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1 IntroductionThe problem of object recognition from sensory data is de�ned in the literature as the associationof visual input with a name or symbol. In the absence of distinguishing properties such as color,texture, or motion, object recognition �rst requires the visual recovery of shape, followed by thematching of the recovered shape to a database of known objects [16]. Although much research onthe topic has been published, the community still lacks vision systems that can recognize in realtime a large number of objects (natural or man-made). Full recovery has been di�cult to achievewhile matching su�ers from combinatorial explosion.Model-based recognition has been suggested as a remedy to these problems. Many 3-D objectrecognition systems take a single object model and attempt to locate it in the image, e.g., [13, 14, 34].The object models are commonly CAD-like, capturing the exact geometry of the object. Althoughvery e�ective for certain robot vision tasks in constrained environments, where a known targetmust be accurately localized for manipulation or inspection, these techniques are inadequate whenaddressing less constrained environments.Consider, for example, a robot vision system whose goal is to move through a handicappedperson's household, retrieving and manipulating everyday objects such as books, cups, chairs, etc.How can we avoid having to provide the system with detailed CAD speci�cations of each objectthat the system is to recognize? One way of making object models more 
exible is to parameterizegeometric models, as proposed by Brooks in his ACRONYM system [3]. For example, the legs of achair model could have lengths that fall in some speci�ed range, or the number of chair legs couldbe variable. Object recognition systems using parameterized models have also been proposed byHuttenlocher [12] and by Lowe [15]. However, all three of the above systems are very top-down,requiring not only knowledge of what object is in the image, but in some cases a good initial guessas to the orientation of the object.A di�erent approach to the problem is to consider the recognition process in the context of anagent interacting with its environment [23]. The recognition process is subordinate to the agent'sintentions and behavior in its environment. Recognition is equivalent to the process that checksif an object suits a particular purpose. If an object is perceived to ful�ll a function necessary tocarry out a certain behavior or action, then it is recognized. Gibson's theory of a�ordances [10],i.e., properties that are de�ned with reference to an observer, was a major step in this direction.Winston et al. [35] emphasized how much easier it is to describe what objects are used for, rather1



than to describe what objects look like. They tried to show how recognition could be performedusing functional de�nitions, and how physical models could be learned using functional de�nitionsand speci�c acts of identi�cation.When we consider recognition from a functional point of view, we replace the concept of shape-alone based recognition by a more general and 
exible approach. For example, if we wish to modelfour chairs, each having a di�erent con�guration of di�erently shaped parts but all functioningas chairs, we would require four di�erent object shape models. Alternatively, recognition basedon functionality would enable our mobile robot to possess knowledge of the needed function of achair without explicitly specifying the possible shape of a chair. The seminal work of Stark andBowyer et al. [25]{[31] has addressed function-based object recognition, focusing on domains thatinclude such objects as chairs and dishes. They de�ne a set of functional primitives speci�c to eachobject class. For example, in their system that recognizes chairs, they have functional primitives forsupport, sitting height, stability, etc. From a CAD representation of an object, they can computethese primitives and categorize the object. Although their system has been tested mainly with CADdata, they have also applied the system to range images acquired by an Odetics range scanner.Despite the success of their approach, it has some limitations. To begin with, the approachassumes a 3-D representation of the image from which they can compute the functional primitives.Furthermore, the approach assumes an image of an isolated object; object occlusion in the imagecannot be supported since no object segmentation is performed on the image data. Thus the work ofStark and Bowyer takes a global approach to functional recognition, making it sensitive to occlusionand partial views. Their functional reasoning does not extend to function-based recognition from2-D imagery containing multiple occluded objects.In this paper, we present a theory of function-based recognition which is a natural extensionof part-based shape recognition. Instead of focusing on global properties such as stability, height,existence of large horizontal surfaces, etc., we will reason about the functionality of an object's parts.Moreover, those parts are the same parts that we recover from the image for shape recognition.Thus, instead of reasoning about the functionality of a collection of 3-D points or planar surfaces, wepropose to reason about a more intuitive notion of an object's parts (Pentland [19]). Although wewill not index using part shape, we can use knowledge of part shape to help segment the image intoparts. Given a set of recovered volumetric parts, we can then reason about both the functionality ofthe individual parts and the interactions between the parts. Such interactions can include relativeorientation, size, shape, or even motion! 2



Returning to our mobile robot example, when the robot encounters an object, it �rst segmentsthe object into a set of volumetric parts, supporting part recovery from incomplete views of theobject and supporting object occlusion. Once the robot decides which parts belong to the object, itcan then infer the possible functionalities of individual parts and collections of parts. The robot cancheck if the functionality needed for a certain action is consistent with the recovered functionality.In contrast with the approach of Stark and Bowyer, when searching the image for a \chair kind ofsupport", we would like to reason about a set of chair legs, a seat, and a back, rather than a set ofsimple planar surfaces or 3-D points.In the following sections, we outline our theory of object functionality in Section 2, and introducea representation for volumetric parts from which we reason about functionality. Section 3 discussesthe recovery of the volumetric parts from both 3-D range and 2-D intensity images. In Section 4we describe our recognition algorithm as it applies to both expected (top-down) and unexpected(bottom-up) object recognition. Finally, in Section 5, we demonstrate how the technique is appliedto the domain of hand tools.2 Representing Object FunctionalityOur theory of function-based object recognition is a natural extension of part-based shape recog-nition. That is, we reason about the functionality of an object's parts and their interrelations.Figure 1 illustrates the concept. At the shape level, objects are constructions of coarse volumetricprimitives with spatial relations between the primitives. At the function level, the shape primitivesmap to a set of functional primitives and the spatial relations map to a set of functional relations.At the functional level, objects are not represented in terms of shape, but in terms of a set offunctional primitives and relations. In the following sections, we describe this hierarchical repre-sentation in more detail. We begin by describing the coarse shape representation and follow withthe functional representation. Finally, we illustrate the representation by means of an example.2.1 Representing Shape2.1.1 Shape PrimitivesOur shape representation models objects as constructions of coarse volumetric shapes belonging tofour classes: sticks, strips, plates, and blobs. The representation is an extension to the generalizedblob models (sticks, plates, and blobs) proposed by Mulgaonkar, Shapiro, and Haralick [18]. Our3
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(a) (b)Figure 2: Shape primitives. (a) The four primitives modeled by superquadrics using Pentland'sThingworld [19]. (b) Two blobs (can and vase), two sticks (pencil and pen), and a plate (table).2.1.2 Spatial RelationsWe can qualitatively describe the ways in which two shape primitives can be combined. For example,we can attach two shapes end-to-end, end-to-side, or side-to-side, as proposed by Biederman whenbuilding objects out of geons [2]. To further specify these attachments, we adopt the conventionof labeling each volumetric primitive's attachment surfaces [7]. For example, a square plate hassix attachment surfaces, while a cylindrical stick has three attachment surfaces. For simplicity, weshall require any junction of two primitives to involve exactly one attachment surface from eachprimitive. Figure 3 illustrates a simple object composed of a blob and a stick; note that in thisexample, both objects are cylinders.
Figure 3: Concatenation: a blob and a stick.In addition to specifying the two attachment surfaces that participate in the junction of two5



primitives, we can also consider the angle at which they join, and we can classify the joints asperpendicular, oblique, tangential, etc. Another re�nement would be to qualitatively describethe position of the joint on each surface. For example, an attachment can be near the middle,near the side, near the corner, or near the end of a surface. Figure 4 illustrates six di�erentconcatenations of a strip and a stick. A stick has three attachment surfaces, but when symmetry istaken into account it has only two distinguishable attachment surfaces. Similarly, a strip has threedistinguishable attachment surfaces. Therefore, there are six ways of combining the two primitivesin terms of attachment surfaces if we ignore where on a surface an attachment is made as well asthe angle of the attachment.
(a) (b) (c)

(d) (e) (f)Figure 4: Six di�erent objects composed of a strip and a stick.2.2 Representing FunctionFunctional PrimitivesFunctional primitives represent the building blocks of a functional representation of an object. Forexample, the functional primitives de�ning a co�ee cup would include a handle and a container;a chair would include a seat, a base, and a back [25, 26]. In the remainder of this paper, wewill illustrate our approach to functional object recognition by focusing on a class of manipulationtasks. Bearing in mind that a manipulation task involves an agent and its environment, we willde�ne a class of objects that have an end-e�ector (that part which delivers the action) and a handle6



(that part which provides the interface between the agent and the end-e�ector). Examples of suchobjects might include simple hand tools like a screw driver or a hammer, or everyday objects likecups, glasses, or plates.2.3 Mapping Shape to FunctionIn general, the mapping between shape primitives (and their relations) and functional primitivesis many-to-one. For example, three or more chair legs may satisfy the functional primitive of chairbase. For simplicity, we will restrict ourselves to object models with a one-to-one mapping betweenshape primitives and functional primitives. Consider, for example, the functional model for ahammer specifying an end-e�ector and a handle. The end-e�ector should be blob-like, ensuringthat the dimensions of the striking surface are roughly equal (rotationally symmetric to allowstriking error in any direction). If the end-e�ector were stick-like, the distance between the handlejunction and the striking surface would be large, making it more di�cult to locate the nail. If theend-e�ector were plate-like, it would have insu�cient momentum for driving a nail. The handle,on the other hand, should be stick-like, small enough so that it can be grasped by a human hand,and long enough to provide a high moment at its junction with the end-e�ector.Functional RelationsSeveral parts might independently satisfy the requirements for an end-e�ector or a handle. However,they must be joined in a particular way in order to satisfy the requirements of a particular task. Theset of functional relations linking the functional primitives describes the function of the interactionbetween the functional primitives. In the hammer example, the functional relation linking thehandle and end-e�ector speci�es that the handle is used to swing the end-e�ector in a directionwhich maximizes the force tangential to the swing arc while maximizing striking stability.2.4 Mapping Function Relations to Spatial RelationsThe speci�cation of how the functional components de�ning an object are combined is capturedby a set of functional relations. These functional relations are then mapped to a set of spatialrelations linking the shape primitives. In the hammer example, the functional relation maps to anattachment between the stick (handle) and the blob (end-e�ector) such that the axis of the stickis orthogonal to the (principal) axis of the blob and is attached to the centroid of the blob. The7



complete model for the hammer, including functional and shape primitives, functional and shaperelations, and the mapping between functional shapes and relations to spatial shapes and relationsis outlined in Figure 5.
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Figure 5: Functional model for a hammer.3 Recovering ShapeIn the last section, we described a set of functional primitives de�ned on a set of shapes consist-ing of sticks, strips, plates, and blobs. Since these four shape classes are de�ned on the basisof their relative dimensions, we need to not only segment an input image into parts, but recover3-D (dimensional) information from those parts. In this section, we describe an approach to re-covering sticks, strips, plates, and blobs from an image. The approach consists of recovering asuperquadric from the image, providing explicit dimensions which we can then use to classify ourshape. Superquadrics o�er a compact, coarse, volumetric description of an object's parts [19]. If�ner shape modeling is required, deformable superquadrics can be used to capture both global partshape (using a superquadric) and local shape (using a deformable mesh) [32]. Since superquadricscapture more shape attributes than just the x, y, and z dimensions of a part, they provide us witha foundation from which to recover a richer vocabulary of qualitative shapes with which to reasonabout function. For example, we may decide to distinguish among curved-axis vs. straight-axisshapes or tapering vs. constant cross-sectional sweep rules [2].8



Recently, several researchers have proposed segmentation techniques for partitioning imageor range data, in order to automate the process of �tting superquadric volumetric primitives todata. Most of those approaches are applied to range data only [8, 9, 11, 24], while Pentland[20] describes a two-stage algorithm to �t superquadrics to image data. In the �rst stage, hesegments the image using a �ltering operation to produce a large set of potential object \parts",followed by a quadratic optimization procedure that searches among these part hypotheses toproduce a maximum likelihood estimate of the image's part structure. In the second stage, he �tssuperquadrics to the segmented data using a least squares algorithm. Pentland's approach is onlyapplicable in case of occluding boundary data under simple orthographic projection, as is true ofearlier work of Terzopolous et al. [33], Terzopolous and Metaxas [32], and Pentland and Sclaro�[21], which address only the problem of model �tting. In a related approach, Narayan and Jain [22]recover geons from range imagery, and use superquad �tting to determine the axis of the geon.The approach we take, due to Dickinson and Metaxas [5, 17], is to use a qualitative segmentationof the image to provide strong constraints on the deformable model �tting procedure describedin [32]. The result is a technique which allows us to recover certain classes of superquadrics fromimage data, under orthographic, perspective, and stereo projection [17]. Furthermore, the techniquesupports the recovery of occluded parts, allowing us, unlike the work of Stark and Bowyer, to reasonabout the functionality of objects that are only partially visible. We will not describe the aboverecovery methods in this paper; details can be found in [5, 17]. We will, however, describe thegeometry of a deformable superquadric and show how we classify a superquadric as a stick, strip,plate, or blob.3.1 Geometry of a Deformable SuperquadricGeometrically, the models that we can recover from either range or image data are closed surfaces inspace whose intrinsic (material) coordinates are u = (u; v), de�ned on a domain 
. The positions ofpoints on the model relative to an inertial frame of reference � in space are given by a vector-valued,time varying function of u: x(u; t) = (x1(u; t); x2(u; t); x3(u; t))>; (5)where > is the transpose operator. We set up a noninertial, model-centered reference frame �, asshown in Figure 6, and express these positions as:x = c +Rp; (6)9



where c(t) is the origin of � at the center of the model and the orientation of � is given by therotation matrix R(t). Thus, p(u; t) denotes the canonical positions of points on the model relativeto the model frame. We further express p as the sum of a reference shape s(u; t) and a displacementfunction d(u; t): p = s+ d: (7)
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Figure 6: Geometry of a deformable model.This formulation can be carried out for any reference shape given as a parameterized function ofu. Based on the shapes we want to recover (sticks, strips, plates, and blobs with possible taperingand bending global deformations), we �rst consider the case of superquadric ellipsoids [1], whichare given by the following formula: e = a0BBBB@ a1Cu�1Cv�2a2Cu�1Sv�2a3Su�1 1CCCCA ; (8)where ��=2 � u � �=2 and �� � v < �, and where Sw� = sgn(sinw)j sinwj�, and Cw� =sgn(cosw)j coswj�, respectively. Here, a � 0 is a scale parameter, 0 � a1; a2; a3 � 1 are aspect ratioparameters, and �1; �2 � 0 are \squareness" parameters.10



We then combine linear tapering along principal axes 1 and 2, and bending along principal axis3 of the superquadric e1 into a single parameterized deformation T, and express the reference shapeas s = T(e; t1; t2; b1; b2; b3) = 0BBBBBB@ � t1e3aa3w + 1� e1 + b1 cos�e3 + b2aa3w �b3�� t2e3aa3w + 1� e2e3 1CCCCCCA ; (9)where �1 � t1; t2 � 1 are the tapering parameters in principal axes 1 and 2, respectively, andwhere b1 de�nes the magnitude of the bending and can be positive or negative, �1 � b2 � 1 de�nesthe location on axis 3 where bending is applied and 0 < b3 � 1 de�nes the region of in
uenceof bending. Our method for incorporating global deformations is not restricted to tapering andbending deformations. Any other deformation that can be expressed as a continuous parameterizedfunction can be incorporated as our global deformation in a similar way.We collect the parameters in s into the parameter vectorqs = (a; a1; a2; a3; �1; �2; t1; t2; b1; b2; b3)>: (10)Once we have recovered a superquadric from an image (range or intensity), it is a very simplematter to extract the dimensions of the superquadric. The width (x dimension) of the superquadricis given by width = aa1; (11)the height (y dimension) by height = aa2; (12)and the length (z dimension) by length = aa3: (13)Given the dimensions of the part, we can classify the part as either a stick, strip, plate, or blobaccording to the rules described in Section 2.3.2 An Alternative Approach to Recovering Qualitative ShapeBefore we leave the recovery section, it is worth noting that there is an approach to recoveringsticks, strips, plates, and blobs directly from image data without �rst recovering superquads. The1These coincide with the model frame axes x;y and z respectively.11



approach is based on the qualitative shape recovery work of Dickinson, Pentland, and Rosenfeld [7]and relies only on a region segmentation of the input image. In that approach, a �xed set of volumeswas analyzed over the viewing sphere, giving rise to a set of aspects. Shape recovery was thereforeformulated as part-based aspect matching with a set of conditional probabilities associated withthe aspects and their features used to guide both bottom-up inferencing of features and top-downprediction of features.This approach could be extended by analyzing the views of a greater variety of parts sortedinto the four shape classes. In this manner, image dimensions of image faces in a part aspectcould be measured and, using a derived conditional probability distribution, used to suggest theclass membership of the part. Although much less robust than inferring class membership from asuperquadric �tted to the part due to the e�ects of foreshortening, the approach does avoid theprocess of �tting the superquad.4 Recovering Object FunctionOur function-based object recognition strategy supports bottom-up (or unexpected) object recog-nition, whereby an object is presented to the system and the system identi�es the object based onthe functionalities of its parts. In addition, our strategy supports top-down (or expected) objectrecognition, whereby the system looks for a particular object in the image by mapping its functionalparts to image feature predictions. In this section, we will describe both of these strategies.4.1 Unexpected Object RecognitionIn an unexpected object recognition task, we �rst �rst segment an input image into a set of homo-geneous regions from which we recover a set of qualitative 3-D parts using local part-based aspectmatching techniques [4, 6, 7]. Next, using the techniques of Dickinson and Metaxas [5, 17], we usethe recovered qualitative shape to constrain the �tting of a set of deformable superquadrics to thequalitative parts. From the resulting quantitative parts, we compare the dimensions of the parts toabstract a set of sticks, strips, plates, and blobs. Furthermore, we can recover the spatial relationsspanning the recovered parts.If there is no a priori knowledge of what object is in the image, then groups of spatial primitivesand their spatial relations can be used to infer a set of functional primitives and relations. Therecovered functional primitives and relations are then compared to a set of functional object models.12



In our simple domain of hand tools, we can map shape primitives to possible functional primitivesand map shape relations to possible functional relations, providing a number of functional objecthypotheses that are then compared to the object database. As an example, suppose we place ahammer in front of the camera and ask the system to identify the object. The recovery processrecovers a stick and a blob in some spatial con�guration. The blob maps to an end-e�ector aswell as to all other functions a blob could serve. Similarly, the stick maps to a handle as well asto all other functions that it could serve. Finally, the spatial relation between the stick and blobmaps to all functional relations joining a stick and a blob in that con�guration. Combining thevarious interpretations for the stick, the handle, and their relationship yields a number of objecthypotheses which satisfy the recovered functionality.4.2 Expected Object RecognitionIn an expected object recognition task, we use knowledge of the target object's functional modelto constrain our search in the image both in terms of what we look for and where we look for it.Given a functional object model, we �rst choose some functional primitive whose presence in theimage provides the least ambiguous mapping to the target object. For example, in looking for acup on a table containing glasses and cups, we should look for a cup handle and not for a containersince the handle is unique to the cup. Next, the functional primitive is mapped to one of the fourabstract shape primitives (stick, strip, plate, and blob). Finally, the shape primitive is mappedinto an image region shape prediction in terms of extent or elongation. As in the unexpectedobject recognition algorithm, the image is �rst processed to extract a region topology graph. Byexamining the extents (or elongations) of an image region and of its immediate neighbors, we canderive a simple heuristic for drawing attention to a particular image region. From this, we canfocus the recovery of the shape primitive and constrain the search for other primitives belongingto the object.For example, if we are searching for blobs or plates, we can rank-order the image regions byincreasing extent. Regions whose immediate neighbors include a region with similar extent can befavored as being part of a blob, while regions whose neighbors do not include a region with similarextent can be favored as being part of a plate. Similarly, if we are searching for sticks or strips,we can rank-order the image regions by decreasing extent. Regions whose immediate neighborsinclude a region with similar extent can be favored as being part of a stick, while regions whoseneighbors do not include a region with similar extent can be favored as being part of a strip. These13



rules can provide a useful ordering on the positions from which shape recovery is attempted.From a candidate search position, the next step is to recover a superquadric from which 3-Dpart dimensions and orientation can be recovered. This is done by �rst recovering the qualitativeshape of the part [6, 7]; this is then used to constrain the �tting of a superquadric to the imagedata. Once the part is veri�ed as a stick, strip, plate, or blob, the search for other object partscan be constrained to those image regions adjacent to or in the vicinity of any previously recoveredvolumes.5 ResultsIn this section, we apply the function-based expected object recognition algorithm to the image ofthe mallet shown in Figure 7(a); in Figure 7(b), we show the segmented region image. Withoutany a priori knowledge of scene content, each of the functional primitives, namely the end-e�ectorand handle, is deemed equally likely to appear in the image. The algorithm arbitrarily choosesthe end-e�ector (mallet head) and maps it to a search for a blob in the image. The algorithmrank-orders regions in the image according to their ratio of area to extent (computed from thebounding box). The large region is chosen �rst and the bottom-up algorithm is used to recover themost likely interpretation of the region and its neighbors. The two most likely recovered volumesare shown in Figures 8(a) and (b), corresponding to the head and handle of the mallet, respectively.(Those portions of the bounding contour used to infer part identity are highlighted in the image[6, 7].)In Figures 9(a) and (b), we show the results of using the recovered qualitative shape to constrainthe �tting of a superquadric to each part; the parameters of the two superquads are given in Table 1.Since only a monocular image was used, the same arbitrary depth was chosen for both objects duringthe �tting stage. Without recovering the true depths of the two parts, we cannot insure that theyintersect.2 However, in this case, since the two parts intersect in the image, we assume that theyintersect in 3-D.From the recovered superquad parameters in Table 1, we can proceed to classify each part aseither a stick, a strip, a plate, or a blob according to equations 11, 12, and 13 in Section 2.1.1; theresults are shown in Table 2. Using equations 1, 2, 3, and 4, and de�ning two dimensions as similarif the ratio of the bigger to the smaller is less than 4:1 (the width:height:length ratios for the two2See [17] for an approach to deformable model recovery from stereo pairs.14



(a) (b)Figure 7: (a) Original image; (b) segmented region image.
(a) (b)Figure 8: Qualitative shape recovery: (a) Most likely volume recovered for the mallet head; (b)most likely volume recovered for the mallet handle. Those contours used in inferring the recoveredvolume are highlighted in the image.parts are 1:1:1.53 for the head and 1:1:5.18 for the handle), the mallet head is classi�ed as a blob,while the mallet handle is classi�ed as a stick.Since our search procedure is looking for the mallet head (end-e�ector), it chooses the blob,and proceeds to search for the handle in the vicinity of the recovered blob. Due to region underseg-mentation, the regions corresponding to the body surfaces of the head and handle of the mallet arejoined. However, those contours not used to recover the head but still belonging to the large region15



Table 1: Recovered superquad parameters for the mallet.Superquad PartParameter Head Handlea 37.19 37.19a1 0.45 0.22a2 0.45 0.22a3 0.69 1.14tx -4.40 4.97ty 0.51 -3.88tz -50.0 -50.0r11 0.49 0.54r12 -0.22 0.07r13 -0.84 0.84r21 -0.14 0.78r22 0.93 0.27r23 -0.33 -0.53r31 0.86 -0.26r32 0.28 0.96r33 0.42 0.09�1 0.0 0.0�2 1.0 1.0bendz 0.0 0.0taperz 0.0 0.0Table 2: Recovered dimensions for the mallet.Dimension PartHead Handlewidth 16.74 8.18height 16.74 8.18length 25.66 42.40are free to be part of other recovered volumes. Since we have already recovered a stick, and itsde�ning contours were not used to infer the blob, we can instantiate the handle in the image. Thelast step in recognizing the object is to satisfy the functional relation between the two parts whichis mapped into a spatial constraint on the part junction. Since the computed relative orientationof the two parts is such that their z axes are orthogonal (> 60 deg in our qualitative partitioningof angles), and since the junction occurs at the end of the handle and at the middle of the head,the algorithm successfully veri�es the hammer in the image.16



(a) (b)Figure 9: Recovered superquads: (a) mallet head; (b) mallet handle. Intermediate grey valuesalong contour portions represent locations of image forces acting on the superquad. Due to theabsence of forces at the junction between the two parts (no contours at the junction end of thehandle), the �tted handle was not \pulled" all the way to the junction.In the second example, we apply our function-based unexpected object recognition approachto a scene containing a short cylinder attached to the side of a block; the image is shown inFigure 10(a), and the segmented region image is shown in Figure 10(b). The most likely qualitativevolumes recovered from the image are shown in Figures 11(a) and (b), respectively, while the �ttedmodels are shown in Figures 12 (a) and (b), respectively.
(a) (b)Figure 10: (a) Original image; (b) segmented region image.17



(a) (b)Figure 11: Qualitative shape recovery: (a) most likely volume recovered for the block; (b) mostlikely volume recovered for the cylinder. Those contours used in inferring the recovered volume arehighlighted in the image.
(a) (b)Figure 12: Recovered superquads: (a) block; (b) cylinder. Intermediate grey values along contourportions represent locations of image forces acting on the superquad.From the recovered superquad parameters in Table 1, we can proceed to classify each part aseither a stick, a strip, a plate, or a blob according to equations 11, 12, and 13 in Section 2.1.1; theresults are shown in Table 4. Using equations 1, 2, 3, and 4, and again de�ning two dimensionsas similar if the ratio of the bigger to the smaller is less than 4:1 (the width:height:length ratiosfor the two parts are: 1:1:2.51 for the block and 1:1:0.89 for the cylinder), both the block and thecylinder are classi�ed as blobs. Although their connection position and orientation is consistentwith the hammer model, this model requires that the handle be a stick. The unknown object18



Table 3: Recovered superquad parameters for the unknown object.Superquad PartParameter Block Cylindera 37.19 37.19a1 0.54 0.45a2 0.54 0.45a3 1.36 0.40tx -2.77 1.64ty 0.32 -0.06tz -50.0 -50.0r11 0.78 0.39r12 -0.11 0.02r13 -0.62 0.92r21 -0.16 0.49r22 0.92 0.84r23 -0.36 -0.23r31 0.61 -0.78r32 0.38 0.54r33 0.70 0.32�1 0.05 0.1�2 0.05 1.0bendz 0.0 0.0taperz 0.0 0.0Table 4: Recovered dimensions for the unknown object.Dimension PartBlock Cylinderwidth 20.08 16.74height 20.08 16.74length 50.58 14.88cannot, therefore, be classi�ed as a hammer.6 LimitationsThe domain of hand tools de�nes a simple, one-to-one mapping between an object's functionalprimitives and relations and the corresponding shape primitives and relations. In more generalcases, the mapping from shape primitives to functional primitives may be many-to-one, and a more19



elaborate reasoning strategy is required to support the inference of a functional primitive from acollection of interacting shape primitives. Nevertheless, we believe that such a reasoning mechanismmust operate at the level of an object's coarse volumetric parts.The object representation described in this paper is appropriate for objects composed of simplevolumetric parts. Furthermore, it supports only functionality that is de�ned in terms of an object'sshape. Functions that are based on color, texture, or (more importantly) motion are not currentlysupported, but in our current work we are enhancing our representation to include the motions ofan object's parts.7 ConclusionsWe have presented an approach to function-based object recognition that reasons about the func-tionalities of an object's parts. Previous approaches have relied on global object features, oftenignoring the problem of object segmentation and thereby restricting themselves to range maps ofunoccluded scenes. We extend the popular \recognition by parts" shape recognition framework tosupport \recognition by functional parts", by combining a set of functional primitives and theirrelations with a set of abstract volumetric shape primitives and their relations. We show howthese shape primitives and relations can easily be recovered from superquadric ellipsoids which,in turn, can be recovered from either range or intensity images of occluded scenes. Furthermore,the proposed framework supports both unexpected (bottom-up) object recognition and expected(top-down) object recognition.References[1] A. Barr. Superquadrics and angle-preserving transformations. IEEE Computer Graphics andApplications, 1:11{23, 1981.[2] I. Biederman. Human image understanding: Recent research and a theory. Computer Vision,Graphics, and Image Processing, 32:29{73, 1985.[3] R. Brooks. Model-based 3-D interpretations of 2-D images. IEEE Transactions on PatternAnalysis and Machine Intelligence, 5:140{150, 1983.[4] S. Dickinson. Part-based modeling and qualitative recognition. In A. Jain and P. Flynn,editors, Three-Dimensional Object Recognition Systems. Elsevier, Amsterdam, 1993.20
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