SRC TR 88-51

Provably Good Parallel Algorithms
For Channel Routing of Multi-
terminal Nets

by

S. Krishnamurthy and J. Ja'Ja’

Provably Good Parallel Algorithms For Channel Routing of
Multi-terminal Nets

by
Sridhar Krishnamurthy and Joseph J4 Ja

Abstract

We consider the channel routing problem of a set of multi-terminal nets in the knock-knee
model. We develop a new approach to route all the nets within d+ « tracks, where d is the channel
density, and 0 < a < d, such that the corresponding layout can be realized with three layers.
Both the routing and the layer assignment algorithms have linear time sequential implementations.
In addition both can be implemented on the CREW-PRAM model in O(% + logn) time, with p

processors, 1 < p < n, and n is the size of the input.

Provably Good Parallel Algorithms

For Channel Routing of Multi-terminal Nets!

Sridhar Krishnamurthy
Department of Electrical Engineering
Systems Research Center
University of Maryland

College Park, MD. 20742

Joseph JaJa
Department of Electrical Engineering
Institute for Advanced Computer Studies
Systems Research Center

University of Maryland

College Park, MD. 20742

1Supported in part by NSA Contract No. MDA-904-85H-0015, NSF Grant No. DCR-86-00378 and by

the Systems Research Center Contract No. OIR-85-00108

1. Introduction

Routing plays a central role in automated VLSI layout systems. This problem has been
intensively studied in literature (e.g. [CJ],[MP],[P],[PL],[O],[RF]). Because of the combina-
torial nature of routing, most of the corresponding optimization problems turn out to be
NP-complete (for example see [S]). However good heuristics have been used effectively to
generate good layouts. In this paper, we continue our research efforts in developing efficient
parallel programming techniques to handle various routing problems. Our goal is to develop
routing strategies that will result in parallel algorithms whose running time is 0(3%l + f(p)),
where t(n) is the best known sequential time, p is the number of processors, and f(p) is
a non decreasing function that reflects the routing cost on the given parallel model. The
routing produced by these algorithms is expected to be as good as the best known sequential
algorithms.

We consider the channel routing of multi-terminal nets in the knock-knee model. Provably
good approximation algorithms (sequential) have been reported in [MPS],[SP] and more
recently in [GK]. The basic strategy used is the well known greedy strategy applied either one
column or one row at a time. However, it has been shown recently ([delaT]) that the routing
produced by several variations of this strategy are P-complete, and hence there is little
hope for parallelizing these strategies efficiently. We provide a new strategy which obtains
provably good routing (which is in general different from those obtained in [SP],[MPS] and
[GK] methods), such that the routing algorithms has a linear time sequential implementation.

Moreover, the algorithm is fully parallelizable in the sense that it can be implemented on

a Concurrent Read, Exclusive Write (CREW) PRAM model in O(% + logn) time with p
processors, 1 < p < n, where n is the size of the input. We are assuming that all terminals
lie in the range [1, N], where N = O(n). A modified version of the algorithm will guarantee
that the number of tracks is d + a, 0 < a < d, where d is the density of the channel. In
particular, for two terminal nets the modified version provides an optimal solution.

The rest of the paper is organized as follows. The basic definitions are described in the
next section. The routing strategy is described in section 3, while in the last section we show

the three layer wirability of the layout produced.

2. Definitions

We borrow some of the basic definitions of channel routing from [SP],[PL]. A net N is an
ordered pair of integer sequences ((p1,p2,- " Pk), (1,42, qn)) where the p;’s are the lower
terminals and the ¢;’s are the upper terminals. Without loss of generality, we assume that
k+h>2 Ifk+h > 2, then the net N is said to be a multiterminal net, otherwise N is a
two-terminal net. An instance of a general channel routing problem (GCRP) is a channel
consisting of rectangular grid, and a set of nets, each of which specifies a subset of terminals
which lie on the grid points of the (horizontal) parallel boundaries. The goal is to route the
wires such that the channel width is as small as possible.

Let N; = ((p,---,p%,), (4, -+, q};)) be a set of nets. Let I; = min(pi,qt) and r; =
maz(pi., ¢;,). The interval [l;, 7;] is a lower bound to the horizontal track demand of N;. We
can transform the GCRP into a fictitious two-terminal net channel routing problem, where

each net IV is replaced by N and [; and r; are referred to as the left and right terminals

Figure 1: Types of shared grid point
of this fictitious net respectively. The local density d, at z is defined to be the number of
nets [l;,7;] such that [; < & < r;. The density d is given by d = maz,(d;). It is clear that
d is a lower bound for the minimum number of horizontal tracks and we call d the essential
density of the GCRP.

A wire-layout (routing) in the knock-knee model consists of a set of edge-disjoint paths
(made up of grid line segments) connecting the terminals of each net. Heuce a shared grid

point could be one of the two types (Figure 1).

Let Ly, Ls,---L; be a set of conducting layers assumed to be stacked on top of each
other in order, with L; on the bottom, L; next, --- and L; on the top. A contact between
two layers called a via can be placed only at a grid point. A wiring of a wire-layout is an

assignment of a single layer to each routing segment such that
1. No two segments of two distinct nets share a grid point on the same layer.
2. A routing path may change layers at a via.

3. No wire can use a grid point on a layer which is in between two layers with a via at

3

Figure 2: Forbidden patterns

that grid point.

It is known that any wiring in the knock-knee model can be done using four layers [BB]
and that three layers suffice for the GCRP [SP]. Given a routing of a GCRP, the diagonal
diagram can be obtained by representing a knock-knee at its vertex by a v/2-length diagonal
and a bend by a half-diagonal. On removing the half-diagonals we obtain the core layout. A
wire-layout can be realized with three layers if its core can [PL]. A partition grid is defined
as having vertices at points (z+1/2,y+1/2) where 2 and y are integers on the channel grid.
The edges of the partition grid are the segments connecting each vertex with its immediate
horizontal, vertical and (45-degree) diagonal neighbors. A legal partition of a wire-layout is

defined as a collection P of edges of the partition grid such that
1. Every internal vertex of P is incident with an even number of edges in P.
2. The diagonal edges in P are exactly the diagonals in the diagonal diagram.

3. P does not contain any of the forbidden patterns depicted in Figure 2.

LL L L S R R T B L
| Trr—r—r‘ L e r7 — 7T

empty trivial density increasing density decreasing density preserving

Figure 3: States of a column

We say a net N; is active in the vertical section (¢,c+ 1) for a column cif [; < ¢ < ;.
Any vertical line « such that z lies between the interval (c,c + 1) cuts /NV; in at least one
point. Each such intersection of N; is referred to as a strand of N;. The type of terminals
within a column (entry, exit or continuing terminals) define the state of the column. The
state of a column can be of type empty, trivial, density preserving, density decreasing or

density increasing. All the possible states of a column are shown below in Figure 3.

We use standard CREW (Concurrent Read Exclusive Write) shared memory model. All
our results are stated in this model. However, our algorithms have fast implementations
on fixed-interconnection networks such as the mesh or the hypercube. For example, all the
algorithms stated in this paper can be implemented on a y/n X /n mesh in time O(y/n),

where n is the input length.

3. Channel Routing

Given an instance of a GCRP of essential density d, our goal is to determine a wiring

of all the nets within 2d tracks. In addition, the resulting layout should be realizable in

three layers. Towards the end of this section, we shall briefly describe a modification of the
wire-layout algorithm, leading to an improved layout, which uses at most d+ a tracks, where
0 < a < d. Specifically, for two-terminal nets, a = 0, and the resulting layout is an optimal
one.

The algorithm developed in [SP] produces the layout column-by-column. The overall
strategy is similar to the approach of the ‘greedy router’ of [RF]. Unfortunately this approach
seems to be inherently sequential. Our method is quite different and consists of the following

main steps:

1. Create two sets of chains S, and S;. Each set consists of a partition of the nets into
d chains satisfying certain properties to be outlined later. In particular, the nets in
each chain define a set of nonoverlapping intervals. Initially a net has two symmetric

segments above and below the track y = 0.

2. Assign a track number from the upper d tracks in the channel to each chain in S, and
a track number from the lower d tracks to each chain in S;. Then wire all the nets for

all the columns simultaneously.

The algorithm produces a layout which maintains the following property.

Property 1. Any net N; which is active in column ¢ has two strands y = ¢,(z) > 0 and
y = t2(2) < 0.

We shall summarize the algorithm Create Chains developed in [CJ] which partitions a set of
nets into d chains, where d is the density of the corresponding CRP. This algorithm will be

used later on to obtain the initial sets of chains.

Algorithm Create Chains

Input: terminals [;’s and r;’s of all the nets Ny, No,---, N,.

Output: d chains of nets, where d is the density of the CRP.

1. Mark all the terminals. For each left terminal /; of a net IV, set p(l;) = r; such that r;
is the nearest right terminal of some other net to the right of N;. If two such terminals
exist, then pick the one whose corresponding net is of the same type as N;. However

if no such r; exists, then set p(l;) = §. Similarly define p(r;) for each right terminal.

2. If p(l;) = r; and p(r;) = l; then set suce(N;) = N; and unmark r; and ;. Create a

reference point k between r; and [;.

3. Let Ry, Ra,---, R, be the intervals determined by the reference points. For each R;

create lists L(R;) and R(R;) consisting of all the marked left and right terminals in R;.

4. Create links between corresponding terminal pairs in R(R;) and L(R;41). Unmark all
those terminals thus linked and merge intervals Ry;; and Rj;. Repeat this step until

only one interval is left.

Lemma 1 [CJ]. The number of chains created by the above algorithm is exactly d, where
d is the channel density. This algorithm can be implemented on a CREW-PRAM in time
O(% + log n) with p processors, 1 <p <n. O

The above chains are then modified in Algorithm ‘Modify Chains’ [CJ] so that they have

the following property. Let ¢ be any column. Then either

1. ¢ is empty, or
2. ¢ contains only one entry terminal, or

3. c contains two entry terminals of nets N; and N;. Let N; =< ¢,b; >and N; =< t;,¢ >.

The following two cases can then arise:

e If N; has an exit terminal and N; has an entry terminal in ¢, then they both

belong to the same chains and one is a successor of the other.

e Suppose both NV; and N; exit at ¢. The other case is dealt with similarly. Let
N; = succ(N;) and N; = succ(N;). Then they either have their entry terminals
on the same column or the column of N] or N} which is closer to ¢ has only one

entry terminal.

We will now outline each of the main steps of our algorithm. The algorithm below creates
initial chains of nets in sets S, and S; which will be modified later to satisfy certain desired

properties.

Algorithm Initial Chaining

Input: terminals [;’s and r;’s of all the fictitious nets N7, N3,---, Ny.

Output: two sets S, and S; with each set containing a partition of the fictitious nets into d

chains, where d is the essential density.

1. Using algorithm Create-Chains outlined above, obtain d chains where d is the essential

channel density.

: +tif‘—1

Figure 4: An instance of a GCRP

N1 — NS-_—> N10
N, —> N—» N,
N, —> N— N
N, —> N,

Figure 5: Chains created by Algorithm Initial Chaining

2. Duplicate the d chains thus obtained into two sets S, and S; each of which correspond
to the upper and lower halfs of the channel. The chains in the two sets will be modified

independently later on to satisfy certain properties.

As an example consider the general channel routing instance shown in Figure 4. The chains

produced are shown in Figure 5.

Lemma 2. If there exists a column ¢ containing an exit-terminal N; and an entry-terminal

Nj, then Nj; is the successor of N; in one of the chains. Property 1 will also be satisfied.

Proof. succ(N;) = N; because of a direct result of algorithm ‘Create-Chains’. In the first
step of the algorithm, we have p(l;) = r; and p(r;) = l;. Thus succ(N;) = N;. |

The chains in S, correspond to the upper d tracks, while the chains in S; correspond to the
lower d tracks in the channel. Besides each net N is present in both the sets S, and S;. As
a result each net would have been assigned two tracks, y = t;(IN) > 0 and y = £2(N) < 0.

Thus Property 1 is satisfied. O

The above chains can be used to wire all the nets in 2d tracks but the corresponding layout
may not be realizable in three layers. So we have to modify the chains in both the sets S,
and S].

A column ¢, is said to be a terminating column, if
1. ¢ has an exit terminal of N;, or

2. cis the closest successor entry column of net N;, and N; has exit terminals in a column

-
¢ whose state = (see figure below).

I R 4 L I
1 l— -1 T 1
e c e c 6 C

All other columns are said to be non-terminating. We associate the pair < ¢, N; > to each
terminating column, and refer to it as a terminating pair. A terminating pair < ¢, N; >, is

said to be an upper (lower) terminating pair if

10

e Net IV; has an exit terminal on the upper (lower) boundary in ¢ or

e N; terminates in ¢, and the successor of N; is S, (S1) has its first upper (lower) terminal

in c.

To satisfy the three layer wirability, the chains in the sets S, and S; are modified so as

to satisfy the following property.

Property 2. Let ¢; be any column. Then either

1. ¢; 1s non-terminating, or

2. if ¢; is associated with a lower (upper) terminating pair < ¢;, N; >, then either

a. the column ¢ containing the first upper (lower) terminal of N/ = succ(V;), in S,

(S1) is non-terminating, or

b. column ¢; = column ¢;.

The following algorithm outlines how to modify the chains S, so that the above property
holds. For modifying the set 5; we can essentially use the same algorithm with the obvious

modifications.

Algorithm Chain Modification

Input: state of columns and initial chain set S,.

Output: new set of chains Syne, satisfying the property stated above.

1. If a column has an upper exit terminal of a net N;, and is also the first upper terminal

ANy
-

of the net, then delete N;, from its chain in S,, unless the column is of state =

11

L
-

2. Mark all columns of state(c) =

=N

3. Now consider all columns of state(c) . Two cases arise for such columns.

a. Column contains an upper terminal labeled N;, which is both the first as well

as the last upper terminal. Let N; = pred(N;) in S,. Modify S, by setting the

A

succ(N;) = N; and succ(N;) = oldsucc(N;). Let ¢; be the column to the right
of ¢ such that ¢; contains the closest entry terminal of suce(N;) among its two

successors. Mark ¢; only if the entry terminal is a lower terminal.
_1 N J

step, we process as follows. Let ¢; and ¢; be the nearest columns to the right of c,

b. For the remaining columns of state(c) not considered in the previous

such that they contain the entry terminals of the successors of N; and N;. Mark

these columns if the entry terminals are the lower terminals.

4. For each marked column create an ordered pair < ¢,¢’ > where ¢’ contains the first

upper terminal of N/ = succ(N;) and N; is the net which terminates in column e.

5. Group the pairs < ¢, ¢’ > into maximal groups < ¢g,¢1 >, < ¢1,¢3 >, ++, < Ck, Chg1 >.
Let N; denote the net which terminates in column ¢;. Update the successors of these
nets by setting the new successor of N; to be the previous successor of N;_; for all

0 < i < k. In addition, set the new successor of Ny to be the previous successor of Ny.

As an example consider the chains in Figure 5. The new set of chains created by the above

algorithm are shown in Figure 6.

12

—» —» N
N1——> NB N3 N7 9

—» N
N4-—-’ N3__> N7-—> Ng—-i N10 N4 10
N2-——> N5 N1 I N6
— —»N
Ne—> N, | N N 11
Su Sl

Figure 6: Modified sets of chains

Lemma 3. Algorithm ‘Chain Modification” modifies the chains such that the new set
of chains satisfies Property 2. Moreover the algorithm runs in O(% + logn) time with p
processors, 1 < p < n, on the CREW-PRAM model.

Proof. Without loss of generality we shall prove the lemma for the set of chains in §,. If
column ¢; were non-terminating, then the property is satisfied trivially. Let us hence assume
that the column ¢; is terminating, associated with a terminating pair < ¢;, N; >. This results
in the creation of an ordered pair < ¢;, ¢iy1 > in step 4 of the algorithm which is then grouped
into a set of maximal groups in the subsequent step. Let < ¢;,ciy1 > be part of one such
group, < cp,¢; >,< €1,¢y >, -+, < Ck,Cry1 >. For 2 = 0, the new successor of Ny is the old
successor of Ny, which has its first upper terminal at column c41, which is non-terminating.

For all other values of 4, the new successor of N; is the old successor of N;_;, and thus the

column which contains the first upper terminal of the successor of N; is ¢; itself and thus the

13

property is seen to be satisfied. Notice that no new terminating columns are created.

The time and processor bounds of the algorithm can be easily established. [

After having obtained the modified sets of chains we proceed to do the wire layout as de-
scribed in the algorithm Wire Layout. We denote ¢1(V;) and ¢3(N;) to be the tracks of N;
in S, and S) respectively. We can assign the track numbers ¢;(N;) and t5(N;), for all nets

by a simple sorting step.

Algorithm Wire Layout

Input: state of the column, set of modified chains S, and 5.

Output: description of the wire-layout to be performed in the column.

1. State of column is empty then do nothing.
2. State of column is trivial then connect the upper and lower terminals.

3. State of the column is density preserving:

| I __J_r\.j i
o states(c) = T T g, are wired easily as shown below.
J

14

L
e states(c)= "1 + [where N; is the terminating net and Nj is the

starting net the wiring is as follows:

(N =t ()
—
J LN =t4(N)
4
N; N
4. State of the column is density decreasing:
o If state(c)= 17 ’ then wiring is simple and obvious.
S |
o If state(c) = (state(c) =) can be handled in a sym-
N i T

metric manner) then two cases may occur:

Case 1. t;(N;) > t3(N;). Net N, is terminated in the column as shown below.

t1(Nj)

15

Case 2. t1(N;) < t1(N;). While net N; is terminated, net N; is run temporarily

in ¢;(NV;) until the nearest column e to the right of ¢ such that column e has

an upper terminal labeled:
— empty.
- N;.

— N! where N is the successor of N; in S.,.

Ny
o If state(c) = —INj . Let N} = succ(N;) and N} = succ(Nj). Let ¢; and ¢,

denote the nearest columns to the right of ¢ which contain the entry terminals of
these nets respectively. Note that ¢; and c; are of type density increasing. Assume

t1(NV;) > t1(N;). Other case can be handled similarly. The various orderings of ¢,

¢; and ¢, and their wirings are shown below:

o1. I R I 1 L L
0T 0oor
N; LNm Ni LNm
7 T W

| L 1 | L L
T r T T
02. ,
N Ni' Ni N
_ \
\ “\
] 7
J— S
—
_J ——
Nj (Nm N INp,
[t (ND T > T, ON) | Itz(Nj)|>1t2(Ni)|
| L _.I L
Os. 1 r] I
Ni N NN
A\ \\ N
y
J J (
(Nj (Ni' N; N;'
[t2(Nj) | >ty (Nj)] [t2 (Nj) | >t (Nj) |

5. State of the column is density increasing: some of these columns have already been
wired in the previous step. The remaining columns do not have any terminating nets

and hence the wiring is done in the obvious manner.

Consider the example shown in Figure 4. The routing produced by the above algorithm is

shown in Figure 7.

We notice that all the columns which are processed in step 2 of the algorithm will have

a terminating net and hence these columns are the terminating columns.

Lemma 4. For a given instance of a GCRP algorithm Wire Layout will provide a legal

17

))

[1
1 5 10 15

Figure 7: The layout generated by Algorithm Wire Layout

routing of all the nets using not more than 2d tracks for all the columns in the knock-knee

model. O

Theorem 1. Given an instance of a GCRP of essential density d, it is possible to wire all
the nets using 2d tracks in time O(% + logn) on a CREW-PRAM model with p processors,

1 < p < n, where n is the size of the input.

Proof: The theorem follows from the previous lemmas, and from the results of ([KRS). O

The main idea of the above algorithm was to establish an upper bound on the number of
tracks used for any solution of a GCRP. As in the sequential version [SP], in conjunction
with heuristics, we can develop efficient yet provably good solutions, for any GCRP. The
solution uses d 4 a tracks where 0 < ¢ < d. Additionally for a two-terminal net CRP, we
can modify our algorithm to produce an optimal wire-layout using only the lower d tracks,

where d is the density of the CRP.

18

Modified Wire-Layout

The algorithm described above produces a routing which uses exactly 2d tracks, which can
be realized in three layers, as shown in the next section. We now propose some modifications
to the wire-layout strategy such that the resultant routing uses d + a tracks, 0 < a < d.
Specifically for two-terminal nets ¢ = 0, and the routing produced is an optimal one and is

similar to the one produced in [CJ].

1. Any net which has terminals on only one boundary (say lower boundary), need only

have a lower strand and an upper strand is unnecessary.

2. Consider a column ¢ of one of the following states:

_Lﬂi _l_Ni LNi lﬂi |Ei _’i"i _!_Ni L[\‘i

™ NN It [E2(N:)] < [t2(IV5)],

state(c) €
§

and the vertical interval between ¢1(N;) and £2(N;) is free in that column, then the net

N, is wired as shown below.

3. Consider a column c of state(c) = L such that [ta(N;)] > |t2(NV;)|. Let ¢; and ¢;

zll=z

19

be the columns which contain the exit terminals of N; = pred(N;) and N; = pred(N;).
If the net having the exit terminals in the column nearest to the left of ¢, is a single

strand net, the wiring for the various cases for column ¢ below. The above modification

1[””— [

leads us to the following result.

Theorem 2. Any channel routing routing problem with density d, can be routed in
d + a tracks for 0 < a < d. Specifically for two-terminal nets ¢ = 0. Besides the
modified wire layout algorithm, runs in time O(% +logn) on a CREW-PRAM model

with p processors, 1 < p<n. O

4. Layer Assignment

The wire-layout produced in the first part of the previous section can be laid out
in three layers. [PL] provides necessary and sufficient conditions for wiring a layout
using three layers. The wiring can be done by finding a legal partition of the core of

the diagonal diagram. The routing produced by our algorithm satisfies the following

20

property:
Property 3. Any column irrespective of its type will have at most two knock-knees,

with a diagonal \ on the bottom and a diagonal / above it.

By adding dummy diagonals if necessary, we can assume that each column is either
empty or contains exactly two diagonals. Define a reference line as a vertical line
that touches the end point of some diagonal. The diagonals touching a reference line,
partition it into segments. We choose either odd or even vertical segments to obtain

the legal partition.

We define the constraint graph as follows. The odd and even vertical segment choices
of a reference lines are represented by vy;_; and vy;. Two vertices are connected by an
edge if and only if the corresponding choices create a forbidden pattern. A forbidden

pattern can be created only between adjacent reference lines.

Algorithm ‘Select’ in [CJ] selects a subset of vertices from the constraint graph, which
will induce a legal partition of the wiring layout, assuming that the given graph does
not contain any forbidden columns. The routing produced by our algorithm will have
reference lines only of the types Figure 8. Each type is shown with its possible con-

straint graph. Notice that in none of the cases will there be any forbidden columns.

Theorem 3. Given an instance of a GCRP, it is possible to determine a three-layer
assignment of the routing, in time O(% + logn) on a CREW-PRAM model using p
processors, 1 < p < n, where n is the size of the input. O

21

trivial overlap inculsion

0%

N

Figure 8: Types of reference lines

5. References

[CJ] Chang, S. and J. J4J4, “ Parallel Algorithms for Channel Routing in the
Knock-Knee Model,” to be published in the International Conference on Parallel

Processing, 1988.

[delaT] de la Torre, P., “On parallelism and some generalisations of the line packing

problem,” Unpublished manuscript 1988.

[GK] Gao, S. and M.Kaufmann, “Channel Routing of Multiterminal Nets,” Proc.

of the 19th Ann. ACM Symposium on Theory of Computing, pp.316-325, 1987.

[KRS] Kruskal, C., Rudolf, L., and M.Snir, “ The Power of Parallel Prefix,” IEEE

Transactions on Computers, vol C-34 (10), pp.965-968, Oct. 1985.

[MP] Melhorn, K. and F. Preparata, “Routing Through a Rectangle,” JACM, vol.

33(1), Jan. 1986, pp. 60-85.

[MPS] Melhorn, K., Preparata, F., and M. Sarrafzadeh, “ Channel Routing in
Knock-Knee Mode: Simplified Algorithms and Proofs,” Algorithmica, 1986, pp.

22

213-221.

[O] Ohtsuki, T., “Layout Design and Verification,” Advances in CAD for VLSI, vol.

4, North-Holland, 1986.

[P] R. Pinter, “River routing: methodology and analysis,” Proceedings of the third

CALTECH Conference on Very Large Scale Integration, March 1983, pp. 141-163.

[PL] Preparata, F. and W. Lipski, “Optimal Three-Layer Channel Routing,” IEEE

Trans. on Computers, C-33, 1984, pp. 427-437.

[RF] Rivest, R., and C. Fiduccia, “ A Greedy Channel Router,” Proceedings of the

19th Design Automation Conference, 1982, pp. 418-424.

[S] Sarrafzadeh, M., “Channel-Routing Problem in the Knock-Knee Model is NP-

Complete,” IEEE Transactions on CAD, vol. 6, 1987, pp. 503-506.

[SP] Sarrafzadeh, M., and F. Preparata, “Compact Channel Routing of Multitermi-

nal Nets,” Annals of Discrete Math., no. 25, April 1987, pp. 255-279.

23

