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Heart rate variability (HRV), calculated from the cardiac intervals of elec-

trocardiogram (ECG), is a promising marker of the cardiovascular system status

and fitness. However, ECG signal is not always available and photoplethysmogram

(PPG) is easier to obtain, and more widely used in clinical is running HRV analysis

on pulse-to-pulse intervals of PPG signal, which is usually referred to as pulse rate

variability (PRV). Thus, whether PRV can be used as a substitution of HRV is of

substantial interest to researchers.

In this thesis, two issues about PRV are discussed. The first issue is the

selection of characteristic point, which determines the length and location of the

pulse-to-pulse interval and will affect the agreement between PRV and HRV. Six

characteristic points of PPG pulse are extracted and the agreement between HRV

and corresponding PRV is calculated and compared, in two situations, subjects with

cardiovascular diseases (CVD) and subjects without cardiovascular diseases (non-

CVD). The result indicates that pulse peak is most suitable for CVD subjects, and



50% max amplitude point and 75% max amplitude point on pulse slope are most

suitable for non-CVD subjects.

The second issue studied in this thesis is the PRV refinement using arterial

blood pressure (ABP) information. The relationship between systolic blood pressure

extracted from ABP signal and pulse transit time (PTT) is modeled using linear

kernel support vector regression (SVR) and RBF kernel SVR, respectively. Esti-

mated PTT is used to adjust the location of PPG pulse-to-pulse intervals. PRV

after adjustment is calculated, and its agreement to HRV is compared with the orig-

inal PRV. For CVD subjects, the improvement to the agreement is limited, and only

the agreement for variables representing long-term variability is improved. For non-

CVD subjects, there is a relatively large improvement for approximately all variables

after refinement and linear kernel outperforms RBF kernel in this situation.
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Chapter 1: Introduction

1.1 Motivation and Objective

Heart rate variability (HRV), which represents the pulse-to-pulse interval vari-

ation of electrocardiographic (ECG) signal that records the electrical activity of the

heart from electrodes placed on the skin, is a promising tool for measuring the

health status of the cardiovascular system, while also being able to reflect much in-

formation. Pulse rate variability (PRV) is a similar measurement but obtained from

the photoplethysmographic (PPG) signal that is collected using a pulse oximeter

and reflects light absorption changes of the skin, is also able to demonstrate the

cardiovascular system status to some degree.

Papers such as [14, 20, 21, 27, 31] have mentioned the difference between PRV

and HRV and discussed whether PRV is a suitable substitution to HRV, in terms of

different HRV parameters and experimental conditions. However, few of them focus

on the influence of different definitions of the PPG pulse cycle boundary.

In this thesis, PRV from PPG pulse-to-pulse intervals is calculated using six

different characteristic points as cycle boundary, and their agreement to the gold

standard, as well as HRV from ECG pulse-to-pulse intervals. The agreements us-

ing different characteristic points are then compared and the most recommended
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characteristic point is selected for subjects with and without cardiovascular dis-

eases separately. The HRV references used for comparison are calculated using two

ECG pulse characteristic points in order to observe the difference between the HRV

derived from ECG pulse onset point and that from ECG pulse peak point.

The second problem examined in this thesis is on PRV refinement with blood

pressure information. The motivation is that the difference between pulse-to-pulse

intervals of the ECG signal and that of the PPG signal corresponds to changes in

pulse transit time (PTT) and is related to blood pressure. Utilizing the synchronized

arterial blood pressure (ABP) signal, the relationship between PTT and systolic

BP calculated from ABP is modeled and PTT is estimated using the model. The

estimated PTT is then applied for pulse-to-pulse interval adjustment of the PPG

signal. For situations that subjects with and without cardiovascular diseases, the

agreement between the original PRV and HRV and the agreement between the

adjusted PRV and HRV are calculated and compared to observe and analyze the

influence of refinement respectively.

1.2 Outline of Thesis

After introducing the background and motivation of this thesis in Chapter 1,

Chapter 2 presents an overview of the background and the technical issues involved

in the thesis. In Chapter 3, different PPG characteristic points are extracted. Then

the corresponding pulse rate variability is calculated and evaluated according to

its agreement to ECG derived heart rate variability for subjects with and with-

2



out cardiovascular diseases. The results for different characteristic points are then

compared. Chapter 4 focuses on estimating pulse transit time using blood pressure

information and using the estimated result to refine the PPG signal in order to in-

crease its pulse rate variability agreement to heart rate variability. Conclusion and

future research plans are presented in Chapter 5.
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Chapter 2: Related Researches

2.1 Background

2.1.1 Heart Rate Variability

Heart rate variability, which is a reflection of the oscillation of the cardiovascu-

lar system parameters, can be used to evaluate the regulation between cardiovascular

system and the autonomic nervous system, due to the relationship between them,

while also to predict and prevent cardiovascular disease [1].

Reduced HRV is an indicator of mortality after myocardial infarction [2, 3].

Congestive heart failure, diabetic neuropathy, or post-cardiac-transplant depression

may also relate to varied HRV, usually lower. In the psychophysiology field, HRV has

been discovered to connect with emotional stimulation, while high-frequency activity

decreases when there is acute time pressure, emotional strain [4] and elevated state

anxiety that may due to focused attention and movement suppression [5]. [6] has

revealed that people who worry more tend to have reduced HRV.

In summary, HRV is a promising tool to be used as a marker of cardiovascular

and autonomic system health, and an indicator of physical and mental status.

HRV is usually measured using ECG signal, wave collected through the elec-
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trodes placed on the skin and used for the detection of the electrical changes during

cardiac activity.

Figure 2.1 shows a plot of the ECG signal.

Figure 2.1: Electrocardiographic (ECG) Signal

There are three main components in ECG wave: P wave that indicates the

atria depolarization, QRS complex that represents the depolarization of ventricles,

and T wave that represents the repolarization of ventricles [7].

ECG is considered as the gold standard of heart rate variability measurement

due to its clear waveform, and thus the heartbeats that are not originating from the

sinus node can be excluded.

Heart rate variability can be measured by specific parameters, which is called

HRV analysis. The work in [1] has clarified and standardized different kinds of

HRV measurements or HRV variables. They can be divided into time domain and

5



frequency domain. Time domain variables measure the instantaneous heart rate and

the intervals between adjacent QRS complexes or RR intervals as they are usually

defined as the intervals between successive R peaks. The specific intervals used

here, which usually means the intervals generated from sinus node depolarization,

are referred to as normal-to-normal (NN) intervals.

Table 2.1 indicates the commonly used statistical time domain measurements

that could be derived from instantaneous heart rates or NN intervals for HRV anal-

ysis.

Table 2.1: Commonly used time domain parameters of HRV

Variable Units Description

mean ms Mean value of NN interval length

SDNN ms Standard deviation of NN interval length

RMSSD ms The square root of the mean of the sum of the squares of

differences between adjacent NN intervals

pNN50 % Percentage of intervals the length of which differing from

their adjacent intervals by more than 50ms

Frequency domain measurements focus on the power distribution within NN

intervals, which is derived from power spectral density analysis. Major spectrum

components in short time recordings (generally 2 to 5 min) [8, 9] are very low fre-

quency (VLF), low frequency (LF), and high frequency (HF) components. For long

term recordings (usually last for 24 h), there is an ultra low frequency component

in addition to the other four spectrum components. These frequency domain mea-

surements are shown in Table 2.2.
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Table 2.2: Commonly used frequency domain parameters of HRV

Variable Units Description Frequency Range

ULF ms2 Power in ultra low frequency range ≤0.003Hz

VLF ms2 Power in very low frequency range 0.003 - 0.04Hz

LF ms2 Power in low frequency range 0.04 - 0.15Hz

HF ms2 Power in high frequency range 0.15 - 0.4Hz

LF/HF Ratio LF[ms2]/HF[ms2]

The variation of the power spectrum distribution over these frequency ranges

may reflect the autonomic modulation changes of the heart period [10–12].

The non-invasive characteristic of HRV analysis promotes its extensive usage

as a long-term health tracking and monitoring tool.

2.1.2 Photoplethysmogram

Comparing to the ECG signal, the PPG signal is also collected in a non-

invasive way but has the advantage to be less expensive and easier to use. PPG

wave is usually optically obtained by a pulse oximeter, which illuminates the skin

and collects the light absorption changes, at the fingertip or other places, and can

detect variations in blood volume in the tissue of microvascular bed [13].

PPG signal reflects cardiac cycle to some extent due to the AC component in

it generated because of arterial pulses, the source of which is from the heartbeat

pumping [14]. The variation of the pulsatile component in the PPG signal arises

from arterial blood pulsation, the comparatively static component of which is due

to venous volume changes, vasomotor activity, and thermoregulation [18], and the
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Figure 2.2: Photoplethysmographic (PPG) Signal

fluctuation part resembles instantaneous cardiac activity.

Moreover, it is also known that PPG can reflect autonomic influences [15–17].

Therefore, it is worth to conduct HRV analysis on the PPG signal and to study

whether PPG derived PRV can be used as a surrogate of HRV.

PPG signal collection does not need electrodes placed on the body, which is

more convenient and avoids awkwardness. Besides, since other physiological param-

eters, such as blood oxygenation and ventilatory rate, can also be obtained from

PPG signal, apply PRV for cardiovascular system monitoring is more suitable for

situations that need multiple parameters derived simultaneously, for example, sleep

disorder studies. Furthermore, there are morphological variations in the ECG sig-

nal that will make it difficult for detection algorithms to distinguish QRS complexes

with abnormal P waves and T waves [19].
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The pulse oximeter has been widely used in clinical nowadays, and an ECG

device is not applicable in some specific situations, such as during magnetic reso-

nance imaging (MRI). Therefore, apply PRV parameters as a substitution of HRV

parameters is a topic worth researching and would benefit the field of cardiac signal

measurement.

2.1.3 Comparison of Heart Rate Variability and Pulse Rate Variabil-

ity

Many studies are talking about the issue of whether PRV can be used instead

of HRV. In summary, PPG mean pulse rate can be used as a substitution of the mean

heart rate derived from ECG with sufficient high agreement [20]. When focusing

on whether PPG can be used in HRV analysis, most researches compared the HRV

variables generated from RR intervals (RRI) of ECG signal and PRV variables

derived from pulse-to-pulse intervals (PPI) of PPG signal.

According to different studies for PRV and HRV agreement, sampling rate

[21], location of pulse sensor [22–24], statistical evaluation methods, experimental

condition [25], etc. all will influence the comparison result.

For specific HRV variables, there is good agreement between PPG-derived

mean interval length and ECG-derived mean interval length, especially for subjects

at rest. The result matches the conclusion we have before about the mean heart

rate calculated from the two signals. Although there are deviations of PPI from

RRI, they will not affect the mean value for these deviations tend to cancel each
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other out. With different experimental conditions, there is also research found that

mean HR was consistently underestimated by mean PR at an average of 1.8 - 3.9

bpm [27].

For other HRV variables, there are not consistent results for all researches.

Generally, for subjects at rest [23, 28] or during night sleep [29], there is relatively

high agreement on all HRV variables, and the agreement decreases for subjects dur-

ing upright position or exercise [14, 30]. Relevant studies also show that variables

that are determined by short-term variability, such as RMSSD, pNN50, HF compo-

nents, LF/HF, are more likely to have a low agreement between HRV and PRV than

variables that are determined by long-term or overall variability [31,32]. [21] points

out that PRV tends to overestimate HF components to a more substantial degree

and overestimate LF component to a smaller degree. Thus it will underestimate the

LF/HF ratio. [14] compared HRV and PRV for subjects on a tilt table and found

PRV estimation usually has positive deviation, especially for measurements related

to high-frequency activities. They thus concluded that the difference between HRV

and PRV is a result of PTT variation, rather than random detection errors dur-

ing pulse cycle boundary locating. They also suggested that PTT variability is

specifically relevant in the HF domain, probably due to respiratory activity.

Besides, PPG signal is more sensitive to motion artifacts [33]. Researchers

in [34] found that for standing up situation after walking, a moderate or exhaustive

exercise in the supine position, the HRV variables did not have a general agreement

that variables like RMSSD, LF, HF, etc. had a minimal agreement. The motion

compensation also could not improve the agreement.
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Result in [14] indicated that the difference between PRV and HRV does not

result from only artifacts, noises, or random oscillations during peak detection.

The delay between ECG R peak and its corresponding PPG characteristic point

(PPG pulse peak, pulse onset, etc.), which is usually referred to pulse transit time

(PTT), is related to pulse wave velocity and the length of vascular path from heart

to the location where PPG signal is collected, and is negatively correlated with

blood pressure, arterial stiffness and age [35]. The difference between PPI and RRI

may due to physiological processes [21,36], for resting subjects mainly arising from

the variability in PTT. This conclusion has been demonstrated to show in some

studies [37–39] and is induced by respiratory activity, which may lead to the result

that PRV and HRV has a relatively high disagreement for variables that represent

short term characteristics, as respiratory activity usually has a high frequency.

Moreover, the method to detect pulse cycles as well as the detected point

location also impacts PRV accuracy. PRV is generated from PPI extracted from

the PPG signal, and it has been discussed in [16] that the exact location of PPI

depends on the definition of its boundaries and the algorithm used to detect them.

The differences in PPI locations will, in turn, cause a further distinction between

PRV and HRV. There are some comparative studies in [26,58].

In [58], researchers compared the PRV and HRV agreement for PPG onset,

20% amplitude point, local maxima of PPG pulse’s first derivative, 50% of total

amplitude point, 80% of total amplitude point and peak point as PPI characteristic

point, and got the conclusion that the most suitable location for healthy subject at

rest is local maxima of pulse’s first derivative, the best position for healthy subjects
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after exercise is 20% peak point, and for subjects with cardiovascular diseases (CVD)

is PPG onset point.

Paper [26] compared the PRV agreement to HRV when pulses were detected

using a different method. They studied the slope detection (extract the maximum

slope point), peak detection and correlation detection (with a pattern representing

a cardiac pulse, detect the location that the real signal has the highest correlation

coefficient with the pattern) and found that slope detection has comparable results

with correlation detection and both methods are better than peak detection. How-

ever, the gold standard chosen in this paper is derived by slope detection of ECG

signal and may be affected by the shape of QRS complex. Furthermore, it didn’t

connect the discrepancies between HRV and PRV with the location information.

2.1.4 The Relationship between Pulse Transit Time and Blood Pres-

sure

The relationship between PTT and BP has been studied by many researchers,

and many models have been come up with to describe it. Paper [59] presented an

arterial wall model to constitute the relationship between BP and arterial elastic-

ity and an arterial wave propagation model to represent the relationship between

arterial elasticity and PTT, with physiological conditions needed for them. They

are especially suitable for measuring the relationship between PTT and diastolic

BP [60, 61]. Paper [62] neglected or approximated unknown parameters, for ex-

ample, the arterial wall elasticity in the previous model, and built a model that
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measures the relationship between PTT and BP using the following equations:

BP =
A

PTT 2
+B (2.1)

where A and B are subject-dependent parameters. Paper [63] estimated BP from

PTT using the equation below:

∆BP = − 2

γPTT
·∆PTT (2.2)

under the circumstances that if arterial wall thickness and diameter variations that

correspond to BP changes can be omitted, where γ is the coefficient. Paper [64]

proposed a linear approximation of the model:

BP = a · PTT + b (2.3)

And [65] presented a non-linear model:

BP = a · lnPTT + b (2.4)

[66] provided a model that estimates BP from PTT and heart rate (HR):

BP = a · PTT + b ·HR + c (2.5)

Although involving physiological elements, estimating blood pressure from

pulse transit time is feasible.
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2.2 Technical Background

Heart rate variability variables are measured from ECG RR intervals (RRI)

or PPG pulse-to-pulse intervals (PPI). Therefore, before running the analysis, ECG

characteristic points (R peak, onset) and PPG characteristic points (pulse peak,

pulse onset, and other characteristic points used for comparison) need to be ex-

tracted.

Figure 2.3: ECG RR interval and PPG pulse-to-pulse interval

A lot of detailed processes are involved in the extraction and further processing

for HRV analysis. The PhysioNet Cardiovascular Signal Toolbox [44,45] provides a

variety of tools used for cardiovascular signal processing that can be used for signal

preprocessing, RR interval / pulse-to-pulse interval extraction, and HRV analysis

implementation.
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Figure 2.4 shows the block diagram of preprocessing cardiovascular signals and

calculating corresponding HRV parameters.

Figure 2.4: Heart rate variability (HRV) analysis process

2.2.1 Characteristic Points Extraction from ECG Signal

Before an ECG peak or onset is located, the corresponding QRS complex

should be detected first so that the detection algorithm will not wrongly extract the

characteristic points of the P wave or T wave. [46] provided an ECG peak detection
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algorithm aiming at utilizing the slope, amplitude, and width information to detect

the QRS complex. Figure 2.5 shows the block diagram, and Figure 2.6 shows one

of the detection results.

The missed peaks are detected by adjusting the threshold level. Two levels of

thresholds are set, and when the QRS complex has not been identified for a specific

time interval, the higher threshold is replaced by the lower one in case there are

missed QRS complexes. However, this technique can only be applied to regular

heartbeats.

Figure 2.5: ECG signal peak detection process

Employ R peak as the characteristic point for RRI extraction will have the

disadvantage that peak location tend to be affected by the morphology of QRS

complexes, such as axis shifts or with abnormal patterns, which will lead to the

inaccuracy of peak locations and the unreliable result for HRV analysis or ECG-

blood pressure delay time studies [47].

On the contrary, onset can avoid the problem above and with the benefit that

indicates the location for the beginning of ventricular excitation.
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Figure 2.6: Peak detection result for ECG signal

Paper [48] exhibits a robust algorithm to detect the onset and duration of

QRS complexes. It applies a curve length transform based on [49] to transfer QRS

location and width information to curve length signal. Figure 2.7 shows the block

diagram, and Figure 2.8 shows one detection result.

2.2.2 Characteristic Points Extraction from PPG Signal

Typical PPG pulse wave can be divided into two parts, the rising part, which is

referred to as anacrotic phase, and the subsequent decreasing part, which is referred

to as catacrotic phase [20].

Corresponding to each RR interval of the ECG signal, which is considered

the ”true” instantaneous heart cycle length, the pulse-to-pulse interval in the PPG

signal also represents the heart cycle length. The exact position of PPI depends on

the definition of its boundary and the algorithm used to detect it [16]. Three options
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Figure 2.7: ECG signal onset detection process: ECG signal is transferred to a curve

length transformed signal through integrating the signal slope informa-

tion. After the curve length transformation, pulses are located using a

threshold. The corresponding onset point of each pulse is found around

the threshold crossing point of each pulse.

Figure 2.8: Onset detection result for ECG signal

that can be used as the boundary point of PPI: the beginning of the anacrotic or

the catacrotic phase, that is, the onset point or the peak point of pulse, and the
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maximum first derivative point, which represents the steepest part of the upstroke

[20]. There are some comparative studies in [50,51].

[43] proposed a PPG pulse onset detection method, which applies a windowed

and weighted slope sum function to detect pulse and extract features.

Figure 2.9 shows the onset detection process and Figure 2.10 shows one detec-

tion result.

Figure 2.9: PPG onset point detection process

Figure 2.10: Onset detection result for PPG signal
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This method is used to extract the onset point of PPG pulses. Due to the

shape of pulses, the peak of each pulse is located at the highest point between two

adjacent onsets.

Figure 2.11: Peak detection result for PPG signal

With the lowest point and highest point of each pulse, other characteristic

points that locate on the slope can be extracted correspondingly.

Figure 2.12: Other characteristic points detection result for PPG signal
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2.2.3 Calculation of Signal Quality Index

Signal quality analysis is used to assess whether reliable heart rates can be ob-

tained from ECG and PPG signals collected using wearable sensors. Several studies

have introduced different signal quality indices (SQIs) to evaluate the cardiovascular

signal quality and discussed its application to the reduction of false alarm in the

intensive care unit (ICU) [52–55]. In this thesis, to reserve high-quality segments

that can be used to extract reliable HRV variables, the signal quality indices for

ECG and PPG signal are calculated before implementing HRV analysis.

2.2.3.1 ECG SQI Calculation

The following SQIs are introduced in previous researches [52–54]:

Table 2.3: Commonly used signal quality index (SQI)

Name Description Calculation
Evaluation

criterion

kSQI

The fourth moment

(kurtosis) of the

signal

kSQI = E[ (X−µ)4
σ4 ]

Expect the good

ECG to be highly

non-Gaussian

sSQI

The third moment

(skewness) of the

signal

sSQI = E[ (X−µ)3
σ3 ]

Expect ECG to be

highly skewed

pSQI
The relative power

in the QRS complex
pSQI =

∫ 15Hz
5Hz P (f)df∫ 40Hz
5Hz P (f)df

Expect most of the

power to be in the 5

- 15 Hz band
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bSQI

The fraction of beats detected by one QRS detection method

that are matched with beats detected by another QRS

detection method

rSQI
The ratio of the number of beats detected by two QRS

detection method

As ECG QRS complex detection has been performed using two different meth-

ods, one is the P&T method in Chapter 2.1.1 [46] and another one is using curve

length transform in Chapter 2.1.2 [48], and P&T method is less sensitive to noise

than the one using curve length transform [55], the difference between their detection

results indicates the noise of signal. Thus, in the PhysioNet toolbox, bSQI, which

calculates the ratio of beats detected by two detection methods synchronously, is

applied.

2.2.3.2 PPG SQI Calculation

Paper [56] proposes a PPG signal quality assessment method using dynamic

time warping (DTW), multiple-template matching, and a heuristic fusion algorithm.

This method first builds a PPG interval dynamic template by detecting and averag-

ing the regular intervals in a 30-sec window in which the PPG signal is segmented

to intervals by their onset points. Then the correlation coefficient between each

PPG interval and this template is calculated. As intervals in PPG signal changes

in length, this paper applies several methods to fit the interval with the template:

direct correlation (extract the segment that begins at the characteristic point and
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with the same length of template), linear interpolation and resampling of the seg-

ment to match the template, and the dynamic time warping (DTW) to stretch the

nonlinear time-base and trace an optimal path to minimize the cumulative distance

between the beat and the template.

The results of these signal quality measurements are all on a scale of 0 to 1,

where approaching one is with high signal quality and approaching 0 is with poor

signal quality. The signal quality of PPG pulses is determined by the mean value

of the three results.

2.3 Data Preprocessing

2.3.1 Database

This thesis aims at comparing the agreement between ECG signal generated

HRV and PPG signal derived PRV concerning different ECG and PPG character-

istic points, as well as discussing the possibility of using arterial blood pressure

information to refine PRV and increase its agreement to HRV. The PhysioNet’s

Medical Information Mart for Intensive Care (MIMIC) III [57], which is collected

from bedside patient monitors in intensive care units (ICU) is applied as a source

for ECG, PPG, and arterial blood pressure (ABP) signal.

2.3.2 Preprocessing Progress

99 data sessions from 20 subjects with cardiovascular disease (CVD), while

all of them with arterial blood pressure signal, 103 data sessions from 19 subjects
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not with cardiovascular disease (Non-CVD), and 85 data sessions from 19 non-CVD

subjects with arterial blood pressure signal are used, and for each sample, after

passing low-pass filter, it is divided to 5-min segments and segments with high-

quality ECG and PPG signal are preserved for characteristic points comparison,

while segments with high-quality ECG, PPG, and ABP signal are preserved for

PRV refinement.

According to the signal quality calculation criterion mentioned above, if 85%

of the cycles have high quality for the 5-min segment’s ECG and PPG, as well as

the ABP signal if needed, then this segment is considered high quality and could be

used for the following analysis.

The preprocessing block diagram is shown below:

Figure 2.13: Block diagram of preprocessing raw data
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Chapter 3: Comparison of PPG Characteristic Points

The definition of ECG RR intervals and PPG pulse-to-pulse intervals varies if

using different characteristic points as the boundary point of intervals. Generally,

the agreement between corresponding HRV and PRV using different characteristic

points to generate RRI or PPI also changes. Studies have discussed the differences

caused by the locations of PPG pulse-to-pulse intervals [26, 58]. However, [26] only

focused on the comparison results using different pulse detection methods. Although

different detection methods detect different pulse characteristic points, this paper

didn’t focus on the location in detail. For another study in [58], it compared the

agreement using different PPG characteristic points. However, it didn’t delve into

the PPG signals to discuss why there will be such results.

Therefore, in this chapter, PRV’s agreement to ECG peak generated HRV us-

ing 6 different characteristic points: onset point, 25% of maximum amplitude point,

50% of maximum amplitude point, 75% of maximum amplitude point, maximum

slope (local maxima of pulse’s first derivative) and peak point, will be compared

and discussed. Also, for comparison, ECG onset points generated HRV will also

be calculated and used for PRV and HRV comparison. The dataset is divided into

subjects with cardiovascular diseases (CVD subjects) and subjects without cardio-
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vascular diseases (Non-CVD subjects) and the agreement between PRV and HRV

will be calculated separately to observe the difference.

Figure 3.1: Different characteristic points for ECG and PPG signal

Figure 3.2 is the block diagram of the comparison process. PPI and RRI

indicate the interbeat interval signal extracted from the ECG and PPG signal re-

spectively.

3.1 Signal Preprocessing

3.1.1 Calculation of Interbeat Interval Signals

The characteristic points of ECG and PPG signal are extracted first and are

then used to generate interbeat interval (IBI) signals.

Suppose there are two cardiac signals: the ECG signal signalECG(i) and the

PPG signal signalPPG(i). The characteristic points of ECG QRS complex and PPG
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Figure 3.2: Block diagram for PRV and HRV comparison

pulse are extracted (take peak points as example): peakECG(n), n = 1, 2, ..., N1,

whereN1 is the number of peaks detected in this ECG segment, and peakPPG(n), n =

1, 2, ..., N2, where N2 is the number of peaks detected in this PPG segment.

The IBI signals are calculated correspondingly:

IBIECG(n) = peakECG(n+ 1)− peakECG(n), n = 1, 2, ..., N1 − 1 (3.1)

IBItimeECG(n) = peakECG(n+ 1), n = 1, 2, ..., N1 − 1 (3.2)

IBIPPG(n) = peakPPG(n+ 1)− peakPPG(n), n = 1, 2, ..., N2 − 1 (3.3)

IBItimePPG(n) = peakPPG(n+ 1), n = 1, 2, ..., N2 − 1 (3.4)
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where IBI(n) for ECG and PPG signal is the length of each cycle or each cardiac

interval, the boundary of which is indicated by the characteristic point used, and

IBItime(n) is the corresponding time of each interval. When calculating HRV or

PRV, intervals within a time window are utilized.

Figure 3.3 and Figure 3.4 show the IBI(n) extracted from the ECG signal

and PPG signal.

Figure 3.3: Interbeat interval (IBI) signal extracted from ECG signal

3.1.2 Preprocessing of Raw Interbeat Interval Signals

IBI signals will be preprocessed before running HRV analysis and calculating

HRV and PRV variables. Each interval represents one cardiac cycle in ECG and

PPG signal. Figure 3.5 shows the block diagram of preprocessing raw IBI signals.

Preprocessing IBI signal is to ensure the ECG IBI signal and PPG IBI signal

are synchronized, that is, for each ECG interbeat interval and PPG interbeat in-
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Figure 3.4: Interbeat interval (IBI) signal extracted from PPG signal

Figure 3.5: Preprocessing raw interbeat intervals (IBI) signal

terval, they correspond to the same cardiac cycle. To explain in detail, this means

that it’s the same cardiac cycle that causes the changes in ECG signal, transports

through the vascular path from heart to the point where PPG is gathered and finally

induces variations in the PPG signal.

The alignment is done first by shifting the IBI locations (IBItime(n)) in a

limited range and finding the shift index that PPG IBI locations (IBItimePPG(n))

with the lowest mean-squared error to the ECG IBI locations (IBItimePPG(n)).

This process is used to reduce the misalignment between ECG and PPG signal that
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may be due to measurement errors.

Then, each ECG interval is matched with its corresponding PPG interval by

searching the PPG intervals within a time window around it and the PPG interval

that has the minimum distance preserved. As a result, extra pulses in the PPG

signal caused by noises, disturbances, or measurement issues will be excluded from

heart rate variability analysis.

The last step of preprocessing is to remove abnormal beats in the ECG signal

and PPG signal. Intervals that are too small or too large (smaller or larger than a

given lower limit or upper limit), intervals that change over a percentage compared

to the median value of adjacent five intervals, which can all be considered as unphys-

iological, will be removed. The parameters used for identifying abnormal intervals

are from the PhysioNet toolbox [44, 45]. Finally, the normal intervals in ECG and

PPG signal can be used for heart rate variability analysis.

Figure 3.6 indicates the result of each step.

3.2 Comparison of Pulse Rate Variability and Heart Rate Variability

With the normal interbeat intervals from ECG and PPG signal, HRV analysis

is run for each segment using a sliding analysis window. The window length is 10

seconds, and the increment of the window is 1 second. Therefore, the total number

of analysis windows is seg length−(window length−increment)
increment

, which is around 290 for a

5-min segment.

Then the HRV or PRV variables are calculated. Each analysis window will
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Figure 3.6: Interbeat interval (IBI) plot after each preprocessing step

generate one value for each HRV variable, and each HRV variable will finally form an

array, the length of which is the number of analysis windows, reflecting the cardiac

system status over time and can be used for analysis and comparison.

In the following part of this section, the HRV and corresponding PRV vari-

ables will be calculated and the results of using different PPG characteristic points:

PPG onset, PPG 25% point, PPG 50% point, PPG 75% point, PPG max slope

point, and PPG peak, will be compared and discussed in detail. As a reference, the

difference between the ECG IBI series and PPG IBI series generated from different

characteristic points will also be calculated and compared.
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3.2.1 Statistical Methods for Comparison

The agreement between ECG and PPG interbeat intervals and the correspond-

ing HRV and PRV variables is evaluated using the Pearson correlation coefficient

(PCC) and normalized root-mean-square error (NRMSE).

Pearson correlation coefficient between sample x and sample y, usually repre-

sented by rxy, is calculated using the following formula:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3.5)

where n is the sample size, xi, yi are samples, x̄ = 1
n

∑n
i=1 xi is the sample mean,

which is the same for ȳ.

rxy has a value ranging from +1 to -1 and measures the correlation between

sample x and sample y, where +1 means positive linear correlation, −1 means

negative linear correlation and 0 means no linear correlation.

For our PRV and HRV agreement measurement, the closer the Pearson corre-

lation coefficient approaching 1 or -1, the more the PRV variable is correlated with

the HRV variable through the analysis windows.

Normalized root-mean-square error (NRMSE) is used to compare samples with

different scales. It is calculated as below:

NRMSE(x, y) =
RMSE

x̄
=

√∑
i=1 n(x−y)2

n

x̄
(3.6)

where x is the reference sample. The NRMSE is expressed as a percentage, and

smaller values represent less residual variance.
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When comparing PRV and HRV variables, as well as IBI signals, the lower the

NRMSE, the smaller the difference between ECG variables and PPG variables.

3.3 Comparison Result of Subjects with Cardiovascular Diseases (CVD)

There are 1578 5-min segments extracted from the cardiac signals of subjects

with cardiovascular diseases.

3.3.1 Interbeat Interval Signal Comparison

For each PPG characteristic point, it will generate an interbeat interval array,

the size of which is the number of intervals and the value of which is the length of

intervals. The array is then compared with the ECG IBI array by calculating mean

PCC and mean NRMSE over all of the 5-min segments.

Table 3.1 and Table 3.2 show the comparison result of ECG and PPG IBI

signals:

Table 3.1: PCC and NRMSE between ECG IBI and PPG IBI (ECG peaks) for CVD

subjects

PP PO PM P25 P50 P75

mean PCC 0.4010 0.2706 0.3534 0.3525 0.3704 0.3709

mean NRMSE 0.0272 0.0444 0.0312 0.0266 0.0246 0.0248

where the meaning of abbreviations in the headline of tables is that P represents

peaks, O represents onsets, M represents max slope points, 25 represents the 25%

of max amplitude points, 50 represents the 50% of max amplitude points, and 75

represents the 75% of max amplitude points. The first letter corresponds to the ECG
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Table 3.2: PCC and NRMSE between ECG IBI and PPG IBI (ECG onsets) for

CVD subjects

OP OO OM O25 O50 O75

mean PCC 0.3603 0.2408 0.3156 0.3182 0.3321 0.3283

mean NRMSE 0.0287 0.0456 0.0328 0.0283 0.0265 0.0269

signal characteristic point used for comparison, and the second letter indicates the

PPG characteristic point used for comparison. Therefore, for example, PP indicates

the comparison between ECG peak-derived IBI and PPG peak-derived IBI and PO

indicates the comparison between ECG peak-derived IBI and PPG onset-derived

IBI.

Figure 3.7 shows the plot of the mean PCC and NRMSE of different compar-

isons.

Figure 3.7: Agreement comparison of different ECG and PPG characteristic points

for CVD subjects - (left) mean PCC, (right) mean NRMSE

From the calculated mean PCC and mean NRMSE between different ECG

and PPG characteristic points, a preliminary conclusion can be reached that PPG

peak-derived IBI has the highest mean PCC, and that is followed by PPG 50%

points, PPG 75% points, PPG 25% points and PPG max slope points, while PPG

onset-derived IBI has the lowest mean PCC. There is a slight difference concerning

mean NRMSE. PPG 50% points, PPG 75% points, and PPG 25% points have

comparable and the smallest mean NRMSE among all PPG characteristic points,
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which are followed by PPG peaks, PPG max slope points, and PPG onsets-derived

IBI has the largest mean NRMSE when comparing with ECG IBI.

When considering the difference between ECG peaks and ECG onsets, it is

relatively small compared to the discrepancies between PPG characteristic points.

However, the plots and data still indicate the ECG peak-derived IBI has higher

mean PCC and lower mean NRMSE than ECG onset-derived IBI when comparing

with PPG IBIs, which means that PPG-derived IBIs are more approaching to ECG

peak-derived IBI rather than ECG onset-derived IBI.

Figure 3.8 - Figure 3.13 exhibit the different PPG IBI signals comparing with

the ECG peak-derived IBI signal of one sample, and visualize the difference of PPG

characteristic points and the discrepancies between the PPG IBI signal and ECG

IBI signal using plots.

Figure 3.8: Comparison of ECG peak-derived IBI and PPG peak-derived IBI for

CVD subjects: NRMSE = 0.0188, PCC = 0.1801

While ECG IBI signal has a relatively low variation, PPG IBI signal obtained

from different characteristic points has different agreement to ECG IBI signal. The

distinctions between the ECG IBI and PPG IBI signal will lead to the disagreement

between HRV and PRV variables.
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Figure 3.9: Comparison of ECG peak-derived IBI and PPG onset-derived IBI for

CVD subjects: NRMSE = 0.0442, PCC = -0.0503

Figure 3.10: Comparison of ECG peak-derived IBI and PPG max slope points de-

rived IBI for CVD subjects: NRMSE = 0.0291, PCC = 0.0893

3.3.2 Heart Rate Variability and Pulse Rate Variability Variables

Comparison

The ECG IBI and PPG IBI signal are then used to calculate HRV variables

and PRV variables. The calculation for each variable will generate an array that

contains the value of the variable and the length of which is the number of analysis
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Figure 3.11: Comparison of ECG peak-derived IBI and PPG 25% max amplitude

points derived IBI for CVD subjects: NRMSE = 0.0252, PCC = 0.0877

Figure 3.12: Comparison of ECG peak-derived IBI and PPG 50% max amplitude

points derived IBI for CVD subjects: NRMSE = 0.0247, PCC = 0.1083

windows used for HRV analysis. These arrays from the ECG signal and the PPG

signal are compared by the PCC and NRMSE between each other.

Table 3.3 and Table 3.4 show the comparison result of time domain variables

for HRV measurements.
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Figure 3.13: Comparison of ECG peak-derived IBI and PPG 75% max amplitude

points derived IBI for CVD subjects: NRMSE = 0.0197, PCC = 0.172

Table 3.3: Mean PCC between time domain variables of HRV and PRV derived from

different characteristic points for CVD subjects

mean PCC mean variance SD RMSSD pnn50

PP 0.6376 0.4983 0.5011 0.4702 0.5255

PO 0.5755 0.3158 0.3256 0.2937 0.3261

PM 0.6289 0.4433 0.4494 0.4066 0.4609

P25 0.6230 0.4497 0.4664 0.4414 0.5201

P50 0.6308 0.4894 0.5026 0.4753 0.5499

P75 0.6378 0.4858 0.4993 0.4723 0.5461

OP 0.6359 0.4787 0.4800 0.4462 0.4828

OO 0.5775 0.3261 0.3321 0.2963 0.3168

OM 0.6240 0.4410 0.4422 0.3964 0.4317

O25 0.6183 0.4369 0.4474 0.4224 0.4839

O50 0.6288 0.4728 0.4806 0.4540 0.5146

O75 0.6332 0.4693 0.4766 0.4476 0.5056

Table 3.4: Mean NRMSE between time domain variables of HRV and PRV derived

from different characteristic points for CVD subjects

mean

NRMSE
mean variance SD RMSSD pnn50

PP 0.0042 19.5311 2.1580 2.3364 9.2009

PO 0.0071 42.3794 4.3704 4.7397 17.6924

PM 0.0043 20.4363 2.6914 3.0104 10.6301

P25 0.0043 17.2448 2.0439 2.1737 7.9674

P50 0.0040 13.6789 1.7484 1.8506 7.5938

P75 0.0039 14.3305 1.7782 1.9048 7.5706
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OP 0.0044 17.3129 1.9615 2.1144 11.3032

OO 0.0073 39.1696 4.0219 4.3488 16.6480

OM 0.0045 17.9801 2.4335 2.7122 9.8592

O25 0.0045 14.6052 1.8605 1.9747 8.3048

O50 0.0042 11.5316 1.5988 1.6893 7.8069

O75 0.0041 11.5822 1.5975 1.7036 7.7847

where the notations are the same as mentioned in section 3.3.1.

Figure 3.14 presents the plot of mean PCCs and mean NRMSEs.

Figure 3.14: Agreement comparison of time domain variables for CVD subjects -

(left) mean PCC, (right) mean NRMSE

During IBI signal comparison, when comparing with ECG peak derived IBI

signal, PPG IBI signal has higher mean PCC and lower mean NRMSE than compar-

ing with ECG onset derived IBI signal. When considering PRV variables, comparing

with ECG peak derived HRV has higher mean PCC but also higher mean NRMSE.

For PPG characteristic points, peaks, max slope points, 25% max amplitude

points, 50% max amplitude points and 75% max amplitude points tend to have a

similar scale of PCC for the mean length of pulse-to-pulse intervals, while onsets have

relatively lower PCC comparing to other characteristic points for this variable. The
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mean NRMSEs of mean pulse-to-pulse interval length for six characteristic points

are similar and all very low. This result is due to the reason that for the PPG

signal, the mean interval length has a high agreement to that of the ECG signal.

Therefore, the difference in mean interval length among using these characteristic

points are relatively small.

The value of other variables differs on a comparatively large scale. For variables

except for pnn50, peak-derived PRV has a larger mean PCC than other character-

istic points, which is followed by that of 75% max amplitude point and 50% max

amplitude point, and then 25% max amplitude point and max slope point. Onset-

derived PRV has the lowest mean PCC. For pnn50, PRV from 50% max amplitude

point and that from 75% max amplitude point have a higher agreement to the pnn50

values of HRV than other characteristic points. While PRV from the peak and 25%

max amplitude point have less high mean PCC values, this is followed by that of

max slope point, and onset derived PRV still has the lowest mean PCC for this

variable.

The performance of different characteristic points for mean NRMSE is rela-

tively similar to that for mean PCC among other time domain variables. Generally,

25% max amplitude point of PPG pulse, 50% max amplitude point, and 75% max

amplitude point have the lowest mean NRMSE among all PPG characteristic points.

Peak and max slope point have slightly higher mean NRMSE comparing to them,

and PRV variables calculated from PPG onsets have the highest mean NRMSE.

In general, for time domain variables, peak, 50% max amplitude point and

75% max amplitude point derived PRV have the highest agreement to that of HRV
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calculated from ECG signal, and that from PPG onsets has the lowest agreement.

Then the frequency domain variables are calculated and compared. Table 3.5

and Table 3.6 display the detailed results.

Table 3.5: Mean PCC between frequency domain variables of HRV and PRV derived

from different characteristic points for CVD subjects

mean PCC ULF VLF LF HF LF/HF

PP 0.4496 0.4538 0.5133 0.4975 0.3135

PO 0.3001 0.3045 0.3656 0.3231 0.2665

PM 0.4021 0.4063 0.4763 0.4374 0.2536

P25 0.3925 0.3973 0.4623 0.4477 0.3351

P50 0.4128 0.4172 0.4790 0.4776 0.3441

P75 0.4178 0.4226 0.4880 0.4801 0.3420

OP 0.4292 0.4342 0.5038 0.4768 0.2915

OO 0.2984 0.3033 0.3700 0.3302 0.2456

OM 0.3880 0.3930 0.4688 0.4329 0.2355

O25 0.3664 0.3714 0.4412 0.4345 0.3129

O50 0.3855 0.3907 0.4598 0.4602 0.3140

O75 0.3843 0.3896 0.4654 0.4637 0.3087

Table 3.6: Mean NRMSE between frequency domain variables of HRV and PRV

derived from different characteristic points for CVD subjects

mean

NRMSE
ULF VLF LF HF LF/HF

PP 49.8524 50.4746 41.5769 17.6052 1.9991

PO 98.9788 100.7254 91.0357 40.8598 2.0033
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PM 54.8596 55.7823 47.7263 17.6654 2.2715

P25 50.4989 51.4471 45.5944 16.1969 1.9385

P50 41.7894 42.4781 35.0760 13.0803 1.9699

P75 42.9430 43.5054 36.2208 13.4670 1.9603

OP 43.5685 44.1312 34.4166 16.1770 1.9514

OO 87.9111 89.2593 77.3221 38.1688 1.9398

OM 44.0152 44.6965 37.2984 16.0404 2.1222

O25 38.2392 38.7465 31.8380 14.0561 1.9008

O50 34.5933 35.0309 26.3336 11.1794 1.9412

O75 33.4328 33.9072 26.2551 11.3596 1.9347

where the notations are the same as mentioned before.

Figure 3.15 presents the plot of mean PCCs and mean NRMSEs.

Figure 3.15: Agreement comparison of frequency domain variables for CVD subjects

- (left) mean PCC, (right) mean NRMSE

From frequency domain variables, the mean PCC of comparing with ECG

peak-generated HRV is slightly higher than that of comparing with ECG onset-

generated HRV, and the mean NRMSE is higher as well.

Comparing the mean PCC of frequency domain variables, except for LF/HF,
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peak-derived PRV has the highest mean PCC, and max slope point, 25% max ampli-

tude point, 50% max amplitude point and 75% max amplitude point have relatively

lower PCC, while onset-derived PRV variables have the least correlation to HRV

variables. For LF/HF, 25% max amplitude point, 50% max amplitude point, 75%

max amplitude point derived PRVs all have high mean PCC, and the mean PCC of

peak derived PRV is comparatively lower. Onset and max slope point derived PRV

have the lowest mean PCC among all characteristic points.

The mean NRMSE of LF/HF remains small and similar for all PPG charac-

teristic points. Meanwhile, the mean NRMSE of other frequency domain variables

ranges on a large scale and differs among characteristic points. 50% max amplitude

point derived PRV and 75% max amplitude point derived PRV have the lowest mean

NRMSE, and the mean NRMSE of peak, 25% max amplitude point and max slope

point derived PRV is higher than that. Onset has the highest mean NRMSE among

all of the PPG characteristic points.

3.3.3 Result Analysis

The agreement between PRV and HRV for subjects with cardiovascular dis-

eases (CVD) is relatively low, indicating by the low mean PCC and the high mean

NRMSE that with many values greater than 1. This finding is due to the HRV

characteristic of this situation as reduced HRV is usually associated with cardiovas-

cular diseases. Besides, the interval length variance of the ECG signal only depends

on cardiac status, while the interval length variance of the PPG signal will also
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be affected by pulse transit time variance, random noises during pulse transfer and

detection noises. The variables that involve interval length variation, such as vari-

ance, SD, RMSSD in the time domain, LF, HF in the frequency domain, will have

larger values in PRV variables calculation. Furthermore, as HRV for CVD subjects

decreases, the interval length variation in the ECG signal is relatively low. There-

fore, the variables regarding interval length change will have small values in HRV

analysis. The relatively low amount of HRV variables and the relatively large value

of PRV variables cause the small mean PCC and large mean NRMSE among all

characteristic points.

Below are two examples that could represent the situation when ECG interval

length variation is low and when ECG interval length variation is high.
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Figure 3.16: Comparison of PRV variables and HRV variables when ECG intervals

have low variations: (top) Plot of ECG interbeat intervals, (Bottom

left) Comparison plot of PRV variance and HRV variance (NRMSE =

22, PCC = 0.53), (Bottom right) Comparison plot of PRV HF com-

ponent and HRV HF component (NRMSE = 19.6, PCC = 0.38). The

plots demonstrate that the PRV variable and HRV variable have a

similar trend although PRV has a few disturbances, however, as ECG

interval length remains nearly constant for some segments, there are

many low values for these two variables. Therefore, when evaluating

the agreement between HRV and PRV using statistical methods, the

PCC will have relatively low value, and the NRMSE will have a high

value.
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Figure 3.17: Comparison of PRV variables and HRV variables when ECG intervals

have high variations: (top) Plot of ECG interbeat intervals, (Bottom

left) Comparison plot of PRV variance and HRV variance (NRMSE =

1.58, PCC = 0.73), (Bottom right) Comparison plot of PRV HF com-

ponent and HRV HF component (NRMSE = 3.67, PCC = 0.68). When

ECG interval length has a larger variance, the NRMSE reduces greatly,

and the PCC improves. Generally, PPG variables have a similar trend

with ECG variables but with larger amplitude due to the disturbances.

Therefore, for subjects with cardiovascular diseases, PPG pulse peak, 50%

max amplitude point, 75% max amplitude point all can generate PRV with high

PCC and low NRMSE comparing to HRV, while peak-derived PRV has higher PCC

than other two locations and 50% max amplitude point, 75% max amplitude point

derived PRV has relatively lower NRMSE. On the contrary, max slope point and
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onset derived PRV has a worse agreement to HRV. Moreover, this result matches

the result of comparing IBI signals generated from different characteristic points.

In this situation, when comparing the ECG IBI and PPG IBI signal, PPG

IBI signal is more approaching to IBI signal calculated from ECG peaks. But the

comparison of PRV variables indicates that the PCC between PRV and ECG peak

derived HRV is higher, although the mean NRMSE is also higher.

3.4 Comparison Result of Subjects without Cardiovascular Diseases

(Non-CVD)

There are 1763 5-min segments extracted from the cardiac signals of subjects

without cardiovascular diseases.

3.4.1 Interbeat Interval Signal Comparison

The mean PCC and mean NRMSE between ECG IBI array and PPG IBI

array generated from difference characteristic points over all of the segments are

calculated.

Table 3.7 and Table 3.8 show the result of ECG and PPG IBI comparison:

Table 3.7: PCC and NRMSE between ECG IBI and PPG IBI (ECG peaks) for

non-CVD subjects

PP PO PM P25 P50 P75

mean PCC 0.6522 0.5487 0.6226 0.6820 0.7077 0.6955

mean NRMSE 0.0179 0.0279 0.0199 0.0159 0.0143 0.0151
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Table 3.8: PCC and NRMSE between ECG IBI and PPG IBI (ECG onsets) for

non-CVD subjects

OP OO OM O25 O50 O75

mean PCC 0.5651 0.4816 0.5386 0.5855 0.6041 0.5989

mean NRMSE 0.0220 0.0313 0.0238 0.0206 0.0194 0.0197

the notations are the same as mentioned before.

Figure 3.18 shows the plot of the mean PCC and NRMSE.

Figure 3.18: Agreement comparison of different ECG and PPG characteristic points

for non-CVD subjects - (left) mean PCC, (right) mean NRMSE

For subjects without cardiovascular diseases, when comparing the agreement

of PRV that derived from different characteristic points with HRV, it is revealed in

the plots and data that:

For mean PCC, 50% max amplitude point > 75% max amplitude point > 25%

max amplitude point > peak > max slope > onset

For mean NRMSE, 50% max amplitude point < 75% max amplitude point <

25% max amplitude point < peak < max slope < onset

The comparison result above indicates that 50% max amplitude point derived

PRV has the highest agreement to HRV among all the characteristic points and this
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followed by the 75% max amplitude point, 25% max amplitude point, peak, and the

other points. Characteristic points that have a higher agreement to HRV are all on

the slope of PPG pulse, except for max slope point. This conclusion is different from

the conclusion drawn in the last section for subjects with cardiovascular diseases

that characteristic point derived PRV with a higher agreement to HRV is either

that from 75% max amplitude point, 50% max amplitude point (points on pulse

slope), or peak.

Besides, there is a difference between ECG peak derived HRV and ECG onset

derived HRV. In general, the mean PCC between ECG IBI that derived from ECG

onsets and PPG IBI is lower than that derived from ECG peaks, and the mean

NRMSE between ECG onsets-derived IBI is higher, which leads to the result that

PRV is more approaching to ECG peak-derived HRV rather than onset-derived

HRV.

Figure 3.19 - Figure 3.24 exhibit example plots of different PPG IBI signals

comparing with ECG peak-derived IBI signal.

3.4.2 Heart Rate Variability and Pulse Rate Variability Variables

Comparison

HRV analysis variables for ECG signal and PPG signal of different character-

istic points are also calculated and compared. The agreement is evaluated based on

the mean PCC and mean NRMSE.

Table 3.9 and Table 3.10 show the comparison result of time domain variables
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Figure 3.19: Comparison of ECG peak-derived IBI and PPG peak-derived IBI for

non-CVD subjects: NRMSE = 0.0229, PCC = 0.9247

Figure 3.20: Comparison of ECG peak-derived IBI and PPG onset-derived IBI for

non-CVD subjects: NRMSE = 0.0255, PCC = 0.8872

for HRV measurements.

Table 3.9: Mean PCC between time domain variables of HRV and PRV derived from

different characteristic points for non-CVD subjects
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mean PCC mean variance SD RMSSD pnn50

PP 0.9654 0.7500 0.7519 0.6666 0.5812

PO 0.9178 0.6043 0.6241 0.5498 0.4973

PM 0.9601 0.6948 0.6984 0.5964 0.5434

P25 0.9669 0.7488 0.7701 0.6896 0.6357

P50 0.9754 0.8175 0.8232 0.7401 0.6798

P75 0.9711 0.7930 0.7957 0.7031 0.6226

OP 0.9450 0.6763 0.6806 0.5825 0.4996

OO 0.9023 0.5724 0.5831 0.4958 0.4342

OM 0.9413 0.6392 0.6405 0.5252 0.4655

O25 0.9503 0.6843 0.6992 0.6064 0.5272

O50 0.9547 0.7337 0.7372 0.6364 0.5458

O75 0.9527 0.7237 0.7276 0.6226 0.5342

Table 3.10: Mean NRMSE between time domain variables of HRV and PRV derived

from different characteristic points

mean

NRMSE
mean variance SD RMSSD pnn50

PP 0.0038 2.3495 0.7311 1.0065 10.4131

PO 0.0063 5.9968 1.2972 1.8058 14.7610

PM 0.0043 2.9190 0.8765 1.2398 8.1665

P25 0.0035 1.9787 0.5824 0.8050 5.4780

P50 0.0031 1.3404 0.4601 0.6352 4.2542

P75 0.0034 1.6800 0.5536 0.7823 5.7475

OP 0.0050 1.5022 0.5468 0.7086 3.3516

OO 0.0072 3.7034 1.0105 1.2744 5.7618

51



OM 0.0054 1.7167 0.6200 0.7746 2.8559

O25 0.0047 1.4494 0.5488 0.6889 2.3813

O50 0.0045 1.1439 0.4713 0.5886 2.0223

O75 0.0046 1.1747 0.4562 0.5744 2.1727

where the notations are the same as mentioned before.

Figure 3.25 presents the plot of mean PCC and mean NRMSE.

Figure 3.25: Agreement comparison of time domain variables for non-CVD subjects

- (left) mean PCC, (right) mean NRMSE

The figures and data demonstrate that using ECG peak as the characteristic

point has higher mean PCC and higher mean NRMSE than using ECG onset as the

characteristic point for subjects without cardiovascular diseases.

For PPG characteristic points, the agreement of all time domain variables,

except for mean interval length, is similar and matched with the result we get from

ECG IBI and PPG IBI comparison. We conclude that 50% max amplitude point

derived PRV generally has the highest agreement to HRV (highest PCC and lowest

NRMSE), and it is followed by 75% max amplitude point, 25% max amplitude

point, peak, max slope point, and onset. Onset derived PRV tends to have a worse
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Figure 3.21: Comparison of ECG peak-derived IBI and PPG max slope points de-

rived IBI for non-CVD subjects: NRMSE = 0.0277, PCC = 0.8712

Figure 3.22: Comparison of ECG peak-derived IBI and PPG 25% max amplitude

points derived IBI for non-CVD subjects: NRMSE = 0.0164, PCC =

0.9510

agreement than all other points.

Frequency domain variables are then calculated and compared. Table 3.11 and

Table 3.12 display detailed results.
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Figure 3.23: Comparison of ECG peak-derived IBI and PPG 50% max amplitude

points derived IBI for non-CVD subjects: NRMSE = 0.0126, PCC =

0.9706

Figure 3.24: Comparison of ECG peak-derived IBI and PPG 75% max amplitude

points derived IBI for non-CVD subjects: NRMSE = 0.0139, PCC =

0.9671
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Table 3.11: Mean PCC between frequency domain variables of HRV and PRV de-

rived from different characteristic points for non-CVD subjects

mean PCC ULF VLF LF HF LF/HF

PP 0.7169 0.7217 0.7268 0.4260 0.5260

PO 0.5781 0.5836 0.5735 0.3431 0.4881

PM 0.7074 0.7126 0.7219 0.4010 0.5135

P25 0.7278 0.7321 0.7264 0.4257 0.5791

P50 0.7648 0.7686 0.7705 0.4700 0.5842

P75 0.7578 0.7619 0.7676 0.4639 0.5717

OP 0.6572 0.6632 0.6756 0.3674 0.4625

OO 0.5387 0.5450 0.5475 0.3131 0.4276

OM 0.6447 0.6510 0.6715 0.3542 0.4554

O25 0.6551 0.6606 0.6684 0.3698 0.4912

O50 0.6874 0.6927 0.7057 0.4003 0.4998

O75 0.6872 0.6928 0.7087 0.3939 0.4967

Table 3.12: Mean NRMSE between frequency domain variables of HRV and PRV

derived from different characteristic points for non-CVD subjects

mean

NRMSE
ULF VLF LF HF LF/HF

PP 2.9269 2.8654 2.8269 7.1132 1.0284

PO 7.6531 7.4776 7.7696 26.4475 1.0635

PM 2.9480 2.8785 2.8584 7.4030 1.0565

P25 2.7317 2.6765 2.7073 7.6300 0.9801

P50 2.2837 2.2377 2.2175 5.3028 0.9732

P75 2.3619 2.3111 2.2539 5.3414 0.9789
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OP 2.4462 2.4049 2.1642 3.2833 1.4596

OO 5.1268 5.0386 4.9207 12.5846 1.4939

OM 2.4504 2.4081 2.1434 3.5376 1.3797

O25 2.5061 2.4629 2.2915 3.7335 1.6120

O50 2.1358 2.0983 1.8645 2.7539 1.6453

O75 2.1588 2.1191 1.8695 2.6779 1.5329

where the notations are the same as mentioned before.

Figure 3.26 presents the plots of PCCs and NRMSEs.

Figure 3.26: Agreement comparison of frequency domain variables for non-CVD

subjects - (left) mean PCC, (right) mean NRMSE

For frequency domain parameters, PRV generated from 50% max amplitude

point has the highest mean PCC between HRV parameters, and it is followed by the

75% max amplitude point, 25% max amplitude point. Peak and max slope point

derived PRV have less mean PCC than the previous three characteristic points, while

onset derived PRV has the least mean PCC. When considering mean NRMSE, PRV

derived from 50% max amplitude point has the least difference between HRV. 75%

max amplitude point, 25% max amplitude point, peak, and max slope point derived
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PRV has higher mean NRMSE and onset has the highest mean NRMSE than all

other PPG characteristic points.

The difference between using ECG peaks and onsets to calculate the agreement

is similar to that of time domain variables.

3.4.3 Result Analysis

Unlike the situation that subjects with cardiovascular diseases (CVD), com-

parison results for subjects that do not have cardiovascular diseases (non-CVD) tend

to be consistent for both methods and nearly all parameters.

Rather than PRV derived from PPG pulse peak has a relatively high agree-

ment to HRV in the CVD situation, in non-CVD case, 50% max amplitude point

derived PRV have the highest agreement, which means highest mean PCC and low-

est mean NRMSE, among all characteristic points to gold standard HRV. Besides,

75% max amplitude point and 25% max amplitude point derived PRV also has a

high agreement to HRV. Max slope point and onset derived PRV have the lowest

agreement and are not recommended to use in both situations.

The comparison of the IBI signal generated from different PPG characteristic

points with the ECG IBI signal also supports this conclusion.

In non-CVD cases, PPG IBI signal has higher agreement to ECG peak derived

IBI signal and for PRV variables, they have higher PCC and higher NRMSE to ECG

peak derived HRV than onset derived HRV, which is the same as the result in CVD

situation.
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3.5 Discussion and Chapter Conclusion

3.5.1 Further Analysis

There are still some points that need to be discussed.

Because of the limited sampling rate of cardiac signals, the number of points

for each pulse slope is also limited. Thus locating the 25% max amplitude point,

50% max amplitude point, and 75% max amplitude point will be not accurate

enough. Then why these points tend to have a better agreement than other locations,

especially the max slope point, which is also on the pulse slope, and onset, which

has the worst agreement in our comparison result?

Let’s first compare the scale of characteristic points on the pulse slope to

the maximum amplitude. Figure 3.27 and Figure 3.28 show the comparison for

CVD subjects and non-CVD subjects respectively (display the scale of the pulse

characteristic points location for each pulse).

Unlike max slope point, other points on pulse slope basically lie in the scale

where they are supposed to be and vary in a relatively narrower scale than max slope

points (smaller standard deviation). Comparing to max slope point, 25%, 50% and

75% max amplitude point are less likely to be affected by the variation of pulse

shape and thus, PRV derived by these characteristic points has higher agreement

than max slope point.

As the deviation of the scale of points on the slope will cause a decreasing of

PRV and HRV agreement according to the observation above, the exact 50% max
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Figure 3.27: Comparison of the scale of different characteristic points on pulse slope

for CVD subjects: for max slope points: mean - 0.4925, standard de-

viation (sd) - 0.1, for 25% max amplitude points: mean - 0.2563, sd -

0.04, for 50% max amplitude points: mean - 0.5287, sd - 0.04, for 75%

max amplitude points: mean - 0.7978, sd - 0.03

amplitude point location is interpolated and compared with the 50% max amplitude

points selected from the PPG signal. The interbeat interval comparison result is

shown in Table

The observations above indicates that the location deviation of characteristic

points on the slope will cause the decreasing of PRV and HRV agreement. Therefore,

as an example, the exact location of 50% max amplitude point is interpolated using

PPG signal and the derived interbeat interval signal and PRV variables are compared

with that calculated from 50% max amplitude point extracted from PPG sampling

points.
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Figure 3.28: Comparison of the scale of different characteristic points on pulse slope

for Non-CVD subjects: for max slope points: mean - 0.4961, standard

deviation (sd) - 0.11, for 25% max amplitude points: mean - 0.2833,

sd - 0.04, for 50% max amplitude points: mean - 0.5574, sd - 0.05, for

75% max amplitude points: mean - 0.8192, sd - 0.04

The IBI comparison result for CVD subjects and non-CVD subjects is shown

in Table 3.13.

Table 3.13: Agreement comparison of PPG 50% max amplitude points and interpo-

lated 50% max amplitude points

Mean PCC ppg50 ppg50 int Mean NRMSE ppg50 ppg50 int

CVD 0.6020 0.6197 CVD 0.0193 0.0184

Non-CVD 0.7050 0.7283 Non-CVD 0.0143 0.0134

Table 3.14 and Table 3.15 demonstrate the comparison result of PRV variables.
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Table 3.14: Agreement comparison of 50% max amplitude point and interpolated

50% max amplitude point derived PRV variables (CVD)

mean PCC ppg50 ppg50 int
mean

NRMSE
ppg50 ppg50 int

mean 0.8690 0.8724 mean 0.0034 0.0033

variance 0.7257 0.7323 variance 4.9622 4.9561

SD 0.7351 0.7418 SD 0.9427 0.9139

RMSSD 0.6922 0.7025 RMSSD 1.0673 1.0315

pnn50 0.6266 0.6308 pnn50 7.2781 7.3645

ULF 0.6865 0.6950 ULF 15.2076 14.7331

VLF 0.6905 0.6988 VLF 15.4301 14.8929

LF 0.7245 0.7322 LF 12.4293 11.8822

HF 0.5822 0.5928 HF 6.0011 5.8268

LFHF 0.5235 0.5431 LFHF 1.3542 1.3849

Table 3.15: Agreement comparison of 50% max amplitude point and interpolated

50% max amplitude point derived PRV variables (Non-CVD)

mean PCC ppg50 ppg50 int
mean

NRMSE
ppg50 ppg50 int

mean 0.9747 0.9743 mean 0.0034 0.0033

variance 0.8148 0.8168 variance 4.9622 4.9561

SD 0.8190 0.8204 SD 0.9427 0.9139

RMSSD 0.7330 0.7375 RMSSD 1.0673 1.0315

pnn50 0.6715 0.6623 pnn50 7.2781 7.3645

ULF 0.7596 0.7673 ULF 15.2076 14.7331

VLF 0.7634 0.7709 VLF 15.4301 14.8929
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LF 0.7647 0.7713 LF 12.4293 11.8822

HF 0.4675 0.4831 HF 5.6410 5.2532

LFHF 0.5822 0.6038 LFHF 0.9744 1.0044

Figure 3.29 visualize the agreement relationship.

Figure 3.29: Agreement comparison of interpolated and original 50% max amplitude

point - (left) mean PCC, (right) mean NRMSE

The comparison result supports the observations that the IBI signal and PRV

variables calculated from interpolated 50% max amplitude points have higher agree-

ment to that of ECG signal than 50% max amplitude points extracted from PPG

signal, with slightly higher mean PCC and slightly lower mean NRMSE.

Moreover, characteristic points on the slope, such as 25% max amplitude point,

50% max amplitude point, and 75% max amplitude point, also have the advantage

that being less sensitive to turning point.

Figure 3.30 and Figure 3.31 demonstrate situations that error occurs during

onset and peak detection.

As onset is located as the lowest point before the upward part of the pulse and

peak is located as the highest point between the pulse rising and decreasing part,
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Figure 3.30: Onset detection error example

Figure 3.31: Peak detection error examples

when the turning part before the rising part, between the rising and decreasing part,

is relatively plain, locating peak and onset point will bring error. A plain turning

part before the pulse going upward happens more frequently than that between

pulse upward and downward part. Therefore, onset derived PRV has the lowest

agreement to HRV for both situations among all characteristic points.

3.5.2 Chapter Conclusion

In conclusion, for subjects with cardiovascular diseases, the peak, 50% max

amplitude point, and 75% max amplitude point derived PRV has a very good agree-
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ment to ECG derived HRV. 50% max amplitude point and 75% max amplitude point

derived PRV has the lowest mean NRMSE, and peak derived PRV has the highest

mean PCC. For subjects without cardiovascular diseases, 50% max amplitude point

has the highest agreement to HRV variables and peak point is not recommended to

use in this situation.

For both conditions, max slope point and onset have a relatively lower agree-

ment than other characteristic points, which may because of max slope point’s high

sensitivity to pulse shape changes and onset point’s easily being influenced by a

plain turning part before the rising part of the pulse.

In general, 50% max amplitude point on the PPG pulse pulse is most recom-

mended for both situations.
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Chapter 4: PRV Refinement Using Arterial Blood Pressure Informa-

tion

Factors that will lead to the difference between ECG IBI and PPG IBI includ-

ing artifacts, noise or random fluctuations in characteristic point detection, which is

discussed in Chapter 3, and variations in pulse transit time (PTT), which is corre-

lated with blood pressure as mentioned in Chapter 2. With arterial blood pressure

(ABP) signal provided in MIMIC III dataset for some subjects, the relationship be-

tween PTT and blood pressure will be modeled in this chapter, and blood pressure

information will be utilized to estimate corresponding PTT and for further PPG

IBI signal refinement. Then PRV variables of refined PPG IBI signal and their

agreement to HRV variables are calculated and compared with the original PRV.

This chapter aims at proving that with the information from blood pressure, the

agreement between PRV and HRV can be improved, based on which we will continue

our further researches, and observe whether there will be a difference between the

refinement result for specific PRV variables.

Figure 4.1 shows the methodology of the refinement process.

PPG signal and ECG signal are preprocessed, and high-quality segments are

extracted, and so as arterial blood pressure signal (ABP).
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Figure 4.1: Block diagram of PPG interbeat interval refinement and PRV agreement

comparison

Figure 4.2 shows the plot of signals and characteristic points.

4.1 Signal Alignment and Pulse Transit Time Extraction

4.1.1 Signal Alignment

The process of segment preprocessing is shown in Figure 4.3. Cardiac signal

segments are aligned and preprocessed first. The corresponding pulse transit time

can then be calculated.

As shown in Figure 4.4, PPG characteristic points and systolic blood pressure

(SBP) that are in the same cardiac cycle of ECG R peaks are extracted, and thus,

signal cycles are aligned.
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Figure 4.2: Plot of ECG signal and ECG peaks (up), PPG signal and PPG peaks,

PPG 50% max amplitude points (mid), ABP signal and time of systolic

BP, time of diastolic BP (down)

Figure 4.3: Block diagram of signal preprocessing progress

4.1.2 Pulse Transit Time Extraction

PTT can be calculated using the time difference between pulse at a proximal

site to pulse at a distal location, which is usually considered as the time difference

between ECG R peak and PPG characteristic points, either PPG pulse peak or the
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Figure 4.4: ECG, PPG, ABP waves and corresponding cardiac cycles (up) ECG

and PPG waves, RR interval and corresponding pulse-to-pulse interval,

(down) ABP wave and systolic blood pressure (SBP) in the correspond-

ing cardiac cycles.

50% max amplitude point on pulse slope. Choosing 50% max amplitude point for

PTT calculation is because we discussed in the last chapter that the PRV generated

from this point has a high agreement to HRV comparing with other characteristic

points.
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Figure 4.5: ECG RR interval and ECG pulse-to-pulse interval from two character-

istic points: pulse transit time is extracted from the time difference

between ECG R peak and corresponding PPG peak or 50% max ampli-

tude point.

4.2 Regression Model to Represent the Relationship between PTT

and Systolic BP

Many models have been proposed concerning the relationship between PTT

and blood pressure. To simplify the modeling process, in this chapter, a linear

support vector regression (SVR) is applied, where the linear function is in the form:

f(x) = ωT · x+ b,withω ∈ X, b ∈ R (4.1)

solving the convex optimization problem:
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minimize
1

2
‖ω‖2 (4.2)

subject to


yi − ωTxi − b≤ ε

ωTxi + b− yi≤ ε

(4.3)

Meanwhile, a radial basis function (RBF) kernel SVR is utilized for compari-

son, for it has the advantage of fitting the samples to a more complex function:

k(x,x
′
) = exp(−‖x− x

′‖2

2σ2
) (4.4)

4.3 PRV Refinement Result for Subjects with Cardiovascular Dis-

eases (CVD)

99 data sessions from 20 subjects with ECG, PPG and ABP signal are used

for PTT-BP model training, PTT estimation and PRV refinement.

The Systolic BP - PTT model is trained session-dependently. Specifically, for

each data session, take 2/3 of the segments for model training and the refinement

process is applied to the rest 1/3 of the segments.

4.3.1 Refinement Sample

For CVD subjects, Figure 4.6 presents the regression model using linear kernel

SVR and RBF kernel SVR of one sample.

The PTT and SBP form a linear relationship with many outliers, which may

occur due to other physiological variations and disturbances. Therefore, the re-
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Figure 4.6: Regression model of the relationship between systolic BP and PTT for

CVD subjects (left) linear kernel (right) RBF kernel

gression models built by a linear kernel or RBF kernel are similar. It can also be

observed from the estimated PTT using two regression models. Figure 4.7 and

Figure 4.8 compare the true PTT and estimated PTT for both linear kernel SVR

model and RBF kernel SVR model, as well as the comparison of RR interval, original

pulse-to-pulse interval and pulse-to-pulse interval after adjustment using estimated

PTT.

It is known that subjects with cardiovascular diseases have relatively low heart

rate variability. Therefore, the ECG RRI for this sample remains at an approxi-

mately constant level. Also, for this sample, PTT has small variations with some

sudden fluctuations. The SVR model can estimate the PTT level but can do very

little to make up for the oscillations. This adjustment, in turn, has a relatively small

influence on the difference between RRI and PPI.

The regression model example and estimation result above basically reveals

that due to the small variations of RR intervals and the random fluctuations, using

a linear kernel or RBF kernel SVR model to estimate PTT and applying it for PRV

refinement will have limited improvement. The fluctuations for the PTT-BP model
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Figure 4.7: Comparison plot of estimated PTT and adjusted PPI using the linear

kernel for CVD subjects: (up) Comparison of estimated PTT using

linear-kernel SVR and true PTT (down) Comparison of ECG RR inter-

val (RRI), original PPG pulse-to-pulse interval (PPI) and PPG pulse-to-

pulse interval after adjustment using estimated PTT. The mean-squared

error between RRI and PPI is 0.0024, and the mean-squared error be-

tween RRI and adjusted PPI is 0.0013

are left for further study.

4.3.2 Comparison Result of Refined PRV and Original PRV

For specific parameters, the refinement result is shown in the below figures from

Figure 4.9 - Figure 4.18. They present the comparison of PCC and NRMSE between

HRV variables and corresponding PRV variables, PRV variables after refinement

using the RBF kernel SVR model and linear kernel SVR model.

In summary, the influence of PPI adjustment differs when considering PRV

parameters. Parameters that reflect long-term characteristics, such as the mean in-
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Figure 4.8: Comparison plot of estimated PTT and adjusted PPI using the RBF

kernel for CVD subjects: (up) Comparison of estimated PTT using

RBF kernel SVR and true PTT (down) Comparison of ECG RR inter-

val (RRI), original PPG pulse-to-pulse interval (PPI) and PPG pulse-to-

pulse interval after adjustment using estimated PTT. The mean-squared

error between RRI and PPI is 0.0024, and the mean-squared error be-

tween RRI and adjusted PPI is 0.0013

terval length, ULF component and VLF component in PPI, will be improved by the

adjustment, The improvement to parameters that reflect short-term characteristics

is relatively small. However, there are exceptions. Parameters like RMSSD and HF

component, which are considered to reflect some short-term characteristics, are also

be improved in this situation.

For PRV derived from 50% max amplitude points of PPG pulses, the improve-

ments are similar with regard to different parameters.
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Figure 4.9: Agreement comparison of PRV parameters for CVD subjects (mean):

(left) PCC comparison of mean interval length: mean: 0.7735, 0.7694,

0.7700 (Right) NRMSE comparison of mean interval length: mean:

0.0045, 0.0046, 0.0045: Although the mean value of PCC and NRMSE

remains similar for all three situations, the adjustment reduces the devi-

ation of PCC and NRMSE, indicating that the agreement between HRV

and PRV about mean interval length has increased.

4.4 PRV Refinement Result for Subjects without Cardiovascular Dis-

eases (Non-CVD)

The refinement method is then applied to subjects without cardiovascular

diseases. There are 85 data sessions from 19 subjects. The results of using different

kernel functions are compared with each other and are also compared with the

performance of subjects with cardiovascular diseases.
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Figure 4.10: Agreement comparison of PRV parameters for CVD subjects (vari-

ance): (left) PCC comparison of interval length variance: mean:

0.5633, 0.5603, 0.5556 (Right) NRMSE comparison of interval length

variance: mean: 27.54, 24.88, 25.36: The refinement has little improve-

ment to the agreement of interval length variance, except for using the

RBF kernel SVR model estimated PTT that the NRMSE has been

reduced on a small scale.

4.4.1 Refinement Sample

Figure 4.19 demonstrates the linear kernel regression and RBF kernel regres-

sion of one sample.

Comparing to CVD subjects, the relationship between PTT and systolic BP is

more approximate to a linear relationship. Hence, the difference between the linear

kernel and the RBF kernel is more significant in this situation. Figure 4.20 and

Figure 4.21 exhibit the two estimated PTTs for this sample.

For this sample, the PTT has a higher variance comparing to CVD subjects.

In this situation, the estimated PTT generated from the RBF kernel SVR model

tends to have a consistent trend, and the estimated PTT generated by the linear
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Figure 4.11: Agreement comparison of PRV parameters for CVD subjects (SD):

(left) PCC comparison of standard deviation (SD) of interval length:

mean: 0.5843, 0.5863, 0.5842 (Right) NRMSE comparison of interval

length: mean: 1.9158, 1.8130, 1.8191: Concerning the standard devia-

tion (SD) of interval length, the refinement has little influence on the

PCC. However, the refined PRV has lower NRMSE comparing to the

original one, and the linear kernel has a better result than the RBF

kernel.

SVR model can remain the variance trend in blood pressure, which can reveal the

variance trend in PTT to some degree. Therefore, the linear kernel generally has

better performance than the RBF kernel for non-CVD subjects.

4.4.2 Comparison Result of Refined PRV and Original PRV

The comparison of agreement between HRV and original PRV, HRV and ad-

justed PRV using linear kernel SVR and RBF kernel SVR is shown below from

Figure 4.22 - Figure 4.31. The agreement is evaluated using the value of PCC and

NRMSE.
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Figure 4.12: Agreement comparison of PRV parameters for CVD subjects

(RMSSD): (left) PCC comparison of RMSSD of HRV and PRV: mean:

0.4055, 0.3985, 0.4045 (Right) NRMSE comparison of RMSSD of HRV

and PRV: mean: 2.2644, 2.1574, 2.1643: The deviation of PCC and

NRMSE both decrease after adjustment and the linear kernel SVR

model has a better effect on improving PCC, while the RBF kernel

SVR model has a better result on improving NRMSE. In general, after

refinement, the agreement between HRV and PRV has been slightly

enhanced.

Although parameters have a different amount of improvement using the esti-

mated PTT from the SVR models, compared to subjects with cardiovascular dis-

eases, there is an overall improvement for all HRV parameters in this situation,

either parameters that reflect long-term characteristics or parameters that reveal

short-term characteristics. The only parameter that could not be improved is pnn50,

which is the percentage of intervals that vary from their previous intervals by 50

milliseconds. The NRMSE of this parameter has a wide range for CVD subjects as

the interval length does not differ drastically in the ECG signal. For non-CVD sub-
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Figure 4.13: Agreement comparison of PRV parameters for CVD subjects (pnn50):

(left) PCC comparison of pnn50 of HRV and PRV: mean: 0.4983,

0.4979, 0.5097 (Right) NRMSE comparison of pnn50 of HRV and PRV:

mean: 15.78, 16.62, 16.65: The adjustment improves the PCC of pnn50,

however, due to the significant variance of NRMSE (this is because

pnn50 of HRV is relatively small), the adjustment to the NRMSE of

pnn50 does not have a very good performance

jects, the NRMSE varies in a smaller range, but it is still relatively large compared

to other parameters. This result may because pnn50 does not reveal the continuous

PTT change according to its definition, but only a summary that provides the over-

all change information. Therefore, the agreement of this parameter is hard to be

improved by our method that utilizing continuous blood pressure information. As

mentioned in the part of the SVR model example for non-CVD subjects, the linear

kernel should outperform the RBF kernel. The result of various HRV parameters

also supports this conclusion.

For PRV derived from 50% max amplitude point of PPG pulses, the origi-

nal agreement between PRV and HRV is generally higher than that obtained from
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Figure 4.14: Agreement comparison of PRV parameters for CVD subjects (ULF):

(left) PCC comparison of HRV and PRV ULF component: mean:

0.6787, 0.6824, 0.6842 (Right) NRMSE comparison of HRV and PRV

ULF component: mean: 79.47, 80.79, 79.40: For ULF component

in RRI or PPI, the adjusted PRV has similar mean PCC and mean

NRMSE comparing to the original PCC. However, the deviation de-

creases for both measurements, while the adjustment has a more con-

siderable improvement concerning NRMSE.

pulse peaks, which also matches what we got from the previous chapter. However,

for specific HRV parameters, the improvement using PRV derived from 50% max

amplitude point will differ.

Except for parameters such as mean interval length, ULF component and VLF

component of intervals that all can be improved by a relatively large degree after

refinement, there are some parameters whose agreement is significantly improved

when utilizing PRV derived from 50% max amplitude point. Examples are shown

in Figure 4.32 - Figure 4.34.
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Figure 4.15: Agreement comparison of PRV parameters for CVD subjects (VLF):

(left) PCC comparison of HRV and PRV VLF component: mean:

0.6824, 0.6858, 0.6875 (Right) NRMSE comparison of HRV and PRV

VLF component: mean: 79.05, 81.19, 79.73: The adjustment to VLF

component has similar result to that of ULF component.

Figure 4.16: Agreement comparison of PRV parameters for CVD subjects (LF):

(left) PCC comparison of HRV and PRV LF component: mean: 0.6799,

0.6830, 0.6867 (Right) NRMSE comparison of HRV and PRV LF com-

ponent: mean: 70.56, 58.65, 58.38: The adjustment has limited influ-

ence on PCC between the LF component of HRV and PRV. There is

an improvement to the mean NRMSE. However, the change extends

the distribution range of NRMSE.
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Figure 4.17: Agreement comparison of PRV parameters for CVD subjects (HF):

(left) PCC comparison of HRV and PRV HF component: mean: 0.4948,

0.5183, 0.5174 (Right) NRMSE comparison of HRV and PRV HF com-

ponent: mean: 29.56, 25.76, 25.86: After refinement, the PCC is im-

proved by a relatively small amount, while the NRMSE is reduced, on

a larger scale.

4.5 Result Analysis and Further Discussion

Based on the calculation and comparison in the above sections, the conclusion

can be drawn that evaluating PTT using a subject-specific PTT-BP model and

based on the systolic BP value per cardiac cycle and using it to refine PPG IBI

signal are a feasible method. Although the refinement does not work very well on

subjects with cardiovascular diseases, it can improve the agreement between PRV

and HRV, as well as PPG IBI and ECG IBI, considerably for subjects without

cardiovascular diseases.

Generally, variables that represent long term characteristics are likely to be

improved by this method to a more significant degree than variables that represent
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Figure 4.18: Agreement comparison of PRV parameters for CVD subjects (LF/HF):

(left) PCC comparison of HRV and PRV’s LF to HF ratio: mean:

0.5434, 0.5304, 0.5446 (Right) NRMSE comparison of HRV and PRV’s

LF to HF ratio: mean: 1.478, 1.489, 1.537: The refinement has little

improvement to PRV with regard to this parameter as the mean PCC

and NRMSE remain similar to that of the original PRV. Only the

distribution of NRMSE is narrower after adjustment.

Figure 4.19: Regression model of the relationship between systolic BP and PTT for

non-CVD subjects: (left) linear kernel (right) RBF kernel

short term characteristics. Meanwhile, agreement of variables that do not reflect a

continuous characteristic, such as pnn50, is hard to be increased.

Comparing to peak-derived PRV, in the situation where subjects do not have

cardiovascular diseases, 50% max amplitude points-derived PRV has a better agree-
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Figure 4.20: Comparison plot of estimated PTT and adjusted PPI using linear ker-

nel for non-CVD subjects: (up) Comparison of estimated PTT using

linear kernel SVR and true PTT (down) Comparison of ECG RR in-

terval (RRI), original PPI and PPI after adjustment using estimated

PTT. The mean-squared error between RRI and PPI is 2.16e-04, and

the mean-squared error between RRI and adjusted PPI is 9.74e-05

ment to HRV. Furthermore, the refinement works better to PRV calculated from

PPG pulse 50% max amplitude points.

4.5.1 PRV Refinement Using Average Blood Pressure

Collecting continuous blood pressure signals is complicated and expensive, as

the most accurate measurement is the invasive method. Although blood pressure

information could help with the refinement of the PPG signal, collecting ECG signal

directly may be a more convenient way. Therefore, whether average blood pressure

could be used for PRV refinement is discussed in the following part.

83



Figure 4.21: Comparison plot of estimated PTT and adjusted PPI using RBF kernel

for non-CVD subjects: (up) Comparison of estimated PTT using RBF

kernel SVR and true PTT (down) Comparison of ECG RR interval

(RRI), original PPI and PPI after adjustment using estimated PTT.

The mean-squared error between RRI and PPI is 2.16e-04, and the

mean-squared error between RRI and adjusted PPI is also 1.21e-04

Unfortunately, using average blood pressure is not as efficient as using blood

pressure information per cycle. The agreement calculated after average BP refine-

ment is shown below. The refinement process is the same as Figure 4.1 while chang-

ing the systolic blood pressure per cardiac cycle to average systolic blood pressure

values calculated from three parts of the blood pressure segment.

Table 4.1 and Table 4.2 show the mean PCC and mean NRMSE between HRV

and original PRV, PRV adjusted using BP per cycle and PRV adjusted using average

BP for CVD subjects.

Figure 4.35 is the plot for comparison.
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Figure 4.22: Agreement comparison of PRV parameters for non-CVD subjects

(mean): (left) PCC comparison of mean interval length: mean: 0.9485,

0.9585, 0.9591 (Right) NRMSE comparison of mean interval length:

mean: 0.0036, 0.0034, 0.0034. For non-CVD subjects, the agreement

for mean interval length is also improved, and the improvement is more

substantial comparing to the CVD situation. Besides, the linear kernel

SVR has a better improvement result than the RBF kernel for this

variable.

Table 4.3 and Table 4.4 exhibit the comparison result for subjects without

cardiovascular diseases.

Figure 4.36 is the plots of the comparison above.

Comparing to using blood pressure per cycle, using average BP can only re-

duce mean NRMSE slightly and can hardly improve mean PCC. To explain this

result, Figure 4.37 and Figure 4.38 show examples from CVD situation and non-

CVD situation with the regression model, the estimated PTT and adjusted PPI as

reference.

As average BP cannot reflect blood pressure changes over time, adjusting
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Figure 4.23: Agreement comparison of PRV parameters for non-CVD subjects (vari-

ance): (left) PCC comparison of interval length variance: mean:

0.6730, 0.6512, 0.6618 (Right) NRMSE comparison of interval length

variance: mean: 14.42, 11.33, 11.20. The adjustment has a limited

improvement for the PCC, but the mean NRMSE and the distribution

range of NRMSE are reduced significantly.

Figure 4.24: Agreement comparison of PRV parameters for non-CVD subjects (SD):

(left) PCC comparison of standard deviation (SD) of interval length:

mean: 0.6762, 0.6602, 0.6720 (Right) NRMSE comparison of interval

length: mean: 1.021, 0.817, 0.775: The adjustment performance is

similar to that of interval length variance.
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Figure 4.25: Agreement comparison of PRV parameters for non-CVD subjects

(RMSSD): (left) PCC comparison of RMSSD of HRV and PRV: mean:

0.6107, 0.6012, 0.6134 (Right) NRMSE comparison of RMSSD of HRV

and PRV: mean: 1.296, 1.118, 1.064: The PCC improvement is rela-

tively small, while the NRMSE decrease is more significant, and the

linear kernel has better performance than the RBF kernel.

Figure 4.26: Agreement comparison of PRV parameters for non-CVD subjects

(pnn50): (left) PCC comparison of pnn50 of HRV and PRV: mean:

0.8219, 0.8143, 0.8281 (Right) NRMSE comparison of pnn50 of HRV

and PRV: mean: 1.568, 1.636, 1.587: For pnn50, there is not much

improvement to the agreement
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Figure 4.27: Agreement comparison of PRV parameters for non-CVD subjects

(ULF): (left) PCC comparison of HRV and PRV ULF component:

mean: 0.8185, 0.8240, 0.8264 (Right) NRMSE comparison of HRV and

PRV ULF component: mean: 4.249, 2.455, 2.401: For ULF component

of the intervals, PCC is improved by a small amount while NRMSE is

reduced to a larger degree.

Figure 4.28: Agreement comparison of PRV parameters for non-CVD subjects

(VLF): (left) PCC comparison of HRV and PRV VLF component:

mean: 0.8224, 0.8270, 0.8295 (Right) NRMSE comparison of HRV and

PRV VLF component: mean: 4.046, 2.377, 2.325: The refinement per-

formance for the VLF component is similar to that of ULF component.
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Figure 4.29: Agreement comparison of PRV parameters for non-CVD subjects (LF):

(left) PCC comparison of HRV and PRV LF component: mean: 0.8262,

0.8181, 0.8230 (Right) NRMSE comparison of HRV and PRV LF com-

ponent: mean: 3.612, 3.411, 3.323: The refinement has little improve-

ment for PCC. However, the improvement for NRMSE is significant,

and the linear kernel performs better than RBF kernel here.

Figure 4.30: Agreement comparison of PRV parameters for non-CVD subjects (HF):

(left) PCC comparison of HRV and PRV HF component: mean: 0.6232,

0.6101, 0.6256 (Right) NRMSE comparison of HRV and PRV HF com-

ponent: mean: 15.18, 14.00, 13.79: Although the mean PCC remains

nearly similar, the refinement improves it by a small amount, and the

NRMSE is significantly enhanced.
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Figure 4.31: Agreement comparison of PRV parameters for non-CVD subjects

(LF/HF): (left) PCC comparison of HRV and PRV’s LF to HF ra-

tio: mean: 0.7751, 0.7526, 0.7497 (Right) NRMSE comparison of HRV

and PRV’s LF to HF ratio: mean: 0.7270, 0.7105, 0.7084. For this pa-

rameter, the adjustment has little improvement to the PCC. However,

it reduces NRMSE by a small amount.

PPG IBI signal using estimated PTT from average BP is the same as adding some

constant value to it, and therefore the refinement will not make much difference to

the agreement between PRV and HRV.

90



Figure 4.32: Improvement comparison of PPG peak derived PRV and PPG 50% max

amplitude point derived PRV (variance): (up) Agreement of interval

length variance between PPG peaks derived PRV and HRV (down)

Agreement of interval length variance between PPG 50% max ampli-

tude points derived PRV and HRV
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Figure 4.33: Improvement comparison of PPG peak derived PRV and PPG 50% max

amplitude point derived PRV (SD): (up) Agreement of interval length

standard deviation (SD) between PPG peaks derived PRV and HRV

(down) Agreement of interval length standard deviation (SD) between

PPG 50% max amplitude points derived PRV and HRV
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Figure 4.34: Improvement comparison of PPG peak derived PRV and PPG 50%

max amplitude point derived PRV (HF): (up) Agreement of interval

HF components between PPG peaks derived PRV and HRV (down)

Agreement of interval HF components between PPG 50% max ampli-

tude points derived PRV and HRV
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Table 4.1: PCC comparison of PRV refinement using different kinds of blood pres-

sure (CVD subjects)

mean PCC Original BP per cycle Average BP

mean 0.7718 0.7700 0.7697

variance 0.5579 0.5556 0.5557

SD 0.5808 0.5842 0.5796

RMSSD 0.3986 0.4045 0.3949

pnn50 0.4876 0.5097 0.4797

ULF 0.6710 0.6842 0.6626

VLF 0.6740 0.6875 0.6649

LF 0.6760 0.6867 0.6719

HF 0.4900 0.5174 0.4867

LFHF 0.5416 0.5446 0.5384

Table 4.2: NRMSE comparison of PRV refinement using different kinds of blood

pressure (CVD subjects)

mean NRMSE Original BP per cycle Average BP

mean 0.0047 0.0045 0.0050

variance 27.99 25.36 28.71

SD 1.948 1.819 1.983

RMSSD 2.313 2.164 2.357

pnn50 16.14 16.65 16.14

ULF 79.96 79.40 79.82

VLF 80.19 79.73 80.67

LF 71.46 58.38 74.83

HF 29.98 25.86 30.69

LFHF 1.472 1.537 1.473
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Figure 4.35: Agreement comparison of different PPG refinement method for CVD

subjects - (left) mean PCC, (right) mean NRMSE

Table 4.3: PCC comparison of PRV refinement using different kinds of blood pres-

sure (Non-CVD subjects)

mean PCC Original BP per cycle Average BP

mean 0.9475 0.9591 0.9470

variance 0.6663 0.6618 0.6601

SD 0.6711 0.6720 0.6667

RMSSD 0.6074 0.6134 0.6045

pnn50 0.8178 0.8281 0.8138

ULF 0.8183 0.8264 0.8189

VLF 0.8222 0.8295 0.8226

LF 0.8260 0.8230 0.8259

HF 0.6201 0.6256 0.6181

LFHF 0.7558 0.7497 0.7575
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Table 4.4: NRMSE comparison of PRV refinement using different kinds of blood

pressure (Non-CVD subjects)

mean NRMSE Original BP per cycle Average BP

mean 0.0037 0.0034 0.0037

variance 14.28 11.20 14.14

SD 1.013 0.775 1.006

RMSSD 1.286 1.064 1.275

pnn50 1.544 1.587 1.522

ULF 4.223 2.401 4.185

VLF 4.021 2.325 3.986

LF 3.586 3.323 3.555

HF 15.03 13.79 14.86

LFHF 0.7261 0.7084 0.7235

Figure 4.36: Agreement comparison of different PPG refinement method for non-

CVD subjects - (left) mean PCC, (right) mean NRMSE
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Figure 4.37: Regression model, estimated PTT and adjusted PPI for CVD subjects:

(left) Linear regression model using average BP (right) PTT plots and

IBI plots

Figure 4.38: Regression model, estimated PTT and adjusted PPI for non-CVD sub-

jects: (left) Linear regression model using average BP (right) PTT plots

and IBI plots
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Chapter 5: Thesis Conclusion and Perspectives

5.1 Thesis Conclusion

This thesis mainly focuses on two problems. One is comparing the agreement

between HRV and PRV derived from different PPG pulse characteristic points and

identifying the one with the highest agreement. This part is discussed in Chapter

3. Six characteristic points, pulse onset, pulse peak, maximum first derivative point

on the slope, 25% max amplitude point on the slope, 50% max amplitude point

on the slope, and 75% max amplitude point on the slope, are extracted and cal-

culated. Furthermore, subjects with cardiovascular diseases and subjects without

cardiovascular diseases are considered separately. ECG interbeat interval signal and

different PPG interbeat interval signals, as well as calculated HRV parameters and

PRV parameters, are used for comparison. The agreement is evaluated by the Pear-

son correlation coefficient and normalized root-mean-squared error between ECG

IBI signal and PPG IBI signal and between ECG HRV parameters and PPG PRV

parameters. The larger the PCC value, the smaller the NRMSE value, the higher

the agreement. The comparison result indicates that for subjects with cardiovas-

cular diseases, PPG peak-derived PRV has higher PCC, 50% max amplitude point

and 75% max amplitude point derived PRV has lower NRMSE than other charac-
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teristic points, and all of them have a comparatively higher agreement to HRV than

PRV derived from other characteristic points. For subjects without cardiovascular

diseases, 50% and 75% max amplitude point derived PRV has higher agreement and

peak is not recommended in this situation. For both cases, the onset and max slope

point obtained PRV has a relatively low agreement.

Chapter 4 discusses the other problem of this thesis, which is about PPG re-

finement using arterial blood pressure information. The refinement is conducted by

first building a regression function to model the relationship between PTT and sys-

tolic blood pressure value per cycle. Then PTT is estimated through the regression

model and blood pressure information. PPG interbeat interval is adjusted using the

estimated PTT. The refinement result is also compared to CVD subjects and non-

CVD subjects separately. Besides, to figure out whether there will be a difference

between pulse characteristic points, the result using PPG peak derived PRV and

using PPG 50% max amplitude point derived PRV is also calculated and compared.

As a comparison, the regression model applies the linear kernel and the RBF kernel

separately. For CVD subjects, as the PTT does not vary much when blood pressure

changes, the BP and PTT do not form a strictly linear relationship. Therefore, the

improvement to the agreement between PPG IBI and ECG IBI, as well as between

PRV and HRV is very limited. In this situation, parameters that reflect long-term

characteristics, such as mean interval length, ULF component, and VLF component,

have good improvement. However, parameters that related to short term character-

istics do not have much improvement. Using PPG 50% max amplitude point derived

PRV or changing kernel function to RBF have similar results. For non-CVD sub-
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jects, estimated PTT contains more trend information than CVD situations. Hence,

in this situation, the refinement can achieve a more considerable improvement. Af-

ter adjustment, the agreement between ECG IBI and PPG IBI, and the agreement

between approximately all variables of HRV and PRV are increased significantly.

PPG 50% max amplitude point has more improvement for specific parameters. In

this situation, the RBF kernel is outperformed by the linear kernel. As continuous

blood pressure is complicated and expensive to collect, the last part of this chapter

compares the result using average blood pressure to do refinement with the result

before. However, as average blood pressure can only make a constant adjustment

to the PPG signal, the improvement is very limited.

5.2 Future Perspectives

This research can be continued and extended in several directions.

There is still much to be improved for the regression model. We can utilize

more arterial blood pressure signal features, as well as PPG, ECG signal features to

build a deeper machine learning regression model to fit the PTT and BP relationship

better. We hope the agreement between HRV and PRV can be further improved in

this way.

As average blood pressure can not be utilized in our method and continuous

blood pressure is hard to collect, we would like to build a new framework that

estimating continuous blood pressure using PPG signal and apply the estimated

blood pressure signal for further study of PRV refinement.
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