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Industrial clusters are geographical concentrations of related industries. They foster 

innovation, job creation and business formation. Previous studies find that firms in 

clusters on average are more innovative than firms outside. They interpret this as 

evidence that clusters encourage firms to innovate. This interpretation is misleading 

because two different mechanisms can lead to the same result. On the one hand, firms 

in clusters improve innovativeness through knowledge spillovers and network 

building. On the other, less innovative firms are forced out of clusters by tough 

competition. Most studies fail to differentiate these two mechanisms. I separate these 

mechanisms and examine their variations across industries and establishments. I also 

search for the optimal spatial scale of industrial clusters to maximize their effect on 

innovation.  

In this dissertation, I match establishment data with patent data for the state of 

Maryland from 2004 to 2013. I improve the methodology of quantifying the causal 



  

relationship between clusters and innovation, and apply this method to employment 

centers. Employment centers on average encourage establishments to file for 8% to 

11% more patents. This effect is maximized within a one- to two-mile radius region. I 

also compare how much clusters encourage innovation across different industries, and 

find significant heterogeneity. In Metalworking Technology, the effect of clusters 

peaks at a three-mile radius region and increases patent applications by 18%. In 

contrast, in Business Services, the effect is essentially zero, even when it is 

maximized in a one-mile radius region. These differences can be explained by 

industrial characteristics, such as the different level of reliance on tacit knowledge. 

Finally, I examine how industrial clusters shape the originality of small versus large 

establishments. I find that small in-cluster establishments improve innovation 

numerically more than large establishments, but their differences are statistically 

insignificant.  

This dissertation can provide guidance to the design of industrial policies. It helps to 

more precisely evaluate the benefit of cluster policies. Policymakers can also 

implement cluster policies targeting at the most beneficiary industries and the optimal 

spatial scales. 
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Chapter 1: Introduction 

 

1.1 The Concept of Industrial Clusters 

Industrial clusters are geographical concentrations of related industries (Porter, 2000). 

This concept includes two layers: the industrial layer and the geographical layer. The 

industrial layer states that clusters are formed by a group of related industries. The 

relationships between industries can be captured in different ways. For example, input-

output relationship, which means outputs of an industry become the inputs of another, 

and co-location relationship, which means some industries tend to always locate together 

(Porter, 2003).  The geographical layer states that clusters are geographical units within 

which a group of industries is highly concentrated. Empirically, most studies used 

administrative units to define clusters in geography, but a few treated space continuously 

(Wallsten, 2001; De Silva and McComb, 2012; Duranton and Overman, 2005; Kerr and 

Komiers, 2015).  

Clusters are an important feature of economic landscape in any city, region, or nation 

(Sforzi, 1990; Enright, 1993; Breschi, 1995). For example, one of the most famous 

industrial clusters in the United States is the Silicon Valley. It employs 10 percent 

information technology workers and obtains 12 percent of the patents in the United State 

as of 20131. Other top industrial clusters, such as the Route 128 and the Research 

                                                
1	http://www.bls.gov/oes/2013/may/naics2_51.htm 
http://www.siliconvalleyindex.org/index.php/economy/innovation-and-entrepeneurship 



 

2 
 

Triangle Park, are also leading hubs for economic development and innovation2. 

Theoretical and empirical works have shown that isolated firms are not preforming as 

well as those in the clusters (Baptista and Swann, 1996; Fabiani and Pellegrini, 1998) and 

regions with clusters may see their economies grow faster than others (DRI/McGraw-

Hill, 1995; Glaeser, 2000b).  

Clusters happen in different ways, both incidentally and strategically. For example, the 

carpet cluster in Dalton, Georgia, which produces more than 85% of the carpets sold in 

the United States, was kick-started by one stitching genius Catherine Evans Whitener. 

Whitener, at the age of 15, crafted a bedspread for her brother’s wedding, which caused a 

national sensation. This sensation caused her to receive orders more than she could fill, so 

she taught her neighbors the technique; the cottage industry was born. The industry 

quickly spread and became a local brand. On the other hand, the research triangle, one of 

the largest technology centers in the nation, was created strategically by the close 

collaboration between governments, businesses and universities. A non-profit 

organization, the Research Triangle Regional Partnership was created and has been 

leveraging on local resources, favorable policies and local collaborations to promote the 

cluster to the nation and the world. While we have not much control over incidental kick-

start of some clusters, supporting existing clusters and strategically grow clusters align 

with a region’s specialty are doable. 

                                                
2 http://engineered.typepad.com/thoughts_on_business_engi/2012/01/innovation-bostons-route-128-vs-san-
franciscos-silicon-valley.html 
http://www.ncbi.nlm.nih.gov/books/NBK158811/	
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Recognizing the role of industrial clusters in promoting local economic development, 

policymakers have started to see clusters as a new framework to organize economic 

activities. Boston launched a $1 billion initiative in 2006 to grow a life science cluster 3. 

The U.S. Department of Commerce allocated $50 million in 2009 to assist regional 

cluster initiatives 4. In 2010, the U.S. Department of Energy awarded $129 million to the 

Energy Regional Innovation Cluster in Philadelphia5. The Maryland Technology 

Development Corporation invested up to $225,000 to help startups in the Maryland 

cybersecurity cluster. Thus, it is both academically and practically important to quantify 

the benefits of industrial clusters on economic development, and particularly on 

innovation. 

1.2 Research Questions 

This study answers a general question: Do industrial clusters encourage innovation? And 

if so, by how much and at which geographical scale? In addition, this study also 

examines the heterogeneous effect of industrial clusters across industries and 

establishments, and explains which locational, industrial and establishment characteristics 

account for the heterogeneity.   

Academically, answering these questions can help us better understand the impact of 

industrial clusters, and the mechanisms through which industrial clusters boost 

innovation. Practically, answering these questions can provide guidance for the 

                                                
3	https://www.clustermapping.us/sites/default/files/files/resource/Clusters_and_Competitiveness-
_A_New_Federal_Role_for_Stimulating_Regional_Economies__Full_Report_.pdf	
4	https://www.ncbi.nlm.nih.gov/books/NBK115046/ 
5	http://scienceprogress.org/2010/08/a-win-for-regional-innovation/ 
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evaluation and design of industrial policies. We can determine whether a cluster policy is 

worthwhile, and implement the policy targeting at the optimal geographical scale and the 

industry that benefits the most from it.  

1.3 Motivation  

Clusters are important drivers of economic development and innovative activities 

(Feldman and Audretsch, 1999; Porter, 2003; Feser, Renski, and Goldstein, 2008; Glaeser 

and Kerr, 2009; Delgado, Porter, and Stern, 2010, 2014). As mentioned above, 

policymakers invested heavily in clusters to encourage innovation. Among other positive 

economic outcomes clusters help to achieve, innovation is a major outcome that policy 

makers and researchers care about, given its importance to long-term economic success 

(Romer, 1986; Grossman and Helpman, 1993). Though many cluster-oriented projects 

and policies have been initiated, policymakers till now have not been equipped with 

sufficient knowledge to make the most efficient policy choices. Four issues remain 

unresolved.  

First, do industrial clusters actually encourage innovation? And if so, by how much? 

Although a large number of studies have been carried out on this topic, most studies 

overstate the causal effect of clusters on innovation by confusing learning and selection 

(Aharonson, Baum, and Feldman, 2004; Baptista and Swann, 1998; Delgado, Porter, and 

Stern, 2014). While learning reflects the desirable policy outcome that clusters help 

establishments improve, selection reflects that tough competition in clusters forces out 

the least innovative establishments and is not necessarily desirable. A few studies that 

controlled for selection focused on geographical regions outside of the United States 
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(Vásquez-Urriago, Barge-Gil, Rico, et al., 2014; Falck, Heblich, and Kipar, 2010; Chen, 

2011).  A more accurate estimation of how much industrial clusters encourage innovation 

is needed for the United States to make sure that cluster policies are a worthy use of 

public funds.  

Second, what is the optimal geographical scale to form industrial clusters? No consensus 

to date has been achieved in terms of the optimal geographical scope of clusters. Due to 

the lack of detailed geographical information, most studies use administrative boundaries 

to define clusters. Clusters thus are forced to be no smaller than a county (Chrisinger, 

Fowler, and Kleit, 2015; Feser, Renski, and Goldstein, 2008), and sometimes as large as a 

metropolitan area or a state (Ellison, Glaeser, and Kerr, 2010; Combes, Duranton, 

Gobillon, et al., 2012). In practice, policymakers usually target at large regions to grow 

clusters, such as a whole state or a multi-county region6. These large geographical 

regions, unfortunately, may be well above the optimal scale of clusters. A few recent 

studies, using detailed geographical data, found that the effects of clusters on innovation 

and firm mortality are largely concentrated within a one-mile radius region (Wallsten, 

2001; De Silva and McComb, 2012). Such studies are still rare and we need a systematic 

comparison of how much clusters encourage innovation across different scales. Such a 

comparison helps to determine the appropriate geographical unit to implement cluster 

policies.  

                                                
6	For example, the Maryland TEDCO supported establishments all over the state, without a particular focus 
on a specific geographical unit. The US Department of Commerce issued one million dollars to help grow 
technology clusters in Lower Grande Valley Region, Texas—a four-county region.  
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Third, which industries should we target to grow clusters? Though Porter (2000) 

suggested that we should pay attention to all industries, in practice, with limited funding, 

policymakers need to focus resources by targeting at specific industries7. How then to 

choose becomes an important question. Supporting a cluster in a specific industry incurs 

the opportunity cost of not supporting other industries. Previous studies provide limited 

guidance on how to prioritize. Most studies do not pay attention to the heterogeneous 

effect of clusters across industries. A few studies estimate the heterogeneous effect at a 

highly aggregated level, which is not very helpful for policymaking. For example, studies 

comparing how much clusters encourage innovation in manufacturing versus service 

sector provide no guidance for industry targeting within the manufacturing sector. Since 

the manufacturing sector is large, policymakers often have to target more detailed 

industries within this sector. Hence, we need a systematic comparison across industries at 

a less aggregated level. 

Fourth, do the impacts of clusters land evenly across establishments? If not, what types of 

establishments benefit more? Establishments may not benefit uniformly in clusters. For 

example, if selection exists in clusters, some establishments may go bankrupt. These 

establishments bear a disproportionate share of the cost of cluster-oriented policies. Fang 

(2015) found that small in-cluster firms benefit more in terms of innovation than large 

                                                
7	Industry targeting is suggested to be a potentially useful tool for economic development by some 
researchers (among others, see Voytek and Ledebur, 1991; Shields, Barkley, and Emery, 2009; Barkley and 
Henry, 2005), but seen unfair and unhelpful by others (among others, see Copaken, 1982; Chiang, 1993; 
Feldman and Francis, 2004). This dissertation does not intend to dismiss the whole line of studies raising 
concerns over industry targeting, but simply to provide a method that helps with efficient targeting if a 
community or a local authority decides that they would like to target at certain industries in pursue of 
economic development. Moreover, although theoretically targeting at a certain industry is unfair, 
practically, with limited funds, focusing resources is hardly avoidable. If all industries are paid with equal 
attention, the consequence will be a dilution of resources (Peck and McGuinness, 2003; Shields, Barkley, 
and Emery, 2009).   
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ones, by summarizing results from previous studies. But to date, such studies are still 

rare, and we don’t fully understand who are the winners and losers in clusters. For 

policymakers, it’s important to know whether small establishments can benefit from 

clusters as they are the biggest contributors to innovation and job creation (Rothwell and 

Zegveld, 1982; Wagner, 2004).  

1.4 Contribution 

This dissertation makes four contributions. First, it delivers a more precise estimate of 

causal effect of industrial clusters on innovation by differentiating selection and learning. 

Second, it identifies the optimal size of clusters by comparing the magnitude of learning 

across different geographical scopes. It also allows this optimal size to vary across 

industries. Third, it quantifies the heterogeneous effect of clusters on innovation across a 

wide range of industries, and explains these heterogeneities with industrial 

characteristics. Fourth, it compares how much industrial clusters encourage originality in 

small versus large establishments.  

Based on the results of this dissertation, more informed cluster policies can be designed 

to encourage innovation. We can be sure that cluster policies are heading towards the 

right direction if learning effects are economically large. We can also implement cluster 

policies at the optimal geographical scale. In addition, public funds can be distributed 

more efficiently by properly prioritizing among industries and targeting at industries that 

benefit the most from cluster. Further, once the heterogeneous effect of clusters on small 

and large establishments is identified and evaluated, we can help establishments of 

different sizes with different strategies.  
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Chapter 2: Agglomeration and Innovation: Selection or Learning?  
 

 

2.1 Introduction 

Over the past decades, researchers have devoted considerable attention to quantify the 

relationship between agglomeration and innovation. Agglomerations are dense 

employment or establishment centers. In theory, agglomerations enable firms to share 

tacit knowledge (Gertler, 2003), build personal networks (Bell, 2005), cultivate an 

innovative atmosphere (Saxenian, 1994), and save costs (Helsley and Strange, 2002). 

These expand the capacities of firms to make breakthroughs (Duranton and Puga, 2004). 

Prior studies also empirically established a positive correlation between agglomeration 

and innovation (Carlino and Kerr, 2014; Packalen and Bhattacharya, 2015). 

However, the estimated effect of agglomerations on innovation usually is not causal and 

suffers from the selection bias: less innovative firms are more likely to be forced out of 

agglomerations. This occurs because (a) competition in the input or output market is 

tougher in agglomerations (Baldwin and Okubo, 2006), and (b) high-skilled labor in 

major employment centers doesn't match the need of less innovative firms (Combes, 

Duranton, Gobillon, 2008; Behrens, Duranton, and Rober-Nicoud, 2014). 



 

9 
 

A few prior studies dealt with the selection bias in the agglomeration-productivity 

relationship. For example, Combes, Duranton, Gobillon et al. (2012) employed a 

continuous quantile estimator and found no evidence that market competition forces out 

the least productive firms in denser employment areas in France. Arimoto, Nakajima, and 

Okazaki (2014) applied similar method in Japanese silk-reeling industry and identified 

the selection effect.  Similar methods can be applied to study the agglomeration-

innovation relationship. 

This chapter takes on this job. Using the theoretical predictions in Combes, Duranton, 

Gobillon et al. (2012) and a quantile estimator, I place bounds on the learning effect 

(establishments improve innovation in agglomerations) and the selection effect (less 

innovative establishments are less likely to survive in agglomerations) at different 

percentiles of establishment innovation. I adopt a unique population-wide establishment-

level8 dataset from Quarterly Census of Employment and Wages for the state of 

Maryland, 2004-2013, and the patent application data from United State Patent and 

Trademark Office. I find that a one-mile radius area with above-median employment 

concentration increases citation-weighted patent applications by 7.8% to 11.4% for an 

average establishment that applied for patents during the study period. I also find a 

sizable selection effect, with non-innovators 2.5% less likely to survive in employment 

centers. These results are qualitatively robust across time periods and alternative 

specifications and measurements. 

                                                
8	An establishment is a plant. For a large firm with multiple plants in Maryland, each plant counts as an 
establishment.	



 

10 
 

The contribution of this chapter is three-fold. First, it separates selection from learning, 

and more precisely estimates how much agglomerations encourage establishment 

innovation. Second, this chapter speaks to the geographical dimension of agglomerations. 

To date, most studies define agglomerations by predetermined administrative boundaries 

(Ellison, Glaeser, and Kerr, 2010; Combes, Duranton, Gobillon et al., 2012), with no 

evidence to support that these are the appropriate geographical scopes at which 

agglomerations prevail. This chapter uses a unique, detailed plant-level dataset and 

locates every plant on map. It is thus able to measure the exact proximity between 

establishments and compare the effect of agglomerations across a wide range of 

geographical scopes. By doing so, it shows that a one to two-mile radius area in 

Maryland with above-median employment maximizes the effect of agglomerations on 

innovation. This can be a size for policymakers to target. Third, this chapter also 

contributes to the Marshall-Jacobs-Porter debate (among others, see Marshall, 1890; 

Jacobs, 1969, 1984; Porter, 1990; Glaeser, Kallal, Scheinkman et al., 1991). It finds that 

diversity, especially related diversity, is the most important contributor in the effect of 

agglomerations on innovation. It also allows the effects of localization, diversity and 

competition to vary across geographical scales, similar to Andersson, Larsson, and 

Lundblad (2015), and finds that while localization and competition prevails only within 

one-mile-radius areas, diversity expands beyond ten miles in radius.   

2.2 Literature 

The theory of agglomerations dates back to Marshall (1890). He emphasized input 

sharing, labor market pooling and knowledge spillovers as main benefits of 

agglomerations. Since then, agglomeration has been widely recognized as one of the 
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main drivers of regional economic growth (Glaeser, 2000), and its benefits expand to 

diversified business environment (Jacobs, 1969, 1984), demand linkages (Krugman, 

1991), localized competition (Porter, 1998), and learning and innovative atmosphere 

(Henderson, 1974; Gertler, 2003). As beneficiaries, co-located establishments tend to be 

more productive, more innovative and more competitive.  

Empirical studies found that co-located establishments on average innovate more than 

isolated establishments. For example, Aharonson, Beam and Feldman (2004) found that 

biotechnology firms in Canada are eight times more innovative in clusters. Similarly, 

Baptista and Swann (1998) reported that UK manufacturing firms are considerably more 

innovative when locating in clusters. Negative and insignificant effects have also been 

identified (Wang, Lin, and Li, 2010; Ferrand, Kelton, Chen et al., 2009), but less 

frequently. These studies, however, potentially overestimated how much firms improve 

innovativeness in clusters or agglomerations (the learning effect), as mentioned above, 

because of the selection bias.  

A few researchers attempted to tease out selection bias using instrumental variables and 

quasi-experimental design, but none has convincingly eliminated the bias. For example, 

Vásquez-Urriago, Barge-Gil, Rico, et al. (2014) applied the propensity score matching 

and the instrumental variable approaches, and used the number of companies in a Spanish 

science and technology park as a share of total companies in a region as the instrument. 

They found that Spanish science and technology parks increase product innovation by 

9.75 percent, but the instrument does not appear to satisfy the exclusion restriction. Falck, 

Heblich, and Kipar (2010) employed a triple-difference design and found that cluster-

oriented policies in Germany increase the likelihood of innovation by 4.6 to 5.7 percent. 
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But the cluster policies are likely to be endogenous and have favored more innovative 

regions in the first place. 

While the learning effect in agglomerations is surely important to know, the effect of 

selection may also be of interest. It sheds light on establishment dynamics, and job 

creation and destruction. However, the selection effect has rarely been empirically 

estimated, except a few studies measuring selection with firm survival and location 

choices (Staber, 2001; Rosenthal and Strange, 2003; De Silva and McComb, 2012).  

The Marshall-Jacobs-Porter debate also touches on the effects of learning and selection. 

Marshall (1890) suggested that localization, defined as the concentration of own-industry 

employment or establishments, is the source of agglomeration benefits. Jacobs (1969, 

1984), on the contrary, endorsed the diversity of industries as the major contributor to 

productivity and innovativeness in agglomerations. Later, Porter (1990) pointed out that 

the intense competition (i.e., selection) in clusters motivates firms to “keep up with the 

Joneses”. To date, empirical studies have found evidence for both the localization and the 

diversity arguments (Rosenthal and Strange, 2004), but the Porter hypothesis has been 

less intensively studied. This chapter contributes to this line of research by quantifying 

the effect of competition in uplifting innovation, and compares the role of competition, 

localization and diversity.     
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2.3 Data and Method 

2.3.1 Data 

This dissertation studies the state of Maryland over the period 2004 to 2013. Maryland is 

a state with strong clusters in information technology, pharmaceutical and education 

industries, active innovation practices, and diligent economic development endeavors. It 

ranked third among U.S. states in terms of innovation9. Crucial state players, such as the 

governor, the Department of Business & Economic Development, universities, research 

institutions and local independent organizations10 have closely collaborated to strengthen 

clusters and spur innovation. These characteristics make Maryland an ideal setting to 

study the relationship between clusters, agglomerations and innovation. 

I measure agglomerations with the concentration of employment within a local region 

(the size varies), and measure innovation with the number of citation-weighted patent 

applications. This ignores unpatented innovation, but thus far, the only measurements for 

innovation that are comparable overtime and across geographical spaces are patents and 

US Small Business Innovation Research Program Awards, while the latter only applies to 

small businesses11. Thus, I use the patent data from the United States Patent and 

                                                
9	https://www.fastcompany.com/3007772/united-states-innovation-ranking-states-and-district-innovation 
10	http://commerce.maryland.gov/Documents/ResearchDocument/CybermarylandReport.pdf 
http://tedco.md/about-us/who-we-are/ 
11 Number of patent applications weighted by citation is my measurement for innovation in this disseration. 
In the literature, there are several different ways to measure innovation: 1) Patents (Beaudry, 2001; 
Beaudry and Breschi, 2003; Aharonson, Beam and Feldman, 2004). 2) New product announcements (Acs 
and Audretsch, 1988). 3) R&D expenditure or employee (Baten, Spadavecchia, Streb et al., 2007; Smith, 
Broberg and Overgaard, 2002). 4) Stock market values of inventive output (Pakes, 1985). 5) Small business 
innovation research award (Gilbert, McDougall, and Audretsch, 2008). Each of these measurements has its 
advantages and disadvantages, but 2) is not available over time, 3) is not available in my establishment 
dataset, 4) only applies to public traded companies, and 5) only applies to small and medium-sized 
companies. Thus, I use 1) as my measurement.  
	



 

14 
 

Trademark Office (USPTO) and apply different weighting schemes to overcome some of 

its problems. The establishment data are obtained from the restricted version of the 

Quarterly Census of Employment and Wages (QCEW).  

The USPTO documents all patent applications and includes information about the date of 

application, the technology class, names of the inventor and assignee, and their locations 

(country, state and city). I tackle with several concerns about this data. First, a patent 

filed by an establishment sometimes is assigned to the firm headquarter (Blind and 

Grupp, 1999; Teichert, 2013). This distorts the spatial distribution of innovation. 

Following Criscuolo and Verspagen (2008) and Deyle and Grupp (2005), I address this 

concern by assigning an application to the address of the inventor rather than that of the 

assignee, whenever such information is available, as these studies pointed out that 

inventors are more likely to be local branches that initiated the inventions. Second, 

patents differ in quality (Harhoff, Narin, Scherer et al., 1999). This concern is mitigated 

by weighting patent applications with subsequent frequency of citations12, following 

Harhoff, Narin, Scherer et al. (1999) and Hall, Jaffe, and Trajtenberg (2000). I also 

experiment with six alternative weighting schemes in the robustness tests. Third, the 

exact date of patent filing is uninformative, as a patent can be filed up to 12 months after 

the invention is first introduced to the market or otherwise disclosed13. Thus, I dismiss the 

exact date and measure patent filing annually. The total number of patent applications 

                                                
12	Subsequent citation frequency is calculated by the total number of subsequent citations plus one (to avoid 
zero weight) divided by patent age. Number of citations (till the end of March 2016) is collected from the 
USPTO.  This weight is also alternatively calculated by excluding self-citations and relative to each 
technology class and application year. These weights are standardized to mean one.  
13	https://www.uspto.gov/web/offices/pac/mpep/s2133.html 
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traced to Maryland establishments during the study period is 10,355. Co-inventors are 

assumed to share patents equally. 

The QCEW publishes quarterly counts of establishment, employment and wages reported 

by employers, which cover 98 percent of jobs in the United States. The publicly available 

data are aggregated to the level of counties, while the restricted version of the data 

contain micro-level information of every plant. I have the luxury of the restricted data 

which disclose the following information for every establishment: name, address, age, 

size, wages and six-digit North American Industry Classification System (NAICS) code. 

These data are quite unique and advantageous: they allow a continuous and flexible 

treatment of space. With the exact address of every establishment, I can map and measure 

the proximity between establishments and employment. Thus, the measured 

agglomerations can be independent of jurisdictional divisions (Duranton and Overman, 

2005) and overcome a major problem in prior studies with aggregated data. These data 

also permit a flexible change of the geographical scale at which agglomerations are 

defined and measured, and thus can potentially reveal the optimal geographical scope for 

the prevalence of agglomeration benefits. To my knowledge, prior studies seldom have 

access to such desirable data, and a few with similar data showed that the agglomeration 

effect largely concentrates within a one-mile radius or smaller local area that cannot be 

revealed with aggregated data (Duranton and Overman, 2005; Wallsten, 2001; De Silva 

and McComb, 2012; Carlino, Carr, Hunt et al., 2012; Arzaghi and Henderson, 2008). To 

my knowledge, there are few studies that have adopted the restricted QCEW data to 

conduct analysis related to urban agglomerations or industrial clusters. Examples are De 

Silva and McComb (2012) and Renski (2013). The former used the QCEW establishment 
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data for the state of Texas to examine firm survival in clusters and the latter adopted the 

data for Maine to study labor mobility and knowledge spillover in clusters.  

For consistency, the establishment data are also analyzed annually14. The total number of 

establishment-year observations is 1,503,114, and 94 percent are successfully mapped. 

Only mapped establishments are used in the analysis. The excluded establishments may 

cause a bias if they are industrially or geographically concentrated. To address this 

concern, I manually checked a subset of 900 randomly picked non-mapped 

establishments (approximately a one percent sample), and found them spatially and 

industrially dispersed.  

I match the USPTO and QCEW datasets by establishment name and location at the city 

level. Since the patent application records are read from patent filing forms, the name of 

the same establishment may be formatted differently in each filing and there exists many 

misspellings. Thus, I first standardize the format of establishment name. For example, 

180s, inc., 180S, INC., 180’s, Inc. are all changed to 180s, inc. Second, I correct for 

obvious misspelling of establishment name. Then I group patent records and 

establishment records by year and city. Within each group, I match records by 

establishment name using the fuzzy string matching method. Last, after the computer 

match, I also manually check for the matched and unmatched patent records. This 

employs my discretion to avoid mismatch and form additional patent-establishment pairs 

with misspelling in either the patent or the establishment record. Eventually, I managed 

to match 93% of the patent filings to the establishment sample. In the absolute term, I 

                                                
14	I use the first quarter whenever possible, and use the second quarter in 2009, 2012 and 2013 when the 
first quarter data are unavailable to me. 
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link 10,355 patent records to 9,016 establishment-year observations. Note that this means 

the cast majority of the observations (99.4%) for patent applications is zero, and I can 

only identify the effect of agglomerations on innovation at the right tail of establishment 

innovation distribution with non-zero observations.  

The rest 7% of patent records are excluded from the analysis. The exclusion of these 

patent filings is unlikely to bias the results due to the following reasons. First, the number 

of unmatched patent applications is small. A seven percent omission of the data shouldn’t 

have a large impact on the results. Second, eight percent of the unmatched applications 

are invented by a person instead of an establishment. These applications are legitimately 

excludable from the analysis of establishment innovation. Third, the rest of the 

unmatched patent filings does not appear to be spatially concentrated (according to the 

city level address) or industrially concentrated (according to the technology class).  

However, a measurement issue surfaces when the combination of establishment name 

and the city fails to identify a unique pair of establishment and patent filing. This happens 

if a patent is applied by a firm with multiple plants (and thus share the same name) 

located in the same city. In such cases, I assign the patent equally to these plants. Though 

obviously an imprecise measurement, this issue arises for only 31 firms, a fairly small 

proportion of the sample (less than 0.01 percent), and thereby unlikely to exhibit a 

quantitatively relevant impact on the results.   

2.3.2 Method 

This chapter measures agglomerations as local regions with above-median employment 

density, following Combes, Duranton, Gobillon et al. (2012). This implicitly assume that 
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employment in all industries ubiquitously encourages innovation, which is later tested 

against the assumptions that only same-industry and related-industry employment 

encourage innovation, respectively. This chapter studies industries with at least 1% 

establishments filing for patents during the study period to ensure a minimum frequency 

of observations on patent filings. Different from the Combes paper and most prior 

studies, in this study, a local region is defined as a circular area around every 

establishment in the above industries rather than an administrative unit. The area is 

defined with a range of flexible radii: half-a-mile, one mile, two miles, five miles, and ten 

miles. This continuous and flexible treatment of space, as mentioned above, has two 

advantages: 1) it allows an establishment located at the border of an administrative unit to 

be affected by multiple neighboring units; and 2) it enables a comparison of the cluster or 

agglomeration effect across geographical scopes and overcomes the over-aggregation 

problem (Burger et al., 2008). The five radii applied in this chapter are chosen based on 

radii used in prior studies (De Silva and McComb, 2012; Wallsten, 2001; Arzaghi and 

Henderson, 2008), so that the results can be compared across studies. Though 

experimented with different radii, this study primarily focuses on the one-mile radius, 

within which signs of both learning and selection have been empirically detected 

(Wallsten, 2001; De Silva and McComb, 2012). If an establishment locates near the 

border of Maryland and a circle around it expands beyond the state boundary, that 

establishment will be excluded from the estimation. This is because I do not observe 

establishments in other states and therefore cannot count employment density in such a 

circle. This is the method adopted throughout this dissertation. 
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This chapter disentangles selection from learning. This is dealt with by estimating the 

distribution of establishment innovation, instead of the mean. According to Combes, 

Duranton, Gobillon et al. (2012), while the effects of learning and selection both upshift 

the average establishment innovation in agglomerations and therefore cannot be separated 

in an OLS regression, the distributional implications are different. The learning effect 

improves every establishment’s innovation; thus, it right-shifts the distribution of 

establishment innovation, as shown in Figure 2.1, panel a. On the other hand, selection 

forces out the least innovation establishments in agglomerations, or lowers their chance 

of survival. As a result, it truncates or lowers the left tail of the innovation distribution, as 

shown in Figure 2.1, panel b. This two cases, as well as their combination as a third case 

(Figure 2.1, panel c), can be separated with an estimation of the establishment innovation 

distribution. 
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a. Learning: Establishment innovation shifts to the right in agglomerations.  

 

b. Selection: The left tail of establishment innovation truncates or lowers in 
agglomerations.  

 

c. Learning & selection: Establishment innovation both right-shifts and left-
truncates in agglomerations. 
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Figure 2.1 Establishment innovation in and out of agglomerations under different 
mechanisms 

I was going to stratify the sample into groups by quantiles and then run linear regressions 

on each quantile (group) of observations. However, doing so would lead to a sample 

selection bias since this procedure is equivalent to artificially select subsamples and 

discarding the rest of observations in each linear regression. This results in bias in the 

estimation. To deal with this problem while effectively estimate the distributional effect, 

economists have developed the quantile regression method (Koenker and Bassett, 1978). 

This method can be viewed as a natural way to extend the idea of estimating conditional 

mean in OLS regression to estimating conditional percentile. Unlike stratified OLS, 

quantile regression delivers consistent and asymptotic normal estimators.    

In this case, a quantile regression estimates the difference in establishment innovation 

between agglomerations and non-agglomerations across a range of percentiles, contrary 

to the single mean estimate in an OLS regression. These quantile-specific estimates 

systematically compare the agglomeration with non-agglomeration distributions, and 

reveal selection at the left-tail and detect learning by the overall right-shift. This approach 

is implemented with the following specification.   

𝑙𝑜𝑔𝑃𝑎𝑡)* = 𝛼,- + 𝛼"- ∗ 𝐴𝑔𝑔)1* + 𝜶𝟑𝒑𝑿𝒊𝒋𝒕 + 𝜶𝟒𝒑𝒁𝒊𝒕 + 𝒂𝒕𝒑 + 𝜀)1*  (2.1) 

where 𝑃𝑎𝑡)* denotes one plus the number of per-year citation-weighted patents filed by 

establishment i year t. 𝐴𝑔𝑔)1* is a dummy indicating whether establishment i locates in an 

agglomeration in year t, i.e., centering a region j with above-median employment density. 

Region j, as defined above, is a circular area around establishment i with a radius of half 

a mile, one mile, two miles, five miles, or ten miles. 𝑿𝒊𝒋𝒕 denotes a set of locational 
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characteristics. 𝒁𝒊𝒕 denotes a set of establishment characteristics. 𝒂𝒕 denotes year fixed 

effects and 𝜀)1* denotes the random error.  

For 𝒁𝒊𝒕, I include fixed effects indicating ownership types and six-digit NAICS 

industries. They are determinants of establishment innovation (Shefer and Frenkel, 2005; 

Hervas-Oliver, Sempere-Ripoll, Boronat-Moll, 2014). Other establishment characteristics 

correlated with establishment innovation such as establishment size (Simonen and 

McCann, 2008) and human capital (Winters, 2014), are also by-products of the 

agglomeration and innovation processes. They are excluded from equation (2.1) to 

maintain a causal interpretation of 𝛼", but included in an extended specification.  

For 𝑿𝒊𝒋𝒕, I include county fixed effects to control for the importance of political 

boundaries (Singh and Marx, 2013). In an extended specification, instead of using the 

aggregate 𝐴𝑔𝑔)1* dummy to capture the agglomeration status, I break down the concept 

of agglomeration into the indices of localization, diversity and competition. This allows a 

comparison of which aspect of agglomeration accounts for more of its benefits on 

establishment innovation. Localization is measured by the concentration of 

employment/establishments in the same industry of establishment i. Diversity, on the 

other hand, measures the distribution of employment across industries. Competition 

measures the extent to which a location is dominated by a few large establishments. 

Localization, diversity and competition are found to greatly influence innovation in prior 

studies (Glaeser, Kallal, Scheinkman et al., 1991; Beaudry and Schiffauerova, 2009).  

These indices are constructed as follows. The raw localization index is measured by the 

number of same-industry employment/establishments. A larger index indicates a greater 
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same-industry concentration. The raw urbanization index is measured by an industry Gini 

index, capturing the inequality of employment distribution across six-digit NAICS 

industries. A Gini index closer to zero indicates greater industrial variety. The raw 

competition index is measured by the Herfindahl index, calculated by the sum of squared 

proportion of employment in three largest same-industry establishments, as a percent of 

total same industry employment in location j. A smaller Herfindahl index indicates 

tougher competition. These raw indices are standardized to ensure comparability of their 

regression coefficients. Alternative measurements of the diversity index are applied in the 

robustness tests.  

𝛼"- denotes coefficients estimated as percentile p. Variations of 𝛼" across quantiles 

separate selection and learning. If all establishments in agglomerations improve 

innovativeness by the same magnitude, 𝛼" stays a constant across percentiles (Figure 2.2, 

panel a). If more innovative establishments improve more, 𝛼" grows with quantiles 

(Figure 2.2, panel b). By contrast, with selection, 𝛼" is the largest at the lowest percentile 

and then weakly decreases by quantiles; it is zero at the 100 percentile (Figure 2.2, panel 

c).  
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a. All establishments learn the same: 𝛼" remains constant across percentiles  

 

b. More innovative establishments learn more: 𝛼" increases with percentiles  

 

c. Selection: 𝛼" decreases with percentiles  
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Figure 2.2 Identification of different mechanisms through the variations of 𝛼" across 
percentiles 

Moreover, 𝛼" across different percentiles bound the magnitudes for learning and 

selection. 𝛼" has two components: the learning effect and a selection bias15. The selection 

bias, for the moment, is assumed to be caused solely by the fact that less innovative 

establishments are more likely to be forced out of agglomerations. The two components 

vary across percentiles with different patterns: The selection effect shrinks with the 

increase of quantiles, while the learning effect stays the same or escalates with 

percentiles. Thus, if 𝛼" at percentile p* is the smallest among all nonzero 𝛼", it bounds 

selection from below for percentiles p<p*, and from above for p>p*. Similarly, it bounds 

learning from above for p<p*, and from below for p>p*. A more detailed proof is 

provided in the appendix 1. The sharpness of these bounds depends on the magnitude of 

𝛼" at p*; the smaller it is, the sharper the bounds are. Empirically, for the purpose of this 

chapter, these bounds are sharp enough to reveal the serious bias of an OLS estimator, 

but not to completely rank the magnitude of the learning effect across different 

geographical sizes.   

Now, the bounded estimates for learning may still be contaminated by the self-selection 

bias. More innovative establishments may be systematically attracted by agglomerations 

(Baldwin and Okubo, 2006; Behrens, Duranton, and Rober-Nicoud, 2014), although they 

survive both agglomerations and non-agglomerations. This concern is especially relevant 

if α" increases with quantiles, which reveals a motive for self-selection: the highly 

creative establishments benefit the most from agglomerations.  

                                                
15	See Angrist, Chernozhukov, and Fernández (2006).  
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The self-selection bias is eliminated by comparing the full sample result with the new 

establishment sample result. New establishments are establishments recorded in location j 

for the first year, which includes two types of establishments: the newly-borns and those 

that moved to location j for the first year. There are two types of agglomeration effects: 

static and dynamic effects (Neffke, Henning, Boschma et al., 2011). The static effect is 

immediately available for all establishments in agglomerations, including new 

establishments. These effects include sharing the local labor supply and lowered 

transportation cost. The dynamic effect is accumulative in nature. Being in the 

agglomeration itself does not suffice. A establishment needs to interact repeatedly with 

other establishments and workers to gain these benefits. These effects include knowledge 

spillover, network formation and trust building.  Here I maintain the assumption that 

what matters for establishments to innovate in agglomerations, especially in local 

agglomerations as this chapter measures (one mile in radius), is the dynamic effect. Labor 

supply is shared in a region much larger than one mile in radius, and transportation costs 

(of products) play a relatively small role in establishment innovation. On the contrary, 

knowledge spillover and network building are essential in innovation, and these benefits 

all take time to reveal. As a result, they are almost absent in the new establishment 

sample since these establishments were at location j for only a short period of time. In 

contrast, innovative establishments that are self-selected into agglomeration locations 

would not be affected by the absence of these agglomeration effects. They can hit the 

ground running without assimilating these benefits. Thus, the estimates from the full 

sample include the learning effect and the self-selection bias, while those from the new 

establishment sample are mostly self-selection bias. I then can back out the learning 
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effect by subtracting the latter from the former. Note that the static effect may still play 

some role, though relatively small, in fostering establishment innovation. These benefits 

can be captured by the new establishments. In that case, I’m backing out a conservative 

estimate for the learning effect.  

2.4 Results 

2.4.1 Descriptive statistics 

The employment density in Maryland is shown in Figure 2.3. Panel A maps the density 

continuously, and jobs are highly concentrated in the central areas. In comparison, panel 

B maps employment density discretely and in a “local” sense, with agglomerations and 

non-agglomerations defined as one-mile radius circles with above- and below-median 

employment density, respectively, around every establishment in industries with over 1% 

establishments filing for patents. Consistent with panel A, most agglomerations locate in 

central areas, but peripheral counties are not completely left out: Several agglomerations 

reside in their jurisdictions. The fact that most agglomerations locate in Montgomery, 

Howard and Baltimore Counties may bias the estimates if the county effects are not 

controlled for; thus, I control for county fixed effects in the regressions. Also, since these 

counties are populated with both agglomerations and non-agglomerations, the county-

level characteristics should not be a major concern; they likely cancel out.  
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Panel A. Employment density 

	
Panel B. Agglomerations and non-agglomerations 

Figure 2.3 Maryland employment density, agglomerations and non-agglomerations in 
2013 

Table 2.1 contrasts establishments in and out of agglomerations to detect their differences 

in employment size, wages and innovation. Significant differences are found in all these 

aspects, consistent with previous studies (Baptista and Swann, 1998; Aharonson, Beam 

and Feldman, 2004). On average, establishments in agglomerations apply for 0.12 
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citation-weighted patents per year, compared to only 0.009 out of agglomerations. At the 

same time, establishments in agglomerations are twice as much likely to file for patents 

compared to establishments outside. Establishments in agglomerations are also triple the 

size of establishments outside and sustain a significant wage premium; these are either 

outcomes of the uplifted innovation or confounding factors that need to be controlled. 

Both possibilities are considered in the regression. These numerical summaries also 

reveal that over 90% of the establishments did not file for patents during the study period. 

Therefore, this chapter in fact focuses on a few right-tail percentiles of the distribution of 

establishment innovation where establishments did file for patents.   

Table 2.1 Establishments in and out of agglomerations 

Variable Agglomeration Non-agglomeration 
Size 131.900***(761.515) 48.819(163.335) 

Wage 1,451,011*** (8,821,925) 440,265 (3,101,964) 
Probability of patent filing 0.070***(0.255) 0.032 (0.175) 

Number of citation-weighted 
patent applications 0.116***(2.471) 0.009 (0.191) 

Sample size 4692 6488 
NOTE: *, ** and *** denote the difference between the two groups is significantly 
different at the 10%, 5% and 1% level, respectively, under a t-test allowing unequal 
variances. Standard deviation in parenthesis.  

2.4.2 Main results  

The effects of agglomerations on innovation at different percentiles are reported in Table 

2.3, with descriptive statistics reported in Table 2.2. Panel A shows the baseline model 

with only the agglomeration dummy. All results start with the 97 percentile, because at 

percentiles below 97, establishments file no patents. Agglomerations exhibit significant 

positive effects on innovation at all percentiles, with the magnitudes first decreasing and 

then increasing. This indicates both selection and learning, consistent with Figure 2.4. At 

the 97 percentile, establishments in agglomerations file for 15.4% more citation-weighted 
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patents than establishments outside, while this effect wanes to only 6.7% at the 97.5 

percentile. Beyond the 97.5 percentile, the effect continuously increases with percentiles 

and finally scales to 91.6% at the 99.5 percentile. Therefore, the most innovative 

establishments, by locating in agglomerations, almost double their production of patents. 

These results remain qualitatively robust after adding year fixed effects in panel B, 

county fixed effects in panel C, and establishment characteristics in panel D, but the 

coefficients are generally smaller and the decrease of coefficients persists to higher 

percentiles (98 or 98.5). These indicate weaker learning effects, but not necessarily 

weaker selection effects; the magnitude of selection at each percentile declines, but it 

prevails at more percentiles.  

Table 2.2 Descriptive statistics of key variables 

Variable Short name Mean Min Max Standard 
deviation 

Sample 
size 

Log (1+citation-weighted number 
of patent applications) logPat 0.011 0 4.718 0.143 11,178 

The agglomeration status Agg 0.420 0 1 0.494 11,178 
Log (1+establishment 

employment size) LogSize 2.552 0 9.635 1.676 11,178 

Log (1+wage per employee) LogWage 4.005 0 13.383 4.496 10,256 
Localization index  Loc -3.84e-09 -0.318 3.373 1 11,178 

Diversity index  Gini -5.69e-09 -6.968 1.797 1 11,174 
Competition index  Herf -5.95e-09 -1.757 0.770 1 11,178 
NOTE: Indices are standardized.  
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The goodness of fit is measured by both Pseudo R2 and the sum of absolute weighted 

deviations. Pseudo R2 is the analogy of R2 in OLS regressions, but it may not have the 

range zero to one, and therefore does not have the nice interpretation as the 

percentage of variations explained by the model. Nonetheless, it still indicates how 

well the model fits the data. Note that in Table 2.3, at lower percentiles, the fit is not 

quite good. This is not unusual for disaggregated establishment data from various 

industries and locations, as important industrial and locational characteristics are 

controlled by fixed effects but not calculated in Pseudo R2. An alternative 

measurement for goodness of fit in quantile regressions is the sum of absolute 

weighted deviations, which shows the remaining unexplained deviations of the 

model. The smaller the number, the better the fit. To put the numbers of the sum of 

absolute weighted deviations in Table 2.3 into perspective, the original sum of 

deviations of the data is in the neighborhood of 145. As a result, the percentage of 

deviations explained by the models varies approximately from 2% to 44%. 
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Table 2.3 The effect of agglomerations on patent filing at different percentiles 

 LogPat 
 97 97.5 98 98.5 99 99.5 
 Panel A: Baseline model   

Agg 
0.154*** 
(0.028) 

0.067*** 
(0.020) 

0.114*** 
(0.028) 

0.203*** 
(0.053) 

0.560*** 
(0.104) 

0.916*** 
(0.188) 

Pseudo R2 0.0223 0.0209 0.0223 0.0329 0.0685 0.1405 
Sum of absolute 

weighted 
deviations 

143.790 140.425 134.316 125.589 111.173 82.130 

Observations 11,178 11,178 11,178 11,178 11,178 11,178 
 Panel B: Year fixed effects  

Agg 
0.140*** 
(0.026) 

0.101*** 
(0.017) 

0.095*** 
(0.022) 

0.181*** 
(0.041) 

0.394*** 
(0.123) 

0.885*** 
(0.238) 

Pseudo R2 0.0148 0.0170 0.0162 0.0203 0.0427 0.1096 
Sum of absolute 

weighted 
deviations 

144.409 140.442 134.675 126.787 118.990 84.943 

Observations 11,178 11,178 11,178 11,178 11,178 11,178 
 Panel C: County fixed effects   

Agg 
0.106*** 
(0.026) 

0.073*** 
(0.018) 

0.067*** 
(0.014) 

0.073 
(0.036) 

0.208* 
(0.117) 

0.808*** 
(0.193) 

Pseudo R2 0.0060 0.0096 0.0102 0.0084 0.0169 0.0610 
Sum of absolute 

weighted 
deviations 

144.273 140.083 134.016 126.778 115.402 88.278 

Observations 11,178 11,178 11,178 11,178 11,178 11,178 
 Panel D: Establishment characteristics   

Agg 
0.090*** 
(0.024) 

0.044 
(0.028) 

0.042 
(0.010) 

0.028 
(0.024) 

0.078 
(0.092) 

0.493** 
(0.201) 

Pseudo R2 0.0002 0.0021 0.0040 0.0025 0.0022 0.0123 
Sum of absolute 

weighted 
deviations 

143.334 139.087 132.667 125.294 114.936 90.752 

Observations 11,178 11,178 11,178 11,178 11,178 11,178 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses.   
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Table 2.4 adds potentially endogenous establishment characteristics. The pattern of 

remains similar from 97.5 to 99 percentiles, but changes at the lowest (97) and the 

highest (99.5%) percentiles. The similarity in the middle percentiles confirms that 

regardless of whether to control for these characteristics, learning exists. But at the 

lowest percentile, the sign of selection disappears, and at the top percentile, learning 

diminishes. These are likely driven by two facts: 1) small in-agglomeration 

establishments are more likely to be forced out due to their lack of financial channels, 

and 2) large in-agglomeration establishments are more likely to file for an impressive 

number of patents. Thus, after controlling for the size of establishments, the 

coefficients on the agglomeration status become smaller. This may or may not imply 

the results of Table 2.3 to be spurious, depending on whether agglomerations attract 

larger establishments or establishments grow faster in agglomerations (potentially due 

to the improved innovativeness). By comparing the new establishments in and out of 

agglomerations conditional on counties, year and industries, I find that the size of 

new establishments in agglomerations are actually 4.7% smaller than those out of 

agglomerations; and the difference is not significantly different from zero. Thus, the 

results in Table 2.4 could not have been driven by the self-selection along 

establishment sizes. In contrast, given relatively smaller sizes to begin with, 

establishments grow 60% faster in agglomerations than outside of.  
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Table 2.4 The effect of agglomerations on patent filing with the control of additional 
establishment characteristics 

 LogPat 
 97 97.5 98 98.5 99 99.5 

Agg 
0.022 

(0.019) 
0.031* 
(0.018) 

0.042* 
(0.025) 

0.050 
(0.047) 

0.061 
(0.099) 

0.089 
(0.177) 

LogSize 
0.033*** 
(0.006) 

0.038*** 
(0.006) 

0.045*** 
(0.001) 

0.060*** 
(0.015) 

0.101*** 
(0.033) 

0.173*** 
(0.058) 

LogWage 
-0.0003 
(0.001) 

0.0002 
(0.001) 

0.001 
(0.002) 

0.002 
(0.003) 

0.002 
(0.007) 

-0.0006 
(0.013) 

Pseudo R2 0.0434 0.0525 0.0592 0.0766 0.1076 0.1596 
Sum of absolute 

weighted 
deviations 

131.092 125.687 119.223 110.512 97.528 72.559 

Observations 10,256 10,256 10,256 10,256 10,256 10,256 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses.   
 

Table 2.5 compares the effects of localization, diversity and competition on 

innovation to address the Marshall-Jacobs-Porter debate. Panel A measures 

localization with same-industry employment and Panel B with the number of same-

industry establishments. These two measurements turn out to be highly correlated 

with a correlation coefficient of 0.99. The results mildly support the Jacobs 

hypothesis, but are inconsistent with either the Marshall or the Porter hypotheses. A 

more diverse local economy (a smaller Gini index) increases innovation at most 

percentiles below 99, but hurts top innovators. This is consistent with the majority of 

prior studies in favor of the Jacob hypothesis (Beaudry and Schiffauerova, 2009), and 

the exception at the top percentile may be explained by top establishments being less 

reliant on the outside environment than their interior resources (Agrawal, Galasso, 

and Oettl, 2017). In contrast, localization demonstrates almost no effects on 

innovation at lower percentiles and negative effects at 98.5 percentiles and above. 
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This echoes the findings of Feldman and Audretsch (1999) and Glaeser, Kallal, 

Scheinkman et al. (1991). Similarly, more intensive local competition (a smaller 

Herfindahl index) is also associated with fewer patent filings; this holds at all 

percentiles. This is in line with the predictions of the standard industrial organization 

theory (Dasgupta and Stiglitz, 1980; Aghion, and Howitt, 1992; Caballero and Jaffe, 

1993; Dubey and Wu, 2002), consistent with some literature on the monopoly-

innovation relationship (among others, see Swan, 1970; Reinganum, 1983; Geroski, 

1994; Aghion, Bloom, Blundel et al., 2002), but clashes with the empirical findings of 

Feldman and Audretsch (1999) and Glaeser, Kallal, Scheinkman et al. (1991). Later 

in the robustness tests, I find that measuring diversity with the entropy index instead 

of the Gini index does not change the result, while the positive effect of diversity on 

innovation is completely driven by “related diversity” (Frenken, Van Oort, and 

Verburg, 2007) —diversity of related industries.   
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Table 2.5 Marshall v.s. Jacobs v.s. Porter 

 LogPat 
 97 97.5 98 98.5 99 99.5 
 Panel A: Localization measured by employment  

Loc 
-4.34e-19 
(0.0002) 

2.17e-19 
(0.0003) 

-0.00009 
(0.013) 

-0.026 
(0.027) 

-0.069 
(0.057) 

-0.143 
(0.104) 

Gini 
-0.0005** 
(0.0002) 

-0.0006* 
(0.0003) 

-0.0002 
(0.014) 

0.0005 
(0.029) 

-0.004 
(0.059) 

0.124 
(0.109) 

Herf 
0.0006*** 
(0.0002) 

0.0009*** 
(0.0003) 

0.001 
(0.015) 

0.002 
(0.030) 

0.014 
(0.062) 

0.115 
(0.114) 

Pseudo R2 0.0006 0.0007 0.0006 0.0080 0.0132 0.0373 
Sum of absolute 

weighted 
deviations 

143.343 139.334 132.857 125.265 113.628 88.601 

Observations 11,174 11,174 11,174 11,174 11,174 11,174 
 Panel B: Localization measured by number of establishments  

Loc 
9.75e-19 
(0.0002) 

0 
(0.0003) 

-0.00009 
(0.013) 

-0.026 
(0.028) 

-0.068 
(0.057) 

-0.145 
(0.104) 

Gini 
-0.0005** 
(0.0002) 

-0.0006* 
(0.0003) 

-0.0002 
(0.014) 

0.0004 
(0.029) 

-0.004 
(0.060) 

0.126 
(0.109) 

Herf 
0.0006*** 
(0.0002) 

0.0009*** 
(0.0003) 

0.001 
(0.015) 

0.002 
(0.030) 

0.014 
(0.063) 

0.116 
(0.114) 

Pseudo R2 0.0006 0.0007 0.0006 0.0082 0.0139 0.0400 
Sum of absolute 

weighted 
deviations 

143.342 139.334 132.858 125.258 113.562 88.360 

Observations 11,174 11,174 11,174 11,174 11,174 11,174 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses.   

Figure 2.4 places bounds on the learning effect and the selection effect.  Using the 

results in panel D, Table 2.3, the full specification of equation (2.1), I find that 

learning at best encourages establishments at the 97 to 98.5 percentiles to apply for 

2.8% additional citation-weighted patents per year. The effect almost triples at the 99 

percentile, and at the 99.5 percentile, an establishment in agglomerations files for at 

least 46.5% more patents due to learning (results not shown in Figure 2.4).  To put 
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into perspectives, an average 99.5 percentile establishment in non-agglomerations 

files 3.33 citation-weighted patent applications per year, so a 46.5% increase implies 

1.55 more patents; in monetary terms, this transforms to a $4.36-$5.04 million 

addition of firm value, using estimates of stock market return of patents in Hirschey 

and Richardson (2001). As Dechezleprêtre, Martin, and Mohnen (2016) suggested, 

the stock market return is likely a lower bound for the value of a patent, because it 

captures only the private value. To the extent that a patent spurs innovation in other 

organizations, the social value would exceed the private value. To generalize to all 

innovating establishments, learning lies between 7.8% and 11.4%, which is still 

considerable. At the same time, the magnitude of selection is much larger than that of 

learning at the 97 percentile, and of comparable size at the 97.5 to 98.5 percentiles. 

These imply a serious bias of an OLS estimator. 

 

NOTE:	The	result	corresponds	to	panel	D,	Table	2.3	(the	full	specification	of	equation	(2.1)).		
Figure 2.4 Bounds of learning and selection at different percentiles 
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To formally evaluate the bias, I run an OLS regression with equation (2.1) and the 

coefficient on the agglomeration status for all establishments, including those filing 

for no patent, is 1.41%. In contrast, the weighted averages of the upper and lower 

bounds imply that learning for all establishments lies between 0.26% and 0.34%. 

Thus, the bias of the OLS estimator is large, almost quintuples the true effect. 

Similarly, an OLS estimator on innovating establishments is 18.2%, which almost 

doubles the true effect between 7.8% and 11.4%. This is partly due to the problem of 

OLS with the piles of zero dependent variables, not completely driven by the 

selection effect. But a Tobit estimator that properly deals with the pile-up of zeros, 

still doubles the true effect.    

These analyses show that the selection effect in Maryland agglomerations is sizable. 

However, remember that the agglomerations in focus are only one-mile in radius. 

Many sources for market selection are not present in such a small region: Most types 

of products are competed within a much larger market; labor flows within a much 

larger geographical region; raw materials usually are also not confined by such a 

small local region. One possible source for this detected selection effect is the 

competition for space itself. The benefit of agglomerations may have lured 

establishments to locate near to each other and bided up the price. Using the CoStar 

data, I confirm that the average rent per square feet per month for office, industrial 

and flexible spaces is $20.59, $6.03 and $5.08, respectively, in agglomerations. And 

in non-agglomerations, it is $23.07, $4.14 and $3.43, respectively. Though 

agglomerations have a lower office rent, the difference is not statistically significant 

from zero. In contrast, the higher rent for industrial and flexible spaces is significant 
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at the 5% level under a t-test. This result, though still only suggestive, is consistent 

with the hypothesis that establishments bid up prices within a local region in order to 

co-locate with others. This puts pressure on the least innovative establishments and 

may have forced them out of the desirable locations.  

Table 2.6 compares the effect of agglomerations across geographical sizes, using 

equation (2.1), and Table 2.7 presents the bounds. The results show that selection 

remains similar in magnitude in half-a-mile agglomerations, and wanes almost 

completely in larger ones. This reflects the fact that in larger agglomerations, most 

establishments are no longer direct rivalries for resources. This result is also 

consistent with De Silva and McComb (2012), who found that in one-mile-radius 

agglomerations, the share of own-industry employment increases firm mortality, 

while the opposite is true in larger agglomerations.  At the same time, learning on 

innovating establishments in half-a-mile agglomerations ranges from 4.4% to 5%, in 

two-mile ones 10% to 10.6%, and it fades completely in beyond-five-mile 

agglomerations. In comparison, a one-mile-radius agglomeration exhibits an average 

effect of 7.8% to 11.4%; thus, while the bounded estimates allow us to conclude that 

a one-mile or two-mile agglomeration outperforms that of other sizes, they cannot 

rank between these two sizes. This finding is broadly consistent with Wallsten (2001), 

who also compared the effects across agglomeration sizes and found the largest effect 

prevails within less-than-one-mile-radius areas. It is also consistent with Rosenthal 

and Strange (2008a), who found that human capital spillovers decline sharply with 

distance and almost wane beyond five miles.  
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Table 2.6 The effect of geographical sizes 

 LogPat 
 97 97.5 98 98.5 99 99.5 
 Radius=0.5 mile   

Agg 0.022 
(0.023) 

0.091*** 
(0.033) 

0.055* 
(0.029) 

0.046 
(0.046) 

0.006 
(0.087) 

0.270 
(0.235) 

Pseudo R2 0.0009 0.0045 0.0027 0.0005 0.0001 0.0890 
Sum of absolute 

weighted 
deviations 

106.725 105.662 104.185 100.094 88.360 66.614 

Observations 11,170 11,170 11,170 11,170 11,170 11,170 
 Radius=2 miles     

Agg 0.004*** 
(0.0004) 

0.004*** 
(0.0009)  

0.007 
(0.021) 

0.047 
(0.044) 

0.069 
(0.090) 

0.502** 
(0.225) 

Pseudo R2 0.0007 0.0005 0.0005 0.0005 0.0014 0.0209 
Sum of absolute 

weighted 
deviations 

122.700 121.981 121.199 119.089 111.570 89.077 

Observations 11,170 11,170 11,170 11,170 11,170 11,170 
 Radius=5 miles     

Agg  0.004*** 
(0.0006) 

0.003** 
(0.001) 

-0.0006 
(0.023) 

-0.062 
(0.043) 

-0.126 
(0.085) 

0.089 
(0.240) 

Pseudo R2 0.0005 0.0001 0.0000 0.0038 0.0057 0.0003 
Sum of absolute 

weighted 
deviations 

126.591 125.865 125.038 122.111 114.041 91.907 

Observations 11,170 11,170 11,170 11,170 11,170 11,170 
 Radius=10 miles     

Agg 0.004*** 
(0.0008) 

0.001 
(0.001) 

-0.002 
(0.023) 

-0.058 
(0.042) 

-0.133* 
(0.074) 

-0.245 
(0.265) 

Pseudo R2 0.0004 0.0000 0.0001 0.0044 0.0066 0.0052 
Sum of absolute 

weighted 
deviations 

121.061 120.361 119.554 117.029 109.768 88.998 

Observations 11,170 11,170 11,170 11,170 11,170 11,170 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses.   

These results indicate that what matters for innovation in agglomerations operate in 

close geographical proximity. One such candidate would be face-to-face 
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communications to share ideas and possibly generate new ones, as face interactions 

are sensitive to distance due to people’s time cost. Worker turnover may also help 

transmit knowledge, and workers are more likely to land a job in nearby 

establishments because of their fuller knowledge about these firms and lower search 

cost. Their knowledge of nearby firms may come from face-to-face communications 

with workers in those firms, or simply observing other workers in streets and 

restaurants. 
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Table 2.7 The bounds of the agglomeration effect and the natural selection bias 

 Percentiles 
 97 97.5 98 98.5 99 99.5 
 Radius=0.5 mile    

Learning_upper bound 0.006 0.006 0.006 0.006 0.006 0.270 
Learning _lower bound 0 0 0 0 0 0.264 
Selection_upper bound 0.022 0.091 0.055 0.046 0.006 0.006 
Selection_lower bound 0.016 0.085 0.049 0.040 0 0 

 Radius=1 mile     
Learning_upper bound 0.028 0.028 0.028 0.028 0.078 0.493 
Learning_lower bound 0 0 0 0 0.050 0.465 
Selection_upper bound 0.090 0.044 0.042 0.028 0.028 0.028 
Selection_lower bound 0.062 0.016 0.014 0 0 0 

 Radius=2 miles     
Learning_upper bound 0.004 0.004 0.007 0.047 0.069 0.502 
Learning_lower bound 0 0 0.003 0.043 0.065 0.498 
Selection_upper bound 0.004 0.004 0.004 0.004 0.004 0.004 
Selection_lower bound 0 0 0 0 0 0 

 Radius=5 miles     
Learning_upper bound 0 0 0 0 0 0.089 
Learning_lower bound 0 0 0 0 0 0.089 
Selection_upper bound 0.004 0.003 0 0 0 0 
Selection_lower bound 0.004 0.003 0 0 0 0 

 Radius=10 miles     
Learning_upper bound 0 0 0 0 0 0 
Learning_lower bound 0 0 0 0 0 0 
Selection_upper bound 0.004 0.001 0 0 0 0 
Selection_lower bound 0.004 0.001 0 0 0 0 
NOTE: Negative coefficients are regarded as zero, due to the assumption of non-

negativity of learning and selection. See the appendix 1.  

I also compare the effects of localization, diversity and competition across 

geographical scales (results not shown). Consistent with prior studies (Rosenthal and 

Strange, 2003; Arzaghi and Henderson, 2008), localization prevails only at local 

regions within half a mile in radius, competition prevails within one mile, while 
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diversity expands beyond broader levels and stays strong in a ten-mile-radius 

agglomeration.    

I also deal with the potential contamination of the self-selection effect. I run equation 

(2.1) with the new establishment sample and find self-selection negligibly small at all 

percentiles and in agglomerations of all sizes. They are no more than five percent of 

the coefficients in Table 2.3 and statistically indistinguishable from zero. Thus, the 

complication caused by self-selection is minimal and the bounded estimates are 

trustworthy.   

2.5 Robustness Checks 

The Combes, Duranton, Gobillon et al. (2012) method. I apply the Combes, 

Duranton, Gobillon et al. (2012) method to test whether its result agrees with the 

bounded estimates. The estimated share of left truncation is 0.9%, the average right-

shift is 0.31%, and the right dilation is 311%. Note that the average agglomeration 

effect (right-shift) is in line with the bounded estimates: 0.26% to 0.34%. At the same 

time, the selection effect estimated by the Combes, Duranton, Gobillon et al. (2012) 

method is smaller than the lower bound of the bounded estimates (1.5%). This is 

likely due to the fact that the Combes, Duranton, Gobillon et al. (2012) method 

captures the left truncation but not the lowering of the left tail, while both are 

captured in the bounded estimates. Nevertheless, this exercise shows that learning 

estimated in both approaches are of comparable magnitudes.  

Alternative definition of agglomerations. I use the density of establishments instead 

of employment to define agglomerations. The results are qualitatively robust, while 
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learning and selection are both weakened in magnitudes: a one-mile radius area with 

above-median establishment concentration increases citation-weighted patent 

applications by about 7.3% for an average establishment that files for patents during 

the study period. At the same time, non-innovators are 1.3% less likely to survive in 

agglomerations. 

Alternative measures of diversity.  Entropy, as the literature pointed out (Attaran 

and Zwick, 1987), can be another useful measure for industrial diversity. I therefore 

use it instead of the Gini index to test for robustness. The results barely change and 

the entropy-measured index are highly correlated with the Gini index with a 

coefficient of 0.82. Furthermore, Frenken, Van Oort, and Verburg (2007) suggested 

that diversity per se does not contribute to learning; it is related diversity, the 

diversity in the related industries that matters. To probe into that, I separate the 

diversity index into related and unrelated diversity. They are calculated with the Gini 

indices within a group of closely related industries16 and across such groups, 

respectively. As expected, I find the positive effects of diversity on innovation 

completely driven by related diversity, while unrelated diversity shows statistically 

zero or even negative effects.  

Nonlinear specification. I also use polynomials of the localization, diversity and 

competition indices up to the power of three, to account for potential nonlinear 

relationships found in prior studies. Competition and localization exhibit inverse-U 

                                                
16	I apply the definition of Delgado, Porter and Stern (2014), who group industries by input-output, co-
location and labor-pooling relationships using optimal clustering algorithm. 
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shaped effects on innovation, i.e., too much or too little are both harmful, while the 

effect of diversity remains linear.  

Alternative weighting schemes of patent applications. In the main analysis, I use 

per year citation to weight patent applications. Alternatively, I apply six other 

weighting schemes. First, I assign zero weights on ungranted applications, i.e., I count 

patent grants instead of patent applications. This reduces the magnitudes of selection 

and learning, but does not change the conclusion. I also compare patent granting rates 

in and out of agglomerations, to see whether the higher rent in agglomerations 

prompts establishments to file for immature patents. As Farre-Mensa, Hegde, and 

Ljungqvist (2016) found, patents are important signals to potential investors and 

loaners; firms with a patent are more likely to get financed. Thus, the urge to finance 

may have prompted establishments in agglomerations to file for immature patents. I 

find the overall granting rate high, with more than 85% of patent filings eventually 

granted. This rate is 3.4% lower for establishments in agglomerations than those 

outside of, but the difference is not statistically significant at the 10% level. 

Therefore, the competition pressure in agglomerations may have hasted 

establishments to file for patents that are not ready, but the effect is insignificant. 

Third, I apply no weights to the count of patent filings. The selection effect for less 

innovative establishments rises by about 0.8 percent while learning falls by 

approximately 3.8 to 5.2 percent. This indicates that: 1) innovators are more likely to 

survive agglomerations than non-innovators even if they filed for patents and failed or 

their patents were never cited, which again can be explained by the signaling effect of 

patents; and 2) agglomerations lift the quality of patents at a similar rate as they speed 
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up the applications. Fourth, I weight by number of citations relative to the average 

citation in the same technology class and of the same age. Compared to the main 

weighting scheme, this weight considers the difference in citations across technology 

class and the nonlinearity of the accumulation of citations over the life cycle of 

patents. However, subject to the relatively small number of patents in each 

technology-class-by-age group, this weight is also more sensitive to outliers. 

Nevertheless, I find the main results barely change either qualitatively or 

quantitatively with this weight. Fifth, I weight by total citations, and the results are 

still qualitatively robust, with learning boosting by about three to ten percent at the 

top three quantiles (98.5 to 99.5). Last, I exclude self-citations. This does not affect 

the main results except at the 99.5 percentile, where the coefficient decreases by 

12.2%. It shows that only top innovators self-cite frequently.   

The change over time. I also test the change of learning over time by dividing the 

ten-year study period into halves. The result, while qualitatively robust in both 

periods, is quantitatively enlarged in the second. Learning as well as selection grow 

over time in Maryland agglomerations. The potential erosion of learning in the 

modern age with the development of transportation and internet technologies, 

identified by some prior studies (Packalen and Bhattacharya, 2015), is not evident in 

this case. This can be explained by the nature of Maryland agglomerations. Maryland 

agglomerations are mostly IT, high-tech or education-related, and rely heavily on 

peer-to-peer interactions; this type of knowledge spillovers, as suggested by Glaeser 

(1998), are not losing their magic in the modern economy. On the contrary, they are 

on the rise.  
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The impediment effect of county boundaries. I further test the potential 

impediment effect of county boundaries on knowledge spillovers. I run the same 

regressions on agglomerations spanning across multiple counties, and the result 

remains fairly robust with minimal change of the coefficients. Thus, county 

boundaries don’t appear to inhibit knowledge spillovers and this strengthens my case 

of treating space continuously instead of cutting them by administrative boundaries.  

Permutation test. Last, I conduct a permutation test. I randomly assign locations to 

the agglomeration status at the actual probability for 10,000 times, run the same 

quantile regressions and summarize the results.  The chance of a statistically 

significant coefficient at the 10% level at 97 to 99.5 percentiles is only 0.9% to 9.5%; 

the estimated coefficients nicely approximate a normal distribution centering zero.  

2.6 Conclusion 

This chapter brings to our attention that learning and selection co-exist in 

agglomerations. As a result, the effect of agglomerations on innovation estimated by 

ordinary least square regression is upwardly biased. The bias, using agglomerations in 

Maryland, 2004-2013, as an example, could be four times the size of the true learning 

effect.   

A more precise estimate of learning is provided using quantile regression. An average 

establishment that files for at least one patent during the study period increases 

citation-weighted patent applications by 7.8% to 11.4% by locating in 

agglomerations, while at the same time, non-innovators are 2.5% less likely to 

survive in agglomerations.  These effects are substantial. 
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This chapter informs policy makers and entrepreneurs making locational choices.  

The more precisely estimated learning effect can be applied to cost-benefit and cost-

effectiveness analyses of industrial policies, while the different effects across the 

geographical scope can be used to determine the optimal size of agglomerations. For 

establishment managers making locational choices, the innovativeness of their 

establishments needs to be carefully evaluated. Highly innovative establishments 

benefit the most by locating in denser employment centers, while non-innovators can 

greatly lift their chance of survival by avoiding competitive business centers. 
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Chapter 3: The Heterogeneous Effect of Clusters across 
Industries  

 

3.1 Introduction 

In recent years, policymakers have invested millions of public funds to support 

industrial clusters in different regions. They are also targeting at specific industries 

and geographies. For instance, Boston launched a $1 billion initiative in 2006 to grow 

a life science cluster17. In 2010, the U.S. Department of Energy awarded $129 million 

to the Energy Regional Innovation Cluster at the 1,200-acre Navy Yard in 

Philadelphia18. These investments, however, may not be optimal: These targeted 

industries may not be the ones that benefit the most from clustering, and the targeted 

geographical regions may not be at the scale that the strongest effect of clusters 

prevails.  

While optimizing the targeted industries and spatial scales can improve the efficiency 

of industrial policies, studies to date fail to provide such guidance. In terms of 

industry optimization, most studies aggregate industries at high levels of 

classification based on similarity of products (Feldman and Audretsch, 1999; 

Wallsten, 2001; Mariani, 2004), while others disaggregate, but only study a small 

subset of industries (Beaudry, 2001; Bloom, Schankerman, and Van Reenen, 2013). 

As a result, the spectrum of industrial clusters measured by previous studies does not 

                                                
17	https://www.clustermapping.us/sites/default/files/files/resource/Clusters_and_Competitiveness-
_A_New_Federal_Role_for_Stimulating_Regional_Economies__Full_Report_.pdf	
18	http://scienceprogress.org/2010/08/a-win-for-regional-innovation/ 
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capture the relationship among industries in production process (in the former case) 

and/or is incompetently measured (in the latter case).  

In terms of spatial optimization, most studies define clusters by administrative 

boundaries due to the aggregated feature of business data (Combes, Duranton, 

Gobillon et al., 2012; Feser, Renski, and Goldstein, 2008; Ellison, Glaeser, and Kerr, 

2010). These administrative boundaries are usually no smaller than a county. Thus, if 

the effect of clusters prevails at a smaller scale, prior studies could not have identified 

it. Moreover, administrative boundaries usually are not economically meaningful and 

do not make reasonable boundaries for clusters. A few recent studies adopt business 

data at the establishment level and find that the effect of clusters largely concentrates 

within a one-mile radius region (Wallsten, 2001; De Silva and McComb, 2012). 

These pieces of evidence reveal how aggregated data mask the true scale of clusters. 

But to date, studies using establishment-level data are still rare and none of them 

analyzes the spatial scope of clusters as industry-specific. 

This chapter closes these two gaps. I estimate the effect of clusters on innovation 

across 34 industrial clusters defined by Delgado, Porter, and Stern (2014) according 

to input-output, co-location, and labor-sharing relationships between industries. A 

continuous quantile method following Combes, Duranton, Gobillon et al. (2012) and 

a comparison between the full sample and the new establishment sample are applied 

to eliminate the selection bias. Metalworking Technology cluster, consisting of 14 

closely interrelated six-digit NAICS industries, encourages innovative by the greatest 

magnitude, followed by Food Processing and Manufacturing, and Automotive 
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clusters. These three industrial clusters increase a establishment’s patent filings by 

17.6, 8.5, and 5.5 percent, respectively. I also optimize the spatial scale of each 

industrial cluster to maximize its effect on innovation. Metalworking Technology, 

Food Processing and Manufacturing, and Automotive clusters, for example, are 

associated with optimal sizes of three, one and two mile(s) in radius, respectively. 

Eventually, this chapter delivers a complete ranking of industrial clusters by the 

magnitude of their effects on innovation, and shows their optimal spatial scales. By 

consulting this list, policymakers can design efficient industrial policies. They can 

prioritize the industrial clusters on top of the list with cluster-oriented policies and 

generate the greatest spurt in innovation.  

The contribution of this chapter is four-fold. It contributes to both studies on the 

heterogeneous effect of clusters across industries and studies on the spatial scope of 

clusters. It examines clusters in detailed industry classification based on meaningful 

industrial interconnectedness (34 groups of industries at the six-digit NAICS code 

level closely related by input-output, co-location and labor-sharing relationships) and, 

for the first time, allows the spatial scale of clusters to be industry-specific. In 

addition to identifying these heterogeneities, this chapter also explains the differences 

in the effect on innovation and spatial scales by a set of key industrial characteristics. 

The importance of tacit knowledge, education level of employees, and market size 

turn out to account for a great deal of both differences.  

It also contributes to the literature that quantifies the cluster-innovation relationship, 

by eliminating two forms of selection bias: the selection bias caused by market 
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competition (less innovative establishments are forced out of clusters), and the bias 

caused by self-selection (more innovative establishments are systematically attracted 

to clusters). The estimates in this chapter are 0.03% to 1.9% smaller than the (prior) 

OLS estimates, indicating upward bias in the latter.  

This chapter also speaks to the literature on the sources of the benefits of clusters 

(among others, see Jaffe, Trajtenberg, and Henderson, 1993; Rosenthal and Strange, 

2008b). Prior studies suggest that the prevalence of tacit knowledge, the intensity of 

co-patenting collaborations, the expansion of market size and the high skill level of 

employees (Elvery, 2010) may be the reasons that clusters encourage innovation. 

These effects are quantified in this chapter.  

It also contributes to studies on industry targeting (among others, see Leatherman, 

Howard, and Kastens, 2002; Conroy, Deller, and Tsvetkova, 2016). This chapter 

provides a new strategy to help policymakers target industrial clusters with the 

greatest effect on innovation at their optimal spatial scales. This strategy can produce 

cost-effective industrial policies.  

3.2 Literature 

Researchers find that the effect of clusters on innovation vary across industries. For 

example, Wallsten (2001) finds that proximity to other innovators increases the 

chance of innovating in computers, bio-tech and life sciences, and electronics 

industries, but not in materials and energy sectors. But these studies suffer from two 

problems. First, in terms of industrial aggregation, they either aggregate industries at 

high levels based on product similarity (Mariani, 2004) or only study a small subset 
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of detailed industries (Beaudry, 2001; Bloom, Schankerman, and Van Reenen, 2013). 

High-level industry aggregation based on product similarities masks the inherent 

unrelatedness in the production process, and therefore provides misleading policy 

applications by clustering unrelated industries together. At the same time, focusing on 

a small subset of industries also provides only limited guidance for industry targeting 

due to the narrow research scope. Second, the reasons behind the heterogeneous 

effect are not well understood. Researchers have put forth hypotheses that the reliance 

on tacit knowledge and market size may affect how much clusters uplift innovation 

(Carlino and Kerr, 2014; Delgado, Porter, and Stern, 2014), but empirical studies are 

rare. Identifying key industrial characteristics accounting for the heterogeneous effect 

will deepen our understanding of clusters. For example, if we find industries relying 

on tacit knowledge benefit more from clusters, then it implies that the spillover of 

uncodified knowledge plays a central role in clusters. Moreover, pinning down a set 

of key industrial characteristics also help to apply this study to general settings. For 

instance, in this chapter, I rank 34 industrial clusters defined based on NAICS by their 

effects on innovation. This ranking directly applies to policymaking in the United 

States but does not in other countries that classify industries in a different way. 

However, by knowing that clusters encourage innovation the most in industries 

relying on tacit knowledge for example, policymakers around the world can then 

identify and target such industries in their own jurisdictions.  

The effect of clusters attenuates by distance. Most studies to date aggregate 

geographies by administrative units and thus cannot identify the attenuation effect 

precisely (Combes, Duranton, Gobillon et al., 2012; Feser, Renski, and Goldstein, 



 

 

54 
 

2008; Ellison, Glaeser, and Kerr, 2010). A few recent studies, using more detailed 

geographical data, find that the effect of clusters is quite local, largely concentrated 

within a one-mile radius region (Wallsten, 2001; Arzaghi and Henderson, 2008; De 

Silva and McComb, 2012). Moreover, the spatial scope at which the effect of clusters 

prevails should differ by industries, as industries have different levels of reliance on 

collaboration and knowledge spillovers. But to date, no studies allow the spatial scale 

of clusters to be industry-specific, except Rosenthal and Strange (2003), who find that 

own-industry employment encourages new employment only within a one-mile-

radius ring for the apparel industry, while the radius expands to ten miles for the 

software and fabricated metal industries. While Rosenthal and Strange (2003) focus 

on the effect of clusters on employment and six two-digit SIC industries 

(corresponding to approximately three-digit NAICS industries), this chapter extends 

the analysis to the effect on innovation and more detailed industry classification (34 

industrial clusters based on six-digit NAICS code).  

3.3 Data and Method 

3.3.1 Data 

I adopt the same datasets as described in section 2.3.1. Aside from these two main 

datasets, I also use the American Community Survey and previous literature as 

complimentary data sources in this chapter. 
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3.3.2 Method 

In this chapter, I extend my previous definition for agglomerations into clusters of 

different industries. I group industries by their input-output, co-location and labor-

sharing relationships, following Delgado, Porter, and Stern (2014). They have 

classified a total of 67 groups of closely related industries based on 978 six-digit 

NAICS coded industries. In this chapter, I focus on 34 groups of industries in which 

at least ten establishments applied for patents during the study period 2004 to 2013; 

this is to ensure enough observations of patent applications in the estimation. In terms 

of geography, this chapter again defines a cluster as a region around every 

establishment with a flexible radius. The radius changes from one mile to twenty-five 

miles to search for the optimal scale at which clusters encourage patent filings by the 

greatest magnitude. This optimal radius is industry-specific. This definition triumphs 

those in most prior studies, which define clusters by administrative boundaries and 

maintain the spatial scale of clusters constant across industries. In this chapter, the 

spatial scale of clusters is empirically optimized rather than pre-determined. Putting 

together, if a region (with a changeable radius) around an establishment has an above-

median employment density in related industries, it is defined as a cluster. I also shift 

the threshold of employment density to 1.2 times greater than average and change the 

definition to focus on establishment density, but the primary analysis looks at 

employment density above median.  

I take care of two important forms of selection bias in estimating the effect of clusters 

on innovation: 1) less innovative establishments are forced out of clusters (market 
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selection), and 2) more innovative establishments actively choose to locate in clusters 

(self-selection). I tackle with market selection with a continuous quantile estimator 

developed by Gobillon and Roux (2008) and Combes, Duranton, Gobillon et al. 

(2012). Compared to the discrete quantile regression adopted in chapter 2, this 

method is similar in logit but it only estimates three parameters. Since I’m comparing 

across a wide range of industries, reducing the number of parameters is essential. A 

functional form as follows is adopted to describe the relationship between 

distributions of establishment innovation in and out of clusters, which allows for the 

presence of both the true learning effect and market selection effect, and the cluster 

effect is allowed to increase with the innovativeness of establishments (i.e., more 

innovative establishments benefit more in clusters).  

φ?,A u = D?φ?,D S? + (1 − S?)u + A? for u ∈ max 0, PQR
,PQR

, 1  

φ?,A u  is the uth quantile of the distribution FA of establishment innovation in 

clusters of industry n. φ?,D u  is its counterpart in non-clusters. The former can be 

approximated by three changes in the latter: a right-shift (parameter A), a left-

truncation (parameter S) and a dilation (parameter D). This is because clusters force 

out the least innovative establishments and thus lead to a left-truncation, improve the 

innovativeness of the remaining establishments and thus lead to a right-shift, and 

improve innovativeness the most for the best performers and thus lead to a dilation 

(Baldwin and Okubo, 2006; Behrens, Duranton, and Rober-Nicoud, 2014). A, if >0, 

is the average improvement of innovation for an in-cluster establishment compared to 

an out-of-cluster counterpart. D, if >1, stands for the magnitude by which more 
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innovative establishments benefit more from clusters. S, if >0, stands for the 

magnitude of the market selection effect, or more specifically, the percentage of the 

least innovative establishments being forced out of clusters compared to that in non-

clusters. A continuous quantile estimator developed by Gobillon and Roux (2010) and 

Combes, Duranton, Gobillon, et al. (2012) is applied to estimate A, D and S. The 

average learning effect (A) and the dilation (D) estimated from the above procedure 

are still contaminated by self-selection. I again contrast the full sample with the new 

establishment sample to deal with this issue.  

I repeat the above procedure for each industrial cluster at different spatial scales to 

search for the optimal scale that maximizes the effect on innovation A. This is done 

by the following approach, under the assumption that learning is a smooth function of 

the spatial size of clusters. I let the computer randomly pick an integer x between one 

and twenty-five as the starting radius, and update it by one in both directions each 

time. The radius that returns the larger learning effect is used as the next starting 

point, until both x+n+1 and x+n-1 return a magnitude smaller than that of x+n. x+n 

then is a local optimal point. To obtain the global optimal point, I repeat the above 

steps ten times and compare the local optimal point(s). The one returning the largest 

effect is the global optimality. This is carried out for 34 industrial clusters, and their 

(optimized) spatial scales and effects on innovation are then recorded and compared. 

In the end, this delivers a ranking of industrial clusters by the strength of learning at 

their optimal spatial scales.  
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Last, I group industrial clusters by a series of industry-level characteristics and 

examine how these characteristics shape their spatial scales, effects on innovation and 

magnitudes of market selection. This is implemented with the main estimation 

procedure described in the above paragraphs combined with t-tests. The industry 

characteristics include: the importance of tacit knowledge, average number of patent 

collaborators, market size, patent intensity, and education level of employees. A 

dummy variable is constructed indicating whether tacit knowledge is mentioned in 

the literature as critical for an industry. Learning should be stronger if tacit 

knowledge is important, as clusters help establishments gain access to tacit, rather 

than codified knowledge. At the same time, the spatial scale of clusters should be 

smaller, as tacit knowledge, by definition, can only be transmitted through face-to-

face interactions and is thus sensitive to distance. The literatures are compiled from 

Web of Science, Google Scholar, SSRN and NBER, with key words combinations of 

“tacit knowledge” or “uncodified knowledge” and the name of each industrial cluster 

or its sub-industries. Number of patent collaborators is constructed from the USPTO 

patent data and the QCEW data, and used to capture the importance of network in an 

industry. If network is important, clusters should show greater effect because they 

help establishments to build denser networks with neighbors. Market size is obtained 

from Berry and Garrison (1958) and measured by the minimum population an 

industry serves. A smaller market size is associated with a tougher local competition 

and therefore a stronger market selection effect and a smaller spatial scale; industries 

depending on a large market size may also be associated with a stronger learning 

effect, as clusters help establishments to form collective competitiveness and expand 
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the market. A dummy variable indicating whether an industry is patent intensive, with 

patent intensity defined by the number of patents per employee, is obtained from 

Economics and Statistics Administration and USPTO (2012). High patent intensity 

implies that innovation is important for survival and therefore the market selection 

effect should be stronger. Education level of employees is measured by the 

percentage of workers that hold a bachelor’s degree. This variable is obtained from 

the American Community Survey. A more educated workforce may contribute to 

both learning and market selection. On the one hand, highly educated employees may 

learn faster in clusters and improve innovation by a greater magnitude. On the other, 

less innovative establishments may have difficulty affording highly educated workers 

and thus more likely to be pushed out. 

3.4 Results 

3.4.1 Ranking of industrial clusters by their effects on innovation 

The 34 industrial clusters are summarized in Table 3.1. Each consists a group of six-

digit NAICS industries that are closely related in input-output, co-location and labor-

pooling relationships. For example, the Metalworking Technology cluster, contains 

14 six-digit industries including Machine Tool Manufacturing, Metal Heat Treating, 

and Industrial Mold Manufacturing. Figure 3.1 shows the distribution of the 34 

clusters by the number of establishments applying for patents during the study period. 

In most clusters, fewer than 60 establishments applied, while three clusters, including 

Business Services, Education & Knowledge Creation and Distribution & Electronic 

Commerce, have over 100 establishments applied. These are both highly innovative 
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and major clusters in Maryland. They account for 81% of establishments and 74% of 

jobs in the state. At the same time, an establishment in these three industrial clusters 

is four times more likely to apply for patents and produces ten times more citation-

weighted patent filings than one in other industries; both differences are statistically 

significant at the 5% level under a t-test.  

 
Figure 3.1 Number of establishments applying for patents during the study period 

(2004-2013) in the 34 industrial clusters 

Geographically, the 34 industrial clusters do not concentrate at the same place. For 

example, as Figure 3.2 shows, establishments in Biopharmaceuticals are relatively 

few and spatially scattered. In contrast, there are a lot of establishments in Business 

Services; they are highly concentrated in the central Maryland—in Montgomery, 

Howard, Baltimore County and City, Anne Arundel and Prince George’s. 

Establishments in Education and Knowledge Creation cluster are even more 

concentrated in Montgomery, Howard and Baltimore City. In Food Processing and 
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Manufacturing, on the contrary, establishments are mainly geographically dispersed 

with a slight concentration in Baltimore City. Employment distributions are similar in 

pattern. To conclude, different industrial clusters exhibit different geographical 

distributions; as a result, their effects can be spatially disentangled.   

 
(A) Biopharmaceuticals                                        (B) Business Services 

 
(C) Education & Knowledge Creation     (D) Food Processing & Manufacturing  
Figure 3.2 Spatial distributions of establishments in different industrial clusters 

Table 3.1 ranks the 34 industrial clusters by how much they encourage innovation 

(parameter A), and reports their optimal geographical scale. The cluster that boosts 

innovation by the greatest magnitude is Metalworking Technology. When formed at a 

scale of three miles in radius, this cluster uplifts the number of citation-weighted 

patent applications by e0.162-1, or 17.6 percent. This is a sizable effect. The literature 

estimates the elasticity of establishment patenting to R&D expenditure close to 0.5 

(Aghion, Van Reenen, and Zingales, 2013; Bloom, Schankerman, and Van Reenen, 

2013). A 17.6% increase in patenting roughly equals a 35% increase in R&D 

expenditure. Agrawal, Galasso, and Oettl (2017) estimate that a 10% increase in a 
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region’s stock of highways increases the region’s patenting by 1.7%. A 17.6% 

increase in patenting then is equivalent to doubling the stock of highways. For regions 

with a relatively strong Metalworking Technology industry, a cluster-oriented policy 

targeting at this industry would be cost-effective. Metalworking Technology covers a 

wide range of metalworking jobs that create parts for all kinds of machines, including 

engines, hand tools and accessories. The most competitive establishments in this 

industry is highly technology-based and innovative. For example, Black & Decker 

Corporation, an American metalworking manufacturer headquartered in Towson, 

Maryland, applied for 200 patents during the study period with a total citation of 

85019. Studies also confirm that this industry relies heavily on tacit knowledge 

(Balconi, 2002), which may explain why clusters in this industry lead to a large 

improvement in patent filings. Food Processing and Manufacturing cluster and 

Automotive cluster rank the second and the third. When formed at a scale of one mile 

and two miles in radius, these two clusters increase patent filings by 8.5 and 5.5 

percent, respectively. These effects although much smaller than that of the 

Metalworking Technology cluster, are still quite sizable compared to other policies or 

projects (Aghion, Van Reenen, and Zingales, 2013; Bloom, Schankerman, and Van 

Reenen, 2013; Agrawal, Galasso, and Oettl, 2017). Other industries on top of the list 

are Recreational and Small Electric Goods, Education and Knowledge Creation, and 

Upstream Metal Manufacturing. After the top ten industrial clusters on the list, the 

effect of a cluster on innovation becomes small (no more than 1%). Thus, cluster 

                                                
19	The main result is not completely driven by this particular establishment though; excluding it, the 
Metalworking Technology cluster still increases citation-weighted patent applications by 16.4% and 
ranks the first among all industrial clusters.   
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policies do not work for every industry; this signals the importance of appropriate 

industry targeting. Down at the bottom of the list are Communications Equipment and 

Services, Biopharmaceuticals, and Local Utilities, in clusters of which, the effect on 

innovation is essentially zero in magnitude. In Lighting and Electrical Equipment and 

Upstream Chemical Products, effects are negative by a magnitude of 1% and 5.7%, 

respectively. This implies that in these two industries, knowledge may become more 

rigid in dense employment centers than outside and actually inhibit innovation.  

Table 3.1 Ranking of industrial clusters by effect on innovation (parameter A) 

Rank Cluster 

Optimal 
Size 

(mile in 
radius) 

Average 
effect on 

innovation, or 
learning (A) 

Magnitude that 
more innovative 

establishment 
benefit more (D) 

Market 
selection 

(S) 

Pseudo 
R2 

Sample 
Size 

1 Metalworking Technology 3 0.162*** 
(0.003) 

2.956*** 
(0.002) 

0.050 
(0.123) 0.516 1,983 

2 Food Processing and 
Manufacturing 1 0.082*** 

(0.0001) 
2.337*** 
(0.001) 

0.024 
(0.023) 0.485 3,537 

3 Automotive 2 0.054*** 
(0.0003) 

1.246*** 
(0.002) 

0.046*** 
(0.002) 0.530 507 

4 Recreational and Small 
Electric Goods 1 0.048*** 

(0.005) 
1.250 

(0.200) 
0.043*** 
(0.012) 0.522 147,109 

5 Education and Knowledge 
Creation 1 0.029*** 

(0.004) 
1.004 

(0.220) 
0.034 

(0.123) 0.022 20,629 

6 Upstream Metal 
Manufacturing 1 0.028*** 

(0.0007) 
0.856*** 
(0.003) 

0.013 
(0.231) 0.511 742 

7 Information Technology and 
Analytical Instruments 1 0.025*** 

(0.005) 
1.494* 
(0.212) 

0.031*** 
(0.003) 0.252 4,180 

8 Downstream Chemical 
Products 2 0.020*** 

(0.0007) 
2.007*** 
(0.006) 

0.015*** 
(0.004) 0.509 1,972 

8 Distribution and Electronic 
Commerce 1 0.020*** 

(0.0007) 
2.007*** 
(0.006) 

0.004 
(0.065) 0.509 67,481 

10 Production Technology and 
Heavy Machinery 3 0.017* 

(0.009) 
1.643*** 
(0.011) 

0.025 
(0.021) 0.441 4,186 

11 Construction Products and 
Services 1 0.008*** 

(0.001) 
0.559*** 
(0.089) 

0.003 
(0.211) 0.503 5,160 

11 Downstream Metal Products 1 0.008 
(0.011) 

0.559*** 
(0.083) 

0.008 
(0.023) 0.503 1,778 

13 Wood Products 1 0.007 
(0.014) 

0.559* 
(0.208) 

0.007 
(0.034) 0.503 139,173 
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14 Plastics 1 0.0065 
(0) 

1.646 
(0) 

0.013 
(0) 0.470 1,193 

15 Marketing, Design, and 
Publishing 1 0.00025*** 

(1.734e-26) 
1.382 

(0.328) 
0.003 

(0.382) 1.000 31,438 

16 Aerospace Vehicles and 
Defense 2 0.00019*** 

(3.076e-26) 
1.038 

(0.160) 
0.005 

(0.015) 1.000 1,243 

17 Local Personal Services 
(Non-Medical) 1 0.00018*** 

(1.329e-26) 
1.739** 
(0.285) 

0.000 
(0.286) 1.000 61,590 

18 Local Health Services 1 0.00015*** 
(2.025e-26) 

1.260 
(0.291) 

0.000 
(0.132) 1.000 126,522 

19 Local Household Goods and 
Services 1 0.00004 

(0.052) 
1.022 

(0.298) 
0.000 

(0.169) 0.679 23,846 

19 Hospitality and Tourism 1 0.00004 
(0.088) 

0.987 
(0.165) 

-0.001 
(0.434) 0.687 17,423 

21 Financial Services 1 0.000033*** 
(1.908e-26) 

1.050 
(0.195) 

0.002 
(0.231) 1.000 28,135 

22 Jewelry and Precious Metals 5 0.00002 
(0.123) 

1.043 
(0.254) 

-0.002 
(0.257) 0.507 244 

22 Insurance Services 1 0.00002 
(0.044) 

1.006 
(0.365) 

-0.001 
(0.322) 0.758 9,008 

24 Local Financial Services 1 7.515e-06 
(0.002) 

1.078 
(109.25) 

0.001 
(0.259) 1.000 11,584 

25 Business Services 1 1.744e-06*** 
(8.311e-26) 

1.0008 
(0.784) 

0.006 
(0.052) 1.000 113,888 

26 Performing Arts 1 6.124e-08 
(0.013) 

1.001 
(0.232) 

0.002 
(0.166) 0.575 3,609 

27 Local Logistical Services 1 7.838e-09 
(0.071) 

1.003 
(0.132) 

0.000 
(0.087) 0.640 20,101 

28 Local Retailing of Clothing 
and General Merchandise 1 5.443e-09 

(0.089) 
0.999 

(0.057) 
-0.001 
(0.063) 0.535 267,355 

29 Medical Devices 1 0 
(0) 

1 
(0) 

0.003 
(0) / 126,394 

30 Communications Equipment 
and Services 2 

-2.877e-
06*** 

(1.385e-26) 

0.999*** 
(0.0008) 

0.003 
(0.072) 1.000 4,999 

31 Biopharmaceuticals 1 -0.0005*** 
(7.455e-26) 

0.813*** 
(0.018) 

0.006 
(0.132) 1.000 637 

31 Local Utilities 1 -0.0005 
(0.0007) 

0.539 
(46.360) 

0.001 
(0.131) 1.000 5,803 

33 Lighting and Electrical 
Equipment 4 -0.011 

(0.012) 
0.788*** 
(0.007) 

-0.007 
(0.232) 0.313 1,755 

34 Upstream Chemical Products 12 -0.059*** 
(0.002) 

0.508*** 
(0.005) 

-
0.038*** 
(0.007) 

0.418 1,094 

Note: Bootstrapped standard errors are in parenthesis. *p<0.05, **p<0.01, ***p<0.005 We test for A=0, D=1 and 
S=0. 
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It is also evident from the list that the effects of most industrial clusters are locally 

concentrated. 24 out of the 34 industrial clusters, and six out of the top ten, exhibit 

their strongest effects within a one-mile radius region. Only one cluster, Upstream 

Chemical Products, has it effect prevail beyond five miles. This is consistent with 

previous studies that identify the sharp attenuation of the cluster effect over distance 

(Arzaghi and Henderson, 2008; Rosenthal and Strange, 2003). This also indicates that 

direct human interactions (face-to-face communications) and worker turnover likely 

play an essential role in fostering innovation in clusters; since the probability of a 

person running into another attenuates fast with the physical distance between them, 

the effect of clusters on innovation does not survive long distance.  

The market selection effect (parameter S) is numerically unneglectable but 

statistically insignificant at the 5% level for most industries. But for a subset of 

industrial clusters, including Automotive, Recreational and Small Electric Good, 

Information and Technology and Analytical Instrument, and Upstream Chemical 

Products, market selection is statistically significant. In these four industries, clusters 

force out an additional 4.6, 4.3, 3.1 and 1.5 percent of the least innovative 

establishments compared to non-clusters, respectively. Downstream Chemical 

Products, on the contrary, has a negative market selection effect, with non-clusters 

forcing out 3.9 percent more less innovative establishments than clusters. This 

indicates that in Downstream Chemical Products, clusters are actually more tolerant 

of non-innovative establishments, likely through buffering them from bankruptcy 

with cost- and labor-sharing.   
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One thing worthy of special notice is that the common wisdom for industry targeting 

turns out to be misleading. Practitioners tend to target highly innovative industries for 

cluster development. Table 3.1 shows that while this strategy is right about some 

industries, such as the highly innovative Education and Knowledge Creation and 

Information Technology and Analytical Instruments industries, which do top this list, 

it is wrong about others. For example, the similarly highly innovative 

Biopharmaceuticals and Business Services industries, as well as the Medical Devices 

industry, do not appear to encourage patent filings at all, and certainly do not 

encourage more than the not-so-innovative Food Processing and Manufacturing and 

Woods Products industries. An industry being innovative in general does not 

guarantee that forming a cluster in this industry encourages more innovation; it could 

be that locations with either high or low employment density are equally highly 

innovative. These are just two separate issues and one does not infer the other.  

I then examine whether the estimated average effect of clusters on innovation (A) and 

dilation (D) are still contaminated by self-selection bias with the new establishment 

sample. For most industrial clusters, self-selection is both small (less than 2% of the 

original A and S estimates) and statistically insignificant at the 5% level. There are a 

few exceptions. For Construction Products and Services (No. 11 in the ranking), 

Marketing, Design, and Publishing (No.15), Local Health Services (No.18) and 

Finance Services (No.21), self-selection is of comparable magnitude of the original 

estimate of parameter A and thus brings down the true effect of clusters to essentially 

zero. But all these self-selection coefficients are insignificant at the 5% level, except 

for the Finance Services cluster. 
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Finally, I formally evaluate the bias of an OLS estimator.  I re-estimate the effect of 

the 34 clusters on innovation with OLS regressions. In 32 clusters, the OLS estimates 

are larger than the estimates for parameter A in Table 3.1. This indicates an upward 

bias of the OLS estimator due to selection bias (captured by parameter S). The 

upward bias varies from 0.3 to 1.9 percent across the 32 industrial clusters, which is 

not large but still unneglectable. This is consistent with the fact that in most of the 

industrial clusters, the parameter S is both small (<1%) and statistically insignificant, 

but in some industries, the selection bias is serious with S larger than 3% and 

statistically significantly different from zero at the 5% level.      

3.4.2 Industrial characteristics that explain the difference 

In this section, I explain the different optimal sizes of clusters and their heterogeneous 

effects on innovation using industrial characteristics. These industry-level 

characteristics include: the importance of tacit knowledge, average number of patent 

collaborators, market size, patent intensity, and education level of employees. The 

importance of tacit knowledge, as mentioned above, is measured by a dummy 

variable indicating whether tacit knowledge is mentioned in the literature as 

important for a certain industry. I expect the importance of tacit knowledge to be 

associated with a larger learning effect and a smaller spatial scale. The literatures are 

compiled from Web of Science, Google Scholar, SSRN and NBER, with key words 

combinations of “tacit knowledge” or “uncodified knowledge” and the name of each 

industrial cluster or its sub-industries. For example, for Construction Products and 

Services industry, I identify the paper “Tacit knowledge and organisational 
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performance: construction industry perspective” by Pathirage, Amaratunga, and 

Haigh published in Journal of knowledge management in 2007. This paper states that 

tacit knowledge is critical in construction industry. As a result, the dummy variable is 

coded as one for this industry. For each group, I re-run the main estimation to obtain 

parameter A (learning) and S (market selection), and apply t-tests to compare the 

difference across groups in both parameters as well as the identified optimal sizes of 

clusters in Table 3.1. Table 3.2 shows the result. As expected, the spatial scale of 

clusters is 0.8 miles smaller in radius for industries with important tacit knowledge. 

At the same time, learning is also seven percent larger in these industries. Market 

selection is also much stronger; this is sensible as tacit knowledge makes location 

more critical, and the competition over location is thereby likely to be intensified. 

These differences are all statistically significant at the 5% level. Note that the results 

can be unreliable is only one study suggests that tacit knowledge is important in an 

industry. In my analysis, only two industries, Distribution and Electronic Commerce 

and Local Logistic Services, have no more than one study stating that they rely on 

tacit knowledge. Removing these two industries from the analysis does not change 

the result much. Cluster optimal size becomes slightly larger at 1.438 miles in radius, 

learning enlarges to 0.017 and selection enlarges to 0.012. Statistically significance 

does not change at all. 
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Table 3.2 Cluster size, learning and market selection by industrial characteristics 

Industry 
Characteristics Group Cluster size 

(mile in radius) 
Learning  

(A) 
Market 

selection (S) Sample size 

Tacit Knowledge 
Important 1.389*** 

(0.007) 
0.016*** 
(0.00009) 

0.011*** 
(0.0004) 580,550 

Unimportant 2.188*** 
(0.002) 

0.009*** 
(0.00007) 

0.005*** 
(0.00005) 676,045 

Number of patent 
collaborators 

Above median 1.75*** 
(0.005) 

0.013*** 
(0.00008) 

0.006*** 
(0.00004) 750,245 

Below median 1.8*** 
(0.004) 

0.012*** 
(0.00007) 

0.013*** 
(0.00006) 506,350 

Market Size 
Above median 2***  

(0.005) 
0.017*** 
(0.00009) 

0.007*** 
(0.00005) 683,304 

Below median 1.333*** 
(0.003) 

0.007*** 
(0.00005) 

0.009*** 
(0.00004) 573,291 

Patent Intensive 
Yes 2.667*** 

(0.007) 
0.014*** 
(0.0001) 

0.0083*** 
(0.00007) 454,949 

No 1.053*** 
(0.0005) 

0.012*** 
(0.00005) 

0.0078*** 
(0.00003) 801,646 

Share of workers 
holding a bachelor’s 

degree 

Above median 1.308*** 
(0.003) 

0.014*** 
(0.00007) 

0.010*** 
(0.00004) 472,067 

Below median 2.048*** 
(0.005) 

0.009*** 
(0.0004) 

0.007*** 
(0.00005) 784,528 

Note: Bootstrapped standard errors are in parenthesis. *p<0.05, **p<0.01, 
***p<0.005  

Average number of patent collaborators in an industry, defined as how many 

establishments on average collaborate on a patent application, captures the 

importance of network for innovation in an industry. If networking is important, 

clusters should exhibit a greater learning effect as they help to build networks by 

concentrating establishments and workers in geographical proximity; at the same 

time, the spatial scales of clusters are expected to be smaller as networking requires 

proximity. Table 3.2 shows that as expected, industries with above median number of 

patent collaborators form clusters at a slightly smaller scale (0.05 miles smaller in 

radius) and learning is also slightly stronger (by 0.1%). These differences are 

statistically significant at the 5% level but numerically small.    
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Market size is measured by the minimum population an industry serves and 

constructed from Berry and Garrison (1958)20. These two authors quantify market 

sizes for 52 industries, most of which are service-based. I match these 52 industries as 

closely as possible to my 34 industrial clusters. For example, the Local Health 

Services cluster is linked to Hospital and Clinics, which has a market size of 1159 

persons. In this way, I manage to match 24 out of the 34 clusters to the Berry and 

Garrison (1958) study, and use these 24 clusters to carry out the analysis. A smaller 

market size is expected to be associated with a smaller spatial scale for clusters and a 

tougher local competition (i.e., a stronger market selection effect). Table 3.2 shows 

that indeed, a smaller market size results in a spatial scale that is 0.7 miles smaller in 

radius and a one percent weaker learning effect. A smaller market size is also 

associated with a market selection effect 0.2 percent stronger in magnitude.  

Patent intensity, defined as the number of patents per employee in an industry, is 

measured with a dummy variable indicating whether an industry is patent intensive, 

constructed from Economics and Statistics Administration and USPTO (2012). 

Innovation is important for survival in a patent intensive industry, and therefore in 

such an industry, the market selection effect should be stronger. Table 3.2 shows that 

patent intensive industries exhibit a marginally stronger selection effect (by 0.05%) 

and a slightly smaller effect of learning (by 0.2%); this is consistent with the findings 

from Table 3.1 that an industry being highly innovative and patent intensive does not 

necessarily infer that clusters in this industry encourage innovation by a large 

                                                
20	These estimates obviously are a bit out of date and may not accurately measure market size today. Nevertheless, 
Berry and Garrison (1958) provide the most complete list of industries with market sizes, and since I’m grouping 
industries by above/below median market size, the exact measurement is not that important.   
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magnitude. Table 3.2 also shows that patent intensive industries form clusters 1.7 

miles larger in radius. While this difference is both large and statistically significant 

at the 5% level, there isn’t a clear-cut theoretical explanation of why patent intensive 

industries would form larger clusters. It is likely a coincidence due to the fact that 

patent intensive industries are also mostly traded industries while patent unintensive 

industries are mostly local service industries.  

Last, education level of employees in an industry is measured by the percentage of 

workers with a bachelor’s degree, obtained from the American Community Survey. 

This variable may contribute to both the effect on innovation and the market selection 

effect as educated workers may learn faster and therefore benefit more from clusters, 

while at the same time, educated workers are costly and may become unaffordable for 

non-innovative establishments. Table 3.2 confirms both. Industrial clusters with more 

educated workers exhibit a 0.5 percent larger learning effect and a 0.3 percent 

stronger market selection effect.  

3.5 Robustness Checks 

Alternative definitions for clusters. I change the threshold of employment density 

for cluster definition from above median to 1.2 times above average. I find that in 32 

out of the 34 industrial clusters, the change of the parameters is numerically small and 

does not shift their relative ranking. Two industries, Upstream Metal Manufacturing, 

and Distribution and Electronic Commerce, increase their effects on innovation under 

this new definition from 2.8% to 6.1%, and 2% to 4.3%, respectively. This also 

upshifts their rankings from No. 6 and No. 8 to No. 3 and No. 6.  
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I also use establishment density instead of employment density above median as an 

alternative definition for clusters. The assumption here is that knowledge spillovers 

and rivalries happen across establishments, not within establishments, as workers 

within an establishment hold more homogenous knowledge. This assumption is 

reasonable if most establishments are small and workers play similar roles in these 

establishments. The assumption implicitly adopted in the main definition is that 

workers are the carriers of knowledge, and thus either within- or across-establishment 

interactions can yield new knowledge. This assumption holds if establishments are 

large or workers in establishments, even small ones, play different roles and therefore 

hold different knowledges. Both assumption may be plausible and there is no reason 

to believe one more than the other. Given the plausibility of both assumptions, I use 

employment density as the main definition due to the nature of the data. The QCEW 

data are a count of employment and covers 98% of jobs in the United States, but the 

data do not include self-employed establishments and thus undercount the number of 

establishments. As a result, it is more accurate to use this dataset to measurement 

employment than establishments. Nevertheless, when defining clusters by above-

median establishment density, I find the optimal sizes of all clusters completely 

unchanged, and the effects on innovation almost unchanged with differences smaller 

than 0.01% in 19 out of the 34 industrial clusters. The exceptions are as follows. For 

Communications Equipment and Services cluster, while the change of the parameter 

A is statistically significant at the 5% level, the magnitude is very small (1.00e-03) 

and numerically unimportant. Four industries experience an increase in their effects 

on innovation: Aerospace Vehicles and Defense cluster increases its effect from 0.2 



 

 

73 
 

to 0.7 percent, and its rank climbs from No.16 to No.13. Biopharmaceuticals cluster, 

the effect of which increases from -0.5 to 1.4 percent, now ranks No.11 instead of 

No.31.  Lighting and Electrical Equipment cluster increases its effect on innovation 

from -1.1 to 3 percent, with its rank rocketing from No.33 to No.5. Finally, Upstream 

Chemical Products cluster increases its effect from -5.9 to one percent, with its rank 

soaring from No.34 to No.12. Seven other industrial clusters significantly drop their 

effects on innovation. For example, the effects of Downstream Chemical Products, 

Downstream Metal Products, Plastics, and Production Technology and Heavy 

Machinery clusters all become negative, ranging from -0.2 to -0.9 percent. The top 

industrial cluster, Metalworking Technology cluster, also scales back its effect to 7.9 

percent. But it still tops the ranking as the second top industry, Food Processing and 

Manufacturing, also scales back its effect from 8.5 to 3.1 percent and drops from rank 

No.2 to No.5. Finally, Automotive cluster also shows a smaller effect on innovation 

in this new ranking, 2.1 instead of 5.5 percent, which drags its rank down from No.3 

to No.8.   

Alternative weights of patent applications. In the main analysis, I use per year 

citation to weight patent applications. I apply five other weights to check for 

robustness. First, I assign zero weights to ungranted applications, i.e., I count patent 

grants instead of patent applications. This weight reduces the effect of clusters on 

innovation for all industries, but does not change the ranking. Second, I apply no 

weights to patent filings. This again scales back the effect on innovation by almost a 

half for the top ten industrial clusters. Third, I weight patents by the number of 

citations relative to their age and average citation of patents in the same technology 
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class. I find the main results barely change. Fourth, I weight by total citations, and the 

results are still qualitatively robust with the ranking almost unchanged. But the effect 

on innovation boosts by one to three percent for the top six industries. Last, I exclude 

self-citations. This barely affects the result, although it decreases the effect on 

innovation in some industries by a percentage point smaller than 0.1.  

3.6 Cost-Effectiveness Analysis  

While Table 3.1 compares the benefits of cluster policies on innovation, this section 

further considers the costs. A Metalworking Technology cluster, as shown in Table 

3.1, increases citation-weighted patent applications by 17.6 percent and a Food 

Processing and Manufacturing cluster by 8.5 percent. While the benefits are different, 

the costs of developing a cluster in these two industries are also distinct. The data 

show that to develop an average non-cluster in Metalworking Technology into an 

average cluster requires the addition of 94 jobs, while in Food Processing and 

Manufacturing, 819. Thus, after adjusting the benefits by the number of jobs that need 

to be added, the difference between these two industries enlarges. Table 3.3 carries 

out a complete re-ranking of the 34 industrial clusters based on their effects on 

innovation adjusted by number of jobs added, and this ranking is very different from 

that in Table 3.1. We still have Metalworking Technology topping this list with 1.9‰ 

increase of citation-weighted patent applications per job added, but the second and 

the third change to Downstream Metal Products and Distribution and Electronic 

Commerce.  

Table 3.3 Ranking of industrial clusters by effect on innovation, adjusted by number 
of jobs needed to be added to develop a cluster 
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Rank Cluster 
Effect on innovation 
per job added (‰) 

1 Metalworking Technology 1.872 
2 Downstream Metal Products 1.004 
3 Distribution and Electronic Commerce 0.789 
4 Information Technology and Analytical Instruments 0.524 
5 Automotive 0.496 
6 Construction Products and Services 0.275 
7 Education and Knowledge Creation 0.259 
8 Wood Products 0.190 
9 Plastics 0.165 
10 Food Processing and Manufacturing 0.104 
11 Upstream Metal Manufacturing 0.097 
12 Production Technology and Heavy Machinery 0.085 
13 Downstream Chemical Products 0.068 
14 Recreational and Small Electric Goods 0.017 
15 Local Personal Services (Non-Medical) 0.013 
16 Marketing, Design, and Publishing 0.010 
17 Local Health Services 0.004 
18 Local Household Goods and Services 0.003 
19 Financial Services 0.0012 
20 Hospitality and Tourism 0.00115 
21 Insurance Services 0.00038 
22 Local Financial Services 0.00035 
23 Jewelry and Precious Metals 0.0002 
24 Aerospace Vehicles and Defense 6.933e-05 
25 Business Services 4.780e-05 
26 Performing Arts 3.934e-06 

27 Local Retailing of Clothing and General 
Merchandise 3.601e-07 

28 Local Logistical Services 2.191e-07 
29 Medical Devices 0 
30 Communications Equipment and Services -9.785e-06 
31 Biopharmaceuticals -0.002 
32 Local Utilities -0.057 
33 Lighting and Electrical Equipment -0.074 
34 Upstream Chemical Products -0.023 

 

Table 3.3 still has not considered that adding a job costs differently across industries. 

This is taken care of in Table 3.4, which divides the magnitudes in Table 3.3 by 

average annual wages in these industries in the unit of $1,000,000. Average wage is 
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used to measure the cost of adding a job. Under the assumption of perfect market 

competition, the social cost of a job equals the wage and the productivity of the 

worker. Thus, if cluster policies generate jobs in non-clusters to create greater 

employment density, the social cost of such policies equals the number of jobs added 

multiplied by average wage. The wage data are compiled from the Occupational 

Employment Statistics, Bureau of Labor Statistics21. They are averaged across all 

occupations in every four-digit NAICS code industry. I match them to the industrial 

clusters using the first four digit of each six-digit sub-industry in a cluster, and then 

average over all sub-industries in a cluster. This type of aggregation clearly creates 

measurement errors, but it is still the best I can do to measure the costs. However, it is 

reassuring that the measurement errors are unlikely to drive the results, as the exercise 

in Table 3.4 only slightly changes the ranking in Table 3.3. For example, No. 4 

Information Technology and Analytical Instruments and No. 5 Automotive in Table 

3.3 flip their rankings in Table 3.4. While Information Technology encourages more 

innovation for every job added, jobs in this industry are much more expensive as 

well. The ranking in Table 3.4 can be interpreted as a cost-effectiveness analysis. It 

shows that given the same social cost, which industrial clusters generate more 

citation-weighted patent applications. Policymakers, by consulting to this ranking, 

can prioritize certain industries over others to maximize the gain in innovation for 

every penny they spend.   

 

                                                
21 https://www.bls.gov/oes/data.htm 
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Table 3.4 Ranking of industrial clusters by effect on innovation adjusted by costs 
(number of jobs that a cluster exceeds a non-cluster multiplied by average wages) 

Rank Cluster 
Effect on innovation 

adjusted by costs (‰ per 
$1,000,000 costs) 

1 Metalworking Technology 36.773 
2 Downstream Metal Products 19.952 
3 Distribution and Electronic Commerce 11.745 
4 Automotive 11.237 
5 Information Technology and Analytical Instruments 5.632 
6 Wood Products 5.163 
7 Construction Products and Services 4.840 
8 Education and Knowledge Creation 4.782 
9 Plastics 3.842 
10 Food Processing and Manufacturing 2.835 
11 Upstream Metal Manufacturing 2.005 
12 Production Technology and Heavy Machinery 1.391 
13 Downstream Chemical Products 1.076 
14 Local Personal Services (Non-Medical) 0.421 
15 Recreational and Small Electric Goods 0.341 
16 Local Health Services 0.126 
17 Marketing, Design, and Publishing 0.123 
18 Local Household Goods and Services 0.078 
19 Hospitality and Tourism 0.037 
20 Financial Services 0.011 
21 Insurance Services 0.0055 
22 Jewelry and Precious Metals 0.0053 
23 Local Financial Services 0.005 
24 Business Services 0.001 
25 Aerospace Vehicles and Defense 0.0009 
26 Performing Arts 7.924e-05 

27 Local Retailing of Clothing and General 
Merchandise 1.121e-05 

28 Local Logistical Services 4.615e-06 
29 Medical Devices 0 
30 Communications Equipment and Services -0.0001 
31 Biopharmaceuticals -0.024 
32 Local Utilities -0.758 
33 Lighting and Electrical Equipment -1.477 
34 Upstream Chemical Products -3.449 
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3.7 Conclusion 

While previous students find that 1) clusters in different industries exhibit 

heterogeneous effects on innovation, and 2) the distance of knowledge spillovers 

differs across industries, a complete comparison of industries in these two aspects is 

still missing. This chapter ranks 34 industrial clusters by their effects on innovation 

and identifies the optimal geographical scale for each cluster in which it improves 

innovation by the greatest magnitude.   

Using the establishment data and the patent application data for the state of Maryland, 

2004-2013, this chapter finds the following. First, the effect of most industrial 

clusters on innovation is locally concentrated. 24 out of the 34 industrial clusters 

studied in this chapter exhibit the strongest effects on patent applications in a one-

mile radius region. Second, the variation in the effects on innovation is striking across 

industries. The top cluster, Metalworking Technology, when formed at its optimal 

scale of three miles in radius, uplifts the number of citation-weighted patent 

applications by 17.6 percent. Food Processing and Manufacturing cluster and 

Automotive cluster rank the second and third. When formed at one-mile and two-mile 

radius optimal scales, respectively, they increase patent filings by 8.5 and 5.5 percent. 

These effects are substantial, equivalent to a 11% to 35% increase in R&D 

expenditure, or a 32% to 100% increase in highway stock (Aghion, Van Reenen, and 

Zingales, 2013; Bloom, Schankerman, and Van Reenen, 2013; Agrawal, Galasso, and 

Oettl, 2017). However, after the top ten industrial clusters, the rest 24 clusters exhibit 

only a minimal effect on innovation no more than one percent. Thus, cluster policies 
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do not encourage innovation for every industry and policymakers should make a 

careful pick. This chapter ranks the 34 industrial clusters by their effects on 

innovation and takes the costs into consideration. This ranking provides a direct guide 

for policymakers to target industries for cluster policies.   

This chapter also examines industrial characteristics that explain the heterogeneous 

effects on innovation and the various spatial scales of clusters. It finds that the 

importance of tacit knowledge and a small market size accounts for a more local scale 

of knowledge spillovers, while a higher patent intensity leads to a larger scale. The 

importance of tacit knowledge is also associated with a stronger effect on innovation, 

as is a larger market size and a higher education level of employees.  

This chapter conveys three messages to practitioners. First, for policymakers, it’s 

important to recognize that the effects of industrial clusters on innovation prevail at 

different, but in general small, geographical scales. Cluster policies can be designed 

in line with these scales to maximize their outcomes. Second, it is wise to target 

certain industries for cluster policies, as most industrial clusters do not exhibit a large 

positive impact on innovation. Table 3.4 in this chapter provides a reasonable cost-

effectiveness analysis that policymakers can directly consult. While this ranking may 

not be directly applicable to states other than Maryland and the industry classification 

does not apply to countries other than the United States, the same methodology can 

be applied to analyze similar issues in other regions. Moreover, the analysis on how 

industrial characteristics shape the geographical scales of clusters and their effects on 

innovation is generalizable to regions that classify industries with a different system. 
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Policymakers in other regions can simply target cluster policies towards industries for 

which tacit knowledge is important, workers are highly educated, and market size is 

large. Third, this chapter also provides guidance to establishment managers in terms 

of location choices. It helps predict whether and by how much their establishments 

would benefit from a cluster location. Establishment mangers can weigh the benefits 

against the costs of such a location to make a knowledgeable location choice.  
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Chapter 4: Do Clusters Benefit Small Establishments More 

Than Large Ones? 

4.1 Introduction 

The effect of clusters on innovation lands unequally on small and large 

establishments. Most prior studies concluded that clusters benefit small firms more 

than large ones. For example, Baten, Spadavecchia, Streb et al. (2007) found that 

inter-industry externalities are important for small firm innovation, but not for that of 

large firms. To be specific, if employment in other industries increases by one 

percent, the number of important patents per worker in the cluster increases by 5.229. 

Beugelsdijk (2007) found that if regional R&D intensity (R&D expenditure divided 

by gross regional product) increases by one percent, the share of new products in total 

sales in small firms increases by 7.11 percent. For large firms, the increase is only 

4.48 percent and statistically insignificant. Fang (2015), in a meta-analysis that 

summarizes all empirical work since 1980, concluded that the positive effect of 

clusters on innovation lands exclusively on small firms, while large firms benefit 

little.  

Researchers are particularly interested in small firms due to their importance to the 

economy. Small firms with fewer than a hundred employees account for the vast 

majority of the establishment population in the United States (Ayyagari, Demirguc-

Kunt, and Maksimovic, 2011; Neumark, Wall, and Zhang, 2011). Small firms may 

require different levels of regional support compared to large firms. As contextualized 
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by Baten, Spadavecchia, Streb et al. (2007), small firm innovation is more related to 

the wide base of external knowledge environment, from which innovative ideas might 

diffuse. Thus, supporting a clustering environment could be more beneficial for small 

establishments. However, existing studies that compare the effect of clusters on small 

versus large firms, as mentioned above, are still rare and suffer from endogeneity 

problem. Unobserved variables, such as the abilities and charisma of firm founder, 

may have simultaneously affected firm size and innovation. This problem would lead 

to a biased estimate.      

This chapter, using the size and usage types of land parcels in 1973 as instruments, 

solves the endogeneity problem. I find that the conclusion of previous studies holds 

numerically but not statistically. Industrial clusters within one mile in radius increase 

citation-weighted patent filings by 2.3 percent in small establishments, but only by 

0.5 percent in large establishments. However, the numerical difference between small 

and large establishments is statistically insignificant. This chapter also studies the 

attenuation of knowledge spillover over distance. Consistent with previous studies 

(Wallsten, 2001; Arzaghi and Henderson, 2008; Rosenthal and Strange, 2003), it 

finds that the effect of clusters on innovation diminishes with distance and wanes 

almost completely beyond five miles.   

The contribution of this chapter is three-fold. First, this chapter introduces new 

instrumental variables to relieve the endogeneity issue. Second, it adds to the 

literature on the determinants of small establishment innovation (Acs and Audretsch, 

1988; Van Dijk, Den Hertog, Menkveld et al., 1997). It finds that industrial clusters 
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play an important role in boosting innovation in small establishments. Third, by 

looking directly into the sample attrition issue, it also provides an additional piece of 

evidence concerning how much clusters affect establishment mortality and relocation. 

This adds to the literature such as De Silva and McComb (2012) and Nathan and 

Vandore (2014).  

4.2 Literature  

Compared to large firms, small establishments have both advantages and 

disadvantages in gaining innovativeness from clusters. Nieto and Santamaría (2010) 

pointed out that the strengths of large firms reside in their abundant resources, 

whereas those of small businesses lie in their entrepreneurship, flexibility, and rapid 

response to market conditions (Lewin and Massini, 2003; Schumpeter, 1942). As 

clusters provide common resources at a low cost, they may help small establishments 

overcome their disadvantages. However, compared to large businesses, small 

establishments also lack financial channels and are less likely to be adequately 

equipped (Cohen and Klepper, 1992). They also face limitations on internal human 

capital and innovation capabilities (Hewitt-Dundas, 2006; Rogers, 2004). They thus 

may be at a disadvantageous position to improve innovation in clusters. As Giuliani 

(2005) pointed out, firms that are “cognitively” distant from innovators are less likely 

to benefit from the knowledge pool.  

Empirically, there is no clear-cut relationship between firm size and innovation per se 

(Rothwell and Dodgson, 1994). But some evidence suggests the determinants of 

innovation to differ in small and large firms (Acs and Audretsch, 1988; Van Dijk, 
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Den Hertog, Menkveld et al., 1997). Prior research also suggests that clusters have 

different effects on innovation in small and large firms (Freel, 2003; Baten, 

Spadavecchia, Streb et al., 2007). While small businesses have limited internal 

resources, clusters may provide them more external resources and collaboration 

opportunities to make up (Nieto and Santamaría, 2010). On the contrary, large firms 

rely more on internal resources and benefit less from clusters (Agrawal, Galasso and 

Oettl, 2016). Similarly, Baten, Spadavecchia, Streb et al. (2007) suggested that small 

firm innovation depends more on the external knowledge environment. These 

arguments are confirmed by Acs, Audretsch and Feldman (1994) showing that 

university R&D plays a more decisive role in innovation for small firms, while 

corporate R&D plays a relatively more important role in large firm innovations. 

Similarly, Beugelsdijk (2007) found that if regional R&D intensity increases by one 

percent the share of new products in total sales in small firms increases by 7.11 

percent. For large firms, the increase is only 4.48 percent and statistically 

insignificant. Wallsten (2001) found that the number of firms within one-tenth mile in 

distance predicts whether a firm wins the Small Business Innovation Research (SBIR) 

awards. One additional firm within that close proximity, a small firm becomes 1.4 

percent more likely to win a SBIR award. Baten, Spadavecchia, Streb et al. (2007) 

found if employment in other industries increases by one percent, the number of 

important patents per worker in the cluster increases by 5.229. In addition, if 

employment in the same industry and innovative firms increases by one percent, the 

number of important patents per worker in the cluster increases by 0.003; the effect is 

enlarged to 0.005 for small businesses but also becomes statistically insignificant. 
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They also found that employment in same industry and non-innovative firms hurts 

innovation in large firms, but encourages innovation in small ones, though 

insignificantly so. Fang (2015), in a meta-analysis that summarizes all empirical work 

since 1980, concluded that the positive effect of clusters on innovation lands 

exclusively on small firms, while large firms benefit little. Opposite conclusions also 

exist, but are relatively rare. Baptista and Swann (1998), using a dataset containing 

mostly large firms, found that own industry employment is significantly associated 

with firm innovation.    

A major problem in previous studies is that they fail to address the endogeneity 

between establishment size and innovation. Establishment size affects how much an 

establishment benefit from clusters, but a more innovative establishment also grow 

faster. This leads to an overstatement of clusters’ effect on large establishments and 

an understatement of that on small establishments, as the most successful small 

establishments quickly join the pool of large establishments. This problem is 

mitigated using the initial size of establishments at birth instead of their current size, 

but since most business data do not trace back to the date of establishment birth, 

previous studies remain muted on this issue. The overall bias on how much clusters 

improve small establishment innovation is ambiguous.   

This chapter improves the estimates in prior studies with an instrumental variable 

approach. Using the 1973 land parcel size and use types as instruments, this chapter 

addresses the endogeneity issues. It also directly examines the effect of clusters on 

establishment bankruptcy and relocation to address the sample attrition issue. Thus, 



 

 

86 
 

this chapter delivers a more precise estimate on how much clusters help small 

establishments innovate.   

4.3 Data and Method 

4.3.1 Data 

I adopt the same datasets as described in section 2.3.1. I also obtain the digital maps 

of land parcels in 1973 for the state of Maryland from the Maryland Department of 

Planning22. These maps contain information on parcel size and parcel use types. I 

overlap these maps with the establishment maps and match each establishment with 

the parcel it resides.  

4.3.2 Method 

Clusters are measured the same way as in section 3.3.2, and I change the radius of 

clusters from one to, two, five and ten miles. This chapter adopts a linear regression 

following prior studies (Wallsten, 2001; Baten, Spadavecchia, Streb et al., 2007).   

𝑃𝑎𝑡)T* = 𝛼,𝐶𝑙𝑢𝑠𝑡𝑒𝑟)T* + 𝛼"𝐶𝑙𝑢𝑠𝑡𝑒𝑟)T* ∗ 𝐿𝑎𝑟𝑔𝑒)T* + 𝛼[𝐿𝑎𝑟𝑔𝑒)T + 𝛼\𝑃𝑎𝑦𝑟𝑜𝑙𝑙)T*

+ 𝒂𝒊 + 𝒂𝒕 + 𝜀)T* 

𝑃𝑎𝑡)T* denotes innovation of establishment i in industry n year t, measured by 

number of per-year citation-weighted patent applications. Since y contains lots of 

zeros, I adopt a Tobit regression to deal with this feature. 𝐶𝑙𝑢𝑠𝑡𝑒𝑟)T* is a dummy 

variable indicating whether establishment i locates in a cluster in industry n year t. 

                                                
22	http://planning.maryland.gov/OurProducts/downloadFiles.shtml	
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𝐿𝑎𝑟𝑔𝑒)T* is a dummy variable indicating whether establishment i is a large 

establishment. This is measured either in year t or at the year of establishment i’s 

birth. The definition for small and large establishments varies by each six-digit 

NAICS code industries, according to the U. S. Small Business Administration23. A 

plant of a larger establishment is different from a self-standing establishment, and a 

dummy variable should be added to account for their difference. Nonetheless, with a 

panel data structure, such difference will be factored out by establishment fixed 

effects.  

Aside from these key variables, I have also controlled for establishment average 

payroll in dollars (𝑃𝑎𝑦𝑟𝑜𝑙𝑙)T*) and establishment and year fixed effects (𝒂𝒊 and 𝒂𝒕). 

These fixed effects take care of establishment level time-invariance characteristics 

and common trend. Other variables adopted in previous studies (Baten, Spadavecchia, 

Streb et al., 2007), such as R&D investment and export intensity, are unavailable in 

the QCEW dataset. As a result, they are included in the error term 𝜀)T*. The error term 

thus may be correlated with establishment size.  

Aside from the omitted establishment-level observable characteristics, establishment 

size may be correlated with unobservable characteristics as well. These issues are 

addressed by instrumental variables. This chapter employs the 1973 parcel size and 

usage types as instruments. Parcel size affects establishment size. A small parcel 

restricts an establishment’s ability to physically expand in place, as neighboring 

parcels may or may not be available. Even if they are available, it may be costly to 

                                                
23	https://www.sba.gov/contracting/getting-started-contractor/make-sure-you-meet-sba-size-standards/table-small-
business-size-standards 
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consolidate them. Of course, a establishment can still expand vertically, but that also 

imposes a higher cost. Land use types24 also affect establishment size; they restrict a 

establishment’s ability to physical expand due to the cost of converting land use. All 

else equal, a establishment on industrial or commercial land is more likely to expand 

than a establishment on the edge of farms.  

Using current parcel size and usage types as instruments, however, violates the 

exclusion restriction. Parcel size and usage are determined partly the political process 

of urban planning, and politics can be affected by current residing establishments. 

Therefore, I trace parcel size and usage types back to 1973, when the majority of 

current establishments did not even exist25. Past parcel size and usage clearly affect 

current size and uses. Also, they are determined by past political negotiations 

independent from current residing establishments. This satisfies the exclusion 

restriction. These instrumental variables are constructed by overlaying the 1973 land 

parcel map with the location of establishments and clusters. I obtain the exact parcel 

where an establishment resides.  

In addition to the instrumental variable approach, I also measure establishment size at 

their birth. The initial size at an establishment’s birth, compared to its current size, 

suffers less from the endogeneity issue, since the initial size cannot be a result of how 

much an establishment improves in clusters. To make sure I correctly measure 

establishment initial size, in that particular specification I limit the sample to a subset 

                                                
24	Land use types classify whether a land is low-, medium- or high-density residential, commercial, industrial, 
institutional, open urban land, deciduous forest, water, etc. A full list can be found in Appendix Table A1. 
25	The average longevity of a firm in the United State is only ten years; this is also consistent with the data used in 
this chapter, in which only 3% of establishments exist throughout the ten-year study period.  
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of establishments born during the study period. It’s worth noting that the initial size 

specification may still suffer from omitted variable biases, including the omission of 

observable establishment characteristics and unobservable characteristics such as the 

inherent innovative capability of an establishment. A more capable establishment 

may start at a larger size than one less capable. Thus, I still apply the instrumental 

variables to this specification. 

4.4 Results 

4.4.1 Descriptive statistics 

Small establishments dominate in Maryland. Among the total of 916,916 

establishment-year observations, 734,222 (80%) can be classified as small or large 

according to the standards published by the U. S. Small Business Administration. 

Among these classified establishments, 733,742 (99.93%) are small establishments 

and only 480 (0.07%) are large ones. This is not much different from the US on 

average, where 99.7% of establishments are small26.   

Only a small portion of establishments are innovative, and large establishments are 

more innovative than small ones. Among the 723,222 classified establishments, only 

0.13% applied for patents during the study period; they on average applied for 3.8 

patents over ten years. Large establishments are more innovative than small ones: 

2.7% of them applied for patents during the study period, compared to only 0.12% 

among small establishments; the difference is significant at the 5% level under a t-

                                                
26	https://www.sba.gov/sites/default/files/FAQ_Sept_2012.pdf	
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test. This signals the need to encourage innovation in general, and especially in small 

establishments.  

Establishment turnover is frequent. 24% of these 723,222 establishments only appear 

once in the data: 18% only survive for one year and the other 6% only exist in 2004. 

Those that only exist for 2004 may only survive for one year, or last for several years 

but went bankrupt or relocated outside of Maryland in 2004. 52% of the 

establishments appear for no more than three years. Only about 3% endured the entire 

study period. This is consistent with the estimates of average establishment longevity 

in previous studies27. It implies the seriousness of the sample attrition issue.    

More than half of the establishment population is born during the study period. 

Among the 723,222 establishment-year observations, there are 231,874 unique 

establishments. 115,962 (56%) are born during 2005 to 2013. There are likely also 

establishments born in 2004, but I cannot separate them from those born before 2004. 

This large set of new establishments provides an opportunity to test the relationship 

between establishment initial size and innovation. This helps to mitigate the concern 

that establishments that benefit the most from clusters grow in size.  

Table 4.1 compares the characteristics of establishments in and out of clusters. It 

demonstrates the significant benefits of clusters in fostering innovation, and sheds 

light on the severity of the sample attrition issue. The first three rows compare the 

total number of establishments in and out of clusters. 388,500 (42.4%) establishments 

locate in clusters, while the rest resides in non-clusters. A slightly greater share (44%) 

                                                
27	http://fortune.com/2015/04/02/this-is-how-long-your-business-will-last-according-to-science/ 
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of small establishments and a smaller share of large establishments (40.8%) locate in 

clusters. This may be driven by small establishments benefiting more than large ones 

from clusters. The following six rows focus on establishment innovation. In general, 

0.16% of establishments in clusters apply for patents, and they on average apply for 

0.006 citation-weighted patents; out of clusters, only 0.09% establishments apply and 

they apply for only 0.003 citation-weighted patents on average. Both differences are 

statistically significant at the 5% level under a t-test. Similar patterns hold for small 

establishments. For large establishments, while the numeral difference enlarges, it 

also becomes statistically insignificant. This indicates that the impact of clusters on 

large establishments is more volatile: A few large establishments greatly uplift their 

innovation in clusters, but this is not the general pattern. The bottom seven rows 

examine establishment survival, birth and growth. As expected, establishments in 

clusters sustain a significantly lower survival rate. This is due to the tougher 

competitions in clusters for customers, labor and space. This pattern again holds for 

small establishments as well as small and patenting establishments, but becomes 

insignificant for large establishments. The bottom three rows show that while clusters 

significantly deter establishment birth, startups in clusters grow twice as fast as those 

outside, and their patent filings also increase at a 0.6% faster rate.  
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Table 4.1 Establishment characteristics in and out of clusters 

Characteristics/Group Cluster Noncluster 
Number of establishments 388,500 528,416 

Number of small establishments 323,080 410,662 
Number of large establishments 196 284 

Percentage of establishments applying for patents 0.16%*** 0.09% 
Percentage of small establishments applying for 

patents 0.16%*** 0.09% 

Percentage of large establishments applying for 
patents 3.57% 2.11% 

Average number of citation-weighted patent 
applications 0.006** 0.003 

Average number of citation-weighted patent 
applications in small establishments 0.005** 0.003 

Average number of citation-weighted patent 
applications in large establishments 2.964 0.332 

Establishment survival rate 83.01%*** 83.80% 
Small establishment survival rate 83.47%*** 84.01% 

Small and patenting establishment survival rate 92.55%** 88.86% 
Large establishment survival rate 88.07% 89.73% 

Share of new establishments per year 25.67%*** 26.88% 
The yearly growth rate of new establishments 16.62%*** 8.84% 

The yearly growth rate in citation-weighted patent 
applications of new establishments 38.78%** 38.19% 

NOTE: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors in parentheses.   
 

4.4.2 Baseline results 

Table 4.3 shows the baseline result, with establishments measured at current size. 

Table 4.2 presents descriptive statistics. The first column includes only the dummy 

variable for cluster status. An establishment in clusters increase citation-weighted 

patent applications by 62.2%; this improvement is both numerically large and 

statistically significant at the 1% level. The second column adds the dummy variable 

for large establishments as well as the interaction between large establishments and 

cluster status. While clusters encourage innovation by 56% in small establishments, 

the effect is 90.5% for large establishments. The additional benefit for large 



 

 

93 
 

establishments is statistically insignificant though. This finding is in contradiction 

with previous studies, most of which found greater benefits of clusters on small 

establishments. This contradiction may be caused by the endogeneity issue that small 

establishments that benefit most soon grow into large ones.  

Indeed, the sign flips after adding establishment fixed effects in columns (4) to (6). 

Column (2) also shows that large establishments file for four times as many patents as 

small ones. The third column includes additional control variables, including payroll 

and establishment ownership type. The result remains qualitatively similar, but the 

effect of clusters on small establishments halves. Columns (4) and (5) add 

establishment and year fixed effects, respectively. Exploiting the panel feature of the 

data allows me to track individual establishments over time. This mitigates the 

problem of sample selection. The results are in line with previous studies. The 

benefits of clusters on innovation, an improvement of 4.6% to 6.5%, are completely 

captured by small establishments. Large establishments actually do worse in clusters, 

probably due to the leakage of their knowledge to local competitors. Moreover, the 

effect of clusters on innovation is smaller in these columns compared to without fixed 

effects. This indicates serious upward bias from the sample selection issue in the 

cross-sectional model. Note that columns (4) and (5) exclude payroll from control 

variables because the large volume of missing data, but the result remains 

qualitatively similar after adding it in column (6).     
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Table 4.2 Descriptive statistics 

Variables Mean Standard 
Deviation Min Max Observati

ons 
y (Log Citation-weighted 

patent applications) 0.001 0.043 0 5.716 916,916 

Cluster (yes=1, no=0) 0.424 0.494 0 1 916,916 
Large (establishment 

current size, yes=1, no=0) 0.0007 0.026 0 1 734,222 

Inilarge (establishment 
initial size, year=1, no=0) 0.0005 0.023 0 1 349,686 

Log Payroll ($) 10.209 1.708 0 19.747 309,770 
Private (ownership type, 

private=1, other=0) 0.995 0.068 0 1 916,916 

Land size 1973 (acre) 8129.304 24750.31 1.600 322010 458,507 
 

 

Table 4.3 The effect of clusters on innovation in small versus large establishments, 
with establishment size measured by current size 

 Log Pat 
 (1) (2) (3) (4) (5) (6) 

Cluster 
0.622*** 
(0.068) 

0.560*** 
(0.073) 

0.263* 
(0.157) 

0.046*** 
(0.007) 

0.065*** 
(0.006) 

0.075*** 
(0.011) 

Cluster*Large  
0.345 

(0.887) 
1.687 

(1.594) 
-0.276*** 

(0.005) 
-1.240*** 

(0.200) 
-0.656*** 

(0.221) 

Large  
4.007*** 
(0.628) 

-1.180 
(1.256) 

1.452 
(1.764) 

1.196 
(1.343) 

1.051 
(1.346) 

Log Payroll   
0.972*** 
(0.067) 

  
0.416*** 
(0.035) 

Private   
1.779 

(1.343) 
   

Establishment 
fixed effects 

N N N Y Y Y 

Year fixed 
effects 

N N N N Y Y 

R2 0.005 0.008 0.166 0.005 0.004 0.157 
Observations 916,916 734,222 237,931 734,222 734,222 237,931 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors in parentheses.   

 



 

 

95 
 

While fixed effects mitigate sample selection, if the benefits an establishment receive 

grow over time, then the results once again will be biased. For example, if an 

establishment grows from a small establishment into a large one, and at the same 

time, the benefits it obtains from clusters also increase, then a spurious relationship 

between establishment size and cluster benefit would still be present, even after 

controlling for establishment fixed effects. Since establishments improve innovation 

through face-to-face communications and network buildings, it is likely that they reap 

more benefits as they age and develop more sophisticated relationships with other 

establishments in clusters. To eliminate this type of bias, Table 4.4 measures 

establishment size at birth. The results are qualitatively consistent with the last three 

columns of Table 4.3, but the disadvantages of large establishments become 

insignificant. In the fixed effects model, columns (3) and (4), clusters are not 

significantly improving establishment innovation.   
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Table 4.4 The effect of clusters on innovation in small versus large establishments, 
with establishment size measured at birth 

 Log Pat 
 (1) (2) (3) (4) 

Cluster 
0.607*** 
(0.095) 

0.171*** 
(0.058) 

0.064 
(0.104) 

0.417 
(0.558) 

Cluster*Large 
-1.060 
(1.279) 

-0.126 
(0.447) 

  

Large 
4.224*** 
(0.861) 

12.487*** 
(0.447) 

 
 

 

Log Payroll  
0.750*** 
(0.005) 

  

Ownership  
-0.303*** 

(0.070) 
  

Establishment 
fixed effects 

N N Y Y 

Year fixed 
effects 

N N N Y 

R2 0.009 0.154 0.0001 0.002 
Observations 349,686 69,465 349,686 349,686 

NOTE: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors in parentheses.   
 

4.4.3 Instrumental variable approach 

While using establishment size at birth mitigates the sample selection issue, it does 

not address the endogeneity problem that the initial size of establishments may be a 

function of other establishment unobservable characteristics. This problem needs to 

be handled through an instrumental variable approach. As mentioned above, this 

chapter uses the 1973 parcel size and use types as instruments.  

Table 4.5 shows the results for the first stage regression between the instruments and 

establishment current size. When entering parcel size and usage separately in columns 

(1) and (2), both statistically significantly affect establishment size at the 5% level. 
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Residing on a larger parcel indicates a greater possibility of being a large 

establishment. However, the partial F statistics is smaller than 10, indicating parcel 

size as a weak instrument. This is sensible as the average parcel size is quite large 

(see Table 4.2). Therefore, most parcels do not restrict establishments’ abilities to 

expand. Only those small parcels, which constitutes a limited proportion of the 

overall land parcel samples, may affect establishment expansion. Columns (3) to (5) 

add both instruments and different combinations of control variables. While land use 

type remains significant, parcel size does not in columns (3) and (4). Partial F for all 

instrumental variables is greater than 10. Table 4.6 presents the first stage for 

establishment initial size. The results are essentially the same, except that parcel size 

does not exhibit a significant effect in columns (1) and (5). Thus, parcel size is not a 

particularly good instrument for establishment initial size.  

Table 4.5 First stage for establishment current size 

 Large 
 (1) (2) (3) (4) (5) 

Land size 1973 
8.01e-13* 
(3.53e-13) 

 
5.78e-13 

(4.02e-13) 
5.85e-13 

(3.83e-13) 
6.76e-12*** 
(1.50e-12) 

Land use type 
1973 dummy 

variables 
N Y*** Y*** Y*** Y*** 

Cluster   
 
 

-0.00002 
(0.00009) 

-0.001*** 
(0.0003) 

Log Payroll     
0.002*** 
(0.0003) 

Ownership    
0.001*** 
(0.00007) 

0.006*** 
(0.001) 

Partial F 4.54 20.60 18.21 16.20 28.44 
R2 0.000 0.001 0.001 0.001 0.009 

Observations 450,538 419,088 418,812 419,088 51,702 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors in parentheses.   
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Table 4.6 First stage for establishment initial size 

 Large 
 (1) (2) (3) (4) (5) 

Land size 1973 
1.94e-13 

(7.23e-13) 
 

9.72e-13 
(7.79e-13) 

1.05e-12 
(7.95e-13) 

1.08e-12 
(3.65e-12) 

Land use type 1973 
dummy variables 

N Y*** Y*** Y*** Y*** 

Cluster   
 
 

0.0001 
(0.0001) 

0.0002 
(0.0006) 

Log Payroll     
0.003*** 
(0.0006) 

Ownership    
0.001*** 
(0.0001) 

0.005*** 
(0.001) 

Partial F 0.120 27.59 25.93 23.01 8.91 
R2 0.000 0.002 0.002 0.002 0.011 

Observations 250,335 231,433 231,433 231,433 14,985 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors in parentheses.   

Table A1 in the appendix 2 further verifies the credibility of land use types as 

instrumental variables. With few exceptions, use types easier to be converted to 

industrial and commercial use are associated with a larger establishment size. These 

include commercial, industrial, bare ground and open urban land. In contrast, land use 

types that are hard to be converted, such as residential, agricultural, forest and water 

are more likely associated with a smaller establishment size. However, institutional 

land, while physically easy to be converted, turns out to be less likely associated with 

a large establishment. Institutional land tends to remain in institutional use, even after 

decades. This tendency restricts a establishment’s expansion in place. Overall, this 

exercise validates the intuition behind these instruments.   

Tables 4.7 and 4.8 show the 2SLS results. Column (1) in Table 4.7 shows that 

clusters increase innovation by 92.8%, while columns (2) and (3) demonstrate that 
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only small establishments benefit from clusters, by 42% to 99.2%. The effect in 

column (3) is statistically insignificant though. After adding establishment and year 

fixed effects, the effect drops to only 2.3% in columns (4) and 1.7% in column (5). 

The difference between large and small establishments also become statistically 

insignificant. Compared to the estimates in columns (4) and (5) in Table 4.3, the 

upward bias, 4.2% to 5.8%, exceeds the true effect itself. This bias likely also exists 

in prior studies. For example, Wallsten (2001) found that one additional 

establishment within a one-mile radius region, a small establishment becomes 0.15% 

more likely to win a SBIR award. An average cluster location in this chapter has 

18.38 more establishments than a noncluster location; this implies a 2.8% increase in 

the probability of winning a SBIR award. Although the probability of winning a SBIR 

award and the percentage increase in patent applications isn’t directly comparable, 

their means in Wallsten’s and my datasets are in fact similar. Thus, my estimate is 

about 0.5% smaller than that of Wallsten’s. Baten, Spadavecchia, Streb et al. (2007) 

found that if employment in the same industry and innovative establishments 

increases by 1%, the number of important patents per worker increases by 0.003. In 

my data, if a location turns from a noncluster to a cluster, the employment in same the 

industry and innovative establishments would increase by 1.29 times. Thus, the 

number of important patents per worker should increase by 0.387 with Baten, 

Spadavecchia, Streb et al. (2007)’s estimate. In comparison, with my own estimates, 

clusters increase patent filings by 2.3%, equivalent to only 0.013 per worker. 

Beugelsdijk (2007) found that if regional R&D intensity increases by 1%, the share of 

new products in total sales in small establishments increases by 7.11%. Again, 
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although not directly comparable, the elasticity estimated in this chapter (0.97%) is 

much smaller. In Table 4.8, where establishment size is measured at birth, the effect 

on establishment innovation is only 1.3% in columns (3) and (4). In columns (1) and 

(2), the effect remains large, 19.9% to 62.3%. This effect is completely captured by 

small establishments while large establishments actually are less innovative when 

locating in clusters.  

Table 4.7 The 2SLS result with establishment current size 

 Log Pat 
 (1) (2) (3) (4) (5) 

Cluster 
0.928*** 
(0.060) 

0.992*** 
(0.059) 

0.420 
(0.405) 

0.023** 
(0.011) 

0.017* 
(0.010) 

Cluster*Large  
-0.938*** 

(0.116) 
-0.841** 
(0.423) 

-0.018 
(0.034) 

-0.018 
(0.017) 

Large  
0.793*** 
(0.732) 

0.219 
(0.280) 

0.108* 
(0.056) 

0.119 
(0.362) 

Log Payroll   
0.925*** 
(0.171) 

 
-0.00003 
(0.0001) 

Ownership   
1.035 

(1.680) 
 

 
 

Establishment 
fixed effects 

N N N Y Y 

Year fixed 
effects 

N N N Y Y 

Observations 272,445 248,401 32,337 268,401 32,337 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors in parentheses.   
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Table 4.8 The 2SLS result with establishment initial size 

 Log Pat 
 (1) (2) (3) (4) 

Cluster 
0.623*** 
(0.061) 

0.199*** 
(0.031) 

0.013** 
(0.006) 

0.013** 
(0.006) 

Cluster*Large 
-0.785*** 

(0.167) 
-0.518*** 

(0.031) 
  

Large 
0.675*** 
(0.097) 

0.953*** 
(0.223) 

  

Log Payroll  
0.676*** 
(0.166) 

  

Ownership  
-1.935 
(1.759) 

  

Establishment 
fixed effects 

N N Y Y 

Year fixed 
effects 

N N N Y 

Observations 154,906 13,616 154,906 154,906 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors in parentheses.   

4.4.4 Sample attrition  

This part directly probes into how clusters affect establishment bankruptcy and re-

location. In clusters, the survival rate for small establishments is 75.02%, while that 

for large establishments is 79.08%. Survival here means an establishment still 

operates and does not relocate. In comparison, in non-clusters, the rate of survival for 

small establishments is 79.89%, and that for large establishments is 83.10%. All these 

numerical differences are statistically significant at the 5% level. As expected, 

clusters are tougher to survival. Both small and large establishments lower their 

survival rates by about 4% in clusters, though large establishments have an overall 

greater chance of survival. This is consistent with the fact that large establishments 

have more abundant internal resources and better financial channels.   
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Table 4.9 regresses establishment survival status from year t to year t+1 on cluster 

status and its interaction with establishment size. Measured by current size, large 

establishments are more likely to survive both in and out of clusters by 2.4% to 2.6%, 

though not significantly so. In the meantime, establishments are in general 0.6% less 

likely to survive in clusters than out of in OLS regressions and 2.7% to 4.7% so in 

2SLS regressions. This is consistent with the fact that clusters sustain tougher 

competition. These results are robust to alternative specifications such as probit, logit 

and survival models. These results show the severity of sample attrition: Up to 4.7% 

more establishments exit from clusters than non-clusters every year. These quitters 

likely benefit less from clusters. Thus, an OLS regression overstates the positive 

effect of clusters on innovation. 

Table 4.9 The effect of clusters on the survival of small versus large establishments 

 Survival 

 
Establishment current 

size 
Establishment initial 

size 

 
(1)  

OLS 
(2) 

2SLS 
(3) 

OLS 
(4) 

2SLS 

Cluster 
-0.006*** 
(0.0009) 

-0.027*** 
(0.008) 

-0.006*** 
(0.001) 

-0.047*** 
(0.008) 

Cluster*Large 
0.017 

(0.033) 
0.067 

(0.057) 
  

Large 
0.024 

(0.025) 
0.026 

(0.025) 
  

Establishment 
fixed effects 

Y Y Y Y 

Year fixed 
effects 

Y Y Y Y 

Within 
R2/Chi2 

0.585 0.053 0.624 0.619 

Observations 734,222 268,401 349,686 154,906 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors in parentheses.   
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4.4.5 Geographical scale of clusters 

I change the spatial scale of clusters to gauge the decay of knowledge spillover across 

distance. As Table 4.10 shows, from one mile (Table 4.7, column (4)) to two miles in 

radius, the effect of cluster actually increases by 1.7% but insignificantly so. 

However, expanding to five miles in radius brings down the benefits to only 0.7%. 

This benefit is not significantly different from zero. Further expanding to ten miles in 

radius kills the benefits completely. In fact, at a scale of ten miles in radius, clusters 

even discourage innovation by 6.8%, though insignificantly so.  

These findings are broadly consistent with Wallsten (2001), who found that the effect 

of clusters maximizes within areas smaller than one mile in radius. It also perfectly 

meshes with Rosenthal and Strange (2008a), who found that human capital spillovers 

decline sharply over distance and almost wane beyond five miles. All these findings 

imply that whatever encourages innovation in clusters is very sensitive to physical 

proximity. One such candidate is face-to-face interactions. As Allen and Cohen 

(1969) and Allen and Fustfeld (1975) showed, even within a single building, physical 

distance still significantly affects the frequency of communication between people. 

Thus, at a spatial scale within five miles in radius, distance also matters in alternating 

the frequency of worker and establishment interactions. These human interactions 

likely spark ideas and boost innovation. Other factors may also play a role, such as 

the quality of public spaces and get-together locations (e.g., coffee shops). These 

places may become the hotspots for people to meet up and chat. Worker turnover may 

also be a candidate. Through observing and talking to workers in nearby firms, 
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workers may accumulate enough knowledge for nearby firms to help them make a 

decision of job change. As when they do change jobs, they bring the knowledge from 

their old employer with them to the new one.  

Table 4.10 Attenuation of the cluster effect over distance 

 Log Pat 
 2 miles in radius 5 miles  10 miles  

Cluster 0.040* (0.023) 0.007 (0.007) -0.068 (0.052) 
Cluster*Large -0.010 (0.110) -0.025 (0.041) -0.091 (0.174) 

Large 0.033 (0.029) 0.060 (0.048) 0.241 (0.719) 
Establishment 
fixed effects 

Y Y Y 

Year fixed 
effects 

Y Y Y 

Observations 268,401 268,401 268,401 
NOTE: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors in parentheses.   
 

4.5 Robustness Checks 

Alternative definitions for clusters. To test the sensitivity of the result to the 

specific cluster definition, I adopt two alternative definitions: 1) employment density 

in related industries 1.2 times above average, and 2) establishment density in related 

industries above median. 1.2 is a frequently used threshold to defined clusters 

(Lazzeretti, Boix, and Capone, 2008; Shields, Barkley, and Emery, 2009). Using this 

definition, I find a stronger effect on innovation in both small and large 

establishments. The qualitative result, that small establishments benefit more than 

large ones numerically but not statistically, remain robust. Using establishment 

density also changes the results little. There is an 82.4% overlap between clusters 

defined by employment and establishment density, and thus the results are not only 

qualitatively but also quantitatively similar.  
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Alternative weights for patent applications. Aside from per year citation used in 

the main analysis, I adopt five other weights to check for robustness. First, I count 

patent grants instead of patent applications. This weight dampens clusters’ effect on 

establishment innovation by about 0.3%. Second, I apply no weights to patent filings. 

This again scales back the effect on establishment innovation, with large 

establishments hit especially hard. This indicates that large establishments in clusters 

produce more heavily cited patents. Third, I weight patents by the number of citations 

relative to their age and average citation of patents in the same technology class, and 

the result remains similar. Fourth, I weight by total citations. This results in a larger 

effect on establishment innovation, especially on that of large establishments. This 

again indicates that patents applied by large in-cluster establishments are more 

heavily cited. Last, I exclude self-citations and the results barely change.  

4.6 Conclusion 

Small establishments account for the majority of the establishment population in the 

United States. Thus, it is essential to understand what makes small establishments 

successful. This chapter studies how much industrial clusters boost innovation in 

small versus large establishments.  

Although prior studies on this topic is abundant, this chapter contributes to the 

literature by adopting two instrumental variables, the size and usage of land parcels in 

1973, to solves the endogeneity issue. It finds that industrial clusters at the spatial 

scale of one mile in radius increase patent filings by 2.3% in small establishments, but 

only by 0.5% in large establishments. However, the difference between small and 
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large establishments is statistically insignificant. The 2.3% increase in innovation is 

equivalent to a 4.6% increase in R&D investment. 

This chapter also examines how quickly the effect of clusters attenuates over 

distance. Like previous studies, it finds sharp attenuation with all benefits gone 

beyond five miles. At the same time, clusters sustain tougher competitions: Small 

establishments are 2.7% less likely to survival in clusters than they are out of clusters. 

In contrast, large establishments are 4% more likely to survival in clusters than they 

are out of clusters, but the difference between small and large establishments is also 

statistically insignificant. 

In general, with an instrumental variable approach, this chapter finds the difference 

between small and large establishments only exists numerically. This is likely due to 

the volatility of clusters’ effect on large establishments. Some large establishments 

may benefit a great deal from clusters, but others do not. The heterogeneity among 

large establishments is worthy of further examination in future project.  

The prosperity of small establishments is important for people’s livelihood and 

economic vibrancy. This chapter finds that industrial clusters boost innovation in 

small establishments by a significant magnitude. Promoting business concentrations 

at a scale of one to two miles in radius makes a promising option for practitioners to 

encourage innovative activities and boost local economic development.  
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Chapter 5:  Conclusion 
 

 

5.1 Summary of Findings 

This dissertation matches the establishment data with the patent data for the state of 

Maryland from 2004 to 2013, and quantifies how much industrial clusters encourage 

establishments to file for patents. I adopt novel statistical methods, including discrete 

and continuous quantile regressions, to separate two mechanisms in clusters: selection 

and learning. While learning improves establishments’ innovativeness, selection 

forces out the least innovative establishments. Both increase the average 

innovativeness in clusters and therefore cannot be disentangled by an ordinary least 

square regression. The quantile methods, by estimating the distribution of 

establishment innovation, can separate learning from selection.  

I find that by locating in one-mile-radius locations with employment density above 

median, establishments increase citation-weighted patent filings by 8 to 11 percent. 

This effect remains at a similar magnitude in locations of two miles in radius, but 

declines at a larger geographical scale and disappears beyond ten miles in radius. At 

the same time, selection in dense employment centers at the scale of one mile in 

radius reduces the chance of survival for non-innovators by 2.5%.  
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Learning likely comes from face-to-face interactions. That can take the form of 

people chatting in coffee shops about new ideas, or simply observing and talking to 

each other and make more knowledgeable job changes between nearby 

establishments. Selection, on the other hand, is likely due to the high rent at desirable 

locations, which pushes out less innovative establishments.   

I also extend the analysis to 34 groups of related industries. I find that out of the 34 

industrial clusters, only 14 significantly improve establishment innovation. The 

cluster that encourages establishment innovation by the largest magnitude is 

Metalworking Technology. In a region of three miles in radius with employment 

density in Metalworking Technology industries above median, establishment patent 

applications increase by 18%. This is equivalent to a 36% increase in R&D 

investment. In contrast, in Business Services, the effect is essentially zero. I find that 

industrial characteristics, such as the different level of reliance on tacit knowledge 

and the education level of employees can explain some of the heterogeneity across 

industries.  

Finally, I examine how much industrial clusters benefit small versus large 

establishments in terms of innovation. I use land parcel size and usage in 1973 to 

instrument establishment size, to mitigate the endogeneity issue between 

establishment size and innovation. I find that small in-cluster establishments improve 

innovation numerically more than large establishments, but their differences are 

statistically insignificant. An average small establishment improves by 2.3%. This is 

consistent with the theory that small establishments may rely more than external 
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environment, while large establishments rely more on internal resources; but the 

difference in the Maryland case is not statistically significant. This also implies that 

large establishments may be more heterogeneous, with some benefiting a lot while 

others don’t. This is an issue worthy of further study.  

5.2 Generalizability of the Results  

The results of this dissertation may not generalize outside of the specific geography 

and time frame, just like any empirical work based on data from a particular region 

and period. These results can be sensitive to the particular industrial structure in the 

state of Maryland and the specific stage for cluster development during 2004 to 2013, 

but some findings are more generalizable than others.  

More specifically, the conclusion that learning and selection coexist in clusters is not 

unique to Maryland, though also may not hold universally. Signs of learning and 

selection in industrial clusters have been identified in previous studies (Wallsten, 

2001; De Silva and McComb, 2012), and business centers often sustain higher rent, 

which is one of the main sources for selection. Arimoto, Nakajima, and Okazaki 

(2014) identified selection in Japanese silk industrial cluster, while Combes, 

Duranton, Gobillon et al. (2012) did not find selection for French employment 

centers. Thus, while the coexistence of selection and learning is not something unique 

to Maryland, there may be other areas with presence of only one of these two 

mechanisms. The finding that the impact of industrial clusters and business centers 

prevails within a quite local region has some potential for generalizability. This is a 

result that has been confirmed by studies with establishment level data such as 
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Wallsten (2001) and Rosenthal and Strange (2008a) for other regions and time 

frames.  

In contrast, the ranking of industrial clusters by their impact on establishment 

innovation likely does not generalize. This ranking is sensitive to the particular 

context of Maryland, its industrial composition, development stage and economic 

policies. Therefore, the Maryland ranking does not provide policy implications for 

other regions, and may also need to be adjusted by current trends after 2013 for 

Maryland practitioners to apply. However, while the ranking does not generalize, the 

methods can be adopted by researchers and practitioners in other regions to evaluate 

their own clusters and employment centers and generate their own rankings. In 

addition, the analysis of how industrial characteristics shape the impacts of clusters 

on innovation helps with generalizability. While the particular ranking is context-

dependent, this analysis is based on theory and backed by data. It provides a general 

instruction to policymakers about what type of industries can benefit more from 

clustering.  

Finally, the finding that small establishments may benefit more than large ones 

should have some generalizability, as this is not an uncommon finding in previous 

studies. However, since most of these prior studies have endogeneity issues and my 

findings do not confirm a statistically significant difference between small and large 

establishments, this issue should be further explored. With more studies focusing on 

other regions and periods, we could eventually tell whether these results hold more 

generally.  
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5.3 Policy Implications 

This dissertation is closely related to policies. First, the more precisely measured 

causal effect of industrial clusters (and urban agglomerations) on establishment 

innovation can produce more rigorous cost-benefit and cost-effectiveness analyses of 

cluster and urban policies. As I find that an ordinary least square regression which 

most previous studies adopted significantly overestimates how much clusters and 

employment centers encourage innovation, they could justify undesirable policies. 

This dissertation helps avoid that problem.  

Second, while industrial clusters and urban agglomerations are widely supported by 

local governments and non-profit organizations as a way to boost innovation, the 

consensus has not been reached about the geographical unit at which we encourage 

business concentration. This dissertation, by empirically searching for the optimal 

geographical scale of business centers and industrial clusters to maximize their effect 

on innovation, concludes that the optimal geographical scale is quite local, in general 

only one to two miles in radius. Therefore, policymakers could consider encourage 

establishments to locate in close proximity. As mentioned above, this is a result that 

has some potential for generalization beyond Maryland and the specific study period, 

so this policy recommendation is not completely restricted within Maryland.  

Third, with limited public funds, policymakers are frequently faced with the 

challenges of industry targeting. They often pick specific industries to implement 

cluster policies. This dissertation conducts a systematic comparison of how much 

clusters improve establishment innovation across industries, and therefore can 
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provide some guidance to policymakers to properly prioritize among industries. Some 

industries benefit by a great deal through clustering while others don’t. Keeping all 

else constant, targeting the former makes sure that we obtain a more impressive 

outcome in terms of innovation. Note that while the methods put forward by this 

dissertation to facilitate industrial targeting are generalizable, the specific ranking of 

industrial clusters is not.  

Fourth, I find selection effect in Maryland clusters and business centers. As 

mentioned above, this effect may also exist in clusters of other regions, but may not 

be an issue for all clusters. The selection effect has both benefits and costs. On the 

one hand, tough competition motivates establishments to improve innovativeness and 

productivity, and redistributes social resources such as labor and physical capital from 

failing establishments to successful ones. One the other, establishments being forced 

out of the market lay off workers, and some workers may experience a prolonged 

period of unemployment. Local authorities need to be aware of this effect of 

industrial clusters, and provide training programs to help displaced labor force.  

Finally, not all establishments benefit the same from clusters. I find that small 

establishments benefit numerically more than large establishments. This distributional 

effect of industrial clusters should be considered by practitioners when implementing 

cluster policies. However, since the difference is statistically insignificant, this 

distributional effect may not be as serious as many previous studies have suggested. 

The generalizability of this result needs future exploration.  
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5.4 Limitation and Future Directions 

This dissertation has several limitations. First, patent applications are not a perfect 

measurement for establishment innovation. Many innovative activities are not 

patented. As a result, in general, using patent application to measure establishment 

innovation would lead to an underestimate of how much industrial clusters and 

business centers encourage establishment innovation, though the estimates are still 

comparable with most previous studies that also used patents as the measurement. 

This issue is of particular concern when comparing the effects of clusters across 

industries. Different industries have significantly different patenting rates; as a result, 

the comparison may not be fair. At the same time, since innovative activities happen 

continuously, but patenting only happens at certain points of the innovation cycle, 

using patents to measure innovation does not control for this cycling effect. Industry 

life cycles may also contaminate the results. Emerging, growing and mature 

industries are likely to have different patenting rates. This would be a concern for 

Chapter 3 and makes the results sensitive to the case of Maryland in the particular 

time period. In the future, if more comprehensive datasets on establishment 

innovation become available, I would love to apply alternative measurement to 

examine the robustness of these results.  

Second, the specific process of knowledge spillover remains a black box. In this 

dissertation, while I quantify the magnitude for learning, I do not reveal how learning 

happens and which establishments exchange knowledge with which. In my future 

research plan, I will visualize the network of patent citation among establishments 
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and identify how knowledge is transmitted from one establishment to another. 

Qualitative case studies can also help with revealing the underlying processes.  
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Appendix 1: Proof for the bounded estimates of selection and 
learning 

Let 𝛼"- denotes 𝛼" at percentile p. According to Angrist, Chernozhukov, and 

Fernández (2006),  

𝛼"- = 𝛼"-,^+𝛼"-,_                                                                                                 (A.1) 

where 𝐸 𝛼"-,^ = 𝛼"-,^ and 𝐸 𝛼"-,_ = 𝛼"-,_, with 𝛼"-,^ and 𝛼"-,_ denote learning 

and selection, respectively, and assume that 

𝛼"-,^ ≥ 0, and                                                                                                         (A.2) 

𝛼"-,_ ≥ 0.28                                                                                                             (A.3) 

While 𝛼"-,^ and 𝛼"-,_ are unobservable,  𝛼"- can be estimated from equation (2.1). 

Thus we try to bound 𝛼"-,^ and 𝛼"-,_ with 𝛼"-.  

According to the prediction of the theory, we have  

𝛼"-,^ ≤ 𝛼"-′,^ and                                                                                                   (A.4) 

𝛼"-,_ ≥ 𝛼"-′,_, for 𝑝 < 𝑝′                                                                                       (A.5) 

Let 𝛼"-∗ denotes the minimum nonzero29 𝛼"- across all p’s. By (A.1) and (A.3), 

                                                
28	This is not a restrictive assumption for this chapter per se, as I find almost none significantly negative effect of 
clusters on innovation at any percentile in any specification, but it does impose a restriction on data when applied 
elsewhere. 
29	𝛼"-	may be zero at the left-tail percentiles, as the least innovative establishments in or out of clusters may be 
non-innovators. These estimates are uninformative and therefore dismissed throughout this chapter.  
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𝛼"-∗ = 𝛼"-∗,^+𝛼"-∗,_                                                                                              (A.6)       

𝛼"-∗,_ ≥ 0                                                                                                               (A.7) 

By (A.6) and (A.7), 𝛼"-∗,^ ≤ 𝛼"-∗                                                                          (A.8) 

By (A.8) and (A.2), 0 ≤ 𝛼"-∗,^ ≤ 𝛼"-∗                                                                   (A.9) 

By (A.4) and (A.9), 𝛼"-,^ ≤ 𝛼"-∗,^ ≤ 𝛼"-∗ for 𝑝 < 𝑝∗                                         (A.10) 

By (A.1) and (A.10), 𝛼"-,_ ≥ 𝛼"- − 𝛼"-∗ for 𝑝 < 𝑝∗                                           (A.11) 

Also, by (A.1)-(A.3), (A.10) and (A.11), we obtain 

0 ≤ 𝛼"-,^ ≤ 𝛼"-∗ , and                                                                                         (A.12) 

𝛼"- − 𝛼"-∗ ≤ 𝛼"-,_ ≤ 𝛼"- for 𝑝 < 𝑝∗                                                                     

(A.13) 

These two equations bound selection and learning at percentiles smaller than p*.  

By (A.2), 𝛼"-∗,^ ≥ 0                                                                                              (A.14) 

By (A.6) and (A.14), 𝛼"-∗,e ≤ 𝛼"-∗                                                                      (A.15) 

By (A.5) and (A.15), 0 ≤ 𝛼"-∗,e ≤ 𝛼"-∗                                                              (A.16)                                                                                           

By (A.5), 𝛼"-,_ ≤ 𝛼"-∗,_ ≤ 𝛼"-∗ for 𝑝 > 𝑝∗                                                        (A.17) 
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By (A.1) and (A.17), 𝛼"-,^ ≥ 𝛼"- − 𝛼"-∗ for 𝑝 > 𝑝∗                                             

(A.18)                                                                                             

Also, by (A.1)-(A.3), (A.17) and (A.18), we obtain 

0 ≤ 𝛼"-,_ ≤ 𝛼"-∗, and                                                                                          (A.19) 

𝛼"- − 𝛼"-∗ ≤ 𝛼"-,^ ≤ 𝛼"- for 𝑝 > 𝑝∗                                                                     

(A.20) 

These two equations bound selection and learning at percentiles greater than p*.  

Summarizing (A.9), (A.12), (A.13), (A.16), (A.19) and (A.20), we obtain 

	𝑝 = 𝑝∗
0 ≤ 𝛼"-,^ ≤ 𝛼"-∗
0 ≤ 𝛼"-,e ≤ 𝛼"-∗

𝑝 < 𝑝∗
0 ≤ 𝛼"-,^ ≤ 𝛼"-∗

𝛼"- − 𝛼"-∗ ≤ 𝛼"-,_ ≤ 𝛼"-

𝑝 > 𝑝∗
𝛼"- − 𝛼"-∗ ≤ 𝛼"-,^ ≤ 𝛼"-

0 ≤ 𝛼"-,_ ≤ 𝛼"-∗

 

These inequalities finally bound selection and learning at every percentile with 

estimated coefficients.  
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Appendix 2: First stage regression result between land use type 
and establishment size 

Table A1 Land use type and establishment size  

 
Establishment current size is 

large 
Establishment initial size 

is large 
 (1) (2) 

Easy to convert:    

Commercial 
-0.0003 
(0.0003) 

-0.00006 
(0.0004) 

Industrial  
0.0004 
(0.001) 

0.004* 
(0.002) 

Institutional 
-0.001*** 
(0.0008) 

-0.002*** 
(0.0003) 

Bare ground 
0.001* 
(00005) 

-0.007 
(0.004) 

Open urban land 
0.001*** 
(0.00008) 

0.002*** 
(0.0003) 

Hard to convert:   

Brush 
-0.0004* 
(0.0002) 

0.050 
(0.028) 

Deciduous forest 
-0.001*** 
(0.00007) 

-0.002*** 
(0.0007) 

Extractive 
0.005*** 
(0.001) 

-0.019 
(0.013) 

High-density 
residential 

 

-0.001*** 
(0.00008) 

-0.001*** 
(0.0003) 

Low-density 
residential 

-0.0005*** 
(0.0001) 

-0.005* 
(0.003) 

Medium-density 
residential 

-0.001*** 
(0.00008) 

-0.001*** 
(0.0003) 

Mixed forest 
0.0008 
(0.004) 

-0.007* 
(0.004) 

Pasture 
-0.0002 
(0.0002) 

-0.006 
(0.004) 

Water 
-0.0009*** 
(0.00008) 

-0.002*** 
(0.0008) 

NOTE: * p<0.05; ** p<0.01; *** p<0.005. Robust standard errors in parentheses.   
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