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Abstract

Rain rate-the speed of rain in mm/hr—assumes zero values when it is not rain-
ing, and positive values on a continuum otherwise. For large areas, empirical
evidence points to a high correlation between the instantaneous area average
rain rate and the instantaneous fractional area where rain rate exceeds a fixed
positive threshold. An explanation is provided by appealing to the mean value
theorem for integrals, in conjunction with the mixed nature of the probability
distribution of rain rate. Using a multinomial logits model, the fractional area
also is shown useful as a time dependent covariate in categorical prediction of
the area average.

Keywords: Rain rate, area average, fractional area, correlation, categorical
time series, partial likelihood.



1 Introduction

The quantity of interest in this article is rain rate in mm/hr observed instanta-
neously, at every location over a given large area in the tropics, by means of a
precipitation radar. So, imagine large instantaneous maps or snapshots of rain
rate taken periodically over a fixed area. Such snapshots consist of zeros when
it is not raining, and positive values otherwise when it is raining. It follows the
probability distribution of rain rate is of a mized type: a mixture of a discrete
component supported at 0, and a continuous component. We use this fact in
explaining a certain remarkable linearity observed in nature.

Instantaneous tropical rain rate snapshots obtained from a radar over a given
large area show that the instantaneous fraction of the area (FA) where rain
rate exceeds a threshold and the instantaneous area average (AA) are highly
correlated quantities. An example of this fact is shown in Figure 3400 pairs
(FA,AA) from snapshots over a large area 290 km in diameter in the tropics—
near 2°S and 156°E-obtained every 10 minutes. The data are described briefly
in the enclosed appendix. We see for a threshold in the range of 3 to 9 mm/hr
the correlation is quite high exceeding 97%. The same has been observed time
and again using different radar data sets of tropical rainfall from different parts
of the globe, yielding correlations well above 95% and at times reaching 99%.
Short et al. (1993) have observed the same high degree of linearity from rain-
gauge data. This seemingly puzzling phenomenon has attracted a fair amount
of attention in the scientific community and several attempts to explain it have
been suggested including Atlas et al. (1990), Braud et al. (1993), Kedem et
al. (1990), Kedem and Pavlopoulos (1991), Mase (1994), Morrissey (1994),
Rosenfeld et al. (1990). Shimizu et al. (1993) have observed the high linearity
persists for higher order moments as well-it necessitates higher thresholds.

We argue the observed linearity can be explained very simply by appealing
to the mean value theorem for integrals in conjunction with the fact rain rate is
nonnegative and its distribution is of mixed type.

We further illustrate the fractional area is a useful covariate in categorical
prediction of the area average rain rate. This has an application in rainfall
measurement from imprecise satellite-borne instruments, for it is still possible
to classify reliably rain rate as being above or below a threshold and determine
accordingly the fractional area and from it the area average.




2 Variation in the Discrete Component

Let X be a random variable of a mixed type

¥ = Y, With prob. p
~ 10, Withprob. 1—p

where Y is a positive continuous random variable with absolutely continuous
distribution function F. It follows

P(X <z)=(1-pH(z)+pF (),

where H(z) is a step function, H(z) = 0 for ¢ < 0 and H(z) = 1 for ¢ > 0.
Therefore for 2 > 0,
P(X >z)=[1-F(a)]p

For a positive b the mean value theorem gives for 7 € [0, 0],
E(X) = bP(X > ) + /bw P(X > 2)de
Taking b sufficiently large we obtain
E(X)mbP(X >71)=0b[1—-F(7)]p (1)

Clearly, since I/(X) = pE(Y), b depends on F only. The relationship (1) points
to a close association between the first moment and the exceedance probability
for sufficiently large threshold 7, since T grows monotonically with b.

Let Xi,..., X, be a random sample from X. Then, in general, the sample
average X and sample proportion of positive values p are positively correlated,
since a larger proportion of positive values—at the expense of the (0's—tends to
increase the sample average. However, the correlation cannot be too high, be-
cause pairs (X,p) from different samples from X tend to cluster around the
point (E(X),p) .

If on the other hand each sample Xj,..., X, comes from the same F' but
different p, as p varies in [0,1] from sample to sample while holding F fized
(and hence also b), we see from (1) the pairs (X, p) tend to vary jointly along a
straight line with slope b[1 — F(7)], thus producing high correlations. Empirical
evidence shows 7 may even be only (relatively) moderately large.




This is illustrated in Figures corresponding to thresholds 7 = 5 and 7 = 10,
respectively. The figures show scattergrams from 400 samples from a mixed
lognormal-that is log Y is N(1, 1)—produced with different p values as indicated,
while holding b[1 — F(7)] fixed. In Figure 2-(a) p = 0.07 is held constant in
all the 400 samples giving a correlation between (X,5) of 0.758. In 2-(b) p
is allowed to vary in the set (.07,.08,.09,.1,.12) and the correlation increases to
0.878. In Figure yielding a correlation of 0.994. Similar remarks hold for Figure
in p is more pronounced, as it “stretches” over the range [0,1] it produces a high
correlation between (X, p) in excess of 99%.

This can help to explain the high correlations in Figure as a sample (not
necessarily random) from X. In this case p at time ¢ is the percent of the area
covered with precipitation, and the fractional area is approximated by [1— F'(7)]p.
One can argue that over a period of about three weeks, rainfall is sufficiently
homogeneous conditional on rain, meaning that F' hardly varies throughout the
period—some empirical evidence of this is given in Kedem and Pavlopoulos (1991).
But p certainly varies in [0,1] as is evident from Figure 1 with 7 = 0: some
snapshots are devoid of rainfall while quite a few are more than 50% covered
with precipitation. Thus for a sufficiently large threshold 7, for a snapshot at

time ¢, ( 1) is approximated by
X~ b{[L = F(r)]p} = {bl1 = F(r )]} @)

That is, the pairs (F'A;, AA;) tend to fall along a straight line as p; varies from
snapshot to snapshot, while F' does not vary.

2.1 Optimal Thresholds

The requirement that b and hence 7 be relatively high means 7 > 0. However, the
threshold cannot be too large since then the fractional area is mostly zero across
all snapshots regardless of the area average, leading to degraded correlation.
Figure 1 suggests 7 = 3 is a reasonable threshold as it maximizes the correlation
between AA and FA. It is interesting to note the same conclusion is reached by
a goodness of fit procedure discussed next.



3 The Fractional Area as a Covariate

The close connection between the area average and the fractional area also reveals
itself in categorical prediction in time of the first using the second as a covariate.

Let AA; denote the area average rain rate in the TOGA/COARE data at
time ¢, and let AA, be categorized in m categories. Define a longitudinal random
variable Y; by,

Y, = j if the j'th category is observed at timet, j=1,...,m
A widely used model is the multinomial logits model defined as,

eXP(/B;'Zt—l)
L+ 2 exp(Bizit)’

where z; is a vector of random covariates. Let

P[Y;:.Jlj:t—l]: ]=1,,q:m—1 (3)

2 = (FA(T), FA()i-s)

where F'A(7); is the fractional area at time ¢ corresponding to threshold 7. As
in Figure 1, attention is restricted to 7 = 0,1,3,5,7,9.
For m = 3, we define

1 if 0 < AA, < .004
Y;={2 if .004 < AA, < .2 (4)
3 if AA, > .2

The results of partial likelihood (PL) analysis of this case are reported in Table
1, where X3 refers to a goodness of fit statistic described in Slud and Kedem
(1994) and Fokianos and Kedem (1995).

Table 1. Three categories: Multinomial logits model diagnostics.
—9log PL 2 Probabilities of Misclassification
- 4| Ist Cat. 2nd Cat. 3rd Cat.  Total
1040.26 | 140.61 6.9% 39.1%  52.4% 30.8%
408.27 | 13.99 3.8% 44% 29.8% 8.9%
197.99 1.97 5.1% 5.7% 6.1% 5.2%
242.28 | 13.31 3.8% 8% 39% 5.8%
308.98 3.45 3.9% 7.8% 45% 5.9%
392.43 7.28 6.4% 12.1% 55% 9.2%

O| N W~ O 2
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As in Figure 1, 7 = 3 gives the best fit, though it does not minimize the
probability of misclassification.
The same analysis was repeated with 4 categories,

if 0 < AA; < .004

if .002 < AA; < 0.03 (5)
if 0.03 < AA, < .2

if AA; > .2

Y, =

W W N -

Table 2 gives the corresponding diagnostics. Once again, 7 = 3 gives the best fit.
Similar results were obtained for other categorical models including proportional

odds.




Table 2. Four categories: Multinomial logits model diagnostics.
—91og PL N Probabilities of Misclassification
o8 X6 [Tst Cat. 2nd Cat. 3rd Cat. 4th Cat. Total

1492.85 | 258.36 1.5% 93.6% 53.9% 49.8% 43.7%
547.75 | 23.69 3.7% 14.6% 9.6%  29.4% 12.2%
2609.28 1.09 4.6% 20.7% 5.2% 6.1% 7.8%
367.81 | 13.58 3.4% 30.6% 8.3% 3.9% 9.75%
448.24 | 15.49 3.7% 31.0% 8.8% 45% 10.1%
496.14 | 16.13 4.6% 37.8% 11.2% 55% 12.5%

O N O W= 3

4 Exceedances in Time Series

We end by noting our discussion regarding the high correlation between the area
average and the fractional area carries over to time series as well. Figure average
and the proportion exceeding a threshold in a rain rate time series obtained from
25 time series from TOGA/COARE. Each time series is a 2 km by 2 km area
average rain rate observed every 10 minutes, and is over 3020 long (about 3
weeks). The proportion of 0's ranged from 76.7% to 78.7%. The correlation
between the average and the proportion exceeding a threshold is maximized at
0.83 for threshold 7 = 20. This corresponds roughly to an exceedance probability
of about 0.001. That is, 3 or 4 exceedances determine the average of the whole
time series to a fair degree.

In this connection Barnett et al. (1995) show in Gaussian and monotonically
transformed Gaussian stationary processes the variance can be estimated from
the magnitude of high peaks exceeding a high threshold. Examples are given
where this gives a smaller mean square error than the commonly used sum of
squares estimator.

5 Appendix: The TOGA/COARE Data

Radar rainfall measurements over the western Pacific warm pool were collected by
two shipboard-Doppler-radars as part of the Tropical Oceans Global Atmosphere
(TOGA) Coupled Ocean Atmosphere Response Experiment (COARE) during the
Intensive Observing Period (IOP), November 1992 - February 1993. The MIT
and TOGA radars were carried by the Research Vessel (R/V) John V. Vickers



(U.S.A.) and R/V Xiang Yang-Hong #5 (People’s Republic of China) in a series
of three cruises during which the ships maintained station with the Intensive Flux
Array (IFA), near 2°S, 156°E. Merged and single radar rainfields having a spatial
resolution of 2 km x 2 km and a temporal resolution of 10 minutes have been
produced from these observations. In order to obtain a constant sized averaging
domain under a wide variety of meteorological conditions, the gridded rainfall
data used in this study are from the MIT radar, covering a circle of diameter
290 km, during cruise 3, January 29 to February 23, 1993. For more details see
Short et al. (1996).
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Figure 1: Area average rain rate versus fractional area for TOGA/COARE
data. R = AA.



Ave(t) vs (1-F(5))"p(t)
(a) p=.07, 1(5)=.758 (b} p=07, 08, 09,.1,.12, 1(5)=.878 (c) p=.07..09,.12,.14,.16, r(5)=.931
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Figure 2: X; vs (1 — F(5))p;, from 400 mixed lognormal samples of size 1000
each. In (a) p = 0.07 is constant. In (b)-(f) p varies
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(a) p= 07, r(10)=.784

Ave(t) vs (1-F(10))*p(t)
(b) p= 07,.08,.09,.1,.12, r{10)=.823

(c) p=07,.09,.12,.14,.16, 1(10)=.880

X;
1000 each. In (a) p = 0.07 is constant. In (b)-(f) p varies.

Figure 3:
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r(Tau)=Corr{ave(TS), Pr(TS > Tau)}
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Figure 4: Time series average versus an estimated probability of exceeding
T.
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