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Stochastic reliability modeling capabilities are developed and implemented for 

semiconductor packaging problems with a very large number of input variables (> 10 input 

variables).  The capabilities are aimed at three critical areas in the semiconductor packaging 

product development: (1) prediction of tail-end probability (i.e., assembly yield loss) by advanced 

uncertainty propagation (UP) analyses, (2) determination of the statistical distributions of 

unknown design and/or manufacturing parameters by advanced statistical model calibrations, and 

(3) determination of the performance response of high-dimensional problems by developing an 

advanced metamodeling scheme.  

In the first part, a comprehensive stochastic model is proposed and implemented to predict 

package-on-package (PoP) stacking yield loss based on non-contact open.  The model takes into 

account all pad locations at the stacking interface while considering the statistical variations of 

warpages as well as solder ball and joint heights.  The goal is achieved by employing (1) advanced 

approximate integration-based approach, called eigenvector dimension reduction (EDR) method, 



 

for the UP analysis; (2) the stress-strength interference (SSI), and (3) the union of events.  The 

proposed approach is capable of handling the number of input variables much larger than that has 

been conceived as the practical limit of the UP analysis.  The model can be used effectively to 

control the input uncertainties, and thus to achieve a yield goal for a given set of PoP designs. 

In the second part, the unknown statistical distributions of two effective elastic properties 

of Sn-3.0Ag-0.5Cu solder joint of leadless chip resistors (LCRs), induced by an assembly 

condition, are determined by the advanced statistical model calibration.  The UP analysis also 

utilizes the EDR method, which allows to take into account the statistical variations of six 

additional known input variables, including die thickness, solder joint height, termination length, 

and thickness and elastic moduli of a printed circuit board.  The cyclic bending test results of LCR 

assemblies are used in conjunction with the maximum likelihood metric to obtain the statistical 

distributions of the effective properties.  The cycles-to-failure distribution of the identical LCR 

assemblies subjected to a different loading level is predicted accurately by the calibrated model, 

which corroborates the validity of the proposed approach. 

In the third part, an advanced metamodeling scheme, called partitioned bivariate Cut-high 

dimensional model representation (PB Cut-HDMR), is developed to consider the statistical 

correlation among input variables and to further reduce the computational burden encountered for 

high-dimensional problems without compromising accuracy.  The statistical correlation is handled 

by eigen-decomposition of a covariance matrix.  The latter is achieved by the HDMR-factorial 

design (HDMR-FD) hybrid method.  The validity of the proposed scheme is verified by comparing 

the performance of the proposed scheme with the full bivariate Cut-HDMR.  The proposed scheme 

is implemented successfully to construct an accurate metamodel for a problem with 12 input 

variables among which 2 pairs are correlated.   
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CHAPTER 1. INTRODUCTION 

1.1 Motivation and Objectives 

Due to the ever-increasing demand in product development cycle time reduction of 

semiconductor packages, the performance evaluation and reliability assessment must be cost and 

time effective to maintain a competitive edge.  The computer-aided engineering (CAE) tools, such 

as the finite element analysis (FEA), have been used extensively for comparing competitive 

designs.  Tremendous efforts have been made to provide an accurate deterministic computational 

model.  In reality, the reliability performance responses of a semiconductor package (e.g. package 

warpage, solder joint fatigue life, cycles to failure of drop test, etc.) show statistical variations due 

to inherent manufacturing variability or design variations.  Understanding the statistical 

distribution of the performance responses is critical to yield prediction, warranty period 

determination, and design for reliability or design for yield. 

To achieve this goal, statistical distributions of input variables, including material 

properties, dimensions, loading conditions, etc, have to be considered.  These inherent variations 

can be categorized into “known input variables” and “unknown input variables”.  The “known 

input variables” are the variables whose statistical distributions are known or can be measured.  

The variables are called “unknown” when their statistical distributions are extremely difficult or 

impractical to be obtained experimentally.   

 When all the input variables are known, the uncertainty propagation (UP) analysis is 

typically used to determine the statistical distributions of the performance responses, which 

enables the intrinsically deterministic computational model to characterize the output distribution 

in the presence of input uncertainties.  As the most widely used configuration in advanced mobile 

applications now days, the stacking yield loss of package-on-package (PoP) assembly is one of the 

major concerns and falls into this category [2-4].  The yield loss prediction, however, is a problems 
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related to tail-end probability with a large number of input variables and nonlinear material 

properties.  For these problems, the conventional uncertainty propagation analysis methods such 

as the Monte Carlo simulation (MCS) and the response surface method (RSM), etc. become 

impractical due to excessive computational cost.  The first objective of this dissertation is to 

implement and develop an advanced stochastic yield loss prediction model to for more accurate 

PoP stacking yield loss prediction. 

In addition to the problems involving only known input variables, many semiconductor 

packaging applications contain unknown input variables.  For example, the widely used Sn-rich 

solders, such as SnAgCu (SAC) alloys, have been known to have large variations in grain sizes 

and orientations, intermetallic compound (IMC) sizes, and distributions of anisotropic Sn crystals 

[5].  These microstructural variations occur even under the same assembly condition, which results 

in inherent mechanical property variations of solder joints; not only package-to-package variations 

but also joint-to-joint variations in the same package [6].  The statistical distributions of 

mechanical properties of Sn-rich solder materials, however, are difficult to obtain from direct 

measurements.  In this dissertation, the second objective is to inversely determine the unknown 

statistical distributions of two effective elastic properties of Sn-3.0Ag-0.5Cu (SAC305) solder 

joint of leadless chip resistors (LCRs) assemblies by implementing the advanced statistical model 

calibration. 

Unlike the previous two problems focusing on the full statistical distributions of 

performance responses, what combinations of input variables can cause the performance response 

out of desired specifications is important for design-for-reliability.  Conventionally, this study was 

done by Design of Experiment (DoE) with numerical modeling.  When the numerical model 

becomes computationally intensive and the number of design configurations increases, the 

metamodel (or metamodeling) techniques are usually used to reduce the computational burden.  
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The metamodel is also known as response surface method (RSM), surrogate model, or reduced-

order model, which utilizes simple analytical models to approximate the input/output relationship 

of computationally intensive numerical models.  However, the current practice of metamodeling 

techniques has been limited to problems with only a few input factors or a few levels because of 

the number of modeling runs to construct a metamodel raise rapidly as the number of input 

variables increases.  In addition, the interaction effects of input variables on the performance 

response are always present when multiple input factors are considered, which makes the problem 

even more challenging.   Thus, the third objective is to propose an advanced metamodeling 

technique in response to the need. 

1.2 Organization of the Dissertation 

This first chapter describes the motivations behind this work and three main objectives 

sought to be accomplished by it.  Each of the three objectives is addressed in the subsequent 

chapters.  

Chapter 2 presents a comprehensive stochastic model is proposed to predict PoP stacking 

yield loss based on non-contact open taking into account all pad locations at the stacking interface 

while considering the statistical variations of five critical geometrical quantities, including 

warpages as well as the heights of solder balls of the top and bottom package and solder joint at 

the corner.  The goal is achieved by employing three statistical approaches: including (1) advanced 

uncertainty propagation (UP) by approximate integration-based approaches, (2) stress-strength 

interference (SSI), and (3) the union of events.  The advanced approximate integration scheme 

called eigenvector dimension reduction (EDR) method is first implemented to predict the assembly 

yield loss cause by the warpage of a plastically encapsulated package (i.e., the top package of PoP).  

The probability density function of the warpage at reflow temperature was obtained using only 25 

modeling runs for 12 input variables.  The results prove that the EDR provides the numerical 
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efficiency required for the tail-end probability prediction of manufacturing problems with a large 

number of input variables, while maintaining high accuracy.  This section has been published in 

the Microelectronics Reliability [7].  Then, the theoretical development about the integration of 

three statistical approaches to form the proposed stochastic model is presented.  The model takes 

into account the statistical dependency of hundreds PDFs of the five critical quantities on every 

pad at the stacking interface.  Implementation of the proposed model to a typical PoP is presented 

in a companion paper.  These two sections have be has been prepared to be submitted as a journal 

paper.  

Chapter 3 is devoted to the determination of the unknown statistical distributions of two 

effective elastic properties of SAC305 solder joint of LCR assemblies by the advanced statistical 

model calibration while considering the statistical variations of serval other known input variables 

including die thickness, solder joint height, termination length, and thickness and elastic moduli 

of a printed circuit board (PCB).  The background of the statistical model calibration is described 

first.  The cyclic bending test results of the LCR assemblies are followed, and the results are 

subsequently used to obtain the statistical distributions of the effective elastic properties of 

SAC305 solder.  Validity of the calibrated model is corroborated by comparing the predicted 

probability density function (PDF) of cycles-to-failure of the identical LCR assemblies subjected 

to a different loading level with the cycles to failure distribution of actual testing data.  This chapter 

was submitted to IEEE Transactions on Components, Packaging and Manufacturing Technology 

on June 2018.  

Chapter 4 focuses on development of an advanced metamodeling technique, called 

partitioned bivariate Cut-high dimensional model representation (PB Cut-HDMR), to tackle two 

major challenges associated with the metamodel construction for a semiconductor package 

problems, namely (1) the computational burden caused by a large number of input variables with 
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non-negligible interaction effects and (2) the statistical correlation among input variables.  The 

current Cut-HDMR based methods are reviewed.  After the introduction of the state of art, the 

development of PB Cut-HDMR is presented.  Then, the proposed approach is implemented to 

construct the metamodel for the warpage prediction of a thin flat ball grid array (TFBGA) assembly 

to check the accuracy and efficiency of the proposed method in real application.  This chapter has 

been prepared to be submitted as a journal paper.  

Chapter 5 contains a summary of the contributions and a discussion of future works that 

can be extended from this work. 
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CHAPTER 2. STACKING YIELD LOSS PREDICTION OF PACKAGE-ON-PACKAGE 
ASSEMBLY WITH A LARGE NUMBER OF INPUT VARIABLES 

2.1. Assembly Yield Prediction Of Plastically Encapsulated Packages With A Large 

Number Of Manufacturing Variables By Advanced Approximate Integration Method 

 Introduction 

Epoxy molding compound (EMC) has been used extensively as a protection layer in 

various semiconductor packaging components.  The mismatch of coefficient of thermal expansion 

(CTE) causes the warpage of components after molding, which is one of the most critical issues to 

board assembly yield.  The warpage issue has become more critical as Package-on-Package (PoP) 

and fan-out wafer level package (FO-WLP) are widely adopted for portable devices.   

The computer-aided engineering (CAE) tools, such as the finite element method (FEM), 

have been used extensively to predict the warpage.  Typically, the CAE tools provide deterministic 

outputs, which establish quantitative relationships between the system response (i.e., warpage) and 

the input parameters such as geometries, material properties, process and/or environmental 

conditions, etc.  The deterministic approaches have been proven effective for comparing 

competitive designs.  In reality, the package warpage behavior shows statistical variations (or 

probability distributions) due to inherent manufacturing variabilities.  The probabilistic aspect 

should be incorporated in prediction if the assembly yield is to be predicted.   

The yield loss is in general a small probability event (i.e., tail-end probability) [2, 3, 8], 

especially for the large production volume.  In many cases, even 0.1 % yield loss would cause a 

significant profit loss.  Based on the Six Sigma concept, the target is often to control the yield loss 

within 3 to 6 sigma, i.e., 6.67% to 3.4 ppm [9].   

Figure 1 shows a schematic illustration of the tail-end probability, where the statistical 

property of system performance (e.g., warpage) is represented by a probability density function 

(PDF).  When a component has the performance exceeding or falling behind a certain specification, 
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it cannot be processed further and is regarded as a failure.  The probability of all possible failure, 

i.e., yield loss, is the area under the PDF where the performance does not satisfy the specification. 

 

 
Figure 1.  Illustration of a yield loss (tail-end probability) 

 
 

A technical approach critically required for the yield loss prediction is the uncertainty 

propagation analysis, which enables the intrinsically deterministic computational model to 

characterize the output distribution in the presence of input uncertainties.  The most popular 

uncertainty propagation methods are “random sampling method” and “response surface method 

(RSM)”.  When they are applied to complex manufacturing problems with a large number of input 

variables, however, they become impractical due to their own limitations. 

Due to its random nature, the failure probability estimated from the random sampling 

method, e.g., Monte Carlo simulation (MCS), exhibits statistical variations [10].  The variations 

can be substantial when the tail-end probability is to be predicted.  In order to ensure that the tail-

end probability prediction falls within the specified accuracy tolerance, an extremely large number 

of model computations is required.  This computational burden makes the random sampling 

impractical for the cases that require complex nonlinear computational models (e.g., viscoelastic 

analysis required for warpage prediction of plastically encapsulated components) [11]. 
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The RSM has also been widely used in conjunction with the MCS [12, 13] to reduce the 

computational burden.  The RSM relies on Design of Experiments (DOE) to build computationally 

inexpensive mathematical response surface models, which can be used for the direct MCS.  Two 

commonly used types of DOE are the Full Factorial Design (FFD) [14-16] and the Central 

Composite Design (CCD) [17-19].  Although the CCD can reduce the sample size of the FFD 

substantially, both types cannot avoid the challenge known as the curse of dimensionality (i.e., the 

computational costs increase exponentially as the number of random input variables increases).  

Due to this inherent limitation, the RSM has been applied to the designs with only a few input 

variables.   

Another method for the uncertainty propagation analysis is “approximate integration 

scheme”.  The scheme calculates the statistical moments of the output response by performing a 

multi-dimensional integration.  Seo and Kwak proposed a numerical algorithm to perform the 

integration [20].  The algorithm also suffered from the curse of dimensionality as the FFD was 

used to select integration points.  Rahman and Xu proposed the univariate dimension-reduction 

(UDR) method to cope with the curse of dimensionality [21].  With the method, a multi-

dimensional integration is transformed into a series of one-dimensional integrations, and thus the 

computational cost increases only additively with the increased number of input variables.  This 

additive increase makes the method attractive to the problems with a large number of input 

variables.   

In a typical UDR implementation, however, a large number of numerical integration points 

are still required to ensure the accuracy of each one-dimensional integration result.  For a large 

number of input variables, the method also can be computationally expensive.  Youn et al. 

developed a method called “eigenvector dimension-reduction (EDR)” method [22] to relax the 

requirement of the UDR method.  In the EDR method, the eigenvector sampling scheme was 
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proposed to select a few sample points along the eigenvectors of the covariance matrix of the input 

variables, and the stepwise moving least square (SMLS) was implemented to interpolate and 

extrapolate the numerical integration points.  As a result, the accuracy of statistical moment 

estimation by EDR remained virtually unaffected although the number of simulations was reduced 

substantially.   

In this paper, the EDR method is implemented to predict the assembly yield of a plastically 

encapsulated package.  A total of 12 manufacturing input variables are considered during the yield 

prediction, which is based on the JEDEC reflow flatness requirements.  Section 2.1.2 provides a 

brief introduction of the EDR method.  In Section 2.1.3, the details of an EDR implementation are 

described.  The accuracy of the yield prediction is verified by the direct MCS in Section 2.1.4.  

Section 2.1.5 concludes the paper. 

 Eigenvector Dimension Reduction Method 

The eigenvector dimension-reduction (EDR) method estimates the complete probability 

density function (PDF) of a system response by (1) calculating the statistical moments and (2) 

constructing the corresponding PDF using the probability estimation methods. 

The statistical moments are the characteristics of a distribution.  The 1st moment, µ, is the 

mean, which represents the central tendency of the distribution, and the 2nd moment is the standard 

deviation, , which represents the spread of the distribution.  The 3rd and 4th moments are skewness, 

β1, and kurtosis, β2, which indicate the symmetry and the peakedness of the distribution, 

respectively.  The mth-order statistical moment of a system response is defined as  

        1 1 1

m m

N N NE f y y x ,...,x f x ,...,x dx dx
 

 

       (1) 

where E(ꞏ) is the expectation operator;  f y denotes the PDF of the performance response, y; 

 1 Ny x ,...,x  is the performance response function, i.e., the deterministic relationship of a certain 
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performance response value, iy , with a given set of input values  1i Nix ,...,x ; and  1 Nf x ,...,x  is 

the joint probability density function of input variables. 

To tackle the mathematical challenge associated with the multidimensional integration in 

Eq.        1 1 1

m m

N N NE f y y x ,...,x f x ,...,x dx dx
 

 

      (1), Rahman and Xu proposed the 

additive decomposition [21] to transform the multidimensional response function  1 Ny x ,...,x  

into a series of one-dimensional functions.  The approximated system response function, then, can 

be expressed as [21]: 

          1 1 1 1 1 1
1

,..., ,..., ,..., , , ,..., 1 ,...,
N

N a N j j j N N
j

y x x y x x y x N y      


      (2) 

where  1,...,a Ny x x  is the approximated system response function obtained by the additive 

decomposition, μj is the mean value of an input variable, jx ,  1 1 1,..., , , ,...,j j j Ny x     is the 

system response of the input variable, jx , while the other input variables are kept as their 

respective mean values, and  1,..., Ny    is the system response with all input variables are fixed 

as their mean values. 

 Substituting Eq. (2) into Eq. (1) yields: 

 

     
     

1 1

1 1 1 1
1

1

m m

N a N

m
N

j j j N N
j

E y x ,...,x E y x ,...,x

E y ,..., ,x , ,..., N y ,...,      


      

        
   


 (3) 
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Using the binomial formula, the right-hand side of Eq. (3) can be rewritten as [21]: 

     

       

   

1 1 1 1
1

1 1 1 1
0 1

1 1 1
0 1

1

= 1

m
N

j j j N N
j

i
m N

m i

j j j N N
i j

m N

j j j N
i j

E y ,..., ,x , ,..., N y ,...,

m!
E y ,..., ,x , ,..., N y ,...,

i ! m i !

m!
E y ,..., ,x , ,...,

i ! m i !

     

     

   

 




 
 

 
 

       
   
              




 



 

     11

i
m i

NN y ,..., 
          

  

 (4) 

The recursive formula is further employed to simplify the expectation operation in Eq. (4), 

which yields [21]:  

 
       

     

1 1 1 1
0 1

1
0

!
,..., , , ,..., 1 ,...,

! !

!
1 ,...,

! !

i
m N

m i

j j j N N
i j

m
m ii

N N
i

m
E y x N y

i m i

m
S N y

i m i

     

 



 
 





               

     

 


 (5) 

where 

 

    

    
 

    

1 1 2 1 2 2 1

1 1 1 1
0

1 1 1 1 +1 1

1 1 1 1
0

, ,..., | ,...,

!
,..., , , ...,

! !

| ,..., , ,...,

!
,..., | ,...,

! !

ii
N N N

i i k
i k
j j j j j N

k

j j j j j N N j

i
i ki k

N N N N N
k

S y x x f x x x dx

i
S S y y

k i k

f x x x x x dx

i
S S y x f x x x

k i k

  

   

   

 





 

  
 

  



 


  




    

 




 

  1 1N Ndx














 




 (6) 
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From Eqs. (1) to (6), a total of m × N one-dimensional integrations are needed to obtain the 

mth-order statistical moment.  These integrations in general can be done by numerical integration 

algorithms, which perform the calculations at the integration points, ,j ix , with weights, ,j iw , as 

[22]: 

 

  
 

  

1 1 1

1 1 1 1 +1 1

, 1 1 , 1
1

,..., , , ...,

| ,..., , ,...,

,..., , , ...,

r

j j N

j j j j j N N j

n r

j i j j i j N
i

y x

f x x x x x dx

w y x

   

   

   



 


  

 


    






 (7) 

where ,j ix  is the ith integration point of an input variable, jx ,  1 1 , 1,..., , , ...,j j i j Ny x      is the 

system response at ,j ix , while the other input variables are kept as their respective mean values,  

and ,j iw  is the corresponding weight which approximates the area under the PDF of jx  from 

 , , , 1 2j i j i j ix x x    to  , , 1 , 2j i j i j ix x x  , respectively.   

Figure 2 illustrates the numerical integration with 5 integration points.  The PDF of jx  and 

the system response along jx  are shown as the blue and red dashed curves, respectively.  The 

products of these two curves are integrated along the variable, jx .  More specifically, the products 

of the responses and their corresponding weights (the bars) at the integration points (the black 

cross) are added to complete the numerical integration. 
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Figure 2.  Schematic illustration of numerical integration 

 

High accuracy of the 1-D numerical integration in Eq. (7) can be achieved by selecting 

numerous integration points, which can be computationally challenging for the applications with 

a large number of input variables, especially those that require nonlinear modeling.  Two major 

improvements were made in the EDR method to reduce the number of simulations while 

maintaining the accuracy.   

First, the eigenvector sampling scheme was proposed to handle the statistical correlation 

and variation of the input variables.  By solving the eigenvalue problem of the covariance matrix, 

the eigenvalues and the corresponding eigenvectors are obtained.  The eigenvector associated with 

the largest eigenvalue is the direction of the largest variation, wherein the square root of the 

eigenvalue is the standard deviation along this direction.  The eigenvector associated with the 

second largest eigenvalue is the orthogonal direction with the next highest variation.  The sample 

points are selected along the eigenvectors, and the simulations are conducted only at the sample 
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points.  Eigenvectors of two random variables are illustrated in Figure 3, where the 1st and 2nd 

eigenvector directions are shown with a joint PDF.  

  
Figure 3.  Schematic illustration of eigenvectors of two random variables 

 
 

The three sample-point scheme is typically used in practice.  The locations of the three 

sample points are mean and the mean ± 3 standard deviations, which are expressed as [22]: 

  

 0
1

1
1

2
1

V

V 3

V +3

N

i i i N

i i i N

 

   

   



   
   



 

 

, ,

, , , ,

, , , ,

 (8) 

where µi and λi are the mean and eigenvalue along the ith eigenvector.  The locations of sample 

points in Eq. (8) were suggested based on the parametric study [22].  Figure 4(a) illustrates the 

three sample-point scheme of an input variable Xj following the normal distribution.  It can be 

observed that the PDF values outside of the range of mean  3 standard deviations are very small 

(i.e., 0.27% of all the possible values of Xj), which suppresses their contribution during the 

numerical integration.   

 

x1

x 2

1st eigenvector direction

2nd eigenvector direction

Joint PDF of x1 and x2
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 (a)  (b) 

Figure 4.  Schematic illustration of locations of sample points: (a) three and (b) five sample-point 
schemes 

The above condition is no longer valid if the system response is highly nonlinear within 

the range of mean  3 standard deviations.  More sample points are needed to capture the nonlinear 

response.  Figure 4(b) illustrates the five sample-point scheme.  The additional sample points can 

be expressed as [22]: 

  

3
1

4
1

V 1 5

V +1 5

i i i N

i i i N

   

   

   
   

 

 

, , . , ,

, , . , ,
 (9) 

The nonlinear behavior can be captured accurately using the two additional points.  By excluding 

the repeated runs of the mean value, a total of (2N+1) or (4N+1) runs are required for the three and 

five sample-point schemes, respectively.   

Once the corresponding system responses are obtained at the sample points, the moving 

least square (MLS) or stepwise moving least square (SMLS) method [22] is utilized to interpolate 

and extrapolate the responses at the integration points.  Using the approximated system 
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responses, ŷ , at the integration points, the numerical integration of the one-dimensional 

integrations finally takes the following form [22]: 

 

  
 

  

1 1 1

1 1 1 1 +1 1

, 1 1 , 1
1

,..., , , ...,

| ,..., , ,...,

ˆ ,..., , , ...,

r

j j j N

j j j j j N N j

n r

j i j j i j N
i

y x

f x x x x x dx

w y x

   

   

   



 


  

 


    







 (10) 

  Assembly Yield Loss Prediction of Thin Flat Ball Grid Array 

The assembly yield of a plastically encapsulated package is determined.  A viscoelastic 

analysis to predict the warpage is described after defining the warpage.  The uncertainty 

propagation analysis and PDF estimation are followed. 

2.1.3.1. Package Description 

A stacked die thin flat ball grid array (TFBGA) package is often used as the top package 

of a Package-on-Package (PoP).  Figure 5(a) shows the schematic of a typical TFBGA package.  

The encapsulation of the TFBGA package is done by the transfer molding process.  For successful 

PoP stacking with the high assembly yield, the package warpage at the solder reflow temperature 

must be controlled [23-25].   

Typically, the TFBGA packages are produced by memory manufacturers and shipped to 

the outsourced semiconductor assembly and test services (OSAT) companies for the PoP assembly.  

Therefore, the TFBGA packages are required to meet the warpage specification (e.g., 0.1 mm for 

the package body size of 15 mm × 15 mm and the ball pitch of 0.5 mm [26]) before shipment.  The 

packages with warpage exceeding the specification cannot be processed further, which becomes a 

yield loss.  It is suggested by JEDEC and JEITA [27] that the package warpage at solder reflow 

temperature be measured over the area where solder joints are located (will be referred to as 



17 

“measuring zone”).  Figure 5(b) shows the measuring zone of the TFBGA package used in this 

study. 

       

 (a) (b) 
 

Figure 5.  TFBGA package: (a) cross-sectional view and (b) bottom view showing the measuring 
zone 

 
Figure 6 shows the definition of package warpage and the sign convention.  Figure 6(a) 

shows a convex package (corners down during assembly  a positive warpage), while Figure 6(b) 

shows a concave package (corners up during assembly  a negative warpage).  The red dashed line 

shown in Figure 6 indicates the reference plane; the coefficients of the equation of the reference 

plane are calculated by the least square method with the out-of-plane deformation across the x-y 

spatial dimensions of the specimen in the measuring zone.  The distance between the highest point 

in the measuring zone and the reference plane is denoted as A, whereas the distance between the 

lowest point in the measuring zone and the reference plane is denoted as B.  The magnitude of the 

package warpage is defined as the sum of A and B. 

   

Figure 6.  Package warpage definition and sign convention: (a) convex and (b) concave 

DieDAF

Substrate

EMC

Measuring zone

0.5 mm

Measuring zone
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A

B
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Package warpage = |A| + |B|

Measuring zone

Reference plane

A

B
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Package warpage = |A| + |B|

(a) (b) 
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2.1.3.2. Numerical Analysis: Warpage Prediction 

A quarter symmetry was used to build a finite element model with the element type 

SOLID185 in the commercial FEA package (ANSYS®), which supports the viscoelastic and 

elastic material properties.  It takes about 1.5 hours for a single model run using an advanced 

workstation.  Figure 7 shows the details of the model.  The boundary condition and the die stack 

configuration are shown in (a).  The enlarged view of the cross-section in (b) shows the details of 

the chip and the die attach film (DAF) configuration.  The TFBGA assembly contains two dies.  

The die stack configuration is shown in (a) using white dashed lines. 

 

 (a) (b) 
 

Figure 7.  Package warpage definition and sign convention: (a) convex and (b) concave 
   

The material properties and the nominal dimensions used in the model are summarized in 

Table 1 and Table 2, respectively.  The temperature dependent Young’s modulus of DAF measured 

by thermomechanical analysis (TMA) is shown in Figure 8.  The EMC was modeled as a linear 

viscoelastic material.  The master curves used in the model are shown in Figure 9 [1].  The 

Williams-Landel-Ferry (WLF) function was used to fit the shift factors at different temperatures, 

which can be expressed as: 

    
 

1

2

log
ref

T

ref

C T T
a

C T T




 
 (11) 
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where Ta  is the shift factor, Tref  is the reference temperature (115 C), and C1, C2  are the material 

constants.  The values of C1 and C2 were -20.16 and -111.38, respectively.  

 
Table 1  Material properties of TFBGA 

Material 
Young’s 

modulus (GPa) 
Poisson’s Ratio 

CTE (ppm/°C) 
Tg (°C) 

α1 (< Tg) α2 (> Tg) 

Silicon die 130 0.23 2.8 -- 

DAF 
Temp. 

dependent 
0.3 65.3 162.9 138 

Substrate 46.794 0.3 
16.2 (in-plane) 

61.5 (out-of-plane) 
-- 

EMC Viscoelastic 0.21 9.12 35.13 137.5 

 
Table 2  Dimensions of TFBGA 

 length × width × thickness 

1st Die (mm) 13 × 11 × 0.575 

1st DAF (mm) 13 × 11 × 0.025 

2nd Die (mm) 11 × 9 × 0.575 

2nd DAF (mm) 11 × 9 × 0.025 

Substrate (mm) 15 × 15 × 0.13 

EMC (mm) 15 × 15 × 0.59 

 

  

 
Figure 8.  Temperature dependent Figure 9.  Master curves of bulk modulus 

and shear modulus of EMC [1] 
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The EMC molding process is done at 175 C, which can be assumed as the stress free 

temperature.  The package is then subjected to the solder reflowing process during the assembly.  

Figure 10 shows the complete thermal excursion of the package used for warpage prediction.  The 

conventional lead-free solder reflow profile is considered [28], where the peak temperature is 

260 C.   

 
Figure 10.  Completed thermal excursion 

 
The deformed configuration of the TFBGA package with the nominal design at the peak 

reflow temperature is shown in  

Figure 11(a).  The light pink area indicates the measuring zone and the white circles 

represent the solder ball locations.   

Figure 11(b) shows the reference plane determined based on the z-direction displacements 

of the nodes in the measuring zone.  The package warpage was calculated based on the definition 

described in Section 3.1, i.e., the sum of (1) the distance of the highest point in the measuring zone 

to the reference plane and (2) the distance of the lowest point in the measuring zone to the reference 

plane.  The package warpage of the nominal design was 40.16 μm. 
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Figure 11.  (a) Deformed configuration of TFBGA package at 260 °C (20x magnification) and (b) 
package warpage calculated from on reference plane 

 

2.1.3.3. Uncertainty Propagation Analysis by EDR 

2.1.3.3.1. Input Random Variables 

It is well known that the manufacturing variables tend to follow a normal distribution according 

to the central limit theorem [29].  The 12 random input variables with the means and standard 

deviations used in the study are listed in Table 3.  The material properties ( 9x  to 12x ) were 

measured, and the dimensions of 1x  to 8x  were obtained from the manufacturing specifications 

[30, 31].   

Among the 12 input variables, two pairs of properties have the statistical correlation: (1) 

the EMC thickness  EMCt , 3x , and the PCB thickness  PCBt , 4x , and (2) the EMC CTE below 

and above Tg, 9x  and 10x .  To define the joint PDF of the correlated and normally distributed input 

variables, an additional parameter called the correlation coefficient is required.  The joint PDF 

with these 5 parameters (i.e., the means and standard deviations of two variables, and the 

correlation coefficient) is called the bivariate normal distribution. 
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Table 3  Input variables 

 

Variables Physical meaning Mean Std. Dev. Distribution 
Correlation 
coefficient 

1x  PKG length (mm) 15 0.033 Normal 
-- 

2x  PKG width (mm) 15 0.033 Normal 

3x  EMC thickness (mm) 0.59 0.029 Bivariate 
Normal 

-0.35 

4x  PCB thickness (mm) 0.13 0.01 

5x  1st Chip thickness (mm) 0.0575 0.001 Normal -- 

6x  2nd Chip thickness (mm) 0.0575 0.001 Normal -- 

7x  1st DAF thickness (mm) 0.025 0.00375 Normal -- 

8x  2nd DAF thickness (mm) 0.025 0.00375 Normal -- 

9x  EMC CTE above Tg (ppm/°C) 35.13 4.24 Bivariate 
Normal 

1 

10x  EMC CTE below Tg (ppm/°C) 9.12 1.1 

11x  PCB CTE (ppm/°C) 16.2 0.81 Normal -- 

12x  PCB modulus (MPa) 46794 159 Normal -- 

 
   

The package thickness, PKGt , is equal to EMCt  plus PCBt , i.e., PKG EMC PCBt t t  .  The 

statistical distributions of PKGt , EMCt , and PCBt  should also satisfy this relationship.  Based on the 

manufacturing specification [30], the package thickness, PKGt , is given as 0.72  0.08 mm.  The 

package thickness is expected to follow a normal distribution, and it can be expressed with the 

mean and standard deviations of PKGt  = 0.72 mm and PKGt  = 0.027 mm.  It is to be noted that 

PKGt  is set to be one third of the tolerance, which makes 99.73% of PKGt  lie within the tolerance.   

The correlation coefficient of EMCt  and PCBt  was determined using the distribution of the 

package thickness.  A sweeping analysis was conducted over the theoretical range of correlation 

coefficient, [-1, 1] with a step size of 0.05, which produced a total of 41 correlation coefficients.  
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For each correlation coefficient, t i ,  (i = 1 to 41), random sampling of the bivariate normal 

distribution of EMCt  and PCBt  was conducted to generate 100,000 pairs of EMCt  and PCBt  data, 

which subsequently produced 100,000 PKGt  data.  The PKGt  data was then fitted into a normal 

distribution to calculate the mean, 
t i ,

, and standard deviation, 
t i ,

.  The least square error was 

calculated to represent the degree of 
t i ,

and 
t i ,

 deviated from PKGt  and PKGt .  The results 

are shown in Figure 12.  The correlation coefficient of X3 and X4 was determined as -0.35. 

 
Figure 12.  MCS sweeping analysis results for correlation coefficient of EMC thickness and PCB 

thickness 
    

Unlike the above case, the EMC CTEs above and below Tg always increase or decrease in 

the same direction since any pair of these two variables are measured from the same sample.  

Accordingly, it is reasonable to assume that the EMC CTEs above and below Tg have perfect 

positive correlation (i.e., the correlation coefficient of “unity”). 
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2.1.3.3.2. Eigenvector Sampling and Sample Points 

 The covariance of input variables ix  and jx , which quantify the linear dependency 

between these two variables, is defined as: 

     Cov i j ij i i j jx , x E x x         (12) 

where E(ꞏ) is the expectation operator; μi and μj are the mean values of the input variable ix  and 

jx , respectively.   

After calculating the covariance between each pair of the N number of input variables, the 

covariance matrix can be obtained as [22]: 
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 (13) 

where 2
ii i   is the variance of the input variable ix  and ij ji   .  By solving the eigenvalue 

problem of the covariance matrix (i.e., E EX X  ), the eigenvalues λ and the corresponding 

eigenvectors XE are obtained.  The eigenvalues, λ, and the corresponding eigenvectors, XE, of the 

covariance matrix of Eq. (13) are:   
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 (14) 

The multi-dimensional integration of the joint PDF with 12 dimensions (i.e., 12 input 

variables) can be decomposed into 12 one dimensional integration along the 12 eigenvectors 

directions shown in Eq. (14).  The marginal joint PDF of two input variables is used to illustrate 

the locations of the sampling points since it is difficult to show graphically the joint PDF with 

more than 3 input variables.  The marginal joint PDF of ix  and jx  provides the probability of each 

 ,i jx x  pair, which is calculated by integrating the joint probability distribution of the 12 input 

variables over the 10 input variables other than ix  and jx .  For example, the marginal joint PDF 

of 3x  and 4x  can be expressed as: 

    3 4 1 12 1 2 5 12, , ,f x x f x x dx dx dx dx
 

 

      (15) 

Figure 13 shows the marginal joint PDF of an uncorrelated case, where the package length 

( 1x ) and package width ( 2x ) are the uncorrelated input variables.  After the additive decomposition 

is completed, this bivariate marginal joint PDF is further transformed into two one-dimensional 

marginal joint PDFs along the eigenvector directions (green and black lines).  It is to be noted that 

for this uncorrelated case, the eigenvector directions are just the directions of the input variables.  

Figure 13 also shows the sample points of 2N+1 sampling scheme (Eq. (8)) as well as the 

additional sample points required for 4N+1 sampling scheme (Eq. (9)).   
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Figure 13.  Marginal joint PDF of package length and width (uncorrelated case) and locations of 

sampling points 
 

Figure 14 shows the marginal joint PDFs of the two correlated cases.  The marginal joint 

PDF of EMC thickness ( 3x ) and PCB thickness ( 4x ) is shown in (a), and the marginal joint PDF 

of EMC CTE above and below Tg ( 9x  and 10x ) in (b).  Due to the statistical correlation, the 

eigenvector directions are different from the original variable directions.  It should be noted that, 

in (b), the variation along the second eigenvector direction was zero due to the perfect correlation 

between 9x  and 10x . 

    
(a) (b) 

 
Figure 14.  Marginal joint PDF and locations of sampling points for correlated input variables: (a) 

EMC and PCB thickness and (b) EMC CTE below Tg and above Tg 
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The warpage at the each sample point was calculated by the same procedure described in 

Section 2.1.3.2.  The results are summarized in Table 4.  Based on the 2N+1 sampling scheme, a 

total of 25 simulations were conducted for the 12 input variables. 

 
Table 4  Package warpage simulation results at sample points 

 

Variable 
Package warpage (µm) 

3 i   1.5 i  i  +1.5 i  +3 i  

1x  40.00 40.08 40.16 40.25 40.33 

2x  40.06 40.11 40.16 40.22 40.27 

3x  52.94 47.27 40.16 31.16 19.07 

4x  27.87 33.67 40.16 47.44 55.62 

5x  41.24 40.70 40.16 39.63 39.11 

6x  40.83 40.49 40.16 39.83 39.51 

7x  44.31 42.31 40.16 37.94 35.69 

8x  41.49 40.88 40.16 39.39 38.57 

9x / 10x  -12.78 14.40 40.16 65.26 90.13 

11x  55.99 48.11 40.16 32.28 24.33 

12x  40.47 40.31 40.16 40.01 39.86 

 

2.1.3.3.3. Statistical Moments 

As described in Section 2, the statistical moments can be obtained by calculating the 

multiple one-dimensional integrations in Eq. (6).  In this study, each one-dimensional integration 

was calculated by the numerical integration algorithm called the moment quadrature rule [21].  It 

was demonstrated that it can calculate the one-dimensional integration for an arbitrary distribution 

of the input variable ix  with good accuracy and efficiency, compared with other conventional 

integration methods such as Gauss-Legendre and Gauss-Hermite quadratures [21]. 
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Figure 15 shows the weights and the approximated package warpages of the integration 

points for two representative variables: (a) 11x  (CTE of PCB) and (b) 3x  (EMC thickness).  The 

red dots represent the package warpages at the sample points.  A total of 21 integration points were 

suggested in Ref. [22] for several examples with nonlinear system response.  The 21 integration 

points were also used in this study and expected to be sufficient since the system response of this 

study is less nonlinear.  As described in Section 2, the weight of each integration point is 

represented by the area of the corresponding bar.  For example, the central bar in (a) approximates 

the area under the PDF of 11x  from 
11 11 11 10

11 11 2

x x
x


 , ,

,  to 
11 12 11 11

11 11 2

x x
x


 , ,

, .    

 

 
 (a)  (b) 
 

Figure 15.  Integration points and weights for 1-D numerical integration: (a) 11x  and (b) 3x  

 

In Figure 15(a), the package warpages at the three sample points ( 11  and 11 113  ) 

linearly decrease along the direction of 11x .  Therefore, the package warpages of the integration 

points (black cross) can be accurately interpolated and extrapolated by MLS, which was confirmed 
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by four additional simulations conducted at 11 111 5.   and 11 116  .  Most of the input 

variables in this study show linear response curves similar to 11x .   

The most nonlinear response curve is observed with EMC thickness, 3x  (Figure 15b)).  

Due to the warpage within 3 33   is merely intermediately nonlinear, two additional 

simulations conducted at 3 31 5.   indicate that the interpolation was accurate, whereas the 

extrapolation results deviated from the simulations at 3 36  .  However, as expected, it is 

clearly shown in Figure 15 that the contribution of weights are negligible for 3i iX     and 

3i iX    , and thus, even the extrapolation by MLS contains error, the effect on the 

integration results is minimal.  

Once all the one-dimensional integrations in Eq. (10) are completed, they are combined to 

calculate the statistical moments.  The first four statistical moments are listed in Table 5. 

Table 5  First four statistical moments 
 

 Mean Std. Dev. Skewness Kurtosis 

EDR 
sampling 
scheme 

2N+1 39.68 19.48 -0.0488 3.0053 

4N+1 39.76 19.25 -0.0478 3.0332 

 

2.1.3.3.4. PDF Estimation 

After obtaining the statistical moments, the probability estimation method such as the 

method of moments (MOM) and the Pearson system can be used to construct the PDF of random 

response, which is the final outcome of the EDR method for an uncertainty propagation analysis. 

In this study, the PDF of package warpage was constructed using the Pearson system [32].  

The Pearson system is a family of continuous probability distributions, which offers flexibility in 
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constructing the PDF based on the first four statistical moments (mean, standard deviation, 

skewness and kurtosis).  The Pearson distributions of the system response, y, are defined by the 

following differential equation [32]: 

 
2

0 1 2

1 ( )

( )

dp y a y

p y dy c c y c y


 

 
 (16) 

where a, c0, c1 and c2 are four parameters to describe the PDF.  Based on the theoretical derivation, 

the four parameters can be determined by the first four moments, which can be expressed as [32]: 
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 (17) 

As denoted in Section 2.1.2, σ is the standard deviation, β1 is the skewness, and β2 is the kurtosis.  

It is worth noting that the 1st moment (i.e., mean, μ) is not shown in Eq. (17) since the Pearson 

system first constructs the PDF about the mean of zero and then shifts the PDF to the true mean. 

The coefficients determined from the statistical moments obtained in Section 3.3.3 are 

summarized in Table 6.  Figure 16(a) depicts the predicted PDFs.  Figure 16(b) shows the enlarged 

view of the tail-end region.  It is clear that the results of 2N+1 and 4N+1 sampling schemes are 

virtually identical, which is attributed to the fact that most of the response curves are linear.  By 

applying the specification of JEDEC [26], i.e., 0.1 mm for the TFBGA package in this study, the 

prediction yield losses of the two schemes are 765 ppm and 751 ppm, respectively. 

Table 6  Coefficients of Pearson system 
 

 0c
 1c  2c

 

EDR 
sampling 
scheme 

2N+1 378.96 -0.4745 0.0003 

4N+1 365.03 -0.4515 0.0048 
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 (a)  (b) 
 
Figure 16.  PDFs of and assembly yield loss predicted by two schemes of EDR: (a) entire PDF and 

(b) enlarged view of the tail-end region 
 

 Validity of the Proposed Approach 

It has been shown that the yield loss (i.e., tail-end probability) of a package with 12 input 

variables can be predicted accurately by as few as 25 simulations.  The direct MCS is used to 

evaluate the accuracy of the EDR results quantitatively.   

The direct application of the MCS to the current problem was impractical due to excessive 

computational time.  Instead, an empirical model obtained from the coplanarity data at room 

temperature was used for the verification.  The empirical coplanarity model produced by using the 

stepwise regression with 43,358 coplanarity data points is given as: 
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where  Coply is the coplanarity and 1x  to 12x  are input variables listed in Table 3.  The two pairs of 

input variables  (1) the EMC thickness, 3x , and the PCB thickness, 4x , and (2) the EMC CTE 

below and above Tg, 9x  and 10x   are still considered to be statistically correlated with the same 

correlation coefficients as -0.35 and 1, respectively. 

As mentioned earlier, the statistical moments and the yield loss estimated from the MCS 

exhibit statistical variations.  It is well-known that the true values can be obtained by employing 

the unbiased estimators in multiple repetitions.  According to the central limit theorem, 30 

repetitions will produce a good approximation of the true value [33, 34].  More details about the 

unbiased estimators of the 1st to 4th statistical moments and the yield loss can be found in Ref. [35] 

and [11], respectively.   

For the yield loss prediction, the coplanarity criterion was set as 80 µm according to the 

room temperature coplanarity criterion suggested by JEDEC [36, 37].  It is to be noted that this is 

different from the package warpage specification at reflow temperature discussed in Section 2.1.3.   

In this study, the MCS with the sample size of 1,000,000 was conducted for 30 repetitions 

to estimate the true statistical moments and the true yield loss.  The comparison between the MCS 

and EDR is summarized in Table 7.  As expected, the results from 2N+1 and 4N+1 sampling 

schemes were nearly identical.  Differences of statistical moments between the MCS result and the 

EDR results are very small (only fourth decimal place).  The effect of these differences on the PDF 

construction are minimal, which produces only 8 ppm difference in yield loss prediction. 
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Table 7  Predicted statistical moments and yield loss by MCS and EDR 
 

 Mean Std. Dev. Skewness Kurtosis 
Yield loss 

(ppm) 

MCS* 54.8721 7.9191 -0.0006 2.9995 762 

EDR 2N+1 54.8720 7.9202 0.0000 3.0000 754 

EDR 4N+1 54.8720 7.9201 0.0000 3.0000 758 

* Average value of 30 repetitions with sample size of 1,000,000 
 

A quantitative comparison of the yield loss was made using the results of the MCS sample 

size of 1,000,000.  The yield loss prediction by MCS is expressed as [11]: 

 1
MCS

k
p

N

 
  
 

ˆ  (19) 

where NMCS is the sample size used in MCS; and k is the number of predicted coplanarity less than 

or equal to the coplanarity criterion.  When k and NMCS are sufficiently large, p̂ can be 

approximated by the normal distribution with the mean of p  and the standard deviation of 

 1 MCSp p N  [11], where p is the true yield loss.   

Figure 17 shows the yield loss distribution of NMCS = 1,000,000.  The yield loss predicted 

by EDR 2N+1 scheme is 754 ppm, which falls within the 1% tolerance of the true yield loss 

(762  7.62 ppm).  The probability that the MCS predictions satisfy the  1% tolerance is 

theoretically 22.3% (the light green area).  This theoretical probability is confirmed by the single 

MCS repetition results, which are also shown in Figure 17; only 7 out of 30 repetitions (23.3% 

probability) fall within the  1% error bound ( 7.62 ppm).  In other words, for any yield loss 

predicted by MCS with a sample size of 1,000,000 has only 22.3% probability that the error will 

be smaller than or equal to than the yield loss predicted by EDR.  When the tolerance is relaxed to 
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 10% error of the true yield loss, the MCS has 99.4% probability to fulfill the tolerance.  It is also 

confirmed by that all the 30 repetitions fall within the  10% error bounds (Figure 17). 

 
Figure 17.  Yield loss distribution predicted by MCS with the sample size of 1,000,000 

   
The yield loss by the MCS is affected obviously by the sample size.  Table 8 summarizes 

the results obtained from different sample sizes.  When the sample size is reduced to 10,000, the 

probability that the MCS prediction is to be comparable to the EDR is only 2.3%.  Even the 

tolerance is relaxed to  10%, the sample size of 10,000 has only 21.7% probability.  

Table 8  Effect of sample size on MCS predictions 
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Considering the fact that it takes approximately 1.5 hours to run the viscoelastic model 

used in this case study using an advanced workstation with 24 cores, the MCS with 10,000 model 

runs would take 2 months, which is impractical for most of the semiconductor packaging 

applications.  Conversely, the EDR provides yield loss prediction with uncertainty less than 1% 

with only 25 model runs and results in 37.5 hours computational time. 

Figure 18 shows the required modeling runs of the proposed approach, the random 

sampling method, RSM to illustrate the impact of the proposed approach.  The yellow boxes show 

the required modeling runs for MCS for different level of tail-end probability and the green boxes 

show the case of Latin Hypercube sampling (LHS), which is a widely used advanced randomly 

sampling method.  For the random sampling methods, the required number of modeling runs, NMCS, 

is independent of the number of input variables N of the problem. The number of modeling runs 

can be expressed as [38]: 

 2

1
=MCSN

p
 (20) 

and 

 
1

=LHSN
p

 (21) 

where p p  ˆ  is statistical error and the standard deviation of  1p MCSp p N  ˆ  or 

 1p LHSp p N  ˆ .  The boxes in the figure are plotted using the statistical error of 10%.  

Moreover, the blue line represents the number of runs required by the EDR method with 4N+1 

sampling scheme and the red and pink lines represent the case of RSM using FFD and CCD, which 

require Ns  and 2 2 1N N  , respectively, with s as levels to be selected for each input variable 

and 5 levels are used here.  Comparining to LHS for the tail-end propability prediciton of 1,000 

ppm level, the proposed approach requreises the modeling runs 244 times and 123 times smaller 
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than LHS for 10 and 20 input variables, respectively.  Meanwhile, the required modeling runs of 

the proposed apporach is 25 times and 13,000 times smaller than RSM with CCD for 10 and 20 

input variables, respectively. 

  
Figure 18.  Number of required modeling runs for tail-end probability prediction 

 

In this study, the accuracy of the proposed approach was confirmed for symmetric input 

distributions.  It was confirmed in Ref. [22] that the EDR method is effective for both symmetric 

and asymmetric distributions.  It is expected that the proposed approach will also work effectively 

with any asymmetric distributions as long as the input variables have linear-dependency. 

 Conclusion 

The eigenvector dimension reduction (EDR) method was implemented to predict the 

assembly yield of a stacked die thin flat ball grid array (TFBGA) package.  A total of 12 

manufacturing input variables were considered during the yield prediction, among which two pairs 

of properties had the statistical correlation.  The method calculated the statistical moments of 

warpage distribution first through dimensional reduction and eigenvector sampling.  The 

probability density function (PDF) of the warpage was constructed from the statistical moments 
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by the Pearson system.  The assembly yield was predicted from the PDF based on the JEDEC 

reflow flatness requirements.   

In this case study, only 25 modeling runs were needed to predict the assembly yield with 

uncertainty less than 1% despite the fact that the prediction dealt with a tail-end probability (less 

than 1,000 ppm) with 12 input variables.  The number of input variables was much larger than that 

has been conceived as the practical limit of the uncertainty propagation analysis.  More 

applications of the EDR method are expected to the improve design and manufacturing processes 

of complex partially encapsulated components to avoid any early failure risks, in particular, tail-

end probability related problems which have not been feasible due to a computational burden. 
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2.2. Stacking Yield Prediction of Package-on-Package Assembly Using Advanced 

Uncertainty Propagation Analysis: Part I Stochastic Model Development 

 Introduction 

Package-on-Package (PoP) technology is widely used in advanced mobile applications.  As 

illustrated in Figure 19, a top package (typically low I/O memory module) is stacked on a bottom 

package (typically high I/O logic module) using solder joints.  Excessive warpages of the top and 

bottom packages during assembly often causes non-contact open, head-in-pillow, non-wet open, 

and solder bridging [39], which are directly related to PoP stacking yield.  It has been known [2-

4, 40-42] that the non-contact open is the most dominant factor to the yield loss. 

   
 

Figure 19.  Schematic illustration of a typical Package-on-Package assembly 
 

Figure 20 illustrates the non-contact open.  In the illustration, solder joints are formed 

during the final assembly process when the top package solder balls touch the bottom package 

solder balls.  The non-contact open occurs when a gap exists between the top solder ball and the 

bottom solder ball after the final assembly process.   

The nominal warpage of packages can be optimized though material selections, designs 

and processes in the development phase.  When moving into the production phase, however, the 

statistical distributions of package warpage and solder ball height, caused by the inherent 

variations in geometries and material properties, must be considered to predict a stacking yield 

loss accurately.  Figure 20 illustrates schematically the statistical distributions (i.e., the probability 
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density functions) of five critical quantities that contribute to the gap formation.  It is worth noting 

that the shape and sizes of solder joints are different because the solder balls have their own 

statistical distributions. 

 
 

Figure 20.  Schematic illustration of non-contact open 
 

The previous statistical approaches for PoP stacking yield prediction mainly focused on a 

pad location that has the largest warpage difference [2-4].  This approach, namely considering a 

single pad location, can underestimate the yield loss because the non-contact open can occur at 

other pad locations if solder height is smaller than the warpage difference at those locations.  In 

addition, the warpage distributions in the approach were obtained by experimental measurements.  

The limited sample size of the experiments added additional uncertainty about the estimation of 

statistical distributions.   

More recently, a yield prediction model considering all pad locations in the stacking 

interface was proposed [41, 42].  The model was based on the assumption that the non-contact 

opens at different pads are “independent” events.  This assumption is not always valid for PoP 

assemblies because the warpage values at different pads have statistical correlations among them 

as they come from the same package.  In addition, a simple analytical model was used to predict 
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the warpage values of the top and bottom packages, which would be difficult to implement for 

advanced packages with complex geometries.   

The objective of this section is to propose an advanced stochastic model for PoP stacking 

yield loss prediction.  To cope with the above limitations, the proposed model takes into account 

all pad locations at the stacking interface while considering the statistical variations of warpages 

as well as the heights of solder balls and joints.  The goal is achieved by employing three statistical 

approaches: (1) an advanced approximate integration-based method called eigenvector dimension 

reduction (EDR) method to conduct uncertainty propagation (UP) analyses, (2) the stress-strength 

interference (SSI) model to determine the non-contact probability at a single pad, and (3) the union 

of events considering the statistical dependence to calculate the final yield loss.    

The section is divided into two parts.  In this first part, theoretical development of the 

proposed stochastic model is presented.  Implementation of the proposed model will be presented 

in the following section. 

 Conditions for Non-Contact Open 

As illustrated in Figure 20, the non-contact open occurs when a gap exists between the top 

solder ball and the corresponding bottom solder ball.  Two cases are considered based on the 

location of the maximum warpage difference: Case I for the corner and Case II for the center.  

Three possible scenarios (Scenario-1 to Scenario-3) of Case I are shown in Figure 21, where the 

gap formation of a single pad (say, jth pad) is illustrated on the cross section along the diagonal of 

a PoP assembly.  Case II has only one scenario (Scenario-4), which is illustrated in Figure 22.  It 

is to be noted that two peripheral rows are shown in Figure 21 and Figure 22 for the purpose of 

illustration, but these stacking scenarios can be applied for any ball patterns.   
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In Figure 21 and Figure 22, the warpages of the top and the bottom packages, the solder 

ball height of the top package, and the solder ball height of the bottom package at the single pad 

(jth pad) are denoted as j
Tw , j

Bw , j
Th , and j

Bh , respectively.  The thickness of a component on the 

bottom package plays an important role in all scenarios, and it is denoted as tBC.  In the illustrations, 

the component thickness is defined to be a sum of the chip thickness and the underfill/solder bump 

layer. 

   
 (a) (b) 

 

 
 (c) 

 
Figure 21.  Three gap formation scenarios of Case I where the maximum warpage difference occurs 

at the corner of the package: (a) Scenario-1, (b) Scenario-2, and (c) Scenario-3 
 

 
Figure 22.  Gap formation scenario of Case II (Scenario-4) where the maximum warpage 

difference occurs at the center of the package 
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Case I: Maximum warpage difference at the corner 

In Case I, the maximum warpage difference occurs at the corner of the packages.  Thus, 

the component thickness of the bottom package ( BCt ) creates the minimum distance between the 

top package and the bottom package.  Scenarios-1, 2 and 3 belong to this case.  Using the 

geometrical parameters defined in Figure 21, the gap width of Case I at the jth pad, 1
j

casegap , can be 

defined as: 

   1
j j j j j

case T B BC T Bgap w w t h h      (22) 

By defining the warpage difference between the top and bottom packages as ˆ j j j
T Bw w w   and the 

total solder ball height (i.e., the sum of the heights of top and bottom solder balls) as j j j
T Bh h h  , 

Eq. (22) can be rewritten as: 

 1 ˆj j j
case BCgap w t h     (23) 

Case II: Maximum warpage difference at the center 

In Case II, the maximum warpage difference occurs at the center of the packages.  

Scenario-4 belongs to this case.  In this case, the distance between the top and bottom packages at 

the corner of the component on the bottom package should be considered in the gap calculation.  

This distance can be expressed as Figure 22: 

    C C E E C
BC T B T B jointd w w w w h      (24) 

where C
Tw  and C

Bw  are the warpages of the top and bottom packages at the outmost corner pad of 

the packages; E
Tw and E

Bw  are the warpages of the top and bottom packages at the corner of the 

component on the bottom package; and C
jointh  is the solder joint height at the outmost corner pad 

after assembly.   
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If BCd  is larger than the thickness of the component, BCt , the minimum distance between 

the top and bottom packages becomes C
jointh , and the distance between the top and bottom packages 

the jth pad becomes   ˆC C C j
T B jointw w h w   .  Conversely, if BCd  is smaller than BCt , the 

component on the bottom package acts as a spacer, and the distance between the top and bottom 

packages the jth pad becomes ˆ j
BCt w .   

Based on above analysis, the gap width of Case II at the jth pad, 2
jgap , can be defined as: 

 
     

   2

if

ˆ if

C C C j j j j
T B joint T B T B BC BCj

case j j j j j j
BC T B T B BC BC BC

w w h w w h h d t
gap

t w w h h t w h d t

        
       


 (25) 

The distance between the top and bottom packages at the jth pad, j , for BC BCd t  can be 

expressed as: 

    j C C C j j
T B joint T Bw w h w w       (26) 

Then, Eq. (25) can be rewritten as: 

 2

if

ˆ if

j j
BC BCj

case j j
BC BC BC

h d t
gap

t w h d t

   
  



  (27) 

 Stacking Yield Loss Prediction Model 

The proposed yield loss prediction model is presented.  A stacking yield loss prediction 

model for a single pad is described first, and it is extended to describe the stacking yield loss for 

multiple pads by considering the joint PDF of the five critical quantities.  As illustrated in Figure 

20, it is important to note that more than one non-contact open can occur at the stacking interface.  

This condition is incorporated during the final yield loss prediction of a PoP assembly using the 

concept of the union of events. 
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2.2.3.1. Stacking Yield Loss Prediction Model for Single Pad 

For a single pad (jth pad) on the stacking interface, the probability of non-contact open can 

be determined from the statistical interference between the PDFs of the warpage difference and 

the total solder ball height.  When two PDFs overlap, statistical interference exists and the non-

contact open occurs.   

The stress-strength interference (SSI) model [43, 44] has been widely used for the 

reliability design of systems, where the statistical interference between the PDFs of stress (or load) 

and strength is considered.  The SSI model represents the failure probability of a system as the 

probability that the load (L) exceeds the strength (S).  The model can be expressed as: 

       Pr 0
L

S LL S f S dS f L dL


 
      (28) 

where  Lf L  and  Sf S  are PDFs of the load and strength, respectively. 

Figure 23 illustrates the interference between  Lf L  and  Sf S , where the inset shows a 

magnified view of the overlapping region.  The red slashed area is the probability that a value of 

L occurs within a small interval of dL  (i.e.,  Lf L dL ).  The green area is the probability that a 

value of S  is smaller than the given L .  Thus,  Pr 0L S   can be obtained by integrating the 

product of the red slashed area and the green area over the distribution of L.  
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Figure 23.  Statistical interference between the PDFs of load  Lf L , and strength  Sf S  

 

A stochastic yield loss prediction model is proposed by adopting the SSI model.  For both 

Cases I and II, the total solder ball height ( jh ) can be regarded as strength (S) in Eq. (28).  For 

Case I (Eq. (23)), Load (L) is the absolute value of the warpage difference between the top and 

bottom packages, ˆ jw .  For Case II (Eq. (27)), the distance between the top and bottom packages 

at the jth pad, j , or the warpage difference between the top and bottom packages, ˆ jw  becomes 

load (L) depending upon the condition between BCd  and BCt .  Then, the probability of 1
j

casegap  

and 2
j

casegap  larger than zero (i.e., a gap is formed) can be expressed as:   

 Case I:      ˆ

1 ?Pr 0
j

BCw tj j j j j
casegap f h dh f w d w

 

 

             (29) 

 
L

Sf S dS
P

D
F

 Lf L

 Sf S

L

dL

,L S

 Lf L
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 Case II:   
   

   
2

ˆ

if

Pr 0

? if

j

j
BC

j j j j
BC BC

j
case

t w j j j j
BC BC

f h dh f d d t

gap

f h dh f w dw d t

 

 

 

 

              
        

 

 

 

 
 (30) 

where  ˆ jf w  is the PDF of the absolute value of the warpage difference between the top and 

bottom packages;  jf   is the PDF of distance between the top and bottom packages at the jth 

pad for BC BCd t ;  ˆ jf w  is the PDF of the warpage difference between the top and bottom 

packages for BC BCd t ; and  jf h  is the PDF of the total solder ball height.   

The heights of solder balls of the top and bottom packages are two independent random 

variables because they are manufactured separately.  Accordingly, the PDF of total solder ball 

height,  jf h , can be obtained by the convolution of  j
Tf h  and  j

Bf h , which is expressed as 

[45]: 

      ,j j j j j j
T B T Tf h f h f h h h dh




      (31) 

where  ,j j j j j
B T Th h h h h    and  ,j j j

B Tf h h h 
 

  is PDF of j
Bh  but the variable is transformed to 

j j
Th h .  The same expression will be used in the follows. 

For Case I, two PDFs,     and j j
T Bf w f w , should be combined into one PDF,  ˆ jf w .  

The top and bottom package are also manufactured separately, and thus, their warpages can be 

assumed as two independent random variables, and  ˆ jf w  can be expressed as [46]: 

Case I:   
   
   

1

2 ˆfor 0ˆ

ˆ0 for 0

j j j j
T B B T

j j j j j
j

T B B T

j

f w f w w dw

f w f w w dw wf w

w









   
     


 


   (32) 
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where 1 ˆj j j
B Tw w w   and 2 ˆj j j

B Tw w w  . 

For the second condition of Case II,  ˆ jf w  can be readily obtained from two PDFs 

    andj j
T Bf w f w .  However,  jf   cannot be obtained directly from the individual PDFs 

because j  contains variables that have statistical correlations.  Eq. (26) can be rewritten as: 

     ˆ ˆj C j C j C j j C
T T B B joint T B jointw w w w h w w h          (33) 

where ˆ j
Tw  and ˆ j

Bw  are the warpage difference between the outmost corner pad and the jth pad for 

top and bottom package, respectively.  It is important to note that  and C C
T Bw w  are correlated with

 and j j
T Bw w , respectively, since they come from the same package.  Therefore, the PDFs of ˆ j

Tw  and 

ˆ j
Bw  cannot be obtained directly by the convolution.  Instead, they are obtained by the following 

two steps involving the joint PDFs of  , and ,C j C j
T T B Bw w w w  [47]: 

Step 1:  

Perform the multivariate Fourier transform for the joint PDF as 

 

   

   

1 2

1 2

1

2

, ,

, ,

jC
T T

jC
B B

it w it wC j C j C j
T T T T T T

it w it wC j C j C j
B B B B B B

F f w w e f w w dw dw

F f w w e f w w dw dw

 


 

 


 


    


    

 

 
 (34) 

Step 2:  

Let 1 2t t t   and evaluate the associated inversion integral to obtain the PDFs of ˆ j
Tw  and ˆ j

Bw  as: 

 
   

   

ˆ
1

ˆ
2

1
ˆ ,

2
1

ˆ ,
2

j
T

j
B

itwj
T

itwj
B

f w e F t t dt

f w e F t t dt





 



 



 

 





 (35) 

Using Eqs. (34) and (35),  jf   and  ˆ jf w  can be expressed as [45]: 
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Case II:  
       
     

ˆ ˆ ˆ ˆ, , if

ˆ ˆ, if

j C j j j C j C
joint T B T joint T joint BC BC

j j j j j j
T B T T BC BC

f f h f w f w w h dw dh d t

f w f w f w w w dw d t

 

 





      


    

 


 (36) 

where   ˆ ˆ ˆ, ,j j j C j j C
B T joint T jointw w h w h      and  ˆ ˆ,j j j j j

B T Tw w w w w  . 

 Substituting Eqs. (31), (32) and (36) into Eqs. (29) and (30) yields: 

Case I: 

 

   

       

1

ˆ

1 2

Pr 0

,
ˆ for 0

0 for 0

j
BC

j
case

w t j j j j j j
T B T T

j j j
T B

j j j j j j j j
T B B T T B B T

j j
T B

gap

f h f h h h dh dh
dw w w

f w f w w dw f w f w w dw

w w

 

  

  

 



                                   


 

 


 

 
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Case II: 

 

   

     

   

2Pr 0

,
if

? ?, ,

,

j

j
case

j j j j j j
T B T T

j
BC BC

C j j j j C j C
joint T T T joint T joint

j j j j j j
T B T T

gap

f h f h h h dh dh
d d t

f h f w f w w h dw dh

f h f h h h dh dh

 

  

  

 



 

 

               
         

  
   

 


 



 

 

   

ˆ

ˆ if
ˆ,

j
BCt w

j
BC BC

j j j j j
T B T T

dw d t

f w f w w w dw



 

 










                     






 

 (38) 

Finally, the probability of non-contact open at the jth pad can be obtained by adding the 

probabilities of 1
j

casegap  and 2
j

casegap , i.e.,      1 2Pr 0 Pr 0 Pr 0j j j
case casegap gap gap     . 
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2.2.3.2. Stacking Yield Loss Prediction for Multiple Pads 

The joint PDFs of the five critical quantities must be considered when the stacking yield 

loss model for a single pad is extended to predict the stacking yield loss of multiple pads.  If the 

five critical quantities do not have any statistical dependence, the joint PDFs of the quantities are 

simply a product of their marginal PDFs.  In this study, however the warpage values along the 

pads on the stacking interface have statistical dependences, and they should be incorporated when 

the joint PDF is determined. 

Estimation of the statistical dependence can be very difficult or sometimes impractical if a 

large number of performance responses are involved [48-50]  However, the joint PDF can be 

determined by MCS if the correlated performance responses can be transformed into a small set 

of uncorrelated input variables.  First, mapping techniques [51] are used to transform the correlated 

variables into a smaller set of new uncorrelated variables..  Then, MCS is used to generate a large 

number of samples from the PDFs of the uncorrelated variables.  For each sample, the original 

variables can be determined through inverse transformation.  Finally, the joint PDF of original 

variables can be estimated using the large number of MCS samples.  For example, in this study, if 

n dependent performance responses of warpage of top package, 1, , ny y , can be transformed into 

independent performance responses, the warpages of top package of ith and jth pad, ,i jy y .  Then, 

the joint PDF can be expressed as: 

      1 1, , , , , , ... , ..., ,n i j i j n i jf y y f y y y y y y y y      (39) 

where  1, , nf y y  is the joint PDF of performance responses, 1, , ny y ; 

   1 , , , ,i j n i jy y y y y y  are the performance responses expressed by the independent 

performance responses, the warpages of top package of ith and jth pad, ,i jy y . 
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Considering the joint PDFs, the probability of non-contact yield loss, Eqs.  (29) and (30), 

can be written as: 

Case I:  

     ˆ
~ ~ ~ ~

1 ? ?Pr 0 , ,
j

BCw tj j j j j j j j j
casegap f h h dh f w w d w dh d w

   

   

            
         

   (40) 

and 

Case II:   

 
   

   

~ ~ ~ ~

2
ˆ+ + ~ ~ ~ ~

, , if

Pr 0

? ?, , if

j

j
BC

j j j j j j j j
BC BC

j
case

t w j j j j j j j j
BC BC

f h h dh f d dh d d t

gap

f h h dh f w w dw dh dw d t

   

   

   

   

                    
            

   

   

   

   

   (41) 

where ~ˆ jw  is the absolute value of the warpage difference between the top and bottom packages 

at non-jth pads; ~ j  is the distance between the top and bottom packages at the non-jth pads for 

BC BCd t ;  ~? ,j jf w w  is the joint PDF of the absolute value of the warpage difference between 

the top and bottom packages; ~ˆ jw  is the warpage difference between the top and bottom packages 

at the non-jth pads for BC BCd t ; ~ jh  is the total solder ball height at the non-jth pads;  ~,j jf    

is the joint PDF of distance between the top and bottom packages for BC BCd t ;  ~? ,j jf w w  is the 

joint PDF of the warpage difference between the top and bottom packages for BC BCd t ; and 

 ~,j jf h h   is the joint PDF of the total solder ball height.   
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Subsequently, the Eqs. (37) and (38) can be written as: 

Case I: 

 

   

       

ˆ

Pr 0

,
ˆ for 0

0 for 0

case1

w

T B T T

T B

B B1 T T B B2 T

T B

gap

h h h h h h
w w w

w w w w w w w w

w w

k

Jk
BC

k k k k k k

k k k

k k k k k k k k

k k

J

t J J J J J J

J J J

J J J J J J J J
T

J J

f f d d
d

f f d f f d

 

  

  

 



                  
             

 

 


 

 









 (42) 

Each component in Eq. (42) is defined as follows. 

• Each variable kJ  can be any number between 1 to n. 

• The symbols with bold font indicate that they are vectors. 

• 1, , 1
1 1, ,gap n n

J JJ
case casegap gap   case1

  and 1, , 1 , ,Th n n
J JJ

T Th h   
   are vectors of 1casegap  and top 

solder ball height from the 1st to nth pad, respectively. 

•  1, ,

Th nJf  is the joint PDF of 1, ,

Th nJ  .  

•    1, , ~
T T Th h hnk k

JJ Jf f d
 

 
     is the marginal joint PDF of Th kJ , where Th kJ  is a subset of 

1, ,

Th nJ  , and ~
Th kJ is the complement of Th kJ .  

The same definitions are applied to other joint PDFs. 
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Case II: 

 

   

     

   

Pr 0

,
if

? ?, ,

,

T B T T

T T T T

T B T

gap

h h h h h h

w w w w

h h h h h

k

Jk

k k k k k k

k

k k k k k

k k k k

J

J J J J J J

J
BC BC

J J J J JC C C
joint joint joint

J J J J

f f d d
d d t

f h f f h d dh

f f d



  

  

 

 

              
         

 
 

 


 

case2

Δ

Δ

Δ

 



   

ˆ

ˆ if
ˆ,

w

T

T B T T

h
w

w w w w w

Jk
BC

k k

k

k k k k k

t J J

J
BC BC

J J J J J

d
d d t

f f d

 

  

 










                         

 






 

 (43) 

The summation of Eqs. (42) and (43) can express as     1Pr 0 0kJJgap gap  , which 

represents the intersection of the events that gaps occur simultaneously on k pads. 

2.2.3.3. Stacking Yield Loss Prediction Model 

The final stacking yield loss can be calculated as the probability of the union of gap 

occurrence for all pads on the stacking interface.  Considering a condition of 0jgap   as an event, 

the yield loss can be obtained using the general formula of the probability of the union of n events.  

Figure 24 illustrates the probability of the union of three events and the probabilities of 

intersections of events.   
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Figure 24.  Schematic illustration of the union of three events 
 

The probability of the union of n events can be expressed as [52]: 

 

 

        1 2

1 2

1 2

1

1

1 , , ,
1

Pr 0

1 Pr 0 0 0k

k

k

n
j

j

n
k JJ J

k J J J
J J J n

gap

gap gap gap






    

 
 

 

        






 (44) 

where each variables 1 2, ..., kJ J J  can be any number between 1 to n; the probabilities of the pair-

wise intersections,     1 2Pr 0 0J Jgap gap  , to the n-tuple-wise intersections, 

    1Pr 0 0nJJgap gap  , can be calculated by the summation of Eqs. (42) and (43).  

Finally, the total stacking yield loss after assembly can be obtained by substituting the summation 

of Eqs. (42) and (43) into the Eq. (44). 
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 Conclusion 

A comprehensive stochastic model for PoP stacking yield loss prediction was proposed.  

The model utilized the PDFs of five critical performance responses (the warpages and the solder 

ball heights of the top and bottom packages, and the solder joint height of the corner pad) to take 

into account their statistical variations.  The approach used in the model was capable of handling 

a large number of input variables.  The results can be used effectively to control the input 

uncertainties, and thus to achieve a yield goal for a given set of PoP designs. 
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2.3. Stacking Yield Prediction of Package-on-Package Assembly Using Uncertainty 

Propagation Analysis: Part II Implementation of Stochastic Model 

 Introduction 

Section 2.2 described in detail a comprehensive stochastic model to predict the packaging-

on-package (PoP) stacking yield loss.  To cope with the limitations of the existing models, the 

proposed model took into account all pad locations at the stacking interface while considering the 

statistical variations of the warpages, heights of solder balls and corner solder joint.  The goal was 

achieved by employing three statistical methods: (1) advanced approximate integration-based 

method called eigenvector dimension reduction (EDR) method to conduct uncertainty propagation 

(UP) analysis; (2) the stress-strength interference (SSI) model to determine the probability of non-

contact open at a single pad; and (3) the union of events considering the statistical dependence to 

calculate the final yield loss.   

In this companion section, the stochastic model is implemented for a PoP, which consists 

of a stacked die thin flat ball grid array (TFBGA) as the top package and a flip chip ball grid array 

(fcBGA) as the bottom package.  The configuration is shown schematically in Figure 19.  The top 

TFBGA package and the bottom fcBGA package are connected through 216 solder joints of 0.5 

mm pitch in two peripheral rows.   

The probability density functions (PDFs) of the top and bottom package warpages are 

determined first in Section 2.3.2.  Determination of the heights and their PDFs of solder ball and 

corer solder joint are presented in Section 2.3.3.  Stacking yield loss prediction from the PDFs is 

provided in Section 2.3.4. 

 Probability Density Functions of Warpages 

The warpages of the top and bottom packages are predicted by a finite element analysis 

(FEA).  The results are used to calculate the PDFs using the UP analysis. 
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2.3.2.1. Warpage Prediction 

A quarter symmetry was used to build a finite element model using a commercial FEA 

package (ANSYS®).  Figure 7 and Figure 25 show details of the models with the boundary 

conditions of top TFBGA package and bottom fcBGA package, respectively.  The top TFBGA 

package contains two dies.  The die stack configuration is shown using white dashed lines.  

 
Figure 25.  Details of the FEA model of bottom fcBGA package 

 
The material properties and the nominal dimensions used in the models are summarized in 

Table 9 and Table 10.  For the top package, the EMC was modeled as a linear viscoelastic material, 

and the temperature dependent Young’s modulus was considered for the die attach film (DAF).  

Details about these nonlinear materials are described in Figure 8 and Figure 9.  For the bottom 

package, the flip-chip solder bumps (SAC305) [53] and the underfill [54] were treated as a 

homogenous layer, and its effective material properties were calculated based on the modified rule 

of mixture [55]. 
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Table 9  Material properties of top TFBGA and bottom fcBGA 

 Material 
Young’s 

modulus (GPa) 
Poisson’s 

Ratio 

CTE (ppm/°C) 
Tg (°C) 

α1 (< Tg) α2 (> Tg) 

TFBGA 

Silicon die 130 0.23 2.8 -- 

DAF Temp. dependent 0.3 65.3 162.9 138 

Substrate 46.794 0.3 
16.2 (in-plane) 

61.5 (out-of-plane) 
-- 

EMC Viscoelastic 0.21 9.12 35.13 137.5 

fcBGA 

Silicon die 130 0.23 2.8 -- 

Solder and 
UF 

(effective) 

28.767 @ 25°C 
2.759 @ 260°C 

0.3425 23.2 38.9 80 

Substrate 
32.078 @ 25°C 

21.116 @ 260°C 
0.3 

12.58 (in-plane) 
30 (out-of-plane) 

10.69 (in-plane) 
30 (out-of-plane) 

190 

 
 
 

Table 10  Dimensions of top TFBGA and bottom fcBGA 

 length × width × thickness 

TFBGA 

1st Die (mm) 13 × 11 × 0.575 

1st DAF (mm) 13 × 11 × 0.025 

2nd Die (mm) 11 × 9 × 0.575 

2nd DAF (mm) 11 × 9 × 0.025 

Substrate (mm) 15 × 15 × 0.13 

EMC (mm) 15 × 15 × 0.59 

fcBGA 

Die (mm) 9.3 × 9.3 × 0.127 

Solder bump + UF (mm) 9.3 × 9.3 × 0.075 

Substrate (mm) 15 × 15 × 0.276 

 

The top package was subjected to the EMC molding process at 175 °C, which was used as 

a stress free temperature.  On the other hand, the underfill temperature (125 °C) was used as a 

stress free temperature for the bottom package.  To analyze the non-contact open during stacking, 

the conventional lead-free solder reflow profile with the peak temperature as 260 °C was 
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considered [28].  Figure 26 shows the deformed configurations of the top and the bottom packages 

with the nominal design parameters at the peak reflow temperature.  In (b), the white circles 

represent the solder ball locations at the stacking interface.  Based on the sign convention of 

warpage values suggested by JEDEC [56], the maximum warpages of the top and bottom packages 

with the nominal design parameters occurred at the outmost corner pad with warpage value of 76.2 

μm and 83.0 μm, respectively.  The stress-free temperatures were confirmed by comparing them 

with the experimental warpage data of nearly identical packages found in the literature [57-59]. 

 

(a) 

 

(b) 

Figure 26.  Deformed configurations (5x magnification) of (a) the top and (b) the bottom packages 
with the nominal design parameters at the peak reflow temperature 
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2.3.2.2. Uncertainty Propagation Analysis for Warpage PDFs 

A total of 12 input variables were considered for the top TFBGA package, and a total of 9 

input variables for the bottom fcBGA package.  Their means and standard deviations were obtained 

from the literature as well as the manufacturing specifications [31, 60-63], and they are 

summarized in Table 3 and Table 11. 

Table 11  Input variables of bottom fcBGA 

Variables Physical meaning Mean Std. Dev. Distribution 
Correlation 
coefficient 

x
13

 PKG length (mm) 15 0.067 Normal -- 

x
14

 PKG width (mm) 15 0.067 Normal -- 

x
15

 Die thickness (mm) 0.127 0.002 Normal -- 

x
16

 Bump/underfill thickness (mm) 0.075 0.0025 Normal -- 

x
17

 Substrate thickness (mm) 0.276 0.01 Normal -- 

x
18

 Substrate CTE below Tg (ppm/°C) 12.58 0.63 
Bivariate 
Normal 

1 
x

19
 Substrate CTE above Tg (ppm/°C) 10.69 0.53 

x
20

 Substrate modulus @ 25°C (GPa) 32.1 0.32 
Bivariate 
Normal 

1 
x

21
 Substrate modulus @ 260°C (GPa) 21.1 0.21 

   

Among the 12 input variables of the top package, the EMC thickness, x3, and the substrate 

thickness, x4, have statistical correlation because their sum should be equal to the cavity height of 

the transfer mold [7].  In addition, the CTEs of the EMC below and above Tg, x9 and x10, are 

measured from the same samples, and thus, they should have strong positive correlation, which 

can be presented by a correlation coefficient of “unity”.  Similarly, the CTEs of the substrate above 

and below Tg (i.e., x6 and x7) and the elastic moduli of the substrate at 25 °C and 260 °C (i.e., x8 

and x9) of the bottom package are also given a correlation coefficient of “unity” [7].   
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Next, the PDFs of the warpages of the top and bottom packages were obtained using the 

EDR method with 4N+1 sampling scheme.  A total of 49 and 37 modeling runs were conducted 

for the 12 input variables of the top package and the 9 input variables of the bottom package, 

respectively.  The detailed procedure of constructing the PDFs can be found in Ref. [28] and [22], 

and it is illustrated below using the outmost corner pad of the top package. 

Step 1: Covariance Matrix  

The covariance matrix was constructed using the information in Table 3 and expressed as 

Eq. (13).   

Step 2: Eigenvalues and Eigenvectors of Covariance Matrix 

By solving the eigenvalue problem of the covariance matrix (i.e., X ' X '  ), the 

eigenvalues, λ, and the corresponding eigenvectors, X ' , were obtained.  The results are listed in 

Table 12, which shows that the eigenvector directions of the two pairs   3 4i.e., ' , 'x x  and 

 9 10' , 'x x  were altered due to the correlations.  

Step 3: Sampling Points 

Using the 4N+1 sampling scheme, five sample points along each eigenvector direction 

were determined by using Eqs. (8) and (9) in Ref. [7].  Table 13 shows the sample points and the 

corresponding predicted warpage values along the 3x  and 11x  directions as examples for 

correlated input variable and uncorrelated input variable, respectively. 

Step 4: Integration Points 

In this study, 21 integration points were used for each one-dimensional integration to 

increase the accuracy.  The locations and weights of the integration points were calculated by the 

moment based quadrature rule [21] (Eq. (8) in Ref. [22]).  Table 14 lists the weights and locations 
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of integration points along the 3x  and 11x  directions, which represent the uncorrelated and 

correlated cases, respectively. 

Table 12  Eigenvalues and eigenvectors of the covariance matrix 

ith eigenvalue 
ith eigenvector projected into the original directions of input variables 

 1 2 3 4 5 6 7 8 9 10 11 12' , , , , , , , , , , ,
T

ix x x x x x x x x x x x x   

λ
1
 0.0332  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
 

λ
2
 0.0332  0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
 

λ
3
 85.5  0, 0, 0.99, 0.13, 0, 0, 0, 0, 0, 0, 0, 0

T  

λ
4
 8.6  0, 0, 0.13, 0.99, 0, 0, 0, 0, 0, 0, 0, 0

T
 

λ
5
 1  0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

T
 

λ
6
 1  0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

T
 

λ
7
 3.752  0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0

T
 

λ
8
 3.752  0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0

T
 

λ
9
 4.382  0, 0, 0, 0, 0, 0, 0, 0, 0.97, 0.25, 0, 0

T
 

λ
10

 0  0, 0, 0, 0, 0, 0, 0, 0, 0.25, 0.97, 0, 0
T  

λ
11

 0.812  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
T

 

λ
12

 1592  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
T

 

 

Table 13  Locations and predicted warpages of sample points along the 3rd eigenvector and the 
11th eigenvector 

x’
i
 

Sample 
point 

1Vi 2Vi 0Vi 4Vi 5Vi 

Performance 
response 

y(1Vi) y(2Vi) y(0Vi) y(4Vi) y(5Vi) 

x’
3
 

V3 
x

3
 = 677; 

x
4
 = 118 

x
3
 = 634; 

x
4
 = 124 

x
3
 = 590; 

x
4
 = 130 

x
3
 = 547; 

x
4
 = 136 

x
3
 = 503; 

x
4
 = 142 

y (V3) 101.9 90.4 76.2 58.5 35.0 

x’
11

 
V11 x

11
= 13.77 x

11
= 14.985 x

11
= 16.2 x

11
= 17.415 x

11
= 18.63 

y(V11) 102.5 89.4 76.2 63.1 50.0 
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Table 14  Locations, weights, and warpage values of integration points along the 3rd eigenvector 
and the 11th eigenvector 

 

 
3rd eigenvector, x’

3
 11th eigenvector, x’

11
 

x
k, 3’

 w
k, 3’

 y(x
k, 3’

) x
k, 11’

 w
k, 11’

 y(x
k, 11’

) 

1 x
3
 = 366; x

4
 = 160 2.5E-14 116.0 x

11
= 9.84 2.5E-14 144.8 

2 x
3
 = 398; x

4
 = 156 5.0E-11 116.6 x

11
= 10.73 5.0E-11 135.2 

3 x
3
 = 424; x

4
 = 152 1.5E-08 115.2 x

11
= 11.48 1.5E-08 127.1 

4 x
3
 = 448; x

4
 = 149 1.2E-06 112.5 x

11
= 12.15 1.2E-06 119.9 

5 x
3
 = 470; x

4
 = 146 4.2E-05 108.9 x

11
= 12.79 4.2E-05 113.1 

6 x
3
 = 491; x

4
 = 143 0.00071 104.8 x

11
= 13.39 0.00071 106.6 

7 x
3
 = 512; x

4
 = 141 0.00644 100.0 x

11
= 13.97 0.00644 100.3 

8 x
3
 = 532; x

4
 = 138 0.03395 94.8 x

11
= 14.54 0.03395 94.2 

9 x
3
 = 551; x

4
 = 135 0.10839 89.1 x

11
= 15.10 0.10839 88.2 

10 x
3
 = 571; x

4
 = 133 0.21533 83.0 x

11
= 15.65 0.21533 82.2 

11 x
3
 = 590; x

4
 = 130 0.27026 76.2 x

11
= 16.20 0.27026 76.2 

12 x
3
 = 609; x

4
 = 127 0.21533 68.8 x

11
= 16.75 0.21533 70.3 

13 x
3
 = 629; x

4
 = 125 0.10839 60.5 x

11
= 17.30 0.10839 64.3 

14 x
3
 = 648; x

4
 = 122 0.03395 50.8 x

11
= 17.86 0.03395 58.3 

15 x
3
 = 668; x

4
 = 119 0.00644 39.7 x

11
= 18.43 0.00644 52.2 

16 x
3
 = 689; x

4
 = 117 0.00071 27.0 x

11
= 19.01 0.00071 45.9 

17 x
3
 = 710; x

4
 = 114 4.2E-05 12.8 x

11
= 19.61 4.2E-05 39.4 

18 x
3
 = 732; x

4
 = 111 1.2E-06 -3.3 x

11
= 20.25 1.2E-06 32.6 

19 x
3
 = 756; x

4
 = 108 1.5E-08 -21.7 x

11
= 20.92 1.5E-08 25.4 

20 x
3
 = 782; x

4
 = 104 5.0E-11 -43 x

11
= 21.67 5.0E-11 17.4 

21 x
3
 = 814; x

4
 = 100 1.7E-14 -69.9 x

11
= 22.56 1.7E-14 7.9 

First statistical 
moment 

75.4 16.2 

  

To complete each one-dimensional integration, the performance responses at integration 

points were obtained by interpolation and extrapolation from the performance responses at the 
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sample points using the moving least square (MLS) method [22].  Table 14 also lists the 

performance responses at the integration points along the 3x  and 11x  directions. 

Step 5: Statistical moments of performance response 

The 1st statistical moment along the ith eigenvector direction was determined from the sum 

of the performance response (y) times the weight (w) at each integration point.  Similarly, the 

higher order statistical moments were determined from the same procedure using y2, y3, and y4.  

The 1st statistical moment along the 3x  and 11x  directions are shown in Table 14.  Finally, the 

statistical moments of the warpage PDF were calculated by the recursive formula using all 

statistical moments (Eqs. (21) and (22) in Ref. [21]).  The four statistical moments of the warpage 

PDF at the outmost corner pad are listed in Table 15. 

Table 15  The 1st to the 4th statistical moments and coefficients of the stabilized Pearson 
distribution of the warpage at the outmost corner pad 

 

Statistical moments 
Mean Std. Dev. Skewness Kurtosis 

39.68 19.48 -0.0488 3.0053 

Coefficients 
of stabilized 

Pearson 
distribution  

 c
0
 c

1
 c

2
 

-- 1st hyper PDF 1118.1745 -0.8705 -0.0091 

2nd hyper PDF 1068.3696 -0.8192 0.0061 

  

Step 6: Construction of PDF using stabilized Pearson system  

The four statistical moments were input to Eq. (17) in Ref.[7], and the coefficients of the 

Pearson system were determined (c0 = 1084.1438, c1 = −0.8355, and c2 = 0.0013).  These values 

were close to the boundary of the Pearson type I, IV and V distributions, which would cause 

numerical instability in constructing the PDF [22].  The stabilized Pearson system was 

subsequently employed to determine the PDF.  Table 15 also lists the coefficients of two hyper-
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PDFs obtained from the stabilized Pearson system.  Figure 27 shows the PDFs of the warpages at 

the outmost corner pad for the top and bottom package, respectively. 

 
Figure 27.  PDFs of warpage at the outmost corner pad 

    
The above procedures were repeated to determine the warpage PDF of all pads of the top 

and bottom packages.  Due to the quarter symmetry of the model, the PDFs of only 56 pads (out 

of 216 pads) had to be determined for each package (a total of 112 PDFs).  It is important to recall 

that the warpages at different pads are statistically correlated.  To avoid the overestimation of a 

yield loss, a joint PDF of the warpages at the 56 pads was determined using Eq. (19) in Ref. [64]. 

The statistical correlations were determined using the results of warpage predictions.  In 

each modeling run, the out-of-plane displacements of pads were extracted.  Figure 28 illustrates 

how the correlations are obtained, where the warpages at four pads shown in (a) are plotted against 

the warpage at the outmost corner pad for the top package (b) and the bottom package (c).  Both 

top and bottom packages clearly show strong linear correlations; the correlation coefficients of the 

warpage at the jth pad to the warpage at the outmost corner pad are virtually unity.  Therefore, the 

warpage at the jth pad can be calculated from the linear relationship with the warpage at the outmost 

corner pad.   

PKG warpage at outmost corner ball (µm)

P
D

F

Top package

Bottom package
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For the condition of Case II (the maximum warpage difference at the center), the 

correlations between the warpage at the die edge and the warpage at the outmost corner pad were 

required.  The results are also shown in Figure 28(b) and (c), and the correlation coefficients are 

virtually unity for both top and bottom packages. 

 
(a) 

   

 (b)  (c) 
 

Figure 28.  Statistical correlations of the warpages at the jth pad and the outmost corner pad: (a) 
pad locations, (b) top package, and (c) bottom package 
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 Probability Density Functions of Solder Balls and Joint Heights 

The final shapes of solder balls and joints are predicted by a program called Surface 

Evolver [65, 66].  The results are used to calculate the PDFs using the UP analysis. 

2.3.3.1. Prediction of Solder Ball Heights and Joint Heights at Corner Pad 

For the fine pitch PoP used in this study, a technology called “ball on ball (BoB)” [67-69] 

is used for package stacking.  The technology mounts solder balls on the topside of the bottom 

package (referred to as the bottom solder balls); these solder balls are aligned with the solder balls 

on the top package (referred to as the top solder balls).  The bottom solder balls and the 

corresponding top solder balls form solder joints after stacking.  The BoB method was developed 

to reduce the impact of excessive warpages on the stacking yield while providing a sufficient 

distance between the top and bottom packages to accommodate the component height of the 

bottom package.  Figure 29 illustrates a PoP with the BoB approach just prior to reflow. 

 

 
 

Figure 29.  Cross-sectional view of a PoP using the BoB approach just prior to reflow 
 

Figure 30(a) illustrates the solder balls after reflow.  During the reflow process, the solder 

balls melt and form a final shape after filling the solder resist opening (SRO).  The solder volume, 

pad dimensions, surface tension, component weights, etc. contribute to the final stand-off height 

of the solder ball [2].  During stacking, the top and bottom solder balls go through the second 

reflow process (stacking) and form a solder joint, as illustrated in Figure 30(b). 

Top package

Bottom package

Top solder ball

Bottom solder ball
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The final shapes of the solder balls and the solder joint were predicted by the Surface 

Evolver, which is based on the principle of surface energy minimization considering the energy 

contributed by the surface tension, gravitational energy and external loading.  

 
(a) 

 

  
(b) 

 
Figure 30.  Solder balls after (a) the first reflow process and (b) the second reflow during stacking  
 
 

For a PoP package with a given solder material, the surface tension and gravitational energy 

can be assumed to be constant, and they do not cause solder ball height variations [24].  Therefore, 

the solder ball standoff height after reflow is mainly affected by the geometrical parameters.  In 

this case study, the solder ball pads of the top and bottom package are both solder mask defined 

(SMD).  Figure 30(a) also shows the geometrical parameters considered for the solder ball standoff 

height prediction for the SMD design.  Due to the constraint of the SR opening, the portion of the 

solder filled within the SR opening does not contribute to the solder ball stand-off height after 

reflow, and thus, the solder volume after reflow can be express as: 

 
2

2final initial SR

D
V V t     

 
 (45) 

Vfinal

tSR

D

Vinitial

Standoff height 
after reflow

Solder 
joint
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where Vfinal is the solder volume to form the solder ball stand-off height after reflow (red dashed 

area in Figure 30(b), Vinitial is the preformed solder ball volume, D is the diameter of SR opening, 

and tSR is the SR thickness. 

Figure 31(a) and (b) show the shape prediction results of the top and bottom solder balls 

after the 1st reflow.  Figure 31(c) shows the solder joint after the 2nd reflow.  The results were 

obtained using the nominal design parameters.  The collapse heights of the top and bottom solder 

balls were 202.3 µm and 199.8 µm, respectively.  The solder joint height after the 2nd reflow was 

228.9 µm. 

 

 
 (a) (b) (c) 
 
Figure 31.  Shape prediction results of (a) the top and (b) bottom solder balls after the 1st reflow; 

and (c) the solder joint after the 2nd reflow 
 

2.3.3.2. Uncertainty Propagation Analysis for Solder Ball Heights and Joint Heights at 
Corner Pad 

Table 16 and Table 17 list the input variables used to predict the top and bottom solder ball 

heights, which are uncorrelated.  The means and standard deviations of these variables were 

obtained from the literature and the manufacturing specifications [8, 62, 70, 71].  The EDR method 

with 4N+1 sampling scheme was used.  For the solder balls, 13 modeling runs were conducted for 

each package.  For the joint heights at the corner pad, all 6 input variables had to be considered 
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since both top and bottom solder balls affected the solder joint height, which required 25 modeling 

runs.  Therefore, the total modeling runs for the UP analysis of solder balls and heights was 51.  

 

Table 16  Input variables of top solder ball 

Variables Physical meaning Mean Std. Dev. Distribution 

x
22

 Top solder ball diameter (µm) 175 1.67 Normal 

x
23

 Top PKG SR open diameter (µm) 230 16.67 Normal 

x
24

 Top PKG SR thickness  (µm) 15 1.05 Normal 

 
 

Table 17  Input variables of bottom solder ball 

Variables Physical meaning Mean Std. Dev. Distribution 

x
25

 Btm solder ball diameter (µm) 175 1.67 Normal 

x
26

 Btm PKG SR open diameter (µm) 230 16.67 Normal 

x
27

 Btm PKG SR thickness  (µm) 20 1.40 Normal 

  

Since the input variables were not correlated, the first two steps of the EDR method (section 

2.2) were not necessary.  Steps 3 to 6 were repeated to determine the required PDFs.  A total of 

532 PDFs were calculated for the solder ball heights at all pads of the top and bottom packages 

(216 each), and one additional PDF was calculated for the solder joint height at the corner pad.  It 

is to be noted that the quarter symmetry used in the warpage prediction was not applicable to solder 

ball cases.  The joint PDF of solder ball heights at the 216 pads of the top package is the 

multiplication of the PDFs of the solder ball height of each pad, and so is the joint PDF of solder 

ball heights for the bottom package. 

Table 18 summarizes the predicted statistical moments and the corresponding coefficients 

of the stabilized Pearson system of the heights of the solder balls and the corner solder joint.  Figure 
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32 shows the PDFs of the top and bottom solder ball height of the jth pad and the PDF of the solder 

joint at the corner pad. 

 
Table 18  Predicted statistical moments and the corresponding coefficients of the stabilized 

Pearson distribution for top and bottom solder balls as well as solder joint 

Statistical moments Mean Std. Dev. Skewness Kurtosis 

Top ball height 202.57 8.81 -0.13 3.03 

Bottom ball height 200.00 9.25 -0.14 3.03 

Solder joint height 228.57 8.35 -0.13 3.03 

Coefficients of stabilized Pearson 
distribution 

c
0
 c

1
 c

2
 

-- 

Top ball height 
1st hyper PDF 80.1262 -0.5974 -0.0105 

2nd hyper PDF 76.5228 -0.5619 0.0050 

Bottom ball height 
1st hyper PDF 88.1799 -0.6547 -0.0105 

2nd hyper PDF 84.2124 -0.6158 0.0049 

Solder joint height 
1st hyper PDF 71.9823 -0.5675 -0.0105 

2nd hyper PDF 68.7456 -0.5338 0.0050 

 

 
 (a) (b) (c) 

 
Figure 32. (a) PDF of the top solder ball height, (b) PDF of the bottom solder ball height, and (c) 

PDF of the solder joint height  
 

Top solder ball height (µm)

P
D

F

Pearson Type-I and Type-IV mixed

Bottom solder ball height (µm)

P
D

F

Pearson Type-I and Type-IV mixed

Solder joint height (µm)

P
D

F

Pearson Type-I and Type-IV mixed



71 

 Stacking Yield Loss Prediction 

The procedure to solve the convolutions in the proposed yield model using a single MCS 

run is presented first.  The estimation of true yield loss using multiple MCS runs is followed. 

2.3.4.1. Stacking Yield Loss Prediction using a Single MCS Run 

Once the joint PDFs of the five critical quantities are obtained, the PDFs of load and 

strength can be formed by combining these PDFs.  Then, the stacking yield loss can be predicted 

using Eq. (22), (23) and (24) in Ref. [64].  Analytical methods to solve the convolutions of the 

distribution forms (i.e., Pearson’s distributions) in the proposed yield loss model were not available, 

and the convolutions were calculated using MCS.  The procedure is listed as follows.  It is also 

illustrated in Figure 33.  

Step 1 Draw the NMCS number of samples: for each MCS sample, 216 sets of load and strength 

values are randomly generated using the joint PDFs of package warpages, solder ball 

heights and corner pad solder joint height.  In the figure, the rows in the table represent the 

kth MCS sample. 

Step 2 Form the PDFs of load and strength at the jth pad using all MCS samples along the jth 

column.   

Step 3 Calculate the probability of non-contact open at the jth pad by the statistical interference 

between the PDFs of load and strength.   

Step 4 Determine the stacking yield loss as the probability of the union of the gap occurrence in 

every pad across the stacking interface. 
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Figure 33.  Procedure of stacking yield prediction by MCS 
 

Figure 34 illustrates the PDFs of load and strength for the 109th pad (j = 109) for Steps 2 

and 3.  Two stacking scenarios (scenario-1 and scenario-4) were observed for the PoP 

configuration of this study, and they are shown in Figure 34(a) and (b), respectively.  In (a), the 

PDFs of load and strength (i.e., the PDF of the absolute value of the warpage difference,  ˆf w , 

and the total solder ball height,  f h ) were obtained by 1,292 samples among the 100,000 

samples.   
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 (a) (b) 

 
Figure 34. Interference of PDFs of load and strength for the 109th pad (j = 109) for a single MCS 

run: (a) scenario-1 and (b) scenario-4 
 

The two PDFs do not overlap, and thus, the probability of non-contact open for the Case I 

is zero, i.e,  1Pr 0gap   = 0.  The other 98,708 samples among the 100,000 samples of the MCS 

run belong to the scenario-4.  They were used to construct the PDF of distance between the top 

and bottom packages,  f  , and the PDF of the total solder ball height,  f h , as shown in (b).  

In this scenario, the PDFs of load and strength overlap and the enlarged view of the overlapping 

area is shown in the inset of (b).  Then, the probability of non-contact open for the Case II can be 

obtained by calculating the statistical interference of these two PDFs using numerical convolution 

methods, such as Monte Carlo convolution method [72] or Fast Fourier Transform (FFT) technique 

[73].     

The Monte Carlo convolution method is used in this study, where a large number of sample 

points of the load and the strength are generated by MCS from the joint PDFs.  The load and 

strength of each sample are subtracted to get the gap width.  For example, in the kth MCS sample, 

the load, k  for the scenario-4 and strength, kh , are subtracted to get the gap width, 
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2
k k kgap h    .  The result of convolution, i.e., the PDF of the jth gap width, is estimated by using 

the histogram of gap width from all the MCS samples.   

Figure 35(a) shows the entire PDF of the gap at the 109th pad, and Figure 35(b) shows the 

enlarged view of the tail-end marked by the red box in (a).  The probability of the non-contact 

open is the area of the histogram where gap > 0. 

 
 (a) (b) 

 
Figure 35.  (a) PDF of gap at the 109th pad and (b) the enlarged view of the tail-end marked by the 

red box in (a) 
 

To complete Step 4, the intersections of the probability of non-contact open for multiple 

pads (Eq. (22) and (23) of Ref. [64]) have to be calculated in addition to the probability of non-

contact open of every single pad.  This was also calculated using the table in Step 1.     

The n-tuple-wise intersections,     1Pr 0 0nJJgap gap  , can be expressed as: 
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where MCSN  is the total number of MCS samples; and      1 20 0 0JJ J kgap gap gap
N

     
 is the number 

of MCS samples where multiple pads simultaneously have gaps larger than zero; for instances, 

when k = 2,    1 20 0J Jgap gap
N

  
 indicates the number of MCS samples where the gaps are larger than 

zero on the J1
th pad and the J2

th pad simultaneously; the J1
th pad and the J2

th pad are all pairs of 

pads which can be formed within the total 216 pads.   

Once the probability of all intersections were determined, the stacking yield loss was 

defined as the probability of the union of that gap occurrence for all pads on the stacking interface 

using Eq. (24) in Ref. [64]. 

2.3.4.2. True Stacking Yield Loss Estimation using Multiple MCS Runs 

It can be seen from Section 2.3.4.1 that regardless of a single pad, an intersection of 

multiple pads, or the total yield loss for all pads, the estimated probability of non-contact open 

using the MCS can be expressed as the ratio of the number of samples of failure and the total MCS 

sample, MCSk N , where k is the number of samples of failure.  Due to the very nature of MCS, the 

estimation result using a single MCS run contains uncertainty.   

Based on Ref. [11], when the MCS is done with a sufficiently large sample size, the 

predicted yield loss follows a binominal distribution, which can be expressed as: 

  1 0MCSN kMCS k
MCS

MCS

Nk
f p p p k N

N k

   
     

  
ˆ ~ , , ,  (47) 

where p̂  is the predicted yield loss, k is the number of samples having gap > 0, and p is the true 

yield loss.  The mean value of the binominal distribution equals to the true yield loss. 

In this study, the MCS with sample size of 100,000 is used, which means the resolution of 

each MCS run is 10 ppm (i.e., each sample accounts for 10 ppm probability).  The probability of 

non-contact open of each pad and the stacking yield loss were obtained from the average of 30 
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repetitions of MCS runs with 100,000 samples.  The stacking yield loss considering all pads is 

464 ppm.   

The results of the pads with failure probability larger than zero are summarized in Table 

19, from which the most critical pad is identified as the 109th pad.  Figure 36 shows how the ball 

pads listed in Table 19 distributed on the stacking interface.  The non-contact opens occur on the 

pads around the package center line in parallel to the longitudinal direction of the silicon dies of 

the top package (± four pitches in the inner row), where a large warpage difference occurs. 

  
 

Figure 36.  Regions of ball pads having non-contact opens for all of the MCS runs 
 

Table 19  Rank of probability of non-contact open for the jth pad 

j Pr(gap > 0) (ppm) j Pr(gap > 0) (ppm) j Pr(gap > 0) (ppm) 

109 59 116 22 121 9 
105 45 171 22 125 8 
113 44 173 20 176 8 
108 37 101 19 40 7 
104 33 174 19 177 7 
43 32 172 18 48 5 
100 32 120 15 169 3 
112 32 97 14 203 3 
45 31 46 12 110 2 
44 26 47 12 124 2 
42 25 170 12 128 2 
117 24 41 11 204 2 
175 24 92 11 Others 0 
96 22 93 10   

109th pad

Die of bottom 
package

+ 4 pitches

- 4 pitches

> 45 ppm

31 - 45 ppm

16 - 30 ppm

1 - 15 ppm

No failure

1st die of top 
package

2nd die of top 
package
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 Conclusion 

The stochastic yield loss prediction model was implemented for a PoP assembly with a 

TFBGA as the top package and an fcBGA as the bottom package.  The implementation considered 

27 input variables for the uncertainty propagation analyses.  Using the 4N + 1 sample scheme of 

the EDR method, 137 modeling runs were conducted to produce 549 PDFs.  The stacking yield 

loss (less than 1,000 ppm) was predicted from the PDFs while considering all 216 pads across the 

stacking interface.   

The proposed model offers a more comprehensive PoP stacking yield loss prediction for 

non-contact open.  The uncertainty propagation analysis method used in the study is able to handle 

the number of input variables much larger than that has been conceived as the practical limit of 

the UP analysis.  More applications are expected to improve the design and manufacturing 

processes of advanced PoP assemblies, and thus to achieve a desired yield goal. 
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CHAPTER 3. ADVANCED STATISTICAL MODEL CALIBRATION TO 
DETERMINE MANUFACTURING-INDUCED VARIATIONS OF 
EFFECTIVE ELASTIC PROPERTIES OF SAC SOLDER JOINTS IN 
LEADLESS CHIP RESISTOR ASSEMBLIES 

3.1. Introduction 

In recent years, Sn-rich solders, such as SnAgCu (SAC) alloys, have been used widely in 

electronics packaging to comply with the regulations.  It has been known that the Sn-rich solders 

have large variations in grain sizes and orientations, intermetallic compound (IMC) sizes, and 

distributions of anisotropic Sn crystals [5].  These microstructural variations occur even under the 

same assembly condition, which results in inherent mechanical property variations of solder joints; 

not only package-to-package variations but also joint-to-joint variations in the same package [6, 

74-79].  The mechanical properties of Sn-rich solder materials are attributed significantly to the 

statistical variation of a solder joint life.   

The solder joint life is assessed typically by (1) testing a “statistically significant” number 

of components under accelerated loading conditions, and (2) determining the characteristic number 

of cycles-to-failure (CTF) from the test results, which have a statistical distribution due to the 

inherent manufacturing variability.  Figure 37 illustrates the statistical distribution of CTF data 

and the characteristic life.  The characteristic life is often referred to as “durability”, which 

represents the length of time over which a product will provide its intended function under 

operating conditions, i.e., the reliability of nominal parts.  Durability is important when 

competitive designs are compared for design-for-reliability.  On the other hand, the distribution of 

test results can be used to calculate the “reliability”, which is the probability that a product will 

perform its intended function under operating conditions, for a specific period of time.  The 

reliability becomes critical when early failure probability has to be evaluated, e.g., the probability 

that the product will fail before a warranty period ends. 
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Figure 37.  Durability vs. reliability 
 

Numerous physics-based lifetime models have been developed for durability assessment.  

More recently, the models have been extended into a probabilistic domain to predict reliability 

while taking into account inherent manufacturing variability [7, 80-82] .  The inherent variations 

can be categorized into “known input variables” and “unknown input variables”.  The “known 

input variables” are the variables whose statistical distributions are known or can be measured.  

The variables are called “unknown” when their statistical distributions are extremely difficult or 

impractical to be obtained experimentally.  These unknown distributions can be obtained by 

“statistical model calibration”, which identifies the statistical distribution of the unknown input 

variables that produces the best agreement between the experimental data and the predicted 

distribution through an optimization process. 

In this section, the unknown statistical distributions of two effective elastic properties of 

Sn-3.0Ag-0.5Cu (SAC305) solder joint of leadless chip resistors (LCRs) assemblies are 

determined by the advanced statistical model calibration while considering the statistical variations 

of serval other known input variables including die thickness, solder joint height, termination 

length, and thickness and elastic moduli of a printed circuit board (PCB).   

The background of the statistical model calibration is described first.  The cyclic bending 

test results of the LCR assemblies are followed, and the results are subsequently used to obtain the 
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statistical distributions of the effective elastic properties of SAC305 solder.  Validity of the 

calibrated model is corroborated by comparing the predicted probability density function (PDF) of 

cycles-to-failure of the identical LCR assemblies subjected to a different loading level with the 

cycles to failure distribution of actual testing data. 

3.2. Background: Statistical Model Calibration 

Statistical model calibration is an optimization process to inversely identify the statistical 

distributions of unknown input variables that produce the best agreement between experimental 

data and predicted distribution [83].  It utilizes a full set of experimental data containing multiple 

samples so that the calibration results can be obtained after considering the statistical variations of 

performance responses induced by the intrinsic variabilities of input variables.  Figure 38 shows 

the calibration procedure.  The uncertainties in the known and unknown input variables are 

propagated through the model to acquire the predicted PDF of performance responses.  Then, the 

predicted PDF of performance response is compared with the experimental data.  The degree of 

agreement is determined by a “calibration metric,” which acts as the objective function of the 

optimization process.  The unknown input variables are iteratively updated until the calibration 

metric is minimized or maximized. 
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Figure 38.  Procedure of statistical model calibration 
 

 
The most critical element of the calibration procedure is the uncertainty propagation (UP) 

analysis.  The models of semiconductor packages are usually computationally intensive.  The EDR 

method is also implemented for the UP analysis in this study.   

The other key element of the calibration procedure is a calibration metric, which has to 

account for the statistical comparison between the predicted PDF and the experimental data.  The 

likelihood function is the most widely used calibration metric.  Figure 39 illustrates the cases with 

the maximum likelihood value and a low likelihood value.  In practice, the logarithm operation is 

applied to the likelihood function to convert the multiplication form of the likelihood function to 

a summation form.  In addition, most of the commercial optimization algorithms minimize a 

function, and thus, a negative log-likelihood (NLL) is used; minimizing the NLL is equivalent to 

maximizing the log-likelihood.   

Uncertainty propagation 
analysis though 

computational model

Calibration metric

Predicted PDF of 
performance response

Yes

No

Experimental 
data of 

performance 
response

_ _,x known x unknown 
 

PDFs of input variables, x, 
w ith know n or unknown 
parameters,

Minimized 
or 

maximized ?

_ , .x unknown Opt( )


_x unknown


End

Update



82 

 
Figure 39.  Illustration of likelihood function with the maximum and minimum likelihood values 

 
The NLL function can be expressed as [84]: 

    1 _ _ _ _
1

, , | , log | ,
n

n x known x unknown i x known x unknown
i

L y y f y   


     pre

   
  (48) 

where 1, , ny y  are the n number of experimental data, _x known


 and _x unknown


 are the vectors of the 

parameters of PDFs of the known and the unknown input variables, respectively, and fpre  is the 

predicted PDF of performance response, y.  The _x unknown


 is calibrated by minimizing the value of 

the NLL. 

3.3. Implementation Using Vibration-Induced Solder Fatigue Failure 

The experimental setup of a cyclic bend test is described in Section 3.3.1.  The physics-

based lifetime prediction is followed in Section 3.3.2.  In Section 3.3.3, the statistical model 

calibration for the effective elastic properties of SAC305 solder is provided.  

 Setup of Four-Point Bend Test 

Figure 40 shows the test coupon, which was fabricated by mounting multiple 6332-type 

LCRs on a PCB with SAC305 solder.  The pad length was 1 mm.   

A four-point bend test setup used in the study is shown in Figure 41.  A stain gage was 

attached to the PCB, and it was aligned with the longitudinal side of the PCB to determine the 
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board level strain.  Two sets of LCR assemblies were tested at a frequency of 2.5 Hz for the 

maximum board strains of 2000 µε and 1200 µε, respectively.  

 
Figure 40.  Detail of a test coupon and a single leadless chip resistor assembly 

 

 
Figure 41.  Test coupon mounted on 4 point bend fixture 

 

Figure 42(a) shows the 2-parameter Weibull plots of the test results.  The characteristic 

cycles-to-failure (CTFs) and the standard deviations of test results were (7,723, 2,847) and (78,618, 

43,827) for the 2000 µε stain level and the 1200 µε stain level, respectively.  Figure 42(b) shows 

the observed failure mode, i.e., the bulk solder failure along the copper pad. 
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 (a)  (b) 
 

Figure 42.  Accelerated life testing results of LCR assemblies subjected to strain levels of 2000 
and 1200 µε. (a) Weibull plots and (b) Cross section of failed assembly 

 

 Physics-based Solder Joint Fatigue Life Modeling 

The Basquin power law relation is widely used for the lifetime prediction of solder joints 

under mechanical vibrations, which can be expressed as [85]: 

  2
b

a f fN   (49) 

where a  is the stress amplitude, f  is the fatigue strength coefficient, b is the fatigue strength 

exponent, and fN  is the cycles to failure.  The constants from Ref. [85] were used in this study: 

f = 64.8 MPa and b = − 0.1443. 

Figure 43(a) shows a finite element model constructed by ANSYS® using quarter 

symmetry.  The condition of periodicity was imposed on the boundary to simulate the effect of 

multiple components.  Table 20 lists the material properties used in the analysis.  Since only stress 

magnitudes were required for Eq. (49), linear elastic material properties were used for the 

packaging materials. 

The displacement loading was iteratively adjusted to find the accurate loading condition, 

which made the x-direction strain in the strain gage area reached 2000 µε. 
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Table 20  Material Properties 

Material 
Young’s 

modulus (GPa) 
Poisson’s Ratio 

Alumina chip 295 0.22 

Termination (Ag) 76 0.37 

Cu Pad 132.4 0.34 

PCB 
In-plane: 19.7 

Out-of-plane: 9.1 
In-plane: 0.39 

Out-of-plane: 0.17 

SAC305 51 0.36 

 

     
 (a)  (b) 

 
Figure 43.  Damage analysis (a) finite element model (b) von Mises stress distribution in the solder 

joint 
 

Figure 43(b) shows the von Mises stress distribution on the solder joint.  The volume 

averaged von Mises stress over the critical region on the top layer of the solder joint was selected 

as the damage index, which can be expressed as [85]: 

 a

V

V





 


 (50) 
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 Statistical Model Calibration 

The known and unknown input variables are described first.  Calibration results and 

discussion are followed. 

3.3.3.1. Known and Unknown Input Variables 

The statistical calibration begins with the selection of known and unknown variables in the 

solder joint fatigue life model.  Six known input variables were identified from the literature review 

[62, 81, 86, 87]: ceramic die thickness, solder joint height, termination length, as well as thickness 

and two effective moduli of PCB.  Their variations are listed in Table 21.  Among these variables, 

the effective moduli of PCB and PCB thickness have statistical correlations, because their 

variations come from the thickness variation of each layer in the PCB stack-up.  Their correlation 

coefficients were estimated from the literature [62] and they are listed in Table 22. 

Table 21  Input Variables 
Variables Physical meaning Mean Std. Dev. Distribution 

x1 Alumina chip thickness (mm) 0.55 0.033 Normal 

x2 Solder joint height (mm) 0.0237 0.0068 Normal 

x3 Termination length (mm) 0.405 0.053 Normal 

x4 PCB thickness (mm) 1.59 0.036 

Trivariate 
Normal 

x5 PCB in-plane Young's modulus (GPa) 19.7 0.591 

x6 PCB out-of-plane Young's modulus (GPa) 9.1 0.273 

x7 Solder joint modulus (GPa) 
unknown 

Lognormal 

x8 Solder joint Poisson’s ratio Lognormal 

 
Table 22  Correlation coefficient of correlated input variables 

 x4 x5 x6 

x4 1 0.84 0.38 

x5 0.84 1 1 

x6 0.38 1 1 
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Two unknown variables are the effective Young’s modulus and Poisson’s ratio of the 

SAC305 solder joint.  An unknown number of tin grains and their orientations within the solder 

joint were attributed to their statistical variations.  Both unknown variables were assumed to follow 

a lognormal distribution, since a negative value was not permitted.   

Two statistical parameters are required to describe a lognormal distribution.  The 

representative values of the literature [85] were used for the initial guess of the mean and standard 

deviation of two unknown input variables: (51 GPa, 2.55 GPa) for the Young’s modulus and (0.36, 

0.018) for the Poisson’s ratio. 

3.3.3.2. Calibration Results and Discussion 

Since the calibration metric was an implicit objective function, the finite difference method 

was used to determine the convergence direction by calculating the gradients of the objective 

function with respect to the mean (µ) and standard deviation () of the unknown variables.   

Figure 44 shows the value of a negative log-likelihood (NLL) as a function of the iteration 

number.  The calibration converged after 5 iterations.  The iteration was terminated when the 

change of the input variables (the Young’s modulus and the Poisson’s ratio) to the next iteration 

was smaller than 0.1 GPa and 0.01, respectively. 

 
Figure 44.  Negative log-likelihood (NLL) values as a function of iteration number 
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Figure 45 compares the initial PDFs of two unknown variables with the calibrated PDFs.  

The mean value of Young’s modulus increases from 51 GPa to 62.8 GPa, and the standard 

deviation slightly decreases from 2.55 GPa to 2.38 GPa.  Based on the calibrated PDF of Young’s 

modulus, 99% of the Young’s modulus values are distributed within the range of [56.9 GPa, 

69.2 GPa], which is close to the variation reported in Ref. [88].  In (b), the Poisson’s ratio also 

shows an increasing mean (0.36 to 0.42) and deceasing standard deviation (0.036 to 0.015).  

Accordingly, there are 99% of the Poisson’s ratio values are located within [0.38, 0.46]. 

 

(a) 

 

(b) 

Figure 45.  Initial guesses and calibrated values of (a) Young’s modulus and (b) Poisson’s ratio of 
SAC305 solder 
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Figure 46 compares the experimentally obtained CTF histogram with the predicted PDFs 

of CTF using the initial guesses of input variables as well as the calibrated input variables.  The 

result clearly shows an improved agreement after calibration. 

 
 

To evaluate the validity of the calibration results, the CTF distribution of the identical LCR 

assemblies subjected to a strain level of 1200 µε was predicted by the calibrated model.  The results 

are compared with the actual test data in Figure 47.  This confirms that the calibrated model can 

accurately predict the CTF distribution of the LCR assemblies subjected to other loading 

conditions, provided that the assemblies are fabricated by the same manufacturing condition. 
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Figure 46.  PDFs of cycles-to-failure before and 
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the histogram of experimental data 
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Figure 47.  PDF of cycles-to-failure predicted by 
the calibrated model is compared 
with the histogram of experimental 
data obtained at 1200 µε strain level 
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 Discussions 

3.3.4.1. Modeling Runs  

The number of modeling runs required to complete the iterations is described below: 

(1) In each iteration, the gradients with respect to µ and  of each unknown variable had to be 

determined.  For the gradient of each µ, a total of 4N+1 modeling runs (33 = 4 x 8 + 1) had to 

be performed to construct the PDF.  For the gradient of each , however, only 4 additional 

modeling runs related to each unknown variable had to be performed because the center did 

not change.  It is worth recalling that, with the EDR method, all of one dimensional integrations 

pass through the same cut center, which is a vector of the mean values of all input variables.  

The eigenvector sampling selects this point as the center, and as long as the mean does not 

change, only four additional points of 1.5   and 3   are needed to calculate the PDF.  

Thus, a total of 74 modeling runs (= 33 x 2 + 4 x 2) were performed for each iteration. 

(2) After the gradients were determined, the values of  and    of two unknown variables were 

updated, and an additional 4N + 1 modeling runs were performed subsequently to calculate the 

calibration metric with the updated unknown input variables: 33 modeling runs. 

(3) Considering the modeling runs (33) that were performed to evaluate the calibration metric with 

the initial guesses of two unknown variables, a total of 568 modeling runs (107 x 5 + 33) were 

required to complete the calibration. 

A linear elastic analysis was used in this study, and the required modeling runs were 

handled readily by a high-performance workstation.  If a more complex assembly that requires a 

non-linear analysis is considered, the required computational burden can exceed a practical limit 

in spite of the effectiveness provided by the EDR method.  A more efficient calibration metric 
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and/or a more accurate metamodeling scheme that does not suffer from the curse of dimensionality 

are warranted for those applications. 

3.3.4.2. Reliability Prediction under Usage Condition 

Reliability of the LCR assemblies under a usage condition can be predicted by the 

calibrated model.  A typical key-press condition of the mobile phone was considered to illustrate 

the extension.  The maximum board strain of about 400 µε stain level was reported in JESD22B113 

[89], and it was used in the calibrated model.   

Figure 48 shows the left tail-end of the PDF of the solder joint fatigue life of the LCR 

assemblies under the above usage condition.  The full PDF is shown in the inset.  As an example, 

for a typical requirement of one million key-presses, only 0.001 ppm LCRs will fail before the 

requirement (i.e., the red area).  If the requirement increases to ten million key-presses, the 

probability of early failure becomes 0.0092 ppm (i.e., the yellow area). 

 

Figure 48.  PDF of cycles-to-failure under a portable device usage condition, predicted by the 
calibrated model 

The results indicate that the LCR assemblies will not likely to fail by pressing keys, but the 

calibration results obtained from the proposed method can be used effectively to assess drop 

reliability, which is more critical requirements for portable electronics. 
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 Conclusions 

The unknown statistical distributions of two effective elastic properties of SAC305 solder 

were determined by the advanced statistical model calibration using the cyclic bending test results 

of LCR assemblies.  The calibration procedure employed the advanced approximate integration 

method for an UP analysis to be able to take into account the statistical variations of six additional 

known input variables.  The cycle-to-failure distribution of the identical LCR assemblies subjected 

to a different loading level was predicted accurately by the calibrated model, which corroborated 

the validity of the proposed approach.   

It is important to note that the conventional UP analysis would require a lot more modeling 

runs, which would make the statistical calibration impractical; for example, the MCS would need 

thousands to tens of thousands of modeling runs for the PDF construction of each gradient 

calculation, and the RSM would need 58 modeling runs for the response surface construction with 

the same level of sampling resolution of the 4N+1 scheme used in this study.  

The calibrated model was further utilized to predict the reliability of the LCR assemblies 

under a usage condition - the key-press condition of mobile phones.  It is anticipated that the 

proposed methodology can be used effectively to predict a field failure rate and/or a warranty 

period of electronics products using Sn-rich solders. 
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CHAPTER 4. AN ADVANCED HDMR-BASED METAMODELING TECHNIQUE 
FOR SEMICONDUCTOR PACKAGES WITH A LARGE NUMBER OF 
INPUT VARIABLES 

4.1. Introduction 

Numerical modeling has been used widely for product development of semiconductor 

packages to understand mechanical behavior and to provide design guidelines [90-93].  When a 

large number of input variables has to be considered, the metamodel (or metamodeling) techniques, 

which are also known as response surface method (RSM), surrogate model, or reduced-order 

model, are used to cope with the challenges associated with the excessive computational burden 

[94-97]. 

The metamodeling techniques utilize simple analytical models to approximate the 

input/output relationship of numerical models, which involve two major tasks: (1) discrete sample 

points generation and (2) model choice to connect the discrete sample points [98].  These two tasks 

are combined to form the approximated response surface of a computationally expensive model.  

The studies on metamodeling have been conducted rigorously for a few decades [99-103].  It is 

clear from the literature that the metamodels have been implemented successfully for relatively 

low dimensional problems (i.e., the problems with a few number of input variables).   

As the number of input variables increases, the required modeling runs of the classical 

metamodeling methods grow rapidly.  For example, the full factorial design (FFD), as the most 

basic discrete sample points generation method, selects sN sample points, where s is the number of 

sample points along each input variable and N is the total number of input variables.  The central 

composite design (CCD) significantly alleviates the computational burden of FFD by taking 2 

sample points along each variable and the center points of each plane of the two-variable pair, but 

CCD still requests the number sample points proportional to 2N.  This is known as “curse-of-
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dimensionality”, which makes the computational cost of the metamodel construction unaffordable 

when the number of input variables is large. 

More recently, another efficient metamodeling technique, termed “High Dimensional 

Model Representation (HDMR)” [104, 105], has been introduced to engineering design 

community.  The HDMR decomposes an integrable multivariate function into multiple lower-

order component functions based on the hierarchical structure of interaction effects of the input 

variables.  For most well-defined physical systems, the high-order interactions are negligible [105, 

106], and thus, the performance responses can be approximated by the sum of low-order 

component functions.  A family of HDMRs have been developed to serve for different purposes 

using various component functions [74, 104, 107-109].  Among the HDMR family, the Cut-

HDMR based methods are most widely used because of the simplicity of the component functions 

(i.e., the component functions do not require integrations).  If the Cut-HDMR based methods use 

the component functions up to Lth order, the computational cost reduces from the exponential 

scaling of ~ sN of the classical metamodels to a polynomially increasing of ~   !
L

Ns L  [101].   

For semiconductor packaging products, it is often to have a large number of input variables 

and non-negligible second-order interaction effects.  Even employing Cut-HDMR based methods, 

the required number of model runs is proportional to  2
2Ns , which is still impractical for many 

semiconductor packaging applications.   

The other limitation of implementing the current metamodeling techniques for 

semiconductor package products is the requirement that input variables be independent from each 

other.  In general, the input variables of semiconductor packages are statistically linearly dependent, 

which is also known as statistically correlated.  Figure 49 illustrates the effect of the assumption 

of independency on the cases where the input variables are correlated.  In the figure, the green 
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diamonds represent existing EMC materials obtained from data sheets [110].  A strong negative 

correlation exists because the higher filler percentage of low-CTE silica particles results in the 

lower CTE and the higher elastic modulus.  On the other hand, the red dots illustrate the sample 

points without considering the correlation.  It is clear that the sample points at the upper-right and 

lower-left corners contain unrealistic CTE and Young’s modulus combinations.  These sample 

points are wasted in the metamodel construction; in some cases, they can twist the metamodel.  To 

the author’s best knowledge, there are no existing metamodeling techniques that can handle the 

statistical correlations of the input variables. 

 

 
Figure 49.  Illustration of the independence requirement of input variables on the sampling strategy 

 
 

The objective of this paper is to propose an advanced Cut-HDMR based metamodeling 

technique, called partitioned bivariate Cut-HDMR (PB Cut-HDMR), to cope with the above-

mentioned challenges for semiconductor package products. 
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Section 2 provides background of the current Cut-HDMR based methods.  Section 3 

describes the proposed PB Cut-HDMR.  In Section 4, the proposed method is implemented to 

construct the metamodel for the warpage prediction of a thin flat ball grid array (TFBGA) assembly.  

Finally, conclusions are drawn in Section 5. 

4.2. Background: Cut-HDMR Based Methods 

The HDMR expansion is performed based on the interaction effects of the input variables.  

The term “interaction” employed here means the effect of variables on the performance response 

when more than one variables act together.  This is distinctly different from the term “correlation” 

employed in statistics, which represents whether and how strongly pairs of random variables are 

related.  A general form of HDMR is defined as [104]: 
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 (51) 

where  y x  is the performance response function; 0y  is a constant representing the mean of the 

performance response, which is called “zeroth-order effect”;  i iy x  represents the effect when the 

variable ix  acts independently on  y x , which is called “first-order effect” or “main effect”; 

 ij i jy x x,  is the effect on  y x  when the variables ix  and jx  act together, which is called 

“second-order effect” or “bivariate interaction effect”.  It should be noted that  ij i jy x x,  excludes 

the main effects of ix  and jx  as well as the mean effect.  The subsequent terms indicate the higher 

order interaction effects of more variables acting together on  y x .  The last term 

 12 1 2N Ny x x x , , ,  represents the residual influence. 
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The Cut-HDMR expresses  y x  as a superposition of value of  y x  on a point called “cut” 

center as well as lines, planes and hyper-planes (called cuts) passing through the “cut” center.  For 

a chosen “cut” center, 0x


, the component functions of the Cut-HDMR are defined as [104]: 
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where 
0 0 00 1 2 Nx x x x   

 , , , ; 0
ix


 is 0x


 without the element ix ; 0
ijx


 is 0x


 without the elements, 

( , )i jx x , and so on; and  0
i

iy x x


,  is a 1-D performance response function along the ix  direction 

that passes through 0x


;  0
ij

i jy x x x


, ,  is a 2-D performance response function of the ( , )i jx x  plane 

that passes through 0x


, and so on.  The complicated N-dimensional performance response function 

is decomposed and expressed as a superposition of low dimensional performance response 

functions.  The Cut-HDMR uses only arithmetic computation to determine the component 

functions, and thus, it has the least amount of computational cost comparing to other HDMRs [74, 

104].   

It has been shown that the mean values of the input variables are the optimal “cut” center 

when the terms only up to the second-order are considered [111].  Accordingly, the metamodel 

based on the bivariate Cut-HDMR can be obtained by substituting Eq. (52) into Eq. (51) with the 

“cut” center being the mean values of input variables, which is written as [112]: 
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where  1 2, , , N      is the vector of mean values of N input variables; i  is   without the 

element i ; ij  is   without the elements, ( , )i j  ;  , i
i iy x   is the 1-D function indicating the 

underlying function along the ix  direction that passes through  ; and  , , ij
ij i jy x x   is a 2-D 

functions representing the underlying function on the ( , )i jx x  plane that passes through  .   

Figure 50 illustrates the concept of the Cut-HDMR with a 2-D function, where the 

underlying function is decomposed into four component functions.  Figure 50(a) shows the 

underlying 2-D function as the black meshed surface and the dot represents the zeroth-order effect, 

which is a constant.  In (b), the blue curve is the performance response along x1 direction while 

keeping x2 as µ2, and the green line is the zeroth-order effect along x1 direction.  The main effect 

of x1 is the red curve, which is obtained by subtracting the green line from the blue curve.  The 

same procedure can be applied to obtain the main effect of x2, as shown in (c).  In (d), the blue 

surface is obtained by the superposition of the red curves in (b) and (c), which represents the 

performance response without interaction effects.  The green plane is the zeroth-order effect.  By 

subtracting the blue surface and the green plane from the black surface, the interaction effect of 

the (x1, x2) pair is obtained, and it is shown as the red surface. 

 



99 

  
 (a) (b) 
 
 

 
 (c)  (d) 
 

Figure 50.  Illustration of Cut-HDMR using a 2-D function (a) underlying 2-D function and  zeroth-
order effect, (b) main effect of x1, (c) main effect of x2, and (d) interaction effect. 

 
Several Cut-HDMR based methods, including the Cut-HDMR with Lagrange 

interpolation polynomial (LIP) [112], moving least squares (MLS) [74], and radial basis function-

HDMR (RBF-HDMR) [109], have been developed to construct multiple 1-D and 2-D metamodels 

to estimate the 1-D functions and 2-D functions in Eq. (53) and combine them to form the N-

dimensional metamodel. 
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In the original form, the Cut-HDMR [105] employees a look-up table but did not provide 

the guidelines of how to build it.  To provide a more systematic sampling approach, the LIP and 

MLS were adopted to approximate the performance response using uniformly distributed sample 

points.  For univariate terms, say a total of s sample points are distributed along each input variable, 

the reference point is the center and the remaining (s − 1) samples are evenly located at both side 

with respect to the reference point.  For the bivariate terms, the sample points form a uniform gird 

on a plane with the reference point as the center. 

The number of modeling runs to construct a bivariate Cut-HDMR metamodel using the 

LIP or MLS, can be generally expressed as: 

 
     21

1 1 1
2

N N
c s N s


      (54) 

where s is the number of sample points taken along the direction of each input variable.     

Based on Eq. (54), it is clear that the majority of modeling runs comes from the bivariate 

terms.  The effect sparsity principle of the factorial experiments states that the number of relatively 

significant bivariate terms is small  [113, 114].  This principle is corroborated by numerous 

parametric studies for semiconductor packages in the literature [115-117].   

If the bivariate terms in HDMR can be partitioned into significant terms and minor terms, 

the computational cost of construction of 2-D metamodels for the bivariate terms can be reduced 

by spending the expensive modeling runs on the significant terms only. 

The RBF-HDMR is developed to express the Cut-HDMR with an explicit model form for 

high dimensional design optimization problems and propose an accompanying sampling strategy 

further reduces the required modeling runs of LIP or MLS bivariate Cut-HDMR by using less 

sample point for the linear univariate and bivariate terms as well as employing the concept of 

spending modeling runs on significant bivariate terms only.  The RBF-HDMR, however, 
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determines the interaction effects and nonlinearity based on randomly selected sample points, 

which can possibly fail to identify some significant bivariate terms.  In addition, there is lack of 

study on the effect of different RBFs on the prediction accuracy, and the metamodel is accurate 

only when the selected RBFs can represent the underlying functions.   

4.3. Proposed Partitioned Bivariate Cut-HDMR (PB Cut-HDMR) 

The proposed PB Cut-HDMR is presented.  First, the challenge associated with correlated 

input variables is handled by transforming the correlated input variables into a new set of 

uncorrelated input variables.  Then, the effects of univariate terms and bivariate terms of the 

transformed input variables are quantitatively ranked of partitioned for the reduction of 

computational cost.  A detailed procedure of incorporating the two critical components to form a 

metamodel is followed.  Finally, the validity of the proposed approach is checked using five typical 

mathematical examples.  

 Transformation of Correlated Input Variables to Uncorrelated Input Variables 

For the semiconductor package products, if exist, the statistical dependencies are generally 

linear.  In the probability theory and statistics, the degree of linear dependency and the joint 

variability of two random variables is measured by covariance [118], which can be expressed as: 

     Cov i j ij i i j jx x E x x       ,  (55) 

where E[ꞏ] is the expectation operator; μi and μj are the mean values of the input variable xi and xj, 

respectively. 

For N input variables, the covariance of each pair and the variance of each input variable 

can be summarized into a matrix, called the covariance matrix, which is expressed as [22]: 
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 (56) 

where 2 2
1 , , N   are the variance of the N input variables and ij ji    is the covariance of the 

input variables xi and xj.  When two input variables are uncorrelated, 0ij ji    .  When the input 

variables xi and xj are correlated, the covariance ij  should be determined through either 

measurements [119] or statistical analyses [7]. 

The covariance matrix can be used to convert the correlated variables into a set of linearly 

uncorrelated variables using the eigen-decomposition of covariance matrix.  The eigen-

decomposition of covariance matrix has been widely used in the design community.  For example, 

the principal component analysis (PCA) [120] uses the eigenvalues and eigenvectors of the 

covariance matrix to explain the data with fewer variables, which best explain the variance in the 

data.  An advanced uncertainty propagation analysis, called eigenvector dimension reduction 

(EDR) method [22], chooses sample points along the eigenvectors to calculate the statistical 

moments, because the eigenvectors are orthogonal and reveal the correlation of input variables. 

The same concept is adopted in this study to handle the statistical correlation of input 

variables.  The eigen-decomposition is performed by solving the eigenvalue problem (i.e., 

U U  ) of the covariance matrix to obtain the eigenvalues,  , and the corresponding 

eigenvectors, U .   

The matrix consists of N eigenvectors indicate a new coordinate system such that N new 

input variables are statistically independent, and thus, the transformation from correlated input 
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variables,  1

T

Nx x x , , , to uncorrelated input variables,  1

T

Nz z z , , , can be achieved by 

coordinates transformation as: 
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 (57) 

where 0iju  , if the  ,i jx x  pair does not have statistical correlation. 

After the transformation, the new range of design space along each new input variables can 

be obtained as 3z i i _ , where z i _  is the mean vector the new input variables but is equal to 

the mean vector the original input variables, i ; i  is the standard deviation of each new input 

variable. 

The following ranking and partitioning of bivariate terms will be conducted using the new 

input variables and design space. 

 Ranking and Partitioning of Bivariate Terms using HDMR-Factorial Design Hybrid 

Method 

As mentioned before, the bivariate terms in the Cut-HDMR representing the interaction 

effect of two input variables on the performance response.  A factorial experimental designs is the 

most common method to evaluate interaction effects.  The results from a factorial design are often 

analyzed using the effect model of analysis of variance (ANOVA) [113, 121].  In the two level 

factorial design with N input variables (referred to as 2N design), each input variable takes two 

discrete values referred to as “high” and “low” levels, which are often represented as “+1” and 

“−1” using an indicator variable di for the ith input variable, xi [122].  Define 1k k N kd d d   


_ _, ,  
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is the kth combination of the indicator variables (referred to as the kth treatment), the ANOVA effect 

model can be expressed as [121, 123]: 

 
1 1

1

0
1 1 2

N N

jN N

k i i k ij i k j k i i i k i k
i i j

y d d d d d   


  

       _ _ _ _ _  (58) 

where yk is the performance response under the kth treatment; β0 is the mean response; i  is the 

main effect of xi,; ij  is the interaction effect of ix  and jx , and so on.   

 Eq. (58) can be rewritten as [123]: 

 
1 1

1

0
1 1 2

N N

jN N

k i i k ij i k j k i i i k i k
i i j

y D d d d d d   


  

        _ _ _ _ _  (59) 

In the above equation, D is the deviation of performance response from the mean response while 

subjected to the kth treatment (reffered to as the total variability), which can be decomposed into a 

sum of the deviations contributed by each input variable acting individually  i , two input 

variables acting together  ij , and so on (refferred to as the partial variabilitys). 

By normalizing the absolute values of partial variabilities using the absolute value of total 

variability, an ANOVA-based sensitivity indices are defined as [123]: 

 1

1

N

N

i i

i iS
D







 (60) 

where i iS D  is the first-order sensitivity index that provides a measure about the ratio of 

the variability contributed by ix  alone to the total variability; ij ijS D  is the second-order 

sensitivity index representing the ratio of the partial variability contributed by the interaction 

between ix  and jx  to the total variability.   

It is worth noting that the ANOVA model is conceptually the same as the HDMR approach, 

which can be seen as an HDMR expansion considering the linear parts of every component 
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function.  Therefore, the sensitivity indiecs can be used to partition the bivariate terms of Cut-

HDMR in two steps: (1) ranking the first-order and second-order sensitivity indices from the 

maximum to minimum, and (2) converting the maximum allowable prediction error to the 

percentage of the total variability as the partition criteria.  For example, if the total variability is 

30 µm and the maximum allowable prediction error is set as 1.5 µm, then, the partition criterion 

becomes 5%, and thus, the sum of ranked effects up to (100% − 5%) are the significant terms. 

In general, 2N sample points are required to estimate every coefficient in Eq. (58) [113, 

122], which makes the computational cost increase rapidly as the number of input variables 

increases.  When the goal is to distinctively evaluate the two-variable interaction effects, one can 

select a fraction of the 2N sample points to estimate the corresponding coefficients, called the 

fractional factorial design with resolution V [122].  It is, however, not always available for high 

dimensional problems. 

Due to the hierarchical structure of Cut-HDMR, the univariate terms must to be obtained 

before the construction of the bivariate terms, and thus, this paper proposes an approach to estimate 

the coefficients of the ANOVA effect model using the existing univariate terms with only one 

additional modeling run per each bivariate pair.  

Along each input variable, five sample points are located at the mean value, i , upper 

bound, iUz , lower bound, iLz , and the points at   2i iU iz    and   2i i iLz    of the input 

variable, iz .  Five sample points with MLS interpolation has been proven to provide sufficient 

accuracy for structural analysis [74], and thus, the five sample points are adopted in this study.  

After obtaining the performance responses of the sample points of the univariate terms, the main 

effects can be estimated as: 

         i i
i iU iLy z y y z y         ˆ max , , ,  (61) 
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where  y  ,  i
iUy z ,  and  i

iLy z ,  are the performance responses at the corresponding 

sample points.  Eq. (61) determines which value between the effect caused by iUz  and iLz  is larger.    

one of which causes a larger effect is denoted as i mainz _ . 

For each pair of ix  and jx , an additional modeling run is performed at the  i main j mainz z_ _, , 

because at least one of the parent main effects should be sufficiently large to make an interaction 

effect signigicant, which is called the effect heredity principle [113, 114].  Then, the interaction 

effect can be estimated by: 

        ij i j
ij i main j main i main j mainy z z y z y z y         

   
_ _ _ _

ˆ , , , ,  (62) 

where      i j
i main j mainy z y z y     

  
_ _, ,  is the superposition of the main effects and the 

mean effects. 

 Figure 51 illustrates the proposed HDMR-factorial design (HDMR-FD) hybrid method.  In 

this figure, the red dots represent the modeling runs for the univariate terms, which are used to 

produce the blue meshed surface by using superposition and interpolation.  The black meshed 

surface is the underlying function on the ( , )i jx x  plane, and the green diamond is the perfomance 

reseponse obtained from the additional modeling run.  The differece between the green diamond 

and the blue surface is the interaction effect, which is equvilent to the ij  of the ANOVA effect 

model. 
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Figure 51.  Illustration of HDMR-FD hybrid method 

 

 The total variability, D, can be obtained by performing one additional run, which  can be 

expressed as: 

    
1 Ni main i mainD y z z y   _ _, ,   (63) 

Finally, the sensitivity indices can be calculated uisng Eq. (60) to (63) for ranking and 

partitioning the bivariate terms. 

 Procedure of PB Cut-HDMR 

A detailed procedure of PB Cut-HDMR is described below.  A numerical example with 10 

input variables [109] accompanies the procedure to provide a better understanding.  The response 

function of this example is expressed as: 

 
       
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          

        
 (64) 
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where all variables are independent and ranged between -10 to 11, and only the 1 2x x  pair has an 

interaction effect. 

(1) Check if any statistical correlation exists among the input variables.  If yes, perform the 

eigen-decomposition of the covariance matrix to transform the correlated input variables, 

ix , to the uncorrelated input variables, iz .  There is no statistical correlations among the 

10 input variables in the example, and thus, i iz x . 

(2) Perform numerical modeling at the point,  1 2, , , N     , to obtain  y  , where each 

input variable takes its mean value.  In the example,  y   = 1204.5 at the point, 

 0 5,0 5,0 5,0 5 0 5,0 5 0 5,0 5,0 5,0 5  . . . . , . . , . . . . . 

(3) Perform numerical modeling at the total of 4N sample points for the N univariate terms and 

estimate the main effects using Eq. (61).  Table 23 lists i mainz _  and the corresponding 

performance responses and main effects. 

Table 23  i mainz _  and corresponding main effects  

Variables i mainz _  Performance response Main effects 

x
1
 -10 1446.00 241.50 

x
2
 -10 1467.00 262.50 

x
3
 -10 1514.25 309.75 

x
4
 -10 2023.50 819.00 

x
5
 -10 1367.25 162.75 

x
6
 -10 1446.00 241.50 

x
7
 11 1808.25 603.75 

x
8
 -10 3519.75 2315.25 

x
9
 -10 1824.00 619.50 

x
10

 -10 1451.25 246.75 
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(4) For each pair of ix  and jx , perform numerical modeling at the ij
i main j mainz z   


_ _, ,  and 

estimate the interaction effect using Eq. (62).  A total of 45 bivariate terms exist for 10 

input variables.  For illustration, Table 24 lists the results of a pair having interaction effect 

( 1 2x x  pair) and a pair having no interaction ( 1 3x x  pair).  Other pairs have the same 

interaction effect as the 1 3x x  pair. 

Table 24  Illustration of the results of the pair having interaction effect and the pair having 
no interaction 

Bivariate 
pair i main j mainz z  _ _,  

Performance 
response 

Superposition of 
main effects 

Interaction effects 

x
1
x

2
 [-10, -10] 1818.75 1708.50 110.25 

x
1
x

3
 [-10, -10] 1755.75 1755.75 0 

 

(5) Perform numerical modeling at 
1 Ni main i mainz z  _ _, ,  to estimate the total variability, D, 

using Eq. (63).  In this example, 7 11mainz _  and all other nine values are equal to −10.  The 

performance response,  
1 Ni main i mainy z z_ _, ,  = 7137. 

(6) Calculate the sensitivity indices and rank the main effects and the interaction effects.  The 

results from the example are listed in Table 25. 

Table 25  First order and second order sensitivity indices  

Variable 
Sensitivity 

index 
Variable 

Sensitivity 
index 

Variable 
Sensitivity 

index 

x
8
 0.390 x

3
 0.052 x

6
 0.041 

x
4
 0.138 x

2
 0.044 x

5
 0.027 

x
9
 0.104 x

10
 0.042 x

1
x

2
 0.019 

x
7
 0.102 x

1
 0.041 

x
1
x

3, …,  
x

9
x

10
 

0 
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(7) Partition the bivariate terms based on the application specific tolerance.  In this example, 

100% of the total variability is contributed by the main effect plus the only one significant 

bivariate term. 

(8) Perform numerical modeling at the uniformly spaced sample points for the significant 

bivariate terms.  The approximated response surface (the green surface) using the sample 

points (the red dots) with MLS interpolation is compared with the underlying function (the 

black meshed surface) of the 1 2x x  pair in Figure 52.  The results clearly show that they are 

virtually identical. 

 
Figure 52.  Comparison of true response and approximated response surface with 2-D MLS 

interpolation for significant bivariate terms 
 

(9) Approximate the bivariate terms with minor interaction by superposing the corresponding 

univariate terms.  In Figure 53, the true response surface of the 1 3x x  pair (the black meshed 

surface) is compared with the approximated surface (the light blue surface).  The 

approximated surface is obtained by the superposition of the univariate terms of 1x  and 3x , 

which are interpolated through the nine sample points (red dots).  It is clear from the results 
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that the 2-D metamodel can be accurately constructed even when the underlying function 

is nonlinear as long as the interaction effect is minor. 

 
Figure 53.  Comparison of true response and approximated response surface from superposition of 

the corresponding main effects for minor bivariate terms 
 

(10) Construct the metamodel using Eq. (53).   

 

Based on the procedure, the overall computational cost of the PB Cut-HDMR can be 

expressed as: 

 
     21

+1 1 1 1 1
2 s

N N
c N s N s

             
 (65) 

where s is the number of sample points taken along the direction of each input variable, N is the 

number of input variables, and sN  is the number of significant bivariate terms. 

A simplified DoE case with 2 levels was conducted considering three variables, 1x , 2x , 

and 8x  as the design variables to evaluate the accuracy of the metamodel.  Table 26 shows the 

prediction results of three approaches: the univariate and bivariate Cut-HDMR as well as the PB 

Cut-HDMR.  As expected, the predictions of the univariate Cut-HDMR deviated from the true 
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value since the interaction effect was ignored.  On the other hand, the PB Cut-HDMR and the 

bivariate Cut-HDMR predicted the true response in this numerical example.  It is important to note 

that the PB Cut-HDMR used only 102 modeling runs without compromising accuracy, which was 

substantially smaller than 761 modeling runs required for the bivariate Cut HDMR. 

 
Table 26  Comparison of the prediction results of univariate Cut-HDMR, bivariate Cut-HDMR 

and PB Cut-HDMR 

DoE Leg 1 2 3 4 5 6 7 8 

x
1
 -5 -5 -5 -5 6 6 6 6 

x
2
 -9 -9 8 8 -9 -9 8 8 

x
8
 -6 10 -6 10 -6 10 -6 10 

Performance responses 

True 2,835 2,593 2,461 2,406 819 577 445 390 

Uni. Cut-
HDMR 

2,783 2,645 2,502 2,365 767 629 486 349 

Bi. Cut-HDMR 2,835 2,593 2,461 2,406 819 577 445 390 

PB Cut-HDMR 2,835 2,593 2,461 2,406 819 577 445 390 

 

 Validity Check of PB Cut-HDMR 

  The performance metrics widely used to evaluate the efficiency and accuracy of a 

metamodel is described first.  The validity check results are followed.   

4.3.4.1. Performance Metric 

As the critical requirement of metamodeling for high dimensional problems, the model 

efficiency is commonly represented by the number of modeling runs (i.e., sample points).   

For the model accuracy, three performance metrics, namely R square, relative average 

absolute error (RAAE) and relative maximum absolute error (RMAE), are widely used to verify 

the validity of metamodeling techniques [100, 109].  The metrics are described below. 
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(1) R square 
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ˆ
 (66) 

where  iy x  is a performance response at the ith new sample point used for validity check;  iy xˆ  

is an approximated performance response at the ith new sample point; and  iy x  is the mean of all 

 iy x .  R square indicates the overall accuracy of a metamodel.  Its value is a quantitative 

indication of metamodel accuracy, and the maximum value is 1.  

(2) RAAE 
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m

i ii
y x y x
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
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


 ˆ
 (67) 

where STD is the standard deviation of all  iy x .  Similar to R square, RAAE represents the 

overall accuracy, but its value closer to zero indicates better accuracy. 

(3) RMAE 

 
            1 1 2 2 m my x y x y x y x y x y x

RMAE
STD

  


ˆ ˆ ˆmax , , ,
 (68) 

The RMAE represents the local accuracy by measuring the maximum error among the sample 

points.  Thus, the smaller value is desired.  

To be consistent with Ref. [109], 1000 new sample points were generated by MCS to 

evaluate the accuracy of the PB Cut-HDMR. 

4.3.4.2. Numerical Examples 

In Ref. [109] and [124], a total of 20 mathematical test functions were selected to test the 

effectiveness of metamodel for high dimensional problems.  The test functions that were not 

applicable to the objective of this paper were excluded: (1) equally important two-variable 
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interactions, (2) no interactions, and (3) dominant high-order interactions.  The five test functions 

used for the comparison study are listed in Table 27.   

Table 27  Test functions 

No. Function Design space 

1 

  10

1
1 10

ln i
i ii

x
y x x c

x x

  
       
 

, where 

 
 

1 5

5 10

6 089 17 164 34 054 5 914 24 721

14 986 24 100 10 708 26 662 22 179

i

i

c

c





     

     




, ,

, ,

. , . , . , . , .

. , . , . , . , .
 

1 6 10

1 10
iE x

i

  

 
,

, ,
 

2 
       

       

2 2 22 2
1 2 1 2 1 2 3 4 5

2 2 2 22
6 7 8 9 10

14 16 10 4 10 3

2 1 5 +7 11 2 10 7 45

y x x x x x x x x x x

x x x x x

          

        
 

10 11

1 10
ix

i

  

 
,

, ,
 

3         292 2 2
1 10 11

1 1 +10 10 i ii
y x x x i x x 

       
3 2

1 10
ix

i

  

 
,

, ,
 

4 

    16 16 2 2

1 1
1 1ij i i j ji j

y x a x x x x
 

      , where 

1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1

0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0

ija 

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 5

0 5

1 16

i

j

x

x

i j

 

 

 

,

,

, , ,

 

5          5 2 2 4 4

5 10 15 5 10 151
10 5 2 10i i i i i i i ii

y x x x x x x x x x     
           

2 5

1 20
ix

i

  

 
,

, ,
 

 

Table 28 summarizes the values of three performance metrics and the number of sample 

points (denoted as NoP) for PB Cut-HDMR and the full bivariate Cut-HDMR.  The results indicate 
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that PB Cut-HDMR provides virtually the same accuracy as the full bivariate Cut-HDMR, but 

offers significant improvement in efficiency.  

Table 28  Comparison of performance metrics for full bivariate Cut-HDMR and PB Cur-HDMR 
 

Full bivariate Cut-HDMR 

Function R square RAAE RMAE NoP 

1 1.00 0.002 0.014 761 

2 1.00 0.000 0.000 761 

3 1.00 0.034 0.125 761 

4 1.00 0.002 0.006 1,985 

5 1.00 0.026 0.074 3,121 

PB Cut-HDMR 

Function R square RAAE RMAE NoP 

1 1.00 0.002 0.013 87 

2 1.00 0.000 0.000 102 

3 1.00 0.033 0.105 222 

4 1.00 0.002 0.005 636 

5 1.00 0.028 0.122 422 

 

4.4. Implementation of PB Cut-HDMR: Warpage Prediction of Thin Flat Ball Grid Array 

In this section, the PB Cut-HDMR was implemented to construct the metamodel for 

warpage prediction of a thin flat ball grid array (TFBGA) involving 12 input variables.  The finite 

element model and the design space are described first.  The metamodel construction and the 

accuracy check results are followed. 

 Problem Description   

The thin flat ball grid array (TFBGA) package is often used as the top package of a 

Package-on-Package (PoP).  The warpage of TFBGA at the solder reflow temperature is a critical 
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factor for a successful PoP stacking.  Figure 54 shows details of the finite element model with the 

boundary conditions build by using a commercial FEA package (ANSYS®).  A quarter symmetry 

was applied.  The top TFBGA package contains two dies and the die stack configuration is shown 

the white dashed lines.  

 
Figure 54.  Configuration of TFBGA assembly and details of the FEA model 

 
The material properties and the nominal dimensions used in the models are summarized in 

Table 29 and Table 30.  All materials are assumed to be linear elastic in order to conduct the 

accuracy check for demonstration purpose. 

Table 29  Material properties 

Material 
Young’s 

modulus (GPa) 
Poisson’s 

Ratio 

CTE (ppm/°C) 
Tg (°C) 

α1 (< Tg) α2 (> Tg) 

Silicon die 130 0.23 2.8 -- 

DAF 
2.2 @ 25°C 

1.0 @ 100°C 
0.008 @ 100°C 

0.3 65.3 162.9 138 

Substrate 46.794 0.3 
16.2 (in-plane) 

61.5 (out-of-plane) 
-- 

EMC 

29.237 @ 25°C 
14.030 @ 125°C 
1.932 @ 175°C 
1.498 @ 235°C 

0.21 9.12 35.13 137.5 
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Table 30  Dimensions 

 length × width × thickness 

1st Die (mm) 13 × 11 × 0.575 

1st DAF (mm) 13 × 11 × 0.025 

2nd Die (mm) 11 × 9 × 0.575 

2nd DAF (mm) 11 × 9 × 0.025 

Substrate (mm) 15 × 15 × 0.13 

EMC (mm) 15 × 15 × 0.59 

 

The top package was subjected to the EMC molding process at 175 °C, which was used as 

a stress free temperature.  The conventional lead-free solder reflow profile with the peak 

temperature as 260 °C was considered [28].   

In this study, a total of 12 input variables were considered for the TFBGA package.  Their 

means and standard deviations were obtained from the literature as well as the manufacturing 

specifications [31, 60-63].  The design space is defined as the mean ± three standard deviations 

and summarized in Table 31.   Among these 12 input variables, the EMC thickness, x3, and the 

substrate thickness, x4, has a statistical correlation because their sum should be equal to the cavity 

height of the transfer mold [7].  In addition, the CTEs of the EMC below and above Tg, x9 and x10, 

are measured from the same samples, and thus, they should have strong positive correlation, which 

can be presented by a correlation coefficient of “unity”. 
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Table 31  Input variables and design space 
 

Variable Physical meaning Mean Std. Dev. Design space 
Correlation 
coefficient 

x
1
 PKG length (mm) 15 0.033 [14.9, 15.1] 

-- 
x

2
 PKG width (mm) 15 0.033 [14.9, 15.1] 

x
3
 EMC thickness (mm) 0.59 0.029 [0.502, 0.678] 

-0.35 
x

4
 PCB thickness (mm) 0.13 0.01 [0.102, 0.158] 

x
5
 1st Chip thickness (mm) 0.0575 0.001 [0.0545, 0.0605] -- 

x
6
 2nd Chip thickness (mm) 0.0575 0.001 [0.0545, 0.0605] -- 

x
7
 1st DAF thickness (mm) 0.025 0.00375 [0.01375, 0.3625] -- 

x
8
 2nd DAF thickness (mm) 0.025 0.00375 [0.01375, 0.3625] -- 

x
9
 EMC CTE above Tg (ppm/°C) 35.13 4.24 [21.989, 48.271] 

1 
x

10
 EMC CTE below Tg (ppm/°C) 9.12 1.1 [9.12, 9.12] 

x
11

 PCB CTE (ppm/°C) 16.2 0.81 [13.77, 18.63] -- 

x
12

 PCB modulus (MPa) 46794 159 [46317, 47271] -- 

 

 Metamodel Construction by PB Cut-HDMR 

The same procedure as shown in Section 4.3.3 was carried out.  The difference is that the 

TFBGA assembly has two pairs of correlated input variables.  Figure 55(a) and (b) show the 

transformed variables after eigen-decomposition of the covariance matrix for the 3 4x x  pair and 

9 10x x  pair, respectively, where the red and blue lines indicate the directions before and after 

transformation, respectively.  Moreover, in the figure, the light red box indicates the design space 

before transformation, while the light blue box is the design space after transformation.  The green 

dots are the possible design points generated while considering the statistical correlation.  It is 

clear that the design spaces after transformation have much less waste area than the design spaces 

ignoring the statistical correlation. 



119 

  
 (a)  (b) 
 
Figure 55.  Transformation of input variable directions and design space change after eigen-

decompostion of covariance matrix. (a) 3 4x x  pair and (b) 9 10x x  pair. 

 
For 12 input variables, simulations at 49 sample points were performed for the univariate 

terms while taking 5 sample points along each input variable direction.  Figure 56 plots the 

performance responses along each input variable.  A low degree of nonlinearity is clearly seen, 

which is beneficial to the metamodel construction.  

 
Figure 56.  Warpages at the sample points along each input variable 
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Then, 67 modeling runs were conducted to calculate the sensitivity indices.  The result is 

listed in Table 32.  It is worth noting that there is no clear cut of the sensitivity indices.  Setting 

the maximum allowable error is 5 µm, which is about 2.5% of the total variability of 198.6 µm.  

Accordingly, the 12 main effects plus the first 16 pairs of the bivariate terms are expected to 

explain 97.5% of the total variability and meet the criterion.  Each of the 16 terms needs 15 

additional modeling runs to construct the 2-D metamodel, and thus, 240 modeling runs are required.  

In summary, the PB Cut-HDMR took a total of 356 (49 + 67 + 240) modeling runs. 

 

Table 32  Sensitivity indices of the TFBGA warpage prediction 

Variable Si Variable Sij Variable Sij 

z
9
 0.3407 z

4
z

9
 0.0273 z

3
z

5
 0.0032 

z
3
 0.1903 z

3
z

11
 0.0223 z

5
z

6
 0.0015 

z
11

 0.1270 z
3
z

9
 0.0219 z

3
z

7
 0.0015 

z
4
 0.1186 z

4
z

7
 0.0117 z

2
z

3
 0.0012 

z
7
 0.0283 z

7
z

9
 0.0094 z

8
z

11
 0.0009 

z
5
 0.0146 z

8
z

9
 0.0063 z

1
z

3
 0.0009 

z
8
 0.0099 z

4
z

11
 0.0062 z

2
z

4
 0.0008 

z
6
 0.0093 z

3
z

4
 0.0044 z

5
z

11
 0.0008 

z
12

 0.0028 z
5
z

9
 0.0043 z

7
z

11
 0.0008 

z
2
 0.0014 z

4
z

8
 0.0038 z

1
z

4
 0.0008 

z
1
 0.0005 z

6
z

9
 0.0035 z

11
z

12
 0.0008 

z
10

 0 z
9
z

11
 0.0033 rest terms ≤ 0.0007 

 

Besides the sample points for metamodel construction, 500 new sample points were 

generated by MCS to assess the accuracy of PB Cut-HDMR in this real semiconductor application.  

The R square was 1.00, RAAE was 0.009, and the RMAE is 0.039.  These results show that the 

PB Cut-HDMR maintains the same level of accuracy in the real application and the numerical 
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examples.  Moreover, the standard deviation of the warpages at the 500 new sample points is 51 

µm.  Back calculated from RMAE, the maximum absolute error of these 500 sample points is 1.99 

µm, which is, as expected, less than the maximum allowable error (5 µm).   Figure 57 shows the 

histogram of the errors, where 91.4 % of the sample points has the absolute error smaller than 

1 µm. 

 
Figure 57.  Histogram of errors at the sample points for validity check 

 

4.5. Conclusion 

This paper proposed an advanced metamodeling technique, called PB Cut-HDMR, for the 

semiconductor packaging products, which has a large number of input variables with both 

statistical correlation among input variables and interaction effects on the performance response.  

The PB Cut-HDMR utilizes the eigen-decomposition of the covariance matrix to handle the 

correlated input variables, which has not been solved by the current metamodeling techniques.  In 

addition, a HDMR factorial design hybrid method is developed to effectively and deterministically 

partition the bivariate terms of HDMR into significant pairs and minor pairs and spending the 
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expensive numerical modeling on the significant bivariate terms only, and thus, the “curse of 

dimensionality” is alleviated or circumvented.  

The performance of PB Cut-HDMR was evaluated though five typical numerical examples 

and compared with full bivariate Cut-HDMR and confirmed to have virtual identical accuracy but 

substantially improvement was made for efficiency. 

The proposed method was implemented into a real semiconductor package problems for 

prediction of warpage at reflow temperature.  A total of 12 input variables and two pairs of 

correlated input variables are considered.  The accuracy and efficiency of the proposed method in 

real application was revealed through this demonstration. 

Future research aims to effectively evaluate the nonlinearity of each terms and improve the 

sampling strategy based on nonlinearity for further reduction of computational cost.  In addition, 

an extension of the HDMR-FD method to handle an even larger number of input variables (say, > 

20) is also part of the future research.  
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CHAPTER 5. CONTRIBUTIONS AND FUTURE WORKS   

5.1.  Dissertation Contributions 

Stochastic reliability modeling capabilities are developed and implemented for 

semiconductor packaging problems with a very large number of input variables (> 10 input 

variables) in three critical areas for semiconductor packaging product development: (1) prediction 

of tail-end probability (i.e., assembly yield loss) by advanced uncertainty propagation (UP) 

analyses, (2) determination of the statistical distributions of unknown design and/or manufacturing 

parameters by advanced statistical model calibrations, and (3) determination of the performance 

response of high-dimensional problems by developing an advanced metamodeling scheme.  The 

most significant contributions made in this dissertation are summarized below: 

•   An comprehensive stochastic model is proposed and implemented to predict PoP stacking yield 

loss.  The major contributions are (1) to cope with the number of input variables which has 

been conceived as the practical limit with 25 times to thousands times reduction of modeling 

runs for the tail-end probability prediction of semiconductor package products and (2) to 

propose a model utilizing the PDFs of five critical performance responses (the warpages and 

the solder ball heights of the top and bottom packages, and the solder joint height of the corner 

pad) at hundreds pad locations at the stacking interface to take into account their statistical 

variations and correlations for accurate yield loss prediction.  The model can be used 

effectively to control the input uncertainties, and thus to achieve a yield goal for a given set of 

PoP designs. 

•  The unknown statistical distributions of two effective elastic properties of SAC305 solder joint 

of leadless chip resistors (LCRs), induced by an assembly condition, are inversely determined 

from the full set of cyclic bending test results of LCR assemblies using the advanced statistical 

model calibration.  During the calibration, the effects of other known input variables are taken 



124 

into account by employing the EDR method for UP analysis.  The cycles-to-failure distribution 

of the identical LCR assemblies subjected to a different loading level is predicted accurately 

by the calibrated model, which corroborates the validity of the proposed approach. 

•  An advanced metamodeling scheme, called partitioned bivariate Cut-high dimensional model 

representation (PB Cut-HDMR), is developed to fulfill unique feature of the semiconductor 

package products, i.e., a large number of input variables and both statistical correlations among 

input variables and some of two-variable interaction effects are significant.  The statistical 

correlation is handled by eigen-decomposition of a covariance matrix.  The latter is achieved 

by the HDMR-factorial design (HDMR-FD) hybrid method.  The validity of the proposed 

scheme is verified by comparing the performance of the proposed scheme with the full 

bivariate Cut-HDMR and the successful implementation to construct an accurate metamodel 

for a problem with 12 input variables among which 2 pairs are correlated.  The proposed 

metamodel is expected to provide a useful tool for the design optimization and statistical model 

calibration for other semiconductor package products. 

5.2. Future Works 

As a nature extension of the advancing capabilities of numerical modeling, there will be an 

increased need to incorporate the statistical analysis into the modeling for semiconductor package 

development.  The contributions by this dissertation can be extended in many directions.  Some of 

them are described below. 

 

Part I: 

Extension of capability of EDR to handle nonlinear correlations 

The EDR is developed for the cases with linear correlations among input variables.  Most 

of the input variables for semiconductor package products fall in this regime.  Extending the 
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capability of EDR to handle the nonlinear correlations, however, can further increase the 

application domain of EDR. 

 

Extension of PoP yield loss prediction model with consideration of solder bridging 

For PoP assembly, in addition to the yield loss caused by non-contact open.  The other 

critical failure mode is solder joint bridging, which causes short circuits.  By extending the yield 

loss prediction model to include the failures due to solder bridging, a more comprehensive design 

tool can be provided. 

 

Development of sampling strategy considering linearity/nonlinearity of response functions 

The current sampling scheme of EDR was determined based on the finding that 2N+1 for 

linear performance response and 4N+1 for nonlinear performance response can provide sufficient 

accuracy in numerous numerical examples.  Quantitative evaluation of the linearity/nonlinearity 

of the performance response and establishment the sampling strategies for different degree of 

linearity/nonlinearity can provide a more systematic guideline of selecting the sample points. 

 

Part II: 

Quantitative measure for the result of statistical model calibration 

The current calibration result was compared with another set of data using graphical 

comparison, which provides a rough measure of the performance of the calibration result.  From 

the perspective of semiconductor package development, it is desired to quantitatively describe the 

error associated with the calibrated model, so that, a more precise judgement can be made before 

applying the calibrated model to other loading conditions.  Challenges associate with this approach 

consist of quantifying the effects of uncertainties involved in the statistical calibration process, 
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such as the variation from the calibrated data, and then representing these effects as the variation 

of calibration result.  Since the calibration result will be a statistical distribution but contains 

uncertainty, the UP analysis of handle the input variables with uncertainty would also need to be 

taken into consideration.   

 

Extension of model calibration capability to more than two unknown input variables 

During the calibration, the PDF of performance response has to be constructed several 

times per iteration for the evaluation of objective function and the derivative of the objective 

function.  The number of PDF constructions increases as the number of unknown input variables 

grows, where each of the PDF construction will need 2N+1 or 4N+1 modeling runs.  Therefore, 

even EDR can become impractical when the number of unknown input variables is more than two. 

A solution is needed to extend the capability of statistical model calibration, which can be done by 

the incorporating the proposed PB Cut-HDMR into the calibration procedure. 

 

Part III: 

Extension of PB Cut-HDMR to reduce the number of modeling runs in ranking and partitioning 

bivariate terms 

In this dissertation, the PB Cut-HDMR method relies ranking and partitioning the bivariate 

terms.  Although the proposed HDMR-FD hybrid method uses only one additional run per 

bivariate pair, the computational cost is equal to  1 2N N  , which can prohibit PB Cut-HDMR 

when the number of input variables getting very large.  This situation could happened when a 

system level reliability to be considered, for example, the board level solder joint reliability of PoP.  

A ranking and partitioning method with even better efficiency should be investigated. 
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Extension of sampling strategy of PB Cut-HDMR to consider linear/nonlinearity of the component 

functions 

The proposed PB Cut-HDMR uses five sample points along each input variable based on 

the study done in the literature.  In reality, the component functions along each variable or on the 

plane of each pair of input variables can have different degree of linear/nonlinearity.  Five sample 

points for a linear component functions may not be necessary, while they could be insufficient for 

highly nonlinear component functions.  Consideration of linear/nonlinearity of component 

functions can avoid the waste sample points and/or help to increase accuracy.  Challenges of 

achieving this extension include the lack of proper quantitative measure of “linear/nonlinearity of 

functions” and the method of checking the nonlinearity with minimum additional computational 

cost. 
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