TECHNICAL RESEARCH REPORT

Design Choices and Usage of the Portable

CONSOL Environment
by G. Krikor

T.R. 94-53

QK
9000

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry



Design Choices and Usage of the Portable
CONSOL Environment

Gebran Krikor
June 3, 1994

Abstract: This document deals with the design choices and goals of the
Portable CONSOL project. The original version of CONSOL-OPTCAD, a
software package for the optimization-based design of engineering systems devel-
oped at the University of Maryland, was designed for use under SunOS on UNIX
workstations. The idea behind the Portable CONSOL project is to create a
portable engine which implements the functionality of CONSOL-OPTCAD but
which will make versions of CONSOL for other computer platforms possible.

Given the technological advancements since the original implementation of
CONSOL-OPTCAD, it is now feasible to have a version of CONSOL which can
be run on many different computer platforms. With personal computers now
available which are as powerful (or more powerful) than the UNIX workstations
for which CONSOL-OPTCAD was originally designed, a version of CONSOL
capable of running on desktop personal computers is now desirable. One of
the results of this project has been the development of a version of CONSOL
which can be run on multiple architectures, including SunQOS, Linux, MS-DOS,
MS-Windows, and 0S/2.

Other results from this project include new user interfaces for CONSOL,
which allow for easier user manipulation and control of the optimization process.
Support for more external simulators is being developed, as well as new graphical
tools to enhance the usefulness of CONSOL as an optimization tool.



Contents

1 Introduction

1.1 Background . . ... ... .. ... ... . ...
12 Goals . ... .. . e
2 Portable CONSOL
21 Background . . ... ... .. o
2.2 Preliminary steps — preparation . . . . . ... ... .. .. ...,
2.3 Step 2, prototyping and machine independence . . . ... .. ..
2.4 Step 3, modularization . . . . .. ... ... oL
25 Finaldecisions . .. ... .. ... ... .. ... ...
3 Modules
3.1 Dynamic linking of native simulators . . . . . ... .. ... ...
3.2 Support for external simulators . . . . . ... ... ... ...,
3.3 Userinterfaces . . . . ... ... . ... ... ...

4 Future development
4.1 Shortterm . . ... ... ... ... ... ...
4.2 Longterm . . . . . . . . . .. ...



1 Introduction

1.1 Background

CONSOL-OPTCAD, a software package for optimization-based design of en-
gineering systems, at the University of Maryland at College Park, is a prime
example of computers being used to simplify and structure the development of
system designs and prototypes.

When a system 1is first being developed, the engineer must consider the
structure of the system. The nature of the problem, as well as other constraints
imposed by the particular situation, cause the first design choices to be made.
For example, in the design of a band-pass filter for a radio receiver, many com-
peting designs exist, each with its own particular tradeoffs. Some are more
reliable than others, some have fewer parts required, but sacrifice noise immu-
nity. Other designs have more and differing requirements.

After the initial structure for the system has been decided, various tradeoffs
must be considered. Going back to the radio-receiver example, the resonant
frequency is determined by the equation f = (1/(L * C))}/? . This equation
does not specify the values of L and C, only their relationship to one another.
The choice of L and C is determined by other factors such as part availability,
noise immunity, the “quality” of the circuit, etc.

CONSOL-OPTCAD is a tool for exploring just these tradeoffs. Originally
designed as a tandem package, composed of two programs Convert and Solve,
CONSOL-OPTCAD combines the features of a simulator with those of an opti-
mizer into one package. CONSOL-OPTCAD also provides facilities to allow the
use of external simulators to evaluate the design specifications to be optimized.
Most problems of engineering interest involve the use of external simulators.

Problem definition is done using a special Problem Description Language
in which the system to be optimized is specified in concrete terms. Such a
description is referred to as a PDF, Problem Description File. Convert is then
invoked on the PDF and produces a C language simulator for the problem,
as well as a binary file describing the initial conditions and the limits for the
variables.

Once Convert has been run, Solve is invoked. Solve is intended to be an
interactive optimizer, allowing the operator full control over the problem at all
stages in the optimization. Features include graphical displays of the problem
at each stage in the optimization, as well as the ability to change and freeze
variables at any stage in the optimization process.



1.2 Goals

With the success of CONSOL-OPTCAD on the SunOS (UNIX) platform, it
became apparent that the users of CONSOL-OPTCAD would need support
for other platforms as well. This lead to the development of a VMS port of
CONSOL-OPTCAD, which had most of the functionality of the UNIX version,
but was lacking support for graphics, and had limitations in several other areas.

This experience, coupled with the demand for a more accessible version of
CONSOL-OPTCAD, lead to the “Portable CONSOL” project. The goal of this
project was to develop a version of CONSOL which could be compiled and run
on any platform with a minimum of experience and of new coding. The goal was
to have a version of CONSOL for both the MS-DOS and Microsoft Windows
environments which would share as much code as possible with the UNIX and
VMS versions.

2 Portable CONSOL

2.1 Background

CONSOL is divided into several major subsystems. These systems are primarily

1. algorithms - this subsystem is intended to be the primary problem solving
engine. At this time, FSQP (Feasible SQP) and Monte Carlo are the
primary optimization engines. Gateways to access external simulators are
available in the UNIX version and should soon be available in the portable
CONSOL as well. External simulators include MATLAB and WATAND
(a circuit simulator).

2. commands - this subsystem is intended to provide the primary text based
user interface to the application.

3. graphics - this subsystem is intended to provide a “platform-independent”
graphics engine for providing plots and graphs involved with CONSOL.

4. lexical - this subsystem is intended to provide all of the lexical analysis
needed for CONSOL. This includes parsing and identifying tokens, etc.

5. main - this subsystem is the main control for CONSOL. It handles initial-
ization, configuration, etc. It also manages command input, etc.

6. others - this subsystem contains many of the common routines used through-
out CONSOL. For.example, a memory allocation routine which checks for
error conditions, a file open routine which checks for error conditions, etc.



The primary goal of this subsystem is to provide consistent error checking
and handling.

7. specs - this subsystem provides routines for the evaluation and determi-
nation of those quantities in need of optimization. It is also used by the
“pcomb” command to determine the phase of the optimization.

2.2 Preliminary steps — preparation

The first task for the Portable CONSOL project was the updating of all of the
source code to ANSI C/C++ standards. (The C++ standard being a “stricter”
standard, it was decided to make the code conform to C++ standards). This
meant developing functional prototypes for every function in CONSOL, and
converting the function definitions from the K&R definition style to the ANSI
definition style.

Also to be done was the removal of the majority of the cross-subsystem
function calls. These calls were primarily from the algorithm subsystem to
the commands subsystem; however, these calls could be found in many places
throughout the code. The new version was designed to have a controlled number
of essential cross-subsystem calls. The reason for limiting these calls was that
the commands subsystem is not portable from system to system. (For example,
in a graphical environment, the text-based command environment cannot be
used.)

Another convention in the code which had to be changed was the use of
“goto” statements. These statements have come to be regarded as statements
which should be used only as a last resort. This is because they normally lead
to code which can be very difficult to follow. These statements were used in
many places in the code for a variety of reasons (handling error conditions, etc).
They were most heavily used in the commands section of the code and could be
found in almost every function in that section.

Lastly, the code was heavily machine dependent. It assumed that the size of
integer variables is equal to that of pointer variables which is equal to that of
floating point variables, etc. This is not true in many computer architectures,
and in fact, it is only due to the peculiarities of the SunOS C compiler, as well
as the “sund” and “sun4” machine architectures, that these assumptions did
not cause problems in the original versions of CONSOL.

2.3 Step 2, prototyping and machine independence

Making these changes to update the code revealed a large number of further
problems with the source. The UNIX code had many cases where typechecking
was not enforced in parameter passing for function calls. For example, a function



would be defined with two character type variables and would receive one integer
variable when it was actually called. It was only because of the sun4 computer
architecture that these discrepancies did not cause execution problems in the
executable.

For example, a function defined by

void quit(int status, char #*si, char *s2);
would be called as simply
quit(0);

The two parameters sl and s2 would be left as garbage on the stack, and on
another system could (and eventually did) cause the executable to crash.

The cross-subsystem function calls were removed without incident. Initially,
their removal caused a loss of functionality, but cleaner ways of achieving the
same functionality were devised.

The goto statements, while inconvenient, were left in place, where they either
handled somewhat exotic error conditions (the others subsystem), were in code
that would eventually be completely rewritten (the commands subsystem), or
actually caused the compiler to produce more efficient assembly language code
on some platforms (in the algorithms subsystem).

The changes to the system to remove the machine dependencies were for
the most part successful, although they did involve some major alterations to
the algorithms subsystem. The changes involved in making the commands and
others subsystems machine independent revealed some more prototyping errors
which were quickly fixed.

2.4 Step 3, modularization

At this stage, code had been developed which would compile on several major
platforms (SunOS, Linux, MS-DOS, MS-Windows, and OS/2); however, this
code could not actually be executed on these platforms. There are several
operating system specific issues which must be dealt with. The next stage was
to isolate all of the system specific features of CONSOL and strictly modularize
the code based upon those guidelines.

Analysis of the code at this stage revealed three major system specific fea-
tures of CONSOL. These were

1. Linking to native simulators: Linking to PDF simulators was done “dy-
namically” under SunOS, using a feature of the operating system where
an executable program (object file) could be loaded into memory, the exe-
cutable “patched” into the running program (symbols resolved, etc), and
simply called as a normal procedure call. A portable (or at least simple)



interface and method for performing such linking under new systems was
required. Many of the potential computer platforms for CONSOL simply
did not support (in any way) dynamic linking.

2. Multitasking/multiprogramming considerations: Under a system like MS-
DOS, a single-tasking operating system, the question of installing and sup-
porting external simulators becomes far more difficult. A consistent and
easy-to-use interface for external simulators would need to be developed.

3. I/O considerations: Under an operating environment like MS-Windows,
the standard text mode interface of CONSOL could not be used. MS-
Windows, being a graphical environment, does not support (well) purely
textual interfaces. Also, using a graphical environment would allow the
use and development of a far more user-friendly environment. (For exam-
ple, menus and button bars to allow access to commonly and frequently
accessed functions.)

The first two of these requirements are purely programmer issues. The last
requirement is a user-interface issue.

The need for a user-friendly environment lead to the consultation of the
IBM and Microsoft standard CUA guide. Common User Access (CUA) is a
standard published by IBM (and Microsoft, in the past) which details the specific
guidelines to follow in designing user interfaces in the MS-Windows and OS/2
operating environments. The requirements of this system are very similar to
those embodied in the Motif (X Window System) “look-and-feel” description.
In addition, other sources were consulted in the hopes of developing a usable
but fast interface. For example, portions of the user interface were patterned
after those found in popular Windows programs. The most notable of these
features is the MDI interface (Multiple Document Interface). Also of note is the
“ButtonBar” which provides easy mouse access to important features.

With these resources, a preliminary user interface design was constructed.
This design had to take into account the two major interfaces available on
most platforms, text-based and graphical interfaces. Using this design, three
interfaces were planned for implementation.

The first was a text-based user interface, almost identical to that of the orig-
inal UNIX version. This interface would be used in text-based environments. It
would be purely text input command driven, with possible support for graphical
plots.

The second was a graphical user interface best suited to native graphical
environments. It would include menus, multiple windows, graphics, listboxes,
etc., all of which are the “staples” of a graphical environment.

The third was an attempt to develop a windowed text-based environment
(similar in look-and-feel to the graphical environment), but the lack of a small,
freely available text-windowing package made this option unfeasible, and it was
dropped. Another reason for discarding the third interface was the fact that



most text-based systems possess a graphical environment (MS-DOS -> MS-
Windows, OS/2 -> Presentation Manager, UNIX -> X11), so that if users
require the features of CONSOL under a graphical environment, such an envi-
ronment is normally available (or can be purchased) for that platform.

2.5 Final decisions

The final decision was to support both a text and a graphical interface, one
for each type of environment. The text-based interface can be designed such
that it will work with few to no changes when supporting a new platform.
Unfortunately, the advantages of the ease of use of a graphical interface are
offset by the relative programming complexity required to support each different
environment.

3 Modules

3.1 Dynamic linking of native simulators

The code for doing linking to simulators was isolated into one group of func-
tions in one source file. The syntax for the function was changed to support
the various possible formats for dynamic linkers. For example, some work with
the loading of an object file into the program, and others work with true dy-
namic link libraries, where intrinsic function numbers are used to determine the
function in the library. For systems that do not support true dynamic linking,
a slow replacement has been developed. This replacement involves taking the
information necessary for the simulation, writing it to disk, calling the PDF sim-
ulator and running it on the information, and loading the revised information
back into memory. The unfortunate problem with this method is that it can
be anywhere from 30% to 3000% slower than the true dynamic linking method,
depending upon the exact system architecture.

The code as it was developed initially supports file based PDF simulators,
with the code for faster interfaces to be developed after the initial port. This
pattern was followed with both the DOS and MS-Windows ports of CONSOL.

3.2 Support for external simulators

The creation of generic, system independent support for external simulators
is not yet complete. At present, with the need to support MS-DOS and MS-
Windows versions of CONSOL, generic single-tasking support for external sim-



ulators has not been completely designed or integrated into the overall system.
The traditional UNIX support for external simulators is still in place, and the
work is continuing to create a MATLAB and WATAND interface for the PC
versions of CONSOL. The biggest limitation has been the single-tasking nature
of MS-DOS and MS-Windows. However, limited success has been achieved, and
full external simulator support should be ready in the near future.

3.3 User interfaces

As the user interface is the most important part of any system, this portion of
the system has the most testing of any element of the system. The only way to
test the rest of the system is by using the user interface, and when additional
functionality was added to the engine, additional elements were added to the
user interface to support the new features. The user interface is still developing
and evolving as the beta testers for the “Portable CONSOL” project provide
feedback.

4 Future development

4.1 Short term

The short term development of the system will include additional simulator
support (especially in the area of external simulators), additional refinements
to both the text-based and the graphical user interfaces, as well as incorporating
additional features from the various UNIX derived versions (such as gradients,
better control of functional constraints, etc).

4.2 Long term

There are still some machine dependent sections of the code that can be further
modularized. Also to be explored is the concept of a graphical interface for
tradeoff exploration. Such an interface would include be a visual (graphical)
way to explore the various tradeoffs which can occur during the optimization
process. For example, this interface would include methods for adjusting func-
tional objective and constraint curves during optimization, methods for visually
adjusting (relaxing and strengthening) the good and bad values of various ob-
jectives and constraints, etc.



