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A favorite field of mathematical investigation concerns 
itself with the structure of sets. The method employed con­
sists of imposing certain properties upon a set and then see­
ing what other properties, if any, the set has. After on© 
obtains various necessary conditions In this way, on© usually 
also Investigates the sufficiency of these conditions. The 
results are given as theorems on the structure of th© set. 
These theorems ©re of some importance, Inasmuch as th® behav­
ior of a set, when it appears in applications, usually will 
depend on its structure.

In this paper we shall make some investigations Into 
the structure of a locally connected, plane continuum on 
which I© defined a pointwlse periodic homeomorphlsm. We start 
by giving a few definitions and quoting some known results.
All sets considered lie in a separable metric space.

We shall denote th© 3uelidean plan© by 7T • By M w® 
shall mean a locally connected continuum (Why burn 0>J p. IB) 
in TT . The s@t-theoretic boundary of M defined as M • (TT— M) 
will be called B. Th® letter f will denote a single-valued 
continuous transformation which is pointwlse periodic.

The mapping T(X)^X, where X is a set, I© ©aid to be 
pointwlse periodic if for ©very point x £ X  there io an Integer 
1L, such that T^x(x)=- x. Th® least such Integer N is calledJw X
bh© period of x, which we shall denote by p(x). If there is 
an Integer N such that T̂ (x)«=- x for all x6X, then T is said 
to be periodic. The least such Integer N la called the per­
iod of T. The mapping T will be said to be almost periodic 
If for every & >  0 there Is an integer such that



If r(x)eix is continuous, a subset X of X is said to 
ba invar 1.ant provided I(Y) = Y,

If T(X x  is a pointwis© periodic mapping, then the 
set 0 (x) - Xn (x) consisting of x and all (a finite number, 
namely p(x)) of Its images under T will be called the orbit 

x under X.
An immediate consequence of these definitions is that 

a mapping X (X ) ̂  X which is pointwlse periodic and continuous 
on a compact set X is actually a homeomorph 1&m T(X) — X .
(Whyburn [5] p. 240) We now give some known results of a 
less trivial nature.

XHXGRi&i A: bet X be a closed and .qqipact me,t|rlc space,
and f (X)«=s X a pointwlse periodic home omor phi am. Let A be 
those points x & X §ueh that j*n every no.Irhborhood qt x there
is a point z with p(z)f=p(x). .Let C « X— A. Then C is open
In 0 is dense in X, i§. ^onatasnt 2a every component
of 0, and p(x) is continuous on 0m (Montgomery [XI p. I IB ) 

TKECREt: 3: I£ f(M)=-K apolntwlae sexipdig hgmag-
mornhlsm. where K .is any locally connected cqntlnî uni in the 
Plane TT ouch that no two points of 11 separate M. then f is'■ “ i “  1 ",11- !■!■■■ ■!■!. II IÎI ■.,» I.miw HW'H.'B I’l' Wv>W “ VdHBttHVk MJuMMI .MM" -f -iTf'Ti"

periodic. (hall d delley £2] p. S3 0)
A separable metric space X Is said to be a 2-d imens1 on- 

al manifold provided that for any x6 X there exists a neigh­
borhood U of >; such that U is a 2-cell. (Thy b u m  [5] p. 193) 

THS0X1LM 0 : .If X is a connected metric space which is
locally Imclldean. .that !§. u&cji 3*§. kU Mk Q.llMZk SQt
home omoroh1c to the interior of a solid q-dime î s1onal sphere«



and T(X )— X 1b pointwiso periodic, than T Is periodic, 
(Xontnosiory P* Ho)

CCXGkLArvx : Any pointwlse periodic isaoolnr f(X)« A on
a connect od 2-dimensional nan If old X h  periodic . (Ihyburn
[5] ?. 2u2}

Aext we shall establish several results of a general 
nature about almost periodic nappings•

ii.dOAAv. 1; Let A be a metric space and XU) = X a. 
MlUXlX m i l ld t£asMoilLatIon. IT A in a Positive 1 ntar?Z> 
then T* is almost 2P,rlodlc if agd grOx if 1 Is alriqst per­
iodic.

PKCCA: (duff iciency) Assume T Is air.ost :?oriodic .
liven £>0, choose an. iateror :i: such that ^

Tor all X. then

r A \xo[;;, r*'13 (xjj 4  f>[x , r1 (:i 3 f r  (x; , T 2n (X 2I+ •••+|0^ ’ *'1 ; 1; (;:),  T
[ *) 6 € £ £x, T“';‘(;•;)[ ̂  — =5 h (7*} =• € for a,11 x 6 X ». _ -* A  ̂ A A

hence I5"4 is almost periodic.
^necessity) Assume H  is almost periodic. Given £ > 0 

choose an Integer m ouch that 1 (x)jc£ for all x£X.
Thus there is an Inheres r=sAm such that TA (x)J ̂  £
Tor all x^a, which means that 1 is almost periodic.

Ihl'ULGX 2 : Let X be a metric space and f(X) a X a
laleed continuous nap piny. if 1 is almost periodic 

kii £ hUMaf X«=*x, then f is almost periodic on TT.X.
2 AO of: Given € > 0S choose an Intoper ... such that

[x, (;•;)] ̂  "J for all x £  X. lake any point x 6 *X *
There Is a sequence £xn*J of points of A such that xy— ► x •



How T is continuous since X is continuous. Thus there ex­
ists a — )> 0 such that p(y, xKcT implies that
p  £f^(y),X*4(x)j^ Let Of= min( J* and choose n large
enough so that p  ̂xn* x )<.<>< , Then

^  . TK (* j]$ yo (X,xn)*yO [xn, R (xJl+P)f (xn),TI?(x)]<^|+|.
Hence ^o£x, X^(x)J^6. for all x£ 2*X.

XHSGRSK 3 s Let X be §. metric soace and T(X)=s X a
single valued transformation. If £ and F are subsets of X 
such that T is periodic on S and almost ueriodie on £, then 
T ig almost periodic on 2+ F.

PROOF: dinea X is periodic on £ there Is an Integer
n such that Tn(x) = x for all By theorem 1, Tn Is
almost periodic on F. Thus, given S >  0, there Is an integer 
m such that A  X, for all x6 F. Furthermore,

x for all r.6 2. Hence p£x, < £  for
xf This shows that I Is almost periodic on E-f-F.

We return now to a consideration of locally connected 
continue. For some time It was conjectured that a point- 
wise periodic homeomorphism of such a continuum onto Itself 
necessarily would be almost periodic. This now is known to 
be false. A counter example has been constructed by Ralph 
Phillips which settles the problem except in the case of a 
2-dimensional locally connected continuum. (Ayres D 3  p.93) 
It is the latter case which we shall consider. What must be 
the structure of a locally connected continuum 11 in the plan© 
TT such that f(M)— M can be a pointwlse periodic homeomorph- 
ism which is not almost periodic? It Is known that K cannot
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be a dendrite, («'hyburn [5] p* 252) «’e shall establish
several other properties which, It Is hoped, will prove use­
ful in determining ultimately if such a set H exists.

.*© assume that f(u) = K is a pointwlse periodic homeo- 
morphiszn which is not almost periodic, define the set L to 
be those points x of M such that the period function p(y) 
is unbounded in every neighborhood of x. It is clear that 
1 is closed and contained in the set A of theorem A.

THEOREM 4: 1£ H 4§ anv component of 11—  3, then p(x)
is bounded on E. Thus L«=B.

PROOF; 1 ha sot A — 3 is open in TT. Any component R 
of E — 3 is an open connected subset of // sine© 7T is locally 
connected. Hence H is a connected 2-dimenslonal manifold. 
Choose x6 E and let n = p(x). Define T = f n . Inasmuch as 
T(K — B)** E —  B# than T(R) — E. But I is pointwlse periodic.
By the corollary to theorem 0 we find that I, and hence ff 
Is periodic on E. Thus pCy) Is bounded on E. Assume that 
L+(M-3)^Q and choose a point xfiL*(i-3), let R be the 
component of M — B containing x. Since E Is open there is a 
neighborhood U of x such that U<= R, But p(y) is bounded on 
E and hence on U, This contradicts the definition of L. 
Consequently L* (K — B ) — Q, or B .

THSCRHH 5 s If. M has no cut point, then the period 
function p LxJ- it. nfem M . aa £•

PROOF: The boundary of every domain of TT— M is a
simple closed curve. (Moore GJ p. 212) The union of these 
boundaries Is contained In B. How If p(x) were bounded on 
3, then there would be an integer n such that fn (x) a x for
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all x€ 5. In particular, the points on the boundaries of the 
complementary domains would be fixed under this power of f, 
Hence th© mapping f21 could be extended to the whole plan©

n _ yiby the definition f (x) = x for all x£7/ — M* This mapping f 
then Is known to be periodic on TT by virtue of theorem 0* 
Consequently fn Is periodic on M, this means f is periodic 
on K and, a fortiori, almost periodic on M« This contra­
diction to our hypothesis on f shows that p(x) is unbounded 
on B,

THEOREM 6: There exists an integer a &nd a non-degen­
erate continuum H d M  such that, under ffa,

s.) II Am the limit of a sequence of point orbits, 
fc) H At invariant, and
c) £ contains unoountably many flxe.a points..
PPvCOF: Since f Is not almost periodic there exists an

n > 0 and a sequence of points of K such that
P C *11 * ♦ a®f‘lne yn= xn! * SuPP°se ls
bounded by H . Then Mj Is divisible by p(yK ), so that f^'(y^r)
= ys . Hence 0 = ̂ [y^, f13.' =/°[\l ’*”* (xKI * *  * Thi8
la a contradiction; thus fp(yn )} Is unbounded' V. may choose
a subsequence £w^ - such that p(w^)< p(w^+ )̂ and
w — > w. Let p =r p{w) •

I n /Define T=rf^* Then f (w) = w. Let z = fn * (x , )=f *(>')n n J n
and let v,=- ., tfe may assume that v,— >v* Sine© /b (y ,z )1 nI ̂  I / n n
=r̂ o[x̂ | ,fn * (x̂ j )J^)l , we have ( v , w , so that v^r w« In­
asmuch as T Is continuous and K Is compact, T( > T (v ) w ,

Let d ^  , and assume that d£—> O . Then for
any d> 0 there Is an 1^ depending on d such that 1 > 1^ Implies



that 0 < d  < d. That Is, a ){< d for all 1 > ̂
and all r and s. rUrthomore, since |"p(w«)y Is unbounded, 
there la an i0 such that i > 10 Implies 4^>0. Finally there 
is an 13 such that i> implies that is divisible by p.
Let i = m a x d - ^ . i p .  Low for each 1 >iQ let r = p(w1) and

n* Is« 1+ — In the above expression. ThenP
^ T r (wi ),Ts (vf1 )|= p  [ w ^ f 1* 11̂  <y 7J = / ° f w i* T ( v i d for

all 1 > 1q. Hence T(v^)— >w. This contradiction shows that 
our as sumption was incorrect. Consequently there is a sub­
sequence of which is bounded away from zero. Thus there
Is a subsequence of {oT( « J  which converges to a non-degener­
ate set H*. rfe may as well assume Th© limit
sat H* contains th© fixed point w, and thus is connected, 
('tfhyburn [5] p. 250) Thus consists of a single non-degen­
erate component. It follows that H® is a continuum, and that 
T(H») = H*. (Whybum [5] p. 259)

Bine© H* satisfies th© conditions on X In theorem A, 
there is a set 0 which is open and dens© in H*. Let k b© the 
common period under X of the points of some component of C. 
These points, of which there are uncountably many, are all 
fixed under For jsl, 2, ...,k define X^(w^) and let
Q =. 0^,(p, ). For each value of J we may assume Gj 1—^  G 9.i J JP ’*'**  ̂ %f
In view of the fact that the range of j is finite, it appears 
that each contains the fixed point w. Consequently, as in 
the case of H* Itself, each G, Is a continuum such that3
T^(G )=.G . Furthermore the relationship T(G ,)«•&. , Is 3 j 3 J+i
valid. It is clear that C/g  ̂. Thus each G^ is non-degen-
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orate, and one of them must contain uncountable many of th®

a spk, and a non-degonerata continuum H which satisfy the 
conditions in th© statement of the theorem.

despite the fact that we have said th® set M is in the

m z o u m  7* ! £ £ ! & &  finite subset of 1, then H - F  Ig,
contained jjyj a. single, component of M — F.

PROOP i Let G be the union of th© orbits under fm of th©
points of F* Then G is a finite set, so that Id contains a

which contains no point of G. Take any point x in K — F.
Thor© is a neighborhood U of x which does not intersect F.-3£
how II is locally connected. Thus points sufficiently close

A Elm liar statement holds for x and its neighborhood U^. 
From th® orbits which converge to H we may choose a point q 
which is “ouffioiently oIo m ’* to p such that one of its im­
ages far(q) is likewise '‘sufficiently close* to x. Join p

intersect G*. how join x and fnr(q) by an arc lying in Ux * 
'This arc does not intersect F* We now have a connected set 
(which is the sum of two arcs with at least the point fmr(q) 
in common J Joining x and p and not intersecting F. .7© see 
finally that x and p lie together in a connected subset of

fixed points described above. Vto denote this particular G .3
,an integerfound a sequence

plan© TT , the proceeding theorem is valid without this restric­
tion*

to p can be Joined to p by an arc which is contained in U •

and q by an arc & contained in U • Then f‘ (K) is an arcp
from p to fmr(q) which does not intersect ? since K does not
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M — F. Sine© x Is an arbitrary point of H — F, th© assertion 
of th© theorem Is proved.

TK£QH2*i 8 s Let | | |  § locally • connected continuum 
without cutaQ.inM- i£ two polntb £ SOSL 3. 2&k S, HiSB 

a) X - (p - t - rJ  Safe limitsto rjaav coaaanents,

'o; I f  K 1= S 2  coTocoont &£ X— (p +  r j ,  than p + q ^ K —K,

C) XL K  h&B S sat point than K - r  M a  exactly. M S
components. and

d) X — (p ■f-r) and X- (q +r) are separated.
PROOF; Part b) Is trivial. Part a) follow© immedi­

ately from the local connectivity of X. We proceed to prove 
parts c) and l).

Let be a component of K — r, and as sirs© neither p 
nor q Is In K • Then any connected set joining a point of
K to a point not In II must contain r. This means, con-1 1
trary to hypothesis, that r cuts X. Ho no a wo may assume 
On th© other hand we cannot also have K^, for then an­
other component K (there are at least two components since 
r cuts h) would contain neither p nor q. Thus q € K 0, and 
these can he the on It two comp orient s. Therefore K— r » 1C + Il0i. d.
with p € K and q £ K0 .

Finally, any connected set Joining a point of — p to
a point not In X^— p must contain either p or r. Consequent­
ly X — (p4- r) is separated. Similarly X— (q+r) le separated. 
This completes the proof of the theorem.

We consider next certain ways in which the set H can
b© cut. Before w© proceed we note that, In view of theorem

162492
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one, we may assume a si in theorem 6 without any loss in gen­
erality.

Consider the ease when K has no cut points. Since 
r(M)s M is not periodic it follows from theorem B that some 
two points cut K. Consider all cuttings of M of th® type 

-r q^). For each X  let b© the component of
) such that H C K  , That this is possible follow© 

from theorem 7*
L3&SMA. Is I£ K1 and Kg are elements. of the cl.a,ftg. 

mjsh ihftt M—  (Kx+ K2)*0, then therg M  £ £Si %  la
such that h^ *l'vtp.

PROOF: Choose a point y in M — and a point a
in K — ( + *  p i-<k,) * Since M has no cut point, then there
is a simple closed curve J in H which passes through y and a.
It follows that J contains ^2 *"̂ 2̂* '̂e maF n^Eae the
points so that one arc yz of J contains and th® other
contains q̂ -+- If then w® take K , Accordingly
we assume K,^ K * itfe may assume then that p_+ p • Since It X d X 2
Is Immaterial which set is called and which we may
assume that Is closer to z than is p along th© arc yp^a
of J. In th© other arc of J let be the cM which Is nearer3 1
to z along th© arc. (this admits even th© possibility q^*=

« V }
We assert that 24— (pn +  q,) is separated. This is triv-

d 3
lal if « q2 ; accordingly w© take q~ s= * Supoose that
21 ~ (p0+  P-7) I© connected* Both y and % a re In this set. Any
arc Joining y and z In this set must contain both and q^* 
Consider any such arc. If we ©tart at z and proceed along th© 
arc towards y we must come first, say, to p^. But then w©
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may proceed along J to y without passing through q , which is
<2

impossible, We- reach a similar contradiction if we meet
before p^. Hence H — (p2 -f- q^) is separated. let be the
component of K — (po+Q.^) which belongs to the class
Then iL<̂  M —  (?**-+• q,d~ p t* q0) which implies K c  K and K , P * i 2 c P I  3 2
so that k^0 * *^2 *

Let Kq be any set in the collection • Define
{“si to b© th© subclass of £&•<£ consisting of all tip such
that Let y be a point not in and a a point of H .
In H there is a simple closed curve J which contains both y
and z. It follows that )^J, where p* sn^ ^  areec oC
the boundary points of £* in K. The curve J contains two 
arcs yas and ybs from y to z, and we may nan© the points p* 
and in such a way that, for every ©< t p® is in yas and 
is in. ybs. Wa define an ordering of the points by the re­
lation ryf < qjf If o* Is noar®r to z than Is p* along the arc
a ,  « « u a  ..
along th© arc ybs.

L£l€iA 2: KJJCKg if and onlv if ^ tj* and
PROOF: (Ouff iclency) Assume and .

Then kj* is contained in M —  (p* 4. o* + c^), and thus K^^Kg.
(necessity) Assume If and q^^ ,

then, from the proof of th© stiff Iclency, It follows that
^  bj , 30 that K* — lyp , which means o™ = ̂  and a .

Hence w© assume Kĵ  and take a point x In Kg — K*;. Since
ijj| Is a connected sat containing both x and z, then either
p* or c# is in iLP . We may assume d*£X* , so that of < o #.oC /3 J oc /Q * e< )3



Assume and chocs® a point u in th® arc ybz such, that
q^<u<c* • But then L* — LJ » 0. This contradiction shows/a OC cc /»
that q« and completes th® oroof of th© lemma.•s

GOHOUAEX; X£ &Q and qo ar© th© boundary points q £ liG 
in ii* then a1* ̂  P0 mad q* ̂  qQ for all *.

lsoia 3 ; L/pj la fllaaafl*
*  y

PROOFS Let Fs(Jp# and take any p 6 P  • Let fp'pcc j
and ba sequences such that -̂ r»p and q*̂ . — t >q. In
view of th© proceeding, corollary we have P $ P 0 and q ^ q Q . 
Assume K — (p+q) is connected* Then y and z can be joined 
by an arc K in *i“-!p + q). There exist neighborhoods iL of pp
and U of q which do not intersect U . Hence there exist aq
af. £ U and a £ U which ar© not on K» contrary to th©* P i q
fact that any arc joining y and z must pass through at least
one of the point© p* or q* for every • Thus M — (p +q) is 
separated. Let L b© the component of H — (p-f-q) which is In 
the class • Then KC H — (P +  Q-f PQ+ qQ) since y is not in
a . Hence L d H  which means a is an ©lament of * Con­
sequently p is in F, and F la closed* Similarly is
closed.

THSORS35 9 • Lot H b© & locally connected plan© contln- 
mm. wlthQy,t cut point a* and f (M) a pojhtwj^ p e r i l s  ilSBk- 
eomorPhiam which is not almost periodic. Then there exists 
a aequenc© of points, {pj*£ in M and an integer m such that
O^(p^)— * H, where T s f m , and H is a non-derenerate continuum*
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porxont aS. H —  (?+ q) whose closure cor.tains H, then there aSr 
la.ts & rain Inal IggftUs connected proper aubcontlnuun f  at ii 
havlnr: as sat 2Ql„nt such that H<=.K«=-Ko asA aragz component 
S£ M -  K ftjag exact It M s  boundary aeln̂ s. ,4a S, I£ I* As £ aia- 
ller gsaA&maa obtained, .from a m l r  aZ Points a*" SSA a*.
Sltiau: K = lt» flEK + F * « K .  ?lnal3jf. If x la anT point .In
—  2 —a, then either 2.U2 an T (x). la la K, ££ both.

PROOF: The existence or H was discussed in theorem 6*
That the points whose orbits converge to H can be chosen in
th© set C of theorem A follows at one© from theorem A and
theorem 2.

if© return to the notation used in lemma 2 and lot p bo
the point in u  such that p $ pt for all 0( » similarlyOs
define q so that q ̂ q** for all o< * Because of lemma 3 weOn
sea that there are Indices o< and >5 such that p = y>% andf ^
q — qfj| * 0 or responding to these points we have sets KJ* and 

satisfying th© conditions of lemma 1* 'Thus there Is an
element Ky of such that Ky c *Eg * Furthermore» lemma
1 shows that we may choose Ky so that p*h q = Ky — Ky * Inas­
much a© K y C K t c l G we may say Ky= K* ̂ 'f^} •

Define KJ * It is clear that h is the KJ, of the
proceeding paragraph* K is a closed proper subset of F.
Take ant̂  x € K — (p-t-qJ^K* There la a neighborhood U of x 
which contains neither p nor q# Bine© M Is locally connected* 
a point of M sufficiently close to x can be Joined to x by an
arc U contained in U * How N contains a point x of X, butx
contains neither p nor q# Consequently N lies in K* This



shows that & Is locally connected, Inasmuch as It cannot fall 
to be locally connected only at p and q* Thao X Is a locally 
connected propsr su&continuua of X containing K.

If E has a cut point r* theorem 8 shows that X — r con­
sists of exactly two components. On© of those components,
©ay the one containing p# contains K — r* Gall this cexponent 
G. Mow X—  (p-hr) Is separated {theorem 8) and the element of

this cutting Is contained In G and hence
in K and -lQ. mrtbaraore It is contained properly In E, and
this contradicts the definition if K* Thus K ha© no cut point.

let us suppose that p*tq* Is a pair of points distinct
fro® the pair p#q# Then the continuum K# determined by the 
second pair of points Is distinct from K* Lemma 1 show© that 
it is necessary to hair# TE+K* - K.

Suppose f (Jf)̂ = IT. Then, Inasmuch as T^lK) 1© a K* as
just described, iT+T^^CEi^h. Take any x€ K such that 
T(x)^.I. Then K x J g l " 1® ,  or T2 (x)fi K.
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