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Revocation in sensor networks is a challenging problem because asymmet-

ric key cryptosystems are unsuitable for use in resource constrained sensor

nodes. We present some properties of node revocation in distributed sensor

networks (DSN) and explain their implementation challenges. We illustrate

these challenges by analyzing prior work in centralized and distributed re-

vocation schemes for DSNs. We present a distributed revocation scheme for

DSNs based on voting, that provides revocation vote authenticity, improved

resilience to node replication, and well-defined policies for revocation. We

also present the correctness properties of our scheme and prove its robustness



in the context of the various problems identified in distributed revocation.

Further, we explain why tracking the degree of connectivity of sensor nodes

in a DSN is a complex problem and identify its role in solving the distributed

revocation problem.
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Chapter 1

Introduction

Distributed Sensor Networks (DSN) are ad-hoc networks that consist of a

large number of low-power sensor nodes that communicate in short distances

through wireless links [16]. Sensor networks are used for a wide range of ap-

plications like health monitoring, data acquisition in adverse environments

and military operations. The desirable features of sensor networks have at-

tracted many researchers to develop protocols and algorithms that can fulfill

the requirements of these applications [11, 5, 13, 8, 1].

Sensor nodes may be deployed in hostile environments and thus, are sus-

ceptible to capture by an adversary. Node capture must be detected and

the captured node must be revoked. This involves prompt termination of

all forms of communication with a captured node. There are two forms of

revocation namely - centralized and distributed revocation.

In the case of centralized revocation, a controller node or base station

broadcasts a single revocation message containing a signed list of nodes to
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revoked. Upon receiving the message, the other nodes in the DSN revoke the

appropriate nodes.

Centralized revocation has the following advantages: (1) Non- circum-

ventable (2) No need for node-to-node message authenticity (3) Revocation

policy is uniformly enforced.

Centralized revocation has the following disadvantages: (1) Single point

of failure (2) Slower than distributed revocation (3) Needs global revocation

message

Although the single point of failure can be eliminated by revoker repli-

cation, the last two disadvantages cannot be easily removed. This requires

revoking nodes in a distributed fashion. An example of a distributed revoca-

tion scheme was proposed by Chan, Perrig, and Song [12]. In their scheme,

nodes that have a shared key with the node to be revoked, vote on the de-

cision to revoke. Upon registering a threshold number of votes, the voting

nodes revoke the concerned node. We illustrate the complexity of distributed

revocation using this scheme.

1.1 Organization

This thesis is organized in five chapters. In the first chapter, we define what

Mobile ad-hoc networks and DSNs are, and present some inherent problems
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in DSNs that make it impossible to implement traditional public key cryp-

tography solutions. The second chapter introduces revocation in DSNs and

presents prior work on centralized and distributed revocation. In the third

chapter our approach to distributed revocation in DSNs is explained. We

then introduce a new revocation scheme based on threshold cryptography.

In the fourth chapter, we evaluate the correctness of this new scheme in the

context of its resilience to the identified problems with prior distributed re-

vocation schemes. We define the notion of node degree tracking and explain

why degree tracking could be a limiting factor in achieving distributed revo-

cation. The final chapter concludes this work and presents possible future

work.

1.2 Mobile Ad-Hoc Network (MANET)

Ad-hoc networks are a new wireless networking paradigm for mobile hosts.

Unlike traditional mobile wireless networks, ad-hoc networks do not rely on

any fixed infrastructure. Instead, hosts rely on each other to keep the network

connected. Military tactical and other security-sensitive operations are still

the main applications of ad-hoc networks, although the unique properties of

ad hoc networks pave way for its commercial usage [26].

Ad-hoc networking refers to the spontaneous formation of a network of
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nodes without the help of any infrastructure, usually through wireless com-

munication channels [15]. In MANETs, in addition the nodes are also mobile.

The infrastructure in a MANET is thus highly dynamic not only because of

mobile nodes, but also because of the lack of guaranteed node connectivity.

This lack of guaranteed connectivity is caused by the limited-range, poten-

tially unreliable wireless communication that is characteristic of MANETs.

1.3 Distributed Sensor Networks (DSN)

DSNs are a special type of MANETs, with nodes that have limited compu-

tational and communication capabilities. These networks are dynamic in the

sense that they allow the addition and deletion of nodes after deployment.

Nodes are typically added to increase network size or to replace failing and

unreliable nodes. In a DSN, nodes can communicate only with other nodes

within wireless communication range. These nodes are said to form a neigh-

borhood. In the Figure 1.1 we show an example a neighborhood.

DSNs are typically used for data acquisition in tasks such as health moni-

toring, military operation, etc. Sometimes confidentiality of communications

between sensor nodes may be desired; e.g., when DSNs are used in military

applications to collect information about tank positions or troop movements.

Distributed sensor networks are, in such cases, a mission critical component
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Figure 1.1: A neighborhood in a DSN

requiring commensurate communications security protection. Military equip-

ment and personnel must be assured that received sensor information is cor-

rect. Deployed sensors must only accept legitimate queries, commands, and

software updates. Sensor network communications must prevent disclosure

and undetected modification of exchanged messages.

Confidentiality, integrity, and authentication services are critical to pre-

venting an adversary from compromising the security of a distributed sensor

network. Cryptography is an essential mechanism for protecting sensor com-

munication and key management is likewise critical to establishing the keys
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necessary to provide this protection [16]. However, providing key manage-

ment can be a complex task due to the ad-hoc nature, intermittent connec-

tivity, and resource limitations of the sensor network environment [9]. If a

sensor network is deployed via random scattering (e.g. from an aerial ve-

hicle), the sensor network protocols cannot know beforehand which nodes

will be within communication range of each other after deployment. Even if

the nodes are deployed by hand, the large number of nodes involved makes

it costly to pre-determine the location of every individual node. Hence, a

security protocol should not assume prior knowledge of which nodes will be

neighbors in a network [12].

A number of key distribution and management schemes have been pro-

posed [16, 12, 25, 6, 7, 22] to satisfy both operational and security require-

ments of sensor networks. If the sensor nodes are deployed in hostile regions,

they are susceptible to be captured by an adversary. These captured nodes

can be used by adversary for a number of malicious reasons like false data

injection, launching DoS (denial of service) attacks to deplete network re-

sources etc. Thus, upon capture detection, these compromised nodes have

to be revoked.

Typically revocation involves termination of communication with the cap-

tured node. The limited computation and power resources of sensor nodes of-

ten makes it undesirable to use public-key algorithms, such as Diffie-Hellman
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key agreement [24] or RSA signatures [20]. Currently, a sensor node may

require in the order of tens of seconds up to minutes to perform these oper-

ations [9]. This exposes a vulnerability to denial of service (DoS) attacks by

sensor battery exhaustion [12]. Such resource consuming attacks are espe-

cially significant in DSNs [9]. Hence, in the absence of conventional public

key cryptography solutions, revocation in DSNs is a particularly challenging

problem.
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Chapter 2

Revocation in DSNs

In this chapter we present and analyze prior work on revocation in sensor

networks. We specifically examine two schemes that propose methods for per-

forming centralized [16] and distributed revocation [12]. Finally, we perform

a detailed analysis of the distributed revocation scheme proposed in [12], and

present inherent problems associated with any distributed revocation scheme

for DSNs in general.

2.1 An Approach to Centralized Revocation

In this section we outline the scheme proposed Eschenauer and Gligor in [16].

In DSNs due to the absence of a centralized KDC (Key Distribution Center)

[3], limited resources and computational capabilities, keys are generally pre-

distributed. On deployment, the sensor nodes discover their neighbors; i.e.,

nodes that share a key with them, and establish secure communication links.
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2.1.1 The Probabilistic Key Distribution Scheme

The probabilistic key distribution scheme relies on probabilistic key sharing

between nodes of a random graph and uses a simple shared-key discovery

protocol for key distribution, revocation and node rekeying. Prior to the

deployment, a ring of keys are distributed to each sensor node. Each key

ring consists of k keys randomly drawn without replacement from a random

pool of P keys, which is generated offline. Along with the keys, key identifiers

are also loaded into the sensors.

In the shared key discovery phase, every node discovers its neighbors in

wireless communication range with which it shares keys. Each node broad-

casts the key identifiers in its key ring unencrypted. Nodes that share a key

can then perform a cryptographic handshake.

2.1.2 Revocation

Whenever a sensor node is captured, it is essential to be able to revoke the

entire key ring of the node. For this, there is a controller node or a centralized

node(which has a large communication range and may be mobile) broadcasts

a single revocation message containing a signed list of k key identifiers to be

revoked. To sign the list of key identifiers, the controller node generates a

signature key, Ke and unicasts it to each node with Kci, where Kci is the

9



Figure 2.1: Controller node sends out Revocation message (Key Ids in Key Ring of Node
3) MAC-ed with Ke. MAC key Ke is send encrypted in Kci.

key shared by the ith controller with each sensor node during pre-distribution

phase. For example, the controller node could sign the list of key identifiers by

computing a MAC (Message Authentication Code) [21] with Ke and send Ke

encrypted in Kci. We illustrate this example in Figure 2.1 . After obtaining

the signature key, each node verifies the signed list of key identifiers and

deletes the appropriate keys from the key ring. Once the keys are removed

10



from the key ring, links with the compromised node disappear.

2.1.3 Summary

The scheme proposed by Eschenauer and Gligor in [16] is an example of

centralized revocation. Centralized schemes have the following advantages:

• Non-Circumventable: As the revocation message is unicasted by a re-

liable controller node, and the message can be verified by all the sen-

sor nodes in the DSN, the revocation of a compromised node is non-

circumventable.

• No need for node to node authenticity: As revocation message is uni-

casted with a signature key distributed securely to all nodes by a cen-

tralized controller node, there is no need for node to node authenticity.

• Revocation policy is uniformly enforced: As there is controller node

that acts as a centralized point of decision making revocation policy is

uniformly enforced.

Centralized Revocation has the following disadvantages:

• Single point of failure: Due to the inherent nature of centralized schemes,

compromise of a single controller node can completely defeat revocation

of numerous compromised nodes in a network.
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• Slower than Distributed Revocation: Due to the large number of uni-

casted messages, centralized revocation is slower than distributed re-

vocation schemes.

• Needs Global Revocation Message: The design of the scheme enforces

the necessity of a global revocation message that may add to the com-

munication overhead of the network.

2.2 Distributed Revocation

In the key pre-distribution scheme presented thus far, while each node could

verify that some of its neighbors had certain secret keys and thus were legit-

imate nodes, no node could authenticate the identity of the neighbor it was

communicating with. The random-pairwise key scheme proposed by Chan,

Perrig and Song [12] provides the property of node to node authentication for

a network that consists of nodes that do not trust each other. Note that this

property is useful for supporting numerous security functions. For example,

if a node detects that one of its neighbors is captured, it may be necessary

for the node to know the identity of the compromised neighbor. Also, with

node to node authentication, nodes can keep track of the identities of their

neighbors and can thus prevent an adversary from replicating in a network.
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2.2.1 The Random-Pairwise Key Distribution Scheme

In a network with n nodes, a simple solution to key pre-distribution problem

is that each node stores n − 1 pairwise keys. This however leads to an

undesirable increase in memory overhead.

The random-pairwise scheme is a modification of the above pairwise

scheme based on the observation that not all n − 1 keys need to be stored

in a node to have a connected random graph with high probability. If p is

the smallest probability that two nodes are connected, such that the entire

graph is connected with a probability c , then to achieve this probability

p in a network of n nodes each node needs to store only np keys instead

of exhaustively storing all n-1 keys. Reversing the calculation, if each node

in the sensor network can store m keys then, the largest possible connected

network is of size m
p

In the pre-deployment initialization phase a total of n = m
p

unique node

identities are generated. The actual size of the network may be smaller

than n. Unused node identities are used if additional nodes are added to

the network in the future. Each node identity is matched up with m other

randomly selected distinct node IDs and a pairwise key is generated for each

pair of nodes. The key is stored in both nodes’ key rings, along with the ID

of the other node that also knows the key.
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In the post-deployment key-setup phase, each node first broadcasts its

node ID to its immediate neighbors (i.e., nodes within wireless communica-

tion range). By searching for each others’ IDs in their key rings, the neigh-

boring nodes can tell if they share a common pairwise key for communication.

A cryptographic handshake is then performed between neighbor nodes who

wish to mutually verify that they do indeed have knowledge of the key.

2.2.2 Revocation

To reduce the disadvantages associated with a controller dependent revoca-

tion protocol, Chan, Perrig, Song [12] describe a distributed node revocation

scheme for the random pairwise scheme.

An outline of their scheme is as follows: Consider a node B, which, like

every other node in the network, has m keys in its key ring. Since all the keys

are issued to exactly two nodes and no two keys are issued to the same pair

of nodes, we have exactly m nodes that share a pairwise key with node B.

This set of m nodes are called the set of voting members of B. Each of these

m voting members are assigned a random voting key ki. Each voting member

also knows the respective hashes of the voting keys of all the m-1 other voting

members; i.e., all hash(kj), j 6= i, 1 ≤ j ≤ m. Hence, if m pairwise keys are

stored on the node, the node stores m− 1 hash values of the corresponding

14



Figure 2.2: Voting scenario to effect revocation of node 3

voting keys, for each of these m neighbors. To cast a public vote against B,

the voting member broadcasts ki in clear(unencrypted). All voting members

can verify the vote by computing hash(ki). If threshold t number of valid

votes have been heard, a voting member deletes the shared key (with the

node B) and thus revokes node B. Figure 2.2 illustrates the voting process for

revocation. As a consequence, if a node cannot form at least k*t connections
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(where k is some small multiple, e.g. 2); i.e., if a node has less than k*t

neighbors at key setup phase then, that node is automatically revoked (for

example; the node self destructs).

To prevent widespread release of revocation keys by compromised nodes,

the scheme requires that only nodes that have established direct commu-

nication with some node B have the ability to revoke B. This is done by

distributing the revocation keys to the voting members of B in a deactivated

form, i.e. each voting member j stores its revocation key for B, kBj masked

(XORed) with some secret SBj. This deactivated key will not hash to the

correct verifying value and is thus useless for voting. Node B knows all the

activation secrets SBj; 1 ≤ i ≤ m. During the key discovery and setup phase,

if node j wishes to complete key setup with node B, it requires node B to

transmit its activation secret SBj (and viceversa). Once node j has received

SBj it unmasks kBj using SBj, and verifies that it was given the correct un-

masking secret by performing vote verification on the unmasked kBj to see

if it is a valid revocation key. Such a policy of need-to-know based, key acti-

vation ensures that the majority of revocation keys recovered through node

capture are in an unusable masked state. In order to use these revocation

keys to revoke some node B the adversary now has to physically communicate

with B and complete key-setup for up to t new connections.
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Degree Counting Mechanism

To limit the amount node replication possible on the network, the degree of

any node can be limited [12]. This implies that we can limit the degree of

nodes to dmax, without disrupting network connectivity. The operation of the

degree counting scheme is exactly identical to the voting mechanism. Each

node contains a voting key and some way to verify valid voting keys. Each

time a given node A forms a connection with some node B, A broadcasts its

voting key for B and vice-versa. Each node can thus track the degree of all

m of the nodes which share pairwise keys with it, and refuse to form new

connections if the degree becomes too large.

2.3 Problems of Distributed Revocation Schemes

based on Voting

In this section we illustrate a few problems that are applicable to all dis-

tributed revocation schemes and not just specifically to the scheme described

earlier.

1. Revocation Vote Authenticity

2. Node replication falls outside the scope of degree counting

17



3. Irrevocable nodes

4. Unspecified Revocation Policies

• Unspecified start and end of revocation sessions

• Unspecified Revocation Outcome

• Unspecified Revocation Quotas

2.3.1 Revocation Vote Authenticity:

At the time of forming connections each node transmits the voting key (in

clear) of the node with which it forms a connection. For example if node #2

and node #3 were to form connections, node #2 would transmit the voting

key that could be eventually used for revoking node #3. Node #3 does the

same in the context of node #2. The prospective neighbors of node #2 and

node #3 (and any node in the neighborhood; i.e., node #5, node #7 and node

#8)can thus hear this vote in clear.

Suppose as shown in Figure 2.3, a node #8 that is not a prospective neigh-

bor of node #4, makes a copy of this voting key KV3−2 (node #3’s voting key

for revocation of node #2) at the time of connection establishment between

node #2 and node #3. Now node #8 can broadcast a vote against node #3.

The other voting members have a no way of distinguishing a legitimate vote

18



Figure 2.3: Lack of revocation vote authenticity: Any node in the neighborhood can
hear another node’s voting key.

(i.e., from a voting member) from that of vote forged by any node in the

neighborhood, such as node #8. We illustrate this in Figure 2.4.

Hence an adversary can collect t votes against any target node of choice

at the time of connection establishment and replay them later to revoke the

target node without the participation of t valid voting members.

Problem Summary: A node receiving a vote cannot ascertain a vote’s source

with certainty.
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Figure 2.4: Lack of revocation vote authenticity: Any node in the neighborhood can
cast a legitimate vote pretending to be some other node.

2.3.2 Node Replication Falls Outside the Scope of Node-

Degree Counting in Neighborhoods

Nodes in a neighborhood can keep track of another node’s degree (i.e., per-

form neighborhood degree counting) by counting the voting keys of a prospec-

tive neighbor at the time of connection establishment. If the degree of any

node requesting a connection is equal to an upper limit dmax, the other nodes

refuse to form connections with the node whose degree has reached the max-

20



Figure 2.5: Adversary captures node 3 in neighborhood 1, copies its key ring, introduces
new nodes with copy of node 3 key ring in the other neighborhoods. With a single node
capture, an adversary circumvents the intent of degree counting mechanism

imum allowed value (dmax). This prevents nodes from replicating in a neigh-

borhood. However, an adversary can still launch a replication attack despite

neighborhood degree counting. Suppose an adversary captures a node # i, he

copies the key-ring of node# i and introduces new sensor nodes with the key

ring of node# i in other neighborhoods. Nodes in other neighborhoods cannot

perform global degree tracking as most communications can be heard only

within the neighborhood of a node. Hence, counting node degrees within the

21



neighborhood of a node is insufficient to detect node replication. Figure 2.5

shows the above scenario.

Problem Summary: With a single node capture an adversary can replicate

in multiple neighborhoods without detection.

2.3.3 Irrevocable Nodes

Figure 2.6: Node 4 colludes with node 2(degree of node 2 =t)to revoke node 3 => after
revocation, node 2 becomes irrevocable (< t neighbors)

To revoke a target node (using voting), at least t votes have to be heard
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against the target node. Suppose, nodes #4 and #2 are voting members of

a node #3. The degree of node #2 is t. Now nodes #4 and#2 can collude to

revoke node#3. This would make node #2 irrevocable as the degree of node

#2 is now t-1 (after revoking node#3) and at least t votes are needed to revoke

a sensor node.

Problem Summary: In any threshold based voting scheme there needs to

be a way to prevent nodes in the network from falling below threshold.

2.3.4 Unspecified Revocation Policies

Unspecified start and end of revocation sessions

• Nodes participating in a revocation session do not know when to stop

counting votes. This may imply an indefinite wait time for a vote.

• If multiple voting sessions are introduced, voting members have no

authentic way of determining whether a voting session has been started

off by a legitimate voting member or by an adversary who simply wants

to collect voting keys to replay later.
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Figure 2.7: Unspecified start and end of revocation sessions: (1) Node 2 does not know
when to stop counting votes. This leads to an infinite waiting time. (2) As nodes cannot
verify the authenticity of a ‘Start Voting’ message.An adversary could start off a voting
session to collect voting keys to replay later.

Unspecified Revocation Outcome

Suppose a revocation session against a target node fails, meaning that only

g votes have been heard and g < t. In the future, t voting members may

be prepared to vote against the same target node. Hence there needs to be

in place a provision for multiple voting sessions to enable multiple voting

attempts against a target node. This may not be possible with voting keys
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that are already made public in the first voting session.

Figure 2.8: Flowchart illustrating the lack of a well specified revocation outcome

Unspecified Revocation Quotas

There has to be a ceiling limit on the number of nodes a particular node can

revoke. This is required as a node# i could attempt to revoke its neighbors

to such an extant that in the future the membership of the node# i falls

below the threshold t meaning that the node# i is now irrevocable. If a node
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Figure 2.9: Example scenario: Suppose the threshold is t = 4. Suppose node 3
helps/manages to get node 2 revoked and over a period of time gets nodes 7,1 revoked
too. As degree of node 3 ¡ t, node 3 is now irrevocable.

votes against a target node in its neighborhood and the target node is sub-

sequently revoked, then the degree of the voting node decreases. Thus over

a period of time the voting nodes could become irrevocable as their degree

could fall below t. Hence, in any revocation session, it is in the best interest

of participating nodes to revoke the target node even when the target node

is harmless. This is an unintended side effect of threshold-based revocation.
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Problem Summary: Revocation policy decisions need to specified. For ex-

ample if multiple revocation sessions are supported, they must have a time

bound. There also must be provisions for multiple voting sessions, and con-

trol over the number of revocations a node can attempt.
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Chapter 3

A Distributed Revocation
Scheme

In this section we propose a distributed revocation scheme for DSNs based on

threshold cryptography. Threshold cryptography is generally used to divide

data D into n pieces in such a way that D is easily reconstructable from

any k pieces (k ≤ n), but even complete knowledge of k − 1 pieces reveals

absolutely no information about D [2].

3.1 A Distributed Revocation Scheme

Our scheme relies on three cryptographic primitives: (1) hash functions, (2)

random polynomials and (3) authenticated encryption.

28



3.1.1 Cryptographic Primitives Used

1.Hash functions

We use the one-way and collision-resistance properties of hash functions.

2.Random Polynomials and their Threshold Keys

We use a random number generator to produce coefficients for polynomials

of degree t. Polynomial q(x) = a0 + a1x + a2x
2 + .... + at−1x

t−1 is random

if all its coefficients a0, a1...., at−1 are random uniformly distributed values

in a certain range [0, l − 1] (e.g., l = 264). We define the threshold key of

a random polynomial q(x) to be Kt = hash(a0|a1|....|at−1), where hash is a

hash function and a0, a1, ...., at−1 are the coefficients of q(x). The properties

of the hash function guarantee that: (1) if two random polynomials of the

same degree are distinct (i.e., they differ in at least a coefficient), the prob-

ability that their threshold keys are identical is negligible; and (2) given a

threshold key of a random polynomial, it is computationally unfeasible to

find the coefficients of that polynomial. As their name implies, threshold

keys have a threshold property; i.e., at least t distinct pairs (q(xi), xi) of a

random polynomial are required to compute its threshold key, and any set of

t such pairs will yield the same threshold key. [Note: In our scheme, random

polynomials are computed off-line. If a large number of random polynomials

j, 1 << j < 2l/2, of degree t are needed, they can be constructed efficiently
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from a single random polynomial by setting aij = f(aj−1
i ), where ai0 = ai

and f is an encryption function Ek(0) with k = aj−1
i .]

3. Authenticated Encryption

We use authenticated-encryption modes to detect (1) existential forgeries,

and (2) false (or inauthentic) decryption keys (i.e., decryption keys not used

by the corresponding encryption operation), during ciphertext decryption.

Existential Forgeries: Informally, authenticated encryption modes detect

forged ciphertext (i.e., ciphertext not produced by encryption with a given

key) at decryption with very high probability (i.e., probability negligibly close

to one) and return an error.

Key Authenticity: Informally, given a ciphertext produced by an encryption

mode and a random key, a key-authenticity test decides whether that cipher-

text was produced with that key. Authenticated-encryption modes detect

false (or inauthentic) encryption keys with very high probability at decryp-

tion and return an error. In this scheme, we test the authenticity of encrypted

votes and of the session key with which votes are encrypted, using efficient

AE modes. Such modes are widely known [23, 4, 18].

In general, we say that an encryption mode admits a key authenticity test,

if there is a probabilistic polynomial time algorithm that that can distinguish

between a ciphertext and the key it was encrypted with from a ciphertext

and a random key. If the distinction is made with non-negligible (negligibly-
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close-to-one) probability, the test is called the weak (strong) key authenticity,

or WKA(SKA), test [17]. Another key-authenticity test is provided by the

confusion freedom (CF) property of an encryption mode [10]. That is, if k

and k’ are random keys, then for any plaintext string x in the 3 domain of the

encryption function Ek, Pr[Dk’(Ek(x)) =/= Null] is negligible, where Dk’ is

the decryption function using key k’. Or, decryption of a ciphertext with a

key that differs from the random key used to generate that ciphertext will fail

with probability negligibly close to one. Further, if AE is an authenticated

encryption mode that is secure in an existential unforgeability sense [14],

implications AE => CF => SKA => WKA hold [17]. Hence, the use of

AE modes is sufficient for key authenticity tests.

Notation:

For clarity, we list the symbols used in the section below:

n size of network,

m number of prospective neighbors of a node

t (threshold) number of votes required in a voting session to revoke a

node

s maximum number of revocation sessions allowed against a node

SK session Key for encrypting revocation votes against a target in one

of s sessions
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Kt threshold key of a random polynomial of degree t (used to generate

SK)

Mask session Mark received from the target node for session activation

H hash(Mask) used to verify the value of session Mask received from

target node

∆t maximum duration of a revocation session

3.1.2 Off-line Node Initialization

First, we compute s random polynomials of degree t for each of the n nodes in

the network, where s is the number of revocation sessions (attempts) against

any node in the network. (For example, if the size of the sensor network is n

= 10,000 and the number of revocation sessions is s = 6, this would require

60,000 polynomials of degree t .)

Second, we (1) generate a session key (SK) for each revocation session

against a target node and mask it by xor-ing each it with a separate per-

session Mask; (2) load the result of the xor in each of the target’s potential

neighbor nodes and each Mask in the target node; and (3) load the values of

H = hash(Mask) to each potential neighbor node of the target node. (The

hash value, H enables each neighbor to verify the validity of each session’s

Mask received from a target node whenever a revocation session is activated;
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viz., discussion in section3.1.3). Each SK is generated by encrypting a ran-

dom 64-bit number in the threshold key Kt = hash(a0|a1|....|at−1) associated

with a session’s random polynomial, using an AE mode. (Note that a sep-

arate SK corresponds to each of the s random polynomials of a node.) SK

is recovered upon session activation by xor-ing the masked session key with

the session Mask.

Third, for each of the m >> t neighbors of a target node and each of

the s revocation sessions against that target, we compute a vote that is

represented as the tuple (q(xi), xi), where q(xi) is the value of a session’s

polynomial at x = xi for that session. Each vote is associated with the other

revocation-session parameters (e.g., SK and hash(Mask)) and loaded into the

corresponding node. Further, each of the m >> t neighbors of a revocation

target receives a value ∆t, which represents the duration of a revocation

session. (The value of ∆t value is arrived at using network characteristics

and computational power of sensor nodes.) In summary, the quantities are

computed off-line and pre-loaded in nodes are:

1. Computed: s*n polynomials of degree t , keys Kt, keys SK and hash(SK);

2. Pre-loaded in each node: s*m votes, SK ⊕ Mask values, hash(Mask)

values, other Node’s Masks, and a ∆t value.
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3.1.3 Activation of a Revocation Session

A session becomes active upon receipt of an authentic revocation vote by any

of the local neighbors of a target node. An authentic vote is encrypted in

the SK of that session. To ensure that only the actual (i.e., local, as opposed

to all) neighbors of a target node can revoke that node, the SK ⊕ Mask,

instead of SKs are pre-loaded into neighbor nodes. Each local neighbor node

obtains the session Mask from the target node, either as a result of connec-

tion establishment or later as a result of a direct request to the target node.

A neighbor node receives a Mask encrypted in the pairwise shared key with

the target node. The neighbor node decrypts the Mask and verifies its value

by computing its hash and comparing the result against the stored value

H = hash(Mask) of that session, and then xors the Mask with SK ⊕Mask

to obtain the session key SK. Nodes exchange Masks after connection es-

tablishment for an initial revocation session against each other [CPS03]. If

a revocation session against a target node fails, each neighbor requests the

activation of a new session and corresponding Mask from the target node.

Up to s sessions can be activated against a target node. If the target node

refuses to activate the session and does not return the session Mask within

a fixed interval of time, revocation of that node is automatic.
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3.1.4 Revocation Commit and Target Revocation

The revocation decision is made only by the actual (local) neighbors of a tar-

get node, and requires that at least t neighbors’ vote, and that a neighbor’s

vote cannot be forged/reused/replayed in the same or any other revocation

session. To revoke any target node during a session, t votes (q(xi), xi) en-

crypted in the SK for that session must be cast and heard by that target’s

neighbors. The coefficients a0, a1...at−1 are computed by every voting node

from the first t votes heard. Once the coefficients are computed, the key

Kt can be derived and the session’s SK decrypted with Kt. Since SK de-

cryption is performed using an authenticated encryption mode, if the SK

decrypts correctly, then key Kt is correct (with probability negligibly close

to one), which means that t participants must have voted and the votes are

not replays (Revocation Commit). Then, each voting member deletes the

key of the target node from its key ring (Target Revocation). Note that if

fewer than t legitimate votes would be cast and some replayed to reach the

threshold t , a key K ′
t = / = Kt would be produced and decryption of SK

using an AE mode would fail with very high probability.

If t authentic votes haven’t been heard within ∆t, the revocation session

against a target node would fail. This means the voting session has expired

and all the participants delete the votes heard (for the failed session). A new
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Mask from the target node is requested for the next revocation session.

3.1.5 Propagation and Global Verification of Local Re-

vocation Commit

After a revocation decision is made in a neighborhood, each neighborhood

node transmits the sessions Kt and Mask in clear to other nodes outside the

neighborhood to reach all potential neighbors of a revoked node. This avoids

replication attacks by adversary in new neighborhoods). A node receiving

transmission of Mask, Kt verifies the Mask by checking that hash(Mask) =

H and then unmasks SK⊕Mask to obtain the session key SK. If Kt decrypts

SK correctly, the key corresponding to the revoked node is deleted and the

message Mask, Kt broadcast to other nodes.

The base station listens to the message Mask,Kt broadcasted in any

neighborhood in the network. The base station then deletes the keys shared

by undeployed nodes with the target node. This way an adversary cannot

have a revoked node establish connections with nodes that may be deployed

in the future.
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Chapter 4

Evaluation

In this section we define the few key notions and state the properties of our

revocation scheme. We then proceed to argue the correctness of these prop-

erties using the implementation details of our revocation scheme, presented

in chapter 3. This way, we evaluate the new scheme and its robustness in the

context of the various problems relating to distributed revocation (discussed

in chapter 2). We then list the problems that have not been addressed by

the new scheme. That is, we discuss why tracking the degree of nodes in a

DSN is a difficult problem and its role in solving the distributed revocation

problem.

4.1 Definitions

Definition 1: (Target) A node to be revoked is called a target.
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Definition 2: (Participant) A participant in the revocation protocol is

any node that has a shared key with a target node.

Definition 3: (Vote Authenticity) Given a set of participants that vote,

we say that a vote is authentic if the vote (a) is cast only by a participant,

(b) is not forged, and (c) is not a replay of another vote.

Definition 4: (Revocation Commit ) Given a threshold t and a set

of m participants, m >> t, we say that revocation is committed when any

set of t authentic votes is heard (recorded) by any of the participants.

Definition 5: (Target Revocation) A target is revoked when all m par-

ticipants (a) verify revocation commitment, and (b) delete their keys shared

with that target.

Definition 6: (Non-blocking Revocation) A revocation protocol is non-

blocking if a non-participant, target or non-local participant node cannot

block revocation.

Note 1: If a revocation policy is implemented, then we can provide a re-

vocation outcome in bounded time; i.e., we bound a revocation session by a
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start time and a stop time within which participants have to decide whether

to commit or not. In the presence of revocation sessions, there is a provi-

sion for failure outcome in a revocation session. In a revocation session, the

outcome could either be a success (target node revoked) or a failure (target

node not revoked).

Definition 7: (Revocation Session) A revocation session is defined by

the following parameters:

(a) a session VOTE-START time that marks the receipt of the first authentic

vote by a participant;

(b) a session VOTE-STOP time that is defined by VOTE-START +∆t,

where ∆t is the maximum duration of a session;

(c) a set of votes that are unique to that session;

(d) an outcome (success/failure) for that session:

• a Failure outcome, which implies the condition: (Participant Clock =

Stop-Vote and number of authentic votes received < t) or (Revocation

Commit Message is not heard (received)).

• a Success outcome is target revocation

Note 2: In the presence of a revocation policy and provisions for failure out-

come, it is implied that we allow session retries. This, in turn implies we
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must have the notion of a session number (needed to identify a session) and

a limit to the number of new revocation sessions allowed against the target

node.

Note 3: The notion of local participants along with a revocation policy, means

that the revocation outcome of a session is local.

Definition 8: (Locality of Revocation Sessions) The outcome of a revoca-

tion session against a target is conducted by m′ < m local participants and

the outcome of that session is transmitted to all (non-local) participants.

4.2 Properties of Revocation :

Property 1: If a target node is revoked, then at least t local participants

voted to revoke and all t votes must have been authentic.

Proof Sketch: By definitions 4 and 5, if a target is revoked, m >> t partic-

ipants verified revocation commitment and it means that t authentic votes

have been heard (recorded) by any of the participants. However, by defini-

tion 3, vote authenticity requires that only local participants can cast votes,

the votes can be neither forged nor replayed.

• At least t local participants must vote to revoke: There must exist at

least t local participants; i.e., at the time of deployment, if a node has
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fewer than t neighbors, it self-destructs. Then, by definition 5, target

revocation implies revocation commit and by definition 4, at least t

local participants must have voted to revoke.

• Only local participants can cast votes: Only the local participants of

a node can recover a SK for a given session since the Masks received

from the target node are encrypted in the pairwise shared keys. Hence

only local participants can cast votes.

• Votes cannot be forged: Votes are encrypted with the SK for that ses-

sion. This means that only votes cast by local participants decrypt

correctly in an AE mode using SK. A local participant cannot forge

another local participant’s vote (i.e., the vote of a local participant

who decided not to vote for revocation), since it would not be able to

compute a valid vote other than its own. That is, a local participant

could not compute the coefficients of a session’s random polynomial

from fewer than t(q(xi), xi) values.

• Votes cannot be replayed:

– a. Votes cannot be replayed within a voting session: If any of

the t voted are duplicates, the threshold key K ′
t obtained would

correspond to a polynomial of a lower degree t′ < t. Hence, K ′
t =

41



/ = K ′
t and decryption of SK in an AE mode with K ′

t would fail.

– b. Votes cannot be replayed across voting sessions: We use differ-

ent SKs for different sessions. Hence, decryption of a SK ′ = / =

SK of the current session in an AE mode with Kt would fail.

Property 2: Target revocation is a unitary (i.e., all or nothing) action.

Proof Sketch: By definition 2, participants are nodes that have a shared

key with the target node. Some of the participants may either be currently

deployed in the sensor network or may be deployed by the base station in the

future. By definition 4, revocation commit implies that any participant has

heard t authentic votes. By definition 5, target revocation implies that all m

(deployed and undeployed) participants have verified revocation commitment

and deleted shared keys with the target node.

• If a node has been revoked in a neighborhood, then at least one of the

local participants has used t authentic votes to arrive at Kt and has

unmasked SK. This participant broadcasts the message Mask,Kt in

clear. All local participants delete their shared key with target node.

• Nodes that can hear the broadcast Mask,Kt, re-broadcast this message

further. This message reaches other neighborhoods (other than the

neighborhood in which the target node was revoked).
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Target revocation by participants deployed in the network:

• Participants of the target node that may be present in other neighbor-

hoods can verify Mask against the pre-stored hash(Mask), unmask the

SK (with Mask in message) and can try decrypting the SK with the

key Kt in the transmission.

• If Kt decrypts the SK (i.e., the SK is valid), then participants in other

neighborhoods delete the shared key with the target node. Now, the

target node cannot form connections with any participant in the net-

work.

Target revocation by undeployed participants:

• The base station can also listen to the broadcast Mask,Kt from any

neighborhood. The base station can verify Mask against the pre-stored

hash(Mask), unmask the SK (with Mask in message) and can try de-

crypting the SK with the key Kt in the transmission.

• If Kt decrypts the SK (i.e., the SK is valid), then the base station

deletes the keys shared by undeployed nodes with the revoked node.

Now, the target node cannot form connections with any participant

that may be deployed into the network in the future.
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Property 3: The target revocation protocol is non-blocking.

Proof Sketch: Definition 8 implies that only a local participant can influence

the revocation decision. Only the target, non-participant and non-local par-

ticipant nodes block revocation against a target node and by design, there

are intuitively only two ways these nodes could possibly block the protocol;

i.e., within a revocation session by forcing local participants to compute the

wrong Kt within revocation session or by exhausting the number of revoca-

tion sessions against a target node.

Claim 3.1:Target, non-participant, and non-local participant nodes cannot

block target revocation by forcing local participants to compute wrong Kt

within a revocation session.

• Only local participants can unmask SK from Mask and SK ⊕Mask.

An authentic vote is encrypted in SK in the AE mode. Target node

knows only the Mask and does not have the SK ⊕Mask. Hence, the

target node cannot cast an authentic vote without the knowledge of

SK.

• Non-participant nodes do not have SK ⊕ Mask (pre-distributed to

all participants) and Mask (distributed only to local participants by

the target node using shared keys) and thus, do not have SK. Hence,

44



non-participant nodes cannot cast an authentic vote without obtaining

SK.

• Participants outside a neighborhood cannot obtain the SK by unmask-

ing their SK⊕Mask without the Mask, which is available only within

a local neighborhood (Mask distributed only to local participants by

the target node using shared keys). Hence, non-local participant nodes

cannot cast an authentic vote without unmasking SK.

Any target, non-participant and non-local participant node cannot cast

authentic votes and hence, these nodes cannot cast votes that do not com-

pute the correct Kt (for a given revocation session), and consequently, block

the revocation of the target node.

Claim 3.2: Target, non-participant, and non-local participant nodes cannot

block target revocation by exhausting sessions.

By Claim 3.1, any target, non-participant and non-local participant node

cannot block the target revocation protocol by forcing local participants to

compute wrong Kt. Thus, these nodes cannot exhaust the maximum num-

ber of sessions allowed against a target node, by forcing local participants to

repeatedly compute the wrong Kt for each separate session.

Note: The target revocation is blocking if a malicious participant leaks the

key SK to other nodes (both participants and non-participants). In that
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case, any node can cast invalid votes that compute the incorrect kt, and con-

sequently block revocation of the target node. However, Property 3 does not

claim to associate the non-blocking property with participants. The above

attack is feasible only when a participant decides to block target revocation

and thus, is beyond the scope of Property 3. However, this problem can be

solved by loading the hash values of legitimate votes into the participants

before deployment. This way, a participant can differentiate between a valid

vote that computes the correct kt and an invalid vote. Chan, Perrig and

Song proposed a similar scheme [12] using Merkle hash trees[19] to address

this problem.

Property 4: A revocation decision is made in bounded time.

Proof Sketch: By definition 7, revocation sessions are finite and also, failure

outcome in a revocation session implies that there are multiple revocation

sessions. Also, there are finite number of attempts to revoke a target node

within which the participants must arrive at a revocation decision.

• If Revocation session fails then, each participant requests a new Mask

from the target node to unmask a new SK for the next revocation

session.

• If the number of revocation sessions is greater than session-retry Limit
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then the number of attempts to revoke the target node have been ex-

hausted and a new mask (to unmask a new SK) is not available to the

participants for revoking the target node.

Property 5: If revocation commit is verified by all participants, replication

of a revoked node outside its neighborhood is not possible.

Proof Sketch: By definition 8 and 5 any participant in the network (other

than in an actual neighborhood) can verify a local revocation commit and

can delete shared-keys with the revoked node.

• If a node has been revoked in a neighborhood, at least one of the local

participants has arrived at Kt using t authentic votes and has unmasked

SK. This participant broadcasts the message Mask,Kt in clear.

• Nodes that can hear this message, re-broadcast this message further.

This message reaches other neighborhoods (other than the neighbor-

hood in which the target node was revoked).

• Non-local participants of the target node that may be present in other

neighborhoods can verify Mask against the pre-stored hash(Mask), un-

mask the SK (with Mask in message) and can try decrypting the SK

with the key Kt in the transmission.
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• If Kt decrypts the SK (i.e., the SK is valid), then participants in other

neighborhoods delete the shared key with the target node. Now, an

adversary cannot introduce a revoked node (its key ring) in new neigh-

borhoods.

4.3 Problems not Addressed by the Distributed

Revocation Scheme

The following three problems are not addressed by the new scheme:

1. Node-degree tracking

2. Irrevocable nodes

3. Enforcing quotas for the number of allowed revocations

If a solution to problem 1 is found, then solutions to problems 2 and 3 are

immediate. To solve problem 2 (irrevocable nodes) it is necessary to establish

the degree of a node in an authentic manner, since a node would refuse to

cast a vote against a target node if there is a voting member with degree =

t in the neighborhood of the target node. Hence, solving problem 2 implies

solving problem 1. This would consequently limit the number of revocations

any node can effect; i.e., problem 3 (enforcing quotas) would be solved. Thus
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solving problem 3 implies solving problem 2 implies solving problem 1. De-

gree tracking could either be done in a centralized or a distributed fashion.

In either case, the verification of the degree of any node in the neighborhood

would have to be done at any point of time, not just at deployment.

If the neighborhood would be fully connected, degree tracking could be

implemented in a distributed manner. A fully connected neighborhood would

mean any node could communicate in an authentic manner with any other

node. Hence, there is a trustworthy connection between any two nodes in

the neighborhood. This means there a need for an elaborate key distribution

scheme would not arise, and revocation would only involve authenticated

exchange of messages between nodes. However, establishing fully connected

neighborhoods is a challenging problem in itself considering the memory over-

head needed in storing that many keys/node to establish a fully connected

neighborhood.

Another solution could be to use a centralized lookup of the degree of a

node of interest. In that case, the centralized node that counts the degree

would need to update the degrees of nodes periodically. This would mean

that degree tracking might becomes a challenge in itself whenever revoca-

tion is distributed. This is the case because the centralized node in-charge

of degree tracking might not be aware of which nodes would be revoked. If

this centralized node would have to be informed of revocations in an authen-
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tic manner, the line between centralized and distributed revocation would

be blurred. Also, in such a scenario centralized revocation would become

faster than distributed revocation as now, a centralized mechanism for de-

gree lookup would have to be used in distributed revocation.
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Chapter 5

Conclusion

5.1 Conclusions and future work:

The notion of revocation in sensor networks differs significantly from revok-

ing entities in other common networks such as the internet. As public key

cryptography solutions are not viable in DSNs and due to their mobile ad

hoc nature, revocation of sensor nodes in DSNs is a particularly challeng-

ing problem. Revocation in sensor networks can either be centralized or

distributed.

We discussed a centralized revocation scheme proposed by Eschenauer

and Gligor [16], and identified problems with centralized revocation. We

also discussed a distributed revocation scheme proposed by Chan, Perrig, and

Song [12]. We illustrated some of the complexity of distributed revocation

using this scheme and concluded that much of the complexity illustrated

holds for all distributed revocation schemes, and not just for this scheme.
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We then presented a distributed revocation scheme for DSNs using threshold

cryptography. We finally evaluated the scheme by stating properties and

arguing their correctness. In future work, we propose to extend the algorithm

to address the problem of node degree tracking. As observed in chapter 4,

solving the node degree tracking problem would automatically solve the other

problems identified with distributed revocation schemes.
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