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Abstract

The objective of this paper is twofold. First, an optimality test is pre-
sented to show that the optimalify conditions for a two-level design optimiza-
tion problem before and after its decomposition are the same. Second, based
on identification of active constraints and exploitation of problem structure,
a simple approach for calculating the gradient of a "second-level" problem is
presented. This gradient is an important piece of information which is needed
for solution of two-level design optimization problems. Three examples are

given to demonstrate applications of the approach.



1. Introduction

Two-level design optimization problems can in general be formulated in the

following integrated (or undecomposed) form (Azarm and Li, 1988a):

Minimize f(y, x) = f_(y) +.I (Y X5)
¥ X =1
subject to: (1)
g9, (y) =0, £=1,..., L
9i,5 (4» %) <0, i=1,...,1
j=1,ee., 4

where f is an integrated (overall) objective function, fi is an objective func-

tion in subproblem i, 9 is a constraint in a second-level problem, g is a

1,3
constraint in a first-level subproblem i, X; is a N-vector of design
variables in a first-level subproblem i, yisa T-vector of design variables
in a second-level problem, i is an index corresponding to the number of
first-level subproblems, j is an index corresponding to the number of
constraints in a first-level subproblem i, and 2 is an index corresponding to
the number of constraints in a second-level problem. The formulation for a
first-level subproblem i, i=1, ..., I, is:

Minimize f. (y, X.)
X i 2%y

~i
subject to: (2)
gi,j (y, 51) <0, j=1,...,d

where y is fixed (found from the second-level problem) and X; is varied. Also,

the formulation for the second-level problem is:



I
Minimize f(y, x) = f (y) +
y - B B

~

filys X3)

subject to: . (3)
gl (x) < 0, 9' = 1,..., L

where f is the second-level objective function, y is varied and X; is fixed
(found from the first-level subproblem i, i=1,..., I). The two-level
problems, eqs. (2) and (3), can in general be solved by the following solution

procedure (Kirsch, 1981):

1. choose an initial value for Y,
2. for a given Y solve the first-level subproblem i for X i=l,e0., I,
3. modify y so that f is reduced,

4. repeat steps (2) and (3) until f is minimized.

The aforementioned two-level formulation and solution procedure is useful
when the integrated problem, eq. (1), must by its very nature be decomposed
(Lasdon, 1970) into eqs. (2) and (3) or because of its size requires distri-
buted or parallel processing capabilities (Lootsma and Ragsdell, 1988).

There exists a variety of solution procedures for handling eqs. (2) and
(3) (Azarm and Li, 1988b; Haftka, 1984; Sobieski, 1982; Vanderplaats and Kim,
1988). It is important that a given procedure preserves the integrity of
optimality conditions for the undecomposed problem, eq. (1). This means that
an optimality test should be performed to see whether the optimality con-
ditions for the undecomposed problem is the same as the ones for the decom-
posed subproblems, eqs. (2) and (3). Furthermore, it is crucial that the
second-level problem is optimized as efficiently as possible. One important

piece of information which is needed for optimization of the second-level



problem, eq. (3), is the gradient of the second-level objective function with
respect to its design variables, i.e., af/ax. It will be shown here that by
exploiting the problem structure, eqs. (2) and (3), and identification of
active constraints in the first-level subproblems, an effective approach for
calculating this gradient can be devised. This approach is based on a first-
order gradient information, and does not require difficult to obtain optimum
sensitivities (a second-order information) of first-level subproblems.
Furthermore, as it will be demonstrated in the examples, the approach can be
used to solve two-level design optimization problems analytically (i.e., to

obtain a global optimum).
2. Optimality Test

It is important in two-level optimization that, after decomposition, the
integrity of the overall optimality conditions for the undecomposed problem is
preserved. In other words, we should be able to show that the optimality con-
ditions for the two-level decomposed subproblems, eqs. (2) and (3), will
constitute the ones corresponding to the undecomposed problem, eq. (1). Here,
we assume that the objective and constraint functions are continuously dif-
ferentiable. Furthermore, the regularity assumption of the points under con-
sideration is that the gradient vectors of active constraints are linearly
independent at the regular points.

Let (Y, g)t be a solution (a local minimum) of the undecomposed problem,

eq. (1), where:

-y:= (yl""’ yt’ soey y'r)t (4)



- - -t
X = (51’00-9 51!"" 51) (5)

§ is a N-vector of variables in subproblem i:

s = s 1,...’ : N (;

The Karush-Kuhn-Tucker (KKT) optimality conditions for the first-level
subprobiem i, eq. (2), can be written as follows (all evaluations are per-

formed at (y, g)t):

afi/a§i + (agila)ji)g1 = g (7)
ui,j gi,j = 0, j = 1,00., J (8)
u; 20 (9)
where, af1/a§1 is a NX1 vector and agi/a§i is a NXJ matrix. Also, u; or g,
is a JX1 vector:
t
8f /oxy = (BF /8%y 1,000, BF /04 ) (10)
_ t
ag,/dx; = (agilaxi’l,...,agilaxi’N) (11)
u, = (u u u )t (12)
~1 1,1,000, i’j,-oo, 1,\]
t
gi = (gi,l’...’ gi’j,o.o, gi,J) (13)

Combining eqs. (7)-(9) for all of the first-level subproblems result in the

KKT conditions for all the first-level subproblems:

(3F,/0x,) + (8g,/0x;) Uy =0, i=1,u..,1 (14)



Ui59i,5=0, d=l.., 1, =100, d (15)

u. 20 i

~j -

1,000, 1 (16)

Likewise, the KKT conditions for the second-level problem, eq. (3), can be

written as follows (all evaluations are performed at (v, z)t):

L
af/dy + ) u,(dg,/8y) = 0 (17)
2T 3 ~
up 9, = 0, £=1,..., L (18)
u, 2 0 (19)
where:
~ I I
of/ay = of /3y + Y (9f;/3y) + Y (9x,/dy)(df,/dax.) (20)
- | RER 1 Rl

in which af/a¥, afolaz, and afilax are TX1 vectors, and agi/ax is a TXN matrix:
= t
(agilax) = (851/ay1,...,8§i/3yT) (21)

Suppose in subproblem i, i=1,..., I, there exists S active constraints
(S < N) at the optimum. Without loss of generality, suppose that these active
constraints are the first S constraints in subproblem i so that in a vector

form they can be shown as:

9; =0 (22)
Here, 95 represents the S active constraints in subproblem i:
t
95 = (95,1005 95 5) (23)

Then, for every feasible neighborhood for which the active constraints are

unchanged, we should have from eq. (22):



g, = 0 (24)

From which, to a first-order approximation, we should have:

(8g;/3y) + (dx;/dy)(3g,/8x,) = 0 (25)
or

(agi/ax) = -(dx;/8y) (3g,/3x,) (26)
where

(3g;/3y) = (8g; 1/3y,..., 9g; 5/3y) (27)
and

(3g;/0x;) = (C-PIPYL PPPPP 8g; §/0x;) (28)

(3x,/dy) = (8x; 1/8Yy,..., 8x; n/3y) (29)

Also from eq. (7), for the S active constraints in subproblem i, we have:
afi/a§i = -(agi/agi) u, . (30)
Considering eqs. (26) and (30), eq. (20) can be written as:
I 1
af/ay = of /ay + ) (3f/3y) + ) (8gilay) uj (31)
- S Y A B B

Equations (14)-(19) together with eq. (31) are, in fact, the KKT conditions
of the undecomposed problem, eq. (1). Note that in eq. (31), g; may also
include the inactive constraints (g1 j < 0), in which case the corresponding

Lagrange multipliers should be zero (ui j*= 0).

3. Constrained Derivatives

The method of constrained derivatives within single-level design optimi-



zation was introduced by Wilde and Beightler (1967). Abadie and Carpentier
(1969) referred to a similar method as generalized reduced gradient. This method
essentially depends upon calculation of the gradient of objective function in

the subspace of active constraints. An active constraint refers to a

constraint which has a direct effect on the location.of the optimum. For an
inequality cénstraint this means that it should be satisfied as an equality at
the optimum.

In two-level design optimization, the method of constrained derivatives
can be used to calculate an important piece of information, namely, the gra-
dient of the second-level objective function (8f/8¥) which is also called the
second-level constrained-derivatives. It will be shown here that this gra-
dient can be obtained without explicit calculations of Lagrange multipliers

(51) or optimum sensitivities (851/8¥) of first-level subproblems.

The argument is based on the assumption that in the neighborhood of a
minimum solution the active constraints bf subproblem i are unchanged, the
so-called Jacobian uniqueness conditions (Lootsma and Ragsdell, 1988).

Suppose that the number of active constraints in subproblem i are S (S < N).
We then partition the N variables in subproblem i into two groups, namely, the
dependent or solution variables (5?), and the independent or decision
variables (5?). In subproblem i, without loss of generality, the first group
which has S components is selected as the solution variables and the second

group which has D components is selected as the decision variables {i.e., N =

S+D):



X S solution variables

Xy = (32)

x? D decision variables

Following this partitioning, eq. (7) can be written in the following form for

the S active constraints:

S S
8f1/8§i + (agilagi) u

[~
n
o

(33)
and

D D
afi/a5i + (ag1/a§i)

e
]

;=0 (34)

where afi/35? is a SX1 vector, afi/ag? is a DX1 vector, agi/a5? is a SXS
matrix, ag1/65? iS a DXS matrix, and u, is aASX1 vector. Note that the selec-
tion of solution and decision variables are arbitrary as long as linear inde-
pendence in the matrix agi/35? is preserved (Wilde and Beightler, 1967). From
eq. (33), we have:
u, = -(3g./8x2)"1 (af, /3x3) (35)
~i 2{77% RS

which can be substituted into eq. (31) to obtain:

I
of/dy = af /3y + h) (3f;/3y)
i= -

1
L $.-1 S
_iglc(agi/ax)(agi/agi) (3f,/8x3)1 (36)

Once the active constraints in subproblem i, i=1,..., I, have been
identified, then eq. (36) can be used to obtain 9f/dy. Likewise, eq. (36)
can be used when the first-level subproblems are solved by an optimization

method which does not yield the U values. It appears that this approach is



computationally less expensive than the one in which u; is calculated by |
(Sobieski et al. 1982):
t -1 t
u; = -[(631/851) (agi/8§i)] . (891/851) (8f1/8§i) (37)

where agi/a§i is a NXS matrix.
4. Examples

Three examples with increasing degree of difficulty will be presented to

demonstrate the applications of eq. (36).
4.,1. Example 1 - A Two-Bar Truss Problem

This simple example is selected from the 1iterature (Kirsch, 1981). It is
a two-bar truss problem (Fig. 1) subject to a single vertical load of 100 kN
at joint C. The variables are the cross-sectional areas of the bars, X1 Xys
and the vertical coordinate of the joint, y. The constraints are: an upper-
1imit of 100,000 kN/m2 for the stress, the interval 1.0-3.0 m for y, and a
positive value for the cross-sectional area. For a minimum-volume criterion,
the problem is formulated as follows:
2)1/2 + 2)1/2

Minimize f(y, x) = X (16 + y Xy (1+y

subject to: (38)
20(16 + y%)1/2 _ 100,000 yX; S 0
8o(1 + y%)1/2 _ 100,000 yX, < 0
1<ys<3

t
(xp2 %)% > 0

The problem is decomposed into two levels:

First-Level Subproblem 1: Find Xq (y is fixed)

10



Minimize f(y, X1) = X4 (16 + y2)1/2

X

]
subject to: (39)
9 4 20(16 + y2)1/2 _ 100,000 yx; < 0

x1 >0

First-Level Subproblem 2: Find X5 (y is fixed)

Minimize f,(y, X,) = x,(1 + y2)}/2
2(¥s X3) = X,
X
2
subject to: (40)
g, ¢ 80(1 + y)}/2 - 100,000 yx, < 0
X, >0

Second-Level Problem: Find y (x1 and X, are fixed)

Minimize f(y, x) = f,(y, x;) + f,(y, x,)
y

subject to: (41)
1<y<3

In subproblems 1 and 2, it can be easily verified that constraints 91,1 and
92,1 should be active (for example, by the monotonicity analysis (Papalambros
and Wilde, 1988)) at the optimum, so that:

20(16 + y%)1/2/(100,000 y) (42)
80(1 + y%)1/2/(100,000 y) (43)

X

X2

Assuming that xf 1= % and xg 1= %2 to be the solution variables in subproblems

1 and 2 (note that there is no decision variable in the subprobiems). Then

from eq. (36) we have:

2 2
_ S -1 S
of /oy -igl(afilay) -igl[(agi’llay)(agi,llaxi’1) (afilaxi’l)] (44)

11



where:

of /3y = yx /(16 + yz)”2 (45)

of /8y = YXo/ (1 + yz)”2 , (46)

8g, 1/8y = 20y/(16 + y%) 112 _ 100,000x, (47)

89, /oy = 80y/(1 + y9)/2 . 100,000x, (48)

agl’llaxf,1 = -100,000y (49)

agz,llaxg,1 = 100,000y (50)

3, 13x> | = (16 + y)1/2 (51)

1/9%1 1

8f2/3x2,1 - (14 )12 (52)
Considering egqs. (42) and (43), we substitute the right-hand sides of egs.
(45)-(52) into eq. (44) to obtain:

3F/3y = g (¥2 - 4) (53)

If we set 8f/dy = 0, then y*=2 will be the global optimum solution which is within
1 sy<3. Fromegs. (42) and (43), we obtain (x;, x;) = (4.48, 8.96)10"4.
This solution is identical to the one reported by Kirsch (1981),

4.2. Example 2 -~ A Modification to Example 1

Here we have made a modification to the two-bar truss problem to
demonstrate a case in which there is a decision variable (in addition to a
solution variabie) in each subproblem. Variables X3 and X4 are introduced

into the problem so that this example is formulated as follows:

Minimize f(y, X) = xl(xg + yz)“2 + XZ(XE + yz)l/2 - 0.01 (x3 + x4)

subject to: (54)

12



1/2

20(x§ + y9)12 _ 100,000 yx, < 0
80(x% + y*)12 - 100,000 yx, < 0
1£y<s3

(Xgs X5s X3, x4)t >0

Again, the problem is decomposed into two-levels:

First-Level Subproblem 1: Find X4 and X3 (y is fixed):

Minimize f,(y, X{, Xq) = X (x2 + yz)l/2 - 0.01 x
1 1° 73 173 3
Xq 49X
1°73
subject to: (55)
9 4 200 + y*)1'Z - 100,000 yx, < 0

(xl, x3)t >0
First-Level Subproblem 2: Find X5 and X4 (y is fixed)

Minimize f,(y, x,, X,) = X (x2 + ,yz)l/2 - 0.01 x
2 2’ 74 2'\74
Xa%4

subject to: (56)

4

2 2
9, 1¢  BO(xe + y2)12 - 100,000 yx, < 0
(XZ’ x4)t >0

Second-Level Problem: Find y (xl, Xps Xgs and X, are fixed)

Minimize f(y, Xx) = fl(y, Xq x3) + fz(y, Xos x4)
y

subject to: (57)
l1<y<3

Again, in subproblems 1 and 2 it can be easily verified that constraints 9 1

. . S _ D .

and 92’1 are active, respectively. Also, in subproblem 1, x1,1' Xq and xl,l'

X5 are selected as the solution and decision variables, respectively.

13



Likewise, in subproblem 2, xg 1° x2 and xg 1= %4 are selected as the sotlution
and decision variables, respectively. Furthermore, for a given y, we can

solve subproblems 1 and 2 to obtain:

x; ;= (626)!/2/5000 (58)
x5 4= (646)*/2/5000 (59)
XD < 25 (60)
1,17 <%
x2 = 25y/4 (61)
2,1

Also, considering eqs. (58)-(61), we have:

af, /3y = (20) x 105 (62)
8f /8y = (80) x 107 (63)
(agl,llay)(agl’llax?,l)'l (afllaxf,l) = (12500) x 107° (64)
(8a, ,/3y)(3g, (/3x3 )} (3f,/0x3 ,) = (3125) x 1070 (65)
82,1/9Y)109; 4/0x; 4 2/%2,1) =
substitute eq. (62)-(65) into eq. (44) to obtain:
af/dy = -(15525) x 1072 < 0 (66)

Therefore, by applying the monotonicity analysis (Papalambros and Wilde, 1988)
on the second-level problem we obtain y* = 1, and from eqs. (58)-(61):

(X1%» X%, X5*, x,*) = ((626)1/2/5000, (646)'/2/5000, 25, 25/4).
4.3. Example 3 - A Gear-Reducer

In this section, we present a well-known gear reducer example, Figure 2,
which was first formulated by Golinski (1970) and solved by several optimiza-

tion methods (Azarm and Li, 1988b; Li and Papalambros, 1985). Here we present

14



the final design optimization model in which the design objective is to mini-

mize the overall volume (or weight).

as follows:

X1 = gear face width (cm)
x2 = teeth module (cm)

X3 = number of teeth of pinion

The design variables for the example are

x4 = distance between bearings 1 (cm)

x5 = distance between bearings 2 (cm)

Xg = diameter of shaft 1 (cm)

x7 = diameter of shaft 2 (cm)

And, the constraints are as follows:

g1 : Upper bound on the bending stress

of the gear tooth.

g2 : Upper bound on the contact stress

of the gear tooth.

93-94

Upper bounds on the transverse

deflection of the shaft.

d5-96 : Upper bounds on the stresses of

the shaft.

g7-923 : Dimensional restrictions based on

space and/or experience.

g24-975 : Design condition for the shaft based

on experience.

15



Finally, the formulation for this example is presented (Azarm'and Li, 1988b):
Minimi 2 2 2 2
inimize f(x) = 0.7854x1x5(3.3333x3 + 14.9334x3 - 43.0934) - 1.508x1(xg + X7)

+ 7.477(xg + x%) + 0.7854(X4X% + x5x§)
subject to: (67)

g1: 27x1"lxo=2x3-1 =1

g2: 397.5xy1xp2x3-2 < 1
g3t 1.93xp-Ix3-Ix3xg 4 < 1
ga:  1.93xp-lx3-Ixdxy~4 < 1

gs5: A1/By < 1100

745x
6,0.
AL = [ + (16.9)10 10-5
2X3
By = 0.1x3

gg: A2/Bz < 850

Ay = [(;f;§§)2 + (157.5)10579+5
273
By = 0.1x3
g7: Xx2x3 < 40
gg: 5 s x1/x2 <12 : gg
g10: 2.6 < x1 < 3.6 P 911
gi2: 0.7 s x2 < 0.8 ¢ 913

16



gi4: 17 < x3 < 28 : 415

g16: 7.3 < x4 < 8.3 : 917
g1g8: 7.3 < x5 < 8.3 : 919
g20: 2.9 < xg < 3.9 ? : 921
g22: 5.0 < x7 < 5.5 : 923

g24: (1.5xg + 1.9)x4~1 < 1
g25: (l.1x7 + 1.9)X5‘1 < 1.

4.3.1. Two-lLevel Decomposition

The gear reducer considered here, Figure 2, consists of two subsystems,

namely, shaft and bearings 1 and shaft and bearings 2. These two subsytems

are selected to correspond to subproblems 1 and 2, respectively.

First-Level Subproblem 1: Find Xy and X6 (xl, X5 and X4 are fixed)

s _ 2 3 2
M121m;ze fl(xl,xz,x3,x4,x6) = - 1.508x1x6 + 7.477x6 + 0.7854x4x6
4°76
subject to:
93° 1.93x2'1x3'1x43x6'4 <1
95 A1/B1 < 1100
96" 7.3 ¢ X < 8.3 9
950° 2.9 < Xg < 3.9 954
9o4° (1.5%¢ + 1.9)x4_1 <1

17
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First-Level Subproblem 2: Find x5 and x7 (xl, x2, and X3 are fixed)

s 2
Minimize fz(xl,xz,x3,x5,x7) = - 1.508x1x§ + 7.477x; + 0.7854x5x7
Xg X ,
577
subject to: (69)
9y° 1.93 xz-1 x3"1x53x7'4 <1
9g° A2/B2 < 850
98° 7.3 < Xg < 8.5 919
9yt 5 < X5 < 5.5 053
. -1
P (1.1 X, + 1.9) Xg = S 1

Second-Level Problem: Find X1s Xps and X3 (x4, Xgs Xg and X, are fixed)

Minimize f(x) = fl(xl, Xps X35 Xgs XG) + fz(xl, Xys X35 Xgs x7)

X1X55X3

subject to: (70)
9;: 27x1'1x2-2x3"1 <1

gyt 397.5 x1'1x2'2x3'2 <1

g5: XoX3 S 40

gg: 5 < x1/x2 <12 9

910° 2.6 < X, S 3.6 914

9y, 0.7 < X, < 0.8 293

914 17 < Xg < 28 045

4.3.2. Active Constraints in the Subproblems

In subproblem 1, it can be easily verified that the objective function is

increasing w.r.t. Xy and Xg within the feasible range of X4 2 7.3, Xg 2 2.9,

18



and Xq < 3.6. Hence, according to the first rule of monotonicity ana]ysis,12

w.r.t. Xg constraints 935 9g> and 9y are the candidate active constraints.
In order to find the dominant active constraint, we rearrange 935 9g» and

950 a8 follows:

95° Xg 2 (1.93 x2'1x3'1x43)1/4 (71)
o5t xg 2 (A,/110)1/3 (72)
90° Xg 2 2.9 (73)

Then, we find the lower and upper bounds of the right-hand sides of eqs.

(71) and (72) using the available bounds on the variables X5s X3, and X+

2.406 s (1.93x, %, x4 < 30103 (74)

3.346 < (A1/110)1/3 < 3.352 (75)

From equations (71)-(75), we conclude that 95 is the active constraint and 93>
9, are the redundant constraints. Likewise, it can be verified that in
subproblem 1, w.r.t. Xs constraints 916 and g24 are the candidate active

constraints. If we rearrange 9,4 AS follows:
94" Xq 2 1.5x6 + 1.9 (76)

Since 95 is active, by substituting the lower and upper bounds of Xg from eq.
(75), we can find the lower and upper bounds of the right-hand side of

eq. (76):
6.918 < 1.5x6 + 1.9 £6.928 (77)

which if compared with X4 2 7.3, will result in 9.6 35 the active constraint

19



and 9,4 a5 the redundant constraint.

Therefore, in subproblem 1 constraints 9 and g,¢ are found to be active:

(=]
(3]

bed
(o]
1

= {L(745 x,/(xyx5))% + 16,9 x 10°10-% / 1103173 (78)

96° Xy = 7.3 (79)

In subproblem 2, w.r.t. X4 constraints 940 9gs 9y, arE the candidate

active constraints. By a similar analysis, as in subproblem 1, we have:

-lx -1x 3)1/4

9y X7 2 (1.93%, X5 Xg (80)
g x; 2 (A,/85)1/3 (81)
957 X9 25 (82)
where
2.406 < (1.93x, 1x, 1x 3174 < 3,103 (83)
2 X3 Xg
5.28568 < (A,/85))/3 < 5.28686 (84)

From equations (80)-(84) we conclude that 9 is active. Likewise, w.r.t.
Xg constraints 918 and 9,5 are the candidate active constraints. However,

since g¢ is active, then we can use the lower bound of x, from equation (84)

into the right-hand side of 9p5°

9o5° Xg 2 1.1x7 + 1.9 2 1.1 (5.28568) + 1.9 = 7.714 (85)

which if compared with 918’ results in 9y5 S the active constraint.

Therefore, in subproblem 2, constraints 9g and 9,5 are found to be active:

o [(745%5/ (x,%3))? + 157.5x10%1%*% /0.1x, - 850 (86)

20



-1
9,5° (1.ix, + 1.9)xg =1 (87)
4,3.3. Solution

In the previous section, we found the active constraints in subproblem 1
(constraints 9 and 916) and subproblem 2 (constraints 96 and g25). We now

assume that x? 1= x4, x? 2= x6 to be the solution variables in subproblem 1.

S S _ . . .
Also, we assume that x2’1= Xg s x2,2' X4 to be the solution variables in
subproblem 2. Note that there is no decision variables in subproblems 1 and
2. Furthermore, in the second-level problem, we have: (yl, Yoo y3) =
(xl, X5 x3). Also, in the second-level problem, we can show that 915 955 975
995 910» and 9,5 are redundant (Li and Papalambros, 1985). We then calculate
the second-level constrained-derivative, 3f/dy (eq. (36)), which can be shown
to be positive w.r.t. Yy Yps and Y3 within the feasible domain. Therefore,
in the second-level problem 9gs 9193 and 914 have to be active. The final
global optimum solution is x* = (3.5, 0.7, 17, 7.3, 7.71, 3.35, 5.29)t for
which constraints 95 9gs 9g» 9120 914 Y160 and 9,5 are active. This solu-
tion is identical to the one reported by Li and Papalambros (Li and

Papalambros, 1985).
5. Concluding Remarks

For a two-level design optimization problem, we have proved that the
optimality conditions for the undecomposed problem is the same as the ones
corresponding to the decomposed subproblems. Extension of this proof, which
in essence examines the integrity of optimality conditions before and after
decomposition, to a multi-level design optimization problem should be easy.

We also demonstrated that an effective approach for calculating the gra-
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dient of objective function in the second-level problem can be devised. This
approach consists of exploitation of problem structure and identification of
active constraints in the first-level subproblems. The approach is based on a
first-order gradient information, does not require calculation of optimum
sensitivities (a difficult to obtain second-order information) of first-level

subproblems, and should be easy to implement.
6. Acknowledgement

The work reported in this paper was supported in part by a grant from
Westinghouse Electric Corporation. Special thanks to Dr. William Fourney,
Chairman of Mechanical Engineering Department, for his encouragement and

support of this work.
7. References

Abadie, J., and Carpentier, J., 1969, "Generalization of the Wolfe
Reduced Gradient Method to the Case of Nonlinear Constraints,"
Optimization (R. Fletcher, Eds.).

Azarm, S., Li, W.-C., 1988a, "A Two-Level Decomposition Method for Design
Optimization," Engineering Optimization, Vol. 13, pp. 211-224.

Azarm, S., Li, W.C., 1988b, "A Multi-Level Optimization-Based Design
Procedure Using Global Monotonicity Analysis," Advances in Design
Automation (S.S. Rao, Eds.), ASME Pub. No. DE-Vol. 14, pp. 115-120.

Golinski, J., 1970, "Optimal Synthesis Problems Solved by Means of
Nonlinear Programming and Random Methods," Journal of Mechanisms, Vol. 5,
pp . 287"309.

Haftka, R.T., 1984, "An Improved Computational Approach for Multi-Level
Optimum Design," Journal of Structural Mechanics, 12(2), pp. 245-261.

Kirsch, U., 1981, Optimal Structural Design, McGraw-Hill.

Lasdon, L.S., 1970, Optimization Theory for Large Systems, Macmillan,
London.

Li, H.L., Papalambros, P., 1985, "A Production System for Use of Global

Optimization Knowledge," Trans. ASME, Journal of Mechanisms,

Transmissions, and Automation in Design, Vol. 107, No. 2, pp. 277-284.
22



Lootsma, F.A., Ragsdell, K.M., 1988, "State-of-the-Art in Parallel
Nonlinear Optimization," Parallel Computing, 6, pp. 133-155.

papalambros, P., Wilde, D.J., 1988, Principles of Optimal Design:
Modeliing and Computation, Cambrdige University Press.

Sobieski, J., 1982, "A Linear Decomposition Method for Large Optimization
Problems," NASA-TM-83248, NASA Langley Research Center, Hampton, VA.

Sobieski, S., Barthelemy, J.-F., Riley, K.-M., 1982, "Sensitivity of
Optimum Solutions of Problem Parameters," AIAA Journal, September, pp.
1291-1299.

Vanderplaats, G.N., Kim, D.S., 1988, "Recent Development in Multi-Level
Optimization," Proceedings of Second NASA/Air-Force Symposium in
Multidisciplinary Analysis and Optimization, Hampton, VA.

Wilde, D.J., Beightler, C., 1967, Foundations of Optimization,
Prentice-Hall, N.J.

23



List of Figures:

Figure 1
Figure 2

A Two-Bar Truss Problem

A Gear-Reducer

24



4m

im

Figure 1

100 kN

A Two-Bar Truss Problem



shaft 1

bearings 2 shaft 2 \
\\ bearings 1

T Wl X4
“\"5 i} /
N .

ol

Figure 2 A Gear-Reducer



