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A favorite fisld of mathematical investizatlon concerns
itself with the structure of sets. The method employed con-
sists of lxposing certain properties upon s set and then see-
ing what other properties, if any, the set has. After one
obtains varlous necessary conditions in this way, one usually
also investlgates the sufficlency of these conditions. The
results are given as theorems on the structure of the set.
These theorems are of some importance, inasmuch ag the behav-
ior of a set, when it appears 1n applications, usually will
depend on 1lts structure.

In this paper we shall make some investlgations into
the structure of a locally connected, plane continuum on
which 1s defined a pointwise periodic homeomorphlam. We start
by gilving a few definitlions and quoting some known rasults.
All sets considered lie in s separable metric spsce.

We shall denote the Juclidean plane by TT. By M we

shall mean a locelly connected continuum (whyburn [5] p. 18)

in TT . The set-theoretic boundary of M defined as M«{TT— M)
will be called 8. The letter f will denote a single-valued
contimious trangformation which is poilntwise perlcodlc.

The mapping T{X)e=X, where X is a set, is said to be
polintwige periogdic if for every point x €EX there 1o an integer
N, such that TVx(x)=x. The least such integer N, 1s called
the period of x, which we shall denote by p{(x). If there is
an integer N such that M(x)=x for g8l x&€X, then T 1s sald
to be perlodic. The least such integer N 1s called the per-
lod of T. The mapping T will be sald to be almogt periodic

Af for every €2 O there is an integer N. such that



/o[x, ;I‘Né(x) CE for all x€ X.
iIr (X)X 1is continuous, a subset ¥ of X 1o saild to

ba invariant provided I(Y)l=Y,

If T{{)=X is a pointwise perlodic mapping, then the
set O;r(x)-'-' %}Tn(x) consisting of x and all (& finite number,
namely p(x)}) of 1ts images under T will be called the orbit
of x under I.

An Immedlaste consecuence of these definitions 1is that
a mapping T(X)=X which is pointwise Deriodic and continuous

on a conmpact set X 1s actually a homeomorphism T(X)=X.

(4nyburn [5] P. 240) +We now give some known results of a
less trivial nature.
Thalildd Ar let X be a closed and compect metric .

and f{X)=X a polntwlse »neriodic homeomorpnisn. Let A be

........ Suen e

tbose points x€ X such that In every nel-tvorhicod of x thenr
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is & point z with p(z)¥F p(x). Let £—A. Then ¢ 1s gpe
in X, © is dense in X, 2{x) 1s constant on every component

of C, and p(x) is continucus on C. (xontgomery [3] p. 18 )

THLOREN 3: If f(H)=X is apointuise periodic homeg-

et g orery O e Ryt

morphigm, where X

H

any locelly connected contlinuum in the

S

pPlane T puch that no two points of i sepnarate .., then £ is

1

periodic. (iall & HKelley [2] ». 630)

A separable meirle aspace X is sald to be a 2-dimension-
a2l manifold provided thet for any x€ 1 there exlsts a neigrh-
borhiood U of x such that U 1s & 2-—c@11. (“nyburn fS] . 193)

SHECLZ T If X 1s a gonnected metric gnace which ig

——

is
iocally Zuclideen, that iz each

nomeoumorphic to the interior of o solid n-dimensional sphe
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N is continuous since T 1s continuous. Thus there ex-

Now T
ists a 4 =4 (x,€)> 0 such that P(y, x)<J implies that

n &
[o [Tﬁ(y),f‘i(x)]< EX Let o= min(d ,%) and choose n large

enough 80 that F(xn, x)< X . Then

- W . ar
/ﬂ[x,Th(XﬂsF(x,Xn)*‘[a [xn,rm(xj-f-p%ﬁ‘(xn),T**<X3<o<+§.+§,
Eence /o[x,~i’ﬂ(x)]<€ for all x¢& Z*X.

THECREM 3: Let £ be & metric space and T{X)=X g

cuy

ainrle velued transformestion. If E and F are subsets of X

such thaet T is pericdic on % and glmost pericdlc on ¥, then
T is almost periodic on =+ 7.

2HOCF: Since T is pericdic on & there i1s an integer

n such that T (x)=x for all x€:. 3y theorem 1, TO 1s
almoat periodic on F. Thus, gilven €> 0, there 1s an integer
m such that /o[x, T )CE  rfor all x€F. Muarthermore,
T™(x)= x for all x€ Z. Hence /O[x, ”i‘m(xi]<e for all

X€E 2+ F. Thic shows that T is almost periodic on Z4F.

Je return new to a conslderation of locally connected
contimia. For some time it was conjectured that s point-
wise periodic homeomorphlism of such a continuum onto itselfl
necesgsarlily would be slmost perlodic. This now is known to
be false. A counter example has been constructed by [talph
£hillips which settles the problem excent in the case of a
2-dimensional locally connected continuum. (Ayres [i] P.95)
it is the latter case which we shall consider. What must be
the structure of a locally comnected continuum If in the plane
7T-such that ()= i can be a polntwise periodic homeomorph-

ism which 1s not almost periodic? It 1s inown that M cannot



be a dendrite. («hyburn (5] p. 252) de shall establish
several other properties which, it is hoped, will prove use-
ful in deteraining ultimately if such a set [l exlats,

+4e assune that £{ii)=I is a pointwise pericdic homeo-
morphiss which is pot almost periodic. uvefine the set L to
be those points x of & such that the period functlon p(y)
is unbounded in every nalghborhood of x. It 1s clear that
L 18 closed and contalined in the set A of theorem A,

THIOAZM 4:  1f X is any component of ii—3, then pl(x)
iz bounded on k. Lhus Le 3,

JRCCF: The set L—3 is open inTl. Any component R
of /i—~3 is an open connected subset of [[ since J| is locally
connecte’.. Hence R is a connected 2-dimensional manifold.
Choose x€ER and let n=pn(x), Define T= 2. Inasmuch as
T(K—-0B)=:1—23, then T(R)=X. 3But T is pointwise periocdic.
By the corollary ic theorem €@ we find that T, and hence f,
is perilodic on X. Thus p(y) is bounded on ., Assume that
Le(M—3)F 0 and choose a point x€L.(K—3). Let R be the
component of i—3 contalning x. Since R is open there is a
neighborhood U of x such that U= R, 3Zut p(y) is bounded on
R and hence on U., This contradicts the definition of L.
Consequently Le*(i—3B)=0, or Le3,

THEOREM 5: If ¥ has nc cut polnt, then the period
function n(x) is unbounded on B.

PACOF: The boundary of every domain of M=% 1s &
simple closed curve. (Moore [4] P. 212) The union of these
boundaries 1s contéineci in B. Now if o{x) were bounded on

B, then there would be an integer n such thet M x)=x for



2ll x€ 3. In particular, the points on the houndariess of the
complementary domalins would be fixed under this power of f.
nence the mapping 2 could be extended to the whole nlane

by the definition ™ (x)=x for all x€TM—M. This napping P
then 1s known to be periocdic on Il by virtue of theorem C.
Consequently £ 1a perilodic on M. This means f 1is periodic
on K and, a fortiori, almost perilicdic on M. This contra-
diction to our hypothesis on £ shows that p(x) is unbounded
on .

THECRLM 6: There exists an integer m and g2 non-deren-

erate continuum Hc ¥ guch that, under £°,

a) i is the 1limit of a secguence of »noint orbits,
v) H is invariant, and
¢) & contains uncountably many f£ixed vointsg.

PROCF: Since £ is not almost periodic there exists an

Nn >0 and a ssquence {xn} of points of ¥ such that

p [xn, fn(xn):l 2N . Define I,= x|+ OSuppose {p(yn)} 18‘

bounded by N. Then NJ is divisible by plyyJ)s so that fﬁ'(yﬁ)
- Horloplg iy 1

- . {ier = . - ; 4 -

¥+ Hence O P[ym, r (yﬁ) /o xm . (xﬂ!) ZN This
ls a contradiction; thus Zp(yn)} is unbounded, We mey choose
= be . 3
& subsequence {wiz —{yﬂil' such that p(w,)< p(wi+1) and
w,—>» w. Let p=op{w).

i
: 9 l
Dafine T=fP, Then T(w)=w. Llet z, = £ (xr,):-. fn'(yn)
and let viT- 2,y e de may essume that v,—»v. 3Iince /D(yn,zn)
.-:/o(xn! ,r‘n'(xn! )]3)'1 , we have [J (v,w)ZN , so that v#Fw, In-
asmuch as T is continuous and ¥ 1s compact, T(vi)—*’l’(v)#w.
Let 4,= &[Of(wiﬂ » and sssume that d~—» O. Then for

any 4> 0 there is an 11 depending on & such that 1>31, implies

1



7

that 0< c11< d. Thet is, P [Tr(wi),’fs(w19< d for all 1>1,
and all r and s. FHurthermore, since {p(wij} is unbounded,

there is an i such that 1>1  implles &i>€3. Finally there
is an 13 such that 1>'13 implies that n,! is divisible by p.
Let 1 = max(il,iz,iBJ. How for each 121 let r::p(wi} and

nyl a .
S 1+-—%: in the above expression. Then

P[Tr(wi),?s(wi)]zlo wi,fp*ﬂi! (Ynia =/O[wi, 'I‘(vii]< d for
2ll 1>4 . Hence T(v,)—>w. This contradiction shows that
our assumption was incorrect. Conseguently there is a sub-
sequence of £d1§ which is bounded away from zero. Thus there
is a subsequence of {GT(wii} vhich convergaes to a non-degener-
ate set H¥, We may as well assume OT(wi)‘*'HW. The limit
sst H* contains the fixed point w, and thme 1t connected.
(whyoburn [5] p. 260) Thus H* consists of 2 single non-degen=-
erate component. It follows that H¥® ias a continuum, and that
T(i®)=He, (whyburn [5] ». 253)

Since H¥ galtlisfles the conditlons on X in theorem A,
there 1s a get C which i1g open and dense in ¥, Let k be the
common period under T of the pointa of some component of C.
These polnts, of which there ars uncountably many, are all
fized under TX. For J=1, 2,...,% define Py 4= T3(wi) and let
G13= CTk(piJ). for each value of ] we may assumne 613—9'65.
In view of the fact that the range of § 1s finite, it zppears
that each GJ containg the fixed point w. Consequently, as in

the cage of H%* 1ltsgelf, each C}1 i1s 2 continuum such that

K " — by g % 4 - T - .
T (GJ)-GJ. Furthermere the relationship T(Z,) Gyp 28

o

valid., It is clear that H¥*= (/&J. Thus each G, is non-degen-



erate, and one of them nust contaln uncountably nany of the
fixed points described above, we denote tuls particular G
Ly H. wo have found & scquence of points {piji san integer
m =pk, and & non-degencrate continuun i which satisfy the
condltions in the statsment of the theoren,

Jesplte the fact that we have sald the set i is in the
plane [l , the preceeding theorem is valld without thils restric-
tlon.

5]

THEQRRI 7: 1L F is a f£inite gubsel of i, then H—F 1ig

contained In & single gomponent of II—7F,

PROCF: Let T be the union of the orbits under ™ of the
points of e Then ¢ lg a2 finlte set, so that I contains a
fixed point » not in G. There is a neighborhood Up of p
which contalns no point of G. 7Take any point x in H—F.
There lis a nelghborhnood U, of x which does not intersect F.
Wow Il is locally connected. Thus polints sufficiently close
to p can be jolned to p by an arc which 1s contained in Up‘
A slmilar statement holds for x and its nelghborhood Ux'
From the orbits which converge to H we may choose a polnt g
which 1is "sufrficiently close" to p such that one of its im-
ages fmr(§) is likewiss “sufficiantly close” to x. Join p

ap, .,
P(K) is en arc

and g by an arc X contained in Uw. Then f
from p to £77(q) which does not ;ntarsect # since K does not
intersect G. Now joln x and £°7(q) by an arc lying in Uy .

This are does not intersect F. 4We now have a connected set
{(which is the sun of two arcs with at least the point fmr(q)

in comamon) Joining x and p and not intersecting F., 48 ses

finally that x and p lie together in a connscted subset of



H—F, Since x le an arbitrary point of H—F, the assertion
of the theorem 1is proved.

THZORz &: Let X be a locally comnnected continmuum
without cutpoints. If iwo pointe » 2nd ¢ gul X, then

a) X— (p+g) Hap Linlitely many componenis,
"Dj if K ig any coapenent of 11— {p+q), then pt+ag=K —XK,

¢) AL K hos 2 gat point r. then ¥ —r has szactly two

components, and

4) A= (p+r) and X— (g +r) are separsted.
PROOF: Part b) 1a trivial. Part a) follows imuedi-

ately from ths local connectlvity of X. de procesd to prove
parts ¢) and 1),

et };1 be s coaponsnt of E‘f—-r, and assuxne neliher p
nor q is in Kl' Then any connected set jJoining a point of
K;L to a point not in iil mist conteln r. Thils means, con-
trary to hypothesis, that r cuts X. lience we may assune De E‘il.
Cn the other hand we cannot also have g€ 311, oy then an-
other com»nonent K

2
r cuts r) would contain noither p nor . Thus q€E,, and
e

(there ars at least two conponents since

these can be the only two components. Therefore = =1§.1+ X,
th p€K E Y., ,
with p€ 1 and ¢ o

#inally, any connected set Jolning & polnt of X, —p to

e point not in Kl- » must contaln elitter p or r. Consequent-

ly X= (p+ r) is separated. GSimilerly i— (g +r) is separsted.

This completes the proof of the theorcm.

We conslder next certain ways in which the set !I can

be cut. Before we »roceed we note that, in view of itheoren

162492
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ona, we may assume n =21 in theorem § without any loss in gen-
erality.

Consider the case when ¥ has no cutl points. EZince
£f(i)= i 1s not periciic 1t follows from theorem B that some
two points cut K. Consider sall cuttings of X of the type
M= (. + q“). For each X let K, be the component of
H—(g +q,) such that EeX - That thle is possible follows
from theorenm 7.

LagAa 1: 1If gl and ge are elements of Qf_}_ﬁ class {K.&
such that M— (Ky+ K;)#0, then there is & set Ky in {Xu}
such that Ky KKy,

PRCOF: Choose a point y in M= (¥;+XK,) and a point =
in H— (pl-p-ql-i— p,t+ qz,}. Since ¥ has no cut point, then there
is a simple closged curve J in K which passes through y and z.
It follows that J contains py+ q1+ pg-l-qg.. we may nsme the
points so that one arec ;?2 of J contains py¢4 Py and the other

tv i L] = | X X =K - A- 4  ode,
contalns qq+ 0‘2 If K K, then we take h3 N ccordingly

1 2
we assume X,¥ K,. We may assume then that pfk p,+ Since 1t
is immaterial which set 18 called Kl and which K2 we may

asaume that Py i3 closer to z than is pl along the arc JPHZ
of Jo In the other arc of J let q_j be the a, which 18 nearer
to z along the arc. (This admite even the possibility Q= q,
=ay.)

We assert that M— (pz-\-q}) is separsted, This is triv-
ial irf a5 = q,; eccordingly we take a5 = ql*. Q- Suproge that
}*’i-(pa-l—qz') is connected. Both y and z are in this set. Any
arc Joining y and z in this set must contain both pl and qpy e
Conslder any such arc. I1f we start at z and proceed along the

arc towards y we must come first, say, to Py Zut then we
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may proceed along J to y wlthout passing through Qs which 1s

Impossible. We reach a similar contradictlion if we meet a5

before P, Hance M“(g,,-l—ql) is separated. Let I{3 be the

component of i —(pa+q ) which belongs to the class SK,‘}

t}:t [ 1— L }L [t }: K < K
1en K.j by (pl—f- ql pa-t- qa) which implies 5 1 and . hg,

a8 8 B i LI
o that n3 11 £y

let K be any set in the collection SK,(} « efine
{’xi:g} to be the subclass of {K“l consisting of all .ﬁ,g such
that &}GCKQ. let y be a2 point not in -E*?o and 7 o point of H.
In I there 1s 2 sianle closed curve J whilech containe both y
and z. It follows that U(p:-l-{g‘z)ﬁa, where »p¥ and q% ere

the boundary points of 1{3‘ in K. The curve J contelns two

N Lomm S
arcas yaz and yhz from y to z, and we may nane the doints p¥*

~o¢
aend q‘g( in such a way that, for every X , p:“< is in 37;,\:: and q‘f(

is in 5’0\3. #o define an ordaering of the »oints po'ﬂ‘vg by the re-

lation Pf<33‘5 if po? i1s nearer to z than is p¥ slong the arc

‘B

vaz; and similarly o¥* <q;§ ir q;“( is nearer to z than is q}f;
along the arc ybz.

LoaMpA D Jok ;4 K < L7 3 % 4 .
7t h.‘c 3 if and only Af p spp and q“s%
PROCF: (Sufficiency) Assune L:s;ﬁ* and o¥ & qlz .
T FR A « 4 1 M —{n¥® L e had ans ¥ Eheall®,
hen &% is contained in (px.pq + 7 % +¢:1/3), and thus K% }p
(Hecesslty) Assume K¥eng., If g <0 and %S

then, from the proof of the sufficlency, 1t follows that

K= ap

v ) [ 7 . 3 Y Y r Y &i‘” - - b
Hence we assune K3 + % and takxe a vpoint x in i‘ﬁ h“ Since

so that :ﬁ“ )%ﬁ' , which means z&'- n# and qb"(.:qﬁ

F;g‘ is a connectad set contalining both x and z, then elther

D

W or g% ig in Kw Wo may assume p¥ & K 80 that »H% £ ¥
“ qx y “ b4 “ Ld

- o2
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oL

¥ s W : [ —— Y = . Y 1 n ;
qﬁ<u (q“ « DBut then ué& 1“ x’ﬁ 0 his contradiction shows

that qzsq/’% and completes the proof of the lemma.

-
Assume qg £ g% and choose a point u in the arc ybz such that

CORCLIARY: 1If p, and g, are the baundary noints of ,_Et_i_o
» toen p¥< P, and g¥{q  for allX,
LT 33 Upa is claosed.
PROOF: Let F‘:Up:z and take any p€F’/. Let §p';<‘,}
In

.

in

-
e

|

and fq*:,‘,} be sequences sucn that p?“, —>p and q""‘,—a—)q.

view of the precceding corcllary we have pspo and qgf Qe
Assume H—{p+q) ls commected. Then y and z can be Jolned
by an arc X in .i—(p+4+4q). There exist neighborhoods U, of p
and ’Gq of g which do not intersect N. Hence there exilst a
p‘j’: € Up and a q.?("‘,e U’q which are not on N, contrary t‘vo the
fact that any arc jolning y and z must pase through at least
one of the p»oints pz or q:‘ for every & . Thus #— (p +q) 1s
separatec. Lot i be the component of ¥=— (p+4qg) which 18 in
the class iﬁx} « Then K€ l¥— (p+qg-t p0+ qe) since y 1s not in
Z. Hence L& iia which means A is an eleuent of {..g;g « Con-
sequently p is in ¥, and & is closed. Similarly Uq":‘( is

¢losed.

THEZOREY 9: Let M be g locally connected plane contin-
uum without cuipoints, and £{¥) =X a poilntwige periocdic bLom-
eomorphism which is not alwost periodlc, Then there exigts
& sequence of points fv,! in CS i and an intemer m such ithat

OT(pi)-> B, where T=1r", and K i1s a non-decenerate continuum.

if p,q 1s any »palr of polnts which cut &, and X 1s the gom-
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ponent of H—(»+ q) whose glosure gonteins H, then there ex-
ists a minimel locally commected proper subcontimuum E of I
havine no cut noint such that HEX<K and every component
of ¥—K hag exactly iwo boundary neoints in X, If X* is 2 sim-
ilar contimwum gbtsined from a npair of polnts p* and g%,
gither X=I* or K+E» =M, Finally, Af x is any noint in
K, then elither I(x) or T°(x) is in %, or both.

PROCT: The emilsionce of H wes discusased in theorenm 6,

That the points whose orbits converge to H can be chosen Iin
the set C of thoorem A follows at once from theorem A and
theorea 2,

¥e return to tho notatlion used in lemma 2 and lat p be
e point in Ugg such that p§p# for all & . Sinilarly
define q 8o that quf‘ for all X, Beceause of lemma 3 we
Bee that there are indices X and /3 such that p:p;: and
qf-q,‘g « Sorresponding to these noints we have setsn Eifz and
nﬁ satisfyings the conditions of lemna 1. Thus there is an
element X, of f}f;“} such that K,C Ii'r“i{(g + Furthermore, lemma

1l shows that we mey chooae ¥ so that p+qg= Ly— I{Y ¢ Inas-

mich as K,CEECK  we may aa; K= 3 é{ii‘fé .

Derine k=[]k%x . It is olear thet I is the Ky, of the
presesding naragrash, K is a closed proper subset of Il.
Take any x€ £ —(p+q)=K. There is a nelghborhood U of x
wriahr contains neither p nor qg. OSince I is locally connected,
a point of il sufficiently close to x can be jJoined to x hy an
arc i contained in Ux' Mow N contalns a point x of X, dbut

contalns neither » nor g. Consequently ¥ lles in ¥, This

S



1%

shows that K 418 locally connacted, inasmuch as it cannot fail
to be locally comnected only at » and g. Thus X i a locally
connected proper sulicontinuum of ¥ econtalining H,

If X has a cut point r, theorem 8 shows that K—r con-
slats of oxectly two components. One of theses componenta,
say bthie one contalning p, contalns H—r, C2ll this component
Ge Now H— (p+r} is separated {(theorem &) and the element of
{1{‘} determined by this cutting is contained in G and hence
in ¥ and ."%';Q‘ Furthermore 1t is conteined propsrly in ¥, and
this contradicts the definition &f X. Thus & has no cut point.

iet us suppose thet p¥,q¥% is a palr of points distinect
from the pair p,q. Then the contimuum K% determined by the
second palr of points is Adistinct from K. Lemma 1 shows that
it is necessary to have K +Ek¥ = M,

“I(E) 18 a F¥ as

Suppose T(K)¥ EX. Then, inasmuch as T
just described, K+ T 1(K)=1i. Take any x€ K such that

- P p— o -
T(x)§ E. Then T(x)€T (K}, or T (x)€ K.
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