ON THE STRUCTURE OP LOCALTI COMNEOTED PLANE CONIINUA OR WEICH IT IS POSSIBLA TO DEFINEA POINTAISE PEICDIC HOMEONORPHISN WHICH IS NOT

ALUOST RERIODIO

$3 y$
Stuart Raywood

Thesis submitted to the Faculty of the Graduate school of the University of Maryland in partial fulfillment of the requirements for the deeree of Doctor of Philosophy
 1950

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI

UMI DP70391
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.
Microform Edition (c) ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48.106-1346

$$
\therefore B+C \cdot L \operatorname{coc}
$$

Ge whiten wishes to expreas his sincere aporecietion to proressor liok mok Fell for sumeseine this toplo one
 of this thesis.

A favorite fiald of methematical investigation concerns 1tself with the structure of sets. Tre method employed consists of imposing certain properties upon a set and then seeine what other properties, if any, the set has. After one obtains various necessary conditions in this way, one usually also investigetes the sufficiency of these conditions. The results are given as theorems on the structure of the set. These theorems are of some importance, inasmuch as the behavior of a set, when it appears in applications, usually will depend on $1 t s$ structure.

In this paper wo shall make some investigations into the structure of a locally connected, plane continuum on which is defined a pointwise periodic honeomorphism. We start by giving a few definitions and quoting some known results. All sets considered lie in a separable metric spece.
de shall denote the Juulidean plane by Π. By M we shall mean a locelly connected continuum (Whyburn [5] p. 18) in Π. The set-theoretic boundary of M defined as $M \cdot \overline{(T-M)}$ will be called 3 . The letter f will denote a sinele-valued contimuous transformation which is pointwise periodic.

The mapping $T(X) \subset X$, where X is a set, is said to be pointwise periodic if for avery point $x \in X$ thare 10 an integer N_{x} such that $T^{N_{X}}(x)=x$. The least such integer N_{X} is called the period of x, which we shall denote by $p(x)$. If there is an integer such that $\mathrm{F}^{N}(\mathrm{x})=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{X}$, then T is said to be periodic. The least such integer N is called the perlod of T. The mappine T will be said to be almost periodic if for every $\epsilon>0$ there is an integer N_{ϵ} such that
$p\left[x, r^{N} \in(x)\right]<\in \quad$ for all $x \in X$. If $T(X) \subset X$ is continuous, subset Y of X is said to De invarignt provadea $\mathrm{I}(Y)=Y$.

If $I(X) \subset X$ is a pointwise periodic mapoing, then the set $C_{T}(x)=\bigcup_{n} T_{n}^{n}(x)$ consistine of x and all (a finite number, namely $p(x)$) of its images under T will be called the orbit of x under E .

An inmediste consecuence of these definitions is that a mapping $T(X) \subset X$ which is pointwise periodic and continuous on a compact set X is actually a homeomorohigm $T(X)=X$. (mhyburn [5] p. 240) we now cive some known results of a less trivial nature.

MACAEM A Let X be a closed and compect metric opece, and $f(x)=\alpha$ a pointwise periodic homoonorphism. Let A be those points $x \in X$ such thet in every nefgeorhood of x there is ε point z with $p(z) \neq p(x)$. Let $\sigma=\alpha-A$. Then \mathcal{O} is open in $x, \underline{\sim}$ is dense in $x, p(x)$ is congtant on every component of \underline{C}, and $p(x)$ is contimuous on C . (Nontconery [3] p. 118)

THROREA: $3:$ If $f(H)=M$ is apointwise periodic homeomorphism, where is any locally connected continuum in the plane II guch that no two points of Is geparate is then if is porioaic. (iall a fielley [2] ?. 630)

A soparable metric space x is said to be a 2 -dinensional manifold provided thet for any $x \in\{$ there exists a neichborhood U of x such that U is a 2-cell. (inyum [5] p. 193)

HEON: O: If x is a connected netric syace which is 1ocally Euclidean, that is esch point is in an open set hopeonorphic to the interior of a solid n-dinensional sphere,
 (rontromory [3] 2. 110)

 [5] 3. 26ej
hext we shall estebliah sovoral rebults of a coneral nature awout almost periouso meppines.

 1ocic.

 for all $x \in \ln$. men
$\rho\left[x, \operatorname{m}^{n}(x)\right] \leqslant \rho\left[x, 2^{m}(x)\right]+\rho\left[m^{m}(x), x^{2 m}(x)\right]+\cdots+\rho\left[(x-1) m(x), x^{m}(x)\right]$ or $p[x, 2, x] \leqslant \frac{\epsilon}{2}+\frac{\epsilon}{n}+\cdots+\frac{\epsilon}{n}=\ldots\left(\frac{\epsilon}{n}\right)=\epsilon$ for all $x \in \ldots$ nence $\mathrm{i}^{\prime \prime}$ Ls alnost perioule.
(nocossity) ascure in is elnost periodic. Given $\in>0$,
 Mus then is an hutaen $r=\operatorname{man}$ buch that $\rho\left[x, h^{\prime}(x)\right]<\in$

 more $\mathrm{Li}=\operatorname{socuenco}\left\{x_{n}\right\}$ of points of \rightarrow buoh that $x \rightarrow x$.

Now T^{N} is continuous since T is continuous. Thus there exfists a $\delta=\delta(x, \epsilon)>0$ such that $\rho(y, x)<\delta$ implies that $\rho\left[T^{N}(y), T^{N}(x)\right]<\frac{\epsilon}{3} . \quad$ Let $\alpha=\min \left(\delta, \frac{\epsilon}{3}\right)$ and choose n large enough so that $p\left(x_{n}, x\right)<\alpha$. Then
$\rho\left[x, T^{N}(x)\right] \leqslant \rho\left(x, x_{n}\right)+\rho\left[x_{n}, T^{N}\left(x_{n}\right)\right]+\rho\left[T^{N}\left(x_{n}\right), T^{N}(x)\right]<\alpha+\frac{6}{3}+\frac{6}{3}$.
Hence $\rho\left[x, N^{N}(x)\right]<\in$ for all $x \in \mathbb{Z} \cdot x$.
MHECRBM 3: Let x be a metric space and $T(X)=X$ a
single valued transformation. If E and E are subsets of x such that 1 is periodic on I and ghost periodic on E, then I is almost periodic on $E+F$.

PROCF: Since T is periodic on E there is an integer n such that $T^{n}(x)=x$ for all $x \in E$. By theorem I, T^{n} is almost periodic on F. Prus, even $E>0$, there $1 s$ an integer a such that $p\left[x, m^{m n}(x)\right]<\in$ for all $x \in F$. Furthermore, $T^{n M}(x)=x$ for all $x \in 己$. Hence $\rho\left[x, n^{n m}(x)\right]<\in$ for all $x \in \mathbb{A}+\mathrm{F}$. This shows that I is almost periodic on $E+P$.
we return now to a consideration of locally connected continua. For some time it was conjectured that a pointwise periodic homeomorphism of such a contimum onto itself necessarily would be almost periodic. This now is know to be false. A counter example has been constructed by ralph Phillips which settles the problem except in the case of a 2-dimensional locally connected contimum. (Ayres [1] p.95) It is the latter case which we shall consider. What must be the structure of a locally connected continuum M in the plane T such that $f(n)=H$ can be a pointwise periodic homeomorphism which is not almost periodic? It is known that if cannot
be a dendrite. (whybum [5] p. 252) de ghall establish several other properties which, it is hoped, will prove useful in detormining ultimatoly if such a set sexists.
ve assume that $f(N)=x$ is a pointwise periouic honeomorphism mhich 13 not almost periouic. Define the set I to be those pointa x of such that the period function $p(y)$ ia unbounded in overy noichborhood of x. It is clear that L is closed and contained in the set A of theorem A.

MHBCRTH 4: If 4 is any component of is-B, then $p(x)$ is boundod on I . ghas LCB.

RRCOP: The set $H-3$ is open in T. Any component R of M-3 is an open connected subset of Π since Π is locally connecte. Hence \hat{R} is a connected 2 -dimensional menifold. Choose $x \in R$ and let $n=p(x)$. Define $T=f^{n}$. Inasmuch as $T(M-R)=K-S$, then $T(R)=R$. Fut T is pointwise periodic. By the corollary to theorem 0 we ing thet I, and hence f, is periodic on Z. Thus $p(y)$ is bounded on x. Assume that $L \cdot(M-B) \neq 0$ and choose a point $x \in L \cdot(H-3)$. Let F be the component of $A-B$ containing x. Since R is open there is a neighborhood U of x such that $U \subset R$. Sut $p(y)$ is bounded on R and hence on U. This contradicts the definition of L. Consequently $L \cdot(x-B)=0$, or $L \subset B$.

THECREM 5: If M bas no cut point, then the period function $p(x)$ is unoounded on is.

PROOF: The boundary of every domain of Π - M is a simple closed curve. (Moore [4] p. 212) The union of these boundaries is contained in B. Now if $p(x)$ were bounded on B, then there would be an integer n such thet $f^{n}(x)=x$ for
all $x \in$. In particular, the points on the boundaries of the complementary domains would be fixed under this power of f. Hence the mapping f^{n} could be extended to the whole plane by the definition $f^{n}(x)=x$ for all $x \in \Pi-N$. This mapping f^{n} then is known to be periodic on Π by virtue of theorem 0 . Consequently f^{n} is periodic on H . This means f is periodic on M and, a fortiori, almost periodic on M. This contradiction to our hypothesis on f shows that $p(x)$ is unbounded on 3 .

THSOREM 6: There exists an integer m and a non-decenorate continuum well guck that, under $I^{\text {m }}$,
a) II is the limit of a sequence of point orbits,
b) II 10 invariant, and
c) Contains uncountably many fixed points.

PRCCF: Since I is not almost periodic there exists an $n>0$ and a sequence $\left\{x_{n}\right\}$ of points of . such that $\rho\left[x_{n}, f^{n}\left(x_{n}\right)\right] \geqslant n$. Define $y_{n}=x_{n}$. Suppose $\left\{p\left(y_{n}\right)\right\}$ is bounded by N. Then N ! is divisible by $p\left(y_{N}\right)$, so that $f^{N!}\left(y_{N}\right)$ $=y_{N}$. Hence $0=\rho\left[y_{N}, \mathrm{f}^{N!}\left(y_{N}\right)\right]=\rho\left[x_{N!}, \mathrm{F}^{N!}\left(x_{N!}\right)\right] \geqslant n$. This is a contradiction; thus $\left\{p\left(y_{n}\right)\right\}$ is unbounded. We may choose a subsequence $\left\{w_{1}\right\}=\left\{y_{n_{1}}\right\}$ such that $p\left(w_{1}\right)<p\left(w_{i+1}\right)$ and $w_{1} \rightarrow w$. Let $p=p(w)$.

Define $T=f^{p}$. Then $T(w)=w$. Let $z_{n}=f^{n!}\left(x_{n!}\right)=f^{n!}\left(y_{n}\right)$ and let $v_{1}=z_{n_{1}}$ de may assume that $v_{1} \rightarrow v$. since $\rho\left(y_{n}, z_{n}\right)$ $=\rho\left[x_{n!}, f^{n!}\left(x_{n!}\right)\right] \geqslant n$, we have $\rho(v, w) \geqslant n$, so that $v \neq w$. Inabrauch as T is continuous and N is compact, $\mathrm{T}\left(\mathrm{V}_{\mathrm{i}}\right) \rightarrow \mathrm{T}(\mathrm{v}) \neq \mathrm{w}$. Let $a_{i}=\delta\left[O_{T}\left(w_{1}\right)\right]$, and assume that $a_{1} \rightarrow 0$. Then for any $d>0$ there is an i_{1} depending on d such that $i>1_{1}$ implies
that $0<a_{1}<d$. That is, $p\left[T^{r}\left(w_{1}\right), T^{s}\left(w_{1}\right)\right]<d$ for all $1>i_{1}$ and all r and s. Furthermore, since $\left\{p\left(w_{1}\right)\right\}$ is unbounded, there is an i_{2} such that $1>i_{2}$ implies $a_{1}>0$. Finally there is an i_{3} such that $1>i_{3}$ implies that n_{1} ! is divisible by p. Lat $1_{0}=\max \left(1_{1}, 1_{2}, 1_{3}\right.$. Low for each $1>i_{0}$ let $r=p\left(w_{1}\right)$ and $s=1+\frac{n_{1}!}{p}$ in the above expression. Then
$\rho\left[T^{r}\left(w_{1}\right), T^{s}\left(w_{1}\right)\right]=\rho\left[w_{1}, r^{p+n_{1}!}\left(y_{n_{1}}\right)\right]=\rho\left[w_{1}, T\left(v_{1}\right)\right]<d$ for ell $1>1_{0}$. Hence $T\left(v_{1}\right) w$. This contradiction shows that our assumption was incorrect. Consequently there is a subsequence of $\left\{\mathrm{a}_{1}\right\}$ which is bounded away from zero. Thus there is a subsequence of $\left\{O_{P}\left(w_{1}\right)\right\}$ which converges to a non-degenerate set $\mathrm{H}^{\text {in }}$. Ne may as well assume $O_{T}\left(\mathrm{w}_{1}\right) \rightarrow \mathrm{E}^{*}$. Tho 1 imit set H^{*} contains the fixed point w , and thus is connected. (whyburn [5] p. 260) Thus H* consists of a single non-degenorate component. It follows that F^{*} is a continuum, and that $\mathrm{T}\left(\mathrm{H}^{*}\right)=\mathrm{H}^{*}$. (tyburn [5] p. 253)
since H^{*} satisfies the conditions on X in theorem A, there is a set C which is open and cense in in. Let k be the common period under T of the points of some component of c. These points, of which there are uncountable many, are all fixed under $\mathrm{T}^{i x}$. For $j=1,2, \ldots$, , define $p_{1 j}=T^{\prime}\left(w_{1}\right)$ and let $G_{1 j}=O_{T h}\left(p_{1 j}\right)$. For each value of j we nay assume $G_{1, j} \rightarrow G_{j}$. In view of the fact that the range of ρ is finite, it appears that each G_{j} contains the fixed point w. Consequently, as in the case of $\mathrm{H*}^{*}$ itself, each a_{y} is a continuum such that $T^{k}\left(G_{j}\right)=G_{j}$. Furthermore the relationship $T\left(G_{j}\right)=G_{j+1}$ is valid. It is clear that $H^{*}=U_{G_{j}}$. Thus each G_{j} is non-degen-
erate, and one of them must contain uncountably wany of the fixed points described above. we denote tils particular G_{j} by ii. no heve found a sequence of pointa $\left\{p_{i j}\right\}$, an inteser $\mathrm{A}=\mathrm{pk}$, and a non-iefenorate continuun in which satisfy the conditions in the statement of the theorem.

Despite the fact that we have aaid the sot il is in the plane Π, the preceedine theoren is valid without this restriction.
 contained in a single component of $M-F$.

PROCF: Let a be the union of the orbits under $f^{\text {mi }}$ of the points of i^{\prime}. Then G is a finite set, so trat il contains a fixed point p not in G. There is a nefchborhood U_{p} of p which contains no point of G. Teice any point x in $F-F$. There is a neighboriood U_{x} of x which does not intersect F. Now it is locally connected. Thus points sufficiently close to p can be joined to p by an aro which is contained in U_{p}. A similar statement holds for x and its neiehborhood U_{x}. From the orbits which converge to H we may choose a point q which is "aufficiently close" to p such that one of its imaces $f^{a r}(\bar{q})$ is likewisa "sufficientiy close" to x. Join p and q by an arc K contained in U_{p}. Then $f^{m P}(K)$ is an arc from p to $f^{m r}(q)$ which does not intersect F since K does not intersect G. Now join x and $f^{m r}(q)$ by an arc lyine in U_{x}. This arc coes not intersect F. We now have a connected set (which is the suan of two ares with at least the point $f^{m r}(q)$ In comion) joinine x and p and not intersectine F. so seo finally that x and p lie together in a connscted subset of

H-F. Since x is an arbitrary point of $H-P$, the assertion of the theorem is proved.

THEORE: 8: Let x be a locally connected continuum Whtiout cutpoints. If two pointh pand sicut x, then
a) $x-\left(p+c_{1}\right)$ has Enittoly many components,
b) $1 \mathrm{f} K$ is any corponent $x-(D+r)$, then $n+q=\bar{K}-K$,
 componente, sand
a) $X-(p+r)$ and $X-(q+r)$ ere separated.

PROOG: Part b) is trivial. Part a) followe imadistely from ths local connectivity of x. wo proceed to prove parts c) and a).

Let K_{1} be a component of $\bar{K}-x$, and assume net ther p nor a_{1} is in K_{1}. Then any connected aet joining a point of K_{1} to a point not in K_{I} must contain r. This means, contrary to hypothesis, that r cuts X. hence wo may assume $p \in K_{1}$. On the other hand we cannot also have $\mathrm{q}_{\mathrm{f}} \mathrm{F}_{1}$, for then another component K_{2} (there are at least two conpononts since r cuts \bar{F}) would contein nosther p nor q. Thus $q \in \mathbb{X}_{2}$, and these an be the only two components. Therefore $\bar{X}-r=x_{1}+X_{2}$ with $p \in K_{1}$ and $c \in K_{2}$.

Finally, any connected set joinine a point of $x_{1}-p$ to a point not in $K_{1}-p$ must contain oftrar or r. consequently $X-(p+r)$ is separated. similerly $X-(q+r)$ is separeted. This completes the proof of the theorem.
we consider next certain ways in which the set If can be cut. Before we proceed we note that, in view of theorem
one, we may assume $n=1$ in theorem 6 without any loss in eenerality.

Considar the case when K has no cut points. Since $f(N)=M$ is not periciic it follows from theorem B that some two points cut 1. . Consider all cuttings of M of the type $N-\left(p_{\alpha}+q_{\alpha}\right)$. For each α let K_{α} be the component of N $-\left(p_{\alpha}+q_{\alpha}\right)$ such that $K \subset \bar{K}_{\alpha}$. That this is possible follows from theorea 7.

LamA 1: If K_{1} and K_{2} are elements of the class $\left\{K_{\alpha}\right\}$ such that $M-\left(\bar{K}_{1}+\bar{K}_{2}\right) \neq 0$, then there ig a set K_{3} in $\left\{K_{\alpha}\right\}$ guch that $K_{3} \subset K_{1} \cdot K_{2}$.

PROOF: Choose a point y in $M-\left(\bar{K}_{1}+\bar{X}_{2}\right)$ and a point z in $H-\left(p_{1}+q_{1}+p_{2}+q_{2}\right)$. Since has no cut point, then there is a simple closed curve J in k which pesses through y and z. It follows that J sontains $p_{1}+q_{1}+p_{2}+q_{2}$. We may name the points so that one arc $\widehat{y z}$ of J contains $p_{1}+p_{2}$ and the other contains $q_{1}+q_{2}$. If $K_{1}=K_{2}$ then we take $K_{3}=K_{1}$. Accordingly we assume $K_{1} \neq K_{2}$. We may assume then that $p_{1} \neq p_{2}$. Since it is immaterial which set is called K_{1} and which K_{2} we may assume that p_{2} is closer to z than is p_{1} alone the arc $\widehat{y p_{2} z}$ of J. In the other arc of J let q_{3} be the q_{1} which is nearer to z alone the arc. (finis admits even the possibility $q_{1}=q_{2}$ $=q_{3}$. .

We assert that $K-\left(p_{2}+q_{3}\right)$ is separated. This is trivLal if $q_{3}=q_{2}$; accordingly we take $q_{3}=q_{1} \neq q_{2}$. Suprose that $\mathrm{M}-\left(\mathrm{p}_{2}+\mathrm{q}_{3}\right)$ is connected. Both y and z are in this set. Any arc joining y and z in this set must contain both p_{1} and q_{2}. Consider any such arc. If we start at z and proceed alone the erc towards y we must come first, say, to p_{1}. But then we
may proceed alone J to y without passing through q_{2}, which is impossible. We reach a similar contradiction if we meet a_{2} before p_{1}. Hence $\mathrm{m}-\left(p_{2}+q_{1}\right)$ is separated. Let K_{3} be the component of $\mathrm{k}-\left(\mathrm{p}_{2}+\mathrm{q}_{1}\right)$ which belongs to the class $\left\{\mathrm{k}_{\alpha}\right\}$. Then $K_{3} \subset N-\left(p_{1}+q_{1}+p_{2}+q_{2}\right)$ which implies $K_{3} \subset K_{1}$ and $K_{3} \subset K_{2}$, so that $K_{3} C_{K_{1}} \cdot \mathrm{~K}_{2}$.

Let K_{o} be any set in the collection $\left\{K_{\alpha}\right\}$. Define $\left\{K_{\alpha}\right\}$ to be the subclass of $\left\{K_{\alpha}\right\}$ consisting of all K_{β} such that $K_{\beta} \subset K_{0}$. Let Y be a point not in \bar{K}_{0} and z a point of E . In $1 /$ there 1 s a simple closed curve J which contains both y and z. It follows that $U\left(p_{\alpha}^{*}+q_{\alpha}^{*}\right) \subset J$, where \sum_{k}^{*} and c_{α}^{*} are the boundary points of K_{α} in H . The curve J contains two arcs $\overparen{y a z}$ and $\overparen{y b z}$ from y to z, and we may name the joints p_{α} and q_{α}^{*} in such a way that, for every $\alpha, \square_{\alpha}^{*}$ is in $\widetilde{y z z}$ and q_{α}^{4} is in $\overparen{y b z}$. No define an ordering of the points p_{α} by the relotion $p_{\alpha}^{*}<\eta_{\beta}^{*}$ if \square_{α}^{*} is nearer to z then is p_{β}^{*} alone the arc yaz; and similarly $q_{\alpha}^{*}<q_{\beta}^{*}$ if q_{α}^{*} is nearer to z than is a_{β}^{*} alone the arc ybz.

LemMA 2: $K_{\alpha}^{*}<Y_{\beta}^{*}$ if and only if $p_{\alpha}^{*} \leqslant q_{\beta}^{*}$ and $o_{\alpha}^{*} \leqslant q_{\beta}^{*}$. Proof: (Sufficiency) Assume $p_{\alpha}^{*} \leqslant P_{\beta}^{*}$ and $q_{\alpha}^{j} \leqslant q_{\beta}^{*}$. Then K_{α}^{*} is contained in $\alpha-\left(p_{\alpha}^{*}+q_{\alpha}^{*}+p_{\beta}^{*}+q_{\beta}^{*}\right)$, and thus $K_{\alpha}^{*} \subset K_{\beta}^{\#}$.
 then, from the proof of the sufficiency, it follows that

 if is a connected set containing both x and z, then either

Assume $a_{\beta}^{*} \leqslant q_{\alpha}^{*}$ and choose a point u in the arc $\overparen{y b z}$ such that $q_{\beta}^{\omega}<u<q_{\alpha}^{*}$. But then $u \in X_{\alpha}^{*}-X_{\beta}^{*}=0$. This contradiction shows that $q_{\alpha} \leqslant q_{\beta}^{*}$ and completes the proof of the lemma.
coroliary: If p_{0} and G_{0} are the boundary point e of \underline{X}_{0} In in, then $p^{*} \leqslant p_{0}$ and $q^{*} \leqslant q_{0}$ for $211 \underline{\alpha}$.

LTMA 3: Up le 19 closed.
PROOF: Let $F=U_{p_{\alpha}^{*}}$ and take any $p \in F^{\prime}$. Let $\left\{p_{\alpha_{i}^{\prime \prime}}\right\}$ and $\left\{q_{\alpha_{i}}\right\}$ be sequences such that $p_{\alpha_{i}} \rightarrow p$ and $q_{\alpha_{i}} \longrightarrow q$. In view of the preceding corollary we have $p \leqslant p_{0}$ and $q \leqslant q_{0}$. Assume $\mathrm{N}-(\mathrm{p}+q)$ is connected. Then y and z can be joined by an are N in $N-(p+q)$. There exist neighborhoods U_{p} of p and U_{q} of q which do not intersect N. Hence there exist a $p_{\alpha_{i}}^{*} \in U_{p}$ and a $q_{\alpha_{i}}^{*} \in U_{q}$ which are not on N, contrary to the fact that any arc joining y and z must pass through at least one of the points p_{α} or $q_{\alpha}^{i \prime}$ for every α. Thus $k-(p+c)$ is separated. Lot k be the component of $k-(p+q)$ which is in the class $\left\{K_{\alpha}\right\}$. Then $K \subset \mathbb{N}-\left(p+q+p_{o}+q_{o}\right)$ since y is not in \bar{X}. Hence $\mathrm{KCK} \mathrm{K}_{0}$ which means K is an element of $\left\{\mu_{\alpha}\right\}$. Consequently p is in F, and i is closed. similarly $U_{q_{\alpha}^{*}}$ is closed.

Thorax 9: Lat M be a locally connected plane continun without outpoints, and $f(x)=h$ a pointwise periodic hameomorphiem which is not almost periodic. Then there exists a sequence of points $\left\{p_{1}\right\}$ in $C \subset M$ enc an interer m such that $O_{r}\left(p_{1}\right) \rightarrow H$, where $T=f^{I I}$, and H is a non-decenerate continuum. If p, q is any pair of points which cut M, and K_{0} is the com-
ponent of $\mathrm{M}-(\mathrm{p}+q)$ whose ologure containg H , thon there ax1sts a minimel locaily comnected proper subcontinuum of $\overline{\text { M }}$ havine no out point such that $H \subset \bar{K} \subset \bar{K}_{0}$ and exery component of $M-\bar{X}$ hes exactiy two boundery points in x. If \bar{X}^{*} is sac sim1lar continuun obtainod from a pair of pointa g^{*} and Ω^{*}, either $\bar{K}=\bar{K}$ or $\bar{K}+\overline{F^{*}}=N$. Finally, if x in any point in \bar{E}, then either $I(x)$ or $T^{2}(x)$ is in \bar{E}, or both.

PROCF: The existence of H was discussed in theorem 6. That the points whose orbits converge to H cen be ohosen in the set C of thoorem A follows at once from theorem A and theorem 2.

We raturn to tho notation used in lema 2 and let p be the point in $\bigcup_{\alpha_{\alpha}^{*}}^{\text {such that } p \leqslant p_{\alpha}^{*} \text { for all } \alpha \text {. } 21 n i l a r l y ~}$ deline q so that $q \leqslant q_{\alpha}$ for all α. Because of lemma 3 we see that there are indices α and β such that $p=p_{\alpha}^{\beta}$ and $q=q_{\beta}^{\mu}$. Corresponaing to these points wo heve sets K_{α}^{*} and is satisfyine the conditions of lema 1 . Thus there $1 s$ an
 1 shows that we mey choose ${ }^{K} y$ so that $p+q=\bar{F}_{\gamma}-K_{y}$. Inesmuch as $X_{\gamma} \mathcal{C N}_{\alpha}^{*} \subset K_{0}$ we may say $K_{\gamma}=X_{\gamma}^{*} \in\left\{K_{\alpha}^{*}\right\}$ -

$$
\text { Define } K=\bigcap_{\alpha}^{*} \text {. It is clear thet } K \text { is the } K_{\gamma}^{*} \text { of the }
$$ preceedine paraeraph. \bar{K} is a closed proper subset of K . Take any $x \in \bar{K}-(p+q)=K$. There is a nelchborhood U_{x} of x which contains neither p nor a. Since if is locally connected, a point of if sufficiently cloee to x can be joined to x by an arc N contained in U_{x}. Now N contains a point x of k, but contains neither p nor q. Consequentiy N iles in k. This

shows that \bar{K} is locally connected, inasmuch as it cannot fall to be locally connected only at p and q. Thus \bar{X} is a locally connected proper sullcontinuum of N containing H .

If \bar{F} has a cut point r, theorem 8 shown tint $\bar{K}-r$ consister of oxeoty two components. One of these components, Bey the one containing p, contains HT. Call this component G. Now $\mathrm{A}-(p+r)$ is separated (theorem 8) and the element of $\left\{K_{\alpha}\right\}$ determined by this cutting is contained in G and hence in K and X_{0}. Furthermore it is contained properly in \bar{r}, and this contradicts the definition of $\%$. Thus \bar{F} has no cut point.

Let us suppose that p^{*}, q^{*} is a pair of points distinct from the pair pi. Then the contimum \bar{K} determined by the second pair of points is distinct from \bar{X}. Lemme I shows that it is necessary to have $\bar{K}+\bar{x}=M$.

Suppose $\mathrm{T}(\overline{\mathrm{K}}) \neq \overline{\mathrm{F}}$. Then, inasmuch as $\mathrm{T}^{-1}(\bar{K})$ is a $\overline{\mathrm{K}^{*}}$ as just described, $\bar{K}+T^{-1}(\bar{K})=\pi$. Take any $x \in \bar{K}$ such that $T(x) \notin \bar{F}$. Then $T(x) \in T^{-1}(\bar{K})$, or $T^{2}(x) \in \bar{R}$.

1. Ayres, W.L., On Transformationa Having Periodic Properties, Fundamente Mathematicae $33(1939), 1.95$.
2. Hall, D. ${ }^{2}$., \& Kelley, J.L., Periodic Types of Trangformations, Durham, Duke Mathematical Journal 8(1941), p. 625.
3. Montgomery, D., Pointwise Periodic Homeomorphismg, American Journal of Mathematics 59(1937), p. 118.
4. Moore, R.L.: Concerning the Common Boundary of Iwo Domains, Fundamenta Mathematicae $5(1924), p .212$
5. Whyburn, G.T., Analytic Topolory, American Mathematical Society Colloquium Publications, Volume 28, American Mathematical Bociety, New York, 1942
