changes in fertility and the 
transition between stages and age of maturity (Tmat).  The least-squares relationship is 
given by e(inter-stage transitions) = - 0.06•Ln(Tmat) + 0.26 (n = 56, r2 = 0.86, p = 
0.00). 
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Figure 7.  The sensitivities of elasticity of the adult stage are shown for species in the 
superorder Galea for each stage of the matrix.  The sensitivities to elasticity are 
shown as a percentage.  Thus, the relative proportion (percentage) a stage has (ai,j), 
indicates the magnitude of the effect of changes of elements (ai,j) in A, will have on 
the resulting elasticities (ei,j).  Here the relative proportion (percentage) is of 
importance not the direction (negative or positive sign). 



 43 
 

-100% -80% -60% -40% -20% 0% 20% 40% 60%

D. vioacea

M. californicus

D. batis

R. clavata

L. erinacea

D. laevis

A. radiata

L. ocellatta

U. lobatus

U. paucimaculatus

S. acanthias (NEP)

S. acanthias (NWA)

Ef
fe

ct
 o

f p
er

tu
rb

at
io

n 
of

 v
ita

l r
at

e 
on

 a
du

lt 
st

ag
e

f G1 P2 G2 P3

 
 
 
 
 
 

 
 

 
 

 

 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

 
 
 
 

Figure 8.  The sensitivities of elasticity of the adult stage are shown for species in the 
superorder Batoidea for each stage of the matrix.  The sensitivities to elasticity are 
shown as a percentage.  Thus, the relative proportion (percentage) a stage has (ai,j), 
indicates the magnitude of the effect of changes of elements (ai,j) in A, will have on 
the resulting elasticities (ei,j).  Here the relative proportion (percentage) is of 
importance not the direction (negative or positive sign). 
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Figure 9.  The sensitivities of elasticity of the juvenile stage are shown for species of 
the superorders Batoidea and Galea for each stage of the matrix.  The sensitivities to 
elasticity are shown as a percentage.  Thus, the relative proportion (percentage) a 
stage has (ai,j), indicates the magnitude of the effect of changes of elements (ai,j) in A, 
will have on the resulting elasticities (ei,j).  Here the relative proportion (percentage) 
is of importance not the direction (negative or positive sign). 
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Figure 10.  MDS ordination of elasmobranch life histories and elasticities.  This 
analysis was based on annual fertility, longevity, age at maturity, maximum length, 
juvenile and adult survival elasticities and the interstage transitional stage elasticity. 
Species in the centre of the ordination have been moved outward for clarity. 
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Figure 11.  MDS ordination of elasmobranch life histories and elasticities showing 
the relative magnitude of each trait. 
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Figure 12.  MDS ordination of elasmobranch life histories and elasticities split by 
phylogenetic groupings, superorder (A), order (B) and family (C). 
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Figure 13. MDS ordination of elasmobranch life histories and elasticities overlaid 
with the reproductive mode of each species.  Reproductive mode follows Dulvy & 
Reynolds (1997). 
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Chapter 3 
 

ORDINATION OF EVOLVED LIFE HISTORY STRATEGIES IN 
ELASMOBRANCH AND TELEOST FISHES: IN SEARCH OF COMMON 

GROUND 
 

Introduction 

Life history analyses can provide useful information for both managers and 

the understanding of evolutionary trends among related species (Beverton and Holt, 

1959; Pauly, 1981; Branstetter, 1990; Hoenig and Gruber, 1990; Charnov, 1993; 

Cortez, 2000; Frisk et al., 2001; Dulvy and Reynolds, 2002; Williams and Shertzer, 

2003; King and McFarlane, 2003; Frisk et al., 2004 -- Chapter 2).  The r-K continuum 

has been a long-standing approach in ecology that classifies species by contrasting 

life history traits such as large, slow growing, low reproductive potential species (K-

strategists) against small, fast growing, high reproductive output species (r-strategists) 

(Pianka, 1970).   Although prevalent in the ecological literature, little theoretical 

rationale or experimental evidence supports an inherent trade-off between the 

intrinsic rate of population of growth, r and population carrying capacity, K (Roff, 

2002).  Roff (2002) suggests that one should focus on the pattern of selective 

pressures on life history traits rather than on traits defined from a logistic growth 

model.  Even though the logistic equation may not represent complex life histories 

well, the efforts to place species in distinct groups based on similar traits highlights 

the utility of life history analyses, and the insight into the evolutionary dynamics of 

species that can be gained by such pursuits (Mertz, 1975; Caswell, 1982; Hall, 1988; 

Roff, 2002).  
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Winnemiller and Rose (1992) provided a classification scheme for fish taxa 

based on a comprehensive multivariate statistical analysis of life history traits of 

fishes, that did not rely strongly on a prior theoretical model.  They expanded the r-K 

continuum to a triangular ordination of three evolved strategies in teleost fishes: (1) 

small, rapidly maturing, short lived species (opportunistic strategists), (2) larger, 

highly fecund fishes with longer life-spans (periodic strategists), and (3) fishes of 

intermediate size that often exhibit parental care and produce fewer but large 

offspring (equilibrium strategists).    

Elasmobranchs have long been defined as the pinnacle example of K-selected 

species exhibiting large size, late age of maturation, long life-span, low fecundity and 

high parental investment (Hoenig and Gruber, 1990; Cortes, 2004).  Elasmobranchs 

exhibit a wide range of reproductive modes including, oviparity, vivoparity and 

ovophagy all of which are uncommon among teleost species.  Recent analyses have 

placed elasmobranchs within the “equilibrium strategy” due to their very high 

parental investment and reproductive strategies (Frisk et al., 2001).  Yet, their large 

size and long life-span place them equally well within the “periodic strategy”.  Cortes 

(2000) performed principal components analysis on shark life history data and found 

alternative life history strategies within elasmobranchs.  His results identified three 

life histories groupings in sharks: (1), species with high fecundity where offspring are 

born at a low percentage of adult size; (2), species that are large, slow growing and 

display low fecundity; and (3) species where young are born at a high percentage of 

adult size, have low fecundity and faster growth.  Cortes (2000) related these 

groupings to trade-offs in juvenile mortality.  He argued that species in group one 
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have higher predation rates on young compared to species in group two, while species 

in group three are characterized by faster growth out of vulnerable early life stages.   

Here, I expand the Winnemiller and Rose (1992) ordination by including 

elasmobranch data and thereby better representing the diversity of life history 

strategies among fishes.  Specifically, I examine where (or if) elasmobranchs fall in 

the Winemiller and Rose proposed evolved triangular ordination of life history 

strategies both by plotting data for elasmobranch fishes directly on the original 

Winemiller and Rose ordination, and by conducting a new analysis that includes data 

for both teleost and elasmobranch fishes. 
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Methods 

Data 

Data for elasmobranchs came from the literature and from previous sources 

that provided compilations of life history information (Smith et al., 1998; Cortes, 

2000; Frisk et al., 2001; Cortes, 2002; Frisk et al., 2004).  Where necessary vital rates 

of Rajidae species were developed from dissections and personal observations (Frisk 

et al. in prep), unpublished data (Dr. N.K. Dulvy, CEFAS, Lowestoft, UK) and data 

from the National Marine Fisheries Service’s trawl surveys (NEFSC, 1999).  

Elasmobranch data included estimates from 5 orders, 11 families and 52 species.  Life 

history data for teleost species were obtained from Winemiller and Rose (1992) and 

included 17 orders, 53 families and 221 species.  Following Winnemiller and Rose, 

several life history traits were analyzed including: age of maturation (Tmat), longevity 

(Tmax), length of maturation (Lmat), maximum size (Lmax), maximum clutch size (fmax), 

mean clutch size (fmean), egg size (ES), number of spawning bouts per year (SB) and 

parental care (PC, described below).  Variables were calculated following Winemiller 

and Rose except for SB and PC, which are defined below.  To be included, an 

elasmobranch species had to have estimates for Lmat, fmean, ES, SB, and PC.  Several 

variables analyzed by Winemiller and Rose either did not apply to elasmobranchs or 

there were insufficient data for elasmobranchs to allow their inclusion.  Accordingly, 

the following variables, used by Winemiller and Rose, were not included in my 

analyses: range of egg sizes, duration of spawning season, time to hatch, larval 

growth rate, young of the year growth rate, adult growth rate and fractional growth 

rate.   



 53 
 

The number of spawning bouts per year (SB) for live-bearing sharks and rays 

was estimated based on the frequency of reproduction.  It should be noted that for 

some sharks this value will be less than one as many species have extended resting 

periods after birthing pups.  The number of spawning bouts for oviparous species was 

calculated with the following equation: 

 

(1)     
b

a

f
fSB =   

 

where fa is annual fecundity, fb is batch fecundity.  In Rajidae species, the number of 

eggs in a batch is not well known and was assumed to be two for oviparous species 

(Liby, 1959; Richards et al., 1963; Johnson, 1979). 

Parental care was calculated by Winemiller and Rose (1992) on an ordinal 

scale from 0-8 with 8 being the highest possible parental investment.  The level of 

parental investment was estimated based on several factors including the degree of 

placement of eggs or zygotes, protection of the eggs and zygotes, and the level of 

nutritional contribution to offspring (Winemiller and Rose, 1992).  For example, 

Winemiller and Rose assigned viviparous teleost species a value of PC = 8.  To 

include the diversity of reproductive strategies exhibited by elasmobranchs, I 

assigned PC =  8 for ovoviviparous (internal-eggs-live-bearing) and viviparous (live-

bearing) elasmobranchs.  Oviparous (egg-laying) elasmobranch species do not readily 

fit into Winemiller and Rose’s classification system as these species produce large 

eggs that undergo long gestation and developmental periods of several months (Frisk 

et al., 2002).  Oviparous elasmobranchs were assigned PC = 6 due to their large 
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energy input per individual offspring and gestation periods.  A value of 8 could be 

given to oviparous elasmobranch species but the lower value recognizes the lack of 

protection afforded to offspring compared to that of the young of live-bearing species. 

Egg size data for elasmobranchs was difficult to find in the literature.  In order to 

estimate egg size I used a general empirical model to predict egg size (ES) from hatch 

length (HS) to fill in missing data.  The following ratios, averaged, were used for 

elasmobranch orders: Carcharhiniformes, ES/HS = 0.06, CL95 = 0.008, n = 8; 

Lamniformes, ES/HS = 0.06, CL95 = 0.08, N = 3; Rajiformes, ES/HS = 0.21, CL95 = 

0.05, n = 5.  

 

Statistical analysis 

 Univariate means and standard deviations of Lmat, fmean, ES, SB, and PC were 

calculated for elasmobranch species (Table 1).  All other statistics were estimated on 

loge-transformed data (Winemiller and Rose 1992).   Two separate principal 

components (PCA) analyses were conducted.  PCA is a multivariate statistical 

method that creates a linear combination of the original predictors (axes), which are 

not correlated.  PCA assumes that the data are distributed according to a multivariate 

normal distribution.  The principal component axes contain all the information of the 

original predictors (Kleinbaum et al., 1998).  Associated with each axis are 

“loadings” of the original life history traits that indicate the linear contribution of 

each life history trait to the overall principal component score.  Because variables had 

different units, PCAs were performed using loge-transformed data and a correlation 

matrix as in Winemiller and Rose (1992).  Data for freshwater and marine teleosts 
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were combined for all analyses as PCAs of data on subgroups were broadly 

equivalent.  Five life history traits: parental care, size of maturity, mean fecundity, 

egg size and the number of spawning bouts per year explained most of the variation 

in 12 variable PCAs in the Winemiller and Rose analysis.  These five variables were 

used to determine the ordination of life history strategies in teleost species of 

opportunistic, periodic and equilibrium strategists and for my analysis.      

In the first analysis, I quantified how elasmobranchs fit into the original teleost 

ordination.  I re-analyzed Winemiller and Rose’s (1992) data for teleost fish using 

only 5 life history variables that were common to teleost and elasmobranch fish.  

Subsequently, principal component scores for each elasmobranch species were 

estimated by multiplying the appropriate loadings of the teleost PC axis for each trait 

value.  Subsequently, PCA scatter plots were produced showing the distribution of 

elasmobranch species in the teleost-based ordination.  Subsequently, I conducted a 

second principal component analysis involving both the teleost and the new 

elasmobranch data.   
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Results 

Descriptive statistics are shown for teleost and elasmobranch data in Table 1.  

Maximum size (Lmax), size of maturity (Lmat), longevity (Tmax) and age of maturity 

(Tmat) were highly correlated: (Table 2).  Mean clutch size (fmean) was also associated 

with maximum clutch size.   

A total of 151 teleost species were analyzed with a five variable ordination.  

The first three principal components accounted for 91% of the variation (Table 3).  A 

review of the first principal axis associated species with large size of maturation, 

large mean clutch size, fewer spawning bouts, and little parental care.  The second 

axis associated large size of maturation, large eggs, high parental care, few spawning 

bouts, and small clutches.  The third axis grouped species with large egg size, many 

spawning bouts, and little parental care.  Figure 1 shows the first two teleost principal 

components with elasmobranchs species added.  The elasmobranchs all fall outside 

the scatter of teleost data.  Elasmobranch species occur as an extreme version of the 

periodic strategy, closest to teleost species with a large size of maturity, large eggs, 

and few spawning bouts (Figure 1).   

The second 5-variable PCA involved a total of 203 teleost and elasmobranch 

species.  The first three principal components accounted for 94% of the variation 

(Table 4).  Principal component 1 reflected species with small size of maturity, small 

clutches, large egg size and high parental care; as opposed to those species on the 

second axis of large size of maturation, larger clutches, few spawning bouts and less 

parental care.  The first two principal component axes of this ordination of the 

combined data are shown in Figure 2.  Elasmobranchs, when included in the 
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estimation, are associated with teleost orders that have high parental care, large egg 

size and fall in the equilibrium strategy (Figure 2).  These teleost species that form the 

extreme values included species with high parental investment in the order 

Percopsiformes (trout-perches, pirate perches and cave fish), that incubate eggs in the 

gill chamber of females, and Siluriformes (catfish) which are mouth breeders.  Within 

the elasmobranchs grouping is apparent that orders seem to form separate groups.  In 

particular, the skates (Rajidae) are distributed between the opportunistic and 

equilibrium strategies. 
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Discussion 

Superficially elasmobranchs appear to be very different from teleost species 

with their long life-spans, large size and reproductive strategies - reminiscent of 

reptiles and perhaps mammals (Frisk et al., 2001).  However, there may be reason to 

expect a common ground between the two major classes of fishes.  Elasmobranchs 

and teleost fishes have evolved in the same environmental conditions and face the 

same environmental constraints as all aquatic organisms.  Elasmobranchs follow 

many of the same life history invariant relationships as a diversity of taxa do 

(including other fishes), reflected in basic trade-offs of vital rates (Charnov, 1993; 

Frisk et al., 2001).  Certainly there is potential for a common spectrum of evolved life 

history traits.  However, when the ordination is plotted using teleost loadings, 

elasmobranchs appear outside the ordination and are on the extreme of the periodic 

strategy.  Even more surprising, they are distant from teleost species of similar 

reproductive strategies.   

The original ordination indicated elasmobranch fish should be considered 

periodic strategists.  However, when elasmobranch data is included in the ordination 

they form the extreme range of equilibrium strategists and are grouped by order.  The 

analysis of the combined dataset appears to unify life history strategies by including 

large species as equilibrium strategists.  Because the ordination of Winemiller and 

Rose (1992) may not have represented the full range of reproductive modes in fish, 

the elasmobranchs were erroneously placed with periodic strategists.  This may be a 

result of the fact that the data Winemiller and Rose (1992) used were biased towards 

species of commercial value.  In general, many species representing extreme life 
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history traits are tropical or niche specialists that have received little research 

attention.  Elasmobranchs, on the other hand, have unique reproductive strategies and 

have been fairly well studied.  Thus, the ordination that incorporates elasmobranchs 

may better represent the diverse life histories of all fishes.    

In the ordination estimated with elasmobranchs, the oviparous species, 

including all Rajiformes and one Carcharhiniforme, fell in the intermediate zone 

between equilibrium and opportunistic strategists.  This may be a result of the method 

I used to estimate spawning bouts and parental care for oviparous species.  However, 

the grouping may reflect underlying biology.  Rajiformes have higher fecundity 

compared to other elasmobranchs and are generally smaller than their live-bearing 

relatives (Frisk et al., 2004; Goodwin, 2002).  There may be a life history trade-off 

reflected in the separation of oviparous species with other, larger elasmobranch 

species that partition more energy to individual offspring, (ES, PC), and have fewer 

spawning bouts (see Frisk et al., 2004; Goodwin et al., 2002).  The addition of 

elasmobranchs to the ordination clarifies the three endpoints and suggests that 

Winemiller and Rose’s (1992) classification of three evolved strategists reflects fish 

taxa well.  Furthermore, inclusion of additional data for species that are 

underrepresented in these data sets may further elucidate underlying life history 

strategies. 

Understanding of life histories of elasmobranchs is still a burgeoning field, but 

work has elucidated links between taxonomic groups and conservation of these 

important resources.  Here I revised the equilibrium strategy and reinforced the notion 

of K-selection, as classification schemes from the logistic equation would suggest.  
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However, my findings and those of Winemiller and Rose (1992) suggest that fish life 

histories are complex and should not be defined merely by the behavior of the logistic 

equation alone.  Although elasmobranchs are on the extreme, these findings imply 

that a common ordination with three endpoints represents fish life history well, 

including both elasmobranchs and teleost species.  
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Table 1.  The mean, standard deviation, and number of observations are shown for 
age of maturation (year) (Tmat), length of maturation (cm) (Lmat), longevity (years) 
(Tmat), mean clutch size (fmean), egg size (ES), number of spawning bouts in a year 
(SB) and parental care (PC).  Only orders that have more than 3 observations for the 
five variable ordinations were included in the table.  Note the oviparous, Scyliorhinus 
canicula, skewed the Carcharhiniformes with much higher fecundity than species in 
the order. 
 
 

  Tmat Lmat Lmax Tmax fmean ES SB PC 
Carcharhiniformes mean 7.71 142.38 196.97 17.01 15.54 27.38 2.34 7.94 
 std 5.49 74.27 97.06 9.31 20.9 12.68 1.52 0.34 
 n 34.00 34.00 34.00 34.00 34.00 34.0 34.00 34.00 
Lamniformes mean 8.98 303.64 446.43 17.43 5.00 12.49 0.79 8.00 
 std 3.39 79.51 132.35 2.64 4.50 13.54 0.26 0.00 
 n 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 
Rajiformes mean 8.99 70.12 100.32 21.57 64.31 28.87 32.16 6.00 
 std 2.59 23.37 32.89 12.35 31.75 13.86 5.61 0.00 
 n 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 
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Table 2.  Pearson correlations used in the decision to remove uninformative variables 
from the ordination.  Age of maturity (Tmat), longevity (Tmax), size of maturation 
(Lmat), maximum size (Lmax), mean fecundity (fmean) and maximum fecundity (fmat) for 
elasmobranch data.  P indicates the significance level.   
 
 

 Tmat Tmax Lmat Lmax fmean fmax 
Tmat 1.00 0.84 0.31 0.23 0.08 0.06 
P  <0.01 0.02 0.10 0.57 0.66 
Tmax  1.00 0.16 0.14 0.07 0.07 
p   0.25 0.32 0.60 0.62 

Lmat   1.00 0.95 -0.19 -0.17 
p    <0.01 0.19 0.22 

Lmax    1.00 -0.19 -0.16 
p     0.19 0.27 
fmean     1.00 0.96 
p      <0.01 

fmax      1.00 
p        
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Table 3(A-C).  Principal components procedure for five variable ordinations for 
marine and freshwater teleost species (n = 151).  Tables A-C represent the correlation 
matrix, eigenvalues of the correlation matrix, and eigenvectors respectively.  
Variables included in analysis were length of maturation (Lmat), mean clutch size 
(fmean), egg size (ES), number of spawning bouts in a year (SB) and parental care 
(PC).   
 
 
A. 
 
Correlation matrix 
 Lmat fmean ES SB PC 
Lmat 1.00 0.72 0.25 -0.51 -0.37 
fmean 0.72 1.00 -0.31 -0.39 -0.55 
ES 0.25 -0.31 1.00 -0.18 0.28 
SB -0.51 -0.39 -0.18 1.00 -0.02 
PC -0.37 -0.55 0.28 -0.02 1.00 
 
B. 
 
Eigenvalues of the correlation matrix 
. Eigenvalue Difference Proportion Cumulative 
1 2.34 0.88 0.47 0.47 
2 1.46 0.72 0.29 0.76 
3 0.74 0.37 0.15 0.91 
4 0.37 0.27 0.07 0.98 
5 0.10  0.02 1.00 
 
C. 
 

Eigenvectors 
 Prin1 Prin2 Prin3 Prin4 Prin5 
Lmat 0.57 0.27 0.22 0.39 -0.63 
fmean 0.60 -0.17 -0.13 0.39 0.66 
ES -0.06 0.71 0.57 -0.08 0.40 
SB -0.38 -0.45 0.59 0.55 0.01 
PC -0.41 0.43 -0.51 0.62 0.02 
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Table 4.  Principal components procedure for five variable ordinations for marine, 
fresh water and elasmobranch species (203).  Tables A-C represent the correlation 
matrix, eigenvalues of the correlation matrix, and eigenvectors respectively.  
Variables included in analysis were length of maturation (Lmat), mean clutch size 
(fmean), egg size (ES), number of spawning bouts in a year (SB), and parental care 
(PC).   
 
 
A. 
 
Correlation matrix 
 Lmat fmean ES SB PC 
Lmat 1.00 0.54 -0.01 -0.49 -0.30 
fmean 0.54 1.00 -0.70 -0.17 -0.79 
ES -0.01 -0.70 1.00 -0.04 0.74 
SByear -0.49 -0.17 -0.04 1.00 -0.04 
PC -0.30 -0.79 0.74 -0.04 1.00 
 
B. 
 
Eigenvalues of the correlation matrix 
. Eigenvalue Difference Proportion Cumulative 
1.00 2.67 1.21 0.53 0.53 
2.00 1.46 0.90 0.29 0.83 
3.00 0.56 0.37 0.11 0.94 
4.00 0.19 0.08 0.04 0.98 
5.00 0.11  0.02 1.00 
 
C. 
 

Eigenvectors 
 Prin1 Prin2 Prin3 Prin4 Prin5 
Lmat -0.33 0.59 0.54 0.15 -0.47 
fmean -0.58 0.02 0.13 0.39 0.70 
ES 0.48 0.37 0.45 -0.39 0.52 
SB 0.13 -0.68 0.69 0.19 -0.10 
PC 0.55 0.22 -0.10 0.80 0.03 
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Figure 1.  The principal components and correlations of the first two axes for teleost 
loadings for the five variable ordination.  Elasmobranch data was added using teleost 
loadings.  Arrows show the direction and magnitude of individual variables on the 
principal components where PC is parental care, ES is egg size, Lmat is length of 
maturation, fmean is mean fecundity and SB is the number of spawning bouts per year.  
The three endpoints of the Winnemiller and Rose (1992) evolved life history 
strategies are shown, including: opportunistic strategists, that are small, rapidly 
maturing, short-lived species; periodic strategists, that are larger, highly fecund fishes 
with longer life-spans; and equilibrium strategists, fishes of intermediate size that 
often exhibit parental care and produce fewer but large offspring.    
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Figure 2.  The principal components and correlations of the first two axes for teleost 
and elasmobranch loadings for the five variable ordination.  Arrows show the 
direction and magnitude of individual variables on the principal components where 
PC is parental care, ES is egg size, Lmat is length of maturation, fmean is mean 
fecundity, and SB is number of spawning bouts.  The endpoints to the Winnemiller 
and Rose (1992) ordination of evolved life strategies are also shown. 
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Chapter 4 
 

AGE, GROWTH, AND LATITUDINAL PATTERNS OF TWO RAJIDAE 
SPECIES IN THE NORTHWESTERN ATLANTIC: LITTLE SKATE, 

LEUCORAJA ERINACEA, AND WINTER SKATE, LEUCORAJA OCELLATA 
 

Introduction 

Adaptation and evolution work in a framework of trade-offs where vital rates 

are selected to maximize individual fitness.  In many species there is a latitudinal 

gradient of life histories where local populations adapt and evolve to maximize fitness 

for specific environmental conditions.  For instance the rattlesnake, Crotalus viridis, 

exhibits a latitudinal gradient in both age at maturity and mortality rates (Shine and 

Charnov, 1992).  However, life history gradients and the bioenergetics that underlie 

them are not always straightforeword.  Conover has proposed the “counter-gradient” 

hypothesis wherein the potential for growth varies inversely with latitude (Conover, 

1990).  Based on his work on silversides (Menidia menidia), Conover suggested that 

the shorter growth season and temperature-induced overwinter mortality at high 

latitudes selects for faster growth rates.  However, many marine fish species have a 

latitudinal gradient where populations in higher latitudes exhibit slower growth, later 

age at maturity, increased longevity and likely lower population productivity (Taylor, 

1958; Beverton and Holt, 1959; Beverton, 1992).   

Little skate and winter skate are both in the genus Leucoraja; yet, they have 

diverging life histories and have the potential to exhibit latitudinal gradients.  Little 

skate L. erinacea is a small species reaching a size of 57 cm (total length, TL) with 

moderate growth rates, while winter skate L. ocellata is larger, reaching 111 cm TL, 

and is slower growing (Richards, 1963; McEachran and Musick, 1973; Johnson, 
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1979; Waring, 1984; NEFSC, 1999; Sulikowski et al., 2003; Alvarado Bremer et al., 

2004).  Little skate and winter skate occur from North Carolina, U.S. to Canadian 

waters with the centers of abundance in the southern New England and Georges Bank 

regions; additionally little skate is abundant in the mid-Atlantic (NEFSC, 1999; 

McEachran, 2002).  Both species are common in the Gulf of Maine and off the 

Canadian coast but are less abundant in these northern portions of their range 

(McEachran, 2002). 

Both species are ecologically important and constitute a large proportion of 

the demersal biomass in the western Atlantic (Link et al., 2002).  Skates likely play an 

important role in the trophic dynamics in western Atlantic ecosystems as a predator 

on benthic fauna including amphipods, crabs, small fish, shrimp, mollusks and worms 

(Nelson, 1993; Murdy at al., 1996).  Although traditionally not targeted by the 

domestic fleet, skates were targeted by foreign fleets prior to implementation of the 

200-mile limit (Fogarty and Murawski, 1998).  Recently, skates have become more 

valuable as a commercial species and are being landed and removed from the 

demersal community at greater rates (NEFSC, 1999; McEachran, 2002).  McEachan 

(2002) reported that US landings grew in the Gulf of Maine from 297 metric tones 

(mt) in 1981 to 15, 000 mt in 1996.  Similar trends have been observed on Georges 

Bank and southern New England (NEFSC, 1999).  Skates are sought for their mild 

tasting meat, characterized by low fat and cholesterol content, and a taste similar to 

shellfish (McEachran 2002).  Skate wings are sold to the European market and 

increasingly the US domestic market (McEachran, 2002).  Current estimates of 

fishing mortality have indicated that winter skate may be overfished (NEFSC, 1999).   
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 Knowledge of skate life histories in the western Atlantic is increasing.  

However, the lack of data for some species has made the formulation of management 

policies difficult.  While there is limited information about the vital rates of western 

Atlantics skates compared to teteost fishes, there has been progress in aging many 

elasmobranch species including several skates (Caillet and Goldman, 2004).  Seven 

Rajidae species have had annual band formation verified with several techniques 

including lab-based tetracycline tagging studies, marginal increment, back calculation 

and size frequency analyses (Caillet and Goldman, 2004; Natanson, 1993).  Previous 

aging studies have verified annuli band formation in both little skate and winter skate 

(Natanson 1993; Sulikowski et al., 2003).  Natanson (1993) conducted laboratory 

experiments under varying temperature conditions and verified that annual bands 

were formed in little skate.  Her experimental evidence suggests that temperature did 

not have an impact on band formation (Natanson, 1993).  Natanson’s (1993) results 

indicated that previous estimates of age (Richards 1963; Johnson 1979; Waring 1984) 

were conservative in their interpretation of annuli and may have underestimated ages 

in little skate.  Sulikowski et al. (2003) estimated the age of winter skate in the Gulf 

of Maine and performed a successful marginal increment analysis to verify annual 

band formation.  In the Gulf of Maine winter skate’s maximum marginal increment 

occurred in May and the minimal increment occurred in July indicating that band 

formation likely occurs between June and July (Sulikowski et al., 2003). 

To better understand the biology and ecology of little skate and winter skate, 

estimates of vital rates are needed over the species ranges.   In this project I collected 

little skate and winter skate samples over the species range to estimate region-specific 
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age and growth estimates.  Specifically, the goals of the study are to perform regional 

analyses of vital rates covering the ranges of little skate and winter skate from Cape 

Hatteras to Canadian waters by estimating age, growth and longevity of each species.      
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Methods 

Sampling 

Samples were collected during the National Marine Fisheries Service’s 

(NMFS) annual fall (September and October: 2001), winter (February: 2001), spring 

(February, March and April: 2001) and summer (June, July and August: 2001) 

surveys from the NOAA RV Albatross IV.  Skates were collected along the Atlantic 

coast from Cape Hatteras to Canadian waters (Figures 1 & 2).   The fall, spring and 

winter surveys used a bottom trawl equipped with 1.27 cm mesh liner that was towed 

for 30 minutes at three knots.  Additionally, the winter survey is equipped with a flat 

net and sweep chain.  The summer survey used a standard 8-foot New Bedford 

scallop dredge with a 2-inch ring chain bag and 1.5 inch mesh webbing that was 

towed for 15 minutes at 3.8 knots.  Total length, disk width, weight and sex of 

individual skates were recorded aboard the ship.  Latitude and longitude was recorded 

for each tow and used to provide location information for specimens.  Small 

specimens (< 20 cm, TL) were frozen whole at sea.  Vertebral and tissue samples of 

larger specimens were removed and frozen at sea. All samples were then shipped to 

the Chesapeake Biological Laboratory for further analyses.  Additional little skate 

samples were collected on 12-12-00, 3-29-01 and 5-25-01 aboard the F/V Tony & 

Jane, a 57 foot scalloper located in Ocean City, MD, captained by Mr. J. Eustler.   

Skates > 30 cm in total length were identified morphologically.  However, little skate 

and winter skate are very difficult to differentiate morphometrically below 25-30 cm 

TL (McEachran and Musick, 1973).  To differentiate between these species I used a 

rapid PCR-RFLP assay based on the restriction endonuclease Sty I that generates 
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fragments that are easily characterized through agarose gel electrophoresis (Alvarado 

Bremer et al., 2004).  All skates below 30 cm TL were genetically identified prior to 

further analyses.   

In total, 675 male and 1034 female winter skate and 1222 male and 1118 

female little skate specimens were collected for age, growth and reproductive 

analyses (reproductive results reported in Chapter 5).  The higher number of females 

likely does not reflect a biased population sex ratio, but rather the sampling protocol 

that, in addition to vertebrae, also collected ovaries.  Limited numbers of mature 

female (n = 168) and male (n = 172) winter skate (TL > 76 cm) were caught.   

The sampling covered the area from Cape Hatteras to the upper regions of the Gulf of 

Maine.  For region-specific analyses, the areas were divided into three regions based 

on potential physical features that may separate stocks.  The following three regions 

were defined: (1) mid-Atlantic; representing areas north of Cape Hatteras to the 

Hudson River canyon; (2) southern New England-Georges Bank; north of the Hudson 

River canyon to the outer edges of Georges Bank; and (3) the Gulf of Maine; from the 

Northeast channel southwest to Cape Cod.  When performing analyses of all regions 

combined, I will refer to the entire region as the northeast coast (N.E. coast).  

Specimens for age analyses were selected to ensure coverage of species, size, the 

geographic regions, and inshore and offshore areas. 

 

Length-weight analyses 

The relationship between individual length and weight was analyzed for the 

mid-Atlantic, southern New England-Georges Bank and the Gulf of Maine.  As little 
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skate had ample data and comparisons were made for each region based on the 

following area designations designed to provide greater separation between regions.  

For little skate the mid-Atlantic was defined as below the latitude of 38.72, southern 

New England-Georges Bank was defined as west of longitude 72.0 and south of 

latitude 41.7 and the Gulf of Maine was defined as the area above latitude 42.45.  

Additionally, separate models were estimated for male and female little skate.   

Linear regression models were fit using log10-transformed data for length and weight 

(Proc REG, SAS Corp.).  Analysis of covariance was performed in Proc GLM (SAS, 

Corp.) to test for significant regional and sex-specific trends.  The three regions were 

compared for significant differences by employing orthogonal contrasts.   

 

Slide preparation and age determination 

 Vertebral samples were cleaned of adhering tissue and the 4th and 8th vertebrae 

were removed.  To aid in the cleaning process vertebral sections were soaked in warm  

water for several minutes until tissue was softened.  Warm water treatment did not 

interfere with band appearance or composition (James Gelsleichter, Mote Marine 

Laboratory, Fl, personal communication, 2003).  If the first complete vertebral 

section could not be identified, one of the first ten was removed.  Vertebral centra 

were then air dried, mounted and cut sagittally using a low speed Buehler isomet saw 

into thin (1-2 mm) sections, glued to a glass slide, wet sanded with graded sand paper 

(250-1000 µm) and stained with Toluidine Blue.  For small specimens (< 20 cm), the 

centra were imbedded in Struers epoxy prior to being sectioned.  
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 Several techniques were tried to enhance the readability of slides including no 

treatment, immersion of centra in RDO, a rapid decalcifying agent, prior to drying 

and sectioning (Natanson, 1993).  Additionally, several stains were used post-

sectioning including Rose Bengal and Toluidine Blue.  I had limited success 

polishing slides with 0.3 Micron Alpha Alumina powder as contrast was often 

reduced.  The best results were obtained with emersion in 95% ethanol for at least 12-

24 hours (Richards et al., 1963; Waring, 1984; Zeiner and Wolf, 1993) and staining 

with Toluidine Blue.   

 

Ageing little skate and winter skate 

I followed Natanson’s (1993) interpretation of annual growth bands for little 

skate, and Sulikowski et al.’s (2003) interpretation for winter skate.  Annuli are easily 

interpreted for winter skate up to approximately 10 years depending on the specimen.  

In some samples false rings or check marks were difficult to distinguish from true 

annuli, especially for old individuals.   

 For each specimen only one vertebral section was read.  To estimate age and 

growth relationships, each centrum section was read by two readers (R1 & R2) 

without knowledge of prior age estimates or skate length.  The following criteria were 

used in reading little skate.  For most little skate sections, R1 read each centrum twice 

and R2 once.  If one of the two R1 reads were within 2 years of R2’s read, then the 

sample was kept and the average of the two reads in agreement was taken.  In some 

cases the average of the two reads R1 made equaled R2’s single read; in this 

circumstance the average of R1 was used.  In some cases only R2 read a centrum.  
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When only R2 read a centrum, is was read twice and if the reads were within 2 years 

the average was taken.   

Two approaches exist in estimating the age of winter skate: (1) “liberal read”, 

count everything that can be interpreted as an annuli band; (2) “conservative read”, 

count only the most obvious bands as annuli.  The liberal read was adopted as my 

standard ageing technique.  This decision was based on the lesson of Natanson’s 

(1993) validation study for little skate and a “precautionary” management 

perspective.   

To ensure that the choice of the “liberal” standard did not unduely bias results, 

the two standards were compared.  Winter skate specimens were read once assuming 

a “liberal” criterion by R1 and R2, except for a few that were read by only R2.  If R1 

agreed within 3 years of R2 or if R2 read twice and the reads agreed within three 

years, the specimen was kept for further analyses.  Winter skate conservative reads 

were read by R2 twice and if they did not agree within three years, the specimen was 

not included in growth estimates.  Subsequently, the resulting growth curves 

estimated by “liberal” and “conservative” reads were compared.  In addition, the 

readability or quality of all winter skate slides were ranked from 0-6, with six being 

very high readability and zero indicating very low readability.  High readability 

scores indicate that problems encountered in identification of annuli were minimal.  

Comparisons were made between growth curves based on different readability 

rankings.   
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Precision and reader bias 

 Reader precision was estimated on raw data with no culling of specimens.  

However, a few samples were damaged in the cutting and mounting process and 

could not be read.  Average percent error (APE) was used to estimate precision within 

and between readers: 

∑
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where R is the number of reads, Xij is the ith reading of the jth fish and jX  is the mean 

of readings of the jth fish (Campana, 2001).  

Precision estimates were made between and within readers R1 and R2.  In 

addition, a third reader (R3) read a sub-sample of centrum and the reads were only 

used for precision estimates.  Reader bias was estimated using mixed model analysis 

of variance in which readers were treated as random variables (Proc Mixed, SAS 

Corp.).  I tested the null hypothesis of no significant reader effect on estimated mean 

ages.   

 

Centrum and growth analysis 

A von Bertalanffy growth function was fit to estimated age and length data at 

capture (von Bertalanffy, 1957).  The function took the following form: 

)1( )( 0ttk
t eLL −−

∞ −=  

where Lt is length at age t, L∞ is the asymptotic length, t is age, t0 is the age at zero 

length and k is the growth coefficient.  I used the average of all reads that met the 
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predetermined standards (above) as the basis for age in my growth models.  All 

growth models were fit in Proc Nlin, SAS.  Because of a lack of small samples in 

some model fits for winter skate, I assumed a hatching size of 16 cm and set the 

theoretical size at zero (t0) accordingly. 

In order to test if growth curves differ significantly by region, the non-linear 

comparison method residual sum of squares of Chen (1992) was employed.  Separate 

growth models were fit to data from each region and for a pooled for all regions 

combined.  The test of significance to indicate that the individual models are a better 

description of the data than the pooled model is given by:   
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where RSS is the sum of squares, DF is degrees of freedom and individual and pooled 

values are indicated by the i and p respectively.  The procedure is performed by 

estimating an F statistic with degrees of freedom of 3•(C-1) and comparing it to an F 

with (N-3•C) degrees freedom (Chen, 1992).  C is the number of curves being 

compared and N is the total or pooled sample size.  If significant differences were 

found between curves, Kimura’s (1980) likelihood ratio test was used to test for 

significant differences in model parameters. 
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Results 

Species identification 

PCR-RFLP analyses indicated that little skate dominated catches of skate < 30 

cm TL.  All skates less than 15 cm (TL) (n = 55) were little skate, 25 out of 29 skates 

16 to 20 cm (TL) were little skate and 66 of 71 skates 21-39 cm (TL) were little skate.   

Winter skate were rare among collection of juvenile-sized skates and absent below 16 

cm TL.  All juvenile winter skate less than 30 cm TL were caught on Georges Bank 

except one 29 cm (TL) winter skate caught in the mid-Atlantic region.  In contrast, 

juvenile little skate were caught over the range of the species. 

 

Length-weight relationship 

 Derived relationships and figures are based on species identification by 

morphological (> 30 cm) and genetic criteria (< 30 cm).  The maximum sizes of 

female and male little skate were broadly similar (Figure 3. Table 1).  Region-specific 

length-weight relationships were significant for little skate (Table 1).  Finally, when 

compared between regions, there were significant differences between the Gulf of 

Maine and Southern New England-Georges Bank, and the mid-Atlantic; however, 

there was not a significant difference between the mid-Atlantic and southern New 

England-Georges Bank (Table 1).  

There was a significant allometric relationship between weight and length for 

winter skate for the N.E. coast (Figure 4: Table 1).  Females were heavier at size than 

males (Table 1).  However, male winter skate grew to substantially larger and heavier 

sizes (Figure 4). Winter skate also exhibited a significant length-weight relationship 
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for each region (Table 1).  However, this relationship did not differ among regions 

(Table 1). 

 

Image quality and annuli identification 

Sample images of centra of little skate and winter skate for old and young 

skates are shown in Figure 5.  Annual band interpretation in both species was 

adequate to good over the geographic range of the species.  In little skate the percent 

of specimens readability rankings were (0-6) as follows respectively: 0.87, 18.8, 37.0, 

35.0, 8.3, 1.0.  For winter skate, percent of specimens readability rankings (0-6) were 

as follows respectively: 0.7, 8.4, 24.1, 33.6, 17.5, 13.5, and 0.   

 

Ageing little skate and winter skate 

The largest female little skate aged was 56 cm and 12 years old, while the 

largest male aged was 57 cm and 12 years old.  The oldest aged little skate was a 

female Tmax = 12.5 years and 46 cm TL.  The oldest individual in the mid-Atlantic 

was estimated to be 11 and all other individuals 11 years old or older came from 

southern-New England-Georges Bank and the Gulf of Maine regions.   

The largest female winter skate aged was 90 cm (TL) and largest male aged 

was 107 cm (TL).  The oldest female winter skate was 76 cm TL and was estimated 

to be 19.5 years, and the oldest male was 74 cm TL skate that was estimated as 20.5 

years old.  I note in passing that a male 88 cm (TL) was aged as old as 24 but 

estimates were not in agreement between readers (R1 age = 24, R2 age = 20).   
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Precision and reader bias 

Ninty-nine percent of little skate age estimates were within two years between 

readers R1 and R2.  The little skate APE precision estimate across readers was 20.1% 

(n = 137, R1, 2-reads, R2, 1-read) and within reader precision was 11.6% (n = 35, R2, 

3-reads).  No significant differences were found in reader bias for little skate (reader-

fish interaction: F1,101 = 1.28, p = 0.10).   

Eighty percent of R1 and R2 reads of winter skate specimens were aged 

within 3 years.  The winter skate APE precision estimate across readers was 18% (n = 

40, R1, 1-read; R2, 1-read; R3, 1-read) and 8.0% (n = 46) within reader (R3, 3-reads).  

There was no significant reader bias between reader R1 and R2 (reader-fish 

interaction: F1,106 = 0.86, p = 0.71). 

 

Centrum and growth analyses 

 Little skate growth models were estimated for the N.E. coast, mid-Atlantic, 

southern New England-Georges Bank and the Gulf of Maine (Figure 6, Table 2).   

Parameters of the von Bertalanffy model were highly correlated (Table 3).  Since no 

age-0 little skate were caught in the Gulf of Maine, growth curves were fit with a t0 

fixed to correspond to the hatch size estimated for the N.E. coast (11.2 cm TL).  

Growth rates (k) declined and asymptotic length (L∞) increased with latitude for little 

skate (Figure 7).  Latitudinal patterns are apparent and pairwise comparisons between 

the Gulf of Maine and the Mid-Atlantic were significant based on the Chen et al. 

(1992) residual sum of squared test (Gulf of Maine vs. mid-Atlantic: F3,143 = 2.87, p = 

0.04; Gulf of Maine vs. southern New England-Georges Bank, F3,137 = 2.30, p = 0.08; 



 81 
 

southern New England vs. mid-Atlantic: F3,181 = 1.88, p = 0.90).  Based on Kimura’s 

likelihood ratio test, there were no significant differences between parameters of 

models for the Gulf and Maine and the Mid-Atlantic (k, p = 0.94; l∞, p = 0.28; t0, p = 

0.43).  Comparison of growth curves by Chen et al.’s (1992) method may have 

estimated significant differences because of very large sample size, fewer estimates of 

small and large individuals and may not reflect biological differences.   

Male little skate appear to grow slower and reach a larger size than females 

(Figure 8, Table 1).  However, there were no significant differences between sex-

specific curves (residual sum of squares: male vs. female; F3,181= 1.78, p = 0.15).   

Comparison of the results presented here and those of previous studies on little skate 

are shown in Figure 9.  Work conducted in Long and Block Island Sound and the 

southern New England and Georges Bank regions all show higher growth rates and 

shorter longevity (Richards et al., 1963; Johnson, 1979; Waring, 1984).  However, 

more recent work, which includes lab validation of growth bands, found ages and 

growth rates similar to the present study (Natanson, 1993). 

Winter skate growth was estimated for the N.E. coast (Figure 10; Table 2).  

Parameter estimates of the von Bertalanffy model were highly correlated (Table 3).  

Sample coverage was not adequate for separate growth models for specific regions.  

Males were larger at age than females (Figure 11).  Significant differences were 

found between the growth models of male and female winter skate (residual sum of 

squares: Male vs. females; F3,198 = 2.78, p = 0.042).  However, further analyses 

indicated that individual parameters were not significantly different (k, p = 0.46; l∞, p 

= 0.72; t0, p = 0.43).  Comparison of growth curves by Chen et al.’s (1992) method 
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may have estimated significant differences because of very large sample size, fewer 

estimates of small and large individuals and may not reflect biological differences.   

von Bertalanffy estimates for winter skate assuming “conservative” annuli 

interpretation provided nearly identical results to estimates from “liberal” reads 

(Figure 12, Table 2).  Maximum observed conservative age (Tmax = 15) was lower 

than the liberal read (Tmax = 20.5) while the sizes at age were similar.  The growth 

curve for the “conservative“ fit does not flatten out as much as the model for the 

“liberal” read.  Differences between the conservative fit and the liberal read were 

significant (residual sum of squares: conservative vs. liberal; F3,462 = 22.4, p = 

0.0001).  Additional comparisons using Kimura’s likelihood ratio tests found no 

significant differences in parameter values (k, p = 0.81; l∞, p = 0.99; t0, p = 0.93).   

Growth curves of specimens ranked as “high readability” (H.R. = 4-6) were 

estimated for winter skate and there was significant difference between higher 

readability and all reads (Figures 12, Table 2; residual sum of square results: H.R. vs. 

all reads: F3,301 = 3.65, p = 0.013).  Additional comparisons using Kimura’s likelihood 

ratio tests found no significant differences in parameter values (k, p = 0.054; l∞, p = 

0.30; t0, p = 0.48).  von Bertalanffy model parameters estimated were similar between 

curve fits for the N.E. coast, high readability (4-6) and all data (0-6).  All three 

interpretations of annuli provide very similar growth and asymptotic size estimates.   
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Discussion 

I found evidence for a strong latitudinal trend in maximum size in little skate.  

Little skate from northern regions were larger but grew more slowly than little skate 

from more southern regions.  No similar trend was found in winter skate.  Richards et 

al. (1963) reported that total length in little skate increased with increasing latitude.  

Their results indicated that little skate from the Miramichi estuary, New Brunswick, 

averaged 50 cm (TL), while little skate in southern New England and Delaware Bay 

averaged 47 cm (TL) and 43 cm (TL) respectively (Richards et al., 1963).  Little skate 

follows a latitudinal gradient of increased size, longevity and decreased growth with 

increasing latitude (Taylor, 1958; Beverton and Holt, 1959; Beverton, 1992).  

Other elasmobranchs have shown similar variation in vital rates with varying 

localities and latitudes.  Parson (1993) compared populations of the bennethead shark, 

Sphirna tiburo, from temperate and tropical regions and found that individuals in the 

temperate population grew slower and reached a larger size.  Yamaguchi et al. (1998), 

studying the starspotted dogfish, Mustelus manazo, reported significant differences in 

vital rates between regions in the Japan Sea and Pacific Ocean.  While starspotted 

dogfish populations with the greatest temperature differences showed the greatest 

difference in growth rate, the intermediate sites showed evidence against a 

temperature effect.   

Large size, longevity, and slow growth are common indicators that a species is 

vulnerable to overexploitation and of low population productivity (Frisk et al., 2001; 

2002).  Within elasmobranchs, low productivity has been associated with population 

declines.  For example, the more productive gummy shark appeared resilient while 
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the less productive school shark experienced a population decline in the same fishery 

(Stevens, 1999).  I suggest that as little skate populations likely have slower growth, 

increased longevity and lower productivity in higher latitudes, these populations are 

likely more susceptible to declines under exploitation.  

Winter skate specimens were relatively few in comparison to little skate and I 

was unable to conduct regional growth analyses.  A comparison of the growth curves 

estimated for winter skate in this study to those of Sulikowski et al. (2003) provide 

some evidence that winter skate may grow slower and attain a larger size in higher 

latitudes.  Additionally, McEachran and Martin (1977) reported that larger individuals 

of winter skate are more common in higher latitudes.  However, Simon and Frank 

(1996) provide conflicting evidence.  They report a growth rate of k = 0.14 yr-1 and 

asomototic size l∞ = 114 cm of for winter skate off of Nova Scotia (Simon and Frank, 

1996; Sulikowski et al., 2003).  Simon and Frank’s (1996) growth estimates are 

considerably higher than the present study and that of Sulikowski’s et al. (2003).  

However, Sulikowski et al. (2003) cites personnel communication with Simon that 

the oldest individuals were likely underaged by four or more years. 

Presently, there is little evidence to support a latitudinal gradient of variation 

in vital rates in winter skate.  Although the trends are not clear, a review of maps of 

juvenile and adult winter skate regional abundances reveal that adults and juveniles 

are fairly mobile (NMFS, 2003).  Adult and juvenile winter skate occur, or gather, in 

great numbers on Georges Bank, while juveniles appear to occur in the mid-Atlantic 

region at disproportionately higher abundances than adults (NMFS, 2003).  Further, 

all genetically-identified, newly hatched winter skate were caught on Georges Bank.  
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In contrast, recently hatched specimens of little skate were caught in all regions in the 

N.E. coast.  A possible explanation of these patterns is that Georges Bank is a 

spawning ground for winter skate.  However, sample size was not large and the 

abundance maps are not conclusive; thus these results are speculative in nature. 

von Bertalanffy growth estimates indicate that male little skate attain a larger 

size than females.  This is in contrast to winter skate and and batoid species including 

Raja binoculata, R. brachyuran, R. clavata, R. miraletus, R. montagui, and R. rhina, 

where the female attained a greater length (Zeiner and Wolf, 1993; Abdel-Aziz, 1992; 

Holden, 1972; Brander and Palmer, 1985; Waring, 1984; Ryland and Ajayi, 1982; 

Walmsley-Hart et al., 1999).  Richards et al. (1963) also found that male little skate 

attain a larger size.  In fact Richards et al. (1963) noted that females greater than 50 

cm (TL) were rare in Long and Block Island sounds while larger males were 

common.   

Length-weight relationships indicate that female little skate and winter skate 

are heavier at length than males.  However, male winter skate reach a larger size (TL) 

and weight.  Sosebee (2004) estimated physiological maturity of several skate species 

in the western Atlantic and in her data set the largest individual little skate and winter 

skate were males.  Although Sulikowski et al.’s (2003) growth estimates for the Gulf 

of Maine predicted a larger L∞ for females (Female L∞ = 137 cm; Male L∞ = 122 cm), 

they were unable to collect a large number of adult winter skate and may not have 

adequately sampled old/large winter skate.   

Two hypotheses for why male winter skates are larger can be developed.  

First, fishing gear may select heavier, at length, females at a higher rate than males.  
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Thus, allowing males to live longer than females.  Second, sexual selection may favor 

larger males.  Elasmobranchs have internal fertilization, and larger males may be able 

to control and impregnate females more successfully than smaller males in winter 

skate and little skate. 

My findings, like those of Natanson (1993), indicate that the observed 

maximum age for little skate is older than previous estimates of Tmax = 5, (Johnson 

1979), and Tmax = 8 years (Richards et al., 1963; Waring, 1984).  The oldest female 

and male little skate were 12.5 and 12 years respectively.  My growth estimate for 

little skate was slower than previous work but is in closer agreement with Natanson’s 

ageing work.  Additionally, previous growth curves did not exhibit asymptote 

behaviour suggesting that larger, older individuals were not adequately sampled 

(Richards et al., 1963; Waring, 1984).  Assuming that longevity can be estimated as 

the fraction (95%) of L∞ attained in a life-span (Taylor, 1958), the theoretical life-

span (Tmax) in little skate would equal: 13 in the mid-Atlantic, 14 in southern New 

England-Georges Bank and 15 in the Gulf of Maine. 

Previous work conducted on winter skate in the Gulf of Maine indicates that 

the species may grow slightly slower and reach a larger size than my data suggests 

(Sulikowski et al., 2003).  The slightly lower growth of Sulikowski’s et al. (2003) 

work may explain the higher L∞ (i.e. k and L∞ correlation).  Additionally, the largest 

individual that Sulikowski et al. (2003) aged was TL = 94 cm.  The present analysis 

included 13 winter skate that were 94 cm (TL) or larger and all samples above 90 cm 

(TL) were male.  The largest individual caught on the National Marine Fisheries 

Service’s annual surveys (1963-present) was TL = 111 cm (TL).  This is in agreement 
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with the size of L∞ for southern New England-Georges Bank, high readability and the 

conservative growth models.  It is possible that my data set better represented the 

older/larger age classes of winter skate than previous work.   

The oldest aged female and male winter skate were 19.5 and 20.5 

respectively.  Previous work aged winter skate as old of 16 and 19 years (Simon and 

Frank, 1996; Sulikowski et al., 2003).  While the juvenile winter skate (0-10 years) 

were relatively easy to read and determine annuli, adult winter skate were harder to 

age.  Difficulty ageing older fish may have produced the growth curves that do not 

reach fully an asymptote.  However, it is relatively common in Rajidae species to see 

growth curves not flatten out (Sulikowski et al., 2003).  Until age of larger individuals 

can be verified, estimates of longevity based on aged individuals should be 

interpreted with caution and may be underestimates.  Assuming that longevity can be 

estimated as the fraction (95%) of L∞ attained in a life-span, and the uncertainty 

discussed above, theoretical life-span (Tmax) in winter skate is 35 years (Taylor, 

1958). 

In some adult winter skate, the first 8-10 annuli were clear while false rings or 

check marks became more common in subsequent annuli.  One potential confounding 

factor is if check marks are formed as a result of mating, which has been proposed in 

the viviparous Australian sharpnose shark, Rhizoprionodon taylori (Simfendorfer, 

1993).  Defining spawning time in a serial spawner would likely be a difficult 

process.  A second ageing problem that occurred in some individuals is that the 

distance between annuli increased towards the outer potions of the centra; indicating 

that I may be undercounting annuli.  I ultimately used the liberal read, in which I 
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counted every mark that could be annuli, as the standard.  In this method, readers still 

avoided counting obvious check marks that were not annuli.  However, in some cases 

the task of distinqishing between check marks and annuli remained difficult.   

Ultimately, the conservative read provided similar growth rates, but a lower 

maximum age (15, Tmax), and the high readability fit was very similar to the liberal 

fit.  However, the life history of winter skate suggests that the conservative read is not 

accurate.  With age at maturity estimates ranging 10-14, (Chapter 5), suggests 

longevity is greater than 15 years.  The high readability fit, specimens with 

confidence in annuli interpretation, provided nearly identical maximum age and 

growth rates as the liberal read.  However, the high readability fit lacked many of the 

largest specimens and may have excluded many of the oldest specimens.  Here again 

underestimation of adult ages may be occurring.  Validation of old specimens for 

winter skate is needed to better understand maximum age and growth in older fish. 

Until then, a precautionary management philosophy and the lessons of Natanson 

(1993) work on little skate, calls for a liberal interpretation of annuli.  

Precision between readers was relatively high at 20 and 18 percent for little 

skate and winter skate.  Within reader precision was lower at 11.6 and 8.0 percent for 

little skate and winter skate respectively.  Precision estimates in elasmobranchs tend 

to be lower than teleost fish and are often not reported (Campana, 2001; Cailliet & 

Goldman, 2004).  Some little skate specimens that were 19-20 cm (TL) were 

estimated to be age 0.  It was unclear if this was an ageing error or a result of date of 

birth.  Little skate is a continuous spawner and hatching can occur at any time of the 

year while annuli formation is a seasonal process (Natanson, 1993; Johnson, 1979).   
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It has long been known that elasmobranchs, especially large, late maturing, 

long-lived and slow growing species, are very susceptible to overexploitation and 

even local extinction (Holden, 1973; Brander, 1981; Casey and Myers, 1998; Walker 

and Hislop, 1998; Dulvy et al., 2000; Stevens et al., 2000).  Further, species in the 

family Rajidae have been ranked as one of the marine fishes most susceptible to 

overexploitation (Dulvy et al., 2000).  Previous analyses have indicated that moderate 

to low exploitation rates could lead to the decline of little skate, Leucoraja erinacea, 

and winter skate, Leucoraja ocellata, populations in the western Atlantic (Frisk et al., 

2002).  While skates are likely candidates for overexploitation, a lack of knowledge 

of vital rates of little skate and winter skate have hindered effective management 

policies (NEFSC, 1999).  Here critical life history rates of age and growth have been 

estimated over large proportions of both species ranges that reinforce concerns over 

the potential for overexploitation in these species.   
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Table 1.  General linear model results for A) little skate and B) winter skate regional 
weight vs. length relationships.  Wmax is the largest individual weight; lmax is the 
longest skate (TL).  Also provided in the table are orthogonal contrasts for tests for 
regional differences in weight length relationships. 
 
A. Little skate 
Regions N wmax (g) lmax (cm) intercept slope F p 
N.E. coast 2342 1.19 57 0.004 3.1 49697.2 0.0001 
Mid 1093 0.84 53 0.004 3.12 23547.30 0.0001 
SNE-GB 1209 1.19 55 0.004 3.12 31603.30 0.0001 
GOM 54 1.14 57 0.003 3.35 1407.39 0.0001 
Male 1119 1.14 57 0.005 3.10 27865.5 0.0001 
Female 1223 1.19 56 0.004 3.12 24277.1 0.0001 
    
Contrasts  F P 
GOM vs. MID 9.28 0.002 
GOM vs. SNE-GB 9.13 0.002 
MID VS. SNE-GB 0.01 0.904 
 
B. Winter skate 
Regions n wmax (g) lmax (cm) intercept slope F p 
N.E coast 1711 10.28 111 0.003 3.33 83922.00 0.0001 
Mid 121 7.21 94 0.003 3.33 5236.87 0.0001 
SNE-GB 1555 10.28 111 0.003 3.33 80215.50 0.0001 
GOM 37 8.81 99 0.003 3.35 881.47 0.0001 
Male 676 10.28 111 0.003 2.28 43340.40 0.0001 
Female 1035 6.53 93 0.003 3.39 4438.11 0.0001 
    
Contrasts  F P 
GOM vs. MID 0.090 0.762 
GOM vs. SNE-GB 0.010 0.909 
MID VS. SNE-GB 0.110 0.735 
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Table 2.  Little skate and winter skate growth parameters.  Coast indicates region-
wide estimates, L∞ is the asymptotic size, k is the growth rate, t0 is the theoretical size 
at hatch, F is the estimated F statistic, p is test probability, n is sample size, Mid is 
mid-Atlantic, SNE-GB is the southern New England-Georges Bank, GOM is the Gulf 
of Maine, H.R. is higher readability, Con. is conservative read.  “1” indicates model 
was fit with a set t0 to equal age at hatch of 11.2 and 16 for little and winter skate 
respectively, ”2” indicates that values were not provided.  Instead an r2 of .95 and 
Standard error of 0.001 was provided (data from Sulikowski et at. 2003). 

 
 
 
 
 
 
 

  L∞ 
(cm) 

k 
yr-1 

t0 
yr 

F p n 

Little skate  NE Coast 56.10 0.19 -1.17 694.18 0.0001 236 
 Male 60.13 0.17 -1.16 271.98 0.0001 94 
 Female 53.94 0.20 -1.22 326.61 0.0001 125 
 Mid 53.26 0.22 -1.04 274.12 0.0001 99 
 SNE-GB 54.34 0.20 -1.22 233.83 0.0004 90 
 GOM1 59.30 0.18 -1.15 3805.98 0.0001 47 
Winter 
skate  

     
 

 

 NE Coast 122.10 0.07 -2.06 289.46 0.0001 229 
 Male1 115.35 0.08 -1.83 1348.32 0.0001 75 
 Female1 114.09 0.07 -2.10 2604.00 0.0001 126 
 HR1 111.43 0.09 -1.80 2016.77 0.0001 75 
 Conservative 108.29 0.11 -1.40 5111.11 0.0001 239 
 GOM2 131.4 0.64 -1.53 * * 209 
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Table 3. Correlations between parameter estimates of the von Bertalanffy growth 
equation where, l∞ is the asymptotic length, t0 is the theoretical size at birth and k is 
the growth rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Little skate 
 l∞ to k 
l∞ 1.00 -0.67 -0.96 
t0 -0.67 1.00 0.81 
k -0.96 0.81 1.00 
Winter skate 
l∞ 1.00 -0.83 -0.99 
t0 -0.83 1.00 0.90 
k -0.99 0.90 1.00 
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Figure 1.  Sampling locations at which little skate vertebrae were sampled along the 
N.E. coast.  The data are colour coded by region with green dots indicating the mid- 
Atlantic, orange dots indicating southern New England-Georges Bank and white  
dots indicating the Gulf of Maine. 
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Figure 2.  Locations at which winter skate vertebrae were sampled along the  
N.E. coast.  Orange dots indicate sampling locations. 
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Figure 3.  Allometric relationship between length (cm) and weight (kg) for little 
skate.  Data are shown for N.E. coast separated by males and females.  
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Figure 4.  Allometric relationship between length (cm) and weight (kg) for winter 
skate.  Data are shown for N.E. coast.  
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Figure 5.  Sample images of centra for A) the birthmark of a winter skate, B) and C) 
two examples of winter skate centrum sections and D) a little skate centrum section.   

C. Winter skate, L = 63 cm, age = 9-10. 
Readability  = 5. 

A. Birthmark 

D. Little skate, L = 53  cm, age = 11-12. 
Readability = 4. 

B. Winter skate, L = 55 cm, age = 4. 
Readability = 6.
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Figure 6.  von Bertalanffy growth model fit to length (cm) and age (years) data for 
little skate (see Table 1 for model statistics).  The figure shows data for the mid-
Atlantic (circle), southern New England-Georges bank (triangle), and Gulf of Maine 
(diamond) regions.   
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Figure 7.  Relationship between von Bertalanffy asymptotic size (l∞) and Brody 
growth coefficient (k) shown for little skate from three regions.   
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Figure 8.  von Bertalanffy growth model fit to length (cm) and age (year) data (see 
Table 1 for model statistics).  The figure shows data for male and female winter skate 
for the N.E. Coast. 
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Figure 9.  Comparison of current estimates of age/growth rates and previous studies.  
Based on my data growth models are shown for N.E. coast and compared to previous 
work for southern New England-Georges bank (SNE-GB), Block Island Sound 
(B.I.S.), Long Island Sound (L.I.S.) and Natansons laboratory data. 
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Figure 10.  von Bertalanffy growth model fit to length (cm) and age (years) data for 
winter skate (see Table 1 for model statistics).  The figure shows data for the mid-
Atlantic (circle) southern New England-Georges bank (triangle), and Gulf of Maine 
(diamond) regions.  
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Figure 11. von Bertalanffy growth model fit to length (cm) and age (year) data for 
winter skate (see Table 1 for model statistics).  The figure shows data for male and 
female winter skate for the N.E. coast.   
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Figure 12.  Comparison of growth models fit to liberal (solid line), conservative 
(circles, dashed line), and high readability (diamonds, smaller dashed line) data. See 
Table 1 for details. 
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Chapter 5 
 

MATURATION, FECUNDITY, LATITUDINAL PATTERNS, AND 
REPRODUCTIVE STRATEGIES OF TWO RAJIDAE SPECIES IN THE 

NORTHWESTERN ATLANTIC: LITTLE SKATE, LEUCORAJA ERINACEA, 
AND WINTER SKATE, LEUCORAJA OCELLATA 

 
Introduction 

Population growth rates are key parameters for both developing management 

strategies (Myers et al., 1999) and understanding the evolution of life histories (Roff, 

2001).  Indeed Myers et al. (1999) suggest that knowledge of the slope of the stock 

recruitment function at the origin, a measure of the potential population growth rate, 

is the single most important parameter to estimate to develop sustainable management 

regimes.  In a management and evolutionary context population growth rates (e.g., 

Ro, r) are very sensitive to age at maturation (Stearns, 1992).  Thus many life history 

traits are correlated with age at maturity.  Generally species with delayed maturation 

are characterized by long generation times and low productivity and have been 

termed, “slow” species, whereas “fast” species have early maturation and fast growth 

(Fenchel, 1974; Musick, 1999; Denny et al., 2002).   

Ages at maturity that optimize evolutionary fitness and those that arise under 

fishing pressure can be quite different.  Generally, species with “fast” life histories 

perform well under exploitation and “slow” species tend to be vulnerable to 

population declines.  Previous researchers (e.g., Winemiller and Rose, 1992) have 

considered elasmobranch fishes to be the epitome of “slow” species.  As such, 

elasmobranchs optimize fitness by large maximum body size, slow growth, late 

maturation, long life-spans and high parental investment in offspring (Walker and 

Hislop, 1998; Dulvy et al., 2000; Stevens et al., 2000; Frisk et al., 2001).  The “slow” 
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life histories of sharks, skates and rays means that they are likely susceptible to 

population decline under exploitation and will display extended recovery times if 

perturbed (Casey and Myers, 1998; Musick, 1999).  Additionally, elasmobranchs 

have an extended juvenile period which increases the chance of being harvested 

before the onset of maturation making them among the most vulnerable taxa to 

overexploitation (Holden, 1973; Brander, 1981; Casey and Myers, 1998; Walker and 

Hislop, 1998; Dulvy et al., 2000; Stevens et al., 2000).  However, this broad 

generalization regarding the characteristic “slow” life histories of elasmobranchs 

should not be taken to imply that reproductive strategies within this order are 

uniform.  Within elasmobranchs, faster and slower species can be identified (Chapter 

3).   

Little skate (Leucoraja erinacea) and winter skate (L. ocellata) are sibling 

species sharing similar phylogeny, body plan, habitat and life history (McEachran and 

Musick, 1973; Gabriel, 1992; Alvarado Bremer et al., 2004; Frisk et al., 2004).  These 

two closely related skate species exhibit differing positions on the “fast-slow” 

continuum of elasmobranch life histories (Frisk et al., 2004).  Little skate is a small 

(TL = 57 cm), moderately fast growing species (von Bertalanffy grow rate of k = 

0.20) and moderately lived (12 years), while winter skate is larger (TL = 116 cm), 

slow growing (k = 0.08) and long lived (20+ years) (Chapter 4).  Both species are the 

most frequently taken skates in commercial fisheries in the western Atlantic (NEFSC, 

1999).  Winter skate is taken for consumption of its wings (pectoral fins), while little 

skate is used mostly for fishmeal and bait (Waring, 1984).  Yet, scientific surveys 
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have indicated little skate has maintained a relatively stable population whereas 

winter skate has gone through fairly substantial population fluxes (NEFSC, 1999).   

Even though these species are commonly caught, economically valuable and 

represent a large portion of the demersal fish community in the western Atlantic little 

is known about their biology.  Little skate and winter skate occur along the western 

Atlantic coast from Newfoundland to North Carolina (McEachran, 2002).  Little skate 

has a more southern distribution and is less common than winter skate above La Have 

Bank (McEachran, 2002).  Both species occur on sandy to gravelly bottoms and are 

common in depths up to 111 meters (McEachran, 2002).  Like all Rajidae, both 

species have internal fertilization, are oviparous, and produce few large eggs which 

are protected by a rectangular egg case with long tendrils extending from all corners.  

These extensions allow the protective case to anchor safely to objects and seaweed on 

the seafloor.  The egg develops in the egg case for several months, eventually 

hatching as a fully-formed juvenile skate.    

Two definitions of female maturation in Rajidae can be recognized: 

physiological and functional.  Physiological maturity is recognized by the production 

of eggs of any size and can be measured by gland width, histologically or by the 

presence of reservoir eggs (Nolan et al., 2002; Sosebee, 2002).  Functional maturity is 

recognized by the presence of ripe eggs that will likely be spawned in the ensuing 

spawning season.  While physiological maturity has been estimated in little skate and 

winter skate, (Sosebee, 2002), functional maturity has not been estimated.   In some 

species there may be a significant time delay between ages at physiological and 
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functional maturity that may result in substantial differences on subsequent 

management reference points.   

Although unable to determine annual fecundity, Fritz and Daiber (1963), 

using samples from a Delaware estuary, determined that little skate and clearnose 

skate, R. eglanteria, demonstrated a peak in spawning although some reproduction 

occurred over the entire year.  Johnson (1979), working with little skate collected in 

Long Island Sound and Block Island Sound, found that maturing eggs ranged in size 

from 5.0 mm to 26.8 mm, with mature eggs starting at 15 mm.  He approximated 

annual fecundity at 30 eggs and indicated that egg production peaks in the fall and 

summer (Johnson, 1979).  Spawning season for winter skate is not well understood, 

but appears to have peak egg production during the summer and fall (McEachran, 

2002).  Size at hatch is approximately 19 and 15 cm for little and winter skate, 

respectively (Chapter 4).   

Previous estimates of maturity in winter skate suggest that size at maturation 

increases with latitude (McEachran, 2002).  It is not uncommon for marine species in 

northern sections of their range to exhibit slower growth, later age at maturation and 

increased longevity (Taylor, 1958; Beverton and Holt, 1959; Jennings and Beverton, 

1991; Beverton, 1992).  While spatial patterns can be complex, such as the “counter-

gradient” hypothesis proposed by Conover and Present (1990), there is commonly a 

continuous latitudinal pattern in vital rates (Beverton and Holt, 1959; Conover and 

Present, 1990; Jennings and Beverton, 1991; Beverton, 1992).  These trends indicate 

that over a species range there are trade-offs that are expressed in the plasticity of 

vital rates in mortality, growth and longevity.  It is possible that observed variation in 
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maximum body size and size at maturation indicate that a latitudinal trend may exist 

in winter skate.  

Here I examine reproductive patterns in life history traits in little skate and 

winter skate ovaries from the spring and fall of 1999 and summer, fall, winter and 

spring of 2001-2 in the western Atlantic from Cape Hatteras to Canadian waters.  Size 

of physiological and functional maturity will be estimated for little skate and winter 

skate based on the presence of physiologically mature and functionally mature eggs.  

Additionally estimates of von Bertalanffy growth rates estimated previously by Frisk 

(chapter 4) will be used to estimate age of physiological and functional maturity.  

Latitudinal effects on sizes and ages of maturation will be analyzed for both species.  

Analyses of egg production over the year will be assessed to estimate potential annual 

fecundity for little skate and winter skate. 

Previous analyses have indicated that fecundity may not vary in 

elasmobranchs and may be relatively fixed due to phenotypic canalization (Brander, 

1981; Frisk et al. 2002; Frisk et al., 2004).  If fecundity is not elastic, survival and 

maturation rates may potentially show compensatory changes in elasmobranchs.  In 

this paper the net reproductive rate (R0) will be estimated for optimal age at 

maturation for little skate and winter skate.  Additionally the age specific egg 

production rate (lt•mt) will be calculated assuming a population with no fishing and 

under-exploitation.  I hope this will provide insight into potential compensatory 

changes in vital rates in little skate and winter skate.   

Specifically the goals of this study are to: (1) estimate physiological and 

functional length and age at maturation along each species range; (2) estimate annual 
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egg production; (3), predict optimal age at maturation based on mortality and 

fecundity rates; and (4), compare the reproductive strategies of two sibling species, 

and ( 5) place results in a management context. 
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Methods 

Sampling: 

Samples of little skate and winter skate were collected from North Carolina to 

Canadian waters (Figures 1 & 2).  Most sampling was conducted as part of the 

National Marine Fisheries Service's (NMFS) annual fall (September and October: 

1999, 2001), winter (2001), spring (February, March and April: 1999, 2002) and 

summer (June, July and August: 2001) surveys conducted from the NOAA R/V 

Albatross IV.  During the winter, spring and fall surveys, samples were collected 

using a bottom trawl with ½ in (1.27 cm) mesh liner towed for 30 minutes at three 

knots.  Summer samples were collected using a standard New Bedford scallop dredge 

with a 2-inch ring chain bag and 1-1/2 inch mesh lining.  A total of 103 winter skate 

were collected in 1999 during the NMFS fall and spring surveys.  During the 2001-2 

NMFS surveys, 1,844 female little skate and 1,050 winter skate specimens were 

collected.  To ensure broad geographic coverage, an additional sample of 40 little 

skate was collected from the mid-Atlantic Bight over three dates in the winter (12-12-

00), spring (3-29-01) and summer (5-25-01) of 2000/2001 from the catch of the F/V 

Tony & Jane; a 57’foot scalloper registered in Ocean City, Maryland and captained 

by Mr. J. Eustler.  Length and weight of all individual skates were recorded aboard 

the ship.  Ovaries were removed, frozen, and shipped to the Chesapeake Biological 

Lab. 

Analyses were conducted on the entire dataset and on regional subsets of the 

data.  For non-spatial analyses, I refer to the entire area sampled as the northeast 

(N.E.) coast.  Regional subsets of the data were identified based on likely 
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biogeographic ecotones within which vital rates could be expected to be more similar 

than between regions.  The three locations used in the analyses were: (1) mid-

Atlantic, defined here as areas north of Cape Hatteras to the Hudson river canyon, (2) 

southern New England-Georges Bank, defined here as north of the Hudson River 

canon to the northern edges of Georges Bank; and (3) the Gulf of Maine, defined here 

as the area from the Northeast channel southwest to Cape Cod.       

 

Laboratory procedures 

Little and winter skate specimens were processed to ensure adequate coverage 

of geographical regions and maturing and mature length classes.  Ovaries were 

thawed and fixed in Bouin’s solution.  The fixed weight of each ovary was recorded.  

Eggs less than 5 mm, although numerous, were difficult to measure and fragile.  Eggs 

greater than 5 mm diameter were enumerated, and their individual diameters 

estimated as the average of three measurements (nearest 0.1 mm) using vernier 

calipers.  In a few cases (< 1%), eggs larger than 5 mm were broken and the diameter 

had to be estimated.   

Fixed ovary weight was regressed on female total length (TL) for both 

species.  Analysis of covariance and planned orthogonal contrasts were used to test 

for regional differences. 

 

Maturation analysis 

Individual skate were scored as immature, physiologically mature or 

functionally mature based on the characteristics of eggs when found.  For my 
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analyses, female little skate and winter skate were scored as physiologically mature if 

they were carrying eggs 5 mm in diameter or larger.  Functional maturity was 

characterized by the presence of mature eggs.  Mature eggs were defined as eggs that 

were as large or larger than those found in the developing egg case or located in the 

shell gland or oviducts immediately prior to release (Figure 3).  The diameter of 

mature eggs was estimated from samples of eggs in the shell glands or within egg 

cases found in the oviducts of the female.  

When estimating functional maturity in a serial spawning species such as both 

skate species studied, some mature individuals will be in a resting phase at any point 

in the year and carry no mature eggs.  Such individuals would be incorrectly scored as 

physiologically mature but not functionally mature.  To reduce this potential source 

of error in determining maturity status, the relationship between ovary weight and 

total length was used as a secondary indicator of maturity.  Based on these 

relationships, little skate were defined as mature if they had ovaries > 3 g (weight), 

and winter skate were defined as mature if they were > 5 g (weight).  These ovary 

weight thresholds correspond to the maturity stage where ovaries rapidly increase in 

size preparing for mature egg production.  

Size-dependent patterns in physiological and functional maturity in both 

species were examined using logistic regression.  The maturity status of a sufficient 

number of little skate was determined to permit analyses to be conducted at the 

regional level.  The presence of regional differences in size at maturity for little skate 

was examined using pairwise, planned orthogonal contrasts following logistic 
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regression.  Constraints on the number of female winter skate collected meant that the 

size-dependence of maturity was determined coastwide and not at the regional level. 

To estimate age-at-maturity, size-dependent probability of maturity functions 

predicted from logistic regression and expected age-at-size curves developed from 

analysis of vertebral centra were overlaid. 

 

Fecundity analyses 

I estimated annual egg production as the product of fecundity and spawning 

frequency.  Laboratory observations of little skate (Richards et al., 1963; Johnson, 

1979) indicate that individual skate spawn every 5-6 weeks.  Accordingly, annual egg 

production rates of little and winter skate were calculated as the average fecundity 

multiplied by the expected number of annual spawning bouts (=52/5 and 52/6).  I 

varied the size of functional maturity to determine how the estimated size of mature 

eggs affects the resulting annual fecundity estimates.   

 

Optimal age at maturation 

Optimal age at maturity was estimated from age-specific schedules of survival 

and reproduction.  The net reproductive rate, R0, was calculated as: 
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where Tmat is age of maturity, M is natural mortality and mt is age specific fecundity 

(Roff, 2001).  The theoretical age of maturity is estimated as the Tmat that satisfies: 



 115 
 

(2)    .00 =
∂
∂

matT
R  

 

This condition can be estimated by plotting R0 against increasing age at maturation 

(Tmat) and finding the point of the function where R0 is maximized.   

Net reproductive rate, R0, was calculated based on estimates of M and hence 

lt, using Hoenig’s method.  Longevities of 12 and 20 were used for little skate and 

winter skate, respectively (Chapter 4).  M was estimated to be 0.35 for little skate and 

0.22 for winter skate.  Length at age and fecundity at age relationships were used to 

estimate mt for 1 cm intervals and the 52+ cm group for little skate.  Length at age 

and fecundity at age relationships were used to estimate mt for 1 cm intervals with a 

86+ cm group for winter skate.  Egg production at age data for winter skate was noisy 

and 4-year averages were applied to smooth extreme values.  Age-specific egg 

production (lt•mt) was calculated to estimate age of peak egg production in little skate 

and winter skate which provide a estimate of theoretical age at maturation.    
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Results 

Maturation:  

Little skate ovary weight (OW) was significantly related to total length 

(Figure 4 -Table 1).  Regression relationships suggested a latitudinal gradient in the 

exponent of the relationship, but these differences were not significant (Table 1).  

Similarly, ovary weight was significantly related to length in winter skate (Figure 5, 

Table 1).  An ovary weight of ~ 3 grams in little skate and ~ 18 grams in winter skate 

appear to relate to maturity stage when mature egg formation proceeds (Figures 4 and 

5). 

 In little skate, average mature egg size was 18.5 mm (SD = 2.6, range = 13-23 

mm, n = 14).  Winter skate mature eggs were larger than little skate eggs.  Mature egg 

size of winter skate was 23.52 mm based on four specimens with egg diameters of 

29.9 mm and 27.1 mm, 24.6 mm and 24.3 mm, and one specimen with a single egg 

case with a diameter of 21.7 mm.  Based on these data, eggs with diameters 10 and 15 

mm and greater were assumed to be mature for little skate and winter skate, 

respectively.  These mature eggs can be expected to be released in the ensuing 

spawning season.   

The smallest little skate found to contain eggs > 5 mm diameter was 38 cm 

(TL); however, most females began egg production at a length of 38-43 cm and larger 

(Figure 6).  The sizes of winter skate found with eggs > 5mm were larger than in little 

skate (Figure 7).  The smallest winter skate with eggs > 5 mm was 60 cm, with most 

beginning production at a size of > 65 cm (Figure 7).  Physiological maturity was 

significantly related to female length in little skate with trends indicating that size of 
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maturity increases with latitude (Figure 8-Table 2).  Size of 50% physiological 

maturity in little skate was TL = 42.5 cm, 43.0 cm and 46.5 cm in the mid-Atlantic, 

southern New England-Georges Bank and the Gulf of Maine regions respectively 

(Figure 8).  The overall test of regional differences was significant (Chi-square = 

16.74, p = 0.0002).  All regional pairwise comparisons were significant (Table 2).   In 

winter skate, physiological maturity was significantly related to length with 50% 

physiological maturity occurring at a TL = 66 cm for the N.E. coast (n = 212, chi-

square = 122.72, p = 0.0001) (Figure 9).  There were not adequate data to observe 

regional trends in winter skate.    

Functional maturity in little skate was estimated to be a female carrying eggs 

10 mm or larger or if combined ovary weight was 3 g or larger.  Similarly, functional 

maturity was defined in winter skate as females containing either an egg 15 mm or 

larger or the combined ovary weight was 18 g or larger.  Based on these definitions, 

the production of mature eggs appears to increase in a knife-edge function of size for 

little skate and to a lesser extent for winter skate (Figures 10 & 11).  The proportion 

of females with mature eggs provides an estimate of the average proportion of 

females spawning at a given time.  Proportions were calculated for intervals of 2 and 

3 cm and a plus group for little skate and winter skate respectively.  The sample size 

at length (cm) for little skate was: 41-2 cm (n = 21), 43-4(34), 45-6(57), 47-8(72), 48-

49(47), 50-1(29) and the plus group of 52+(11); and for winter skate: 69-70(n = 15), 

71-2(19), 73-4(20), 75-6(22), 77-8(14), 79-80(17), 81-2(12), 83-4(9) and the plus 

group of 85+(12).  On average the proportion of mature female little skate that are 
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carrying a mature egg is 0.73 (95% C.I. ± 0.11) and the proportion for winter skate is 

0.55 (95% C.I. ± 0.043).    

Logistic regression indicated that sizes at 50% functional maturity in little 

skate occurred at larger lengths at higher latitudes (Figure 12).  Size of 50% 

functional maturity was TL = 43 cm, 44 cm and 46 cm for the mid-Atlantic, southern 

New England-Georges Bank and the Gulf of Maine regions respectively (Figure 12; 

Table 2).  However, these differences were not significantly different (Chi-square = 

2.93, p = 0.23).  Using growth data from the von Bertalanffy equation estimated 

previously by Frisk (Chapter 4) approximate age of functional maturity was Tmat = 

6.5-7 for the N.E. coast.  Thus, in little skate, there does not appear to be any delay 

between physiological and functional maturity. 

 Estimated size at 50% functional maturity in winter skate occurred at TL = 76 

cm (n = 212, chi-square = 113.53, p = 0.0001) (Figure 9, Table 2).  Using previous 

age estimates physiological maturity occurs at approximately age of Tmat = 9.5 and 

functional maturity at age of Tmat = 12.5 (Figure 9).  In winter skate, there is a three-

year delay between the onset of physiological maturity and functional maturity.   

 

Fecundity: 

Depending on the size chosen to define mature eggs, estimates of annual 

fecundity ranged from 21 - 57 eggs for little skate (Table 3) and 26 - 100 eggs for 

winter skate (Table 4).  Little skate egg production varied little seasonally, although 

higher values were observed in the spring and fall (Table 5A).  Winter skate egg 
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production was highest in the fall; however there was insufficient seasonal coverage 

to estimate season egg production (Table 5B). 

The distribution of eggs 5 mm and larger are shown in Figures 13 and 14 for 

functionally mature little skate greater than 47 cm in total length and all functionally 

mature winter skate.  Individuals appear to be resting or actively laying eggs.  Winter 

skate appears to produce more reservoir eggs and mature eggs than little skate.  Also, 

indicated in the figures is that the number of reservoir eggs and mature eggs increased 

very little with length in both species.  However, in both species the very large 

individual females may have a slightly higher number of reservoir eggs. 

 

Optimal age at maturation: 

    R0 was optimal at Tmat = 7 for little skate (Figure 15), which is nearly 

identical to my observed age of maturity of 6.5-7.  In contrast, for winter skate R0 was 

optimal for Tmat = 12.5 (Figure 16), identical to the observed age of maturity of 12.5.   

  Age-specific egg production was estimated for little skate and winter skate for 

populations experiencing either no fishing or a fishing mortality rate F = 0.35.  Little 

skate peak egg production occurred at 7.50 and 6.75 with no fishing and fishing, 

respectively (Figure 17).  Winter skate peak egg production occurs at 14.5 and 10 for 

no fishing and fishing, respectively (Figure 18).  In both species exploitation 

decreases the age of peak egg production. 
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Discussion 

The reproductive ecologies of little and winter skate differ substantially with 

both species representing different locations on the “fast-slow” continuum of life 

histories in elasmobranchs.  This difference is reflected in the vital rates such as 

length and age of maturity, annual fecundity and the net reproductive rate (R0).  Not 

only have I documented differences in vital rates between sibling species but I have 

also found a latitudinal gradient in size of maturation in little skate.  What features of 

the life history variation in these two species account for the observed differences?  

Life history theory predicts that delayed maturity is associated with additional growth 

leading to a larger size, increased fecundity and/or greater quality or size of offspring 

(Stearns, 1992).  Within species, winter skate and little skate do not show large 

increases in fecundity with size.  Further, age at maturity appears relatively invariant 

in little skate, while size at maturity increased with latitude.  This is not compelling 

evidence for selective pressure towards delayed maturation.  However, when viewed 

between species, the benefits of delayed maturation hold up well.  Winter skate 

delays maturation, having a longer time to grow and reach a larger size with higher 

fecundity than little skate.  However, the cost of delayed maturity is lower growth 

rates, longer generation times and likely lower compensatory ability; thus less 

resilience to exploitation (Frisk et al., 2002; Frisk et al., 2004).   

I estimated differences in sizes at physiological and functional maturity and 

fecundity in both species.  I also found evidence for latitudinal gradients in 

reproductive ecologies.  McEachran (2002) reported that size of maturity ranges from 

35-50 cm for little skate and 70-109 cm for winter skate and generally increases with 
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latitude (McEachran and Martin, 1977).   My data indicated that sizes at 50% 

physiological maturity and functional maturity varied latitudinally for little skate.  

Sizes at 50% physiological maturity and 50% functional maturity in the mid-Atlantic 

were 42.5 and 43 cm.  Equivalent estimates for the southern New England-Georges 

Bank were 43 and 44 and 46 and 46 cm for the Gulf of Maine.  These sizes are 

equivalent to ages of 5.75 to 8.2 years.  Importantly, there was no evidence to suggest 

a temporal delay between physiological and functional maturity.  In winter skate, 

there was no evidence of a latitudinal gradient in sizes at maturity as a result of 

invariance of estimates and a paucity of samples in the Gulf of Maine and mid-

Atlantic regions.  Physiological maturity and functional maturity occurred at 66 and 

76 cm throughout N.E. coast, equivalent to age of 9.5 and 12.5 years.  Apparently the 

onset of functional maturity is delayed three years relative to physiological maturity 

in winter skate.  This difference in the two measures of maturity suggests that in some 

skate species, estimating physiological maturation only may drastically under-

estimate the age and size at which individuals actually contribute to the reproductive 

effort of the population.   

Ovary weight and size at maturation increased with latitude in little skate from 

the mid-Atlantic, to southern New England-Georges Bank to the Gulf of Maine, while 

age at maturation appeared to remain constant.  Frisk (Chapter 4) found some 

evidence that life-span was higher and growth rate slower north of the mid-Atlantic 

region for little skate.  Commonly, a larger size of maturation is associated with later 

age at maturation (Stearns, 1992).  Here, I have only found a difference in size of 

maturity and not age, perhaps reflecting imprecision in ageing of skates.  While 
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McEachran and Musick (1977) previously reported that winter skate showed evidence 

for a latitudinal gradient in size of maturation, I found no evidence that size of 

maturation increases with latitude.  It is not surprising that, of the two species, little 

skate showed a latitudinal trend in vital rates and winter skate did not.  Genetic 

analyses have indicated that little skate has much higher nucleotide diversity than 

winter skate (Alvarado Bremer et al., 2004, Alvarado-Bremer, personal 

communication).  Winter skate appears to have a much less nucleotide diversity and 

apparently faced a genetic bottleneck at some time in its history, possibly caused by 

exploitation (Alvarado Bremer et al. 2004, Alvarado-Bremer, personal 

communication).  McEachran and Musick’s (1977) work was conducted in 1968-69 

and it is possible that the population diversity of winter skate declined during periods 

of high exploitation (i.e. 1960’s and 1970’s NEFSC, 1999; Fogarty and Murawski, 

1998).  Further DNA analyses such as microsatellite loci work is needed to determine 

whether and when a bottleneck may have occurred and if there are genetically 

separate populations in little skate or winter skate.  

Optimal age at maturation in little skate and winter skate is nearly identical to 

observed age at maturity, indicating that selection has acted in both species to 

maximize growth rate.  Peak egg production in winter skate occurs at an age of 14.5.   

However, when the effects of exploitation are included, peak egg production occurs at 

an age of 10.5.  A less dramatic decrease in age of peak egg production is also seen in 

little skate.  In little skate and especially winter skate exploitation favors selection for 

early maturation.   
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Historically, winter skate has experienced fishing mortality as high or higher 

than F = 0.35 (NEFSC, 1999).  Little skate has been harvested in the same multi-

species fishery as winter skate; however, little skate is smaller and may not be fully 

recruited to the fishery until it reaches mature sizes.  Thus, it is likely that winter 

skate has experienced a stronger selective force to mature earlier compared to little 

skate.    

Gear selectivity often removes the faster growing individuals leaving slower 

growing individuals and potentially changing the demographics of the population.  

When exploitation is considered, optimize fitness would be achieved at a lower age at 

maturation for winter skate.   However, the actual impacts of exploitation may 

counter the force of selection for younger age at maturation.  Gear selectivity may 

favor slower growing winter skate that potentially have a larger and older age at 

maturity. 

Information on egg production either in the laboratory or the wild in winter 

skate is absent.  Thus, out of necessity I used egg production rates estimated for little 

skate in order to estimate fecundity in winter skate.  Similar laboratory egg 

production rates were observed for clearnose skate, Raja eglanteria, which produced 

a pair of eggs every four days (Libby, 1959).  My data indicate that the spawning 

season in both skates is prolonged, and spawning likely occurs year round.  

Furthermore, my data indicates that egg production is high in the fall and in the spring 

for winter skate and relatively even for little skate with increased production of 

mature eggs in the summer.  Annual fecundity was estimated to range from 21 - 57 

eggs for little skate and 26 - 100 eggs for winter skate.  These values are in the range 
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found for other skates species, Dipturus batis (40), Amblyraja radiata (17), Raja 

brachyura (40), Raja neavus (80), and Raja montagui (24), and Raja clavata (52) 

(Holden et al., 1971, Walker, 1994).  My results for fecundity in little skate are in the 

high range or higher than Johnson’s estimates of 26 - 33 eggs annually for little skate. 

Little skate is believed to spawn and undergo a resting period of three to four 

months (Johnson, 1979).  During a reproductive period, little skate is believed to 

produce eggs for 5-6 weeks, (Johnson, 1979), with a pair of eggs produced in a 

minimum of 5 days and commonly over a week (Richards et al., 1963).  Johnson 

(1979) indicates that female little skate have two reproductive periods a year.  My 

fecundity analysis averages egg production over the year for little skate and winter 

skate populations.  Thus, any resting period(s) is/are indirectly accounted for in the 

estimation of fecundity, assuming mature eggs are released in the ensuing spawning 

season.  This was necessary as both species in the current study are serial spawners 

and do not appear to have strong seasonal patterns previously observed in little skate 

(Richards et al. 1963; Johnson, 1979).   

A question of elasmobranch life history that remains unanswered is why 

evolution has favored larger body size (Frisk at al., 2004)?  One hypothesis is that 

larger body size increases the volume for gestation (Qaulls and Shine, 1998; Goodwin 

et al., 2002).  My results indicate that the larger of the sibling species, winter skate, 

has higher fecundity than little skate.  Frisk et al. (2002) plotted the intrinsic rate of 

increase against fecundity from results of matrix models and found that increases in 

fecundity beyond approximately 17, 18, and 23 for little skate, winter skate and 

barndoor skate, respectively, had diminishing returns (assuming a 50/50 sex ratio).  
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These values roughly correspond to annual fecundity estimates indicating that there is 

likely little benefit in increasing fecundity for these three Rajidae species.   

Bonfil (1996) provided theoretical evidence, based on simulations of an age-

structured model, that changes in fecundity have little potential for compensatory 

mechanisms and more likely candidates are mortality and age at maturation.  If, as the 

evidence indicates, that fecundity is fixed by body cavity volume (i.e. body size), in 

Rajidae, and perhaps elasmobranchs, compensatory changes may occur with changes 

in age at maturation as has been observed in the sharpnose shark, Rhizoprionodon 

porosus, and spiny dogfish, Squalus acanthias, (Carlson and Baremore, 2002; 

Sosebee, 2002).  My prediction of optimal age at maturation in winter skate provides 

evidence that exploitation could be compensated for by lowering age at maturation.   

Although, our knowledge of the population dynamics of skates is increasing, 

(Walker and Hislop, 1998; Stevens et al., 2000; Frisk et al., 2000; Frisk et al., 2002), 

much work is needed to understand the varying resiliency to exploitation of Rajidae 

species (Walker and Hislop, 1998; Frisk et al., 2002).  In addition to management 

concerns, work remains in understanding life history and evolutionary trends in 

elasmobranchs, of which many species display biological demographics on the 

extreme of the equilibrium strategy in the ordination of life history strategies in fishes 

(Frisk Chapter 3).  Here I analyzed the contrasting life histories of two closely related 

species occupying different places on the “fast-slow” life history continuum.  Further, 

understanding these differences between sibling species will help to elucidate the 

underlying biological trade-offs that result in species-specific resiliency to 
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exploitation.  
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Table 1.  A. Regression summary and parameter estimates for ovary weight vs. 
length relationships in little skate and winter skate.  Data for little skate and winter 
skate where (n) is sample size, (Lmax) is maximum length observed and (Wmax) is 
maximum ovary weight observed.  Parameters of the ovary weight vs. length 
relationship are provided where a is the intercept and b is the shape parameter and 
were fit to log transformed data.  SE is standard error and p is the models significance 
probability.  B. Results from orthogonal contrasts of regional ovary weight vs. lengths 
models.  No significant contrasts were found.   
 
A. 
 
 
 
 
B. 
 
 
 
 
 
 
 
 
 
 
 

Little skate n Lmax 
(cm) 

Wmax 
(g) 

a b SE (b) p 

 Mid 92 52 26.7 -14.44 9.2 0.95 0.0001 
 SNE-GB 142 53 29.1 -13.27 8.4 0.65 0.0001 
 GOM 16 56 21.1 -15.84 9.8 1.60 0.0001 
Winter skate        
 NE Coast 207 93 192 -9.68 5.8 0.37 0.0001 

Little skate  
Regions F p 
GOM VS. MID 0.16 0.69 
GOM VS. SNE-GB 0.61 0.43 
MID VS. SNE-GB 0.39 0.53 
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Table 2.  Summary of logistic regression analyses for regional maturity comparisons 
of little skate.  A. The logistic model statistics for physiological and functional 
maturity in little skate is listed for the mid-Atlantic (MID), southern New England-
Georges Bank (SNE-GB) and the Gulf of Maine (GOM).  B. the results of orthogonal 
planned contrasts for physiological maturity for little skate.  All pairwise regional 
contrasts were significant for physiological maturity.  Note that there were no 
significant pairwise regional differences in functional maturity for little skate. 
 

A.     
Physiological maturity   
 Region n chi-square p 
 MID 120 52.96 0.0001 
 SNE-GB 144 96.54 0.0001 
 GOM 16 9.99 0.0017 
Functional maturity    
 Region n chi-square p 
 MID 92 43.6 0.0001 
 SNE-GB 144 71.35 0.0001 
 GOM 16 13.86 0.0002 
B.     
Contrasts for physiological maturity   
   chi-square p 
 SNE-GB VS GOM  4.83 0.03 
 GOM vs MID  14.34 0.00 
 MID VS SNE-GB  11.14 0.00 
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Table 3.  Fecundity estimates for varying mature egg size and spawning season for 
little skate.  Length is total length of female little skate, n is sample size, > X mm is 
the number of egg greater then X.  Fecundity estimates are shown assuming release 
periods of 5 and 6 weeks and varying size of mature eggs.   
 
 
 
 
 
 
 
 
 

Length  n >8 mm >9 mm >10 mm > 11 mm > 12 mm 
46 40 4.3 3.3 3.2 2.6 2.0 
47 32 4.9 3.7 3.0 2.0 1.6 
48 34 4.8 3.7 3.2 2.6 1.9 
49 13 5.1 4.2 3.9 2.9 2.3 
50 15 5.0 3.9 3.2 2.3 2.0 
51 14 3.9 3.1 2.5 2.2 1.7 
52 8 7.8 5.9 5.4 4.5 3.9 
53 2 3.0 2.5 2.0 1.5 1.0 
56 1 11.0 11.0 8.0 8.0 5.0 
Average  5.5 4.6 3.8 3.2 2.4 
Fec. 5 wks  57.37 47.65 39.76 33.04 24.79 
Fec. 6 wks 47.81 39.71 33.13 27.53 20.66 
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Table 4. Fecundity estimates for varying mature egg size and spawning season for 
winter skate.  Length is total length of female winter skate, n is sample size, > X mm 
is the number of egg greater then size X mm.  Fecundity estimates are shown 
assuming release periods of 5 and 6 weeks and varying size of mature eggs.  Length 
of >80 are samples for which length was not recorded but ovary weight indicates they 
were larger than 80 cm. 
 
 
Length n >12 mm  >13 mm >14 mm  >15 mm >16 mm  >17 mm  >18 mm  
79 8 7.13 5.38 4.50 3.63 2.88 2.50 2.00 
80 9 4.89 4.00 3.11 2.67 1.89 1.56 1.22 
81 8 4.25 3.88 3.25 2.75 2.25 2.25 2.00 
82 4 14.25 13.00 10.00 8.75 7.00 5.00 3.50 
83 1 17.00 13.00 11.00 9.00 9.00 8.00 8.00 
84 8 9.50 8.13 6.88 6.63 5.13 4.75 4.50 
85 4 6.50 5.75 5.75 5.00 4.75 4.00 3.75 
86 1 5.00 2.00 0.00 0.00 0.00 0.00 0.00 
87 3 14.33 12.00 9.67 8.00 6.67 5.67 5.67 
88 1 5.00 3.00 1.00 1.00 0.00 0.00 0.00 
89 1 11.00 10.00 7.00 5.00 3.00 2.00 0.00 
91 1 8.00 7.00 5.00 4.00 3.00 1.00 1.00 
93 1 10.00 7.00 7.00 5.00 3.00 3.00 3.00 
>80 4 18.75 17.75 15.50 13.00 9.75 9.00 7.25 
Average  9.69 7.99 6.40 5.32 4.16 3.48 2.99 
Fec. (5 wks) 100.73 83.11 66.60 55.28 43.31 36.19 31.12 
Fec. (6 wks) 83.94 69.26 55.50 46.07 36.09 30.16 25.93 
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Table 5.  Seasonal mature egg production in little skate (A) and winter skate (B).  
Sampling date, sample size (n), average number and confidence intervals (95%) are 
listed.   
 
A. 
 
 
 
 
 
 
 
 
 
 
B. 
 
 
 
 

Little skate 
Date n average 95% C.I. 
12.12 8 3.38 1.67 
2.7-3.2 53 2.55 0.72 
3.10-3.29 32 4.25 1.11 
4.7-4.25 17 2.24 1.49 
5.25 6 4.50 2.37 
6.28-8.15 49 4.94 0.89 
9.6-10.18 39 2.95 0.83 

Winter skate 
Date n Average 95% C.I. 
9.6-10.18 33 9.70 2.38 
2.7-3.2 12 1.92 2.02 
6.28-8.15 4 2.25 6.15 
3.10-4.25 24 1.62 0.91 
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Figure 1.  Regional coverage of little skate ovaries collected along the northeastern 
United States coast from Cape Hatteras to Canadian waters.  Regional level analyses 
were performed on the mid-Atlantic, representing areas north of Cape Hatteras to the 
Hudson River canyon; southern New England-Georges Bank, north of the Hudson 
River canyon to the outer edges of Georges Bank; and the Gulf of Maine, north from 
the Northeast channel southwest to Cape Cod.  The data are color coded by region 
with green dots indicating the mid-Atlantic, orange dots indicating southern New 
England-Georges Bank and white dots indicating the Gulf of Maine. 
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Figure 2.  Regional coverage of winter skate ovaries collected along the northeastern 
United States coast from Cape Hatteras to Canadian waters.  Regional level analyses 
were performed on the mid-Atlantic, representing areas north of Cape Hatteras to the 
Hudson River canyon; southern New England-Georges Bank, north of the Hudson 
River canon to the outer edges of Georges Bank; and the Gulf of Maine, north from 
the Northeast channel southwest to Cape Cod.  Orange dots indicate sampling 
locations. 
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Figure 3.  The reproductive track of a little skate shown with two ovaries and two 
shell glands.  Mature eggs move from the ovaries to the shell glands where they are 
encased and moved down the oviduct and released on the sea floor.  Johnson et al. 
1963 reports that eggs are normally released in pairs, even if one ovary contains no 
eggs, in that case cases may be empty. 

n  Shell glands 

n Ovaries 
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Figure 4.  Ovary weight (g) regressed over individual female total length for little 
skate.  Power functions are fit to three geographical regions including the mid-
Atlantic, southern New England-Georges Bank and the Gulf of Maine.  At 
approximately 3 grams it appears that most ovaries are mature and are increasing in 
weight rapidly. 
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Figure 5. Ovary weight (g) regressed over individual female total length for winter 
skate.  A power function is fit to N.E. coast for winter skate.  At approximately 18 
grams it appears that most ovaries are mature and are increasing in weight rapidly. 



 137 
 

0

5

10

15

20

25

30

30 35 40 45 50 55 60

Length (cm)

N
um

be
r 

of
 r

es
er

vo
ir

 a
nd

 m
at

ur
e 

eg
gs

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
Figure 6.  Number of reservoir and mature eggs for little skate (eggs > 5 mm) by size 
of skate.  Figure shows a steep increase in reservoir and mature egg production in 
little skate.   
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Figure 7.  Number of reservoir and mature eggs for winter skate (eggs > 5 mm) by 
size of skate.  The figure indicates a steep increase in reservoir and mature egg 
production in winter skate.  
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Figure 8.  Physiological maturity regressed over length for little skate is shown for the 
mid-Atlantic, southern New England-Georges Bank and the Gulf of Maine.  
Maturation curves were estimated with presence absence data and a logistic model.  
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Figure 9.  Proportion mature and age for given lengths are shown for physiological 
and functional maturity in winter skate.  Age of 50% physiological maturity and 
functional maturity are shown at the intersection of the drop down line with the 
second y-axis.  Maturation curves were estimated with presence absence data and a 
logistic model. 
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Figure 10.  Mature eggs and proportion of females with mature eggs are shown for 
female little skate (eggs > 10 mm).   
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Figure 11.  Mature eggs and proportion of females with mature eggs are shown for 
female winter skate (eggs > 15 mm).   
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Figure 12.  Proportion mature and age for given lengths are shown for physiological 
and functional maturity for the mid-Atlantic, southern New England-Georges Bank 
and the Gulf of Maine for little skate.  Age of 50% physiological maturity and 
functional maturity are shown at the intersection of the drop down line with the 
second y-axis.  Maturation curves were estimated with presence absence data and a 
logistic model. 
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Figure 13.  A 3-D representation of the number of eggs in female little skate plotted 
against egg size for mature females. Two females are shown for each 1 cm length 
interval.  No apparent increase in egg production can be seen as length increases; 
although the largest female corresponds to the most eggs. 
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Figure 14.  A 3-D representation of the number of eggs in female winter skate plotted 
against egg size with mature females.  One individual is shown for each 1 cm 
interval.  No apparent increase in egg production can be seen as length increases; 
although large individuals appear to have a greater number of eggs.  

Egg size (5-30mm) 
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Figure 15.  Net reproductive rate (R0) is shown for ages at maturity ranging from 0-12 
for little skate.  Peak net reproductive rate occurs at approximately 7 years in little 
skate. 
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Figure 16.  Net reproductive rate (R0) is shown for ages of maturity ranging from 0-
16 for winter skate.  Peak net reproductive rate occurs at approximately 13 years in 
winter skate. 
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Figure 17.  Age specific egg production with fishing and no fishing (F= 0.35) for little 
skate.  Note that peak egg production occurs slightly earlier when fishing mortality is 
assumed for little skate. 
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Figure 18.  Age specific egg production with fishing and no fishing (F= 0.35) for 
winter skate.  Note that peak egg production occurs several years earlier when fishing 
mortality is assumed for winter skate. 

 



 150 
 

Chapter 6 
 

AN AGE-STRUCTURED MODEL OF WINTER SKATE, LEUCORAJA 
OCELLATA, ABUNDANCE IN THE WESTERN ATLANTIC: 

SUSTAINABILITY AND UNCERTAINTY  
 

Introduction 

Over the last 30 years, exploitation in the northwestern Atlantic has caused 

large changes in biomasses of component species biomass and properties of the 

ecosystem (Fogarty and Murawski, 1998; Link et al., 2002).  During the 1970’s and 

1980’s many species were declared overfished including haddock (Melanogrammus 

aeglefinus,), silver hake (Merluccius bilinearis), herring (Clupea harengus), in 

addition to the well-documented decline of cod (Gadus morhua) (Hutchings & Myers 

1994; Fogarty and Murawski, 1998).  During this period, landings in the northwestern 

Atlantic fishery have changed substantially (Fogarty and Murawski, 1998).  In part, 

this change reflects changes in composition of the fishing fleet.  During 1960’s and 

1970’s, the New England fishery was characterized by the presence of foreign factory 

trawlers that landed a larger amount and a greater diversity of species than the 

domestic fleet (Fogarty and Murawski, 1998).   

Elasmobranchs (skates and dogfish sharks) are one taxonomic group that 

experienced considerable changes in abundance.  Analyses of survey data indicate an 

increase in elasmobranch biomass in the 1980’s with skates and dogfish accounting 

for most of the increase (Link et al., 2002, Garrison and Link, 2000).   For example, 

the National Marine Fisheries Service’s (NMFS) annual spring bottom trawl survey 

indicates that winter skate’s (Leucoraja ocellata) population increased approximately 

ten-fold from 1979 to 1988 (NEFSC, 1999).  Similarly, the NMFS fall survey also 
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shows an approximately a 6-fold increase for this species over the same time period 

(NEFSC, 1999).  In the 1980’s, as commercial groundfish stocks declined due to 

overfishing (Fogarty and Murawski, 1998), a domestic market developed for skates 

and landings of these species increased (NEFSC, 1999).  In particular, larger skates 

such as winter skate, thorny skate (Amblyraja radiata) and barndoor skate (Dipturus 

laevis) were landed and often sold to European markets (McEacran, 2002).  Smaller 

skates such as little skate (L. erinacea) were landed and sold as bait (NEFSC, 1999).   

Even though their life histories are similar, not all elasmobranch species 

increased.  A review of the abundance trends in the surveys indicates that thorny and 

barndoor skate remained below their overfishing thresholds set by the federal 

regulation, that correspond to F = M, for most and in the latter case all of the 1970’s 

and 1980’s (NEFSC, 1999).  In fact, barndoor skate was very rarely caught by 

NMFS’s surveys in the 1980’s (NEFSC, 1999).  Winter skate also dipped below its  

threshold in the 1990’s and smooth skate (Malacoraja senta) appears to have declined 

in abundance from highs in the 1970’s (NEFSC, 1999).  It has been suggested that 

skates may have been in greater abundance prior to the beginning of the NMFS 

survey, confounding the choice of appropriate biomass thresholds for western 

Atlantic skates (Casey and Myers, 1998).  

The rapid increase in biomass observed in some elasmobranch species appears 

to be at odds with the slow growth, delayed maturity, low fecundity and long life-

spans that characterize the Class.  For example, based on results of a Leslie matrix 

model for winter skate that assumed a longevity of 20 years, an age of maturity of 9 

years, fecundity of 35 and no density-dependence, Frisk et al. (2002) estimated that 



 152 
 

the rate of population increase (r) was 0.13.  Given this rate of increase, a winter skate 

population would take 19 years to experience a ten-fold increase, assuming 

exponential growth and no exploitation.  Yet, the NMFS’s annual bottom trawl 

surveys indicate that winter skate abundance, as indexed by survey catch per unit 

effort (CPUE), increased ten-fold in the spring and six-fold in the fall in less than a 

decade (NEFSC, 1999).  Accordingly, it would seem timely to conduct a more 

detailed analysis of the dynamics of winter skate to determine likely responses of its 

population to exploitation. 

The goals of this paper are to estimate the population productivity and 

compensatory ability of winter skate from 1963 to 1998 using a single species age-

structured model.  I will use the model to examine whether the rate and magnitude of 

increase in population abundances in the 1980’s is to be expected given our 

knowledge of vital rates of winter skate?  Additionally, I will assess whether the rate 

of increase in the population was the result of “expected” recruitment levels. 

To address these questions, an age structured model was constructed using the 

species vital rates and fishery-independent and –dependent data from 1963-1998.   

The model assumed that landings provide an index of catch and effort was assumed to 

follow that of the groundfishery.  Various model structures were employed to address 

the questions posed above including aggregating survey data, using finely resolved 

length frequency data and observer error only and mixed error models.  Possible 

compensatory mechanisms including recruitment anomalies were explored.   
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Methods 

An age-structured population model tuned to relative abundance indices and 

size composition data was used to assess trends in winter skate abundance.  The 

model used data from fishery-independent surveys, commercial catches, and 

estimates of vital rates (mortality, growth and fecundity).  The model included both 

observation and process error.  The model was constructed using the software 

program AD Model Builder ©, Sindey B.C., Canada.    The full model code is 

provided in Appendix A. 

 

Fishery-independent surveys 

The spring bottom trawl survey has been conducted since 1968 in offshore 

regions (Figure 1A & 1B).  Inshore stations were added for all regions in 1973 

(Figure 1A).  The fall survey has been conducted since 1963 for offshore regions in 

southern New England, Georges Bank and the Gulf of Maine (Figure 1C & 1D).  In 

1972 inshore stations were added to the fall survey (Figure 1C).  The surveys were 

conducted primarily from the RV’s Albatross IV and Delaware II.  Both surveys 

employ stratified random designs with strata defined by depth and latitude.  

Depending on weather and other circumstances, the spring and fall surveys each 

sample approximately 300-400 stations per year.  Tows were conducted with a 

bottom trawl, using ½ in (1.27 cm) mesh liner, towed for 30 minutes at 3.5 knots.  

Processing of catches, including recording the total weight of each species for each 

tow and sub sampling the catch to estimate individual weights and lengths for all 

species, was conducted onboard.  
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Time series of winter skate abundances have been developed from aggregated 

survey CPUE for the fall survey (Figure 2).  However, these data do not capture the 

annual changes in the size frequencies evident in the survey.  Figure 3 integrates both 

abundance and size frequency information.  Other fishery-independent data exist for 

winter skate from a variety of sources.  A discussion of the relevance of additional 

surveys (the Massachusetts Division of Marine Fisheries survey, the Connecticut’s 

Department of Environmental Protection’s trawl survey and a Canadian Department 

of Fisheries and Oceans survey) to understanding historical patterns in winter skate 

abundance is presented in Appendix B. 

 

Model data inputs  

The vital rates of winter skate used in the model were derived in previous 

dissertation chapters (Table 1).  Relative abundance estimates were developed from 

the NMFS’s annual spring and fall bottom trawl survey (Table 2).  To utilize the 

longest available time series, I used fall survey data for offshore regions (strata 1-40) 

from 1963 to 1998.  Use of only offshore stations is justified as survey trends were 

very similar to trends for all regions combined.  The areas covered included off-shore 

regions of southern New England, Georges Bank and the Gulf of Maine.   

Commercial catch estimates from 1963 to 1998 were based on reported 

landings data.  Estimates of effort for the groundfish fishery developed by Fogarty 

and Murawski (1998) were used as surrogates for effort in the skate fishery (Table 2).  

Note that effort reported in Fogarty and Murawski (1998) included the years 1960-
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1992, thus for years 1993-1998 a four year running average of effort was used to 

estimate missing data.  

 

Population dynamics 

The model projects abundance (numbers at age) in the population forward in 

time.  The section includes equations defining biomass (1), fishing mortality (2), 

recruitment (3), and propagation of numbers at age (4).  Definitions of all parameters 

used in the model are provided in Table 1. 

Biomass (B) was calculated as the sum of the products of numbers at age 

(Na,t) and mean weight-at-age (wa) where a = age: 

(1)    a
a

tat wNB •=∑
∞

=1
,  

Animals age 20 and older were accumulated in a plus group, and it was 

assumed that asymptotic weight was achieved by age 20.  Spawner abundance (St) 

was estimated as biomass as above for a = Tmat to the maximum age. 

Fishing mortality was estimated as the observed catch biomass (C) divided by 

the average population biomass ( B ): 

(2)     
t

t
t B

CF =  

where Ct is catch in year t and tB  is average biomass in year t.  A Ricker stock 

recruitment function was used to estimate age-1 recruitment:   

(3)    tt wzS
tt eeSN •••= •−

+
)(

1,1
βα  
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where N1,t+1 is the number of recruits in year t+1, St is spawning biomass in year t, α 

is the density-independent parameter (or maximum age-1 recruits per unit of 

spawning biomass), and β is the density-dependent parameter.  The second 

exponential term (ewz) represents process error that allows for recruitment variation or 

anomalies.  When assuming an observation error model only, the process error terms 

were not estimated.   

 The numbers at age were projected forward as: 

(4)    )(
,1,1 exp ta FvM
tata NN •+−

++ =  

where Na,t is number of fish of age a in year t, M is natural mortality, va is 

vulnerability of age a fish to the fishing gear and Ft is fishing mortality in year t.   

Note fishing and natural mortality are not age-specific. 

 

Model initialization 

The model was initialized using a leading parameter scheme.  Given the 

dynamic equations above (eq 1-4), it is possible to reduce the number of initial 

parameters in this age structured model to two key population parameters that 

represent the population’s recruit production at equilibrium (Ro) and maximum 

juvenile survival rate (K).  To do this, a series of age-specific relationships based on 

leading (or unknown) parameters were derived.  These age-specific relationships 

include survivorship, maturity, and growth.  Given these age-specific relationships 

and initial estimates of natural mortality, Ro and K, parameters for a stock recruitment 

relationship for unfished conditions were derived.  The age-specific relationships are 
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described in equations 5-8 and the alpha and beta terms of the Ricker recruitment 

function are provided in equations. 9-11.   

Survivorship to age a was given by:  

 (5)      
( )
( )
( ) Aafor  
1

Aafor  
1

1

=
−

=

<=

−

−−

−−

M

aM

a

aM
a

e
eL

eL
 

where M is the instantaneous natural mortality and A represents the age of the plus 

group.  The maturity-at-age function was represented as a simple logistic function: 

(6)    ))((1
1

lhaga e
m −•−+

=  

where ma is the fraction of age a individuals that are sexually mature, g is the shape 

variable and lh is the age of 50% maturity.  Growth was assumed to follow the von 

Bertalanffy equation, given by: 

(7)     )1( )( 0tak
a ell −−

∞ −=  

where l∞ is the asymptotic length, k is the annual rate at which l∞ is reached (the 

Brody growth coefficient) and to is the theoretical age at zero length.  An allometric 

relationship was used to estimate weight at age: 

(8)     wa = Ψ•lΩ 

where Ψ and  are parameters of the weight to length relationship. 

 Given the survivorship and maturity at age, the scaled net reproductive rate 

was given by: 

(9)     a
a

ae mL∑=φ . 
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The incidence function (Eq 9) that represents the scaled net reproductive rate 

over the life-span of an individual, also provided the foundation to calculate the total 

reproductive effort in a population with a stable age distribution simply by 

multiplying Ǿe by the initial number of recruits (or in this case the leading parameter 

Ro) so that So = RoǾe.  The next step in deriving the parameters for the Ricker 

function was to note that two points on the stock recruitment curve have been defined 

corresponding to (0,0) and (So,Ro).  Accordingly, alpha was defined as: 

(10)  
o

o

S
RK=α and noting that   eoo RS φ= this reduces to eK φα /=  

where K is the recruitment compensation ratio, or the relative improvement in 

juvenile survival rate at low spawner abundance.  Given initial estimates of K and R0 

and ignoring the process error term, i the density-dependent parameter in the stock 

recruitment function (β) was estimated as: 

(11)  

( ) αβ
α

β for   ngsubstituti when /ln   toreduces  which ln
o

o
oo

o

o

S
R

KSKS
S

R
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= . 

 

The leading parameters were used to initiate the population in model runs.  

Subsequently, the population was projected forward in time (eqs. 3 & 4).  Using the 

projected population matrix a time series of predicted survey CPUE and commercial 

catch were calculated. Best fitting model parameters were determined by maximizing 

the likelihood of the observed data given estimated parameters for observation and 

process error models described below. 
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Observation models 

 Three separate observation sub-models were constructed from predictions 

based on the population dynamics model.  The first observation model predicted the 

commercial CPUE (conditioned on observed catch) assuming lognormal errors.  The 

second observation model predicted the fishery-independent survey abundance 

information and also assumed a lognormal error distribution.  The third observation 

model focused on the size composition data from fishery-independent trawl surveys.  

The approach assumed that sampling a fish of any size and any age was a random 

draw from a multinomial distribution, where the probability of sampling an age a fish 

was determined by the proportions-at-age in the population. 

 

Length frequency analyses 

Survey data represented a time series of abundance at length.  To provide an 

equivalent time series from the model, the abundance at length was estimated from 

model predicted abundances at age using a multinomial distribution assuming normal 

errors.  The distribution was chosen to capture the 20 age classes of winter skate.  The 

likelihood function took the following generalized form: 

(12)    θθθθ xpppp ....)( 21 ••=  

where px is the predicted probability of capturing an individual at length x, and θ is 

the number of individuals observed at length x, taken from survey data. 

The observation model compared the observed survey length distributions to 

length distributions predicted by the population dynamics model.  Note that this 

approach used the population dynamics model to predict a length distribution that can 
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be divided into an arbitrary number of length bins.  Changing the number of length 

bins does not alter the underlying age structure in the model.   

The observation model multiplied the proportion at age in the population 

dynamics model by the vulnerabilities at age, based on survey selectivities, and by the 

predicted probability of observing a skate of length x given it’s age a to yield a 

relative length distribution which was used subsequently in the likelihood calculation 

and compared to the predicted numbers at age. 

The probability density function for an individual skate in the length interval 

x-d to x+d for a given age a is given in equation 13.  This calculation is based on 

growth rates (k) and mean length-at-age calculated from the von Bertalanffy model 

developed in previous dissertation chapters.  Assuming variation in length-at-age was 

normally distributed, the probability of fish of age a falling in a length interval x-d to 

x+d was estimated as:   

(13)    ∫
+

−

−
−

=
dx

dx

Lx

a
t

a

ta

eaxP
2

2
,

2
)(

2
1 σ

πσ
 

where x is the mid-point of the length interval (Fournier, 1991; Martell, in 

preparation).  Standard deviation in length-at-age was a function of age and the 

growth coefficient k:  

(14)    
})

1
1{21(

1
1max

1

2 −

−

−

−
+−

= T

a

p
p

a e
λ

λσ  

where )( kep −= .  The parameters λ1 and λ2 explain how the standard deviation of 

length changes with age (Fournier, 1991; Martell, in preparation).  The parameter λ1 
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is the standard deviation at age 1 and positive values of λ2 represents how fast σ 

increases with increasing age. 

The following equation estimated the probability of sampling a fish of length 

x from the population: 

(15)    
∑ ∑
∑

= =

== x

x

T

a ax

a

T

a
x

x
axPs

axPs
p

1 1

1
max

max

π

π
 

where sx is selectivity to the survey, P(x|a) is the probability of fish of age a in length 

interval x, and πa is the proportion of age a individuals in the population in year t.  

Size selectivity to the sampling gear was predicted using a logistic function: 

(16)    ))2(2(1
1

lhlgx e
s −•−+
=  

where g2 is a shape parameter, lh2 is the length at 50% selectivity.   The two 

parameters (g2 and lh2) were estimated outside the model. 

 

Likelihoods  

The overall objective function that was minimized was composed of up to five 

different observation or process error terms. The number of components used 

depended on the model configuration considered.  Three of the objective functions 

were utilized on all model runs.  The first fitted observed abundances based on 

commercial (CPUE) and survey CPUE based on scaled z scores.  The second fitted 

observed and predicted catch.  In the third the observed length frequencies were fit to 

the predicted probability of a fish of age a in length interval x.  Two additional 
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objective functions were used in some model runs: one included a prior on K and the 

second allowed process error (wz) in the recruitment function. 

 

Estimated parameters  

The five main parameters estimated in this model are K the maximum juvenile 

survival rate as the population approaches zero, R0 the unfished recruitment level 

(population carrying capacity), B0 the proportion of the virgin population size at the 

start of the time series, and λ1 and λ2 the standard deviations of the length frequency 

data.  Also estimated are α and β the density-independent and -dependent parameters 

of the Ricker stock recruitment relationship, respectively.  The model also calculates 

annual fishing mortality rate Ft for each year based on the values of parameters 

estimated in the objective function minimization.  When the model was fit with 

process error in recruitment, one recruitment error parameter was added for every 

year.    

 

Trial runs and “best” model selection 

Base model runs had no process error and parameters were unconstrained with 

the exception of an informative prior on K.   In a meta-analysis, Meyers et al. (1999) 

found that K (hisα~ ) ranged from 1-7 in most fishes.  Preliminary model results 

indicated that values of K less than 5 resulted in lower model performance.  

Unconstrained models tended to have too large a value for K.  In order to achieve 

robust results, a moderate prior for K = 5 was set.  Six trial model runs were 

performed on both spring and fall data that each represented the length frequency data 
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in different sized bins: 1, 3, 6, 9,12 cm bins and a 2 bin model where juveniles (< 75 

cm (TL)) and adults (> 75+ cm (TL)) were aggregated into two groups in a fashion 

similar to a delay-difference model (D.D).  In subsequent model runs, models will be 

referred to by their bin size, or by D.D.  Five criteria were used to judge “best” model 

fits.  Criterion 1 was the maximum likelihoods estimates.  We did not use penalized 

information criteria, i.e., Aikaike’s Information criteria, to assess model performance 

as the number of parameters was equal in all models except for the one that included 

recruitment process error.  Criteria 2, 3 and 4 consist of the sum of values for 

correlations, slopes, and intercepts from the relationships of predicted vs observed 

biomass (CPUE spring) and commercial CPUE vs survey CPUE.   The logic behind 

criteria 2, 3 and 4 was that the condition when both slopes = 1 (combined sum = 2) 

and each intercept = 0 (combined sum = 0) would indicate predicted values match 

perfectly with observed values.  Thus values for criteria 2, 3, and 4 closer to a 

"perfect” fit (i.e., =2) indicate a “better” fitting model.  The fifth criterion used was 

the summation of λ1 and λ2 where lower values would indicate better fitting models.  

Each criterion was given a “score” of 1-5 with 1 being the best of the five models and 

5 being the worst of the five models.  These scores were summed and the lowest total 

score indicated the “best” fitting model. 

  

Compensatory recruitment 

A process error model was used to test the hypothesis that the rate of increase 

in population was the result of “expected” recruitment levels.  The “best” fitting 

model was run with process error in recruitment (wz) bounded between -10 and 10.  
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The model was run assuming base run conditions with a prior of K of 5 and other 

parameters unconstrained.  This model structure has an additional 41 parameters 

compared to base runs.  
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Results 

Base model runs and model selection 

Six base model runs were completed for the fall survey for models that 

represented the population size structure in 1, 3, 6, 9 and 12 cm bin sizes and an 

additional formulation that mimicked a delay-difference structure (Table 3).  

Considering all models examined, initial population sizes of winter skate varied 

substantially.  The smallest initial population size was less then 1 % of the estimated 

virgin population size.  The largest initial population size estimated was 26% of the 

estimated virgin population size.  The virgin recruitment (Ro) ranged from 

203,260,710 to 221.  The α and β parameters of the Ricker stock-recruitment 

relationship ranged from 18.19 – 22.60 and from 3.02 x 10-8 – 2.61 x 10-1 

respectively.  Estimated values of K varied from 3.29 – 5.50.  Based on overall 

rankings and model structure, models 1 and 9 were chosen to provide two contrasting 

model structures for further exploration.  

 

Model 1 

Model 1 represented the population as comprised of 1 cm length classes.  The 

model included four observation models in its objective function, but did not include 

any process error in its stock and recruitment function.  Non-linear optimization 

algorithms produced parameter values that best predicted the fall fishery-independent 

survey and the commercial CPUE time series.  This model was chosen for further 

exploration as it provided the most highly resolved representation of the population 

size structure.  Also, the overall likelihood of the model and the summed r2 and slope 
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values of the relationships between observed and predicted values were the 2nd 

highest of all the alternative models considered. 

The optimum solution had a steepness value of K = 4.42 and unfished 

recruitment R0 = 203,260,710 (Table 3).  This model also showed relatively low 

standard deviations for length at age (λ1= 38.64, the standard deviation of the first age 

interval, and λ2 = 3.31, the rate at with standard deviation increases with age).  As 

with all of the model runs, model predictions tended to underestimate survey and 

commercial biomass as indicated by the slopes of the fits between predicted and 

observed values (Table 3).  The time series of predicted biomass of model 1 exhibited 

similar behavior to that for the observed survey CPUE (Figure 4).  However, the 

predicted survey CPUE does not fully reflect the rate of increase in the early 1980’s 

observed in the survey data.  Specifically, residual values (observed – predicted) were 

consistently positive in the 1982 - 1988.  Moreover, predicted biomass declines less 

quickly than the observed survey biomass after reaching its peak in the 1980’s, so that 

the model overestimates survey biomass for the period 1989 - 1997.   The predicted 

commercial CPUE also did not match the observed commercial CPUE trend well for 

years after the mid 1980’s (Figure 5).  In particular, the large increase in the 

commercial CPUE that began in the 1980’s and continued until 1998 was not 

captured by the model.   

There was a strong (r = -0.99) negative correlation between estimates of B0, 

the proportion of virgin biomass at the beginning of the model and R0, the virgin 

recruitment in this model.  Indeed this was a consistent problem with all model runs 

for which correlations varied between -0.7 to -0.99.  The correlation between R0 and 
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B0 indicates a trade-off in model fitting between the initial population size and the 

equilibrium population size.  This results in model runs in which the initial population 

size as either very large or having been substantially depleted.  To explore this 

pattern, I ran additional simulations in which the possible values of B0 were bounded.  

In these runs the model consistently converged to the lower bounds of B0.  As the 

lower bound for B0 was increased, the pattern of correlation between R0 shifted from 

one with B0 to one with K (Table 4).  When the model is run with a B0 with a lower 

bound of 0.5 parameter correlations disappear all together (Table 4).  However, under 

these conditions, the model loses its ability to reproduce the pattern in the observed 

survey biomass (Figure 6).  The biomass estimate is greatly increased as B0 is 

increased and the predicted biomass is well below the observed survey CPUE during 

the 1980’s (Figure 6).  While a higher B0 allows the model to predict larger overall 

biomass it restricts the ability of the predicted biomass to fit the survey CPUE. 

For model 1, normal approximations of the likelihood profiles of parameter 

estimates were estimated for B0, R0 and K.  Likelihood profiles indicate that all 

parameters are estimated relatively well with 95% confidence intervals of likelihoods 

for K of 2.38 to 6.39, for R0 0.91 to 36.6.  Likelihood profiles estimates for B0 were 

difficult to estimate as the model estimated B0 was near zero.  The normalized 

likelihoods indicated that the 95% confidence interval of B0 was -0.00044 to 0.00047.  

The estimated parameters of the Ricker equation for model 1 lead to a stock-

recruitment relationship that was effectively linear over the range of adult biomasses 

observed.  The time series of relative Fs predicted by model 1 are shown in Figure 7.   

The model suggests that fishing mortality increased in the beginning of the time 
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series, then declined in the late 1980’s, only to increase over the last 15 years of the 

survey.   

 

Model 9 

Model 9 was similar to Model 1 in that it comprised four observation models 

in its objective function but did not include any process error in its stock and 

recruitment function.  However, Model 9 differed from the first model in that it 

represented the population as comprising 9 cm length classes.  Non-linear 

optimization algorithms produced parameter values that best predicted the fall 

fishery-independent survey and the commercial CPUE time series.  This second 

model chosen “scored” 20, ranking among the worst overall in terms of fit.  The 

model was chosen for further analysis as it represented a more aggregated analysis of 

survey length frequencies and has reasonable values for all parameters (Table 3).   

Leading parameters for Model 9 were K of 5.46, and unfished recruitment of 

R0 = 43,914 (Figure 8 & 9).  B0 was estimated as 0.24 indicating a starting population 

at one quarter of the equilibrium level, a much higher level than Model 1.  Parameter 

correlation between R0 and B0 was 0.78 and between K and B0 was 0.33.  The 95 % 

confidence interval for K was 2.87 to 7.95 and for R0 was 9.76 to 11.6.  While the 

confidence estimates were similar for K they were smaller for R0 when compared to 

model 1.  The model failed to estimate a confidence interval (95%) for B0.    

The survey CPUE predicted by the model exhibited a gradual increase from 

1970 – 1990 (Fig 8).  However, while this general pattern is characteristic of the 

observed survey CPUE, the model captured neither the rapid rate of increase nor the 
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absolute magnitude of the increase in survey CPUE observed in the 1980’s.      

Similarly, model predictions of commercial CPUE did not adequately describe the 

observed commercial CPUE (Fig. 9). 

Estimated parameters of the Ricker recruitment function for this model (Table 

3) lead to a stock-recruitment relationship that exhibited strong density-dependence 

over the range of adult biomasses observed.  Peak recruitment levels are estimated to 

occur at relevant intermediate stock biomasses.  The time series of Fs predicted by 

model 9 are shown in Figure 7.  The model suggested similar trends in fishing 

mortality that were reported for model 1 with peaks in fishing mortality during the 

1960’s and 1970’s, followed by a decrease in the 1980’s, and a subsequent increase 

over the last 15 years of the time series to peak levels.   

 

Recruitment anomalies 

To address whether the rate of increase in population was the result of 

“expected” recruitment levels a model that included process errors in the stock and 

recruitment function was fit.  The inclusion of this additional term in the objective 

function allowed the recruitment predicted in the model to deviate from the 

underlying Ricker stock and recruitment function, thereby estimating a recruitment 

anomaly for each year in the model.  Process error was assessed for recruitment on 

fall survey CPUE data.  Optimizing model 1 with process error indicated that 

estimated recruitment anomalies could play a potential role in the population 

dynamics of winter skate (Figure 10).  A review of yearly estimates of the recruitment 

anomaly (wz) estimated by the model indicated that wz were large and positive 



 170 
 

throughout the 1970’s.  Recruitment anomalies were smaller and variable in sign 

from the 1980’s – present.  

  

Model generalizations 

 A trade-off between K and R0 was common in model parameter estimates so 

that when K was low R0 was often high.  This was not always the case, but it suggests 

that there was a trade-off between maximum juvenile survival and equilibrium 

recruitment.  There was also a trade-off between either K (or R0) and B0, indicating 

there was another trade-off between the starting biomass and estimates of maximum 

juvenile survival and/or equilibrium recruitment.   

When models were initialized with a B0 near zero, the model tracked observed 

survey CPUE well, whereas if B0 was 0.2 or more, the model had difficulty following 

survey CPUE trends.  Overall the models indicated that in 1963 the winter skate 

population was likely at low abundance and the rapid increase in the 1980’s probably 

was less drastic than survey data indicates.   
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Discussion 

Without estimates of the species’ vital rates and the development of 

assessment models, understanding the population dynamics of winter skate has 

remained elusive.  Here I utilized recently estimated vital rates for winter skate to 

successfully fit an age-structured model to survey CPUE data and catch data for 

winter skate.  A suite of models was developed that differed in the level of resolution 

with which they resolved the size structure in the population and in how recruitment 

variability was included.  However, none of the models were able to replicate both the 

rate and magnitude of the increase in biomass in the 1980’s that is indicated by 

survey trends.  Additionally, all the model structures failed to fit commercial CPUE 

trends. 

An age-structured population model was at the core of the developed model.  

The population model was the same in all formulations examined.  Non-linear 

optimization techniques adjusted parameter values to minimize differences between 

predicted survey CPUE and predicted commercial CPUE and their equivalent 

observed CPUE time series in all formulations.  However, model formulations 

differed in the degree to which the population model resolved the size structure in the 

survey CPUE time series.  In some formulations, the population model predicted the 

size distribution of the survey CPUE time series in 1 cm size classes, in other 

simulations the size structure was less resolved.  Thus in the comparison the 

alternative model formulations, it is important to remember that the underlying 

population model structure remained constant and involved the same number of 

parameters.   
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All models predicted an increase in winter skate population biomass indicated 

in the surveys in the 1980’s.  However, the models differed in the degree to which 

they could resolve the pattern of increase observed in the survey.  Models with highly 

resolved length structures (Model 1) fit the increase in biomass in the 1980’s better 

than models with more aggregated structure (Model 9).  Model 1 captured the 

magnitude but not the rate of increase in the 1980’s whereas Model 9 captured neither 

the magnitude nor the rate of increase.  Three inferences can be drawn from the 

discrepancy between observed and predicted abundances: (i) the model was mis-

specified, (ii) the survey does not reflect the dynamics of a closed population, or (iii) 

empirical estimates of vital rates are inappropriate.  Below, I will deal with each 

possibility in turn.  

Survey data indicated an emergence of high biomass levels for both adults and 

juveniles in the early 1980’s following a period of very low adult biomass.  Given the 

age and growth estimates of winter skate (Chapter 4; Sulikowski et al.; 2003), this 

scenario created a difficult challenge for fitting the model to survey data.   It is also 

important to note that all models indicated lower population biomasses in the early 

1960’s than indicated in the survey time series.  The failure to fit to the early 1960’s 

observed data resulted because the model was initiated with a population at a stable 

age distribution whereas the survey data indicated a relative lack of adults in the 

survey and high levels of biomass of young juveniles in the early 1960’s.  Thus, the 

reproductive capacity of the population in the early 1960’s was low while 1-4 year 

old skate abundance was high.   
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An important assumption when interpreting the survey time series is that it 

represents a closed population.  If the population the survey indexed was not closed, it 

would be unreasonable to expect a population model, which is explicitly closed, to 

replicate the observed abundances.  Changes in the distribution of the winter skate 

population such as seasonal or long term migrations and range restriction would 

influence the portion of the population effectively sampled, thereby altering the 

effective catchability of the survey.  However, here I used data for the entire western 

Atlantic south of Canadian waters and there are no data available to suggest a large 

scale shift in winter skate’s population structure. Yet, winter skate is known to make 

onshore-offshore seasonal migrations and may use Georges Bank as a primary 

spawning ground (Chapter 4).  For example, all genetically-identified winter skate 

hatchlings were caught on Georges Bank and most were caught during the fall (4 of 5 

– Alvarado-Bremer et al. 2004).  A review of migration patterns of the species shows 

a juvenile onshore-offshore migration (Appendix C).  Adults are spread over the 

species range in the spring while in the fall they are clustered on Georges Bank 

(Appendix C).  If Georges Bank is a focus for mating or spawning it could, in part, 

explain the high variability in survey estimates if reproductive patterns follow 

seasonal or environmental cues.  Unfortunately, our understanding of the species’ 

reproductive biology does not allow for a conclusive solution to these issues.   

Overall, the different model formulations all yielded realistic parameter 

estimates.  The model with the highest likelihood was model 1, which provided a 

maximum population growth rate of K = 4.42 and a population capacity of R0 = 203 

million.  Both values are high considering the species’ life history and the reported 
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range in teleost species for K of 1 to 7 (Myers et al., 1999).  The R0 value is much 

larger than the peak in abundance in the survey CPUE series.  R0 is sensitive to B0 

and in this case is likely overestimated with the peak in predicted biomass of 83,739, 

which is less the 1 % of equilibrium biomass.  The more aggregated model 9 resulted 

in a K = 5.46 and R0 = 43, 914 and peak abundance higher than equilibrium biomass.  

Together, both models indicated that the population has been below carrying capacity 

for the duration of the time series.   

Model results are dependent on the quality of vital rate estimates used to 

parameterize the model.  Error in parameters for age of maturity (tmat), life span (tmax) 

and the Brody growth coefficient (k) have the potential to change model performance 

substantially.  Values used in the model are similar to previous estimates for winter 

skate reported by Sulikowski et al. (2003).  Parameter estimates used in the model 

(Chapter 4) indicated a slightly faster growth rate (k = 0.64 vs 0.9) and smaller 

asymptotic size (l∞ = 131 cm vs. 122 cm) than estimated in Sulikowski et al.’s study.  

Additionally, the model structure presented in this study assumes that all vital rates 

are constant for the time series.  However, winter skate has experienced large changes 

in fishing effort and directed harvest during the time series (Murawski and Fogarty, 

1998) which may have lead to variation in vital rates.  Clearly, it is possible that vital 

rates differed in the 1960’s when the population was at a low biomass level compared 

to the large population size of the 1980’s.  However, there are no historical estimates 

of vital rates for winter skate. 

Fecundity was not directly used in the model but was instead formulated using 

a Ricker stock recruitment function.  Model 1 resulted in essentially a linear 
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recruitment function while model 9 showed a higher degree of compensatory 

dynamics of the relevant range of adult stock sizes.  However, for both formulations, 

the rate of population increase at small population sizes estimated by the model were 

in line with estimates derived for estimates for teleosts generally (Myers et al., 1999).  

While very little is known of recruitment in elasmobranchs, there is theoretical 

evidence to suggest that recruitment is a linear function of stock size in winter skate 

as estimated in model 1 (Cortes, 2004).  More generally, elasmobranch life histories 

are characterized by low fecundity and high offspring survival (Chapter 3; Frisk et al. 

2001), suggesting that recruitment relationships should be strong and closely reflect 

adult biomass (Cortes, 2004; Smith et al., 1998).  However, winter skate has 

withstood relatively high exploitation levels implying that recruitment relationships 

likely have compensatory behavior.  Estimated recruitment patterns in model 9 may 

suggest more density effects than would be expected for an elasmobranch species.  

Clearly, this is an area in need of continued research effort. 

All models assume a constant catchability for the time series.  Survey data 

indicates large shifts in late juvenile and adult biomass during several periods in the 

time series.  If cacthability increased with size in winter skate, the large changes in 

adult biomass during the time series would be easier to explain.  There is indeed 

evidence within the survey time series for substantial changes in the size structure of 

the winter skate population over the time series.  As already noted above, the 

population in the early 1960’s was characterized by a proportionately high abundance 

of juveniles, where more recently a full age (and hence size) structure has developed 

in the population.   



 176 
 

All models failed to adequately replicate commercial CPUE time series.  

Estimates of catch and effort data are areas of high uncertainty.  Reported aggregated 

mixed skate landings from Cape Hatteras north to Canadian waters were used as 

catch estimates which may not reflect the historical catch in winter skate.  

Additionally, inconsistencies and under-reporting of landings and discards add to 

uncertainty of catch estimates.  Use of aggregate landings also assumes that the 

distribution of skate species represented in the catch has not changed over time.    

Given knowledge of exploitation in the groundfishery of the western Atlantic, the 

trends observed in the skate landings seem to follow the pattern of high effort from 

the foreign fleet in the 1960’s to the mid 1970’s.  The exclusion of the foreign fleet 

lead to an initial decline in effort.  However, the subsequent expansion of the 

domestic fleet lead to an increase in effort from the mid 1980’s to the present.  Thus, 

reported landings in the 1960’s and 1970’s, which occurred during peaks in effort of 

the groundfishery, may be underestimates as a result of foreign fleets keeping a 

greater proportion of skates than the domestic fleet at the time.  During the period of 

high activity of the foreign fleets, reported effort for the groundfishery was probably a 

good indicator of skate effort.  However, in the 1980’s and 1990’s, when the domestic 

fleet began keeping a greater number of skates, the effort reported for the 

groundfishery probably was an underestimate of effort directed at skates.  This is 

evident in the very high commercial CPUE in the 1980’s and 1990’s.  During this 

period the domestic fleet was increasingly landing skate for the market.  It is possible 

that in years prior to the mid 1980’s skates were caught mainly as by-catch, with 

some discard survival, while in later years they were kept for the market.  Thus, the 
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estimates of effort of the multi-species groundfishery may not follow the changes 

appropriate for winter skate. 

All models estimated similar values for fishing mortality (F) during the time 

series and suggest that fishing mortality was highest in the late 1960’s to the mid 

1970’s and during the 1990’s.  During the 1970’s estimates of fishing mortality were 

as high as F = 0.2 and more recently have reached an F = 0.3.  The period of lowest 

winter skate biomass corresponded to estimated fishing mortality ranging F = 0.05-

0.2.  Currently, the estimated fishing mortality is higher than the 1970’s raising 

concern that current fishing mortality may not be sustainable.   

The model that incorporated process errors in recruitment indicated a period 

of higher than expected recruitment throughout the 1970’s.  Could competitive 

release from the declines in other groundfish species have provided a competitive 

advantage leading to increased recruitment rates in winter skate that help explain the 

sudden increase in biomass in the late 1970’s and 1980’s?  It is plausible that inter- 

and intra-species specific density effects have a role in recruitment in winter skate.  

Inclusion of process error did allow the model to capture the rate but not the 

magnitude of the increase in biomass in the 1980’s as the positive recruitment 

anomalies in the 1970’s and allowed recruitment to increase as much as 3.3 times 

greater than observed adult biomass.  If survey data are accurate, estimates of 

recruitment process error provides indirect evidence that reproductive potential and/or 

survival of 0-age skates may have been higher than observed in the 1970’s.  Three 

potential hypotheses can be put forward to explain these patterns.  First, female 

winter skate may have benefited from reduced competition with other fishes during 
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this period.  Accordingly, female skates may have been in better condition during the 

late 1970’s than in other times.  In this scenario, an equal spawning biomass might 

have produced more offspring in the 1970’s, driving the observed increase in 

abundance, than in subsequent years.  However, increased egg production as a 

compensatory response is unlikely as a result of body cavity volume limitation in 

elasmobranchs (Holden, 1972).  The other two hypotheses would invoke increased 

survival of juvenile skates.  One hypothesis would suggest increased survival of 

juvenile skates as a result of increased female provisioning or fitness.  A second 

hypothesis would ascribe the increased juvenile survival to reduced predation 

pressure from other fishes.  Irrespective of whether these hypotheses are valid, my 

results do suggest that if process error in recruitment is accounted for winter skate 

population could increase at the rate suggested by the NMFS fall survey.  However, 

the model still underestimates the magnitude of the increase in the 1970’s to the mid-

1980’s.  Until more field-derived data are estimated, the importance and effect of 

compensatory recruitment remains unanswered, but potentially important.   

In summary, I have developed a suite of models to predict the dynamics of 

winter skate in the northwest Atlantic.  All model formulations predicted that the 

winter skate populations in the 1960’s was substantially below current carrying 

capacity.  This suggests that the skate population could have been larger at earlier 

times if current carrying capacity is a reliable estimate of former carrying capacity.  

All models also indicated that winter skate abundance increased in the 1980’s to a 

peak in mid 1980’s, and suggest population declines or leveling off since mid the 

1990’s.  However, the models capture increase in biomass, but do not fully replicate 
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rate of biomass increase, suggesting either model mis-specification, biases in survey 

estimates, or inaccuracies in current estimates of winter skate vital rates.  The role of 

additional factors such as environmental or biological interactions in determining the 

rate and magnitude of increase of winter skate remain poorly described.  The model 

presented here does not address these issues.  However, it is clear that winter skate, 

like other skates, is susceptible to population decline (Holden, 1973; Brander, 1981; 

Dulvy et al., 2000; Casey and Myers, 1998; Walker and Hislop, 1998; Stevens et al., 

2000; Frisk et al., 2001; Frisk et al., 2002).  Thus, in depth analyses of survey trends 

and the population structure of winter skate are needed to fully understand the 

dynamics of winter skate in the western Atlantic. 
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Table 1.  Input data, definitions of parameters and symbols used in model.  
Definitions that are italicized provide model input values.  
 
Symbol Definition 
Subscripts 
tmat  age at maturity 
tmax  maximum age 
a  age of fish 
t  year in survey 
x  length 
X  index for length interval 
Population dynamics 
B  biomass 
N  number of individuals 
B0  the proportion of the virgin population size at the start of the time series 
(ranges from 0-1) 
v   vulnerability to fishery (0,0,0.5,1,1…Tmax) 
w  weight 
F  fishing mortality 
C  catch 
R  recruitment 
wz  variable for recruitment process error 
α  density-independent parameter of the Ricker model 
β  density-dependent parameter of the Ricker model 
S  spawning stock biomass 
M  natural mortality (0.22, based on Heonig’s method) 
Initial calculations 
L  survival 
m  maturity 
l  length 
lh  age at %50 maturity (12.5) 
g  shape parameter of the maturity ogive (logistic)(3) 
s  selectivity to survey gear 

%50 selectivity to the survey gear (Fall=56;Spring=47) 
shape parameter of the selectivity to survey gear 

(Fall=0.078;Spring=0.1) 
l∞  asymptotic length (111.43 cm) 
k  growth coefficient (0.09/year) 
t0  theoretical age at hatch (-1.80) 
Ψ  intercept of weight-length power curve (0.0000019) 
Ω exponent of weight-length power curve (3.33) 
εφ    “fecundity incidence” 

0ε
φ   unfished eggs per recruit 
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K  maximum increase in juvenile survival as a population approaches 
zero 
R0   average recruitment for a unfished population 
Length frequency analysis  
λ1  standard deviation at age 1 
λ2  standard deviation as age approaches Tmax 
π  proportion at age a in year t 
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Table 2.  National Marine Fishery Service’s annual fall bottom trawl survey, reported 
commercial landings and groundfish effort on southern New England and Georges 
Bank.  Fall survey data is from offshore strata (1-40) for southern New England, 
Georges Bank and the Gulf of Maine.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Year Fall survey 
(n/tow) 

Landings 
(mt) 

Effort 
(days fished)

1963 3.01 33 45 
1964 2.33 4083 55 
1965 2.16 2363 75 
1966 1.94 2844 90 
1967 1.12 4898 85 
1968 0.95 6483 82 
1969 0.76 9462 99 
1970 1.55 4128 66 
1971 0.77 5905 98 
1972 2.46 8823 120 
1973 3.15 7963 95 
1974 1.18 3651 89 
1975 0.53 3968 125 
1976 0.82 1212 60 
1977 1.98 1418 31 
1978 1.61 1353 29 
1979 2.05 1360 27 
1980 2.21 1581 35 
1981 1.95 847 37 
1982 3.63 878 39 
1983 4.23 3603 37 
1984 5.22 4157 39 
1985 3.62 3984 41 
1986 5.24 4253 38 
1987 6.00 5078 39 
1988 4.46 7264 39 
1989 3.17 6717 39 
1990 3.94 11403 40 
1991 4.27 11332 39 
1992 2.87 12525 39 
1993 2.10 12904 39.25 
1994 2.60 8829 39.25 
1995 2.25 7222 39.25 
1996 2.09 14226 39.25 
1997 2.25 10952 39.25 
1998 3.02 16936 39.25 
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Table 3.  A. Results of model runs including parameters estimates K, R0, B0, λ1 and 
λ2.  Also shown are α and β of the Ricker stock recruitment function.  Also shown is 
the likelihood for each model run and the results of regression fits to predicted 
biomass (cpue) vs survey cpue and a second regression between predicted biomass 
and commercial cpue.  B. Provided are the “scores” for selection of “best” fitting 
models for each criterion and the final “score”.    
 
A.1. 

 
A.2. 
 

 
B. 
 

Model Combined 
r2 

Combined 
slope 

Combined 
intercept 

Likelihood Combined 
(l1 & l2 ) 

1 2 3 4 5 Score 

1 0.94 3.87 67673 323.1 41.9 6 3 1 1 5 16
3 0.98 3.92 132947 271.5 37.1 2 4 4 4 4 18
6 0.97 3.99 139322 252.13 32.9 3 5 5 3 3 18
9 0.96 4.03 144152 247.9 32.3 4 6 6 2 2 20

12 0.96 0.54 106735 273.2 17.9 5 1 2 5 1 14
D.D. 0.98 3.71 124553 125.5 87352.7 1 2 3 6 6 18

 
 
 
 
 

Model Bin size K LN(Ro) B0 λ1 λ2 β α 
1 1 cm 4.42 19.13 0.00 38.64 3.31 3.02E-08 18.19 
3 3 cm 5.50 10.75 0.21 33.83 3.27 1.50E-04 22.60 
6 6 cm 5.49 10.71 0.23 28.94 3.99 1.56E-04 22.59 
9 9 cm 5.46 10.69 0.24 27.86 4.40 0.000158 22.46 
12 12 cm 3.29 5.48 0.26 14.00 3.93 2.61E-01 22.5 

D.D. D.D. 5.33 10.94 0.17 87339 13.68 0.000122 21.94 

Likelihood r2 (survey) slope intercept r2 (comer.) slope intercept 
323.1 0.42 0.77 11956 0.52 3.1 55717 
271.5 0.28 0.83 18554 0.70 3.1 114393 

252.13 0.29 0.87 16871 0.68 3.13 122451 
247.9 0.29 0.88 16242 0.67 3.10 127910 
273.2 0.30 0.32 51421 0.66 0.21 55314 
125.5 0.25 0.75 22978 0.73 2.96 101575 
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Table 4.  Correlation to R0 for varying lower bounds of B0.  Note that the Hessian 
failed with B0 lower bound set at 0.4 so the results are not reported. 
 
 
 
 
B0 lower bound 0.0 0.1 0.2 0.3 0.5 
K -0.01 -0.95 -0.88 -0.68 0.00 
B0 -0.99 -0.005 0.00 0.00 0.00 
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B. 

A.  

Figure 1.  Survey CPUE are shown for the fall for the Gulf of Maine, 
Georges Bank, and southern New England.   
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Figure 2.  Survey CPUE is shown for the fall survey.  The fall CPUE includes 
offshore stations 1-40. 
 
 
 
 
 
 
 



 187 
 

 
 
 
 
 
 
 
 
 
 
 
 

30
36
42
48
54
60
66
72
78
84
90
96

102
108+

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

Length (cm)

Year

0.95-1
0.9-0.95
0.85-0.9
0.8-0.85
0.75-0.8
0.7-0.75
0.65-0.7
0.6-0.65
0.55-0.6
0.5-0.55
0.45-0.5
0.4-0.45
0.35-0.4
0.3-0.35
0.25-0.3
0.2-0.25
0.15-0.2
0.1-0.15
0.05-0.1
0-0.05

 
 
 
 
Figure 3.  The length frequencies in three centimeter intervals of the fall survey for 
offshore regions from 1963 to the present.  Year is on the x-axis, length is on the first 
y-axis and survey CPUE is on the second y-axis.  
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Figure 4.  Predicted biomass and survey CPUE for model 1 for 1963 to 1998.  Note 
that both biomass and survey CPUE are scaled values.   
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Figure 5.  Predicted biomass and commercial CPUE for model 1 for 1963 to 1998.  
Note that both biomass and commercial CPUE are scaled values.  
 
 
 
 
 
 
 



 190 
 

 
 
 
 
 
 
 
 
 
 
 
 

0.00E+00

1.00E+15

2.00E+15

3.00E+15

4.00E+15

5.00E+15

6.00E+15

7.00E+15

8.00E+15

9.00E+15

1960 1965 1970 1975 1980 1985 1990 1995 2000

B
io

m
as

s

Predicted biomass
Survey cpue

 
 
 
Figure 6.  Model 1 results assuming a lower bound for B0 of 0.5 for 1963 to 1998.  
Note that both biomass and survey CPUE are scaled values.   
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Figure 7.  Estimated fishing mortality for 1963 to 1998.  Results for model 1 and 
model 9 are shown in the figure. 
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Figure 8.  Predicted biomass and survey CPUE for model 9 for 1963 to 1998.  Note 
that biomass and survey values are scaled.   
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Figure 9.  Predicted biomass and commercial CPUE for model 9 for 1963 to 1998.  
Note that biomass and commercial CPUE are scaled values. 
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Figure 10.  Results of model 1 with process error in recruitment for 1963 to 1998.  
Scaled biomass, survey CPUE and values of recruitment error (wz) are shown.  
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Chapter 7 

SUMMARY 

Sharks, skates and rays are an important ecological and economic resource 

(NEFSC, 1999; Link et al., 2002).  Yet for many species there is a paucity of 

information on vital rates (Frisk et al., 2001).  This paucity of knowledge of 

elasmobranch life history has been highlighted by the decline of several species in the 

western Atlantic (NEFSC, 1999).  Barndoor skate, thorny skate and winter skate all 

have shown population declines and in some cases drastic declines (Casey and Myers, 

1998; NEFSC, 1999; DFO, 2002).  However, managers are left with few conservation 

options with the basic knowledge of skate species biology such as maturation and 

growth rates largely unknown.   

The goals of my dissertation aimed at improving the conservation of 

elasmobranchs through comparative life history analyses and species-specific 

approaches.  In the comparative approach I analyzed the life history patterns of 

elasmobranchs in order to better understand evolutionary relationships and 

conservation of sharks, skates and rays.  This was achieved in chapter 2 “Life 

histories and vulnerability to exploitation of elasmobranchs: Inferences from 

elasticity, perturbation and phylogenetic analyses” and chapter 3 “Ordination of 

evolved life history strategies in elasmobranch and teleost fishes: In search of 

common ground”.   

In the second part of my dissertation I apply the species-specific approach by 

estimating vital rates of age, growth, maturation, and fecundity for little skate and 

winter skate.  Latitudinal patterns in age, growth and maturation were analyzed over 

the ranges of little skate and winter skate in chapter 4 “Age, growth, and latitudinal 
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patterns of two Rajidae species in the northwestern Atlantic: little skate Leucoraja 

erinacea, and winter skate, Leucoraja ocellata” and chapter 5 “Maturation, fecundity, 

latitudinal patterns and reproductive strategies of two Rajidae species in the 

northwestern Atlantic: little skate Leucoraja erinacea, and winter skate, Leucoraja 

ocellata”.  Finally in chapter 6 “An age-structured model of winter skate, Leucoraja 

ocellata, abundance in the western Atlantic: sustainability and uncertaint” I utilize 

estimated parameters for winter skate to build an age-structured model to analyze the 

species’ exploitation and abundance trends. 

In chapter 2, I built empirical models based on phylogenic relationships, vital 

rates, and results from matrix analyses, (elasticity and sensitivity of elasticity), to 

provide insights into the population dynamics of elasmobranchs.  My elasticity 

analyses provided evidence of a trade-off between survival and reproductive 

investment in elasmobranchs.  Additionally, I found that for most elasmobranch 

species survival into the adult stage was important in regulating a species response to 

exploitation.  Specifically these findings suggest conservation polices aimed at 

reducing juvenile mortality would have the greatest impact on overall population 

growth rate.  Phylogenic analyses provided evidence that closely related species will 

respond to exploitation or conservation polices in a similar fashion. 

In chapter 3 I continued analyzing life history parameters in elasmobranch 

species.  I expanded the Winnemiller and Rose (1992) ordination of evolved life 

history strategies for teleost species by adding elasmobranchs to the analysis.  

Interestingly, elasmobranch species, using the ordination based on teleost life 

histories, were placed in the periodic strategy.  This was in contrast to the notion that 
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elasmobranchs are the panicle K-selective species (Cortes, 2004).  However, when 

the ordination is re-estimated using the combined data sets for elasmobranchs and 

teleost species, they were placed in the equilibrium strategy due to their large body 

size, high parental investment, and large egg size.  My results indicate that even 

though elasmobranchs have life histories similar to reptiles and perhaps mammals, 

they follow many of the same life history invariant relationships shown for a wide 

diversity of animal taxa including teleost species (Charnov, 1993; Frisk et al., 2001).   

In the second part of the dissertation, I analyzed the vital rates of little skate 

and winter skate along the eastern seaboard.  Samples were collected in conjunction 

with the National Marine Fisheries Service’s annual bottom trawl and scallop 

surveys.  In chapter 4 I found strong evidence for a latitudinal pattern in maximum 

size in little skate with individuals growing slower and reaching a larger size in 

northern portions of the species’ range.  However, no regional trends were found for 

winter skate.  My results did not support a latitudinal increase in size of maturation in 

winter skate reported by McEachran et al. (1977).  Perhaps winter skate’s population 

decline in the 1970’s has resulted in a reduction of the species’ range and 

homogeneous expression of vital rates.  

Additionally in chapter 4 my data indicated that little skate is a moderately 

fast growing species with a k = 0.19 and maximum observed age of Tmax = 12.5.  

Theoretical estimates of maximum age indicate that longevity in little skate increases 

with latitude.  Theoretical maximum age in little skate in the mid-Atlantic Tmax= 13, 

southern New England-Georges Bank Tmax = 14, and the Gulf of Maine Tmax = 15.  
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Winter skate is slower growing compared to little skate with a k = 0.07, longer lived 

Tmax = 20.5.  Theoretical longevity in winter skate was estimated at Tmax = 35. 

In chapter 4 I estimated size and age of maturation, annual fecundity and net 

reproductive rate for little skate and winter skate.  Maturation occurs in two levels, 

physiological, the presence of reservoir eggs, and functional, the presence of mature 

eggs.  There was no difference in age of physiological and functional maturity in little 

skate (Tmat = 7).  However, in winter skate functional maturity (Tmat = 12.5) occurred 

three years after physiological maturity (Tmat = 9), indicating that previous estimates 

only considering physiological maturity underestimate age at maturity by three years.  

Latitudinal patterns were observed in little skate in size of maturation but not in age 

of maturation, while no regional patterns were observed in winter skate.  Fecundity in 

little skate ranged from 21-57 eggs per year, and in winter skate 101-26 egg cases per 

year. 

 From chapters 4 and 5, it is clear that the biology of little skate and winter 

skate represent different locations on the “fast-slow” continuum of life histories in 

elasmobranchs.  Little skate has a “fast” life history characterized by a shorter life-

span, earlier age of maturation and a higher growth rate compared to the “slow” life 

history of winter skate, which is characterized by long life-span, slow growth and 

delayed maturation.  Interestingly the “slow” life history of winter skate coincides 

with higher fecundity, larger and more numerous offspring.  In skates, increased 

fecundity may be a benefit to delaying maturation and obtaining a large body size.   

 In chapter 6 parameters estimated in chapters 4 & 5 are used to parameterize 

an age-structured model for winter skate.  My results provided reasonable estimates 
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of the maximum increase in juvenile survival as a population approaches zero (K) 

and average recruitment of the unfished population (R0).   Model predictions in 

biomass were not able to capture the rapid increase in survey cpue in the 1980’s and 

instead indicated a more gradual increase (NEFSC, 1999).  Additionally, survey 

estimates of cpue were variable between regions and seasons.  My results also 

indicate that effort for the grounfishery in recent years may not represent the realized 

effort winter skate is experiencing.  Additional fishery dependant data is needed to 

better manage and understand the population dynamics of winter skate. 
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Appendix A.  Model code for AD Model Builder for the age-structured model 
utilized in this manuscript.  Note the model can be conditioned on catch or effort.  
However, I do not report any results of models conditioned on effort. 
 
 
//****************************************************** 
// Programmers: Mike Frisk & Steve Martell 
// Project Name: SkateBoard.tpl 
// Date: May 26th, 2004 
// Version: 1.01 
//******************************************************/ 
DATA_SECTION 
 init_int ft_flag; 
 init_int nyrs; 
 init_int nage; 
 
 init_number linf; 
 init_number k; 
 init_number to; 
 init_number a; 
 init_number b; 
 
 init_number g;   
 init_number lh;  
 
 init_number lh2;   
 init_number g2; 
 
 init_vector effort(1,nyrs); 
 init_vector obs_ct(1,nyrs); 
 init_vector yt(1,nyrs);   
 
 init_number lmin; 
 init_number lstp; 
 init_number nbins; 
 init_matrix lf_data(1,nyrs,1,nbins); 
 vector x(1,nbins); 
 !!x.fill_seqadd(lmin+lstp,lstp);   
 
 //!!cout<<lf_data<<endl; 
 
 number m;   age) 
 vector va(0,nage);  
 vector cpue(1,nyrs);  
 
 LOC_CALCS 
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  m=4.4/nage;   
  cout<<"THE NATURAL MORTALITY RATE"<<m<<endl; 
  va=1; 
  va(0,3)=0.; 
  va(4)=0.5; 
  cout<<"Vulnerabiltiy"<<endl<<va<<endl; 
  //Standardize effort to have a mean 1. 
  effort/=mean(effort); 
  cout<<"Standardized effort"<<endl<<effort<<endl; 
 
  cpue=elem_div(obs_ct,effort);   
 END_CALCS 
 
 
PARAMETER_SECTION 
 //Estimated parameters 
 init_bounded_number log_ro(1.,20.);   
 init_bounded_number steepness(1.,10.);   
 !!int phz=1; 
 !!if (ft_flag==1)phz=-1; 
 init_bounded_number q(0,1,phz); 
  init_bounded_number delta(1.e-10,1.,2); 
 
 //!!delta=0.3; 
 init_bounded_vector wt(1,nyrs,-10,10,3); 
 
 
 //standar deviation parameters 
 init_number lam1; 
 init_bounded_number lam2(15.,25.); 
 !!lam1=13.; 
 !!lam2=0.1; 
 !!log_ro=9; 
 objective_function_value f; 
 
 number ro; 
 number so;   
 number beta;   
 
 
 vector mat(0,nage); 
 vector len(0,nage); 
 vector wa(0,nage); 
 vector ft(1,nyrs); 
 vector bt(1,nyrs); 
 vector pred_ct(1,nyrs); 
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 vector zt(1,nyrs); 
 vector zyt(1,nyrs); 
 
 matrix n(1,nyrs+1,0,nage); 
 matrix pxa(0,nage,1,nbins);  
 matrix pxt(1,nyrs,1,nbins); 
  
 likeprof_number aro; 
 likeprof_number asteep; 
 likeprof_number adel; 
 likeprof_number abe; 
 
PROCEDURE_SECTION 
 //*********MAIN FUNCTION CALLS************* 
  initial_calculations(); 
  //if(active(fe)) fished_equil();   
  pop_dynamics(); 
  p_trans_matrix(); 
  observation_models(); 
  likelihoods(); 
  aro=ro;    
  adel=delta; 
  abe=beta; 
 //************************************************************ 
_____________________________________________________________________
____ 
FUNCTION p_trans_matrix 
 int i,j; 
 dvector age(0,nage); 
 age.fill_seqadd(0,1);   
 dvariable z1,z2,zn; 
 dvariable rho=exp(-k); 
 dvar_vector std(1,nage); 
 for(i=1;i<=nage;i++) 
 { 
  std(i)=lam1*exp(lam2*(-1+2*((1.-pow(rho,i-1))/(1.-pow(rho,nage-
1))))); 
 
  for(j=1;j<=nbins;j++) 
  { 
   z1=((x(j)-lstp)-len(i))/std(i); 
   z2=((x(j)+lstp)-len(i))/std(i); 
   zn=cumd_norm(z2)-cumd_norm(z1);   
   pxa(i,j)=zn; 
  } 
 } 
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 pxa/=sum(pxa); //normailizing P(x|a) 
 
 
 
 
//___________________________________________________________________
______ 
FUNCTION likelihoods 
 dvar_vector fvec(1,5); 
 
 if(!ft_flag) fvec(1)=0.5*(nyrs-1.)*log(norm2(pred_ct-obs_ct));  //for effort 
conditioning 
 if(ft_flag) {   
  zt=log(elem_div(cpue,bt)); 
  dvariable zbar=mean(zt); 
  fvec(1)=0.5*(nyrs-1.)*log(norm2(zt-zbar)); 
 } 
 zyt=log(elem_div(yt,bt)); 
 dvariable zybar=mean(zyt); 
 fvec(2)= 0.5*(nyrs-1.)*log(norm2(zyt-zybar)); 
 
 //cout<<"Predicted Catch"<<endl<<pred_ct-obs_ct<<endl; 
 
  
 fvec(3)=1./3.*square(steepness-5.); 
 
  
 fvec(4)=-0.5*sum(elem_prod(lf_data,log(pxt+1.e-30))); 
 fvec(5)=+1.0*norm2(wt); 
 
 f=sum(fvec); 
 
 
//___________________________________________________________________
______ 
FUNCTION observation_models 
 pred_ct.initialize(); 
 pred_ct=elem_prod(ft,bt); 
 
 int i,j; 
 dvar_vector vx(1,nbins); 
 dvar_vector pa(0,nage);  
 
 vx=1./(1.+exp(-g2*(x-lh2))); 
 pxt=0.;   
 for(i=1;i<=nyrs;i++)   
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 { 
  pa=n(i)/sum(n(i));   
  for(j=1;j<=nage;j++) 
  { 
   pxt(i)+=pa(j)*elem_prod(vx,pxa(j)); 
  } 
  pxt(i)/=sum(pxt(i)); 
  cout<<(pxt(i))<<endl; 
 } 
 
 cout<<"VX: "<<vx<<endl; 
 
//___________________________________________________________________
______ 
FUNCTION pop_dynamics 
 
 for(i=1;i<=nyrs;i++) 
 { 
  bt(i)=sum(elem_prod(n(i),wa)); 
  if(ft_flag) 
  { 
      ft(i)=obs_ct(i)/bt(i);    
   if(ft(i)>5.)ft(i)=5.; 
  } 
  if(!ft_flag) 
  { 
      ft(i)=q*effort(i); 
  } 
 
  dvariable st=sum(elem_prod(n(i),mat));  
  n(i+1,0)=so*st*exp(-beta*st)*exp(wt(i));    
  n(i+1)(1,nage)=++elem_prod(n(i)(0,nage-1),exp(-m-ft(i)*va(0,nage-
1)));   
 } 
 //cout<<n<<endl; 
 
 
//___________________________________________________________________
______ 
FUNCTION initial_calculations 
  
 dvector age(0,nage); 
 age.fill_seqadd(0,1);   
 dvar_vector lx(0,nage); 
 lx=pow(exp(-m),age);     
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 mat=1.0/(1.+exp(-g*(age-lh))); 
 len=linf*(1.-exp(-k*(age-to))); 
 wa=a*pow(len,b); 
 //cout<<b<<" "<<wa<<endl; 
 
  
 ro=mfexp(log_ro); 
 dvariable phie = sum(elem_prod(lx,mat));   
 so=steepness/phie; 
 beta=-log(1./(so*phie))/(ro*phie); 
 
 
  
 n(1)(0,nage)=delta*ro*lx;    

//cout<<"Beta"<<endl<<n<<endl; 
 
FUNCTION fished_equil 
 int i; 
 dvariable fe=0.; 
 dvariable phief;   
 dvariable re; 
 dvariable fpen1=0.0; 
 dvar_vector lz(0,nage); 
 lz=1.; 
 for(i=0; i<nage; i++) 
 { 
  lz(i+1)=lz(i)*exp(-m-fe*va(i)); 
 } 
 phief=sum(elem_prod(lz,mat)); 
 //re=posfun(log(so*phief)/(beta*phief),0.0,fpen1); 
 re=log(so*phief)/(beta*phief); 
 n(1)(0,nage)=re*lz; 
 cout<<"Initial N when Fe > 0"<<endl<<"Fe= "<<fe<<n(1)<<endl; 
 
 
REPORT_SECTION 
 report<<"Biomass"<<endl<<bt<<endl; 
 report<<"Fishing Mortality"<<endl<<ft<<endl; 
 report<<"Scaled Survey Indices"<<endl<<yt/exp(mean(zyt))<<endl; 
 report<<"Scaled Comertial Indices"<<endl<<cpue/exp(mean(zt))<<endl; 
 report<<"beta"<<endl<<beta<<endl; 
 report<<"so"<<endl<<so<<endl; 
 report<<"Comertial residuals"<<endl<<zt-mean(zt)<<endl; 
 report<<"Survey residuals"<<endl<<zyt-mean(zyt)<<endl; 
 report<<"suvey inices"<<endl<<yt<<endl; 
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Appendix B.  Other fishery independent survey results are provided with a brief 
description of survey trends (A).  Specifically results for the (B) Massachusetts 
Division of Marine Fisheries inshore survey; (C) Connecticut’s Department of 
Environmental Protection’s inshore trawl survey and (D) Canadian Department of 
Fisheries and Oceans survey for the Eastern Scotian shelf. 
 

A.  

Winter skate is commonly caught in the bottom trawl surveys of the states of 

Massachusetts and Connecticut (NEFSC, 1999).  The abundance estimates of the 

Massachusetts survey show two periods of high abundance, one in the 1980’s and 

another in the 1990’s for the spring, while the fall survey shows a slight increase in 

abundance between 1978-1995 and then a decline (see part B).  The Connecticut 

survey shows that in the spring winter skate increased in the mid 1980’s, while the 

fall shows a gradual increase from 1983 to 1996, then a decline (see part C).  The 

Massachusetts and Connecticut surveys both appear in close agreement in the fall.   

The DFO has conducted surveys on the Eastern Scotain shelf since 1970 (see 

part D).  DFO data indicates that adult winter skate was at high abundances in the 

early 1970’s and has gone through a steep population decline in the mid 1970’s and 

continues to decline to the present.  There is little available data on the genetic 

population structure of winter skate and whether the Eastern Scotian shelf population 

breeds with skate on Georges Bank and further south.  However, the data do suggest 

that winter skate historically was at much higher abundances in the 1970’s and earlier 

on the Scotian shelf.    
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B. The Massachusetts Division of Marine Fisheries inshore survey for winter skate 
from 1978 to 1999.  Abundance is reported in mean number per tow. 

 

C.  The Connecticut Department of Environmental Protection’s inshore trawl survey 
is shown for winter skate.  Abundance is reported in mean number per tow. 
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D. The Canadian Department of Fisheries and Oceans inshore trawl survey for 
the Eastern Scotian shelf.  Figure shows trends in reported estimated biomass 
on the y-axis in tonnes. 
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Appendix C.  The following figures display the distribution and abundance of 
juvenile and adult winter skate for the fall and spring NEFSC bottom trawl surveys.  
Figures A & B show data for the fall for juveniles and adults respectively, while 
figures C & D show data for juveniles and adults for the spring survey respectively. 
 
A. 
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