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The objective of this thesis is to determine if different measurement combinations will 

improve absolute and relative orbit determination (OD) accuracy for the Laser 

Interferometer Space Antenna (LISA) mission.  LISA, a triangular three-satellite 

heliocentric constellation, measures the relative length changes between spacecraft.  The 

unique contribution of this work is the incorporation of inter-spacecraft range and range 

rate observations into the OD process, in addition to Deep Space Network (DSN) range 

and range rate, and Very Long Baseline Interferometry (VLBI) angle tracking data.  

MATLAB was used for orbit propagation, simulating measurements, and executing the 

weighted batch least squares algorithm to obtain the best state estimate.  Covariance and 

Monte Carlo analyses were performed to compare the four test cases.  The results 

concluded that cases with inter-spacecraft data had the least absolute and relative OD 

errors, VLBI eventually becomes ineffectual, and DSN needs at least 20 days of tracking 

to become observable.   
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Preface 

 

This thesis topic began as a ten-week project during my Summer Institute in Engineering 

and Computer Applications (SIECA) internship at NASA-Goddard Space Flight Center 

during the summer of 2004.  Under the mentorship of Dr. Tristram Tupper Hyde, the 

project involved taking a preliminary look at a two-dimensional model of a spacecraft 

around a flat Earth then simulating three spacecraft orbiting around the Sun in three-

dimensions.  The only data type considered was range.  The batch least squares method 

was used to estimate the best state.  The experience exposed me to brilliant people, got 

me involved in research, interested me in orbit determination, and made me want to keep 

on pursuing the complicated problem of tracking spacecraft. 

    

I returned to University of Maryland that fall to finish my Master’s coursework and in the 

spring of 2005, I fully embarked again on this journey of research to complete the final 

thesis requirement.  The topic got deeper and many lessons were learned along the way.   
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CHAPTER 1:  Introduction 
 

 

The Laser Interferometer Space Antenna (LISA) mission is a joint effort between the 

National Aeronautics and Space Administration (NASA) and the European Space 

Agency (ESA) currently scheduled for launch in 2015 [1].  LISA will function for a five 

year nominal mission, plus an extended mission of at least 3.5 years once it is placed in 

its operational heliocentric orbit that trails Earth by about 20 degrees.  LISA’s primary 

objective is to detect and study gravitational waves in the low frequency range of 10-4 to 

10-1 Hertz (Hz), a region much too low to be perceived by Earth-based observatories.  

LISA will test Einstein’s theory of general relativity and it is also expected to give further 

insights into astrophysics. 

 

LISA a three-satellite constellation, will measure the relative change in length of adjacent 

legs of the formation down to picometer (x 10-12) precision.  Each leg of the constellation 

is separated by five million kilometers (km).  The leg-length measurement is referenced 

to a free-floating proof mass that will be shielded from non-gravitational forces inside the 

optical assembly of each spacecraft using laser interferometry.  The relative change in leg 

length provides information about the direction and polarization amplitude of each 

gravitational wave.   

 

Precise orbit determination (OD) methods are required to initially track LISA and direct 

each satellite into its proper orbit.  During mission execution, accurate OD is required to 
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maintain the appropriate orbit configuration precisely given the extreme sensitivity of 

scientific data quality to leg length and pointing deviations.  OD involves deriving an 

accurate state vector or initial orbit from which to propagate and map the orbit to a future 

time and then refining the result to model the real world errors.   

 

There are two places in the LISA orbit where OD is particularly important.  The first is at 

the end of cruise phase.  At this stage, the Propulsion Modules (P/M) are still actively 

navigating and correcting the spacecraft orbit thus inter-spacecraft data will not be 

available.  Once the last Trajectory Correction Maneuver (TCM) has occurred and the 

OD tracking is confident, the propulsion modules can be ejected.  The force of the P/M 

drop-off will give the spacecraft state a "bump."  The second crucial OD phase is the 

commissioning period, roughly a three-month period when LISA will be close to its 

nominal orbit.  Inter-spacecraft lasers will be linked and small adjustments to each 

satellite’s orbit will be made using micro-thrusters.  OD continues to track the spacecraft 

until the OD is confident and the science of the mission can officially begin.  The 

spacecraft will now be passively controlled using Drag-Free control, and no more large 

corrections can be made to the orbit during the course of the mission.  Hence, OD is 

crucial to track these spacecraft as they precisely initialize their relative positions, so that 

the mission can be successful for the scientific operations throughout the nominal and 

any extended portions. 

 

Accurate OD is extremely crucial for successful LISA mission science (i.e. laser 

interferometry along leg lengths of the constellation) since only passive Drag-Free 
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control will be employed once in operational orbit.  The goal of this thesis is to 

investigate methods to obtain more accurate absolute (with respect to a tracking station 

on Earth) and relative (with respect to an adjacent spacecraft) OD.  This will be done 

using a weighted batch least squares processor to simulate different combinations and 

types of observations.  The unique aspect of this research is its incorporation of LISA’s 

inter-spacecraft range and range rate into the OD process that supplements the more 

standard Deep Space Network (DSN) range, range rate, and directional (right ascension 

and declination) measurements.  Although we study accuracy with the full suite of 

measurements, we also study accuracy when subsets of all available measurements are 

used.  Such use of "suitable combinations" of observations with a least squares process 

was studied by researchers as early as Gauss [2].  Currently soft requirements on the 

mission call for absolute position accuracy to within one kilometer (km) and a relative 

position accuracy between 300 meters (m) and 20 m. 

 

Hechler and Folkner [4] performed a preliminary study using inter-spacecraft data for 

LISA with its onboard laser tracking system for exclusively the range data type.  They 

found that the incorporation of laser tracking is crucial in determining the arm lengths 

and achieving tighter accuracy requirements during the experimental phase of the 

mission, although ground tracking (i.e. range and Doppler) was found to be sufficiently 

accurate for the transfer and delivery phases of the mission.  Hence, this motivated the 

need to investigate using inter-spacecraft data as a means to improve the OD accuracy. 
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1.1. Thesis Objectives & Contributions 

 

This thesis examines the benefits of including relative inter-spacecraft laser data as well 

as traditional ground tracking data in the OD process to improve both the absolute and 

relative state estimates.  In this thesis, "relative data" is defined as inter-spacecraft range 

and inter-spacecraft range rate, quantities anticipated to be available from the spacecraft-

to-spacecraft interferometry.  Earth-based range and Doppler data can be provided by the 

Deep Space Network (DSN) package, while the angle (i.e. right ascension and 

declination) data simulates Very Long Baseline Interferometry (VLBI).   

 

It is well-known in OD that increasing the amount of data and the time spent observing 

the target improves accuracy [5].  However, it is not always the case that accuracy 

improves substantially with the inclusion of new data.  This thesis comprehensively 

evaluates how absolute as well as the relative OD accuracy improves with the inclusion 

of various measurement combinations.  Measurement sets will also be evaluated by their 

ability to fit within mission constraints and requirements.  The effects of longer tracking 

arcs, greater frequency of measurements, noise, and biases will also be investigated.  Our 

initial hypothesis is that the best OD results will be obtained with the maximum 

measurement set, including DSN (Earth-based range and range rate), VLBI (angular 

data), and inter-spacecraft data (inter-spacecraft range and range rate).  Specifically, we 

expect the addition of relative information to yield improvements in both absolute and 

relative navigation performance.   
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1.2. Overview of Thesis 

 

This thesis first overviews the LISA mission in Chapter 2 with a specific focus on LISA’s 

unique orbit geometry and configuration.  During the LISA mission overview, key 

constraints and technological challenges to this mission will be noted.  Related planned 

and completed missions on which LISA bases elements of its technology will be 

discussed. 

 

Chapter 3 presents the key math and orbital dynamic topics needed in this research.  

Also, the measurement types, aspects of estimation and tracking data error sources are 

presented.  Chapter 4 describes the orbit determination method used for this work, the 

weighted batch least squares method.  Other methods such as linear, unbiased, minimum 

variance (LUMV) and sequential methods will be discussed for completeness.  A brief 

OD history is included to provide perspective and further validate choices of methods 

used in this work. 

 

In Chapter 5, the specifics of the nominal LISA orbit, measurement inclusion in the least-

squares algorithm, test cases and implementation detail of the simulation are described.  

The assumptions in the model, validity of the filter, and orbit accuracy test methods will 

also be defended.  Chapter 6 presents the results of the thesis, while Chapter 7 draws 

conclusions and offers suggestions for future work. 
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Chapter 2:  Background 

 

 

The Laser Interferometer Space Antenna (LISA) planned for launch in 2015 is a 

Cornerstone Mission in ESA’s Cosmic Vision Programme, and is a Great Observatory 

for NASA’s Structure and Evolution of the Universe 2003 Roadmap: Beyond Einstein 

Program (Astronomy and Astrophysics Division) [6].  LISA is managed by NASA-

Goddard Space Flight Center (NASA/GSFC) and will be operated by NASA-Jet 

Propulsion Laboratory (JPL).  LISA has a five year nominal mission once in operational 

orbit, plus a possible 3.5 year extended mission [7]. 

 

LISA is a constellation consisting of three identical spacecraft, each of which forms a 

vertex of an equilateral triangle.  The distance, or arm length between each spacecraft in 

the triangle formation, is five million km.  The three spacecraft will be in a heliocentric 

orbit, centered on a reference orbit of one Astronomical Unit (AU), where 1 AU = 149.6 

million km from the Sun in the ecliptic plane.  The reference orbit center point will trail 

the Earth by 20 degrees (o).  Though recently some studies have put this point at 23o 

degrees behind Earth [8], the reference point will remain at 20o in this thesis.  There is a 

tradeoff between choosing 20o which is more desirable for communications purposes 

because it is closer to the Earth, while 23o is better for the drag-free control since it is 

farther from Earth and its perturbations.  The actual orbit will be optimized as the mission 

draws closer.  The entire constellation will be tilted 30o away from the Sun, at an 

inclination of 60o, as illustrated in Figure 2.1. 
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Figure 2.1: LISA orbit geometry relative to the Sun and Earth [1] 

 

 

2.1. Mission & Science Objectives 

 

The scientific objective of LISA is to detect gravitational waves using laser 

interferometry.  In order to measure the changes in distance between two freely-floating 

proof masses, these masses must be isolated from all non-gravitational forces in each 

spacecraft [9].  Each spacecraft will track changes in its own motion relative to the other 

two orbiters [10].  Valuable information concerning the direction of the gravitational 

wave is gained when comparing the relative motion between two spacecraft of LISA as 

opposed to following a precise absolute path.   

 

LISA aims to be the first space-based detector to identify and study low-frequency (10-4 to 

10-1 Hz) gravitational waves from three major binary sources: 1) Coalescences of super 

massive black holes in distant galaxies [1] which are the most violent events in the 

universe [9] that result from merging galaxies; 2) Stellar-mass black holes spiraling 
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toward massive black holes; and 3) Compact binary star systems in the Milky Way 

Galaxy [11].  Binaries are simply two objects that orbit each other.  Objects can be 

neutron stars, stars, and black holes for example.  Black holes are objects whose gravity 

is so strong that light cannot even escape it; therefore they cannot be seen, but there is 

"strong indirect observational evidence" [1] of their existence.  Black holes are believed 

to be formed by the collapse of more massive stars after their nuclear fuel has been 

expended [1].  This phenomenon emits gravitational wave energy that LISA will be able 

to detect.   

 

A ground-based detector called the Laser Interferometer Gravitational-wave Observatory 

(LIGO) also views gravitational waves.  However, LIGO can only view high-frequency 

waves from transient phenomena such as supernovae and the final minutes of in-spiraling 

neutron-star binaries.  Low-frequency waves simply cannot be detected with a terrestrial-

based detector because of Earth’s changing gravitational field due to atmospheric effects 

and ground motions [11]. 

 

2.1.1. Gravitational Waves 

   

Gravitational waves are vibrations of space and time, or "ripples" in space-time caused by 

accelerations of masses in space, thought to weakly interact with intervening matter [9].  

Gravitational waves are essentially propagating gravitational fields.  They create time-

varying strain, s, of space-time as defined in Equation 2.1: 

s = δl/l          (2.1) 
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Where l is a distance and δl is a change in distance.  For LISA, gravitational waves are 

detected by monitoring the separation of the proof masses.  The motion of the source 

masses can determine further information such as the waveform and the direction to the 

source.  This motion can be inferred by the amplitude and phase variation caused by 

LISA’s orbital motion [11].  Gravitational waves have been predicted by Einstein’s 

Theory of General Relativity, but have never been directly detected [9].  In the 1970s, 

indirect evidence became available to confirm Einstein’s prediction [12]. 

 

Einstein’s Theory of General Relativity (1916) proposes matter, space and time are 

related.  The gravity of any mass is the deformation or warping of space-time around it, 

hence an altering of the path of objects that pass close by.  Any variation in movement 

causes disturbances that become waves in space-time [1].  Mass and gravity are 

positively correlated: an increase in mass relates to an increase in the gravitational force 

exerted [13]. 

 

LISA aims to test Einstein’s theory of General Relativity and to probe the early Universe.  

Since gravitational waves are thought to weakly interact with intervening matter, there is 

a theory that waves generated from the beginning of time would have penetrated the heat 

and the density of the Big Bang to travel onwards [1].  This could possibly reveal clues of 

the formation of the early Universe through a search for the continuous spectrum 

(frequency range) of gravitational radiation generated at the Big Bang [1], the so-called 

beginning of time for our Universe.  The early universe was opaque and not transparent 

to light during the first 380,000 years following the Big Bang, so light alone cannot 
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reveal the entire history [9].  Thus, the universe is dark and most of what is known about 

the universe is through electromagnetic (EM) radiation, which interacts with ordinary 

matter (i.e. gas and stellar material).  However, this "dark" matter interacts with gravity; 

hence gravitational waves give us additional insight [9]. 

 

2.1.2. Laser Interferometry 

 

For LISA to detect gravitational waves, laser interferometry precisely monitors the 

separation of the three spacecraft proof masses.  Interferometers are a popular instrument 

with the Michelson Interferometer named after American physicist Albert Michelson 

(1852-1931) a common tool used in astrophysics.  The famous Michelson-Morley 

Experiment demonstrated the absence of "ether" a hypothetical medium which would 

cause the speed of light to be different in different directions.  The experiment found that 

there is no significant motion of Earth relative to ether.  This finding led to Einstein’s 

Theory of Special Relativity in 1906 which states that ether if unobservable simply does 

not exist.  The Michelson-Morley experiment showed that there is no variation in light 

speed with direction.  Laser interferometry takes advantage of the fact that light behaves 

as a traveling wave that propagates evenly and equally in all directions from its source.  

Hence, light waves can be identified by their wavelength [1]. 

 

Each LISA spacecraft locks the incoming laser signals from the two other LISA 

spacecraft and transmits them back over the five million km leg length [14].  This is 

different from the Michelson interferometer, which would reflect the incoming signal.  
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The "phase lock" on the signal ensures that the phase difference is due only to 

gravitational waves rather than signal loss due to traveling over the substantial leg length 

and instrument error.  It takes about 32 seconds for the laser to transmit a signal to/from 

spacecraft to spacecraft (~16 light seconds to, ~16 light seconds back) [14].  It is 

expected that the changes in arm lengths will be measured as accurately as ten picometers 

[1].  Figure 2.2 illustrates the laser signal paths as they travel between spacecraft.   

 
Figure 2.2:  Lasers signals between LISA [1] 

 

2.2. LISA Spacecraft Design 

 

Each 500 kilogram (kg) LISA spacecraft is a short cylinder (2.7 meter (m) diameter, .89 

m height) that supports a Y-shaped tubular structure.  The Y-shaped structure encases 

two instruments, which will be discussed below.  Solar panels are mounted on a sunshield 

that extends from the top of the cylinder.  The sunshield forms a cover across the top of 

the cylinder that will prevent sunlight from hitting the Y-shaped structure and the 

cylinder walls.  Figure 2.3 below illustrates one LISA spacecraft.  Note the sunshield and 

solar panels are not included, so that the inside of the spacecraft can be seen.  Also, two 
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X-band 30-centimeter (cm) diameter radio antennae will be mounted on the outside of the 

spacecraft for communication with Earth.   

 

 
Figure 2.3:  The LISA spacecraft [1] 

 
The spacecraft and the Y-shaped structure will be graphite-epoxy composite materials 

because of their low coefficient of thermal expansion (CTE) [11].  The Y-shaped 

structure is gold-coated both on the inside and outside and is suspended by stressed-

fiberglass bands to thermally isolate it from the spacecraft and to reduce radiative heat 

transfer as shown in Figure 2.4. 

 

 
Figure 2.4: Y-shaped structure [1] 
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2.3. Instrument Package 

   

Inside the Y-shaped structure is the optical assembly that contains the optical bench, 

transmit/receive telescope, and low-power electronics pack [15].  There are two optical 

assemblies per spacecraft.  Figure 2.5 details an optical assembly. 

 
Figure 2.5: Optical assembly [1] 

 

The optical bench houses the proof mass.  Six gold-platinum proof mass cubes (4.6-cm 

on each side) [10], two per spacecraft, are present in the full LISA constellation.  There is 

a gap between the wall of the structure encasing the proof mass and the proof mass itself.  

The wall never touches the cube and the spacecraft actively follows the proof mass to 

maintain the appropriate separation, hence the proof mass continuously "floats" within 

the spacecraft.  For the force on the proof mass to be very low, one needs low stiffness 

and a low differential displacement of the gap.   

 

The two main systems within LISA are: 1) the Disturbance Reduction System (DRS), 

which includes the Gravity Reference Sensor (GRS) and 2) the Interferometry 

Measurement System (IMS).  The Disturbance Reduction System works to eliminate 

non-gravitational forces on the proof mass in the measurement direction and to keep the 
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spacecraft pointed in the appropriate direction.  The DRS reduces disturbance 

accelerations to the proof masses to less than 3 x 10-15(m/s2)/ Hz  [3].  Included in the 

DRS is the GRS, with position sensors to measure the proof mass position, while 

minimizing coupling to spacecraft motion [16].  Two proof masses are in each GRS. The 

capacitive sensors also are used to locate the proof mass to ensure that the spacecraft is 

centered upon the masses.   

 

The DRS uses a micro-thrust propulsion system with Micro-Newton (µN) thrusters to 

perform fine control of spacecraft position and attitude, effectively maintaining a "drag-

free" flight condition [16] by commanding the spacecraft to follow the motion of the 

proof masses.  Thrusters must counteract all disturbance forces, such as solar pressure 

with a position accuracy of 10-9 m [11].  "Self gravity" between the spacecraft and the 

proof mass can cause complications in the DRS and create bad measurement noise, the 

correction of which is an area of current research.  In addition, three emerging 

microthrust propulsion systems are being tested for use on LISA: 1) Field Emission 

Electric Propulsion (FEEP) using Cesium (Cs-FEEP), or Indium (In-FEEP) propellant, 2) 

Colloid Micro-Newton Thruster (CMNT), and 3) Precision cold-gas micro-thrusters. 

 

The telescope (30-cm. diameter) is used to transmit and receive laser signals from the 

other spacecraft. The two proof masses are located in each spacecraft 60o apart from one 

another.  The telescope has an actuator to correct for inter-spacecraft motion, which 

causes a +/-1o variation in look-angle to remote spacecraft.  The telescope uses 

interferometer optics of the Interferometry Measurement System (IMS), which measures 
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the change in distance between proof masses to a sensitivity of 4 x 10-11m (averaged over 

one second) [22].  The interferometer measures the changes in the distances between the 

proof masses separated with leg lengths of five million km in the different spacecraft to 

picometer-level (x 10-12 m) accuracy.  The inertial sensor, mounted at the center of each 

optical bench, senses the level of disturbance imposed on each LISA spacecraft.   

 

2.3.1. Drag-Free Control 

 

Drag-free control is a concept initially proposed in 1972 and discussed extensively by 

Lange [17].  To achieve drag-free control, an unanchored proof mass is enclosed in a 

spacecraft isolating it from external contact forces such as atmospheric drag and solar 

radiation pressure.  Internal forces can be ignored in ideal conditions, thus leaving 

gravitational forces as the only disturbance.  Then the spacecraft can follow the proof 

mass using low- thrust propulsion.  The propagated trajectory is then easier to follow and 

remain accurate for longer periods of time with only gravity affecting the spacecraft [17], 

[6].  To be explicit, the external forces from which one must shield the proof mass from 

include: 

    -Atmospheric drag 
  -Solar radiation pressure 
  -Solar wind 
  -Photon-pressure 
  -Higher order gravitational components 
  -Third-body effects 
 
The internal forces also affecting the proof masses including those listed below often 

cannot be ignored as well: 

-Self-gravity 
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  -Differential gravity 
  -Electric or magnetic field gradients 
  -Radiation pressure 

 

 

2.4. LISA Launch & Mission Evolution 

 

The target launch for the LISA mission is 2015 using an Evolved Expendable Launch 

Vehicle (EELV) to inject all three spacecraft into an Earth escape trajectory.  The 

spacecraft will separate from the launch vehicle and each other soon after launch then 

will operate independently.  After one orbit, the Earth will be 20o ahead of the 

constellation.  During cruise phase: a propulsion module (P/M) on each spacecraft makes 

the appropriate inclination and energy changes in order to rendezvous with final 

operations orbit [7].  Two circular solar arrays generate the power for the solar-electric 

propulsion engines.  There will be three deterministic maneuvers for each transfer for 

each spacecraft [7].  However, maneuver execution errors and OD errors will cause the 

cruise trajectories to deviate from the planned trajectories such that trajectory correction 

maneuvers (TCMs) must be administered.  The propulsion modules will separate from 

each spacecraft upon delivery to the final orbit (about 13 months after launch).  It is 

expected to require roughly 27 kg (or 59.5 lbs.) of propellant on each spacecraft to 

achieve the science orbit [1].  The Micro-Newton thrusters that correct for the solar 

pressure to maintain drag-free control will use a few kilograms of fuel over the mission. 

 



 

 17

Following delivery to operations orbit, each spacecraft will be individually evaluated, 

calibrated and will begin to operate in drag-free mode during the Element Commissioning 

Phase.  The Acquisition Phase establishes the laser links between spacecraft then the 

interferometer itself is checked out and calibrated in the Constellation Commissioning 

phase [7].  The science operation begins after this final commission. The spacecraft 

positions will evolve under gravitational forces only.  The spacecraft will be locally 

controlled in a "drag-free" manner to keep their positions centered about the proof masses 

contained within them. 

 

 

2.5. Orbit Geometry & Configuration 

 

LISA is a constellation of three spacecraft in an equilateral triangle configuration with a 

60o (+/- 1o) angle between outward-pointing lasers to relative measurements to the other 

two spacecraft.  The LISA constellation is located 20o behind the Earth.  LISA is centered 

on a reference orbit, a slightly-elliptical Earth-like orbit located one AU from the Sun 

such that LISA’s period, like Earth’s, is one year.  The reference orbit is in the ecliptic 

plane to minimize transfer change-in-velocity (∆V) from Earth [7].  The constellation is 

inclined 60o with respect to the ecliptic plane of Earth’s orbit.  The 60o tilt is chosen so 

that sunlight never enters the interferometer optics; and so that the Sun always 

illuminates the same part of each spacecraft.  Figure 2.6 shows the orbit geometry of the 

LISA constellation. 
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Figure 2.6: Orbit geometry of LISA constellation without angles [1] 

 

Since each spacecraft traces its own path around the Sun, the triangular formation also 

changes orientation by performing a complete 360o clockwise rotation once over this 

same one-year period.  Orientation changes are beneficial to help determine the direction 

of the gravity wave source.  The LISA constellation forms an epicycle, or an orbit within 

an orbit.  When viewed from the Sun or Earth, LISA appears to rotate about its center 

once per year.  The rotation is clockwise as viewed from the Sun.  Each spacecraft traces 

an elliptic path as shown in Figure 2.7. 
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Figure 2.7: LISA orbit evolution over an entire year [1] 

 

Sweetser [7] describes the orbital motion pattern shown in Figure 2.7, an orbital 

mechanics phenomenon that only occurs when a plane is tilted 60o.  When a reference 

point on a circular orbit around a central body is at the center of a plane that is inclined 

+/-60o from the orbital plane; all points on the plane maintain a fixed distance from the 

center to first order.  The plane rotates once around its center point per orbit.  Dhurandhar 

et al [18] mathematically validate this theory using the Clohessy-Wiltshire equations. 

 

The distance between the spacecraft, referred to as the arm length, is to remain uniform to 

keep the frequency response of the mission at the chosen optimum [19].  The leg length is 

five million km and is measured between proof masses.  This large separation helps to 

improve the sensitivity required for detecting low-frequency gravitational waves and 

requires an appropriately sized laser and telescope.  Furthermore, constant distances 
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between the spacecraft minimize problems associated with the inter-spacecraft Doppler 

shift of the laser signals and allows for optimum frequency response.   

 

 

2.6. Constraints & Technological Challenges 

 

Criteria for choosing the LISA orbits included satisfying at least ten nonlinear constraints 

imposed by instrument and communication limitations [14].  The constraints are that the 

leg lengths be kept within +/- 2% of the nominal, the interior angles of the formation 

must be kept from 58.5o-61.5o, the formation should be no more than 20o behind the 

Earth for communication and OD requirements, and all three leg lengths must change at a 

rate less than 15 meters per second (m/s) [14].  LISA's station at 20o behind Earth is a 

compromise to: 1) Reduce Earth’s gravitational perturbations on the constellation, such 

as Earth’s gravity which reduces with distance [7] according to an inverse square 

relationship, 2) Satisfy launch vehicle constraints, and 3) Enable communication given 

power requirements as a function of distance from Earth. 

 

Two requirements on the operational orbit of LISA are that: 1) the leg length is 5 x 106 

km +/- 5 x 104 km [7], the minimum of which allows for the low frequencies that LISA is 

designed to detect, and 2) the magnitude of the range rates between spacecraft must meet 

the 15 m/s constraint described above.  These constraints on LISA are present because 

the leg length range (+/- 5 x 104 km) signifies orbit design feasibility.  Also, the range 
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rate magnitude specifies angle ranges that onboard interferometers must accommodate 

[7] throughout the mission (nominal and extended). 

 

 

2.7. Related Missions 

 

Since the 1960’s, attempts have been made to detect high frequency gravitational waves 

with small interferometers from the ground [20].  The ground-based Laser Interferometer 

Gravitational-Wave Observatory (LIGO) which was referenced earlier, is a $365-million 

dollar Earth-based gravitational wave detector located in Louisiana and Washington. 

LIGO detects gravitational waves at a higher frequency than LISA, including transient 

phenomena such as supernovae [9].  However, LIGO is currently in need of an upgrade 

to be Advanced LIGO because detectors were found to experience 100-1000 times more 

jitter than blueprints indicated.  Other ground-based interferometers include Japan’s 

TAMA, a British and German collaboration GEO600, and an Italy and France partnership 

known as VIRGO [20]. 

 

A set of missions aim to validate subsystems planned for use on LISA and will contribute 

to the success of future formation-flying interferometer missions.  ESA plans to launch 

the LISA Pathfinder Mission (formerly SMART-2, Small Missions for Advanced 

Research and Technology, renamed because it will now test technologies that only apply 

to LISA) in 2009 in a Lagrange point one orbit.  LISA Pathfinder will fly two test 

packages of proof masses and hardware [10].  The payloads will include the complete 
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DRS/GRS payload of NASA’s Space Technology 7 (ST7) to demonstrate the 

effectiveness of the Gravitational Reference Sensor (GRS) housing two proof masses.  

This mission will also validate an interferometer design, the Colloid Micro-Newton 

Thruster (CMNT) by Busek Co., Inc. U.S. [21], and the LISA Technology Package 

(LTP) [6] also containing two identical proof masses.  The LTP drag-free control system 

consists of an accelerometer (aka inertial sensor), a propulsion system and a control loop 

[22]. The LTP will instead have the Field Emission Electric Propulsion (FEEP) as 

thrusters and precision cold-gas micro-thrusters as actuators.  The goals of the DRS and 

LTP are similar, but each uses different technology.  LISA-Pathfinder’s mission 

objectives include demonstrating drag-free and attitude control with two proof masses, 

assessing the feasibility of laser interferometry at LISA’s accuracy levels, and testing 

endurance of instrument and hardware in the space environment [22].  The exact design 

of LISA's proof mass and drag-free control systems will be determined from the studies 

and feedback of both ST7 and Lisa Pathfinder [22].  

 

Another Beyond Einstein Mission is Constellation-X.  Both Constellation-X and LISA 

are categorized as Great Observatories in NASA’s Beyond Einstein Program, a set of 

high priority missions that will use X-ray spectroscopy and gravitational waves 

respectively to study black holes [23].  Constellation-X has a possible launch date in 

2011.  It will consist of four spacecraft each containing a 1.6 m diameter telescope to 

measure the spectra of cosmic sources of X-rays [24].   
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Several other missions have demonstrated technologies applicable to LISA.  TRIAD 

launched Sept. 2, 1972, is the only three-axis drag-free satellite ever flown [25].  TRIAD 

had a spherical gold-platinum proof mass floating inside of it, unaffected by air resistance 

and sunlight.  Electronic sensors on the spacecraft would fire thrusters if the proof mass 

approached a wall of the spacecraft to keep it undisturbed from outside forces.  The 

inertial sensors and spacecraft control for LISA are based largely on this mission.  It was 

an experimental spacecraft that flew in a low-altitude orbit until it ran out of fuel.  

However the spacecraft was tracked for many subsequent years to perform magnetometer 

experiments.  

 

Space Interferometry Mission PlanetQuest (formerly just SIM) developed by NASA-JPL 

in collaboration with Lockheed Martin Missiles and Space and Northrop Grumman is 

scheduled for launch in 2011.  PlanetQuest will utilize technology related to laser 

interferometry [26], with a mission of determining the position and distances of stars 

increased accuracy using optical interferometry.  PlanetQuest, like LISA, will also be in 

an Earth-trailing solar orbit. 

 

Gravity Recovery and Climate Experiment (GRACE) consists of two twin spacecraft 

flying in formation [13].  The precise speed and distance between the two spacecraft are 

communicated via a microwave K-band ranging instrument.  The scientific objective of 

GRACE is to obtain a highly accurate gravity field map of the Earth.  GRACE is located 

500 km above Earth.  GRACE fulfills goals of NASA’s Mission to Planet Earth (MTPE) 

- to observe Earth’s gravity field, and responds to many other international organizations 
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concerns such as World Ocean Circulation Experiment (WOCE) and Climate Variability 

Program (CLIVAR).  

 

Gravity-Probe B (GP-B) is a NASA spacecraft launched on April 20, 2004 with a 

scientific objective to examine two of Einstein’s general theories of relativity: 1) the 

geodetic effect – the amount to which the Earth warps local space-time in which it 

resides, and 2) the frame-dragging effect – the amount to which the rotating Earth drags 

local space-time around with it [27].  It orbits the Earth at an altitude of 400 miles.  GP-B 

features nine new technologies, including drag-free control, cryogenics, and new 

manufacturing and measuring technologies.  It is also the first satellite to ever achieve 

both three-axis attitude control and three-axis drag-free control (the whole spacecraft flies 

around one of its science gyros while the spacecraft orbits the Earth) [28].  Thus far, GP-

B has successfully acquired one-year of science data, but the results are not yet released. 

 

CHAMP (CHAllenging Minisatellite Payload) is a German satellite managed by 

GeoForschungsZentrum (i.e. National Research Centre for Geosciences, GFZ).  It is a 

geopotential research mission that generates highly precise gravity and magnetic field 

measurements over a five year period.  It also uses drag-free spacecraft control [29]. 

 

Cassini-Huygens is collaboration between NASA, ESA and Agenzia Spaziale Italiana 

(i.e. Italian Space Agency) that uses DSN antennas at all three sites continuously [12].  

Cassini was launched in 1997, and orbited Saturn on July 1, 2004.  Cassini’s probe, 

Huygens, was dropped onto Titan (a moon of Saturn) in January 2005.  Cassini’s 40-day 
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scientific mission began on Nov. 26 2005 and was highly successful.  The 40-day mission 

will be repeated twice over the next two years to vary spacecraft’s position to sensitize 

the measurements to different gravitational wave directions.  Cassini’s overall mission is 

to measure gravitational waves using radio transmission between Cassini and Earth to 

reveal velocity changes through the Doppler measurements [30].   

 

Despite not being launched yet, many successors to LISA are also in the planning stages.  

Astrodynamical Space Test of Relativity Using Optical Devices (ASTROD) by China 

with arm lengths of 1-2 AU will search for gravitational waves at even lower frequencies 

than LISA [31].  The National Astronomical Observatory of Japan is proposing the 

DECi-hertz Interferometer Gravitational Wave Observatory (DECIGO) with shorter 

armlengths than LISA to bridge the frequency gap between the terrestrial and space-

based antennas.  NASA and ESA will team together again with Satellite Test of 

Equivalence Principle (STEP) which will further test "drag free" flight.  Another NASA: 

Beyond Einstein Mission, the Big Bang Observer (BBO) also aims to detect gravitational 

waves to a finer degree than LISA, perhaps reaching toward data from the beginning of 

the universe.  Lastly, direct extensions to the LISA mission have been proposed with 

shorter arm lengths and lower noise levels, such as Advanced Laser Interferometer 

Antenna (ALIA) which will detect intermediate mass black holes [32].   Crowder and 

Cornish [32] have also proposed the addition of a second constellation in a 20-degree 

Earth-leading orbit to ALIA (the Advanced Laser Interferometer Antenna in Stereo 

(ALIAS)) and LISA (Laser Interferometer Space Antenna in Stereo (LISAS)). 
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CHAPTER 3:  Methods & Math Techniques 

 

 

This chapter begins with a review of two-body motion, deriving the fundamental 

equation used to generate an ephemeris from Newton’s Universal Law of Gravitation.  

Keplerian orbital elements will be overviewed and well as reference frames used in this 

work.  The measurement types and how they will be calculated are introduced.  A 

description of the methods used by Deep Space Network (DSN) to calculate range and 

range rate is provided along with the method applied by Very Long Baseline 

Interferometry (VLBI) to calculate angle measurements.  The mathematical formulas 

used to calculate the inter-spacecraft range and range rate will also be shown.  The 

chapter concludes with a discussion of errors present in each the tracking system.   

 

 
3.1. The Two-Body Problem 

 

The OD problem studied in this work was modeled with respect to two-body dynamics 

since this "simplified" representation is the only gravitational problem for which a 

closed-form solution has been found.  The two-body problem involves two bodies/masses 

orbiting under mutual attraction in an inertial reference frame, typically with mass m1 

assumed much larger than m2 such that m2 does not affect the motion of m1.  This is 

illustrated in the three-dimensional (i.e. with dimensions in the X, Y, and Z components) 

inertial coordinate system in Figure 3.1.  
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Figure 3.1: The two-body problem [47] 

Note that spherically symmetric bodies, such as planets, behave as point masses. The 

LISA constellation in this thesis will be treated as a two-body problem between the Sun 

(the larger mass, m1) and the spacecraft (the negligible mass, m2). 

 

The equations of motion for the two masses are derived from Newton’s Universal Law of 

Gravitation, an inverse square law.  Equations 3.1 are based on Kepler’s 3rd law of 

planetary motion (i.e. the orbital period is proportional to the semi-major axis to the 3/2   

power: P2 α a3).  
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F1 and F2 are the forces and 1R&&  and 2R&&  are the accelerations of the two bodies, where m1 

and m2 are the masses of body 1 and 2 respectively. 1R  and 2R  are the distances from the 

origin to masses m1 and m2 respectively in this inertial three-dimensional space, 
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( )21 RRr −=  is the relative position of m1 with respect to m2, while 
3

21
3 RRr −=  is the 

magnitude cubed of the relative position, and G is the universal gravitational constant, 

which is equal to 11 3 26.6726 0.0005 10 /m kg s−± × ⋅ .  Straightforward manipulation of 

Equations 3.1 then yields: 

  2 1 2 1
3 3 3

( )Gm r Gm r Gr m mr
r r r

− − − +
= − =&&      (3.2) 

 

Let Mtotal be defined as (m1 + m2) and µ = GMtotal, yielding Equation 3.3: 

..

3r r
r
µ

= −      (3.3) 

 
This gravitational equation of motion (EOM) is dependent only on the masses of the two 

bodies.  The EOM in component form represents a set of three, second-order ( r&& ), 

nonlinear (r3 term), coupled (X, Y, Z components of r), homogeneous, and autonomous 

ordinary differential equations [33], where autonomous indicates that a reference epoch 

for time is not required.  The constant µ, the product of G and Mtotal can be determined to 

a greater accuracy than G or Mtotal alone by accurate Earth satellite tracking [33].  The 

gravitational constant of the Sun will be defined as, µsun = 1.32712428 x 1020 m3/(solar 

sec)2.  The Equation of Motion will be used to propagate LISA’s trajectory, starting with 

some initial condition, about its heliocentric orbit for one year as will be seen in Section 

5.2.2 (Nominal Orbit) 

 

In the least squares problem, the equations of motion must be the exact descriptor of the 

dynamical system, else dynamical modeling problems may arise [2].  The solution of the 

EOM requires six independent integrals of constants.  The state vector will be defined as 
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an n-dimensional X(t) with dependent variables or constant parameters required to define 

the time rate of change of the state of the dynamical system [34].  This thesis adopts a 

typical definition of translational state as a vector of positions and velocities: 

    X(t) = [X Y Z X&  Y&  Z& ] 
 
 
composed of  position components (X, Y, Z) and velocity components ( X& ,Y& , Z& ), and t 

is the specific time that represents this state.  The EOM is used to generate an ephemeris 

representation of motion using the Cartesian state X(t) or the Keplerian orbital elements.  

The most accurate way to generate an ephemeris is by using General Relativity to 

completely describe the EOM by accounting for many perturbations such as effects from 

the planets and large asteroids in the solar system (mainly the largest ones i.e. Jupiter, 

Saturn, etc.).  A general relativity accuracy level is usually left to describe a planetary 

ephemeris over a long period of time (i.e. centuries).  The numerically integrated EOM 

based on classical two-body mechanics as described above without the perturbation terms 

are adequate for most detailed mission analyses and orbit determination and will be 

presumed sufficient for this thesis.   

 

 

3.2 Orbital Elements 

 

Most of the analysis of this thesis is done using Cartesian elements described above to 

perform Keplerian transformations defined in Vallado [35], Battin [36] and Chobotov 

[37].  Orbits are defined by a set of six elements.  The first is the eccentricity vector, er  
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which distinguishes the shape of the orbit and is defined in Equation 3.4.  The 

eccentricity scalar, e, is the magnitude of the eccentricity vector.  

r
rhve
rvr

r
−

×
=

µ
         (3.4) 

where h
r

 is the angular momentum vector and is the cross product of the periapsis-

pointing position rr and velocity vectors vr , h
r

= ( )vr rv × , µ is the gravitational constant of 

the central body.  The period, P, of an orbit is derived from Kepler's 2nd (i.e. equal areas 

swept in equal intervals of time) and 3rd (i.e. square of the period of the planet is 

proportional to the cube of the semi-major axis) laws.  The period is defined as: 

 

P = 
µ

π
3

2 a           (3.5) 

 

where a is the semi-major axis that determines the size, or altitude of an orbit.  The semi-

major axis can be calculated many ways, from the vis-viva integral or from using the 

extreme points of the orbit, i.e. the periapsis, rp, and the apoapsis, ra as in Equation 3.6: 
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Where, ra = a(1+e) and rp = a(1-e); and r and v are the magnitudes of the inertial position 

and velocity vectors, respectively.  Orbits are described as circular (e = 0), elliptical (e < 

1), the hyperbolic (e >1), or parabolic (e =1).  Although the LISA orbit is elliptical, some 

discussion of hyperbolic and parabolic orbits is included for completeness.  The 

inclination, i, defines the tilt of the orbit as seen in Equation 3.7.  It is specifically the 
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angle between the unit vector, K̂  and the angular momentum vector, h
r

 and varies from 

0o to 180o. 

  
hK
hKi r

r

ˆ
ˆ

)cos( ⋅
=       (3.7) 

 
The longitude of the ascending node, Ω is the angle measured in the equatorial plane 

positively from the Î unit vector to the location of the ascending node.  The ascending 

node is where the satellite crosses the equatorial plane from South to North, and varies 

from 0o to 360o.  The line of nodes is defined as: hKn
rr

×= ˆ . 
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A quadrant check must be employed here that if the ith element, nj, of the line of node 

vector, nr  is greater than 0, then Ω = 360o-Ω.  The argument of periapsis, ω, locates the 

closest point of the orbit (periapsis) as measured from the ascending node and varies from 

0o and 360o. 

en
en
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A quadrant check also must be performed on this angle, as it is dependent on the kth-

component of the eccentricity vector (i.e., if ek less than 0, then ω = 360o-ω).  The last 

orbital element is the true anomaly, ν,  which is the satellite's current position relative to 

the location of periapsis.   
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Again a quadrant check is required.  If the dot product of the position and velocity 

vectors is greater than zero, 0<⋅ vr rr , then ν = 360o - ν.  Sometimes the orbital element 

time of periapsis passage, τ, mean anomaly, Μ and even the eccentricity anomaly, E, can 

be used instead of true anomaly as the final element.  For circular orbits, ω and ν are 

undefined and for equatorial orbits both ω and Ω are undefined.  In the case of Earth's 

special elliptical equatorial orbit, another angle such as the true longitude of periapsis,ω~ , 

is usually found to remove ambiguity of Ω and ω [35].  The orbital elements presented 

thus far are depicted in Figure 3.2, where for a circular orbit the radius, r to a satellite is 

equal to the semi-major axis. 

 

 
Figure 3.2: Orbital elements [37] 

 

The reverse procedure involves transforming a set of orbital elements to a state (X(t)).  

The gravitational parameter, µSUN, for the sun is used in this thesis.  The first quantity 

calculated is the mean motion (rad/sec), n, Equation 3.11. 
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Then the mean anomaly, Μ, is computed from time of periapsis passage, τ: 

 
τ = t – Μ/n       (3.12) 

 
Given the mean anomaly as an initial guess for Kepler’s equation, Newton’s Method- a 

common iterative technique- is used to solve for E, the eccentric anomaly for an ellipse.  

Note that for a hyperbola, a successive substitution method is used to solve for the 

comparable quantity, F.  For a parabola, there is no such eccentric anomaly value and it is 

equal to 0.   

 
                             Μ = E – esinE = n(t - τ )        (3.13) 

  
Knowing the eccentricity and the eccentric anomaly; the true anomaly, ν, can now be 

computed if not already given.  If the true anomaly was already given as one of the 

inputs, there is no need to solve Kepler’s equation.  The eccentric anomaly, E, (and F) 

can be solved before the mean anomaly, Μ, using sine and cosine relations to clarify the 

quadrant.  The magnitude of position, r in Equation 3.14, is solved for the ellipse using E 

and for a hyperbola using F.  For the parabola, the semi-latus rectum, p, is used instead. 

 
r = a(1 – ecos(E))            (3.14) 

 
The argument of latitude, (φ  = ω + ν) and the angular momentum scalar, h are computed 

next.  The position and velocity vectors are composed of sine and cosine relations of the 

longitude of the ascending node, Ω; inclination, i; argument of periapsis, ω; argument of 

latitude, φ; and an expression of the gravitational parameter divided by the angular 

momentum scalar, µ/h. Transformation from elements to state are expressed for position 

in Equation 3.15 and for velocity in Equation 3.16 [36].      
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Below, Table 3.1 shows the two orbital element systems used in this thesis. 
 

Table 3.1:  Orbital element systems 
 1 2 3 4 5 6 
Classical a e i Ω ω ν (M, φ, τ, rarely 

E) 
Cartesian X Y Z X&  Y&  Z&  

 

 

3.3. Reference Frames 

 

The selection of the coordinate reference frames for orbital mechanics are a tradeoff 

between precision and ease of computation.  The main coordinate systems of interest in 

this thesis are the Heliocentric-Ecliptic (XYZ), the Earth-based Geocentric (ECI), and the 

Satellite-based Radial (RSW) systems.  An overview of each will be given. 
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3.3.1. Sun-Centered Inertial Coordinate System 
 
 
Typically, the input ephemeris for the planets is heliocentric and refers to the mean 

equator and equinox of 1950 [37].  The origin for the Heliocentric-Ecliptic Coordinate 

System (XYZ), also known as Sun-Centered Inertial (SCI), is the center of the Sun as 

pictured in Figure 3.3, note in the figure that ZYX ˆ,ˆ,ˆ is used on the axes instead of X, Y, 

and Z.  SCI’s fundamental plane (i.e. X-Y plane) is the ecliptic plane.  It uses radial 

distance, ecliptic latitude, and longitude to locate an object.  The principal direction is the 

vernal (spring) equinox, or first point of Aries, γ [38].  The vernal equinox marks the first 

day of spring and points in the direction of the +X-axis.  It is when the Sun moves 

northward through the equatorial plane [37]. 

 
Figure 3.3: Heliocentric-Ecliptic coordinate system (XYZ) [35] 

 
 
The SCI system is not an inertial frame due to the precession of the Earth [37].  Earth is 

an oblate spheroid (slightly flattened at the poles) moving in an elliptical orbit which is 

perturbed by other solar system bodies [38].  The precession causes Earth’s spin axis to 
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wobble and shifts slightly over the centuries, causing the line of intersection of Earth’s 

equatorial plane and ecliptic plane to shift slowly [37]. 

 

Since integration needs to be conducted in an inertial (non-rotating) frame, the non-

inertial heliocentric system is referenced to where the vernal equinox was at a specific 

epoch, such as the commonly used Mean of January 1.5, 2000.0 frame (i.e. MJ2000) 

[37].   

 

3.3.2. Earth-Centered Inertial Coordinate System 

 

The general Geocentric Equatorial Coordinate System (IJK) is also known as the Earth-

Centered Inertial (ECI) system as pictured in Figure 3.4.  It is used when collecting 

relative position and velocity measurements from Earth.  ECI’s origin is at Earth’s center, 

and its fundamental plane is the equator.  The angular difference between where the 

ecliptic crosses the celestial equator is the obliquity of the ecliptic, ε ~ 23.5o [38]. 

 

The I-axis (or +X-axis) points towards the vernal equinox; the J-axis (or +Y-axis) is 90o to 

the east in the equatorial plane; and the K-axis (or +Z-axis) points towards the North pole.  

This coordinate system is considered inertial, but the equinox and plane of the equator 

move over time.  However, this system becomes inertial by referencing a particular epoch 

and propagating objects forward in time from this epoch (i.e. the MJ2000 system) [35].  

The right ascension, α, declination, δ, and radial distance from the origin, r, locate an 

object in this spherical coordinate system.   
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Figure 3.4:  Earth-Centered Inertial coordinate system (ECI) [35] 

 

3.3.3. Satellite Radial Coordinate System 

 

The Satellite Radial coordinate system (RSW) moves with the satellite, as it is often used 

for relative motion.  Figure 3.5 illustrates this system.  The radial, R-axis points from 

Earth’s center along the radius vector to the satellite as it moves through an orbit.  The 

along-track S-axis points in the direction of the velocity vector, and is perpendicular to 

the radius vector.  The cross-track, W-axis is fixed along the direction normal to the 

orbital plane [35].  The RSW system will label graphs of the LISA spacecraft motion.   
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Figure 3.5:  Satellite Radial Coordinate System (RSW) [35] 

 
 
Note however that for the purposes of this thesis, this depiction is not entirely accurate.  

The LISA constellation orbits the Sun, therefore the radial, R-axis of each spacecraft 

points from the Sun’s center along the radius vector toward each LISA spacecraft as it 

moves through its orbit.  The along-track, S-axis points in the direction of the velocity 

vector, which is still perpendicular to the radius vector.  But recall that each spacecraft 

performs a complete revolution about the reference center of the LISA constellation as it 

orbits the Sun over one year, as will be reflected in the along-track axis.  The cross-track, 

W-axis completes the right hand coordinate system. 

 

3.3.4. Time 

 

The system is propagated over the time frame of one year, specifically a sidereal year 

which is equivalent to ~365.25 solar days.  A solar day is longer than a sidereal day by 

about four minutes.  The sidereal day is the time during which the Earth makes a 

complete rotation relative to a fixed direction (i.e. the vernal equinox), while the mean 
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solar day is the time during which the Earth makes a complete rotation relative to the 

mean sun [37].  An epoch is an instant of time or a date selected as a point of reference.  

An arbitrary epoch of "zero," which is unattached to any specific year and date of the 

vernal equinox, is used for this study.  

 

 

3.4. Tracking Systems & Observation Types  

 

The state variables of a spacecraft are not directly observable.  Tracking information is 

required to determine an estimate of true spacecraft motion.  The observables will be a 

nonlinear function of the state variables.  Many different types of tracking systems exist 

to determine instantaneous position or its rate of change.  Radio tracking systems, based 

on radio signals transmitted to or from a ground station are the most commonly used 

tracking system.  These systems are able to perform angle measurements, and obtain 

distance and velocity information [40].  While radar, used less frequently for spacecraft 

tracking (i.e. when no active transmitter or transponder is on the spacecraft), is often 

applied in emergency cases, or for space surveillance tracking [40].  Many tracking 

systems exist such as: Precise Range and Range Rate Equipment (PRARE), Tracking & 

Data Relay Satellite System (TDRSS), Global Positioning System (GPS), Satellite Laser 

Ranging (SLR), Doppler Orbitography and Radiopositioning Integrated by Satellite 

(DORIS).  However, these systems are applicable mainly for low-Earth orbit (LEO) and 

geosynchronous (GEO) satellites such as TOPEX/Poseidon, the Space Shuttle, and 

Landsat-4 for tracking and communication support [40] and will not be covered here. 
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This thesis focuses on orbit determination (OD) based on measurements from the Deep 

Space Network (DSN), Very Long Baseline Interferometry (VLBI), and the laser 

interferometry of the LISA spacecraft themselves.  Below is a discussion of these 

observation methods, their typical tracking method, and the equations to obtain the 

observation.  Beyond the scope of this thesis, though related, is the need to address future 

improvements in radiometric tracking for reasons such as navigation system robustness, 

reliability, timeliness, accuracy, cost effectiveness, tight targeting requirements and rapid 

onboard response [41].  In fact, a significant challenge for DSN for example is to 

dynamically update its current configuration to support the deep space communications 

demands of the coming decades [42].  Hence, systems such as VLBI, which use arrayed 

antennas, or a number of smaller antennas rather than a larger single antenna- in order to 

save operating and production costs, will become more relevant in future missions [42]. 

 

3.4.1. Deep Space Network (DSN) 

 

The Deep Space Network (DSN) is an international telecommunications system managed 

by JPL at its Network Operations Control Center (NOCC).  DSN locates objects in "deep 

space" loosely classified as locations beyond geosynchronous orbit (about 35,780 km 

altitude), or simply outside of Earth’s Sphere of Influence [35]. NASA primarily uses 

DSN for interplanetary spacecraft missions.  The three Deep Space Communication 

Centers (DSCC) ground station complexes are located in the sites shown in Table 3.2: 
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Table 3.2: DSN DSCC locations [35] 
Site Antennas Longitude, λ 

(deg.) 
Latitude, φgd 

(deg) 
Altitude (m) 

Goldstone, CA 
(GDSCC) 

5 -116.848 35.39 1036 

Madrid, Spain 
(MDSCC) 

4 -3.685 40.41 670 

Canberra, Australia 
(CDSCC) 

3 149.008 -35.32 767 

 
Each antenna or Deep Space Station (DSS) has a schedule of satellites with which is 

communicates, i.e. transmits and receives data from.  Note that in Table 3.2 each ground 

station is placed approximately 120o apart (longitude) to permit constant observation of 

the spacecraft as the Earth rotates [43].  The Deep Space Stations are divided into subnets 

based on their aperture size (26-m, 34-m, and 70-m).   The LISA spacecraft will be able 

to use DSN for tracking. 

 

There are seven DSN data types.  The two data types that are the most applicable to LISA 

are Tracking (TRK) and Very Long Baseline Interferometry (VLBI).  TRK uses a closed-

loop receiver to determine Doppler, range, predicts, and antenna control.  Other DSN 

data types deal with telemetry, command, and radio science.   To examine DSN 

functionality, consider an Earth-based DSS tracking a satellite.  First, at station rise the 

satellite is visible to the ground station.  The tracking station then performs signal 

acquisition on the spacecraft.  During the satellite, or tracking pass, i.e. the period of time 

in which a satellite flies over the observing site [35], the data is collected and then the 

satellite "sets" as it falls out of view from the ground station.  The spacecraft’s trajectory 

is updated based on angle, Doppler, and range data to guarantee signal acquisition at the 

second DSN station rise [44].   
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Communication from Earth to the spacecraft is made within internationally allocated 

frequency bands [41].  Listed by order of increasing uplink/downlink frequency 

capabilities are three widely-used bands: S-band, X-band, and Ka-band.  Higher 

frequencies use shorter wavelengths to reduce effects due to charged particles in the 

ionosphere and solar plasma.  This allows for better communication performance and 

more accurate radiometric measurements [41].   The S-band was developed by DSN for 

uplink/downlinks in the 1960s; the S/X dual-frequency downlinks were used on 

spacecraft in the mid-1970s; and by the 1989, the X-band uplink capability was added.  

By the 1990s, most spacecraft had the capability to transmit and receive X-band 

frequencies. Now in the 21st century Ka-band is typically used.  The Cassini spacecraft 

for example, uses an X-band uplink and a coherent X/Ka-band downlink [41].  

 

Range 

 

The range is defined as the linear distance from the spacecraft to the station along the line 

of sight.  It is computed from the round-trip speed of light travel time of radar signal 

emitted from ground station antenna to satellite and radiated back to station [40].  

Various ranging methods exist (i.e. one-, two-, and three-way), though the most common 

and accurate ranging and Doppler measurements are obtained via the two-way tracking 

mode.  In two-way tracking, the transmitting and receiving stations and hence the 

frequency standards are the same [41].  Two-way range is a measurement of the distance 

based on the round trip light time for a signal sent to the spacecraft to return to ground 
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station.  Thus, the ground station serves as a transmitter and receiver of data.  The transit 

time and frequency, as well as reception time and frequency are determined very 

accurately using high precision ground station equipment [40].  However, at the 

extremely large distances needed in some missions two-way tracking is not feasible.  

One-way ranging uses high precision transit time frequency [40] and just consists of a 

downlink signal from spacecraft to ground station.  The less common three-way range is 

used with enormous distances.  In this case, by the time the signal returns to Earth, the 

transmission station has rotated out of view, hence a second receiving station is needed 

[41].  Three-way ranging is a measurement of the distance based on the trip light time of 

a signal sent to a spacecraft to return to a second ground station [40]. 

 

The range data type is computed by taking the norm of the difference of relative position 

vectors between any two spacecraft as shown in Equations 3.17 below as a magnitude 

(i.e. ideal range) and a vector.  Ideal range ρ  is given by:  

( ) ( ) ( )[ ]2
1

222
tssctssctssc ZZYYXX −+−+−=ρ        (3.17) 

The range vector, ρ
r  of satellite with respect to the tracking station, or the instrument is 

given by: 

 
( ) ( ) ( ) ZtsscYtsscXtssc uZZuYYuXX −+−+−=ρ

r  
 

Where ZYX uuu ,,  are the position unit vector terms, scscsc ZYX ,,  are the spacecraft 

position components, and tststs ZYX ,, are the tracking station position components.   
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Range Rate 

 

The range-rate or line-of-sight-velocity of the spacecraft relative to the ground station is 

deduced from the Doppler shift of a radar wave emitted from the ground station 

transponded by the satellite and received again at the ground station [40]. 

Similar to range, Doppler also has three techniques of being attained.  In one-way 

Doppler high precision transit time frequency is required, though very few satellites are 

equipped to perform one-way range and Doppler.  The common two-way Doppler is a 

technique that interprets the phase shift of a signal sent to the spacecraft to determine the 

speed and direction of the spacecraft [40].  Three-way Doppler interprets the phase shift 

of a signal sent to the spacecraft, but returns a signal to a second ground station to better 

determine the speed and direction of the spacecraft [40].   

 

The range-rate data type is attained from Doppler as shown in scalar and vector form in 

Equations 3.18 below.  The range rate depends on the position and velocity of both the 

satellite and tracking station as shown first with ideal range rate ρ& : 

 

( )( ) ( )( ) ( )( )[ ]
ρρ

ρρρ tssctssctssctssctssctssc ZZZZYYYYXXXX &&&&&&&r&
&

−−+−−+−−
=

⋅
=        (3.18)                    

Relative velocity, ρ&
r

 of the satellite with respect to the tracking station, or instrument or 

other satellite) is described by:  

( ) ( ) ( ) ztsytsxts uZZuYYuXX &&&&&&& −+−+−=ρ  
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where zyx uuu ,,  are the position unit vector terms of the satellite with respect to the 

tracking station, scscsc ZYX &&& ,,  represent the spacecraft velocity, and tststs ZYX &&& ,, are the 

tracking station velocity components.  Doppler data is recorded continuously during a 

tracking pass at DSN.  A single Doppler pass determines spacecraft radial velocity, right 

ascension and declination.  The Doppler pass is sensitive to error in declination, which is 

proportional to sinδ, and vanishes when δ = 0o.  Therefore, a longer Doppler arc would be 

needed when passing through 0o declination [41].  However, the angle data in this thesis 

is assumed to be obtained from VLBI as discussed in the following Section 3.4.2 and not 

from Doppler.  A few days of Doppler data help to deduce the velocity normal to the line 

of sight and the geocentric range from spacecraft accelerations.  Continuous range data 

has a time signature similar to Doppler and provides spacecraft angular information, 

geocentric range and range rate.  Note for LISA, an error in any spacecraft’s heliocentric 

period leads to increasing oscillations in range rates with respect to the other two 

spacecraft [8]. 

 

3.4.2. Very Long Baseline Interferometry (VLBI) 

 

Very Long Baseline Interferometry (VLBI) is a more precise method than Doppler and 

range tracking to directly measure angles and angle rates.  Spacecraft angular stations are 

weakly determined from Doppler and range, as they can be degraded by inaccurate and 

difficult to model forces such as thruster firings, solar radiation pressure, or spacecraft 

leaks [41].  Very Long Baseline Interferometry (VLBI) has had long-term use by radio 

astronomers and was applied to the Voyager Spacecraft (probed Uranus and Neptune) in 
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the late 1970s.  VLBI has since been used on Galileo and the Mars Observer in the 1990s 

to provide a geometric measure of spacecraft angular position five times more accurate 

than several days of Doppler and range data [41].   

 
Delta one-way range (DOR, Dr in Figure 3.6 below) is the measurement of the time 

difference in seconds that it takes for a signal sent by a spacecraft to reach two different 

target ground stations.  VLBI uses two stations at a very large distance (i.e. baselines, B 

in Figure 3.6) apart on Earth to give a DOR time measurement.  Case studies from 

Haeberle et al [42] have found that longer baselines, up to 1000 kilometers apart, increase 

the accuracy and reliability of the orbit determination, as do the directions of the 

baselines (i.e. due North, Northeast, East) [42].  The antennas slew to a quasar which is 

an extragalactic object whose position is known precisely and then back to the spacecraft.  

Analysis of the data yields precise triangulation that outputs both the angular position and 

radial distance to the spacecraft. 

 

Figure 3.6: Very Long Baseline Interferometry (VLBI) diagram [42] 
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The angle data used in this simulation is the right ascension, α, and the declination, δ.  

The right ascension, α, as seen in Equation 3.19 is measured positive to the east in the 

equator’s plane from the vernal equinox direction around the celestial equator in time (0 

hours to 24 hours) or degrees (0o <= α <= 360o) to a plane normal to the equator that 

contains the object [37].   

⎟
⎠
⎞

⎜
⎝
⎛= −

Y
X1tanα       (3.19) 

The declination, δ, shown in Equation 3.20 is measured northward (0o to +90o at the north 

celestial pole), and southward (0o to -90o at the south celestial pole) from the equator to 

the object’s location -90o <= δ <= +90 o [38]. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

ρ
δ Z1sin        (3.20) 

 
Note that the angle information, like range is a function only of vehicle and tracking 

station position.  Figure 3.7 is a summary of the Earth-based DSN and VLBI 

measurement tracking to a single spacecraft: 
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Figure 3.7: Pictorial representation of Earth-based DSN and VLBI measurements 

 

3.4.3. Inter-spacecraft data 

 

The need for spacecraft-to-spacecraft tracking is being prompted by the current and 

future use of constellation and formation flying missions, close proximity and in situ 

tracking at Mars and Earth orbit [41].  The science of the mission requires that each LISA 

spacecraft locks the incoming laser signal from another LISA spacecraft and transmits it 

back over the five million km leg length.  It takes about 32 seconds roundtrip for the laser 

to transmit a signal to/from spacecraft to spacecraft.  LISA measures the distance 

between two spacecraft (i.e. change in arm length), and the inter-spacecraft range and 

range rate can be computed as a by-product of the scientific data.  The inter-spacecraft 

data types simulated in this thesis are range and range rate and are obtained using the 

range and range rate equations of Equations 3.17 & 3.18, replacing the tracking station 



 

 49

reference with measurements to adjacent spacecraft.  Equation 3.21 is the inter-spacecraft 

range, ijLρ . 

( ) ( ) ( )[ ] 2
1222

jijijiij ZZYYXXL −+−+−=ρ       (3.21) 

where i = 1, 2, or 3 and j =1, 2, or 3, and ji ≠ .  These reference the leg length.  The legs 

used are L12, L23, and L31.  Inter-spacecraft range rate ijLρ&  is seen in Equation 3.22: 

( )( ) ( )( ) ( )( )[ ]
ij

jijijijijiji
ij L

ZZZZYYYYXXXX
L

ρ
ρ

&&&&&&
&

−−+−−+−−
=            (3.22) 

where the position components are jijiji ZYX ,,, ,, and velocity components 

are jijiji ZYX ,,, ,, &&& .  Figure 3.8 depicts both the Earth-based and inter-spacecraft 

measurements to LISA 1. 
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Figure 3.8: Pictorial representation of Earth-based and inter-spacecraft measurements 
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3.5. Tracking Data Error Sources 

 

Tracking data error sources limit the accuracy to which the spacecraft orbit can be 

determined.  Observational data is subject to both random and systematic errors [45]. 

Three main types of errors are: 1) Errors in tracking equipment, 2) Transmission media 

noise, and 3) Imperfect models of tracking geometry.  Errors in tracking equipment can 

include clock instability, etc.  Any errors between frequency reference and the actual 

transmitted frequency introduce range rate errors.  Oscillators onboard the spacecraft help 

alleviate clock differences by generating a reference signal that is transmitted from the 

spacecraft to ground.  For two-way tracking a hydrogen maser is typically used [41] as an 

oscillator.  However, the Linear Ion Trap standard (LITS) with a cryogenically cooled, 

compensated sapphire oscillator (CSO) is of an even higher frequency standard than the 

hydrogen maser.  DSN uses observation signals of GPS to measure clock offsets over 

intercontinental distances to the nanosecond level [41].  Range measurements are also 

sensitive to clock epoch offsets between transmitting/receiving stations, but they are 

insensitive to time-tag errors.   

 

Instrument measurement noise is another type of error in tracking equipment.  The effects 

are due to physical instrument accuracy limitations and instrument design trade-offs that 

introduce random errors, white noise and systematic errors into the system [41]. 

Likewise, calibration is another aspect of tracking equipment errors, as real-world 

tracking data is imperfect due to biases and noise.  Calibrating the specific instruments 

used for tracking helps to identify biases and the noise statistics associated with each 
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measurement [35].  Hence, it is also important to accurately weight the data based on its 

expected error/noise in order to improve the accuracy of the solution.  Since some data 

types or tracking stations/instruments will be "better" than others.  The noises, biases and 

their weights used in this thesis are presented in Chapter 5. 

 

The next main error type is transmission media, in which charged particles in the 

interplanetary medium and Earth’s ionosphere cause dispersive propagation delays in 

interplanetary radio signals.  Interplanetary data transmission results in group, phase, 

ionospheric, solar plasma, and charged particle delays and nighttime effects.  Group 

delays in spacecraft and station electronics are a major source of error in ranging systems 

[41]. 

 

Real-world concerns such as sensor site visibility can limit the observable range of 

azimuth and elevation angles.  Visibility limitations are due to mechanical design of the 

sensor, geographical constraints (i.e. mountains), or political constraints [35].  There are 

even limitations on range, in that sometimes a satellite really can be too far from the site.  

It is interesting to note that all sensors combined cannot search the entire volume in 

which satellites operate and that tracking systems individually can only search a limited 

amount of space.   
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CHAPTER 4: Orbit Determination 

 

 

This chapter begins with a historical overview of the orbit determination (OD) process to 

give a background to the methods.  Then preliminary or classical orbit determination 

methods will be discussed.  The OD problem will then be formulated and the modern 

statistical OD methods derived from Gauss's least squares theory will be detailed.  

Emphasis will be placed on the weighted batch least squares method adapted for the 

LISA OD problem studied in this thesis. 

 

 

4.1.  Orbit Determination History 

 

The earliest evidence of man’s interest in the universe was with the Babylonians and 

Egyptians in 1650 B.C.  They used a sexagesimal (base 60) system that is still the 

standard for modern time-keeping [37].  Aristarchus in 300 B.C. developed the theory 

that the sun and stars were fixed and the Earth revolved in a circular orbit about the Sun.  

He was ahead of his time since the prevailing theory then was that the Earth was the fixed 

center of the universe and the planets revolved around it [37].  Hipparchus (130 B.C.) 

noted the epicyclical motion of the planets [37].  Claudius Ptolemy A.D. 150 in his book, 

Almagest (translation: Arabic, The Greatest) further developed the theories of Hipparchus 

to create Earth-Centered models to predict the motion of the planets of the inner solar 

system.  The Early Greeks also thought about the size, shape and the composition of the 
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Earth.  However, they fell into two camps: 1) Pythagoras and Aristotle who believed in a 

spherical Earth; and 2) Anaximenes who believed in a rectangular Earth [37]. 

By the 16th century, a set of European scientists and mathematicians such as Copernicus, 

Galileo, Kepler, Newton and Leibnitz started making great strides in the fields of 

mathematics, astronomy and physics that would benefit Orbit Determination.  Copernicus 

(1467-1543) rearranged the Ptolemaic system by placing the Sun at the center, noting that 

all epicycles of that system had a period of one year [33].  Copernicus also placed the 

stars in a sphere of very large radius, although his theories were not well received at the 

time [37].  The first astronomer to use a telescope to observe the 4 moons of Jupiter was 

the Italian Galileo (1564-1642).  Galileo’s observations led to the eventual acceptance of 

Copernicus’ earlier heliocentric theory [37].  Interestingly, Galileo was persecuted for 

believing in such a radical theory, and in 1632 he was forced to recant his beliefs in the 

Copernican system by the Inquisition and was placed under house arrest for the last ten 

years of his life [33]. 

 

Johannes Kepler (1571-1630) used Tycho Brahe’s astronomical observations to deduce 

that orbits were ellipses with the Sun at one focus to discover his three empirical laws of 

planetary motion [46].  Kepler’s laws of planetary motion are a complete solution to the 

two-body problem of orbital motion [33].  Isaac Newton (1642-1727) was best known for 

his development of calculus, a field that Leibnitz claimed that he developed 

simultaneously and independently [37].  In Newton’s Philosophaie Naturalis Principia 

Mathematica, he writes his definitive three laws of motion and law of gravitation, with 

his assumptions being with respect to an “inertial” coordinate system that is fixed in 
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space or moving with constant velocity, but not rotating.  He showed that Kepler’s 

empirical laws could be deduced from his law of gravitation [46].    

In 1801, the rediscovery of the asteroid Ceres marked the first time that astronomers used 

observations to predict the orbit of an asteroid at a future time [35].  In the 18th century, 

the works of Euler, D’Alembert, Lagrange, Lambert, and Laplace advanced the subject of 

orbit determination based on astronomical observations by studying the perturbation of 

planetary orbits [46] and they developed the preliminary OD methods that are still used 

today.  Leonard Euler (1707-1783), author of Analytical Dynamics [36], was the first to 

use mathematical rather than geometric methods to address the problems of dynamics; he 

studied mathematics under John Bernoulli at the Swiss University of Basel.  In 1744, 

Euler wrote Theoria Motuum Planetarum et Cometarum (translation: Theory of the 

Motion of Planets and Comets), an analytical method for solving a parabolic orbit from 

three closely spaced observations [35]. 

 

The geometrician, Johann H. Lambert (1728-1779), generalized Euler’s formulas to 

include elliptical and hyperbolic orbits; however, his insight sparked analytical solutions 

from other scientists [35].  In astrodynamics, the solution of the famous "Lambert’s 

problem" allows for the determination of an orbit between any two known position 

vectors [35].  Joseph-Louis Lagrange’s (1736-1813) is known for his contributions to 

mathematics via theory of numbers, calculus of variation and differential equations just to 

name a few, however, his main interest was celestial mechanics.  Lagrange is best known 

in astrodynamics for finding stable solutions to the three-body problem (i.e. Lagrange 

points) [35].  Pierre-Simon de Laplace (1749-1827) created a method of OD based only 
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on angles that did not need to be close [35], as opposed to Euler’s method where small 

angles are required.   

 

The breakthrough for the field of orbit determination came with the formulation of the 

least squares method.  Both Adrian Marie Legendre (1752 - 1833) and Karl Friedrich 

Gauss (1777-1855) independently devised least squares.  Legendre’s work was published 

in 1806 "Nouvelles methods pour la determination des orbites des cometes" (Translation: 

"New Methods for Determining the Orbits of Comets").  Gauss devised the method in 

1795, but published later in 1809 Theoria Motus Corporum Coelestium translation: 

Theory of Motion of the Heavenly Bodies) [2].  Despite, the controversy between Gauss 

and Legendre, Gauss is credited with the Least Squares Method, which will be explained 

more in depth in the sections that follow. 

 

Continuing into the 19th century, more advances with the use of statistics in estimation 

processes and refinements of least squares methods were made.  Josiah Gibbs’s (1839-

1903) geometrical method improved on Gauss’s method for solving position vectors at 

the first and third times of the observation [35]. Samuel Herrick (1911-1974) developed a 

Taylor-Series approach to Gibbs method, allowing problems with short time spans to be 

solved, a technique highly relevant to modern applications such as closely-spaced radar 

observations. [35] 

 

R.A. Fisher (1890 - 1962) in 1912 developed the Maximum Likelihood Estimate (MLE) 

[2], a statistical estimation method that extended Gauss’s principle to cover non-Gaussian 
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error statistics.  Though MLE is not a complete theory, his work influenced Kolmogorov 

and Weiner [35].  Andrei N. Kolmogorov (1903- 1987) and Norbert Wiener (1894 – 

1964) independently developed the linear minimum mean-square estimation technique in 

1941 and 1942 respectively.  The combined Wiener-Kolmogorov filter theory used 

Gauss’ inference that linear equations must be available for the solution of the estimation 

problem [2].   

 

In 1955, J.W. Follin concocted a recursive approach to derive updated estimates from 

new measurements [2].  R. E. Kalman (1930- ) published his famous 1960 paper "A New 

Approach to Linear Filtering and Prediction Problems" on discrete-time, recursive mean-

square filtering.  Reminiscent of the Legendre-Gauss feud over the ownership of the 

least-squares method, there was another man named Peter Swerling (1929 - ) who had 

published a RAND corporation memorandum in 1958.  This method was the same as 

Kalman’s except for some more complicated versions of error covariance update matrix 

equations.  However, despite the similarities in their methods, it is Kalman who achieved 

the fame and is credited with the method [2], though some texts refer to the Kalman filter 

simply as a Sequential Filter.  The recursive algorithms of Swerling and Kalman are a 

variation of the Least Squares methods of Gauss and Legendre [35].   Richard Bucy 

partnered with Kalman to work on continuous time versions of the sequential filters [2].  

The Kalman-Bucy filter is also known as the Extended Kalman, or Extended Sequential 

Filter. 
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Lastly, technology in the forms of better observational instruments and computing power 

was needed to fully realize the theories of Gauss and the Kalman filter.  In the 1960s, 

positioning of Earth-orbiting satellites was achieved to accuracies of hundreds of meters, 

due to the limited accuracy of radio frequency and optical measurement systems, force 

models, analysis techniques and primitive computing technology [47].  The Millstone 

Hills radar (U.S. by Richard Anderle) used Doppler to determine range rate and to detect 

Sputnik I and later successfully tracked Sputnik II [35].  In the 1970s, OD accuracy 

improved to a few tens of meters due to improved force modeling and computing [47].  

OD accuracy was in the tens of centimeters by the end of the 1980s, due to significant 

improvements to Earth’s gravity field model, including solid body, ocean tides, surface 

force effects, and due to further computing improvements [47].  Demands from scientists, 

especially in the oceanographic and geodetic communities continue to drive more 

accurate OD.  Laser technology is being employed to more precisely track satellites.  A 

highly accurate ephemeris is required to locate the satellite because divergence of the 

laser is small; hence, an improved ephemeris reduces costly search time. [35].   

 

 

4.2. Classical Orbit Determination 

 

Classical orbit determination employs deterministic methods in which observation errors 

are not considered, and there is equivalence between the number of observations and the 

number of unknowns.  Modern statistical OD methods based on least squares and the 

sequential algorithms are the focus of this thesis are employed to iteratively refine the 
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orbit determination (OD) estimate as measurement data is made available.  Statistical OD 

methods recognize the influence of observation error, and therefore try to minimize these 

errors by using more observations than the number of parameters to be estimated.  

 

Classical OD requires at least six independent measurements to uniquely determine an 

orbit and derive the set of six orbital elements [40].  The main methods of classical OD 

fall into two categories: Laplacian and Gaussian.  Note that this OD problem is often cast 

as Lambert’s problem, i.e. any problem in which one solves for the orbit given two 

known position vectors and time-of-flight.  Gauss’s analytical solution to Lambert’s 

problem works well for closely spaced vectors.  Universal Variables is a simple solution 

for any type of transfer orbit.  Battin [36] offers another robust method to improve 

Gauss's solution to avoid some of the 180 degree transfer difficulties associated with the 

other two methods [35].   

 

The Laplacian method determines orbits using only optical sightings [35].  Laplace used 

three sets of angle data to derive the inertial position and velocity of an instant of time in 

the middle of the observation interval to obtain the orbital elements [40].  The Laplacian 

method can process data to convergence from different sites at different times [35], 

though this method is not good for longer tracking arcs if velocity information must be 

obtained from the interpolation of position measurements [40].   

 

The Gaussian methods work best when angular separation between observations is less 

than 60 degrees, working extremely well for separations of ten degrees or less, such as 
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the Angles-only Gauss methods.  The double-r Gauss method can be used when 

observations are far, i.e. days apart [35].  Gibbs, the Herrick-Gibbs, and the Lambert-

Universal Variables method can be used in combination with Angles-only Gauss to better 

parameterize the f and g analytic functions needed in the algorithm.  The Gibbs and 

Herrick-Gibbs approach can be used together when given three position vectors and time 

to find the orbital elements from three sets of widely spaced direction measurements.  

The Lambert-Euler method, Universal Variables, p-iteration method and the f and g series 

method all are used to solve Gauss’ problem. Modern day applications also allows for the 

ability to solve for position and velocity of the spacecraft given a set of six observations 

(i.e. range, range rate, elevation, azimuth angles and their rates), such at SITE-TRACK in 

Vallado [35].   

 

 

4.3. Orbit Determination Problem Formulation 

 

The Orbit Determination (OD) problem is to determine the best estimate of the satellite's 

state at some epoch, to, from observations influenced by random errors using a non-exact 

mathematical model [45].  The initial state is never known exactly and certain physical 

constants such as µ are only known approximately.  The observations of a satellite's 

motion can only help yield a better estimate of the actual satellite trajectory.  Figure 4.1 

illustrates the Orbit Determination Problem. 
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Figure 4.1: The Orbit Determination problem 

 
A tracking station located at (Xts, Yts) in a 2-dimensional (X, Y) coordinate system makes 

indirect measurements to a spacecraft at some time with range (ρ), range rate ( ρ& ) and an 

elevation angle (θ ) measurement.  The spacecraft orbits along its true trajectory, which is 

most likely different from the nominal trajectory, the navigation planners have 

commanded and estimate the spacecraft is following.  However, the truth of where the 

spacecraft is located is never really known- the OD process provides a way to get the best 

estimate, X̂ , of the true trajectory.  The only way to estimate the true state of the 

spacecraft is with tracking information based on indirect observations of the spacecraft 

state and the tracking station position.  The goal of the OD process is to converge on the 

indefinite truth.  
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The calculated values of the observations depend on the nominal state of the spacecraft 

and the state of the tracking station at the time the observation was made.  The OD 

process computes the difference between the observed and the calculated observations 

(O-C) which provides the correction needed to better estimate the spacecraft's state.  This 

is also known as the residual error:   

 
Residual error = (O – C)  

 
In an ideal world, one wants these three trajectories to be equal: X̂ = X = X*.  However, 

the measurements/instruments have noises and biases, and the OD estimation process 

itself cannot perfectly account for these errors.  

 

4.3.1. Aspects of Estimation 

 

Statistical OD is a very complicated process.  First, the data to be used for the OD 

process may not always be readily available due to sensor maintenance, downtime, and 

even human interaction that influences the quality of, or even prohibits the observation 

from reaching the user.  Assuming that biases are known and accounted for (i.e. 

removed) and that real accuracy is known for each data type (i.e. data is weighted 

accordingly) is [39], the rule more tracking data = Better Estimate of True Solution 

applies.  However, continuous data does not exist for all satellites.  Data is limited due to 

visibility of the satellite from the tracking station and the availability of the tracking 

station sensors to monitor that satellite for example.  Having too little data leads to the 

inability to estimate additional state parameters [35].  Accuracy problems also arise with 

data accumulated over only a small arc of the satellite orbit.  Ideally, one wants dense 
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data on the order of hundreds of data points per satellite pass from just one site, or even 

from multiple sites.  Sparse data even from multiple sensors can result in significant error 

[35]. 

 
Viewing constraints or visibility also affects the accuracy of the data the sensor receives.  

This is due to the satellite physically passing out of view of the ground station, or even 

geographical (and political) boundaries such as mountains.  Viewing constraints are also 

a factor as the satellite passes directly over the tracking station, a situation with low 

declination.  Given LISA’s distance from Earth and the fact that it is centered on Earth’s 

orbit, the constellation will appear at a low declination throughout the mission.  In this 

situation, a small horizontal error could exist, which results in a large plane change or 

cross-track error.  When the satellite is low in the horizon, a small vertical error can result 

in a large uncertainty over where the satellite is in its orbit, i.e. an along-track error [35].  

Figure 4.2 illustrates this phenomenon for LISA: 

 
Figure 4.2: Along-track and cross-track errors for LISA [35] 

Along-track errors are most detrimental because they affect the ability to get precise 

timing information; cross-track errors result from sensor misalignment and radial errors 

are usually small.  Fortunately, incorporating data from multiple satellite passes usually 

reduces these errors in the satellite coordinates [35]. 
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Data types also affect the estimation.  The range data type is probably most fundamental 

and important; it is "crucial to elegantly transforming data [35]."  A second general rule 

that can be inferred is the more available data you include, the better.  Vallado [39] 

proposes that ideal availability can be simultaneous range and range rate from multiple 

locations, or using multiple sensors to obtain observations.  The former, though highly 

accurate due to the triangulation of two simultaneous sites is not practical for most 

applications (GPS is the exception).  The latter of simply using multiple sensors enhances 

observability and gives geometric diversity to the observations.  Sensor calibration, the 

determination of biases and noise statistics for each individual sensor is crucial.   

 

Implementation is another important aspect of OD, which involves using highly accurate 

propagators, and high-fidelity force models.  The maximum allowable length of the 

interval between OD updates depends on the quality and quantity of observations, the 

estimation and propagation schemes, and the types of sensors used.  One site alone can 

do the update by observing, processing and reacquiring the satellite, though this is 

limiting.  Multiple sites allow for numerous observations to be taken and the opportunity 

to skip observation passes while the data is being processed.  Update intervals are usually 

shorter than the maximum requirement.  Ideally they occur when the most stringent 

requirement for the satellite is no longer met.  Update intervals are related to the force 

model, since accurate force models enables longer update intervals. 

Tracking arcs, or fit spans, are the period of time over which the data must be collected 

for differential correction [35].  The fit span often includes many update intervals and can 

be adjusted to meet accuracy requirements.  Incomplete theories (i.e. those neglecting or 
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truncating perturbation terms) require longer fit spans to sample enough data to average 

the inaccurate force models, though longer fit spans potentially introduce error in the 

propagation routines.  Shorter fit spans can cause a bias in the estimate of the initial state 

because the data may be insufficient to differentiate periodic variations from secular 

effects.  For a deep-space craft a satellite pass may only be 8-10 hours; the update 

interval can be several hours or days; and the tracking arc is several days long (longer 

than the update intervals) [35].  A last general rule of OD is that longer fit spans enable 

better prediction accuracy, but require a better initial guess and more iteration.  As is 

true for most estimation processes, a closer first guess provided for the OD filter is best.  

Although the filter can handle an inaccurate initial estimate, the filter can diverge if the 

initial state is sufficiently incorrect.  A reasonable initial guess is required so that the 

filter does not diverge.   

 

4.3.2.  Linearization of the Non-linear Problem 

 

The orbit determination problem requires determining the trajectory of the spacecraft in 

the presence of several complicating factors: (1) only indirect observations of the 

spacecraft state elements are available, (2) nonlinear equations describe the relationships 

between observations and state, (3) fewer observations exist at any time epoch than there 

are state vector components, and (4) errors exist in the observations [47].  Because linear 

estimation techniques are well-understood and relatively straightforward in this work the 

nonlinear orbit determination problem is linearized as described below and in [47].  
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Equations 4.1 and 4.2 describe the dynamics of the n-dimensional column vector of the 

state, X(t), at some time, t, and a p-dimensional column vector of observations, Yi made at 

discrete times ti: 

);,()( tXFtX =&  kk XtX ≡)(     (4.1) 
;),( iiii tXGY ε+=  i = 1, 2, . . ., j    (4.2) 

 
Where, ( )X t& , is a continuous nonlinear 1st order ordinary differential equation, or simply 

the change in n-dimensional state X(t).  The actual observation, Yi, is assumed to be a 

nonlinear function of the true observation, G(Xi, ti) and the random measurement noise, 

εi.  Noises are present in each observation because non-linear functions of the state are 

influenced by random error which occurs in the process of making the observations [34]. 

Equation 4.1 can be solved via numerical integration.  State and observation deviations 

errors are defined in Equation 4.3 as the difference between the true and the reference (*) 

trajectory (X(t)), or observation (Y(t)): 

 
);(*)()( tXtXtx −=   )(*)()( tYtYty −=    (4.3) 

    ( ) ( ) ( )tXtXtx *&&& −=  
 
 where,  x = nx1 state deviation vector 
  y = px1 observation deviation vector 
  X(t), Y(t) = true trajectory, true observation 
  X*(t), Y*(t) = reference trajectory, reference observation 
 

The linearization of the OD process requires that the reference trajectory, X*, be 

reasonably close to the true trajectory, X, throughout the time period of interest [47].  To 

linearize the OD equations, a Taylor Series expansion was performed, and the higher 

order (nonlinear) terms were neglected, since these terms were small compared to the 
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first order terms.  Expanding ( )X t& and Yi in a Taylor Series about the reference trajectory, 

X*, yields: 
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Neglecting the higher-order terms gives: 
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The linear estimation problem is now: 
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The observation sensitivity matrix, H  is the product of the observation-state mapping 

matrix iH~ , which contains the partials of each observation with respect to the reference 

state component, and the state transition matrixΦ(t, tk), which will be described below.  

For the OD problem, F(X,t) and G(Xi, ti) will always be nonlinear in X(t).  Therefore, 

deviation vectors and reference trajectories are needed to linearize the system. 
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4.3.3. The State Transition Matrix 

 

While the state deviation and observation error history can be determined by directly 

solving Equations 4.6, the state transition matrix (STM) provides a simplified 

formulation to determine the best estimate of x and for mapping the associated covariance 

matrices [47].  The STM is essential in relating observations at different times and 

expresses the solution of x(t) in terms of the unknown initial state, xk [47].  A general 

solution of ( ) ( ) ( )txtAtx =& with time-dependent coefficients is: 

  x(t) = Φ(t, tk)xk                  (4.7) 
 
where, Φ(t, tk) is the state transition matrix (STM).  The STM reduces and maps 

observations to a single epoch and has the following properties [34]:   

 1. Reduces to an n x n identity matrix: Φ(tk, tk) = I 

 2. Unique for Newtonian motion: Φ(ti, tk) = Φ(ti, tj) Φ(tj, tk) 

 3. Invertible for Newtonian mechanics: Φ(ti, tk) = Φ−1(tk, ti) 

 4. Satisfies the differential equation: ( ) ( )kk tttAtt ,)(, Φ=Φ& , Φ(tk, tk) = I  while 

 its inverse satisfies: ( ) ( ) )(,, 11 tAtttt kk
−− Φ=Φ& , Φ−1(tk, tk) = I  the identity matrix, I. 

 
The STM can be propagated from substituting values for ( )tx&  and then x(t) into this 

equation: ( ) ( ) kk xtttx ,Φ= && to yield: 

  ( ) ( ) ( )kk tttAtt ,, Φ=Φ&       (4.8) 
 
The solution of Φ(t, to) is obtained by numerical integration Equation 4.8. 
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4.3.4. Relating Observations to an Epoch State 

 

From Equations 4.6 there is an unknown state vector, xi, for each observation yi.  The 

state transition matrix is used to express a data set, or collection of observations in terms 

of the state at a single epoch as follows: 

( )

( ) fkkfff

ikk

xttHy

xttHy

ε

ε

+Φ=

⋅
⋅
⋅

+Φ=

,~

,~
11

      (4.9) 

 
Equation 4.9 now contains m = p x f observations and only n unknown state components.  

This series of equations can be rewritten in the matrix form: 
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or more compactly: 
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The H matrix is the observation sensitivity matrix, which is the product of the state 

transition matrix and observation-state mapping matrix, H~ , at a given time.  If p or f is 

sufficiently large, then the essential condition m > n is satisfied.  However, the problem 

lies in the fact that there are still m unknown observation errors, resulting in m+n total 
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unknowns in only m-equations.  The least squares criterion allows a solution to the n-

state variables, x, at the epoch tk by providing conditions on the m-observation errors.  

 

 

4.4. Orbit Determination Methods 

 

Orbit determination methods can be used to predict, filter, smooth, and pre-process the 

observations.  Prediction uses existing observations to compute future states via 

propagation, while filtering is determining the current state using current (and past) 

observations.  Filtering is typically performed by algorithms such as Kalman Filtering 

and sequential-batch methods that update state and covariance matrices [35].  Smoothing 

applies to the least-squares and traditional sequential-batch least squares techniques and 

improves estimates based on existing data to determine the state at a particular epoch.  

Pre-processing is applying the smoothing process to the observations [35].  

 
Forces acting on each LISA satellite cannot be presumed fully known, but deterministic 

equations of motion and state transition matrix can be propagated to approximately 

predict future system states.  Measurements are then corrupted by stochastic noise. 

 

4.4.1. Batch Least Squares 

 

The least squares criterion as derived by Gauss is applied to approximate the solution of 

an over-determined (m>n) set of linear algebraic equations.  The least squares solution 

selects a state estimate x that minimizes the sum of the squares of the calculated residuals.  
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As shown in Equation 4.12, x is chosen to minimize the performance index, or cost 

function J(x).  Note ε can be defined from previous Equation 4.11 as ε = y - Hx:  

 ( ) ( )HxyHxyxJ T
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i

f

i

T −−==≡ ∑
=

2
1

2
1

2
1)(

1
εεεε           (4.12) 

 

The cost function J(x) is a squared function because a parabola (ε2) has a minimum, 

whereas a line (ε) does not [35].  J is also a quadratic function of x, it has a unique 

minimum when these necessary conditions apply:  
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The first condition gives the global minimum/maximum value.  The second condition is a 

second derivative or the Hessian of J(x).  The Hessian, which is greater than 0, implies 

that the symmetric matrix is positive definite indicating that x occurs at a minimum.  The 

first condition can explicitly obtain the normal equation:  

  ( ) ( )HxyHHHxy
x
J TT −−=−−==⎟

⎠
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⎜
⎝
⎛

∂
∂ 0     (4.13) 

 
this, can be rearranged to obtain:  
 

( )xHHyH TT ˆ=         (4.14) 
 
where x̂ is the least squares correction that yields the best estimate of x.  Equation 4.14 is 

called the normal equation because if HTH is an m x m symmetric matrix, and if the 

Hessian is positive definite, then H has full rank.  Therefore, the solution for the best 

estimate of x given the linear observation state relationship Equation 4.11 is Equation 

4.15:  

( ) yHHHx TT 1ˆ −
=                              (4.15) 
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For the solution in Equation 4.15 to exist, m≥ n and H must have rank n.  If m<n, H is not 

of full rank n, thus there are more unknowns than linearly independent observations.  

Therefore a minimum norm solution must be used to determine x̂ , while this is not 

typically seen in OD problems, it is included for completeness.   

 
The three cases are summarized as follows: 
 
1.)  m = n (the dimension of y is the same as the dimension of x) 
 -H is square (m x m) and invertible 
 yHx 1ˆ −= , trivial solution of x 
 
2.)  m > n (the dimension of y is greater than x) 
 -H is symmetric and positive definite, H has rank = n 
 ( ) yHHHx TT 1ˆ −

= , Least Squares solution for x̂  
 
3.)  m < n (more unknowns than equations, but is not typically seen in OD) 
 -H is not square or invertible, H has rank < n 
 ( ) yHHHx TT 1ˆ −

= ,  minimum norm solution 
 

Note that the product HT(HHT)-1 and (HTH)-1HT are the pseudo inverses of the H matrix. 

There are disadvantages to the least squares solution that lead to other methods to solve 

the OD problem.  First, each observation error is weighted equally even though the 

accuracy of the observations may disagree, an issue addressed with the weighted least 

squares solution described below.  The observation errors may be correlated (i.e. not 

independent), but the least squares solution does not allow for this.  Also, the least 

squares (LS) method does not consider errors as samples from random processes, i.e. 

there is no use of statistical information. Due to computational problems that arise from 

inverting the normal equation matrix (HTH), a variety of solution methods exist for the 

OD problem.  The Cholesky decomposition is a more efficient and sometimes more 

accurate method to take the inverse, though it is applicable only if the normal equation 



 

 72

matrix is symmetric and positive definite [45].  Orthogonal transformation (or the QR 

factorization method) obtains solutions by applying successive orthogonal 

transformations to the information array; it yields the same accuracy, but with single-

precision computational arithmetic [40].  Given’s rotation, or Householder transformation 

are two orthonormal transformations that can be used to perform QR factorization [40].  

The Singular value decomposition (SVD) method is an alternative to the QR 

decomposition used to solve the LS problem in a numerically stable manner.  SVD is 

good for detecting and overcoming a possible singularity or near singularity, making it 

well-suited for ill-conditioned problems.  However, the computational effort for the SVD 

method is more substantial than that for the QR factorization [40]. 

 

4.4.2. Weighted Least Squares 

 

The weighted least squares (WLS) method is similar to the least squares except there is 

an associated diagonal weighting matrix, wi, for each of the observation vectors.  The 

elements of the weighting matrix are normalized with weighting factor values ranging 

from 0 -1.0.  The smaller the weight the less important the measurement (i.e. wi = 0, 

neglects the observation); while the larger the weighting factor, the more important it is 

(i.e. wi = 1, gives “full” weight to that observation).   

 
The performance index for the weighted least squares problem is given by: 
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Again, the necessary condition, Equation 4.17 for a minimum J(xk) requires that the 

derivative of J with respect to xk be zero: 
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Equation 4.17 is rearranged to obtain the normal equation: 

( ) k
TT xWHHWyH =       (4.18) 

Again, if the normal matrix HTWH is positive definite then the solution will have an 

inverse.  The weighted least squares estimate, kx̂ , is given by: 

( ) WyHWHHx TT
k

1ˆ −
=      (4.19) 

Equation 4.19 can also be expressed as: 

WyHPx T
kk )(ˆ cov=         (4.20) 

where (Pcov)k = (HTWH)-1.  The covariance matrix, (Pcov)k, is a symmetric n x n matrix 

that must be positive definite to have an inverse.  Parameter observability is related to the 

rank of the (Pcov)k  matrix.  If all parameters in xk are observable, then (Pcov)k  has full rank 

and an inverse.  This coincides with the condition that there is a greater or equal number 

of independent observations to the number of parameters being estimated (m ≥ n).  In 

general, the larger the magnitude of (Pcov)k , the less accurate the estimate, but caution 

should be exercised when inferring the accuracy of the estimate by the magnitude of 

(Pcov)k in the WLS estimate because with normalized weights, (Pcov)k is not valid in the 

statistical sense [45].  

 

If an a priori value kx  is available for xk and a corresponding weighting matrix Wk is 

available, then the following expression can be used for the estimate of xk: 
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 ( ) ( )1
ˆ T T

k k kkx H WH W H Wy W x
−

= + +     (4.21) 

 
where, kx is the a priori estimate and kW  is the weighting matrix for the a priori estimate 

of kx . 

 

 

4.5. Statistical Methods 

 

The statistical methods are mentioned here for completeness.  As seen in the historical 

overview all of these methods are applications and extensions of Gauss’s least squares 

method. 

 

4.5.1. Linear Minimum Variance Estimation (LUMV) 

 
 
While the least squares and weighted least squares estimates provide no information on 

statistical characteristics of measurement errors and no information on a priori errors, the 

linear minimum variance estimator (LUMV) does address these two issues.  Advantages 

of using the LUMV estimator are that it is relatively simple to use, since a complete 

statistical description of all the random errors is not necessary and only the first and 

second moments of the probability density function (pdf) of the observation errors are 

required (i.e. the mean and covariance matrix associated with random error respectively) 

[34].  The observation error, εi, is assumed to be random with zero mean and a specified 

covariance, (Rcov)i: 

E[εi] = 0,   E[εiεi
T] = (Rcov)i     (4.22) 
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The state estimation problem is formulated as: 

xi = Φ(ti, tk)xk        (4.23) 

iiii xHy ε+= ~    i = 1, . . ., l 

where: E[εi] = 0, E[εiεj
T] = (Rcov)iδij and δij = Kronecker delta function.  The best linear, 

unbiased, minimum variance estimate, kx̂ , of the state xk is shown below.  The linear 

condition implies that the estimate is made up of a linear combination of the 

observations: 

Byxk =ˆ      (4.24) 

where, B is an unspecified linear mapping (n x m) matrix selected to obtain the best 

estimate [34].  The unbiased condition follows: 

E[ kx̂ ] = x = E[By] = E[BHxk + Bεk] = xk 

Recall that the expected value, or mean of the error is zero: E[εk] =0, so that: 

BHxk = xk, to arrive at Eqn 4.25: 

BH = I       (4.25) 

Lastly, the minimum variance condition is the task of selecting the (n x m) matrix B to 

minimize the covariance matrix.  The covariance matrix, (Pcov)k for an unbiased estimate 

is: 

(Pcov)k = E[( kx̂  - E[ kx̂ ])( kx̂  - E[ kx̂ ])T] 

With substitutions of the linear and unbiased conditions and unspecified Lagrange 

multipliers, L, the covariance matrix, (Pcov)k is given by: (Pcov)k= (HTR-1H)-1.  And the 

LUMV estimate of xk is Equation 4.26: 

kx̂ = (HTR-1H)-1HTR-1y      (4.26) 
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Note that if the weighting matrix, W, is equal to the inverse of the observation noise 

covariance matrix, R, i.e. W= R-1, the LUMV solution agrees with the WLS solution of 

Equation 4.21.  Similarly to WLS, the LUMV estimate can be modified to propagate the 

estimate of the state xk and its associate covariance matrix.  The LUMV estimate with a 

priori information can be determined from these propagated values [34].  The LUMV 

estimate of Equation 4.26 also will agree with the maximum likelihood estimate (MLE) 

developed by Fisher (1912) if the observation errors are assumed to be normally 

distributed with a zero mean and covariance, (Rcov)k [47].   

 

4.5.2. Sequential Methods 

 

Gauss implied that observations can be inaccurate and of unknown and unknowable 

errors [2], leading to modern statistical methods such as the Kalman filter.  Sequential 

estimators process observations as soon as they are received. The solution and its 

associated covariance then can be mapped to another time [47]. 

 

A major advantage of this method is that it avoids some of the matrix inversion problems 

of the least squares methods, in that the matrix to be inverted will be the same dimension 

as the observation vector [45].  The estimate of the state xk, is simply Equation 4.27, 

which is obtained by recursively solving the supporting equations 

[ ]kkkkkk xHyKxx −+=ˆ       (4.27) 
 

where, kx = Φ(tk,tj) jx̂  

 Kk = weighting matrix (aka Kalman gain matrix) = [ ] 1−
+ k

T
kkk

T
kk RHPHHP   

P k = a priori covariance matrix = Φ(tk,tj)PjΦΤ(tk,tj) 
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  Pk = a posteriori covariance matrix = ( T
kH Rk

-1Hk + P k -1)-1 
  
A disadvantage of the sequential processor is that the state estimate covariance matrix 

will approach zero (Pk  0) as the number of observations becomes large.  The gain Kk 

also approaches zero, and the estimation procedure becomes insensitive to observations 

and will diverge due to errors that have now been introduced into the linearization 

procedure, computational errors, and errors due to an incomplete math model [45].  To 

improve on this disadvantage, two modifications can be used: 1) the Extended Sequential 

estimator (aka Extended Kalman-Bucy Filter), which minimizes the effects of errors due 

to the neglect of higher order terms in the linearization process; and  2) the State noise 

compensation method to combat errors in the dynamic model.  Additional modifications 

such as the 1) Q-Matrix compensated sequential estimation algorithm; and 2) The 

Dynamic Model Compensation (DMC) estimation algorithm, a sequential estimation 

method that compensates for the unordered effects in the differential equations which 

describe the motion of an orbiting vehicle [34]. 

 

4.5.3. Comparison of OD Methods  

 

The batch least squares method is often compared to the sequential methods to justify 

their use, as these are the two basic data processing procedures for tracking data used to 

estimate a spacecraft's orbit.  A disadvantage of both the batch and sequential processors 

is that if the true and reference state are not close together, the linearization assumptions 

leading to Equation 4.6 are not valid and the estimation process will diverge [45].  The 
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batch and sequential algorithms are both iterated until convergence, while the Extended 

Kalman Filter (EKF) will obtain near convergence in a single iteration [45]. 

 

Batch processing allows for simultaneous use of multiple measurements, hence making it 

most useful for post-flight analysis of very large observation datasets.  It provides an 

estimate of the state at some chosen epoch using an entire batch or set of data.  The 

estimate and its associated covariance are mapped to other times.  Process noise in the 

batch processor complicates the solution of the normal equations, the dimension of the 

normal matrix increases from n (#of state parameters) to m (# of observations) [47]. 

Without process noise, the sequential algorithm can be shown to be mathematically 

equivalent to the batch process.  Given the same data set, both will produce the same 

estimates when mapped to the same times [47].  Process noise is added in the EKF 

however, and this algorithm is not equivalent to the batch processor, but has been shown 

to be very close [47].  The numerical integrator in the EKF is restarted at each 

observation time (good for real-time applications), and some state noise is needed to 

ensure that convergence does not occur.  State noise compensates for various error 

sources in the processing of ground-based or onboard data [47].  As noted before, the 

covariance matrix, (Pcov)k, may approach zero as the number of observations becomes 

large, causing filter divergence, though process noise is usually added to deal with this 

issue. Sequential Filters are best suited for real-time estimation when the mathematical 

model used to describe the system is accurate, though corrections for unordered force 

effects can also best be implemented with sequential estimation algorithms [34].    
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4.6. Perturbation Effects 

 

Major sources of error can be divided into two main groups: satellite force model effects 

and measurement model inaccuracies.  Error sources are mainly satellite-dependent, 

meaning that the satellite configuration, orbit altitude, inclination, and measurement 

systems used for each individual mission plays a major role in the effects of errors.  

Errors affecting the satellite force model are further subdivided into gravitational and 

nongravitational parameters.  Gravitational parameters include: mass of the Earth (GM), 

Geopotential coefficients (Clm, Slm), solid Earth and ocean tide perturbations, mass and 

position of the moon and planets, and general relativistic effects.  Observations of 

range/range rate and angular data from various satellites work to improve Earth’s 

gravitational model [47] so that the gravitational potential of Earth, a major error source 

for LEO satellites, can be better compensated.  With deep space orbits like that used for 

LISA, each satellite is mainly affected by solar-radiation pressure and third-body effects.  

Gravitational forces from large planets (i.e. Jupiter, Saturn) and asteroids may pose a 

greater error source on LISA than the gravity of Earth.   Non-gravitational parameters 

include drag, solar and Earth radiation pressure, thrust and other effects such as magnetic 

forces.  This research presumes a two-body force model in which each satellite is only 

influences by the Sun's gravitational effects.  Appendix A summarizes basic calculations 

that verify third body effects may be presumed negligible for this preliminary OD work.   

 
Errors in the measurement model include: inertial and terrestrial coordinate system errors 

and ground-based measurements errors.  Inertial and terrestrial coordinate system errors 

are precession, nutation, and polar motion.  Ground-based measurement errors include 
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tracking station coordinates, atmospheric effects, instrument modeling, tectonic plate 

motion and clock accuracy [47].  Other appreciable error sources include inaccuracies in 

the mathematical model of the dynamical (satellite force) and instrument measurement 

system.  Computer errors are due to storage and execution time problems or errors in data 

processing and the fact that various parameters, such as µ, in the math model are only 

approximately known are all additional sources of error.   
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CHAPTER 5: Problem Description 

 

 

This chapter describes the LISA OD simulation that was developed for this thesis.  

Following a summary of assumptions, the batch processor algorithm will be presented, 

including the four data type cases tested, the initial condition of the LISA orbit, and data 

noise sources.  Methods used to identify errors in the algorithm and software and a 

discussion of the equations required to obtain the absolute and relative OD errors are 

presented. 

 

 

5.1.       Assumptions in the Model 

 

The major modeling assumptions in the simulation are: 

1)   The values for parameters µSUN and any other constants are considered to 

be known exactly. 

2)   Earth and the LISA spacecraft are all considered to be point masses. 

3)   The tracking station(s) are located at the center of this point mass Earth.  

The rotation of the Earth and DSN tracking stations are not taken into 

account.  A specific Deep Space Station antenna is not modeled. 

3a.) DSN range and range rate measurements will be two-way tracking 

made from the single tracking station on the point mass Earth 
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3b.) VLBI measurements will also be made from that single tracking 

station, despite the practical requirement for two stations (Section 

3.4.2).  Ultimately, the angle measurements are the output as 

illustrated in Figure 5.1.  To avoid confusion VLBI refers to the 

angular measurements right ascension, α, and declination, δ. 

 
Figure 5.1: Angle measurements to spacecraft 

 

4) The system is unperturbed and will be treated as a two-body system with 

the Sun being the central body force and each spacecraft in the LISA 

constellation the negligible mass (see Appendix A for a summary of error 

resulting from this assumption).   

4a.) The placement of Earth in the model is considered known and is 20 

degrees ahead of the reference center of the LISA constellation.  

The Earth is also a negligible mass in the two-body system. 

ρ 

Y 

Z 

X 

δ 
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4b.) The reference orbit is deterministic, a system whose time evolution 

can be predicted exactly. Therefore, Newtonian acceleration will 

be integrated and the trajectory of the spacecraft and Earth will be 

propagated with the Equations of Motion (Section 3.1) for one year 

from some arbitrary epoch t = 0.   

5.)  Tracking will be based on X-band uplink/downlink Doppler and range to 

data to the spacecraft.  

5a.) Noise and bias for DSN and VLBI will be based on values for the 

year 2000 X-band system for DSN using typical error values as 

listed in Cathy Thornton's monograph [41]. 

5b.) Values for inter-spacecraft range and range rate random error and 

biases were made to match equivalent Earth-based range and range 

rate values. 

6) The random noises added to the actual measurements will be assumed to 

follow a Gaussian/Normal distribution. 

7) A three month (or ~90 day) commissioning period at the end of cruise  

phase, when LISA is close to its nominal orbit, is the key timespan that 

this thesis will investigate.  During this crucial phase, P/M drop-off has 

occurred and OD tracking continues until drag-free control and the science 

of the LISA mission can officially begin.   

Calculation of the geocentric parallax, γGEO, roughly justifies assumption #3, or the 

angular difference between observations from the center of Earth and those from a site 

[35].  A simple, not to scale, drawing as seen in Figure 5.2 illustrates geocentric parallax. 
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Figure 5.2: Geocentric parallax 

The geocentric parallax, γGEO, is: 

γGEO = arctangent(RE / RE-LISA) = 

 arctangent( 6,378,135 meters / 5.1955 x1010 meters) =   

1.2276 x 10-4 radians, or ~0.007 degrees 

The radius of Earth is 6,378,135 meters, negligible compared to the distance from Earth 

to the reference center of LISA which is 5.1955 x 1010 m.  Hence, the approximation of 

the tracking station being located at Earth's center is reasonable, since the geocentric 

parallax is less than a tenth of a degree (= 0.007 degrees). 

 

For assumption # 4, recall that the initial set-up of LISA placed 20o behind the Earth was 

a compromise to be sufficiently far to reduce the gravitational pull of the Earth and Moon 

on this constellation, yet still be “close” enough to meet radio communication 

requirements with Earth, and to meet launch vehicle propellant requirements.  

 

While drag free control shields the proof mass from perturbations such as solar flux, the 

gravity of other planets still does affect the spacecraft.  However, back of the envelope 

calculations of the force effects of the two major perturbation sources, Jupiter at closest 

approach to Sun, and Earth at closest approach to LISA.  Appendix A uses Newton's Law 

γGEO 

RE 

RE-LISA 
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of Gravitation to compare these effects to the force of the Sun on LISA to justify the 

assumption of a two-body system.  It was found that the Sun poses the most force on 

LISA in both cases, which supports the fact that this can be considered a two-body 

problem for now.  Certainly a full perturbation analysis is required prior to launch. 

 

 

5.2. Batch Processor Algorithm 

 

The computational algorithm for the batch processor used in this thesis is based on the 

Batch Processing algorithm from Tapley's text Statistical Orbit Determination (2004) 

[47].  The MATLAB 7.0 code that implements the entire simulation and batch processing 

algorithm is presented in Appendix B.  The LISA OD problem requires modeling three 

spacecraft and four main test cases described below.     

 

5.2.1. Test Cases  

 

Four test cases that utilize different combinations of observation data were investigated: 

Case 1: DSN & VLBI (D/V) 
Case 2: DSN, VLBI, & Relative (D/V/R) 
Case 3: DSN only (DSN) 
Case 4: DSN & Relative (D/R) 
 

Note that cases such as Angles-only, Relative-only and Angles/Relative observation 

cases were also considered, however, they were eliminated due to the fact that system 

state is not fully observable with theses measurement sets.  Case 3 explores accuracy with 

strictly the DSN data package, which includes range and range rate measurements.  Case 
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1 uses a standard DSN and VLBI (angles) package.  Case 2 incorporates the more novel 

relative data (i.e. inter-spacecraft range and range rate) available from the LISA 

spacecraft into DSN and VLBI and is expected perform the best according to the 

hypothesis that more data types would equal better OD.  Case 4 combines DSN and 

relative data measurements.   

 

5.2.2. The Nominal Orbit 

 

Once a nominal orbit is determined for the baseline and extended missions, proper OD is 

needed to achieve and maintain the LISA constellation in the specified configuration.  An 

approximate knowledge of the orbit is required for least squares analysis in order to 

supply the initial "guess" of the state to the algorithm.  Section 4.3 stated that the true 

state of the spacecraft in the OD problem is never known. However, these results were 

simulated without actual data.  It is assumed in this simulation that the truth orbit is 

known and is the nominal orbit; which will be stated below.  The test of how well the 

weighted batch least squares (WBLS) algorithm estimates is based on how well the final 

estimate agrees with the truth.  Noises and biases will be added into the measurements to 

simulate real world data obtained from instruments and tracking stations.  

 
Nominal orbits for use on the actual LISA mission have been determined through the 

works of Steve Hughes [14] and S.V. Dhurandhar et al [18].  Hughes’ nominal orbit is 

found to maintain a nearly equilateral triangle configuration for two-body orbital 

dynamics and to be unstable when all the planets and Earth's moon are added to the 
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system.  It is also a good guess for numerical optimization as an appropriate orbit can be 

determined for LISA in a perturbed orbit.   

 

In [14], Hughes creates five performance measures, or cost functions for his orbit 

optimization problem.  The challenge is to "find solutions that minimize a cost function 

and also satisfy a set of non-linear constraints imposed by instruments and 

communication limitations."  There are ten nonlinear solution constraints for LISA: 

1)  Leg lengths must be +/-2% of the nominal 5 x109m 

(3 constraints for each of the 3 legs) 

2)   Interior angles of the formation should remain between 58.5o-61.5o  

(3 constraints) 

3)   The formation must orbit no more that 20o behind the Earth to meet 

communication and OD constraints (1 constraint) 

4)   The maximum average rate-of-change must be <15m/s for any of the legs 

(3 constraints)   

Considering the solution constraints, Hughes numerically optimizes the performance of 

the formation in the presence of perturbations for these five cost functions (cfn, where n= 

1, 2, .  .  ., 5) formulated based on science and/or practical engineering or OD concerns: 

cf1:  Difference in rate-of-change between two legs in the formation (science). 

cf2:   Difference in lengths of two legs of the formation (science). 

cf3:   Average rate-of-change of all three legs of the formation (engineering). 

cf4:   Maintaining equal leg lengths over time (science). 
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cf5:   Deviation of interior angle(s) of the formation from 60o as an alternative 

method to ensure that all three leg lengths are equal (science). 

Hughes improves the nominal orbit, by using it as an initial guess through his 

optimization approach for each of the five cost functions and checks their feasibility by 

how well they satisfy the constraints. Since this thesis assumes an unperturbed orbit, 

Hughes’ orbit will be used, though Dhurandhar’s will be commented upon.   

 
In the nominal orbit, four orbital elements (a, e, i, ω) are the same for all orbits in the 

formation.  The longitude of the ascending node, Ω, and mean anomaly, Μ, are different 

for each orbit.  Below is a summary of the nominal orbital elements from [14]: 

 
Nominal orbit: a = aE = 1 AU = 149597870691 m 

e =
Ea

L
32

  = 9.6484 x 10-3,  where L = leg length = 5 x 109 m 

 

   i = 
Ea

L
2

 = 1.6711 x 10-2 radians = 0.9574956o 

   ω = π/2 or 3π/2 (90o, or 270o) 
 
    for LISA 1: (Ω, Μ) 
    for LISA 2: (Ω + 2π/3, Μ – 2π/3), where 2π/3 = 120o 
    for LISA 3: (Ω  - 2π/3,  Μ + 2π/3) 
 

P = 1 year =
µ

π
3

2 r  = 3.1558 x 107 sec. ~ 365.26 days 

where µSun = 1.327124 x 1020 m3/s2 
 
The first four elements (a, e, i, ω) are the same for all spacecraft.   The right ascension, 

Ω, and mean anomaly, Μ, have a phasing of 120o.  The periods, P, of each LISA are all 

one year (or 3.1558 x 107 sec) - the same as the Earth's period.  Table 5.1 below 
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summarizes the thesis initial condition for all three LISAs and Earth at an epoch 

unattached to any time system. 

Table 5.1: Hughes' nominal orbital elements of LISA & Earth at epoch = 00:00:00 
 a  ( m ) e i ( o ) Ω ( o ) ω ( o ) Μ ( o ) 

LISA 1 1.4960 x 1011  
 

0.0096484 0.95750 0 90 0 

LISA 2 1.4960 x 1011  0.0096484 0.95750 120 90 
 

-120 

LISA 3 1.4960 x 1011  0.0096484 0.95750 240 90 
 

120 

Earth 1.4960 x 1011  1.3438 x 10-16 0 NaN NaN 0 
 
The right ascension, Ω, and the argument of periapsis, ω, of Earth are unobservable, 

indicated as "NaN" (i.e. Not a Number) because the inclination is 0.  The work of this 

thesis was done using Cartesian elements. The nominal orbit derived in Table 5.1 was 

transformed to a position and velocity using Orb2X2.m (see Appendix B). The Cartesian 

state can be transformed back to the Keplerian orbital elements as a check using X2Orb.m 

(see Appendix B).    The position and velocity of the reference center of the LISA orbit 

was derived to be: 

Rvs  = [ 0 aE 0] 
Vvs = [-v 0 0] 

 
Where aE is the semi-major axis that is initially all in the +Y-direction (Heliocentric); and 

v is the tangential velocity of the reference orbit and is instantaneously in the negative X-

direction.  The Earth was rotated to be 20o ahead of the reference center, as illustrated in 

an "equal-axis" view of Figure 5.3, the initial position for the nominal orbit of the three 

LISA spacecraft, Earth and the Sun (in RSW coordinates).  The initial position and 

velocities of Earth and LISA are then used as the initial condition to propagate the orbit 

using the LISA_EOMderivs.m (see Appendix B). 



 

 90

-6 -4 -2 0 2

x 10
10

0
0.5

1
1.5

2

x 10
11

-5
0
5

x 10
9

W
: C

ro
ss

-T
ra

ck
, m SH: Initial Condition Positions of LISA

S: Along-Track, m
R: Radial, m

Sun
LISA 1
LISA 2
LISA 3
Earth
Reference Center

 
Figure 5.3: Initial position of LISA constellation (equal axis view) 

 
 
The motion of the constellation around the Sun is carried out for 240 days using the 

unperturbed equations of motion as illustrated in Figure 5.4.   

 
Figure 5.4:  LISA constellation over 240 days 

 
Note that each LISA rotates around its epicycle and is phased 120o from the other 

spacecraft as was indicated in the initial orbital elements of Table 5.1.  This is clearly 
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shown in Figures 5.5 and 5.6 which illustrate the sinusoidal motion of the position and 

velocity components of each LISA. 
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Figure 5.5:  LISA position components over 1 year (unperturbed) 
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Figure 5.6:  LISA velocity components over 1 year (unperturbed) 

 
 
The leg length, Lij, is a scalar defined as Equation 5.1: 

jiij rrL −=  where i≠j and i & j = 1, 2, 3      (5.1) 

 
The initial leg lengths for the nominal orbit are: 
 
[L12  L23  L31]  = [5.0093 x 109    4.9752 x 109    5.0093 x 109] meters 
 
Figure 5.7 illustrates the sinusoidal leg length variation over an unperturbed orbit 

propagated for one year. 
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Figure 5.7:  Leg length vs. time for an unperturbed orbit over 1 year 

 

Figure 5.8 is the differenced leg length graph in which the nominal leg length of exactly 5 

x109 m is subtracted from each leg length.  The result is a graph that shows the percent 

error.  The leg length varies by +/- 0.5 %, or +/- 25,000 km.  The velocity differences or 

relative velocities between the legs are shown in Figure 5.9. 
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Figure 5.8:  Percent error in leg lengths for an unperturbed orbit over 1 year 
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Figure 5.9:  Relative velocity for unperturbed orbit over 1 year 
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The magnitude of the rate of change of the leg length is given in Equation 5.2, which is a 

derivative with respect to time of the position vector.  

 
dt
rd

dt
rd

dt
Ld jiij −=      (5.2) 

The rate-of-change of the LISA orbit vs. time is depicted in Figure 5.10.  Note that the 

mission constraint is satisfied when the rate-of-change does not exceed 15 m/s. 
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Figure 5.10:  Rate of change vs. time of an unperturbed LISA orbit for 1 year 

 

The Hughes' nominal orbit is calculated in NomOrb.m in Appendix B.  Though ultimately 

not used in this thesis, the nominal orbit of Dhurandhar [18] is shown below.  The 

successful operation of LISA requires the stability of the LISA constellation and constant 

leg lengths between spacecraft in a perturbed system.  Dhurandhar et al. explicitly 

demonstrate how any configuration of the spacecraft lying in the planes making +/- 60 

degree angles with the ecliptic using the Clohessy-Wiltshire equations remains stable, in 
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that the inter-spacecraft velocities remain constant to first order with respect to the 

dimensions of the configuration.  The trajectory using Dhurandhar's equation is shown in 

Table 5.2.  

Table 5.2: Dhurandhar’s nominal orbital elements of LISA & Earth 
 a  ( m ) e i ( o ) Ω ( o ) ω ( o ) Μ ( o ) 

LISA 1  1.4963 x 1011    0.009681 0.96673    0 90 0 
 

LISA 2 1.4969 x 1011    0.0094387 0.95631  118.92  88.349 -117.27   
 

LISA 3 1.4969 x 1011    0.0094387   0.95631  241.08  91.651 117.27   
 

Earth 1.4960 x 1011    1.3438 x 10-16    0 NaN NaN 0 
 

 
Dhurandhar proposed using the Clohessy-Wiltshire equations to find a proper orbit for 

LISA.  His initial orbit does not stray too far from nominal guess orbit that Hughes 

proposed.  The argument of periapsis, ω, is around 90o for all three spacecraft and the 

phasing on Μ and Ω are roughly 120o.  The inclinations are small (<1o) and the 

eccentricity is nearly zero, for a nearly perfectly circular orbit.  There was some variation 

found for the period P of the orbit using Dhurandhar's equations: 

P (Earth) = 3.1558 x 107 sec 
P (LISA 1) = 3.1567 x 107 sec 

P (LISA 2 & 3) = 3.1587 x 107 sec 
 

Figure 5.11 reveals why the Dhurandhar orbit was not used in this thesis.  For the 

unperturbed orbit, Dhurandhar's orbit does not remain constant.  Figure 5.11 illustrates 

the magnitude of rate-of-change extending beyond the 15 m/s mission constraint.  In 

future work, Dhurandhar's orbit would be used in the perturbed system.   
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Figure 5.11: Magnitude of rate-of-change vs. time for Dhurandhar's unperturbed orbit 

over 1 year 
 

 

5.2.3. The Algorithm 

 

The goal of the batch processor is to estimate the state deviation vector xo at a reference 

time to in order to give the best estimate of the state at that time. Time to is an arbitrary 

epoch, and all quantities are assumed to be mapped to the epoch using state transition 

matrix Φ(ti,to).   

 

The input values include initial conditions of reference state X*(to) and optional a priori 

state estimates.  Although available in the algorithm, the use of a priori estimates will not 
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be addressed here.  Equation 5.3 is the normal equation form of ox̂ for the weighted least 

squares.  Recall that W=R-1: 

 
 ( ) WyHxWHH T

o
T =ˆ       (5.3) 

 
Equation 5.3 is iterated until ox̂ , the least squares correction, converges.  Note the 

solution of ox̂  requires the inversion of information matrix M: 

          ( )WHHM T=        (5.4) 
 

The reduced residual vector, N, is the right-side of Equation 5.3: 

WyN TΗ=  

The M and N matrices are accumulated over the batch of measurements to keep the 

dimensions of the matrix from growing and to allow for easier inversion as shown below 

in Equations 5.5 and 5.6: 

1. [ ] ),(~),(~
1

oiii

Tf

i
oii

T ttHWttHWHH ΦΦ= ∑
=

    (5.5) 

2. [ ] ii

Tf

i
oii

T yWttHWyH ∑
=

Φ=
1

),(~     (5.6) 

The state transition matrix Φ(ti,to) is attained from integration of ( ) ( ) ( )kk tttAtt ,, Φ=Φ& . 

A(t) is the partial of the time derivative of the state vector F(X*,t), evaluated on the 

reference trajectory X*: 

( )
X

tXFtA
∂

∂
=

∗ ,)(       (5.7) 

 
The code that calculates the state transition matrix (LISA_STMderiv.m) is listed in 

Appendix B.  The observation-state mapping matrix iH~  is shown below: 
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X
tXG

H ii
i ∂

∂
=

∗ ),(~        (5.8) 

where G(Xi
*, ti) is the observation-state relationship evaluated on the nominal, or 

reference trajectory.  The partials are computed by taking the partial derivatives of the 

observation with respect to the reference trajectory.  A listing of the partials is below and 

will give insight into which measurements give position and velocity information:  
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Range Rate Partial Derivatives 
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Range Rate with respect to velocity: 
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Right Ascension Angle Partial Derivatives 
 

Right Ascension with respect to position:  
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Right Ascension with respect to velocity:
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∂
∂

000
i

i

V
α

 

 
 
 
 



 

 100

Declination Angle Partial Derivatives 
 
Declination with respect to position: 
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Declination with respect to velocity:
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Inter-spacecraft Range Partial Derivatives 
 
Inter-spacecraft Range with respect to position (LISA i range from LISA j): 
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Inter-spacecraft Range with respect to velocity:
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Inter-spacecraft Range Rate Partial Derivatives 
 
Inter-spacecraft Range Rate with respect to position: 
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Inter-spacecraft Range Rate with respect to velocity:  
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As shown above, the inter-spacecraft range will be computed with respect to the other 

spacecraft rather than to the Earth tracking station (denoted XE, YE, ZE).  For the angle 
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partial derivatives, MATLAB was used to compute and verify the equations in a compact 

form.  Appendix B contains the MATLAB code (H_partials.m) that calculates the partial 

derivatives. 

 
The observation sensitivity matrix, Hi, is given by: 
 

),(~
oiii ttHH Φ=      (5.9) 

 
 
When inverting the accumulated M, information matrix and the N reduced residual 

matrix, a question of observability arises.  Observability is crucial for the matrix 

inversion to work (i.e., sufficient data must exist for all states to be known), since the 

covariance matrix (Pcov) is needed to solve the normal equation (i.e. (Pcov) = M-1).  The 

inverse of a matrix can only be taken if the matrix is square (m x m) and nonsingular.  

However, not all square matrices have an inverse.  In order to be nonsingular, one of 

these conditions musts be satisfied: 1) no row (column) is a linear combination of the 

other rows (columns), or 2) the determinant of the matrix is not equal to zero [49].  The 

first condition is related to the rank of a matrix.  Only a matrix composed of independent 

equations will be full rank, where rank(M) = m.  Therefore, the rank check is a quick way 

to determine observability. 

 

Each navigation measurement combination case had to be treated separately in order for 

the entire program to run cohesively.  The M and the N matrices were sized depending on 

the case.  For the cases without relative measurements, the initial M is a 6x6 matrix of 

zeros, and the N is a 6x1 vector of zeros, and a separate M and N were accumulated for 
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each spacecraft.  For the cases with relative measurements, the additional data requires M 

to be an 18x18 vector while N is an 18x1 vector. 

 

For the relative cases, all three spacecraft states were solved simultaneously. However, in 

order to obtain observability in all cases, scaling matrices had to be added so that the 

inverse of M could be computed.  The accumulation of M and N is described as: 

 
MSC = MSC + ((Hi*SC)T*W*(Hi*SC)) 

NSC = NSC + ((Hi*SC)T*W*(yi)) 
 
where, SC is the scaling vector.  The scaling vector, SC is a square diagonal matrix that 

does not scale position terms but multiplies velocity terms by 1x10-6.  SC has the same 

dimensions as M.  In order to remove the scaling vector numerical effects in the results, 

another scaling matrix was multiplied into the normal equation: 

SCSCSCSC NPSCNMSCx *)(***ˆ cov
1 == −  

or: 
NPNMx **ˆ cov

1 == −  
 
Xo

* is held constant for the beginning of each iteration.  The initial guess orbit, Xo
* is 

augmented by the least squares correction value, ox̂ , after each iteration: 

nonono xXX )ˆ()()( 1 += −
∗∗      (5.10) 

 
The recursive nature of the algorithm continues until convergence occurs, when the 

WBLS algorithm outputs the best estimate of the state, X̂ , which is equivalent to the 

final corrected Xo
*.  Presented in Figure 5.12 is the weighted batch least squares batch 

processor algorithm used to estimate the LISA orbit, it is based on an algorithm in [47].  

The batch processor code (LISA_WBLS.m) and the code that ran the entire process 

(MCRUNbp.m) is listed in Appendix B. 
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Figure 5.12: Weighted Least Squares Batch Processor Algorithm 
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5.2.4. Simulation of Measurement Noise 

 

All data is subject to error.  Since we nominally generate perfect measurements, noise 

and bias errors must be simulated in this thesis to study their effects.  Noise is defined as 

a standard deviation (sigma) of the random variation about the measured mean, while 

biases are constant offsets from a true value [35].   

 

Biases if known can be added or subtracted from each observation.  In the test runs with 

biases, biases were added to the "actual" measurement, but were not subtracted from the 

calculated measurement.  Noises were either set to a specific value or randomly generated 

for each observation using a normally distributed random number generator (i.e. the 

"Randn" function in MATLAB) with mean zero, and variance and standard deviation 

equal to 1.   

 

Time-varying errors such as clock inaccuracies, frequency offsets, ionospheric and 

tropospheric atmosphere effects, and temperature also affect observations.  Some of these 

errors will be incorporated into the model.  Process noise due to error in the mathematical 

and gravitational modeling of the system dynamics are often not random and are highly 

correlated with time [35]. 

 

The X-band two-way links are employed by the current 2000 DSN system [41] although 

Ka-band two-way links will be seen in the future.  Range is an absolute measure of 

distance: it is sensitive to measurement biases and random errors, with the range random 
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error due primarily to thermal noise.  The Doppler error is due mainly to fluctuations in 

the solar plasma along the line-of-sight [41] and clock and frequency offsets.  The angle 

tracking from VLBI will give accuracy up to 50 nanoradians (nrad) or better [41]; 

therefore it is taken as the assumed accuracy for both the right ascension and declination 

angle measurements.   

 

The biases due to station location (= 8 cm) and Earth orientation (= 8 cm) are ignored due 

to the assumptions that the station is located at the center of Earth and that Earth’s 

location is exactly known, as it is not being estimated as was stated in Section 5.0.  Biases 

due to solar plasma are also ignored since LISA is not located near the Sun and Earth’s 

antennas will not have to point at the Sun to track LISA.  Additional biases on the range 

observation are due to an unknown time-tag error (∆Τ) and a clock rate offset ( T∆ &  ) as 

seen below: 

Tρ ρ∆ = ∆ &      (5.11) 
( )c RTLT Tρ∆ = ∆ &         (5.12) 

 

No biases were used on the VLBI angles, though a noise of 50 nrad is a conservative 

estimate for what would be expected. 

 

In addition to random instrument error, time-varying errors such as range error due to 

clock instability (∆ρ) Equation 5.13 and range rate frequency instability ( ρ∆ & ) Equation 

5.14 were also included.  

( )2 ( ) yc RTLTρ σ τ∆ =       (5.13) 
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where RTLT = round trip light time, c = speed of light and σY(Τ) = Allan Standard 

deviation assumed to 1 x10 -15 for a Doppler count time, Τ,  of 1000 seconds.  

Frequency offsets affect the two-way Doppler, or range rate measurement as shown in 

Equation 5.14: 

)()(log2 2 ΤΠ+=∆ Ycσρ&       (5.14) 
 

Where Π = (RTLT/Τ), though with hydrogen maser stability, clock instabilities are 

negligible.  Also, the Allan Standard deviation in both equations is negligible compared 

to other much larger errors in the system such as the troposphere.  Although the 

aforementioned errors are negligible compared to the random instrument noises they are 

included in the random noise total. 

 

Table 5.3 is a list of the representative error levels that will be incorporated into each 

simulated measurement.  The bullet points below the bold value denote the negligible 

noise values also incorporated, or breakdown of the bias values used.  Many of the 

random error and bias values listed in Table 5.3 are from Cathy Thornton’s “Radiometric 

Tracking Techniques for Deep-Space Navigation” [41].  The inter-spacecraft range and 

range rate values were assumed to be the same as the Earth based values. 
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Table 5.3: Random error & bias levels for each measurement [41] 
Types Random Errors (σ) 

 
Biases 

Range 
 

60 cm (random error for 60-
sec.average)  

 clock instability 

2.055 m total bias  
 

 2 m range instrument bias 
 1 cm Zenith bias due to 
troposphere 
 1 cm line-of-sight 
fluctuation due to 
troposphere 
 3 cm line-of-sight (above 
10o) ionosphere bias 
 Time-tag error  

   (small x 10-4) 
 Clock rate offset 

   (small x10-3) 
       

Range Rate 
 

0.03 mm/sec (random error 
for 60-sec. average)  

  frequency instability 
 

 
________ 

Inter-spacecraft Range 
 

60 cm (random error for 60-
sec. average)  

  clock instability 
 
 

2 m  
 2 m range instrument bias 
 Time-tag error  
 Clock rate offset 

Inter-spacecraft Range Rate 0.03 mm/sec (random error 
for a 60 sec. average) 
 

________ 

Angles (VLBI): Right 
Ascension & Declination 

 

50 nanoradians (for the ~30 
min. for once a day maximum) 

________ 

 
Noise gets averaged out by the square root, the more time it is averaged over, the less the 

noise of the measurement is.   Measurement noise reduces as the square root of the 

number of measurements, Num increases: 
Num
σ .  The random errors of Table 5.3 are 

averaged over time.  For most of the values from Table 5.3, the errors were taken every 

60 seconds over a time period of 30 minutes, which means the number of measurements 

would be equivalent to 30 measurements, or (60 sec/(30 min*60 sec)).  For example, the 

noise included on the range measurement is: 
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Num
noise 1*σ=  = 0.6 m * (60 sec/(30 min*60 sec))1/2 *Randn = 0.1095 m *Randn 

 
Note that a “Randn” is a random number generator in MATLAB that was incorporated 

into each measurement.  The scripts RealObs.m and InterSCD.m shown in Appendix B 

respectively tabulate the Earth-based and the inter-spacecraft calculated and observed 

(i.e. simulated with noise and biases) measurements.  As seen in Table 5.3, different 

accuracies are associated with each measurement type; therefore the residuals will be 

weighted according to their noises.  The weights are the inverse of the observation noise 

covariance, W = R-1, where, R = σ2I, where I is the identity matrix.  Note the off-diagonal 

terms are equal to zero: 
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A smaller standard deviation or a larger wi will weight the sensor more.  The diagonals 

terms of the W matrix of each LISA are the values we adopted: 

wρ = 8.327877928620504  x 101 m-2 
w ρ&   =  3.273113847723235 x 1010 (m/s)-2 

wα = 4.000000000000001  x 1014 rad-2 
wδ =  4.000000000000001  x 1014 rad-2 

w inter-ρ   = 8.332805331232393  x 101 m-2 
winter- ρ&  = 3.333333333333334  x 1010 (m/s)-2 
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5.3. Validity of the Filter 

 

Before the results could be obtained, rigorous testing was done on the algorithm to check 

that the filter worked, and to give insights into the problem at hand.  In orbital mechanics, 

observability is the ability to apply an estimator to a particular system and obtain a 

unique estimate for all components of the spacecraft state vector [47].  Unobservability is 

said to rarely occur for well-formulated problems, hence, the observability criterion tests 

the validity of the problem formulation and the completeness of the data set.  The 

observability tests the sensitivity of state parameters to the observations.  The partial 

derivatives of the H~ Matrix (i.e. the observation-state mapping matrix) give the 

observability for each measurement; a partial derivative of zero or a small magnitude 

provides no information to the estimation process.  Mathematically, observability and 

proper conditioning of the matrix allows the inverse of the M matrix to be taken  

(i.e. (Pcov) = M-1).  This inversion is crucial since it is needed to solve for x̂ , the least 

squares correction. 

 

Complete observability requires that the information matrix M be positive definite.  In 

order to be positive definite, the square H matrix ( ),(~
oii ttH Φ= ) must be full rank.  The 

mathematical formulation of the problem is made so that only a minimal set of 

parameters is estimated.  Unnecessary parameters cause the solution to be unobservable, 

and any state variables that are linearly related to each other cannot be uniquely 

determined [47].  The only parameters being solved for each LISA are the position and 

velocity (six states).  In the cases with relative measurement data, the information matrix 
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M is 18 x 18 which indicates that the states of all three LISA spacecraft are being solved 

together.  This M requires a rank of 18 to be observable requiring a complete 

measurement set over all spacecraft. 

 

As seen in the algorithm, when the fractional change of the root-mean-square (RMS) is 

very small (i.e. equal to some tolerance), the system is considered to have converged thus 

the iterations terminate.  The fractional change is the RMS difference between two 

adjacent iterations.  The tolerance drives the outer loop of the algorithm.  A final 

weighted RMS of 1 is an indication that the weights used are correct.  A weighted RMS of 

less than 1, occurs when errors are overestimated while a greater than 1 value indicates 

underestimation of the errors [35].  A decreasing trend in the RMS is an indicator that the 

filter is converging.  Examining the RMS is one way to see how the noises and biases are 

being treated.   One wants a lower RMS, ideally RMS = 1 for a weighted case, or RMS = 0 

for unweighted RMS to get the best fit [35].  The Root-Mean-Square (weighted and 

unweighted depending on the test) is shown in Equation 5.15: 
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     (5.15) 

 

where weighting matrix W= Ri
-1, m is the total number of observations = f x p; and îε  is 

the best estimate vector of the observation error: 

oiii xHy ˆˆ −=ε        (5.16) 

Having a reasonable number of iterations is also a checkpoint.  A reasonable filter has 

been experimentally shown to converge in at most 6 or 7 iterations, regardless of initial 
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error on the state.  More iterations usually indicate an error or an unrealistic tolerance 

level that is trying to be achieved for that case.  In certain cases, a tolerance that is too 

low may cause filter divergence.  The tolerance was set to 0.03 for all cases except DSN 

(= 0.3), which required higher tolerance for convergence.  The higher tolerance also 

translates into larger standard deviations from the mean when the final statistics are 

calculated which will be seen for the DSN cases, thereby, making these cases not as 

reliable as the OD source. 

 

The filter was also tested by inputting an initial state value with no noise, no biases, or 

guess error.  Therefore, what the filter is given is the exact answer and should converge in 

a single iteration for each case, which the processor was shown to do.  In particular, the 

norm of x̂ , i.e. the least squares correction, is zero in these cases because there is nothing 

to correct!  Other checks to see if the least square correction ( x̂ ) is valid includes starting 

with a guess on LISA 1 being erroneous, for example, only in the X-direction by 1 x 

105m, in which case it is expected that only the X-component of 1X̂  requires a negative 

correction to compensate for the offset.  If the Y or Z- position component, or velocity 

component were to make a huge correction in this case that would indicate a problem 

with the computation processes. 

 

Each of the four cases tested in the batch processor were tested with variation in noises, 

and initial guess error (i.e. the state being off in position and/or velocity from the truth).  

The actual range and angle measurements are sensitive to errors in position, while the 

range rate is sensitive to both position and velocity errors.  An inaccurate initial guess of 
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position or velocity affects the calculated, Gi( ∗
iX , ti), measurements, as well.  It also 

impacts the number of iterations until filter convergence, or in some cases causes the 

filter to diverge. 

 

A final check was performed on the coding logic.  Since this is an iterative process with 

many parameters, attention has to be paid to make sure that the right variables are 

updating to the next step for example, the time, the reference and truth trajectory, and 

state transition matrices within the inner loop.  Also, attention was given so that the 

iterative values are being corrected and properly used as a new initial within the outer 

loop at the beginning of the next iteration, namely, the updated reference trajectory.  

 

 

5.4. Orbit Accuracy 

 

Orbit accuracy is dependent on several factors: amount, type and accuracy of the tracking 

data, truncation error, round-off error, mathematical model simplifications, and errors in 

mathematical model of physical system or instrument [47].  The error analysis was 

performed by comparing solutions of different mixes of tracking data (i.e. cases), 

weighted with biases and without biases for different tracking arc lengths and number of 

measurements taken. 

 

OD solution quality will be analyzed two ways.  The first analyzes the covariance and 

parameter uncertainty matrix [41] from single runs of each case over a time interval.  The 
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covariance matrix is a square and symmetrical matrix which estimates error in the 

computed solution.  The variance, σ2, the diagonal terms describes closeness of the fit to 

the data.  The off diagonal terms are the covariance terms, which contain correlation 

coefficients, µij (where i and j equals position components X, Y, Z and/or velocity 

components denoted U, V, W here) and the standard deviation, σ .  The covariance terms 

represent the degree of independence among the elements, ideally with small or zeros 

[35].  The covariance matrix, (Pcov) is shown below.  

 
(Pcov) = (HTWH)-1 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

2

2

2

2

2

WWVWVWUWU

VWVWVVUVU

UWUWUVUVU

WZWZWYWYWXWX

VZVZVYVYVXVX

UZUZUYUYUXUX

ZWZWZVZVZUZU

YWYWYVYVYUYU

XWXWXVXVXUXU

ZZYZYZXZX

YZYZYYXYX

XZXZXYXYX

σσσµσσµ
σσµσσσµ
σσµσσµσ

σσµσσµσσµ
σσµσσµσσµ
σσµσσµσσµ

σσµσσµσσµ
σσµσσµσσµ
σσµσσµσσµ

σσσµσσµ
σσµσσσµ
σσµσσµσ

 

 

OD accuracy will also be analyzed with a Monte Carlo method, in which the state and 

measurement equations are simulated using random initial conditions and noises, and OD 

performance is stored for each case.  Such analysis requires numerous OD runs so that a 

statistically-significant cross section of possible OD scenarios can be analyzed.  Each 

case was run 35 times per day and a random normal distribution was set on the noise.  

The value of 35 is consistent with what is considered a sufficiently large sample size in 

the Central Limit Theorem (usually sample size >30) however, for a normally distributed 

sample the larger value of n, the better the approximation [50].  This allowed for statistics 

such as the mean and standard deviations of the outputs to be obtained.  Monte Carlo is a 

very time consuming approach because of the number of cases needed to obtain 
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meaningful statistics, but it does have the capture the effects of non-linearities in the 

systems; whereas, the covariance analysis is a less time-consuming process, but it ignores 

any non-linearities in the system. 

 

The summary graphs of Chapter 6 will plot the absolute and relative OD error of position 

and velocity. The absolute OD accuracy is divided into the position and velocity absolute 

accuracy, represented by the root-sum-square (RSS), or norm expression: 

 

RSS = ( )   )()( 2
21

2
21

2
21 zzyyxxnorm −+−+−=  

 
The absolute OD accuracies in position (ABSr) and velocity (ABSv) are taken as the 

norm of the RSS difference between the estimated LISA state (i.e. L1rest and L1vest) and 

the nominal LISA state (i.e. L1rtru and L1vtru) as shown below. 

 

 

The relative position (RELr) and velocity (RELv) error of the constellation is obtained by 

first taking the norm of the spacecraft estimated leg length (L13, L21, L32) minus the 

norm of the corresponding truth data leg length: then the norm of all three legs are 

calculated as shown below.  
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The current inter-spacecraft accuracy requirement of 300 meters [8] may be tightened in 

the future.  Anticipating this constraint, a stricter relative position error of 20 meters will 

be used in this thesis.   

 
The mean position and velocity error of each LISA is also outputted, along with the final 

batch processor estimated state vector ( X̂ ).  This value is used to compute and compare 

leg length differences and orbital elements.   

 
The sample variance,σ2 is expressed in Equation 5.17: 
 

i
T
i Wyy

m ∑Ξ−
=

12σ       (5.17) 

 
Where, i

T
i Wyy∑  = sum over all observations (recall that yi is the 

observation deviation vector and W is the weighting matrix) 
     m = total number of Measurements = p x f 
     Ξ = number of parameters to be determined from the fit   
 
The parameter uncertainty, PU, for each state element can be obtained from the sample 

variance as shown in Equation 5.18: 

)( cov
2 PdiagPU ×= σ       (5.18) 
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where, the diag(Pcov) term refers to the diagonal elements of the covariance matrix, Pcov 

corresponding to the state, which was also outputted.  The parameter uncertainties are 

added or subtracted from the estimated state to give a final answer with uncertainties. 

Other important outputs include RMS of each LISA and number of iterations.   

 

The period and semi-major axis are two key orbital elements that will also be assessed.   

They are related through: P = 2π* µ
3a .  There are mission constraints on both 

elements.  Maximum period error is 38 seconds from the nominal [8].  Period accuracy is 

especially crucial since timing affects the range rate measurement.  The semi-major axis 

should be within the range of 0.9 AU and 1.1 AU [8], which indicates that 0.1 AU is the 

maximum semi-major axis error since 1AU is the nominal.  The weighted batch least 

squares algorithm is expressed in the LISA_WBLS.m (see Appendix B) script which calls 

the aforementioned scripts for the nominal spacecraft and Earth tracking station trajectory 

propagated using the EOM, the STM, the simulated observations, and the partials of the 

observations.  MCRUNbp.m (see Appendix B) runs the entire process for all test cases 

and generates comparative statistics in a Monte Carlo analysis.  

 

 

 

 

 

 



 

 117

CHAPTER 6: Results 

 

 

This chapter will provide an overview of the orbit geometry of this problem.  Next, it will 

consider the observation sensitivity matrix (H) and the measurements, which will give 

insights into the main results that follow.  All simulation results and some figures were 

generated in MATLAB. 

 

 

6.1.  Comments on Orbit Geometry 

 

A closer look at the LISA simulation orbit geometry is illustrated in the following Figures 

at the epoch time (= 0), 20 days, and 90 days, respectively.  Twenty days is where DSN-

only becomes effective, assuming a good initial guess.  Ninety days is roughly the end of 

the assumed three-month commissioning period required to put LISA in the proper orbit, 

so that the drag-free control and the scientific portion of the mission can commence.  

Figure 6.1 is a square axis view of the set-up at epoch. 
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Figure 6.1: LISA constellation at epoch (square axis view) 

 

Over LISA’s one year orbital period, the three spacecraft rotate into positions of zero 

Doppler (i.e. range rate measurement) when viewed from Earth.  At these points, the 

range and Doppler only reveal information about the degrees of freedom (DOFs) along 

the line to the Earth; hence, the problem is not observable.  

 

This explains why DSN-only (i.e. range and Doppler range rate) measurements are not 

able to track LISA until a significant arc has been observed.  Mathematically, 

observability is when the M matrix is full rank.  This is found to occur around day 20 

when constellation has sufficiently rotated to enable more visibility of all three spacecraft 
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from Earth as seen in Figure 6.2 below (the shape indicates position of the body at day = 

20 and the line is the path traveled).   

 
Figure 6.2: LISA orbit geometry over 20 days 

 

The addition of Relative data (i.e. inter-spacecraft range and range rate) adds information 

in the directions not observed directly by range and Doppler.  For the relative cases, the 

state of the entire constellation is estimated at once from inverting the 18x18 information 

matrix, M.  Extra information is obtained about the legs of the constellation, and the 

location (i.e. range) and velocity (i.e. range rate) of the spacecraft with respect to each 

other.   
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The M matrix is an accumulation over the measurement batch and contains the 

observation sensitivity, or H matrix.  The partials in the observation-state mapping matrix 

H~  give observability information on each measurement and multiplying it by the STM 

maps the observability to a specific time.  An abridged version (18x6) of the H partial 

matrix in Table 6.1, for the DSN/VLBI/Relative case at day 20 takes an explicit look at 

how the measurements affect the determination of the estimated state, for LISA 1.  

 

Table 6.1: Abridged version of DSN/VLBI/Relative H matrix at day 20 
DSN/VLBI/Rel. LISA 1 LISA 2 LISA 3 

 Day =20 Position Velocity     
measurement  X Y Z X&  Y&  Z&  …. …. 

ρ L1 8.8E-01 4.7E-01 4.6E-02 0 0 0 0 0 
1Lρ&  -9.6E-08 1.8E-07 -2.9E-09 8.8E-01 4.7E-01 4.6E-02 0 0 

δ L1 -7.9E-13 -4.3E-13 2.0E-11 0 0 0 0 0 
α L1 -9.4E-12 1.7E-11 0 0 0 0 0 0 

ρ L13 3.3E-01 -4.0E-01 8.5E-01 0 0 0 0 X 

13Lρ&  -9.8E-08 -1.7E-08 3.0E-08 3.3E-01 -4.0E-01 8.5E-01 0 X 
ρ L2 0 0 0 0 0 0 X 0 

2Lρ&  0 0 0 0 0 0 X 0 
δ L2 0 0 0 0 0 0 X 0 
α L2 0 0 0 0 0 0 X 0 

ρ L21 -6.1E-01 -5.6E-01 5.6E-01 0 0 0 X 0 

21Lρ&  -3.6E-08 -9.3E-08 -1.3E-07 -6.1E-01 -5.6E-01 5.6E-01 X 0 
ρ L3 0 0 0 0 0 0 0 X 

3Lρ&  0 0 0 0 0 0 0 X 
δ L3 0 0 0 0 0 0 0 X 
α L3 0 0 0 0 0 0 0 X 

ρ L32 0 0 0 0 0 0 X X 

32Lρ&  0 0 0 0 0 0 X X 
 

In Table 6.1, each measurement contributes to knowledge of the state at a different level.  

Range (e.g., ρ L1) from Earth only provides information most prominent in the X- and Y-
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components, whereas, the Z-component is less discernible because the LISA constellation 

as viewed from Earth is smallest along the Z-axis.  

 

Similarly, the range rate from Earth (e.g., 1Lρ& ) has the largest partials (x 10-1) in the X& - 

and Y& -component of velocity, and it reveals much smaller information about the Z& -

component.  Range rate also gives some position information, albeit, of much lesser value 

than for velocity.  However, for the inter-spacecraft data, range (ρ L13 and ρ L21) 

discloses information of equal magnitude (x 10-1) of all three position components.  

Moreover, inter-spacecraft range rate (e.g., 13Lρ& and 21Lρ& ) provides data for all three 

velocity components.  Declination (e.g., δ L1) is most observable in the Z-component (x 

10-11), a magnitude which appears small compared to range, or range rate, but is large for 

angles measured in the units of radians.  Right ascension (e.g., α L1) is most observable 

in the X and Y-component.   

 

Table 6.1 clearly shows that LISA 1 is sensitive to leg 13, but also gives information 

about leg 21.  The same trend is seen for LISA 2, which is set up to measure range and 

range rate of leg 21, but also contains information on leg 32.  LISA 3 includes 

information on leg 32 in addition to leg 31, where the "X" in Table 6.1 denotes a value 

for that measurement in the abridged chart.  The 60 degree angle of the constellation 

triangle means that any one spacecraft is well-observed in the plane of the constellation 

by the other two; since information can still be obtained about the location of the 

spacecraft despite poor DSN data through this triangulation.  Figure 6.3 illustrates this 

concept of triangulation and how, with the addition of relative range and range rate data, 
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more information is obtained about a spacecraft.  In the illustrations, an "eyeball" is 

ranging to one LISA (in the order LISA 1, LISA 2 LISA 3), but picks up relative 

information about the adjacent two legs.   

 

Figure 6.3: Eyeball views of triangulation  

 

Figure 6.3 also supports an earlier statement (Chapter 5) that the measurement noise 

reduces as the square root of the number of measurements.  A complete relative inter-

spacecraft dataset is similar to having a single spacecraft dataset measured three times as 
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often.  Thus, relative data should effectively be the same as lowering the noise of the 

range and Doppler data types by a factor of 3 . 

   

In the non-relative cases, the states of the three spacecraft are estimated separately and 

only information pertaining to that spacecraft is measured, as seen in the H matrix (6x6) 

below for LISA 1 for DSN/VLBI at day 90. 

 

Table 6.2: DSN/VLBI H matrix for LISA 1 at day 90 
 DSN/VLBI LISA 1 
 Day = 90 X Y Z X&  Y&  Z&  

ρ L1 -1.61E-01 9.87E-01 1.69E-04 0 0 0 
1Lρ&  -2.02E-07 -3.29E-08 -1.01E-08 -1.61E-01 9.87E-01 1.69E-04 

δ L1 5.51E-16 -3.39E-15 2.04E-11 0 0 0 
α L1 -2.01E-11 -3.27E-12 0 0 0 0 

 

For both H matrices (Tables 6.1 and 6.2), there is no velocity partial information attained 

from the range (ρ), inter-spacecraft range (ρLij), or angle measurements (α and δ).  

Velocity information is achieved only with range rate ( ρ& ) and inter-spacecraft range rate 

( Lijρ& ).  All measurement partials contain position information.  However, there is no Z-

component information in right ascension angle (α).  The components of Table 6.2 retain 

the same signatures as discussed in Table 6.1, though the direction and size are dissimilar 

at day 90 due to the different orbit station.   

 

Angle data is shown to help initially by augmenting unobservable DSN, which will be 

evidenced by obtainable results of DSN/VLBI for small tracking arcs.  With a good 

initial guess, DSN/VLBI values can be achieved for a tracking arc of one day.  The angle 

data given with VLBI is the right ascension (α), which locates the spacecraft in the X-Y 
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plane, and declination (δ), which orients the spacecraft vertically.  Knowledge of 

distances, or positional components are provided by this data.  Long arcs of Doppler and 

range can provide angular position accuracy of 40 nrad or better [41]; hence this could 

explain why the angular data with accuracy of 50 nrad is not useful compared to range 

and Doppler after a sufficiently long tracking arc has been traversed. 

 

Figure 6.4 shows the LISA simulation at the end of the three-month commissioning 

period.  Due to the significant tracking arc all spacecraft are observable from Earth. 

 
Figure 6.4: LISA orbit geometry over 90 days 
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6.2.  Measurements Over Time 

 

Figures 6.5 and 6.6 examine how measurements from Earth, and the inter-spacecraft 

measurements, would look over the course of a year.  Note the low declination of the 

LISA orbit, varying from +/- three degrees.  The range and range rate follow a sinusoidal 

pattern. 

 

The inter-spacecraft range and range rate varies in a sinusoidal fashion, hence, recall 

these values were plotted earlier in the nominal orbit discussion (Section 5.2.2).  The 

inter-spacecraft range varies about its nominal leg length (i.e. 5 x 109 m).  A mission 

requirement is that the LISA arm length should be +/- 1% of the 5 x 109 m [8] (i.e. 

between 4.95 x 109 m and 5.05 x 109 m), even with noisy and biased data, inter-spacecraft 

range values fall within that constraint in this two-body problem set-up. 
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 Figure 6.5: Earth-based nominal measurements over 1 year 
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Figure 6.6: Inter-spacecraft nominal measurements over 1 year 

 

 

6.3. Main Analysis 

 

The main analysis was done on the four main cases: 

 
1) DSN/VLBI (D/V) 

2) DSN/VLBI/Relative (D/V/R)  
3) DSN only  

4) DSN/Relative (D/R) 
 

Note that the "Relative" refers to the inter-spacecraft range and range rate data.  For the 

main analysis, a series of 35 randomly-generated simulations for each case were executed 
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to perform a Monte Carlo analysis.  The means and standard deviations of outputs were 

collected to represent error statistics.  The cases were run for the roughly three-month (or 

90-day) commissioning period.  A summary of the Monte Carlo analysis characteristics 

are listed below, given noises and biases previously described in Section 5.2.4: 

- Random number generated noise 
- Bias (Yes and No)  

 - Random generated Initial Guess Error if indicated 
 - Each case was run from 1 to 90 days  
 - Ran 35 times per day per case 

 - With 1 measurement/day  
 

Two Monte Carlo runs were performed on each case: 
1) Noise, Bias, Random Initial Guess Errors, 1 measurement/day (NB) 
2) Noise, No Bias, No Initial Guess Error, 1 measurement/day (noB) 

 

One case of three measurements per day was also done on the noise, bias Monte Carlo 

(NB) run to compare the effects of more frequent measurements on the estimation. 

Prior to this main analysis, single runs were also performed over the entire orbital period 

(i.e. 365 days) to observe trends.  Since each case was run just one time, the single runs 

were faster than the Monte Carlo runs. A random number generator was not used in the 

single runs; so in some cases, the noise was turned on at its full value, which is treated as 

an additional bias since it is now constant; and other cases turned off the noise.  While 

single runs are not the focus of the analysis, they did allow data patterns to be observed, 

over longer time periods, with larger biases, as well as testing more measurements per 

day.   

 

The covariance run was done on a case with no noise, no bias, and no initial guess error 

to generate a covariance plot on each case.  In essence, the covariance run reveals the 
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standard deviation of each case.  Recall from Chapter 5 that the covariance matrix is a 

square and symmetrical matrix with the variance (or standard deviations squared) along 

its diagonal, which discloses the quality of the state estimate.  The covariance run 

described below presumed the case:    

1) No Noise, No Bias, 1 measurement/day 
 
with 

 
 - No Initial Guess Error 
 - Each case was run from 1 to 365 days 
 - Each case ran 1 time per day 

 
Figure 6.7 illustrates the frequency of observations obtained at each update interval over 

the entire tracking arc. 

 

 
Figure 6.7: Frequency of observations 
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6.3.1. Covariance Analysis 

 

A no noise, no bias run is really a test of how well the filter works.  This case 

appropriately computes 0 for all the error outputs.  The diagonals of the covariance 

matrix and the estimated state are the only information extracted from this case.  The first 

insight seen early in testing is that the DSN-only case was found to be unobservable until 

day = 20, therefore, its tracking starts then.  For this set-up, it took two iterations for all 

cases to converge to their tolerance.  The root-sum-square (RSS) of the square root of the 

covariance matrix (Pcov) diagonals were plotted, i.e. the standard deviations (sigma, or σ).  

Figure 6.8 shows the RSS of position sigmas for LISA 1.   The covariance graphs for 

LISA 2 and 3 show similar trends.  
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Figure 6.8: RSS of position sigmas of the Covariance Matrix for LISA 1 

 
Around day 30, DSN/VLBI/Relative and DSN/Relative, overlap and it takes about 90 

days for DSN/VLBI and DSN to overlie.  These overlaps suggest that VLBI or angle data 
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eventually becomes ineffectual compared to the other measurement types.  

DSN/VLBI/Relative starts out with the least standard deviation, followed by DSN/VLBI.  

This suggests the importance of VLBI observations early in the mission phase.  At 15 

days, DSN/Relative surpasses DSN/VLBI.  After day 15, the two cases with Relative 

information have the least standard deviation for the remainder of the run, concluding 

that Relative data gives a clear advantage in accuracy over non-relative data.  Figure 6.9 

illustrates the RSS of velocity sigmas for LISA 1: 

 
Velocity Sigma RSS of Covariance Matrix for LISA 1: 
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Figure 6.9: RSS of velocity sigmas of the Covariance Matrix for LISA 1 

 
In Figure 6.9, the DSN/Relative velocity sigma surpasses DSN/VLBI much earlier by day 

3, as indicated in the graph.  DSN/VLBI and DSN overlap at day 70. DSN/VLBI/Relative 

and DSN/Relative overlie around day 30.   

 

In both Figures 6.8 and 6.9, there is a decreasing trend to all lines.  As the tracking arc 

and number of measurements increase, the RSS sigmas of the covariance decrease.  
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DSN/VLBI and DSN mimic each other; and DSN/VLBI/Relative overlaps DSN/Relative.  

These figures indicate that with Relative data VLBI adds value for the first 30 days.  

Without Relative data, it is advantageous to have VLBI for a longer time as indicated in 

both graphs judging by how long the DSN/VLBI case outperforms DSN.  The addition of 

Relative data improves the overall performance, as well.  While VLBI helps initially, it is 

the presence of Relative data that gives a clear advantage in spacecraft state knowledge 

for the remainder of the orbital period.   

 

6.3.2. Monte Carlo Runs 

 

The Monte Carlo (MC) runs were performed for three months (or 90 days), the 

commissioning period as well as a period considered sufficient based on previous runs to 

capture most measurement/convergence dynamics.  Each case was iterated 35 times per 

day.  The noises were randomly generated.  The initial guess error was only randomly 

generated for the Monte Carlo (noise/bias denoted "NB") case.  From day 1 to 19, the 

initial guess error was randomly generated with a maximum of +/-10 km in position and 

+/-1 x 10-5 km/sec in velocity.  However, after 20 days when the DSN-only case was 

added the random generator was reduced to 1 km since DSN would often be "close to 

singular, or badly scaled," thus, unable to converge with even that much initial guess 

error.  No checks were done on the upper limit of how much guess error the other cases 

could take, yet they were consistently able to converge with the prior stated offset (+/- 10 

km) offset.  In addition to DSN requiring a sufficiently long tracking arc, the initial guess 

for DSN cannot be too far from the actual state.  For any case, a bad initial guess could 



 

 133

lead to divergence of the solution.  However the other cases can compensate better for a 

bad initial guess because they have additional observation types (angles and/or relative). 

 

Figure 6.10 shows the mean absolute position error.  For this simulation, random guess 

errors were random +/- 10 km, therefore, the DSN measurement was only observable 

from approximately day 30. Thus, its tracking began there. 

Monte Carlo: Mean Absolute Position Error: 
Noise & Bias, Random Initial Guess Error Case
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Figure 6.10: MC Simulation, NB, Mean Absolute Position Error 

 
 

The 1-sigma standard deviation error bars of Figure 6.11 show that DSN/VLBI/Relative 

remains distinct until day 15 then it begins to overlap with DSN/Relative.  Around day 

75, DSN/VLBI/Relative overlaps with DSN/VLBI.  By day 10, DSN/Relative and 

DSN/VLBI are overlapping.  DSN remains distinct from all the other data indicating it 

will never be as accurate over a 90 day tracking arc.  Figure 6.12 shows the mean 

absolute velocity error with 1-sigma (1-σ) standard deviation error bars.   
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Monte Carlo: Mean Absolute Position Error with 1-sigma error 
bars: Random Noise & Bias, Random Initial Guess Error Case

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 3 5 7 10 15 20 25 30 35 37 40 45 50 55 60 65 70 75 80 85 90

Tracking Arc (days)

M
ea

n 
A

bs
ol

ut
e 

Po
si

tio
n 

Er
ro

r (
m

)

DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative

 
Figure 6.11: MC Simulation, NB, Mean Absolute Position Error with sigmas 

 
Monte Carlo: Mean Absolute Velocity Error w/ 1-sigma error bars: 

Noise & Bias, Random Initial Guess Error Case
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Figure 6.12: MC Simulation, NB, Mean Absolute Velocity Error with sigmas 

 
Table 6.3 is a summary of the raw data of mean absolute position and velocity errors and 

1-sigma standard deviations for the cases at 1, 20, 30, 60, and 90 days.  There is the 

expected 3  (~ 1.7) improvement for absolute OD accuracy of the Relative cases.  The 
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absolute error improvements are much greater than 3  for shorter tracking arcs, though 

the gap between the Relative and non-Relative cases decrease over time. 

 

Table 6.3: Summary of Mean Absolute Position & Velocity with Standard Deviations 
Mean Absolute Position Error (m) (+/- 1-σ ) 
days DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative 

1  
5294.6 

(+/- 1639.9 ) 
2293 

(+/- 1195) ----- 
4.26 x 106 

(+/- 3.00 x 106) 
20  

1743.2 
(+/- 699.57) 

300.99 
(+/- 224.83 ) ----- 

881.07 
(+/- 665.41) 

30  
1426.6 

(+/- 493.73) 
273.03 

(+/- 150.03) 
1.60 x 107 

(+/- 7.15 x 106) 
363.43 

(+/- 169.2) 
60  

632.86 
(+/- 229.53) 

254.07 
(+/- 20.436 ) 

2.30e+05 
(+/- 97931) 

255.49 
(+/- 20.851) 

90  
188.92 

(+/- 86.714) 
112.54 

(+/- 4.7928) 
19378 

(+/- 11069) 
112.61 

(+/- 4.786) 
Mean Absolute Velocity Error (m/s) (+/- 1-σ ) 
days DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative 

1  
0.066 

(+/- 0.030) 
0.00257 

(+/- 0.00193 ) ----- 
0.16246 

(+/- 0.10881) 
20  

0.0017 
(+/- 6.7 x 10-4) 

3.19 x 10-5 
(+/- 2.16 x 10-5) ----- 

7.24 x 10-5 
(+/- 5.11x 10-5) 

30  
8.93 x 10-4 

(+/- 3.35 x 10-4) 
4.04 x 10-5 

(+/- 1.52 x 10-5) 
2.635 

(+/- 1.273 ) 
4.88 x 10-5 

(+/- 1.64 x 10-5) 
60  

1.5 x 10-4 
(+/- 9.30 x 10-5) 

5.79 x 10-5 
(+/- 3.92 x 10-6) 

0.049 
(+/- 0.025 ) 

5.81 x 10-5 
(+/- 3.97 x 10-6) 

90  
4.69 x 10-5 

(+/- 2.10 x 10-5 ) 
4.43 x 10-5 

(+/- 1.29 x 10-5 ) 
0.0049 

(+/- 0.0018) 
4.43 x 10-5 

(+/- 1.29 x 10-6) 
 

Note that on day 90, there is still a standard deviation of 11 km for the DSN absolute 

position error, which is a lot of uncertainty in the answer.  While the Relative cases have 

a mean absolute position of 112 m, which is not too far from 188.92 m for DSN/VLBI, 

the standard deviation on the relative cases is far less (= +/- 4.79 m).  Thus far, the 
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Absolute data is shown to improve with the presence of Relative data.  Figure 6.13 shows 

that the relative error also improves with the presence of Relative data. 

Monte Carlo: Mean Relative Position Error: 
Random Noise & Bias, Random Initial Guess Error Case
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Figure 6.13: MC Simulation, NB, Mean Relative Position Error  

 
 

Monte Carlo: Mean Relative Position Error with 1-sigma error 
bars: Noise & Bias, Random Initial Guess Error Case
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Figure 6.14: MC Simulation, NB, Mean Relative Position Error with sigmas 
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Figure 6.14 shows that there is an unperceivable standard deviation on the relative cases, 

whereas, on the non-Relative cases this deviation goes from +/- a few km to a few 

hundred meters.  Figure 6.15 is an error bar plot of the mean relative velocity error with 

indicating very small standard deviations on the Relative cases after day 20. 

Monte Carlo: Mean Relative Velocity Error w/ 1-sigma error bars: 
Noise & Bias, Random Initial Guess Error Case
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Figure 6.15: MC Simulation, NB, Mean Relative Velocity Error with sigmas 

 

The raw data for the mean relative position and velocity with the (+/-) 1-sigma standard 

deviations are summarized in Table 6.4 below.  Of note, DSN has standard deviations of 

the same magnitude as the measurement itself, with the sigma-error on the order of km by 

day 90.  Currently, there is an inter-spacecraft accuracy requirement of about 300 m [8], 

which may be tighten to 20 m or less in the future [3].  These findings suggest that it 

would be impossible to meet this requirement without Relative data cases (D/V/R and 

D/R).  DSN/VLBI could only achieve a 300 meter relative position error accuracy after a 

~83 day tracking arc.   
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Table 6.4: Summary of Mean Relative Position & Velocity with Standard Deviations 
Mean Relative Position Error (m) (+/- 1-σ ) 
days DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative 

1  
4278.9 

(+/- 2224) 
3.468 

(+/-0.113) ------ 
3.469 

(+/- 0.111) 
20  

1475 
(+/- 820.29) 

3.474 
(+/-0.063) ------ 

3.485 
(+/- 0.081) 

30  
1209.9 

(+/- 580.48) 
3.497 

(+/- 0.051) 
1.24 x 107 

(+/- 7.06 x 106) 
3.510 

(+/- 0.049) 
60  

527.01 
(+/- 286.1) 

3.629 
(+/- 0.054) 

2.15 x 105 
(+/- 1.18 x 105) 

3.631 
(+/- 0.054) 

90  
148.49 

(+/-89.641) 
3.698 

(+/- 0.049) 
17996 

(+/- 12623) 
3.698 

(+/- 0.049) 
Mean Relative Velocity Error (m/s) (+/- 1-σ ) 
days DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative 

1  
0.06618 

(+/- 0.0376) 
0.000299  

(+/- 1.53 x 10-4) ------ 
0.001447 

(+/- 9.15 x 10-4) 
20  

0.001611 
(+/-  7.62 x 10-4) 

2.55 x 10-6 
(+/- 7.21 x 10-7) ------ 

2.54 x 10-6 
(+/- 7.18 x 10-7) 

30  
8.54 x 10-4 

(+/- 3.92 x 10-4) 
2.46 x 10-6 

(+/- 2.45 x 10-7) 
2.47 

(+/- 1.304) 
2.46 x 10-6 

(+/- 2.46 x 10-7) 
60  

1.63 x 10-4 
(+/- 1.13 x 10-4) 

2.33 x 10-6 
(+/- 4.97 x 10-8) 

5.00 x 10-2 
(+/- 0.026) 

2.33 x 10-6 
(+/- 4.97x 10-8) 

90 
 

 
4.79 x 10-5 

(+/- 2.39 x 10-5) 
1.60 x 10-6 

(+/- 2.32 x 10-8) 
4.19 x 10-3 
(+/- 0.002) 

1.60 x 10-6 
(+/- 2.31x 10-8) 

 

Without biases, (denoted as "noB") and initial guess error there is a dramatic 

improvement in the already outperforming DSN/VLBI/Relative and DSN/Relative cases; 

there is an improvement in DSN as well.  Just random noise is applied on the simulation 

in this section.  Figure 6.16 is the absolute position error and shows that DSN gets as 

good as DSN/VLBI by day 65.  The Relative case errors continue to decrease rather than 

remain constant as with biases. 
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Monte Carlo Mean Absolute Position Error: 
Noise, no Bias, no Initial Guess Error

1

10

100

1000

10000

100000

1000000

10000000

1 3 5 7 10 15 20 25 30 35 37 40 45 50 55 60 65 70 75 80 85 90
Tracking Arc (days)

M
ea

n 
A

bs
ol

ut
e 

Po
si

tio
n 

Er
ro

r (
m

)

DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative

 
Figure 6.16: MC Simulation, noB, Mean Absolute Position Error 

 
 

Figure 6.17 shows a lot more correlation between the error bars of DSN and DSN/VLBI 

around day 45.  DSN/VLBI and DSN/Relative overlies from days 10-20 and then 

DSN/Relative and DSN/VLBI/Relative overlap for the rest of the time.  This is a strong 

indicator that VLBI is no longer effective once these two curves overlap.  It can also be 

inferred that VLBI no longer becomes effective once DSN decreases below DSN/VLBI. 

 

Figure 6.18 shows the mean relative position error with standard deviations.  VLBI 

appears to lose effectiveness by day 65 when the DSN curve becomes better than the 

DSN/VLBI curve.  Figures 6.19 and 6.20 show the absolute and relative velocity with 

their standard deviations. 
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Monte Carlo Mean Absolute Position Error with 1-sigma standard 
deviation error bars: Noise, no Bias, no Initial Guess Error

0.1

1

10

100

1000

10000

100000

1000000

10000000

1 3 5 7 10 15 20 25 30 35 37 40 45 50 55 60 65 70 75 80 85 90

Tracking Arc (days)

M
ea

n 
A

bs
ol

ut
e 

Po
si

tio
n 

Er
ro

r (
m

)

DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative

 
Figure 6.17: MC Simulation, noB, Mean Absolute Position Error with sigmas 

 
Monte Carlo Mean Relative Position Error with 1-sigma standard 

deviation error bars: Noise, no Bias, no Initial Guess Error
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Figure 6.18: MC Simulation, noB, Mean Relative Position Error with sigmas 
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Monte Carlo Mean Absolute Velocity Error with 1-sigma Standard 
deviation Error bars: Noise, no Bias, no Initial Guess Error
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Figure 6.19: MC Simulation, noB, Mean Absolute Velocity Error with sigmas 

 
Monte Carlo Mean Relative Velocity Error with 1-sigma standard 

deviation error bars: Noise, no Bias, no Initial Guess Error
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Figure 6.20: MC Simulation, noB, Mean Relative Velocity Error with sigmas 

 
 
Table 6.5 is a summary of the mean absolute position and velocity for the Monte Carlo 

simulation with noise and no biases.  Note that the Relative-data corrects to much larger 

than 3  over the entire tracking arc for the Mean absolute position and the errors are 
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smaller than those seen in Table 6.3.  Table 6.6 is a summary of the mean relative 

position and velocity for the Monte Carlo simulation presented in this section. 

 
Table 6.5: Summary of Mean Absolute Position & Velocity with Standard Deviations 

Mean Absolute Position Errors (m) (+/- 1-σ ) 
Day

s 
DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative 

1  
5076.3 

(+/- 1155.9) 
2246 

(+/- 1349.7 ) ------ 
4414000 

(+/- 3467000) 
20  

1717 
(+/- 773.1) 

412.63 
(+/- 336.21) 

8.14 x 105 
(+/- 9.85 x 105) 

732.7 
(+/-608.37 ) 

30  
1356.5 

(+/- 664.78) 
154.17 

(+/- 120.81) 
44549 

(+/- 33813) 
193.47 

(+/- 138.71 ) 
60  

590.8 
(+/- 287.68) 

14.471 
(+/- 12.021 ) 

844.9 
(+/- 471.73) 

14.322 
(+/- 12.103 ) 

90  
238.61 

(+/- 110.54) 

 
3.5992 

(+/- 2.1706 ) 

 
75.061 

(+/- 57.118) 

 
3.58 

(+/- 2.1834 ) 
Mean Absolute Velocity Errors (m/s) (+/- 1-σ ) 
Day

s 
DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative 

1  
0.065252 

(+/- 0.024914 ) 
0.003078 

(+/- 0.002031) ------ 
0.17008 

(+/-  0.12875) 
20  

0.001674 
(+/- 0.000748 ) 

3.24 x 10-5 
(+/- 2.52 x 10-5 ) 

0.1521 
(+/-0.15522) 

5.66 x 10-5 
(+/- 4.59 x 10-5) 

30 0.000812 
(+/- 0.000364 ) 

1.58 x 10-5 
(+/- 1.06 x 10-5 ) 

0.009395 
(+/- 0.006804) 

1.84 x 10-5 
(+/-1.33 x 10-5) 

60  
0.000175 

(+/- 8.01 x 10-5 ) 
2.48 x 10-6 

(+/- 1.69 x 10-6) 
0.000195 

(+/- 0.000117) 
2.48 x 10-6 

(+/- 1.69 x 10-6) 
90  

4.49 x 10-5 
(+/- 2.26 x 10-5 ) 

8.25E-07 
(+/- 5.20E-07) 

1.47 x 10-5 
(+/- 1.00 x 10-5) 

8.23 x 10-7 
(+/- 5.23 x 10-7) 
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Table 6.6: Summary of Mean Relative Position & Velocity with Standard Deviations 
Mean Relative Position Errors (m) (+/- 1-σ ) 
days DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative 

1 
3595.6 

(+/- 1430.6 ) 

 
0.16899 

(+/- 0.0584 ) ------ 
0.17643 

(+/- 0.055822) 
20 

1449.1 
(+/- 767.26) 

 
0.096109 

(+/-0.043723 ) 
6.31 x 105 

(+/-8.54 x 105 ) 
0.10383 

(+/- 0.050238) 
30  

1197.8 
(+/- 659.26 ) 

 
0.078791 

(+/0.027683 ) 
36700 

(+/-27589 ) 
0.081075 

(+/- 0.02763 ) 
60  

503.98 
(+/- 327.69 ) 

 
0.065993 

(+/- 0.028862) 
699.78 

(+/- 487.49) 
0.065739 

(+/- 0.029286) 
90 

239.51 
(+/- 150.56) 

 
0.057915 

(+/- 0.026587) 
76.138 

(+/- 59.561 ) 
0.057976 

(+/- 0.02658) 
Mean Relative Velocity Errors (m/s) (+/- 1-σ ) 
days DSN/VLBI DSN/VLBI/Relative DSN DSN/Relative 

1 
0.062469 

(+/- 0.032609 ) 

 
0.00029989 

(+/- 0.00014873 ) ------ 
0.001255 

(+/- 0.000961) 
20 

0.001732 
(+/- 0.00102 ) 

 
9.51x 10-7 

(+/-5.21 x 10-7 ) 
0.14373 

(+/- 0.16548) 
9.47x 10-7 

(+/-5.18 x 10-7) 
30 

0.000816 
(+/- 0.000461) 

 
3.49 x 10-7 

(+/-1.67 x 10-7 ) 
0.009325 

(+/- 0.007134) 
3.49 x 10-7 

(+/- 1.67 x 10-7) 
60 

0.00018 
(+/- 9.97 x 10-5 ) 

 
7.80 x 10-8 

(+/- 3.69 x 10-8) 
0.000195 

(+/- 0.000121) 
7.81 x 10-8 

(+/- 3.69 x 10-8) 
90 

4.81 x 10-5 
(+/- 2.82 x 10-5 ) 

3.32 x 10-8 
(+/- 1.47 x 10-8) 

1.59 x 10-5 
(+/- 1.33 x 10-5 ) 

 
3.32 x 10-8 

(+/- 1.47 x 10-8) 
 

The next two figures predict the effect that increasing the number of measurements per 

day from 1 to 3 would have on each case.  A Monte Carlo dataset was collected for 1 and 

3 measurements per day at day 20 with noise and bias and no initial guess errors to 

determine if more frequent measurements better the OD.  Figure 6.21 shows the absolute 

position error, indicating an error reduction by hundreds of meters for most cases.  The 

least improvement is seen on the DSN/VLBI/Relative case.  The greatest improvement is 

on DSN.  The standard deviation bars are also plotted on the columns and the standard 
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deviation remains comparable for all the cases except DSN/VLBI/Relative in which it 

decreases for three measurements per day. 

Frequency of Measurements Comparison: Absolute Position Error
Monte Carlo noise, Bias, no initial guess error at 20 days
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Figure 6.21: Frequency of Measurements, Absolute Position Error 

 
In Figure 6.22, increasing the measurements per day for mean relative position error has 

very little effect on the Relative cases, as both bars are nearly equal in value for 

DSN/VLBI/Relative and DSN/Relative.  There is also insignificant standard deviation in 

both columns.  However, for the non-Relative cases, there is a decrease in error with the 

increased measurement availability. 
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Frequency of Measurements Comparison: Relative Position Error 
Monte Carlo noise, Bias, no initial guess error at 20 days

1820.17
1043.24

3.465 3.462

1207920.64
643893.77

3.474 3.478

1

10

100

1000

10000

100000

1000000

10000000

M
ea

n 
R

el
at

iv
e 

Po
si

tio
n 

Er
ro

r w
ith

 S
ta

nd
ar

d 
D

ev
ia

tio
ns

 
(m

)  
lo

g-
y

D/V_1 D/V_3 D/V/R_1 D/V/R_3 D_1 D_3 D/R_1 D/R_3

 
Figure 6.22: Frequency of Measurements, Relative Position Error 

 

 

6.4. Discussion of Results 

 

Summary comparisons of the Monte Carlo runs are exhibited in the following bar graphs.  

Additional comments will be made concerning various requirement and constraints.  

Figure 6.23 illustrates how many days it takes each case to get to an absolute position 

accuracy of 1 kilometer for both Monte Carlo runs.  Linear interpolation was used to 

determine exactly when each case would reach 1 kilometer.  Without biases ("noB"), all 

cases reduce to 1 kilometer error sooner than with biases ("NB").  There is only a slight 

improvement for DSN/VLBI and the Relative cases.  DSN however, improves greatly, 

though this can be attributed to no initial guess error since DSN was shown to handle 

biases quite well.  Note that for the Monte Carlo Noise/Bias Run, the DSN-only case 

never achieved an error as low as 1 kilometer.  In order to obtain the projected 99.63 day 
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bar, linear interpolation was applied to best estimate when this would be achieved beyond 

the 90 day commissioning period. 

 
Monte Carlo: Days Until Reach 1 Kilometer in Absolute Position 

Error
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Figure 6.23: Summary Chart of Days Until Absolute Position Error Equals 1 Kilometer  
 

For relative position error, only the Relative cases (DSN/VLBI/Relative and 

DSN/Relative) are capable of achieving an accuracy of < 20 meters in the 90 day time 

period.  Figure 6.24 illustrates how many days it takes to obtain a relative position 

accuracy of the less stringent 300 meters for both Monte Carlo runs.  Again linear 

interpolation was used and some values are projected beyond the 90 day period.  Within 1 

day, both DSN/VLBI/Relative and DSN/Relative are less than 300 meters. 
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Monte Carlo: Days Until Reach 300 Meters in Relative Position 
Error
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Figure 6.24: Summary Chart of Days Until Relative Position Error Equals 300 meters 
  

 
A current requirement is that the LISA spacecraft radius, or semi-major axis should be 

between 0.9 AU ( = 1.346 x 1011 m) and 1.1 AU (= 1.646 x 1011  m) [8].  This constraint 

is met as each LISA for all cases stays within 2.83 x 108 m of the nominal semi-major 

axis.  There is currently a more stringent requirement on the period, such that each LISA 

should be within 38 second of nominal heliocentric period before beginning drag free 

science operations [8].  Since the period is related to the semi-major axis (i.e. P = 

2π* µ
3a ), the semi-major axis must be controlled to < 60 kilometers of the desired.  

The prior stated 2.83 x 108 m difference from the nominal semi-major axis translates to a 

1.04 day maximum period difference.  Since LISA’s orbital period is one year, this 

period difference is merely 0.284% of the nominal period.  Curiously, the earlier stated 

constraint of the semi-major axis being between 0.9 AU and 1.1 AU translates into a 

much larger period offset of 53-56 days of the nominal, or a 14.6%-15.4% error.  This 
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simulation achieved semi-major axis within the loose constraint, while the periods were 

different by up to one day.  Future work must investigate closing the gap on the tight 

period requirement through the use of ∆V maneuvers prior to dropping the propulsion 

modules.  

 
 
Parameter uncertainties decrease with increasing time as is evidenced by Figure 6.25, 

which shows the parameter uncertainty of the DSN/VLBI/Relative case for all three 

LISA spacecraft and all three position components.  The Z-component, or the cross-track 

axis of the satellite RSW system for all three spacecraft, remains the most uncertain (the 

top three lines of the Figure 6.25) in low declination orbits.  The Y- or along-track 

components are the middle three lines, while the X- or radial components are the bottom 

three lines.  A longer tracking arc ensures more certainty in all components. 

DSN/VLBI/Relative Mean Parameter Uncertainty for All LISA 
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Figure 6.25: MC (NB) Parameter Uncertainty of LISA 1 position-components 
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The parameter uncertainties (PU) and the mean estimated state ( )ˆ(Xmean ) at day = 7 for 

the Monte Carlo (Noise, Bias) case are listed in Table 6.7. 

 

Table 6.7: Parameter Uncertainties (PU) for DSN/VLBI/Relative Case at day 7 
 LISA 1 LISA 2 LISA 3 
 )ˆ( 1Xmean  +/- PU 1 )ˆ( 2Xmean +/- PU 2 )ˆ( 3Xmean  +/- PU 3 

X  
(m) 

 
5.440 

 
32.411 

 
2.488 x 109 

 
47.786 

 
-2.488 x 109 

 
35.773 

Y  
(m) 

 
1.481 x 1011 

 
198.210 

 
1.503 x 1011 

 
260.680 

 
1.503 x 1011 

 
177.120 

Z 
 (m) 

 
2.476 x 109 

 
286.950 

 
-1.292 x 109 

 
381.750 

 
-1.292 x 109 

 
261.200 

X&  
(m/s) 

 
-3.007 x 104 

 
3.592 x 10-5 

 
-2.964 x 104 

 
4.701 x 10-5 

 
-2.964 x 104 

 
3.327 x 10-5 

Y&  
 

(m/s) 

 
3.333 x 10-6 

 
2.194 x 10-5 

 
2.476 x 102 

 
3.170 x 10-5 

 
-2.476 x 102 

 
2.269 x 10-5 

Z&  
(m/s) 

 
3.624 x 10-6 

 
3.965 x 10-5 

 
4.269 x 102 

 
5.454 x 10-5 

 
-4.269 x 102 

 
3.851 x 10-5 
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Chapter 7:  Conclusion  

 

 

This thesis has studied the Orbit Determination (OD) problem for the proposed Laser 

Interferometer Space Antenna (LISA) mission in which three satellites in heliocentric 

orbit must maintain a triangular formation.  This work investigated the impact of 

augmenting traditional Earth-based DSN and VLBI OD data with inter-spacecraft range 

and range rate (also termed "Relative" data) measurements available for the LISA 

mission.  A weighted batch least squares algorithm was used to estimate spacecraft 

orbital parameters from four test combinations of measurement types: 1) DSN and VLBI, 

2) DSN, VLBI and Relative, 3) DSN only, and 4) DSN and Relative.  An extensive set of 

simulation-based experiments were conducted to study OD accuracy statistics.  The two 

main modes of analysis to compare the test cases were the Covariance and Monte Carlo 

methods. 

 

Very Long Baseline Interferometry (VLBI) has been shown to improve initial data 

quality, particularly when DSN is the only other measurement available.  However, when 

applied with a noise of 50 nrad, VLBI becomes obsolete after a certain amount of time 

since long arcs of range and Doppler data can provide angular position accuracy of 40 

nrad or better [41].  Though VLBI or some type of angle data is helpful initially, LISA 

passes through zero declination and has periods of poor observability over the course of 

its orbit.  LISA needs a longer Doppler arc, or tracking must be supplemented with an 
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alternative technique for measuring angles to become observable.  VLBI gives orientation 

to the range measurement when Doppler is not good initially.   

 

More measurements per day were found to improve the absolute position accuracy.  

Given LISA’s distance from the Earth, its orbital period of one year, and LISA unique 

geometry with respect to Earth, a sufficient tracking arc length tells more about the 

spacecraft than denser data.  Future work would be needed to investigate the concept of 

more frequent data further.  Confidence in the answer also improves with longer tracking 

arcs.  Parameter uncertainties and standard deviations in the covariance matrix diagonals 

associated with each element of position and velocity as well as standard deviations 

associated with measured errors (i.e. absolute position and relative error) all decrease 

with an increasing tracking arc. 

 

The most major finding of this work is that Relative data is worth including to improve 

not only the relative knowledge of the spacecraft, but also for absolute position and 

velocity OD as well.  There was a greater than expected 3  improvement seen for 

absolute OD accuracy for the cases with Relative data.  VLBI is also worth incorporating 

as it does a better job initially of tracking LISA in its low declination orbit.  After about 

20-35 days, VLBI can be reallocated to other assets, and the tracking can rely on DSN 

and Relative data without loss of accuracy.  DSN-only needs a 20 day tracking arc with a 

good initial guess; if the initial guess is off by more than 1 km, a 30-35 tracking arc is 

needed.  The other cases could correct for initial guess errors up to 10 km, though no 

check was done on the upper limit.  Noises in the measurements are filtered out with a 
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sufficiently long tracking arc, but the biases are constant.  The biases affected the 

Relative data more than the non-Relative, which points to a need for the calibration and 

the subtraction of known biases for better results. 

 

The current inter-spacecraft accuracy requirement of 300 m may be tightened in the 

future to an accuracy of 20 m or less.  DSN/VLBI can barely make that requirement until 

85 days of tracking.  If the requirement were more stringent, then only the Relative are 

capable of achieving that level of accuracy.  The semi-major axis constraint is met by all 

cases, but the more stringent 38 second period error constraint prior to propulsion module 

drop-off is still harder to achieve.  This simulation estimates error to be within one day of 

the nominal period. 

 

The overall best case from this study is DSN/VLBI/Relative, i.e. using all available 

measurements, including the very crucial inter-spacecraft range and range rate.  After 7 

days of tracking LISA, DSN/VLBI/Relative is already achieves below one kilometer 

absolute OD accuracy and less than 3.5 meters in relative OD error. 

 

 

7.1. Future Work 

 

Future work would include simulating a more realistic model of LISA.  The perturbations 

of planets would need to be added for a more complete and accurate force model of LISA 

in its space environment.  The nominal orbit of Dhurandhar [18], who did substantial 



 

 153

work with the Clohessy-Wiltshire equations on the unique +/- 60 degree tilt of the LISA 

orbit in a perturbed environment, would most likely be used.  The rotation of Earth and 

the tracking station location on Earth's surface would also have to be modeled.  In 

particular, case studies are required that use the location of specific tracking stations, 

their visibility of the spacecraft, and sensors that will actually be used.  Even more 

specific simulations would include trade studies to determine which sensors are best, the 

choice of a Deep Space Station antenna(s) to be used, VLBI antennas, and the selection 

of the quasar to be used as a reference for angular measurements. 

 

More investigation over the ideal amount of measurements per day could be conducted.  

It as found that for this orbit increasing the number of measurements to three per day 

does improve the absolute OD accuracy and to a lesser degree the relative OD at 20 days.  

However, could the accuracy stay the same for skipping days?  For example, consider a 

three-day rotation where LISA 1 is tracked once per day on day 1, LISA 2 on day 2, etc.  

The data combination of DSN/VLBI/Relative was found to be the best; however, angle 

data becomes ineffective after 20-35 days.  Further combinations that switch data types 

on and off when they are or are not effective could be investigated to see if the results are 

as accurate as the DSN/VLBI/Relative case.  For example, using DSN/VLBI/Relative at 

the beginning and then turning off VLBI to just rely on DSN/Relative when the angles 

are no longer effective would be an intuitive choice.   

 

Cost related studies are also a spin-off of this thesis.  The practical implication of using 

different measurements as a function of cost can be studied, a total of six measurement 
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types (range, range rate, right ascension, declination, inter-spacecraft range and range 

rate) were used here.  The potential cost savings of turning VLBI off when no longer 

effective could be investigated, since this data type requires two antennas on Earth to 

obtain its measurements.  The possibility of using less DSN and relying more on VLBI 

and inter-spacecraft data is also of interest, since the current configuration of DSN is 

struggling to support the deep space communications demands of the coming decades.  

However, VLBI could potentially pose an advantage over DSN since it uses two smaller 

antennas rather than a larger single antenna, which saves in operating and production 

costs [42]. 

 

Further work with weighting the data, using less or more noise and different biases also 

could help understand other nuances of this problem, the measurements, and how the 

error sources interact.  Biases were found to have a greater effect on the relative data, 

therefore, estimating biases and working to better calibrate these biases in the instruments 

could improve OD.    

 

The 90 day time period of the close to nominal commissioning period was used as the 

thesis benchmark.  Future work could also include looking at other specific OD events 

around the three month time period such as when the propulsion module drop-off and 

will "kick" the spacecraft, and how long it will take to return back to the nominal orbit 

after that disturbance.  The ideal tracking arcs should be determined before and after 

propulsion module drop-off.  Lastly, the use of Relative i.e. inter-spacecraft data types 

could be very beneficial to future constellation missions as a method to get increased OD 
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accuracy, which is an improvement that cannot be done by Earth-based tracking alone.  

Better OD accuracy and navigation means better science and mission success.    
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Appendices 
 

 
Appendix A:  Supporting Calculations 
 
 
Newton's Law of Gravitation:  
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and the mass, m2 of any LISA spacecraft is negligible compared to the larger mass (i.e. 
Earth, Jupiter and the Sun in this case).  The laws of sines and cosines were used to find 
the distances between the spacecraft and the planetary body. 
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where, the distance of LISA to the Sun is: rSL= 1 Astronomical Unit =  
1 AU = 149,597,870 km 

 
 

• Force of Earth on LISA: 
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where, the distance of the closest LISA from the Earth is: rEL= 49,068,043.6708 km 
 

• Force of Jupiter on LISA: 
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where Jupiter at closest approach to Sun is 740 million km, and the furthest 
configuration of LISA from the Sun is 152,484,621.346 km. 

 
Compared to the Sun, the force of Earth on LISA is 0.00279 % and the force of Jupiter on 
LISA is 0.006%.
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Appendix B:  MATLAB CODES 
 
 
Table of Contents 
 
Orb2X2.m ……………………………………………………………………………158 
-This script transforms a set of Keplerian orbital elements to Cartesian format. 
 
X2Orb.m ……..………………………………………………………………………160 
-This script transforms a set of Cartesian elements to Keplerian orbital elements. 
 
LISA_EOMderivs.m  ………………………………………………………………..164 
-Propagates the input state using the equations of motion. 
 
NomOrb.m  …………………………………………………………………………. 164 
-Determines a nominal trajectory from Steve Hughes initial states.  This script generates 
the ephemeris for one year by using the equations of motion. 
 
LISA_STMderivs.m  ………………………………………………………………...166 
-Maps the state transition matrix to each time in the propagation 
 
H_partials.m  ……………………………………………..………………………… 167 
-This program presents the partials of the observation-state mapping matrix for each 
element for each state component. 
 
RealObs.m …………………………………………………………………………...171 
-Calculates the Earth-based observations (range, range rate, right ascension and 
declination) at each measurement time, it also simulates the "observed" measurements 
by including noises and biases. 
 
InterSCD.m  …………………………………………………………………………174 
-Calculates the inter-spacecraft observations (inter-spacecraft range and range rate) at 
each measurement time, it also simulates the "observed" measurements by including 
noises and biases. 
 
LISA_WBLS.m  ……………………………………………………………………. 176 
-This program is the weighted batch least squares algorithm for each of the four cases. 
 
MCRUNbp.m  ……………………………………………………………………… 188 
-This program calls LISA_WBLS.m and runs the Monte Carlo simulation and computes 
relevant statistics. 
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Appendix B:  MATLAB CODES 
 
Orb2X2.m (from Section 5.2.2.The Nominal Orbit) 
function [R, V] = Orb2X2(Ephem, t, mu, type) 
%*********************************************************** 
% 
%INPUT: Ephem1 = [a e i Om w tau], the six classical orbital elements 
%          [semi-major axis, eccentricity, inclination, longitude of the 
%          ascending node, argument of periapsis, time of periapsis] 
% 
%       Ephem2 = [a e i Om w nu], the six classical orbital elements 
%          [semi-major axis, eccentricity, inclination, longitude of the 
%          ascending node, argument of periapsis, true anomaly] 
%         
%       Ephem3 = [a e i Om ~omega L] 
%           ~omega = longitude of perhelion 
%           L = mean longitude 
% 
%       Ephem4 = [a e i Om w M], the six classical orbital elements 
%          [semi-major axis, eccentricity, inclination, longitude of the 
%          ascending node, argument of periapsis, mean anomaly] 
% 
%       t = time of epoch associated with the particular ephemeris 
%       mu = gravitational parameter 
%       type = 1 = Program uses Ephem1 as input 
%            = 2 = Program uses Ephem2 
%            = 3 = Program uses Ephem3 
%            = 4 = Program uses Ephem4 
% 
%OUTPUT : R - Position Vector 
%         V - Velocity Vector 
% 
%CALLS : newton_meth.m, succ_sub_hyperbola.m 
% 
%Ephem2 = [149578965033 .01034342962 1.023240970 212.7394780 
%90.76228189 136.5015274];[R, V] = Orb2X2(Ephem2, 
%2.456262500000000e+006, 389600.4415, 2) 

% 
%mu =4*(pi^2);t=.010576712; [R, V] = Orb2X(Ephem,t, mu) 
%REFERENCE: Equations from Battin(pp. 123-125), Tolson, Chobotov 
%Ephem = [6828973.232519 .0090173388450585 28.474011884869  
%35.911822759495 -44.55584705279 43.8860381032208] 
%*********************************************************** 
%***INITIALIZATION***************************************** 
if nargin < 4 
    type = 1 %assume type 1 ephemeris inputs 
end 
  
if nargin < 3 
    mu = 3.9860044e5 %km^3/s^2, assume gravitational parameter of the 
Earth 
end 
  
r2d = 180/pi; 
d2r = pi/180; 
  
%*********************************************************** 
a = Ephem(1); %semi-major axis (usu. m/s or km/s) 
  
if a > 0 
    disp('elliptic orbit') 
elseif a < 0 
    disp('hyperbolic orbit') 
else %z = 1/a = 0 
    disp('parabolic orbit') 
end 
e = Ephem(2); %eccentricity (unitless) 
i = Ephem(3)*d2r; %inclination, from deg. to radians 
Om = Ephem(4)*d2r; %Right Ascension of the Ascending Node, from deg. 
%to radians 
if type ~= 3 %thus type 1, 2, or 4 
    w = Ephem(5)*d2r; %argument of periapsis, from deg. to radians 
    w_bar = Om + w; %longitude of periapsis = argument of periapsis - 
%longitude of the ascending node (radians) 
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elseif type == 3 
    w_bar = Ephem(5)*d2r; %longitude of perihelion 
    w = w_bar - Om; %argument of periapsis 
end 
  
if e == 0 %circular orbit, no periapsis 
    w_bar = NaN; %undefined 
end 
  
if e < 1 
    mean_mo = sqrt(mu/a^3); %mean motion 
elseif e > 1 
    mean_mo = sqrt((-1*mu)/a^3); %mean motion 
else %e == 1 
    p = a*(1-e^2); %semi-latus rectum 
    mean_mo = sqrt(mu/p^3); %mean motion 
end 
  
p = a*(1-e^2); %semi-latus rectum 
  
%***Solve Kepler's equation for the Eccentric anomalies for type 1 and 3 
tol=1e-10; 
  
if type == 1 
    tau = Ephem(6); %This Ephemeris uses the time of perapsis passage as 
%the 6th element 
  
    %Find Mean Anomaly 
    ep = w_bar - (mean_mo*tau); %the mean longitude at epoch time t=0 
    M = (mean_mo * t) + ep - w_bar; 
  
else type == 3 
    L = Ephem(6)*d2r; 
    M = L - w_bar; 
    tau = t - (M/mean_mo); 
  
    if e < 1 %ellipse, solve Kepler's equation for E, Eccentric Anomaly 

        %Newton's iteration method.  Call to file "newton_meth.m" 
        [E,its] = newton_meth(e,M,tol); 
        E 
        nu = 2*atan(sqrt((1+e)/(1-e))*tan(E/2)); %radians 
    elseif e > 1  %hyperbola, solve Kepler's equation for a hyperbola for F 
        %Successive Subsitution method, call "Succ_sub_hyperbola.m" 
        [F,its] = succ_sub_hyperbola; 
        F 
    else %e == 1  %parabola 
        P = 0  %NO Eccentric Anomaly for Parabolic case 
    end 
end 
  
if type == 4 
    M = Ephem(6)*d2r 
    tau = t - (M/mean_mo) 
    if e < 1 %ellipse, solve Kepler's equation for E, Eccentric Anomaly 
        %Newton's iteration method.  Call to file "newton_meth.m" 
        [E,its] = newton_meth(e,M,tol); 
        E 
        nu = 2*atan(sqrt((1+e)/(1-e))*tan(E/2)); %radians 
    elseif e > 1  %hyperbola, solve Kepler's equation for a hyperbola for F 
        %Successive Subsitution method, call "Succ_sub_hyperbola.m" 
        [F,its] = succ_sub_hyperbola; 
        F 
    else %e == 1  %parabola 
        P = 0  %NO Eccentric Anomaly for Parabolic case 
    end 
  
end 
  
%Solve for true anomaly 
%if type == 1|3 
%   nu = 2*atan(sqrt((1+e)/(1-e))*tan(E/2)); %radians 
%end 
  
%***Find the ECCENTRIC and MEAN ANOMALIES for type 2 
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if type == 2 
    nu = Ephem(6)*d2r; %Otherwise the 6th element is the true anomaly, 
convert input into radians 
    if e < 1 
        cE = (e + cos(nu))/(1+(e*cos(nu))); 
        sE = (sqrt(1-e^2)*sin(nu))/(1+e*cos(nu)); 
        E = atan2(sE,cE) 
        M = E - e*sin(E); 
    elseif e > 1 
        cF = (e + cos(nu))/(1+(e*cos(nu))); 
        sF = (sqrt(e^2-1)*sin(nu))/(1+e*cos(nu)); 
        F = atan2(sF,cF) 
        M = e*sinh(F)-F; 
    else %e==1 
        P = 0; 
        M = (1/2)*tan(nu/2) + (1/6)*(tan(nu/2)^3); 
    end 
end 
  
%ML = w_bar + M; %mean longitude 
  
%M = ML - L; %Mean anomaly 
  
%***CALCULATE POSITION (R) & VELOCITY (V)************ 
if e < 1 
    rmag = a*(1-e*cos(E));     %magnitude position for an ellipse 
elseif e > 1 
    rmag = a*(1-e*cosh(F));    %magnitude position for a hyperbola 
else % e==0 
    rmag = (p/2)*(sec(nu/2)^2);%magnitude position for a parabola 
end 
  
theta = (w + nu);       %argument of latitude = (w + nu) in radians 
  
sN = sin(Om); 
cN = cos(Om); 
sT = sin(theta); 

cT = cos(theta); 
si = sin(i); 
ci = cos(i); 
sw = sin(w); 
cw = cos(w); 
%position vector 
R = [rmag*((cT*cN)-(sT*sN*ci)); rmag*((cT*sN)+(sT*cN*ci)); 
rmag*(sT*si)]; 
  
h = sqrt(mu*p);              %angular momentum scalar 
mu_h = mu/h;  
%velocity vector 
V = [-mu_h*((cN*(sT + e*sw)) + (sN*(cT + e*cw)*ci));... 
    (-mu_h*((sN*(sT + e*sw))-(cN*(cT + e*cw)*ci))); (mu_h*((cT + 
e*cw)*si))]; 
 
 
 
 
X2Orb.m (from Section 5.2.2. The Nominal Orbit)     
 
function [E] = X2Orb(R, V, t, mu) 
%*********************************************************** 
%function [Ephem, Ephem_2, Misc, E] = X2Orb(R, V, t, mu) 
% 
%Function to obtain the six orbital elements plus some other orbital 
%information from an inputted position and velocity vector. 
% 
%INPUTS : R = Position Vector (m) 
%         V = Velocity Vector (m/sec) 
%         t = epoch time of inputted R and V vector (sec) 
%         mu = inputted gravitational parameter (m/sec^3) 
% 
%OUTPUTS : Can customize to read out different sets of elements. 
%          Ephem = [a e i Om w tau], the six classical orbital elements 
%               [semi-major axis, eccentricity, inclination, longitude of the 
%               ascending node, argument of periapsis, time of periapsis] in 
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%               deg, time and length units 
%          Ephem_2 = [f(True anomaly), M(Mean anomaly), ... 
%               w_bar_true(true longitude of periapsis),... 
%               w_bar(longitude of periapsis), ... 
%               uo(argument of latitude at epoch), lo(true longitude at epoch)] 
%          Misc = [h(angular momentum), p(semi-latus rectum), ra(apoapsis), 
%rp(periapsis),... 
%               Period], extra quantities to display 
%          E = [a e i w Om M f Period] 
% 
%REFERENCE: Equations from (1)"Fundamental of Astrodynamics" by 
%Bate, Mueller 
% & White and Battin; (2)"Statistical Orbit Determination" by Byron 
Tapley et. 
% al.; (3)"Orbital Mechanics" Chobotov (4) Vallado, ELORB algorithm 
% pp.146-147 
%***********************************************************  
%INITIALIZATION 
if nargin < 4 
    mu = (1.32712428e20); %m3/s2, Sun's gravitational parameter; 
%1.327124e11*(1000^3); %m3/s2, Sun's gravitational parameter 
    %mu = 3.9860044e5*(1000^3) %m^3/s^2, assume gravitational 
%parameter of the Earth 
    %error('Must pass in at least R,V, t and mu. Type "help X2Orb" for more 
%information.'); 
end 
  
rmag = norm(R); %magnitude of position vector 
vmag = norm(V); %magnitude of velocity vector 
  
r2d = 180/pi; %conversion from radians to degrees 
d2r = pi/180; %conversion from degrees to radians 
  
%ANGULAR MOMENTUM VECTOR, hvec 
hvec = cross(R,V); %hvec is perpendicular to the plane of the orbit 
  
hx = (R(2)*V(3)) - (V(2)*R(3)); %the x,y,z,xy components of the h vector 

hy = (R(3)*V(1)) - (V(3)*R(1)); 
hz = (R(1)*V(2)) - (V(1)*R(2)); 
hxy = (hx^2 + hy^2)^(1/2); 
  
h = norm(hvec);      %the scalar of the h vector 
  
%NODE VECTOR, nvec, pointing along the line of nodes in the direction 
%of the ascending node 
kvec =[0 0 1]; %k-vector 
nvec = cross(kvec, hvec); %node vector 
n = norm(nvec); %node 
  
W = cross(R,V)./norm(cross(R,V)); 
W_check = hvec./norm(hvec); 
%ECCENTRICITY VECTOR, evec, points from focus of orbit to the 
%periapsis 
evec = (1/mu)*(((vmag^2 - (mu/rmag))*R) - ((dot(R,V))*V)); 
e = norm(evec); 
 Vs = dot(V,V); 
vs2 = vmag^2; 
Energy = (Vs/2) - (mu/rmag) ;    %Vis-Viva Equation 
  
evec_check = cross(V,(hvec./mu)) - (R./rmag); 
e_check = (1 + ((2*Energy*h^2)/mu^2))^(1/2); 
  
%SEMI-LATUS RECTUM & SEMI-MAJOR AXIS 
if e~= 0 
a = -mu/(2*Energy); %semi-major axis 
p = a*(1-e^2); %semi-latus rectum 
  
rp = p/(1+e); %periapsis 
ra = p/(1-e); %apoapsis 
a_check = (rp + ra)/2; 
  
a_check2 = 1/((2/rmag)-(vmag^2/mu)); 
  
else 
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  a = inf; % semi-major axis equals infinity  
  p = h^2/mu;%semi-latus rectum 
end 
  
%PERIOD 
Period = ((2*pi)*(a^(3/2)))/(sqrt(mu)); %seconds 
Period_check = ((2*pi)*(a_check^(3/2)))/(sqrt(mu)); 
  
%INCLINATION, i 
i = acos(dot(hvec,kvec)/h)*r2d; %all 3 methods should yield same value 
i_check = acos(hz/h)*r2d; 
i_check2 = acos(dot(W,kvec))*r2d; 
  
if i <= 90;  
    disp('direct, easterly orbit, inclination between 0 and 90 deg'); 
elseif i <= 180; 
    disp('retrograde orbit, inclination is between 90 and 180 deg.'); 
else %i>180, %inclination is always less than 180 deg. 
    disp('error, i is always less than 180 deg.'); 
end 
  
%LONGITUDE OF THE ASCENDING NODE, Om 
ivec = [1 0 0]; 
N = (cross(kvec,W))./norm(cross(kvec,W));  
nvec(2); 
if nvec(2) < 0 %if the jth element of the node vector is < 0 then Om = 
360deg - Om 
    Om_pre = acos(nvec(1)/n)*r2d; 
    Om = 360 - Om_pre; 
else 
   Om = acos(nvec(1)/n)*r2d; 
end 
  
%TIME OF PERIAPSIS 
z = 1/a; 
if z > 0 
    %elliptical case 

    mean_mo = sqrt(mu*z^3); 
    cE = inv(e)*(1-z*rmag); 
    sE = z^2*(dot(R,V))/(mean_mo*e); 
    E = atan2(sE,cE); 
    M = (E - (e*sin(E)))*r2d; 
    M_check = (E - (e_check*sin(E)))*r2d; 
    tau = t -(E - e*sin(E))/mean_mo; 
    tau_check = t - (M_check*d2r)/mean_mo; 
elseif z < 0, 
    %hyperbolic case 
    mean_mo = sqrt(mu*-z^3); 
    cE = inv(e)*(1-z*rmag); 
    sE = z^2*(dot(R,V))/(mean_mo*e); 
    E1 = asinh(sE); 
    E2 = acosh(cE); 
    E = E2; 
    if E1 < 0, E = -E2; end 
    tau = t -(e*sinh(E) - E)/mean_mo;     
else % z == 0 
    %parabolic case 
    mean_mo = sqrt(mu/p^3); 
    cE = p/rmag - 1; 
    sE = (dot(R,V))/rmag*sqrt(p/mu); 
    E = atan2(sE,cE); 
    tau = t -((tan(E/2)^3)/6 +tan(E/2)/2)/mean_mo; 
end 
%M 
%The following 3 elements (nu, uo, lo) can be substituted for tau 
  
%TRUE ANOMALY, the angle in satellite's orbit plane between periapsis 
%and satellite's position at a particular epoch, to  
  
if dot(R,V) < 0, %if the dot product of R and V is greater than 0, then the 
true anomaly should be less than 180 deg. 
    fpre = acos((dot(evec,R))/(e*rmag)) *r2d; 
    f = 360 - fpre; 
else  
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    f = acos((dot(evec,R))/(e*rmag)) *r2d; 
end 
  
%ARGUMENT OF PERIAPSIS, w 
if e == 0, %circular orbit, no periapsis 
    w = undefined; 
end 
  
if evec(3) < 0,  %if the kth element of the eccentricity vector is >0 then w is 
%<180 deg. 
    wpre = acos((dot(nvec,evec))/(n*e))*r2d; 
    w = 360 - wpre; 
else 
    w = acos((dot(nvec,evec))/(n*e))*r2d; 
end 
  
%LONGITUDE OF PERIAPSIS, w_bar, can be substituted for w 
w_bar = Om + w; 
  
if e == 0, %circular orbit, no periapsis 
    w_bar = undefined; 
end 
  
%TRUE LONGITUDE OF PERIAPSIS, w_bar_true 
if evec(2) < 0 
    w_bar_true_pre = acos(evec(1)/e)*r2d; 
    w_bar_true = 360 - w_bar_true_pre; 
else 
    w_bar_true = acos(evec(1)/e)*r2d; 
end 
  
%ARGUMENT OF LATITUDE, uo, the angle between nvec and R at 
%epoch, to 
if R(3) < 0, %if the kth element of the position vector is < 0, then uo is < 
180 deg. 
    uo_pre = acos((dot(nvec,R))/(n*rmag)) *r2d; % = w + nu 
    uo = 360 - uo_pre; 

else 
    uo = acos((dot(nvec,R))/(n*rmag)) *r2d ;% = w + nu 
end 
  
%TRUE LONGITUDE, lo, the angle between I and ro(the radius vector to 
%the satellite at epoch, to), measured eastward to the ascending node if it 
%exists and then in the orbital plane to ro. If Om, w, and f are all 
%defined then lo. 
  
if Om == NaN, %equatorial orbit 
    lo = w_bar + f; 
elseif w == NaN, %circular orbit 
    lo = Om + uo; 
else 
    lo = acos(R(1)/rmag)*r2d; 
    if R(2) < 0 
        lo_pre = acos(R(1)/rmag)*r2d; 
        lo = 360 - lo_pre; 
    end 
end 
  
format long e 
%***OPTIONAL EPHMERIDES TO DISPLAY*********************  
%disp('Ephem = [a e i Om w tau]');  
%Ephem = [a e i Om w tau]; 
%disp('Ephem_2 = [f(True anomaly), M(Mean anomaly), w_bar_true(true 
%longitude of periapsis), w_bar(longitude of periapsis),uo(argument of 
%latitude at epoch), lo(true longitude at epoch)]'); 
%Ephem_2 = [f M w_bar_true w_bar uo lo]; 
%disp('Misc =[h(angular momentum), p(semi-latus rectum), ra(apoapsis), 
%rp(periapsis),Period]') 
%Misc = [h, p, ra, rp, Period]; 
disp('Ephemeris = [a e i Om w M f Period]') 
E = [a e i Om w M f Period]; 
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LISA_EOMderivs.m (from Section 5.2.2. The Nominal Orbit)     
 
function Xdot = LISA_EOMderivs(t, X) 
%*********************************************************** 
%Xdot = LISA_EOMderivs(t, X) 
% 
%Simulate the orbits of 3 sun-orbiting LISA spacecraft with the given intial 
conditions  
%using the Equation of Motion(EOM).  EOM = -(mue/(norm(r))^3).*r 
% 
%INPUT:  X = initial state of the orbit =  
%        [S/C #1 position & velocity, S/C #2 position & velocity, S/C #3 
position & velocity, 
%        Tracking Station Position & Velocity] in 3-D (1 x 24)  
%        t = initial time 
% 
%OUTPUT: Xdot = the derivative of the inputted state = 
%        Xdot = [rdot_1; rddot_1; rdot_2; rddot_2; rdot_3; rddot_3; rdot_rts; 
%rddot_rts]  
% 
%Command Window: [t, X] =ode45('LISA_EOMderivs', timespan, XO, 
%odeset('RelTol', 1e-12,'AbsTol',1e-12)); 
%*********************************************************** 
  
mus = (1.32712428e20); %m3/s2, Sun's gravitational parameter 
  
r1 = X(1:3); %m, LISA spacecraft #1 location 
rmag_1 = norm(r1); 
rdot_1 = X(4:6); %m/sec, LISA spacecraft #1 velocity 
rddot_1 = -(mus/(rmag_1^3))*r1; %m/s2, EOM for spacecraft #1 
  
r2 = X(7:9); %m, LISA spacecraft #2 location 
rmag_2 = norm(r2); 
rdot_2 = X(10:12); %m/sec, LISA spacecraft #2 velocity 
rddot_2 = -(mus/(rmag_2^3))*r2; %m/s2, EOM for spacecraft #2 
  
r3 = X(13:15); %m, LISA spacecraft #3 location 

rmag_3 = norm(r3); 
rdot_3 = X(16:18); %m/sec, LISA spacecraft #3 velocity 
rddot_3 = -(mus/(rmag_3^3))*r3; %m/s2, EOM for spacecraft #3 
  
rts = X(19:21); %m, tracking station location IS Earth (treat Earth as a 
%point) 
rts_mag = norm(rts); 
rdot_rts = X(22:24); %m/sec, Earth velocity 
rddot_rts = -(mus/(rts_mag^3))*rts; %m/s2, EOM for spacecraft #3 
  
Xdot = [rdot_1; rddot_1; rdot_2; rddot_2; rdot_3; rddot_3; rdot_rts; 
rddot_rts]; %a 24x1 matrix 
 
 
 
NomOrb (from 5.2.2. The Nominal Orbit)     
function [X_traj, VirtualOrb_Diff, Leg_Length, EE, E1, E2, E3] = 
NomOrb() 
%*********************************************************** 
%Converts Steve Hughes's set of orbital elements for an equilateral 
%formation to position and velocity 
% 
%REF.: Steve Hughes's paper "Preliminary Optimal ORbit Design for the 
%Laser 
%Interferometer Space Antenna (LISA)"  
% 
%CALLS: Orb2X2.m, X2Orb.m, LISA_EOMderivs.m 
%*********************************************************** 
%***CONSTANTS******************************************** 
  
mus = 1.32712428e11*((1e3)^3); %m3/s2, Sun's gravitational parameter  
d = 5e6*1000; %m, nominal leg length 
r2d = (180/pi); %radians to degrees converter 
Sun = [0 0 0]; %Sun is the Center  
%***ORBITAL ELEMENTS**************************** 
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ae = (1.49598023e8)*1000; %m, Semimajor Axis of Earth's orbit around 
Sun 
e = d/((2*sqrt(3))*ae); %unitless, Eccentricity 
i = (d/(2*ae))*r2d; %deg., Inclination (low inclination) 
w = 90; %90 deg. = (pi/2) or 270 deg. = (3*pi)/2 Argument of Periapsis 
Om1 = 0; %deg., Right Ascension of the Ascending Node of LISA 1 
Om2 = Om1 + 120; %deg., 120 deg. = ((2*pi)/3) Right Asension of the 
Ascending Node of LISA 2 
Om3 = Om1 - 120; %deg., Right Asension of the Ascending Node of LISA 
3 
M1 = 0; %deg., Mean Anomaly of LISA 1  
M2 = M1 - 120; %deg., 120 deg = ((2*pi)/3) Mean Anomaly of LISA 2  
M3 = M1 + 120; %deg., Mean Anomaly of LISA 3  
  
%***CALL Orb2X2.m to convert to R & V************************ 
  
%Ephem4 = [a e i Om w M] 
%NOTE: Degrees will be converted to Radians in the code Orb2X2 
EphemL1 = [ae e i Om1 w M1]; 
EphemL2 = [ae e i Om2 w M2]; 
EphemL3 = [ae e i Om3 w M3]; 
  
%[R, V] = Orb2X2(Ephem, t, mu, type) 
  
[R1, V1] = Orb2X2(EphemL1, 0, mus, 4); 
[R2, V2] = Orb2X2(EphemL2, 0, mus, 4); 
[R3, V3] = Orb2X2(EphemL3, 0, mus, 4); 
  
%***Position & Velocity of Earth Relative to Center of LISA*********** 
Rvs = [0 ae 0]; %1x3, 3-D initial Reference position of center of LISA's 
%virtual orbit around the Sun, lies all along the y-axis initially 
  
wvs = sqrt(mus/ae^3); %angular rate of virtual orbit 
v = wvs*ae; %m/s, tangential velocities of the spacecrafts 
Vvs = [-v 0 0]; %initial velocity of the virtual orbit in the x-axis 
  

th = 20*(pi/180); %Earth is 20 deg. rotation about the z-axis ahead of the 
%LISA formation converted to radians 
REt = [cos(th) -sin(th) 0; sin(th) cos(th) 0; 0 0 1]*Rvs'; %the transformed 
%position of the Earth 
VEt = [cos(th) -sin(th) 0; sin(th) cos(th) 0; 0 0 1]*Vvs'; %the transformed 
%velocity of the Earth 
  
%***CALL X2Orb.m to GET ORBITAL ELEMENTS OF LISA & 
%EARTH******************* 
%[E] = X2Orb(R, V, t, mu) 
%E = [a e i Om w M f Period] 
  
[EE] = X2Orb(REt, VEt, 0, mus); 
[E1] = X2Orb(R1, V1, 0, mus); 
[E2] = X2Orb(R2, V2, 0, mus); 
[E3] = X2Orb(R3, V3, 0, mus); 
  
%***LEG LENGTHS****************************************** 
    L12 = (norm(R2 - R1)); %nx1, leg lengths 
    L23 = (norm(R3 - R2)); 
    L31 = (norm(R1 - R3)); 
Leg_Length = [L12, L23, L31]; 
  
%***DIFFERENCE FROM VIRTUAL ORBIT TO EACH LISA & 
%EARTH********************* 
    L1C = norm(Rvs' - R1); 
    L2C = norm(Rvs' - R2); 
    L3C = norm(Rvs' - R3); 
    EC2 = norm(Rvs' - REt); 
VirtualOrb_Diff = [L1C, L2C, L3C, EC2]; 
 
%***PROPAGATE THE ORBIT OVER THE YEAR USING THE 
%EOM************************ 
to = 0; 
I = (60*60)/2; %sec., 1/2 HOUR Intervals for the entire YEAR 
tf = 366.25*24*60*60; %sec, 1 SIDEREAL YEAR 
ts = 0:I:tf;    
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Xstar = [R1; V1; R2; V2; R3; V3; REt; VEt]; 
[t, Xs] = ode45('LISA_EOMderivs', ts, Xstar, odeset('RelTol',1e-
8,'AbsTol',1e-8)); 
X_traj = [ts(:) Xs(:,:)]; %n x 25 matrix 
 
 
 
LISA_STMderivs.m (from Section 5.2.3 The Algorithm)     
 
function stmdot = LISA_stmderive(t, Xstm) 
%*********************************************************** 
%function stmdot = LISA_stmderive(t, Xstm) 
% 
%Function that requires ode45 to integrate the state transition matrix over 
%a timespan 
% 
%INPUTS: t 
%        Xstm = the state vector and the state transition matirx 
%OUTPUTS: stmdot 
% 
%Command Window Prompts 
%[t, Xstm] = ode45('LISA_stmderive', timespan, Xstmi, odeset('RelTol', 
%1e-8,'AbsTol',1e-8)) 
%*********************************************************** 
mus = (1.32712428e20); %m3/s2, Sun's gravitational parameter 
  
r1 = Xstm(1:3); %m, LISA spacecraft #1 location 
rmag_1 = norm(r1); 
rdot_1 = Xstm(4:6); %m/sec, LISA spacecraft #1 velocity 
rddot_1 = -(mus/(rmag_1^3))*r1; %m/s2, EOM for spacecraft #1 
  
r2 = Xstm(7:9); %m, LISA spacecraft #2 location 
rmag_2 = norm(r2); 
rdot_2 = Xstm(10:12); %m/sec, LISA spacecraft #2 velocity 
rddot_2 = -(mus/(rmag_2^3))*r2; %m/s2, EOM for spacecraft #2 
  
r3 = Xstm(13:15); %m, LISA spacecraft #3 location 

rmag_3 = norm(r3); 
rdot_3 = Xstm(16:18); %m/sec, LISA spacecraft #3 velocity 
rddot_3 = -(mus/(rmag_3^3))*r3; %m/s2, EOM for spacecraft #3 
  
rts = Xstm(19:21); %m, tracking station location IS Earth (treat Earth as a 
point) 
rts_mag = norm(rts); 
rdot_rts = Xstm(22:24); %m/sec, Earth velocity 
rddot_rts = -(mus/(rts_mag^3))*rts; %m/s2, EOM for spacecraft #3 
  
Xdot = [rdot_1; rddot_1; rdot_2; rddot_2; rdot_3; rddot_3; rdot_rts; 
rddot_rts]; %a 24x1 matrix 
  
 %---A matrix, not constant because the variable r in the equations 
    I = eye(3,3); 
    Z3 = zeros(3,3); 
     
    Gamma1 = -(mus/((norm(r1))^3))*I + 3*(((mus*r1)/(norm(r1)^5))*r1'); 
% 3x3, Gravity gradient matrix 
    Gamma2= -(mus/((norm(r2))^3))*I + 3*(((mus*r2)/(norm(r2)^5))*r2'); 
% 3x3, Gravity gradient matrix 
    Gamma3 = -(mus/((norm(r3))^3))*I + 3*(((mus*r3)/(norm(r3)^5))*r3'); 
% 3x3, Gravity gradient matrix 
    Gammae = -(mus/((norm(rts))^3))*I + 3*(((mus*rts)/(norm(rts)^5))*rts'); 
% 3x3, Gravity gradient matrix 
     
    A = [Z3 I Z3 Z3 Z3 Z3 Z3 Z3; Gamma1 Z3 Z3 Z3 Z3 Z3 Z3 Z3; Z3 Z3 
Z3 I Z3 Z3 Z3 Z3;... 
            Z3 Z3 Gamma2 Z3 Z3 Z3 Z3 Z3; Z3 Z3 Z3 Z3 Z3 I Z3 Z3; Z3 Z3 
Z3 Z3 Gamma3 Z3 Z3 Z3;... 
            Z3 Z3 Z3 Z3 Z3 Z3 Z3 I; Z3 Z3 Z3 Z3 Z3 Z3 Gammae Z3]; 
%24x24 matrix 
  
stm = reshape(Xstm(25:600), 24, 24); 
stmdot = A*stm; 
stmdot = [Xdot; (reshape(stmdot, 576, 1))]; %a 600x1 matrix 
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H_partials.m (from Section 5.2.3. The Algorithm)     
 
function [Hi_tilda, Hl_tilda, Hq_tilda] = H_partials7(Gi, GiR, Xstar, obs) 
%*********************************************************** 
%*********************************************************** 
X = Xstar(1,:); 
Z13 = zeros(1,3); 
%***THE PARTIALS 
%Range wrt Position 
  
dp1dx1 = (X(1)-X(19))/Gi(1); %m, L1 Range wrt L1 Position 
dp1dy1 = (X(2)-X(20))/Gi(1); 
dp1dz1 = (X(3)-X(21))/Gi(1); 
dp1dR = [dp1dx1 dp1dy1 dp1dz1]; 
  
dp2dx2 = (X(7)-X(19))/Gi(2); %m, L2 Range wrt L2 Position 
dp2dy2 = (X(8)-X(20))/Gi(2); 
dp2dz2 = (X(9)-X(21))/Gi(2); 
dp2dR = [dp2dx2 dp2dy2 dp2dz2]; 
  
dp3dx3 = (X(13)-X(19))/Gi(3); %m, L3 Range wrt L3 Position 
dp3dy3 = (X(14)-X(20))/Gi(3); 
dp3dz3 = (X(15)-X(21))/Gi(3); 
dp3dR = [dp3dx3 dp3dy3 dp3dz3]; 
  
%RANGE wrt VELOCITY 
  
dp1dV = Z13; 
dp2dV = Z13; 
dp3dV = Z13; 
  
%***RANGE RATE 
%LISA 1 RANGE RATE wrt its POSITION 
  
dpdot1dx1 = ((X(4)-X(22))/Gi(1)) - ((Gi(4)*(X(1)-X(19)))/(Gi(1)^2)); 
  
dpdot1dy1 = ((X(5)-X(23))/Gi(1)) - ((Gi(4)*(X(2)-X(20)))/(Gi(1)^2)); 

  
dpdot1dz1 = ((X(6)-X(24))/Gi(1)) - ((Gi(4)*(X(3)-X(21)))/(Gi(1)^2)); 
  
dpdot1dR = [dpdot1dx1  dpdot1dy1 dpdot1dz1]; 
  
%LISA 2 RANGE RATE wrt its POSITION 
dpdot2dx2 = ((X(10)-X(22))/Gi(2)) - ((Gi(5)*(X(7)-X(19)))/(Gi(2)^2)); 
  
dpdot2dy2 = ((X(11)-X(23))/Gi(2)) - ((Gi(5)*(X(8)-X(20)))/(Gi(2)^2)); 
  
dpdot2dz2 = ((X(12)-X(24))/Gi(2)) - ((Gi(5)*(X(9)-X(21)))/(Gi(2)^2)); 
  
dpdot2dR = [dpdot2dx2  dpdot2dy2 dpdot2dz2]; 
  
%LISA 3 RANGE RATE wrt its POSITION 
dpdot3dx3 = ((X(16)-X(22))/Gi(3)) - ((Gi(6)*(X(13)-X(19)))/(Gi(3)^2)); 
  
dpdot3dy3 = ((X(17)-X(23))/Gi(3)) - ((Gi(6)*(X(14)-X(20)))/(Gi(3)^2)); 
  
dpdot3dz3 = ((X(18)-X(24))/Gi(3)) - ((Gi(6)*(X(15)-X(21)))/(Gi(3)^2)); 
  
dpdot3dR = [dpdot3dx3  dpdot3dy3 dpdot3dz3]; 
  
%LISA 1,2,3 Range Rate wrt its VELOCITY 
dpdot1dV = [dp1dx1 dp1dy1 dp1dz1]; 
dpdot2dV = [dp2dx2 dp2dy2 dp2dz2]; 
dpdot3dV = [dp3dx3 dp3dy3 dp3dz3]; 
  
%***DECLINATION PARTIALS 
%LISA 1 declination wrt its POSITION 
dd1dx1 =((X(3)-X(21))* (-X(1) + X(19)))/... 
     ((Gi(1)^3)*(1-(((X(3)-X(21))^2)/(Gi(1)^2)))^(1/2));  
  
dd1dy1 = ((X(3)-X(21))* (-X(2) + X(20)))/... 
     ((Gi(1)^3)*(1-(((X(3)-X(21))^2)/(Gi(1)^2)))^(1/2));  
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dd1dz1 = ((1/Gi(1)) - (.5*(((X(3)-X(21))*((2*X(3)) - 
(2*X(21))))/(Gi(1)^3))))/... 
    (1-(((X(3)-X(21))^2)/(Gi(1)^2)))^(1/2);  
  
dd1dR = [dd1dx1 dd1dy1 dd1dz1]; 
  
%LISA 2 declination wrt its POSITION 
dd2dx2 = ((X(9)-X(21))* (-X(7) + X(19)))/... 
     ((Gi(2)^3)*(1-(((X(9)-X(21))^2)/(Gi(2)^2)))^(1/2)); 
  
dd2dy2 =  ((X(9)-X(21))* (-X(8) + X(20)))/... 
     ((Gi(2)^3)*(1-(((X(9)-X(21))^2)/(Gi(2)^2)))^(1/2));  
  
dd2dz2 = ((1/Gi(2)) - (.5*(((X(9)-X(21))*((2*X(9)) - 
(2*X(21))))/(Gi(2)^3))))/... 
    (1-(((X(9)-X(21))^2)/(Gi(2)^2)))^(1/2);  
  
dd2dR = [dd2dx2 dd2dy2 dd2dz2]; 
%LISA 3 declination wrt its POSITION 
dd3dx3 =  ((X(15)-X(21))* (-X(13) + X(19)))/... 
     ((Gi(3)^3)*(1-(((X(15)-X(21))^2)/(Gi(3)^2)))^(1/2)); 
  
dd3dy3 =  ((X(15)-X(21))* (-X(14) + X(20)))/... 
     ((Gi(3)^3)*(1-(((X(15)-X(21))^2)/(Gi(3)^2)))^(1/2));  
  
dd3dz3 = ((1/Gi(3)) - (.5*(((X(15)-X(21))*((2*X(15)) - 
(2*X(21))))/(Gi(3)^3))))/... 
    (1-(((X(15)-X(21))^2)/(Gi(3)^2)))^(1/2); 
  
dd3dR = [dd3dx3 dd3dy3 dd3dz3]; 
  
%***Delta wrt VELOCITY 
dd1dV = Z13; 
dd2dV = Z13; 
dd3dV = Z13; 
  
%RIGHT ASCENSION PARTIALS 

%LISA 1 right ascension wrt its position 
da1dx1 = (-1*(X(2)-X(20)))/(((X(1)-X(19))^2)*(1 + ((X(2)-
X(20))^2)/((X(1)-X(19))^2))); 
da1dy1 = 1/((X(1)-X(19))*(1 + ((X(2)-X(20))^2)/((X(1)-X(19))^2))); 
da1dz1 = 0; 
da1dR = [da1dx1 da1dy1 da1dz1]; 
  
%LISA 2 right ascension wrt its position 
da2dx2 = (-1*(X(8)-X(20)))/(((X(7)-X(19))^2)*(1+ ((X(8)-
X(20))^2)/((X(7)-X(19))^2))); 
da2dy2 = 1/((X(7)-X(19))*(1 + ((X(8)-X(20))^2)/((X(7)-X(19))^2))); 
da2dz2 = 0; 
da2dR = [da2dx2 da2dy2 da2dz2]; 
  
%LISA 3 right ascension wrt its position 
da3dx3 = (-1*(X(14)-X(20)))/(((X(13)-X(19))^2)*(1+ ((X(14)-
X(20))^2)/((X(13)-X(19))^2))); 
da3dy3 = 1/((X(13)-X(19))*(1 + ((X(14)-X(20))^2)/((X(13)-X(19))^2))); 
da3dz3 = 0; 
da3dR = [da3dx3 da3dy3 da3dz3]; 
  
%***Alpha wrt VELOCITY 
da1dV = Z13; 
da2dV = Z13; 
da3dV = Z13; 
  
%***INTERSPACECRAFT RANGE AND RANGE RATE 
%*********************************************************** 
%LISA 1 range wrt LISA 3 position 
dpL13dx1 = (X(1) - X(13))/GiR(1); 
dpL13dy1 = (X(2) - X(14))/GiR(1); 
dpL13dz1 = (X(3) - X(15))/GiR(1); 
dpL13dR1 = [dpL13dx1 dpL13dy1 dpL13dz1]; 
dpL13dV1 = Z13; 
  
%LISA 1 range rate wrt LISA 3 position 



 

 169

dpdotL13dx1 = ((X(4)-X(16))/GiR(1)) - ((GiR(4)*(X(1)-
X(13)))/(GiR(1)^2)); 
  
dpdotL13dy1 = ((X(5)-X(17))/GiR(1)) - ((GiR(4)*(X(2)-
X(14)))/(GiR(1)^2)); 
  
dpdotL13dz1 = ((X(6)-X(18))/GiR(1)) - ((GiR(4)*(X(3)-
X(15)))/(GiR(1)^2)); 
  
dpdotL13dR1 =[dpdotL13dx1 dpdotL13dy1 dpdotL13dz1]; 
dpdotL13dV1 = [dpL13dx1 dpL13dy1 dpL13dz1]; 
  
%LISA 3 range wrt LISA 1 position 
dpL13dx3 = (-X(1) + X(13))/GiR(1); 
dpL13dy3 = (-X(2) + X(14))/GiR(1); 
dpL13dz3 = (-X(3) + X(15))/GiR(1); 
dpL13dR3 = [dpL13dx3 dpL13dy3 dpL13dz3]; 
dpL13dV3 = Z13; 
%LISA 3 range rate wrt LISA 1 position 
dpdotL13dx3 = ((-X(4)+X(16))/GiR(1)) - ((GiR(4)*(-
X(1)+X(13)))/(GiR(1)^2)); 
  
dpdotL13dy3 = ((-X(5)+X(17))/GiR(1)) - ((GiR(4)*(-
X(2)+X(14)))/(GiR(1)^2)); 
  
dpdotL13dz3 = ((-X(6)+X(18))/GiR(1)) - ((GiR(4)*(-
X(3)+X(15)))/(GiR(1)^2)); 
  
dpdotL13dR3 =[dpdotL13dx3 dpdotL13dy3 dpdotL13dz3]; 
dpdotL13dV3 = [dpL13dx3 dpL13dy3 dpL13dz3]; 
  
%*********************************************************** 
%LISA 2 wrt LISA 1 
%LISA 2 range wrt LISA 1 position 
dpL21dx2 = (X(7) - X(1))/GiR(2); 
dpL21dy2 = (X(8) - X(2))/GiR(2); 
dpL21dz2 = (X(9) - X(3))/GiR(2); 

dpL21dR2 = [dpL21dx2 dpL21dy2 dpL21dz2]; 
dpL21dV2 = Z13; 
  
%LISA 2 range rate wrt LISA 1 position 
dpdotL21dx2 = ((X(10)-X(4))/GiR(2)) - ((GiR(5)*(X(7)-
X(1)))/(GiR(2)^2)); 
  
dpdotL21dy2 = ((X(11)-X(5))/GiR(2)) - ((GiR(5)*(X(8)-
X(2)))/(GiR(2)^2)); 
  
dpdotL21dz2 = ((X(12)-X(6))/GiR(2)) - ((GiR(5)*(X(9)-
X(3)))/(GiR(2)^2)); 
  
dpdotL21dR2 =[dpdotL21dx2 dpdotL21dy2 dpdotL21dz2]; 
dpdotL21dV2 = [dpL21dx2 dpL21dy2 dpL21dz2]; 
  
%LISA 1 range wrt LISA 2 position 
dpL21dx1 = (-X(7) + X(1))/GiR(2); 
dpL21dy1 = (-X(8) + X(2))/GiR(2); 
dpL21dz1 = (-X(9) + X(3))/GiR(2); 
dpL21dR1 = [dpL21dx1 dpL21dy1 dpL21dz1]; 
dpL21dV1 = Z13; 
  
%LISA 1 range rate wrt LISA 2 position 
dpdotL21dx1 = ((-X(10)+X(4))/GiR(2)) - ((GiR(5)*(-
X(7)+X(1)))/(GiR(2)^2)); 
  
dpdotL21dy1 = ((-X(11)+X(5))/GiR(2)) - ((GiR(5)*(-
X(8)+X(2)))/(GiR(2)^2)); 
  
dpdotL21dz1 = ((-X(12)+X(6))/GiR(2)) - ((GiR(5)*(-
X(9)+X(3)))/(GiR(2)^2)); 
  
dpdotL21dR1 =[dpdotL21dx1 dpdotL21dy1 dpdotL21dz1]; 
dpdotL21dV1 = [dpL21dx1 dpL21dy1 dpL21dz1]; 
  
%*********************************************************** 
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%LISA 3 wrt LISA 2 
%LISA 3 range wrt LISA 2 position 
dpL32dx3 = (X(13) - X(7))/GiR(3); 
dpL32dy3 = (X(14) - X(8))/GiR(3); 
dpL32dz3 = (X(15) - X(9))/GiR(3); 
dpL32dR3 = [dpL32dx3 dpL32dy3 dpL32dz3]; 
dpL32dV3 = Z13; 
  
%LISA 3 range rate wrt LISA 2 position 
dpdotL32dx3 = ((X(16)-X(10))/GiR(3)) - ((GiR(6)*(X(13)-
X(7)))/(GiR(3)^2)); 
  
dpdotL32dy3 = ((X(17)-X(11))/GiR(3)) - ((GiR(6)*(X(14)-
X(8)))/(GiR(3)^2)); 
  
dpdotL32dz3 = ((X(18)-X(12))/GiR(3)) - ((GiR(6)*(X(15)-
X(9)))/(GiR(3)^2)); 
  
dpdotL32dR3 =[dpdotL32dx3 dpdotL32dy3 dpdotL32dz3]; 
dpdotL32dV3 = [dpL32dx3 dpL32dy3 dpL32dz3]; 
  
%LISA 2 range wrt LISA 3 position 
dpL32dx2 = (-X(13) + X(7))/GiR(3); 
dpL32dy2 = (-X(14) + X(8))/GiR(3); 
dpL32dz2 = (-X(15) + X(9))/GiR(3); 
dpL32dR2 = [dpL32dx2 dpL32dy2 dpL32dz2]; 
dpL32dV2 = Z13; 
  
%LISA 2 range rate wrt LISA 3 position 
dpdotL32dx2 = ((-X(16)+X(10))/GiR(3)) - ((GiR(6)*(-
X(13)+X(7)))/(GiR(3)^2)); 
  
dpdotL32dy2 = ((-X(17)+X(11))/GiR(3)) - ((GiR(6)*(-
X(14)+X(8)))/(GiR(3)^2)); 
  
dpdotL32dz2 = ((-X(18)+X(12))/GiR(3)) - ((GiR(6)*(-
X(15)+X(9)))/(GiR(3)^2)); 

  
dpdotL32dR2 =[dpdotL32dx2 dpdotL32dy2 dpdotL32dz2]; 
dpdotL32dV2 = [dpL32dx2 dpL32dy2 dpL32dz2]; 
  
switch(obs) 
    case 0 % DSN & VLBI 
        %Hi, Hl, Hq into 4x18 matrices [1x3, 1x3, 1x3, 1x3, 1x3, 1x3] 
        Hi_tilda = [dp1dR dp1dV Z13 Z13 Z13 Z13;... 
            dpdot1dR dpdot1dV Z13 Z13 Z13 Z13;... 
            dd1dR dd1dV Z13 Z13 Z13 Z13;... 
            da1dR da1dV Z13 Z13 Z13 Z13]; 
  
        Hl_tilda = [Z13 Z13 dp2dR dp2dV Z13 Z13;... 
            Z13 Z13 dpdot2dR dpdot2dV Z13 Z13;... 
            Z13 Z13 dd2dR dd2dV Z13 Z13;... 
            Z13 Z13 da2dR da2dV  Z13 Z13]; 
  
        Hq_tilda = [Z13 Z13 Z13 Z13 dp3dR dp3dV;... 
            Z13 Z13 Z13 Z13 dpdot3dR dpdot3dV;... 
            Z13 Z13 Z13 Z13 dd3dR dd3dV;... 
            Z13 Z13 Z13 Z13 da3dR da3dV]; 
  
    case 1  %DSN, VLBI, RELATIVE 
        %H 18x18 matrix [1x3, 1x3, 1x3, 1x3, 1x3, 1x3] 
        Hi_tilda = [dp1dR dp1dV Z13 Z13 Z13 Z13;... 
            dpdot1dR dpdot1dV Z13 Z13 Z13 Z13;... 
            dd1dR dd1dV Z13 Z13 Z13 Z13;... 
            da1dR da1dV Z13 Z13 Z13 Z13;... 
            dpL13dR1 dpL13dV1 Z13 Z13 dpL13dR3 dpL13dV3;... 
            dpdotL13dR1 dpdotL13dV1 Z13 Z13 dpdotL13dR3 
dpdotL13dV3;...%wrt LISA 1 
            Z13 Z13 dp2dR dp2dV Z13 Z13;... 
            Z13 Z13 dpdot2dR dpdot2dV Z13 Z13;... 
            Z13 Z13 dd2dR dd2dV Z13 Z13;... 
            Z13 Z13 da2dR da2dV  Z13 Z13;... 
            dpL21dR1 dpL21dV1 dpL21dR2 dpL21dV2 Z13 Z13;... 
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            dpdotL21dR1 dpdotL21dV1 dpdotL21dR2 dpdotL21dV2 Z13 
Z13;...%wrt LISA 2 
            Z13 Z13 Z13 Z13 dp3dR dp3dV;... 
            Z13 Z13 Z13 Z13 dpdot3dR dpdot3dV;... 
            Z13 Z13 Z13 Z13 dd3dR dd3dV;... 
            Z13 Z13 Z13 Z13 da3dR da3dV;... 
            Z13 Z13 dpL32dR2 dpL32dV2 dpL32dR3 dpL32dV3;... 
            Z13 Z13 dpdotL32dR2 dpdotL32dV2 dpdotL32dR3 dpdotL32dV3]; 
%wrt LISA 3 
  
        Hl_tilda = [Z13]; 
  
        Hq_tilda = [Z13]; 
         
    case 2 %DSN only 
        %Hi, Hl, Hq into 2x18 matrices [1x3, 1x3, 1x3, 1x3, 1x3, 1x3] 
        Hi_tilda = [dp1dR dp1dV Z13 Z13 Z13 Z13;... 
            dpdot1dR dpdot1dV Z13 Z13 Z13 Z13]; 
  
        Hl_tilda = [Z13 Z13 dp2dR dp2dV Z13 Z13;... 
            Z13 Z13 dpdot2dR dpdot2dV Z13 Z13]; 
  
        Hq_tilda = [Z13 Z13 Z13 Z13 dp3dR dp3dV;... 
            Z13 Z13 Z13 Z13 dpdot3dR dpdot3dV]; 
  
    case 3 %DSN & RELATIVE 
        %H 12x18 matrix [1x3, 1x3, 1x3, 1x3, 1x3, 1x3] 
         
        Hi_tilda = [dp1dR dp1dV Z13 Z13 Z13 Z13;... 
            dpdot1dR dpdot1dV Z13 Z13 Z13 Z13;... 
            dpL13dR1 dpL13dV1 Z13 Z13 dpL13dR3 dpL13dV3;... 
            dpdotL13dR1 dpdotL13dV1 Z13 Z13 dpdotL13dR3 
dpdotL13dV3;...%wrt LISA 1 
            Z13 Z13 dp2dR dp2dV Z13 Z13;... 
            Z13 Z13 dpdot2dR dpdot2dV Z13 Z13;... 
            dpL21dR1 dpL21dV1 dpL21dR2 dpL21dV2 Z13 Z13;... 

            dpdotL21dR1 dpdotL21dV1 dpdotL21dR2 dpdotL21dV2 Z13 
Z13;...%wrt LISA 2 
            Z13 Z13 Z13 Z13 dp3dR dp3dV;... 
            Z13 Z13 Z13 Z13 dpdot3dR dpdot3dV;... 
            Z13 Z13 dpL32dR2 dpL32dV2 dpL32dR3 dpL32dV3;... 
            Z13 Z13 dpdotL32dR2 dpdotL32dV2 dpdotL32dR3 dpdotL32dV3]; 
%wrt LISA 3 
  
        Hl_tilda = [Z13]; 
  
        Hq_tilda = [Z13]; 
  
   otherwise 
                error('Invalid case (0 <= obs <= 3)');               
end   
 
 
    
RealObs.m (from Section 5.2.4 Simulation of Measurement Noise)     
function [Gi, L1tot, L2tot, L3tot] = RealObs(to, tf, I, X, Xref, sigma_range, 
sigma_rrate, sigma_alpha, sigma_delta, sigma_ci, sigma_f, B, plt) 
%*********************************************************** 
%This function calculates the "perfect" observations and also calculates  
%the corresponding "noisy" measurements. 
% 
%INPUT : to = Initial time to start propagation (sec)  
%        tf = Final time to end propagation (sec) 
%        I = Time intervals (sec) 
%        XO = An Initial Condition of the State (1x24) 
%        sigma_range (m), sigma_rrate(m/s), sigma_alpha(rad), 
sigma_delta(rad) = The noises  
%           associated with each measurement  
%        br(m), brr(m/s), ba(rad), bs(rad) = biases in measurements 
%        plt = plot command =0 "off", = 1 "on" 
%            
%OUTPUT :   Gi = 1x12 vector of calculated range, range rate, alpha and 
delta  
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%                   angles of each LISA 
%           L1tot, L2tot, L3tot = 4x1 vector of Measurement Deviations 
[range, range rate, alpha and delta  
%                   angles] of each LISA 
%*********************************************************** 
%---INITIALIZATION 
if nargin < 13, 
    plt = 0; %default to turn plot command off 
end 
  
%***Parse Truth vector (X)into position & velocity 
components************** 
    R1 = X(1:3); %m (1x3) 
    R2 = X(7:9); 
    R3 = X(13:15); 
    R = [R1 R2 R3]; %(1x9) 
  
    V1 = X(4:6); %m/s (1x3) 
    V2 = X(10:12); 
    V3 = X(16:18); 
    V = [V1 V2 V3]; %(1x9) 
  
    Rts= X(19:21); %(1x3) 
    Vts = X(22:24); 
     
%***Parse Reference vector (Xref) into position & velocity 
components****** 
    R1s = Xref(1:3); %m (1x3) 
    R2s = Xref(7:9); 
    R3s = Xref(13:15); 
    Rs = [R1s R2s R3s]; %(1x9) 
  
    V1s = Xref(4:6); %m/s (1x3) 
    V2s = Xref(10:12); 
    V3s = Xref(16:18); 
    Vs = [V1s V2s V3s]; %(1x9) 
  

    Rts_ref = Xref(19:21); %(1x3) 
    Vts_ref = Xref(22:24);     
     
%***CALCULATE THE "ACTUAL" MEASURMENTS (i.e. Truth plus 
noise and biases)** 
    %RANGE 
    p1 = norm(R1 - Rts); %m (1x1) range scalar for LISA 1 
    p2 = norm(R2 - Rts); 
    p3 = norm(R3 - Rts); 
  
    %RANGE RATE 
    pdot1 = (((R1(1) - Rts(1))*(V1(1) - Vts(1))) + ((R1(2) - Rts(2))*... 
            (V1(2) - Vts(2))) + ((R1(3) - Rts(3))*(V1(3) - Vts(3))))/p1; %m/s 
         
    pdot2 =(((R2(1) - Rts(1))*(V2(1)- Vts(1))) + ((R2(2) - Rts(2))*... 
            (V2(2) - Vts(2))) + ((R2(3) - Rts(3))*(V2(3) - Vts(3))))/p2; 
    
    pdot3 =(((R3(1) - Rts(1))*(V3(1)- Vts(1))) + ((R3(2) - Rts(2))*... 
            (V3(2) - Vts(2))) + ((R3(3) - Rts(3))*(V3(3) - Vts(3))))/p3; 
  
    %ALPHA 
    alpha1 = atan2((R1(2)- Rts(2)),(R1(1)-Rts(1))); %rad (1x1) 
    alpha2 = atan2((R2(2)- Rts(2)),(R2(1)-Rts(1))); 
    alpha3 = atan2((R3(2)- Rts(2)),(R3(1)-Rts(1))); 
  
    %DELTA 
    delta1 = asin((R1(3)- Rts(3))/p1); %rad (1x1) 
    delta2 = asin((R2(3)- Rts(3))/p2); 
    delta3 = asin((R3(3)- Rts(3))/p3); 
  
%***ADD NOISE TO THE 
TRUTH************************************************* 
    Yi_1 = p1 + sigma_range(1) + sigma_ci(1) + B(1); %m 
    Yl_1 = p2 + sigma_range(2) + sigma_ci(2) + B(2);  
    Yq_1 = p3 + sigma_range(3) + sigma_ci(3) + B(3);  
  
    Yi_2 = (pdot1) + sigma_rrate(1) + sigma_f(1); %m/s 
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    Yl_2 = (pdot2) + sigma_rrate(2) + sigma_f(2); 
    Yq_2 = (pdot3) + sigma_rrate(3) + sigma_f(3);  
  
    Yi_3 = (alpha1) + sigma_alpha(1); %rad 
    Yl_3 = (alpha2) + sigma_alpha(2);  
    Yq_3 = (alpha3) + sigma_alpha(3);  
  
    Yi_4 = (delta1) + sigma_delta(1); %rad 
    Yl_4 = (delta2) + sigma_delta(2);  
    Yq_4 = (delta3) + sigma_delta(3); 
  
    
%***CALCULATE THE MEASURMENTS (i.e. Reference 
Observations)**************** 
    %RANGE + ADD KNOWN BIASES TO CALCULATED 
MEASUREMENT 
    p1s = norm(R1s - Rts_ref);% + B(1); %m (1x1) range scalar for LISA 1 
    p2s = norm(R2s - Rts_ref);% + B(2);  
    p3s = norm(R3s - Rts_ref);% + B(3);  
  
    %RANGE RATE 
    pdot1s = ((((R1s(1) - Rts_ref(1))*(V1s(1) - Vts_ref(1))) + ((R1s(2) - 
Rts_ref(2))*... 
            (V1s(2) - Vts_ref(2))) + ((R1s(3) - Rts_ref(3))*(V1s(3) - 
Vts_ref(3))))/p1s); %m/s 
         
    pdot2s =((((R2s(1) - Rts_ref(1))*(V2s(1)- Vts_ref(1))) + ((R2s(2) - 
Rts_ref(2))*... 
            (V2s(2) - Vts_ref(2))) + ((R2s(3) - Rts_ref(3))*(V2s(3) - 
Vts_ref(3))))/p2s); 
     
    pdot3s =((((R3s(1) - Rts_ref(1))*(V3s(1)- Vts_ref(1))) + ((R3s(2) - 
Rts_ref(2))*... 
            (V3s(2) - Vts_ref(2))) + ((R3s(3) - Rts_ref(3))*(V3s(3) - 
Vts_ref(3))))/p3s); 
   
    %ALPHA 

    alpha1s = (atan2((R1s(2) - Rts_ref(2)),(R1s(1) - Rts_ref(1)))); %rad (1x1) 
    alpha2s = (atan2((R2s(2) - Rts_ref(2)),(R2s(1) - Rts_ref(1)))); 
    alpha3s = (atan2((R3s(2) - Rts_ref(2)),(R3s(1) - Rts_ref(1)))); 
  
    %DELTA 
    delta1s = (asin((R1s(3) - Rts_ref(3))/p1s)); %rad (1x1) 
    delta2s = (asin((R2s(3) - Rts_ref(3))/p2s)); 
    delta3s = (asin((R3s(3) - Rts_ref(3))/p3s)); 
    
%*********************************************************** 
Yi = [Yi_1' Yl_1' Yq_1' Yi_2' Yl_2' Yq_2' Yi_3' Yl_3' Yq_3' Yi_4' Yl_4' 
Yq_4']; %Real Measurements (1x12) 
Gi = [p1s' p2s' p3s' pdot1s' pdot2s' pdot3s' alpha1s' alpha2s' alpha3s' 
delta1s' delta2s' delta3s']; %Calculated Measurements (1x12) 
diff = Yi-Gi; 
        %---COMPUTE MEASUREMENT DEVIATIONS, yi (1x1), AT 
TIME ti 
        %LISA 1, 2 & 3 measurement deviations; measurement(Yi) - 
Reference 
        %Measurement(Gi) 
      
                yi_1 = Yi(1) - Gi(1); % (1x1), range measurement deviations 
                yl_1 = Yi(2) - Gi(2); 
                yq_1 = Yi(3) - Gi(3); 
  
                yi_2 = Yi(4) - Gi(4); %range rate measurement deviations 
                yl_2 = Yi(5) - Gi(5); 
                yq_2 = Yi(6) - Gi(6); 
  
                yi_3 = Yi(10) - Gi(10); %delta measurement deviations 
                yl_3 = Yi(11) - Gi(11); 
                yq_3 = Yi(12) - Gi(12); 
  
                yi_4 = Yi(7) - Gi(7); %alpha measurement deviations 
                yl_4 = Yi(8) - Gi(8); 
                yq_4 = Yi(9) - Gi(9); 
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                %Total Measurement deviations 
                L1tot = [yi_1; yi_2; yi_3; yi_4]; %(4x1) 
                L2tot = [yl_1; yl_2; yl_3; yl_4]; %(4x1) 
                L3tot = [yq_1; yq_2; yq_3; yq_4]; %(4x1) 
           
%PLOTS (x,y,z) 
  
if plt == 1, 
     
figure 
subplot(2,2,1) 
plot(timespan, Gi(:,1),'b-', timespan, Gi(:,2),'g--', timespan, Gi(:,3), 'r-.',... 
timespan, Yi(:,1),'b*', timespan, Yi(:,2),'g>', timespan, Yi(:,3),'rx');  
xlabel('Time (sec)') 
ylabel('Calculated / Real(noisy) Range(m)') 
legend('LISA 1 (calc.)', 'LISA 2(calc.)', 'LISA 3(calc.)','LISA 1(real)', 'LISA 
2(real)', 'LISA 3(real)') 
title('LISA Range vs. Time') 
grid on 
  
subplot(2,2,2) 
plot(timespan, Gi(:,4),'b-', timespan, Gi(:,5), 'g--', timespan, Gi(:,6),'r-.',... 
timespan, Yi(:,4),'b*', timespan, Yi(:,5),'b>', timespan, Yi(:,6),'rx');  
xlabel('Time (sec)') 
ylabel('Calculated / Real(noisy) Range Rate(m/sec)') 
%legend('LISA 1', 'LISA 2', 'LISA 3') 
title('LISA Range Rate vs. Time') 
grid on 
  
subplot(2,2,3) 
plot(timespan, Gi(:,7),'b-', timespan, Gi(:,8), 'g--', timespan, Gi(:,9),'r-.',... 
timespan, Yi(:,7),'b*', timespan, Yi(:,8),'g>', timespan, Yi(:,9),'rx');  
xlabel('Time (sec)') 
ylabel('Calculated / Real(noisy) Alpha angle (rad)') 
%legend('LISA 1', 'LISA 2', 'LISA 3') 
title('LISA Alpha Angle vs. Time') 
grid on 

  
subplot(2,2,4) 
plot(timespan, Gi(:,10),'b-', timespan, Gi(:,11), 'g--', timespan, Gi(:,12),'r-
.',... 
timespan, Yi(:,10),'b*', timespan, Yi(:,11),'g>', timespan, Yi(:,12),'rx');  
xlabel('Time (sec)') 
ylabel('Calculated / Real(noisy) Delta angle (rad)') 
%legend('LISA 1', 'LISA 2', 'LISA 3') 
title('LISA Delta Angle vs. Time') 
grid on 
else 
end 
 
 
 
InterSCD.m (from Section 5.2.4 Simulation of Measurement Noise) 
function [GiR, L13tot, L21tot, L32tot] = InterSCD(to, tf, I, X, Xref, 
sigma_irange, sigma_irate, sigma_ciL, B, plt) 
%*********************************************************** 
%Program to generate the interspacecraft data for LISA.  The range and 
range 
%rate information of each spacecraft wrt each other 
% 
%INPUT : to, tf, I = initial time, final time and Interval (sec) 
%        XO = initial condition for state (1x24) 
%        sigma_irange, sigma_irate = noises associated with the 
interspacecraft range and range rate  
%        bir, birr = biases associated with the interspacecraft range and 
%                    range rate 
%        plt = plot command, if 0 then "no plots", of 1 then "plot" 
% 
%OUTPUT :   T_ISC = [pL13 pL21 pL32 pdotL13 pdotL21 pdotL32] 
%           N_ISC = [Yi_5 Yl_5 Yq_5 Yi_6 Yl_6 Yq_6] 
%               pL13 = range of LISA 1 wrt 3, with noise(and biases) = Yi_5  
%               pL21 = range of LISA 2 wrt 1                         = Yl_5 
%               pL32 = range of LISA 3 wrt 2                         = Yq_5 
%               pdotL13 = range rate of LISA 1 wrt 3                 = Yi_6 
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%               pdotL21 = range rate of LISA 2 wrt 1                 = Yl_6 
%               pdotL32 = range rate of LISA 3 wrt 2                 = Yq_6 
% 
%*********************************************************** 
%---INITIALIZATION 
  
if nargin < 10, 
    plt = 0; %default to turn plot command off 
end 
  
%timespan =(to:I:tf)'; %with I sec intervals of time 
  
%***PARSE TRUTH VECTOR(X) into Position & Velocity*********** 
  
R1 = X(1:3); %m (1x3) 
V1 = X(4:6); %m/s (1x3) 
R2 = X(7:9); 
V2 = X(10:12); 
R3 = X(13:15); 
V3 = X(16:18); 
RE = X(19:21); 
VE = X(22:24); 
  
%***PARSE REFERENCE VECTOR(Xref) into Position & Velocity 
  
R1s = Xref(1:3); %m (1x3) 
V1s = Xref(4:6); %m/s (1x3) 
R2s = Xref(7:9); 
V2s = Xref(10:12); 
R3s = Xref(13:15); 
V3s = Xref(16:18); 
REs = Xref(19:21); 
VEs = Xref(22:24); 
  
%***CALCULATE THE ACTUAL MEASUREMENTS(I.e. Truth plus 
%noise and biases)**** 
%RANGE 

pL13 = norm(R1-R3); %m (1x1) 
    pL13_vec =(R1-R3); 
pL21 = norm(R2-R1); 
    pL21_vec = (R2-R1); 
pL32 = norm(R3-R2); 
    pL32_vec =(R3-R2); 
     
%RANGE RATE 
pdotL13 = (((R1(1)-R3(1))*(V1(1)- V3(1))) + ((R1(2)-R3(2))*... 
            (V1(2) - V3(2))) + ((R1(3) - R3(3))*(V1(3) - V3(3))))/pL13; %m/s 
  
pdotL21 = (((R2(1)-R1(1))*(V2(1)- V1(1))) + ((R2(2)-R1(2))*... 
            (V2(2) - V1(2))) + ((R2(3) - R1(3))*(V2(3)-V1(3))))/pL21; 
  
pdotL32 = (((R3(1)-R2(1))*(V3(1)- V2(1))) + ((R3(2)-R2(2))*... 
            (V3(2) - V2(2))) + ((R3(3) - R2(3))*(V3(3)-V2(3))))/pL32; 
         
%***ADD THE NOISE TO THE TRUTH******************* 
   % [GiR, YiR] = InterSCD2(to, ts(i), I, X, Xstar, S(i,13:15), S(i,16:18), 
%B(4:6), 0); 
    %interspacecraft range stays in m 
        Yi_5 = pL13 + sigma_irange(1) + sigma_ciL(1) + B(1); %m 
        Yl_5 = pL21 + sigma_irange(2) + sigma_ciL(2) + B(2);  
        Yq_5 = pL32 + sigma_irange(3) + sigma_ciL(3) + B(3);  
     
     %keep in m/s 
        Yi_6 = (pdotL13) + sigma_irate(1); %mm/s 
        Yl_6 = (pdotL21) + sigma_irate(2);  
        Yq_6 = (pdotL32) + sigma_irate(3);  
                 
%***CALCULATE THE MEASUREMENTS i.e. Reference Observations 
%RANGE PLUS ADD KNOWN BIASES TO CALCULATED 
%MEASUREMENT 
pL13s = norm(R1s-R3s);%+ B(1); %m; %m (1x1) 
     
pL21s = norm(R2s-R1s);%+ B(2); %m; 
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pL32s = norm(R3s-R2s);%+ B(3); %m; 
  
%RANGE RATE  
pdotL13s = ((((R1s(1)-R3s(1))*(V1s(1)- V3s(1))) + ((R1s(2)-R3s(2))*... 
            (V1s(2) - V3s(2))) + ((R1s(3) - R3s(3))*(V1s(3) - V3s(3))))/pL13s); 
%m/s 
  
pdotL21s = ((((R2s(1)-R1s(1))*(V2s(1)- V1s(1))) + ((R2s(2)-R1s(2))*... 
            (V2s(2) - V1s(2))) + ((R2s(3) - R1s(3))*(V2s(3)-V1s(3))))/pL21s); 
  
pdotL32s = ((((R3s(1)-R2s(1))*(V3s(1)- V2s(1))) + ((R3s(2)-R2s(2))*... 
            (V3s(2) - V2s(2))) + ((R3s(3) - R2s(3))*(V3s(3)-V2s(3))))/pL32s); 
%*********************************************************** 
YiR = [Yi_5' Yl_5' Yq_5' Yi_6' Yl_6' Yq_6']; %Real Measurements (1x6) 
GiR = [pL13s' pL21s' pL32s' pdotL13s' pdotL21s' pdotL32s']; %Calculated 
Measurements (1x6) 
  
%---COMPUTE MEASUREMENT DEVIATIONS, yi (1x1), AT TIME ti 
%LISA 1, 2 & 3 measurement deviations; measurement(Yi) – Reference 
Measurement(Gi) 
                yi_1 = YiR(1) - GiR(1); %(1x1), range measurement deviations 
                yl_1 = YiR(2) - GiR(2); 
                yq_1 = YiR(3) - GiR(3); 
  
                yi_2 = YiR(4) - GiR(4); %range rate measurement deviations 
                yl_2 = YiR(5) - GiR(5); 
                yq_2 = YiR(6) - GiR(6); 
  
                %Total Measurement deviations 
                L13tot = [yi_1; yi_2]; %(2x1)  
                L21tot = [yl_1; yl_2];%(2x1) 
                L32tot = [yq_1; yq_2]; %(2x1)     
%PLOTS (x,y,z) 
if plt == 1, 
figure 
subplot(2,1,1) 

plot(timespan, GiR(:,1),'b-', timespan, GiR(:,2),'g--', timespan, GiR(:,3), 'r-
.',... 
timespan, YiR(:,1),'b*', timespan, YiR(:,2),'g>', timespan, YiR(:,3),'rx');  
xlabel('Time (sec)') 
ylabel('Calculated / Real(noisy) Range(m)') 
legend('Leg 13', 'Leg 21', 'Leg 32','Leg 13', 'Leg 21', 'Leg 32') 
title('LISA Interspacecraft Range vs. Time') 
grid on 
subplot(2,1,2) 
plot(timespan, GiR(:,4),'b-', timespan, GiR(:,5), 'g--', timespan, GiR(:,6),'r-
.',... 
timespan, YiR(:,4),'b*', timespan, YiR(:,5),'g>', timespan, YiR(:,6),'rx');  
xlabel('Time (sec)') 
ylabel('Calculated / Real(noisy) Range Rate(m/sec)') 
title('LISA Interspacecraft Range Rate vs. Time') 
grid on 
else 
end 
 
 
 
LISA_WBLS.m (from Section 5.4 Orbit Accuracy) 
 
function [Xest, ABS, REL, RMS, var, PU_L1, PU_L2, PU_L3, err, erv, 
niter, Pcov] =MCLISA_bp(to_0, tf, I, Xrefstart_0, Xo_0, R1, R2, R3, S, B, 
plt, obs) 
%***********************************************************
******* 
%[Xest, DXr, DXv, DLr, DLv] = LISA_bp(to, tf, I, R1, R2, R3, AP, Po, 
xo_bar, %plt,obs) 
% 
%This function is a general Batch Processsor that takes in the 
%absolute spacecraft data (range, range rate, right ascension and 
declination) 
%and relative spacecraft data (interspacecraft range and range rate) 
%It can also be adapted to take in a priori information and weights.  Error 
%analysis will also be done and graphed. 
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% 
%INPUTS : to_0 = initial starting time of data (sec) 
%         tf = final time of data (sec) 
%         I = time interval to space measurements (sec) 
%         Xrefstart_0 =  The Initial Guess Vector, or Reference 
%               Start Vector (1x18), may be off by some errorstart from the 
%               Xo_0 
%         Xo_0 = The Nominal Vector (aka Truth) (1x18) 
%         R1, R2, R3 = each are 1xn array of weights associated with 
%               each observation type for each LISA.  Depends on size of 
%               observation case 
%         S = sigmas associated with each measurement 
%         B = read in biases 
%         plt= 0, "no" plot; =1, "yes" plot command is on 
%         %Observation Cases: 
%         obs = 0, DSN & VLBI 
%             = 1, DSN, VLBI & RELATIVE 
%             = 2, DSN only 
%             = 3, DSN & Relative 
% 
%OUTPUTS: Xest = The final Batch Processor estimate of the state 
%         ABS = The Absolute Error in position & velocity of the LISA 
%         constellation 
%         REL = The Relative Error in position & velocity of the LISA 
%         constellation 
%         RMS = The Root-Mean-Square of each LISA 
%         var = The Sample Variance of each LISA 
%         PU_L1, PU_L2, PU_L3 = Parameter Uncertainites 
%         err = Position Error in each LISA 
%         erv = Velocity Error in each LISA 
% 
%CALLS: LISA_EOMderivs.m, LISA_stmderive.m, RealObs.m, 
InterSCD.m, %H_partials.m 
% 
%REFERENCE: Fig. 4.6.1 (pp. 196-197) from B.Tapley's "Statistical Orbit 
%Determination" 

%***********************************************************
******* 
  
%---0. INITIALIZATION 
format long e 
  
if nargin < 12 
    obs = 0; %default, takes into account all absolute (DSN & VLBI) 
observation types 
end 
  
if nargin <11 
    plt = 0; %default no plots 
end 
  
%---SET UP TOLERANCE FOR CONVERGENCE 
switch(obs) 
    case 0, %DSN & VLBI 
        tol = .03; 
    case 1, %DSN, VLBI & RELATIVE 
        tol = .03; 
    case 2, %DSN 
        tol = .3; %.3; %.2; %case 2 won't converge with lower like .09 
    case 3, %DSN & RELATIVE 
        tol = .03; 
    otherwise, 
        error('Invalid case (0 <= obs <= 3)'); 
end 
  
RMSold = [1 1 1]; 
dRMS = 1; 
  
niter = 0; %set up number of iterations 
to = to_0; %initial time 
ts = to:I:tf; %(1xn) set up timespan 
  
Xo = Xo_0;  
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Xtru = Xo; %Nominal (or Truth) Vector 
Xk = Xrefstart_0; %Initial Guess Vector (i.e. Reference Vector) 
Xrefstart = Xk; %Will get updated from initial with each iteration in the 
program 
  
%---A. OUTER LOOP 
while dRMS >= tol 
  
    %---INITIAL CONDITION FOR THE STATE 
    Xstaro = Xrefstart; % (1x24) I.C. for integration =  Xstar(ti-1) 
    to = to_0; 
    Xo = Xo_0; 
    diff = Xo - Xo_0; 
  
    %---DEFINE & GIVE THE INITIAL CONDITION FOR THE STATE 
%TRANSITION MATRIX 
    %(STM) INTEGRATOR 
    stmi = eye(24); %(24x24), identity matrix 
    rstmi = reshape(stmi,576,1); %(576x1) 
    Xstmi = [Xstaro'; rstmi]; %(600x1) I.C. for STM integration 
  
    %---DEFINE THE M = Information Matrix, inverse of the covariance 
    %            & N = Reduced Residual Vector 
    %Both matrices are different depending on if a priori knowledge 
        switch(obs) 
            case 0, %DSN & VLBI 
                M1 = zeros(6,6);  % (6x6) position & velocity of LISA 1 
                N1 = zeros(6,1);  % (6x1) 
  
                M2 = zeros(6,6);  %LISA 2 
                N2 = zeros(6,1); 
  
                M3 = zeros(6,6);  %LISA 3 
                N3 = zeros(6,1); 
  
            case 1, %DSN, VLBI & RELATIVE 
                M = zeros(18,18); %LISA 1, 2 & 3 Postion & Velocity (18x18) 

                N = zeros(18,1);  %(18x1) 
  
            case 2, %DSN 
                M1 = zeros(6,6);  % (6x6) position & velocity of LISA 1 
                N1 = zeros(6,1);  % (6x1) 
  
                M2 = zeros(6,6);  %LISA 2 
                N2 = zeros(6,1); 
  
                M3 = zeros(6,6);  %LISA 3 
                N3 = zeros(6,1); 
  
            case 3, %DSN & RELATIVE 
                M = zeros(18,18); %LISA 1, 2 & 3 Postion & Velocity (18x18) 
                N = zeros(18,1);  %(18x1) 
  
            otherwise, 
                error('Invalid case (0 <= obs <= 3)'); 
        end 
  
    RMS1 = zeros(1); 
    RMS2 = zeros(1); 
    RMS3 = zeros(1); 
  
    var1 = zeros(1); 
    var2 = zeros(1); 
    var3 = zeros(1); 
  
    %---B. INNER LOOP 
    for i = 1:length(ts), %loop over number of measurements for length of 
timespan 
  
        %---READ IN TIME (1x1) 
        ts(i); %each measurement corresponds to a time in span 
  
        %---INTEGRATE STATE TRANSITION MATRIX, REFERENCE 
TRAJECTORY, & TRUTH 
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        %TRAJECTORY FROM to->ti 
        %NOTE: STM & REF. TRAJECTORY INTEGRATED ON THE 
NOMINAL ORBIT X* 
        if i==1, 
            Xstm = Xstmi'; %(1x600) no integration required for zero time 
change 
            Sf = Xstm(end,:); %(1x600) 
            Xstar=Xstaro; %(1x24) 
            X = Xo; 
        else 
            [t, Xstm] = ode45('LISA_stmderive', [to ts(i)], Xstmi, 
odeset('RelTol', 1e-8,'AbsTol',1e-8)); 
            [t, Xstar] = ode45('LISA_EOMderivs', [to ts(i)], Xstaro, 
odeset('RelTol', 1e-8,'AbsTol',1e-8)); 
            [t, X] = ode45('LISA_EOMderivs', [to ts(i)], Xo, odeset('RelTol', 1e-
8,'AbsTol',1e-8)); 
  
            Sf = Xstm(end,:); %(1x600) 
            Xstar = Xstar(end, :); %1x24 Also, Xstar = Sf(1:24) 
            X = X(end, :); %1x24 
        end 
  
        %--Xstmi=Xstar plus the reshaped stm matrix as the I.C. for stmderive 
        stm = reshape(Sf(25:600),24,24); %(24 x 24)the reshaped State 
Transition Matrix is columns 25:600 from Sf 
  
        %---CALL RealObs.m & InterSCD.m to READ IN Measurement 
Deviations 
        [Gi(i,:), L1tot(:,i), L2tot(:,i), L3tot(:,i)] = RealObs(to, ts(i), I, X, Xstar, 
S(i,1:3), S(i,4:6), S(i,7:9), S(i,10:12), S(i,19:21), S(i,22:24), B(1:3), 0); 
        [GiR(i,:), L13tot(:,i), L21tot(:,i), L32tot(:,i)] = InterSCD(to, ts(i), I, X, 
Xstar, S(i,13:15), S(i,16:18), S(i,25:27), B(4:6), 0); 
  
        %Total Measurement deviations 
        switch(obs) 
            case 0 %DSN & VLBI 
  

                yi_tot(:,i) = [L1tot(:,i)]; %(4xi) 
                yl_tot(:,i) = [L2tot(:,i)]; %(4xi) 
                yq_tot(:,i) = [L3tot(:,i)]; %(4xi) 
  
            case 1 %DSN, VLBI & RELATIVE 
  
                yi_tot(:,i) = [L1tot(:,i); L13tot(:,i); L2tot(:,i); L21tot(:,i); 
L3tot(:,i); L32tot(:,i)]; %(18xi) 
  
            case 2 %DSN only (range and range rate) 
  
                yi_tot(:,i) = [L1tot(1); L1tot(2)]; %(2xi) 
                yl_tot(:,i) = [L2tot(1); L2tot(2)]; %(2xi) 
                yq_tot(:,i) = [L3tot(1); L3tot(2)]; %(2xi) 
  
            case 3, %DSN & RELATIVE 
  
                yi_tot(:,i) = [L1tot(1:2,i); L13tot(:,i); L2tot(1:2,i); L21tot(:,i); 
L3tot(1:2,i); L32tot(:,i)]; %(12xi) 
  
            otherwise 
                error('Invalid case (0 <= obs <= 3)'); 
        end 
  
        %---COMPUTE Hi_tilda & Hi 
        %---H_tilda matrix, Observation Sensitivity (partial derivatives of the 
observations 
        %over the State),or Observation-State Mapping Matrix, G = 
observations 
        switch(obs) 
            case 0, %DSN & VLBI 
                [Hi_tilda(:,:,i), Hl_tilda(:,:,i), Hq_tilda(:,:,i)] = H_partials7(Gi(i,:), 
GiR(i,:), Xstar, 0); 
  
                %CALCULATE THE OBSERVATION SENSITIVITY 
MATRIX OF EACH LISA 
                Hi(:,:,i) = Hi_tilda(:,1:6,i)*stm(1:6,1:6); %(4x6) 
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                Hl(:,:,i) = Hl_tilda(:,7:12,i)*stm(7:12,7:12); 
  
                Hq(:,:,i) = Hq_tilda(:,13:18,i)*stm(13:18,13:18); 
  
                %---READ IN Observation Noise Covariances (Ri) 
                %construct as block diagonal matrices 
                %---Weighting Matrix 
                %NOTE: W = inv(Ri), Construct W matrices    
                W1 = inv(diag(R1)); % (4x4) 
                W2 = inv(diag(R2));  
                W3 = inv(diag(R3));  
                %return 
                %---Scaled Weights 
                W1sc = inv(diag(R1));  
                W2sc = inv(diag(R2));  
                W3sc = inv(diag(R3));  
  
            case 1, %DSN, VLBI, RELATIVE 
                [Hi_tilda(:,:,i), Hl_tilda(:,:,i), Hq_tilda(:,:,i)] = H_partials7(Gi(i,:), 
GiR(i,:), Xstar, 1); 
  
                Hi(:,:,i) = Hi_tilda(:,:,i)*stm(1:18,1:18); %(18x18) 
  
                %---Weighting Matrix 
                W1 = inv(diag(R1)); % (18x18) 
  
                %---Scaled Weights 
                W1sc = inv(diag(R1)); 
  
            case 2, %DSN only (range and range rate) 
                [Hi_tilda(:,:,i), Hl_tilda(:,:,i), Hq_tilda(:,:,i)] = H_partials7(Gi(i,:), 
GiR(i,:), Xstar, 2); 
  
                %CALCULATE THE OBSERVATION SENSITIVITY 
MATRIX OF EACH LISA 
                Hi(:,:,i) = Hi_tilda(:,1:6,i)*stm(1:6,1:6); %(2x6) 

  
                Hl(:,:,i) = Hl_tilda(:,7:12,i)*stm(7:12,7:12); 
  
                Hq(:,:,i) = Hq_tilda(:,13:18,i)*stm(13:18,13:18); 
  
                %---Weighting Matrix 
                W1 = inv(diag(R1)); % (4x4) 
                W2 = inv(diag(R2)); 
                W3 = inv(diag(R3)); 
                %---Scaled Weights 
                W1sc = inv(diag(R1)); 
                W2sc = inv(diag(R2)); 
                W3sc = inv(diag(R3)); 
  
            case 3, %DSN & RELATIVE 
                [Hi_tilda(:,:,i), Hl_tilda(:,:,i), Hq_tilda(:,:,i)] = H_partials7(Gi(i,:), 
GiR(i,:), Xstar, 3); 
  
                Hi(:,:,i) = Hi_tilda(:,:,i)*stm(1:18,1:18); %(18x18) 
  
                %---Weighting Matrix 
                W1 = inv(diag(R1)); % (12x12) 
  
                %---Scaled Weights 
                W1sc = inv(diag(R1)); 
            otherwise, 
                error('Invalid case (0 <= obs <= 3)'); 
        end 
  
        %ACCUMULATE CURRENT OBSERVATION 
        switch(obs) 
            case 0, %DSN & VLBI 
                SC=diag([1 1 1 1e-6 1e-6 1e-6]); %Scaling Matrix 
  
                M1 = M1 + ((Hi(:,:,i)*SC)'*W1sc*(Hi(:,:,i)*SC)); %6x6, 2-D 
                N1 = N1 + ((Hi(:,:,i)*SC)'*W1sc*yi_tot(:,i));   %6x1, 2-D 
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                M2 = M2 + ((Hl(:,:,i)*SC)'*W2sc*(Hl(:,:,i)*SC)); 
                N2 = N2 + ((Hl(:,:,i)*SC)'*W2sc*yl_tot(:,i)); 
  
                M3 = M3 + ((Hq(:,:,i)*SC)'*W3sc*(Hq(:,:,i)*SC)); 
                N3 = N3 + ((Hq(:,:,i)*SC)'*W3sc*yq_tot(:,i)); 
  
                
%***********************************************************
** 
                RMS1 = RMS1 + (yi_tot(:,i)'*W1sc*yi_tot(:,i)); %1x1, Weighted 
RMS 
                RMS2 = RMS2 + (yl_tot(:,i)'*W2sc*yl_tot(:,i)); 
                RMS3 = RMS3 + (yq_tot(:,i)'*W3sc*yq_tot(:,i)); 
                RMSm = [RMS1 RMS2 RMS3]; 
  
                var1 = var1 + yi_tot(:,i)'*W1sc*yi_tot(:,i); 
                var2 = var2 + yl_tot(:,i)'*W2sc*yl_tot(:,i); 
                var3 = var3 + yq_tot(:,i)'*W3sc*yq_tot(:,i); 
                varm = [var1 var2 var3]; 
  
            case 1 %DSN, VLBI & RELATIVE 
                SC = diag([1 1 1 1e-6 1e-6 1e-6 1 1 1 1e-6 1e-6 1e-6... 
                    1 1 1 1e-6 1e-6 1e-6]); 
                M = M + ((Hi(:,:,i)*SC)'*(W1sc)*(Hi(:,:,i)*SC)); %18x18, 2-D 
                N = N + ((Hi(:,:,i)*SC)'*(W1sc)*yi_tot(:,i));   %18x1, 2-D 
                 
                
%***********************************************************
** 
                RMS1 = RMS1 + (yi_tot(1:6,i)'*(W1sc(1:6,1:6))*yi_tot(1:6,i)); 
%1x1, Weighted RMS 
                RMS2 = RMS2 + 
(yi_tot(7:12,i)'*(W1sc(7:12,7:12))*yi_tot(7:12,i)); %1x1, Weighted RMS 
                RMS3 = RMS3 + 
(yi_tot(13:18,i)'*(W1sc(13:18,13:18))*yi_tot(13:18,i)); %1x1, Weighted 
RMS 
                RMSm = [RMS1 RMS2 RMS3]; 

  
  
                var1 = var1 + yi_tot(1:6,i)'*(W1sc(1:6,1:6))*yi_tot(1:6,i); 
                var2 = var2 + yi_tot(7:12,i)'*(W1sc(7:12,7:12))*yi_tot(7:12,i); 
                var3 = var3 + 
yi_tot(13:18,i)'*(W1sc(13:18,13:18))*yi_tot(13:18,i); 
                varm = [var1 var2 var3]; 
  
            case 2 %DSN 
                SC=diag([1 1 1 1e-6 1e-6 1e-6]); 
                M1 = M1 + ((Hi(:,:,i)*SC)'*(W1sc)*(Hi(:,:,i)*SC)); %6x6, 2-D 
                N1 = N1 + ((Hi(:,:,i)*SC)'*(W1sc)*yi_tot(:,i));   %6x1, 2-D 
  
                M2 = M2 + ((Hl(:,:,i)*SC)'*(W2sc)*(Hl(:,:,i)*SC)); 
                N2 = N2 + ((Hl(:,:,i)*SC)'*(W2sc)*yl_tot(:,i)); 
  
                M3 = M3 + ((Hq(:,:,i)*SC)'*(W3sc)*(Hq(:,:,i)*SC)); 
                N3 = N3 + ((Hq(:,:,i)*SC)'*(W3sc)*yq_tot(:,i)); 
                
%***********************************************************
** 
                RMS1 = RMS1 + (yi_tot(:,i)'*(W1sc)*yi_tot(:,i)); %1x1, 
Weighted RMS 
                RMS2 = RMS2 + (yl_tot(:,i)'*(W1sc)*yl_tot(:,i)); 
                RMS3 = RMS3 + (yq_tot(:,i)'*(W1sc)*yq_tot(:,i)); 
                RMSm = [RMS1 RMS2 RMS3]; 
  
                var1 = var1 + yi_tot(:,i)'*W1sc*yi_tot(:,i); 
                var2 = var2 + yl_tot(:,i)'*W2sc*yl_tot(:,i); 
                var3 = var3 + yq_tot(:,i)'*W3sc*yq_tot(:,i); 
                varm = [var1 var2 var3]; 
  
            case 3, %DSN & RELATIVE 
                SC=diag([1 1 1 1e-6 1e-6 1e-6 1 1 1 1e-6 1e-6 1e-6... 
                    1 1 1 1e-6 1e-6 1e-6]); 
                M = M + ((Hi(:,:,i)*SC)'*(W1sc)*(Hi(:,:,i)*SC)); %18x18, 2-D 
                N = N + ((Hi(:,:,i)*SC)'*(W1sc)*yi_tot(:,i));   %18x1, 2-D 
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%********************************************************** 
                RMS1 = RMS1 + (yi_tot(1:4,i)'*(W1sc(1:4,1:4))*yi_tot(1:4,i)); 
%1x1, %Weighted RMS 
                RMS2 = RMS2 + (yi_tot(5:8,i)'*(W1sc(5:8,5:8))*yi_tot(5:8,i)); 
%1x1, %Weighted RMS 
                RMS3 = RMS3 + 
(yi_tot(9:12,i)'*(W1sc(9:12,9:12))*yi_tot(9:12,i)); %1x1, Weighted RMS 
                RMSm = [RMS1 RMS2 RMS3]; 
  
                var1 = var1 + yi_tot(1:4,i)'*W1sc(1:4,1:4)*yi_tot(1:4,i); 
                var2 = var2 + yi_tot(5:8,i)'*W1sc(5:8,5:8)*yi_tot(5:8,i); 
                var3 = var3 + yi_tot(9:12,i)'*W1sc(9:12,9:12)*yi_tot(9:12,i); 
                varm = [var1 var2 var3]; 
  
            otherwise 
                error('Invalid case (0 <= obs <= 3)'); 
        end 
        if ts(i) < tf, 
            if ts(i)== ts(1) 
                to = ts(i); %time ti becomes to 
                i = i + 1; 
                Xstaro = Xstaro; %(1x24) the I.C. @ i=1 becomes the I.C. for 
next %reading 
                Xstmi = Xstmi; %(600x1), STM becomes the I.C. for next 
reading 
                Xo = Xo; %the I.C. @ i=1 becomes the I.C. for the next reading 
            else 
                to = ts(i); %time ti becomes to 
                i = i + 1; 
                Xstaro = Xstar; %(1x24) integrated trajectory becomes the I.C. 
for next %reading 
                Xstmi = Sf'; %Sf' = (600x1), integrated STM becomes the I.C. for 
next %reading 
                Xo = X; %integrated truth becomes the I.C. for the next reading 
            end 

            %---GO BACK TO THE BEGINNING OF B TO READ NEXT 
%OBSERVATION---% 
  
        elseif ts(i) >= tf 
  
            disp('---All measurements in batch have been read---'); 
  
        end %PROCEED TO STEP C 
  
    end %END OF INNER LOOP B, when all measurements in the batch are 
read 
  
    disp('done with inner loop B'); 
    
%***********************************************************
******* 
    %OBSERVABILITY & MATRIX RANK TEST 
    %IF FULL RANK & OBSERVABILITY IS GREATER THAN ZERO 
(i.e. not    %singular 
    %(det(M) is not equal to zero), to be singular, det(M)=0) then M is 
    %invertible and observable 
    %A test for the existence of exact solutions is rank(M) = rank([M N]), if 
    %not equal then the answer is a LS solution, and is not exact 
    
%***********************************************************
******* 
    %---C. SOLVE THE NORMAL EQUATIONS 
    %Alternative way to do the inversion of the Normal equations..... 
    %Here is the straight up way, must pass the observability and matrix 
    %rank test above to be able to invert 
    %**************************** 
    l = (length(ts)); %(1:length(ts)) %length of batch, i 
    p = length(yi_tot(:,end)); % length of p-dimensional set of observation 
(usu. p<n) 
    m = p*l; %total # of observations, where m >> n 
  
    switch(obs) 
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        case 0 %DSN & VLBI 
            rcond(M1); 
            rcond(M2); 
            rcond(M3); 
            rank(M1); 
            rank([M1 N1]); 
            rank(M2); 
            rank([M2 N2]); 
            rank(M3); 
            rank([M3 N3]); 
             
            P1 = inv(M1); 
            xhat1 = SC*P1*N1; 
  
            P2 = inv(M2); 
            xhat2 = SC*P2*N2; 
  
            P3 = inv(M3); 
            xhat3 = SC*P3*N3; 
  
            n_xhat1 = norm(xhat1); 
            n_xhat2 = norm(xhat2); 
            n_xhat3 = norm(xhat3); 
            n_xcorr = [n_xhat1 n_xhat2 n_xhat3]; 
  
            xhat = [xhat1 xhat2 xhat3]; 
            n_xhat = norm(xhat); 
  
            %***RMS & Sample Variance 
            RMSm; 
            RMS = ([RMSm]./m).^(1/2); %(1x3) 
            var = (1/(m-6)).*([varm]); %(1x3) 
  
        case 1 %DSN, VLBI & RELATIVE 
            rcond(M); 
            rank(M); 
            rank([M N]); 

             
            P = inv(M); 
  
            xhat = SC*P*N; 
            n_xhat = norm(xhat); 
  
            n_xhat1 = norm(xhat(1:6)); 
            n_xhat2 = norm(xhat(7:12)); 
            n_xhat3 = norm(xhat(13:18)); 
  
            n_xcorr = [n_xhat1 n_xhat2 n_xhat3]; 
  
            %***RMS & Sample Variance 
            RMS = ([RMSm]./m).^(1/2); %(1x3) 
            var = (1/(m-6)).*([varm]); %(1x3) var = (1/(m-18)).*([varm]); 
%(1x3) 
  
        case 2 %DSN 
            rcond(M1); 
            rcond(M2); 
            rcond(M3); 
            rank(M1); 
            rank([M1 N1]); 
            rank(M2); 
            rank([M2 N2]); 
            rank(M3); 
            rank([M3 N3]); 
             
            P1 = inv(M1); 
            xhat1 = SC*P1*N1; 
  
            P2 = inv(M2); 
            xhat2 = SC*P2*N2; 
  
            P3 = inv(M3); 
            xhat3 = SC*P3*N3; 
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            n_xhat1 = norm(xhat1); 
            n_xhat2 = norm(xhat2); 
            n_xhat3 = norm(xhat3); 
            n_xcorr = [n_xhat1 n_xhat2 n_xhat3]; 
  
            xhat = [xhat1 xhat2 xhat3]; 
            n_xhat = norm(xhat); 
  
            %***RMS & Sample Variance 
            RMS = ([RMSm]./m).^(1/2); %(1x3) 
            var = (1/(m-6)).*([varm]); %(1x3) 
  
        case 3, %DSN & RELATIVE 
            rcond(M); 
            rank(M); 
            rank([M N]); 
             
            P = inv(M); 
  
            xhat = SC*P*N; 
            n_xhat = norm(xhat); 
  
            n_xhat1 = norm(xhat(1:6)); 
            n_xhat2 = norm(xhat(7:12)); 
            n_xhat3 = norm(xhat(13:18)); 
  
            n_xcorr = [n_xhat1 n_xhat2 n_xhat3]; 
  
            %***RMS & Sample Variance 
            RMS = ([RMSm]./m).^(1/2); %(1x3) 
            var = (1/(m-6)).*([varm]); %(1x3) var = (1/(m-18)).*([varm]); 
%(1x3) 
        otherwise 
            error('Invalid case (0 <= obs <= 3)') 
    end 
  
    %HAS PROCESS CONVERGED? 

    niter = niter + 1; 
    %dRMS = mean((abs(RMSold - RMS))); 
    dRMS = mean((abs(RMSold - RMS))./RMSold); 
  
    if dRMS >= tol, %THEN UPDATE REFERENCE STATE & ITERATE 
        switch(obs) 
            case 0 %DSN & VLBI 
                Xhat1 = Xrefstart(1:6) + xhat1'; 
                Xhat2 = Xrefstart(7:12) + xhat2'; 
                Xhat3 = Xrefstart(13:18) + xhat3'; 
  
                Xrefstart = [Xhat1 Xhat2 Xhat3 Xtru(1,19:24)]; %Updated 
reference/nominal trajectory for next iteration 
                RMSold = RMS; 
  
            case 1 %DSN, VLBI & RELATIVE 
                Xhat = Xrefstart(1:18) + xhat'; 
  
                Xrefstart = [Xhat Xtru(1,19:24)]; %Updated reference/nominal 
trajectory for next iteration 
                RMSold = RMS; 
  
            case 2 %DSN 
                Xhat1 = Xrefstart(1:6) + xhat1'; 
                Xhat2 = Xrefstart(7:12) + xhat2'; 
                Xhat3 = Xrefstart(13:18) + xhat3'; 
  
                Xrefstart = [Xhat1 Xhat2 Xhat3 Xtru(1,19:24)]; %Updated 
reference/nominal trajectory for next iteration 
                RMSold = RMS; 
  
            case 3, %DSN & RELATIVE 
                Xhat = Xrefstart(1:18) + xhat'; 
  
                Xrefstart = [Xhat Xtru(1,19:24)]; %Updated reference/nominal 
trajectory for next iteration 
                RMSold = RMS; 
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            otherwise 
                error('Invalid case (0 <= obs <= 3)'); 
        end 
         
        %---GO BACK TO A = BEGINNING OF OUTER LOOP with new 
values Xstar and 
        %xo_bar--% 
  
    else dRMS < tol, %THE PROCESS HAS CONVERGED 
        switch(obs) 
            case 0 %DSN & VLBI 
                Xhat1 = Xrefstart(1:6) + xhat1'; %updated reference state for 
LISA 1 
                Xhat2 = Xrefstart(7:12) + xhat2'; %for LISA 2 
                Xhat3 = Xrefstart(13:18) + xhat3'; %for LISA 3 
  
                Xup = [Xhat1 Xhat2 Xhat3]; %Updated reference/nominal 
trajectory 
  
                Xest = [Xup Xtru(1,19:24)]; % give last Xhat as the resulting 
estimate from batch LS 
  
            case 1 %DSN, VLBI & RELATIVE 
                Xup = Xrefstart(1:18) + xhat'; %updated reference state for LISA 
1,2,& 3 
  
                Xest = [Xup Xtru(1,19:24)]; %give last Xhat as the resulting 
estimate from batch LS 
  
            case 2 %DSN 
                Xhat1 = Xrefstart(1:6) + xhat1'; %updated reference state for 
LISA 1 
                Xhat2 = Xrefstart(7:12) + xhat2'; %for LISA 2 
                Xhat3 = Xrefstart(13:18) + xhat3'; %for LISA 3 
  

                Xup = [Xhat1 Xhat2 Xhat3]; %Updated reference/nominal 
trajectory 
  
                Xest = [Xup Xtru(1,19:24)]; % give last Xhat as the resulting 
estimate from batch LS 
  
            case 3, %DSN & RELATIVE 
                Xup = Xrefstart(1:18) + xhat'; %updated reference state for LISA 
1,2,& 3 
  
                Xest = [Xup Xtru(1,19:24)]; %give last Xhat as the resulting 
estimate from batch LS     
            otherwise 
                error('Invalid case (0 <= obs <= 3)'); 
        end 
    end %CAN END LOOPS 
    %disp('done with outer loop A') 
end %END 
  
%---D. ERROR ANALYSIS 
switch(obs) 
    case 0 %DSN & VLBI 
        for j = 1:length(ts), 
            e1(:,j) = yi_tot(:,j) - ([Hi(:,:,j)]*xhat1);  %nxj best estimate of 
observation error %nx1, individually 
            e2(:,j) = yl_tot(:,j) - ([Hl(:,:,j)]*xhat2); 
            e3(:,j) = yq_tot(:,j) - ([Hq(:,:,j)]*xhat3); 
        end 
        obserr = [mean(e1,2) mean(e2,2) mean(e3,2)]; %nx3 
  
        %Unscaled Covariance 
        SC=diag([1 1 1 1e-6 1e-6 1e-6]); %Scaling Matrix 
        SC2 = (SC'*SC); 
         
        P1_us = (SC2*P1); %(6x6) 
        P2_us = (SC2*P2); 
        P3_us = (SC2*P3); 
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Pcov = [diag(P1_us)' diag(P2_us)' diag(P3_us)']; %(1x18) 
  
sPcov = [sqrt(Pcov)]'; 
        %Parameter Uncertainties 
        PU_L1 =[sqrt(var(1)*abs(P1_us(1,1))); sqrt(var(1)*abs(P1_us(2,2))); 
sqrt(var(1)*abs(P1_us(3,3)));... 
            sqrt(var(1)*abs(P1_us(4,4))); sqrt(var(1)*abs(P1_us(5,5))); 
sqrt(var(1)*abs(P1_us(6,6)))]; %(6x1) for LISA 1 Position & Velocity 
  
        PU_L2 = [sqrt(var(2)*abs(P2_us(1,1))); sqrt(var(2)*abs(P2_us(2,2))); 
sqrt(var(2)*abs(P2_us(3,3)));... 
            sqrt(var(2)*abs(P2_us(4,4))); sqrt(var(2)*abs(P2_us(5,5))); 
sqrt(var(2)*abs(P2_us(6,6)))]; %(6x1) for LISA 2 Position & Velocity 
  
        PU_L3 = [sqrt(var(3)*abs(P3_us(1,1))); sqrt(var(3)*abs(P3_us(2,2))); 
sqrt(var(3)*abs(P3_us(3,3)));... 
            sqrt(var(3)*abs(P3_us(4,4))); sqrt(var(3)*abs(P3_us(5,5))); 
sqrt(var(3)*abs(P3_us(6,6)))]; %(6x1) for LISA 3 Position & Velocity 
  
        PU = [PU_L1 PU_L2 PU_L3]; %6x3 
  
        %***Position Errors 
        err1r = norm(xhat1(1:3)); 
        err2r = norm(xhat2(1:3)); 
        err3r = norm(xhat3(1:3)); 
  
        err = [err1r err2r err3r]; 
  
        %***Velocity Errors 
        err1v = norm(xhat1(4:6)); 
        err2v = norm(xhat2(4:6)); 
        err3v = norm(xhat3(4:6)); 
        erv = [err1v err2v err3v]; 
  
    case 1 %DSN, VLBI & RELATIVE 
        for j = 1:length(ts), 

            e1(:,j) = yi_tot(:,j) - ([Hi(:,:,j)]*xhat);  %nxj best estimate of 
observation error %nx1, individually 
        end 
        obserr = [e1]; 
  
        %Unscaled Covariances 
        SC = diag([1 1 1 1e-6 1e-6 1e-6 1 1 1 1e-6 1e-6 1e-6... 
                    1 1 1 1e-6 1e-6 1e-6]); 
        SC2 = (SC'*SC); 
                 
        P_us = (SC2*P); %(18x18) 
        Pcov = [diag(P_us)']; 
  
        %Parameter Uncertainties 
        PU_L1 =[sqrt(var(1)*abs(P_us(1,1))); sqrt(var(1)*abs(P_us(2,2))); 
sqrt(var(1)*abs(P_us(3,3)));... 
            sqrt(var(1)*abs(P_us(4,4))); sqrt(var(1)*abs(P_us(5,5))); 
sqrt(var(1)*abs(P_us(6,6)))]; %(6x1) for LISA 1 Position & Velocity 
  
        PU_L2 = [sqrt(var(2)*abs(P_us(7,7))); sqrt(var(2)*abs(P_us(8,8))); 
sqrt(var(2)*abs(P_us(9,9)));... 
            sqrt(var(2)*abs(P_us(10,10))); sqrt(var(2)*abs(P_us(11,11))); 
sqrt(var(2)*abs(P_us(12,12)))]; %(6x1) for LISA 2 Position & Velocity 
  
        PU_L3 = [sqrt(var(3)*abs(P_us(13,13))); 
sqrt(var(3)*abs(P_us(14,14))); sqrt(var(3)*abs(P_us(15,15)));... 
            sqrt(var(3)*abs(P_us(16,16))); sqrt(var(3)*abs(P_us(17,17))); 
sqrt(var(3)*abs(P_us(18,18)))]; %(6x1) for LISA 3 Position & Velocity 
  
        %***Position Errors 
        err = [norm(xhat(1:3)) norm(xhat(7:9)) norm(xhat(13:15))]; 
  
        %***Velocity Errors 
        erv = [norm(xhat(4:6)) norm(xhat(10:12)) norm(xhat(16:18))]; 
  
    case 2 %DSN 
        for j = 1:length(ts), 
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            e1(:,j) = yi_tot(:,j) - ([Hi(:,:,j)]*xhat1);  %nxj best estimate of 
observation error %nx1, individually 
            e2(:,j) = yl_tot(:,j) - ([Hl(:,:,j)]*xhat2); 
            e3(:,j) = yq_tot(:,j) - ([Hq(:,:,j)]*xhat3); 
        end 
        obserr = [e1 e2 e3]; 
  
        %Unscaled Covariance 
        SC = diag([1 1 1 1e-6 1e-6 1e-6]); 
        SC2 = (SC'*SC); 
         
        P1_us = (SC2*P1); %(6x6) 
  
        P2_us = (SC2*P2); 
  
        P3_us = (SC2*P3); 
         
Pcov = [diag(P1_us)' diag(P2_us)' diag(P3_us)']; 
  
        %Parameter Uncertainties 
        PU_L1 =[sqrt(var(1)*abs(P1_us(1,1))); sqrt(var(1)*abs(P1_us(2,2))); 
sqrt(var(1)*abs(P1_us(3,3)));... 
            sqrt(var(1)*abs(P1_us(4,4))); sqrt(var(1)*abs(P1_us(5,5))); 
sqrt(var(1)*abs(P1_us(6,6)))]; %(6x1) for LISA 1 Position & Velocity 
  
        PU_L2 = [sqrt(var(2)*abs(P2_us(1,1))); sqrt(var(2)*abs(P2_us(2,2))); 
sqrt(var(2)*abs(P2_us(3,3)));... 
            sqrt(var(2)*abs(P2_us(4,4))); sqrt(var(2)*abs(P2_us(5,5))); 
sqrt(var(2)*abs(P2_us(6,6)))]; %(6x1) for LISA 2 Position & Velocity 
  
        PU_L3 = [sqrt(var(3)*abs(P3_us(1,1))); sqrt(var(3)*abs(P3_us(2,2))); 
sqrt(var(3)*abs(P3_us(3,3)));... 
            sqrt(var(3)*abs(P3_us(4,4))); sqrt(var(3)*abs(P3_us(5,5))); 
sqrt(var(3)*abs(P3_us(6,6)))]; %(6x1) for LISA 3 Position & Velocity 
  
        %***Position Errors 
        err1r = norm(xhat1(1:3)); 

        err2r = norm(xhat2(1:3)); 
        err3r = norm(xhat3(1:3)); 
  
        err = [err1r err2r err3r]; 
  
        %***Velocity Errors 
        err1v = norm(xhat1(4:6)); 
        err2v = norm(xhat2(4:6)); 
        err3v = norm(xhat3(4:6)); 
  
        erv = [err1v err2v err3v]; 
  
    case 3, %DSN & RELATIVE 
        for j = 1:length(ts), 
            e1(:,j) = yi_tot(:,j) - ([Hi(:,:,j)]*xhat);  %nxj best estimate of 
observation error %nx1, individually 
        end 
        obserr = [e1]; 
  
        %Unscaled Covariances 
        SC = diag([1 1 1 1e-6 1e-6 1e-6 1 1 1 1e-6 1e-6 1e-6... 
                    1 1 1 1e-6 1e-6 1e-6]); 
        SC2 = (SC'*SC); 
         
        P_us = (SC2*P); %(18x18) 
Pcov = [diag(P_us)']; 
        %Parameter Uncertainties 
        PU_L1 =[sqrt(var(1)*abs(P_us(1,1))); sqrt(var(1)*abs(P_us(2,2))); 
sqrt(var(1)*abs(P_us(3,3)));... 
            sqrt(var(1)*abs(P_us(4,4))); sqrt(var(1)*abs(P_us(5,5))); 
sqrt(var(1)*abs(P_us(6,6)))]; %(6x1) for LISA 1 Position & Velocity 
  
        PU_L2 = [sqrt(var(2)*abs(P_us(7,7))); sqrt(var(2)*abs(P_us(8,8))); 
sqrt(var(2)*abs(P_us(9,9)));... 
            sqrt(var(2)*abs(P_us(10,10))); sqrt(var(2)*abs(P_us(11,11))); 
sqrt(var(2)*abs(P_us(12,12)))]; %(6x1) for LISA 2 Position & Velocity 
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        PU_L3 = [sqrt(var(3)*abs(P_us(13,13))); 
sqrt(var(3)*abs(P_us(14,14))); sqrt(var(3)*abs(P_us(15,15)));... 
            sqrt(var(3)*abs(P_us(16,16))); sqrt(var(3)*abs(P_us(17,17))); 
sqrt(var(3)*abs(P_us(18,18)))]; %(6x1) for LISA 3 Position & Velocity 
  
        %***Position Errors 
        err = [norm(xhat(1:3)) norm(xhat(7:9)) norm(xhat(13:15))]; 
  
        %***Velocity Errors 
        erv = [norm(xhat(4:6)) norm(xhat(10:12)) norm(xhat(16:18))]; 
  
    otherwise 
        error('Invalid case (0 <= obs <= 6)'); 
end 
  
%***ESTIMATE 
ERROR****************************************** 
fuzz = Xk - Xest; 
nfuzz = norm(fuzz); 
Xerror = Xest-Xtru; 
nXerror = norm(Xerror); 
nXest = norm(Xest); 
nXtru = norm(Xtru); 
  
%***ABSOLUTE OD 
ACCURACY************************************* 
DXr = [norm(Xest(1:3)-Xtru(1:3)), norm(Xest(7:9)-Xtru(7:9)), 
norm(Xest(13:15)-Xtru(13:15))];  %position 
DXv = [norm(Xest(4:6)-Xtru(4:6)), norm(Xest(10:12)-Xtru(10:12)), 
norm(Xest(16:18)-Xtru(16:18))]; %velocity 
  
ABS = [norm(DXr) norm(DXv)]; 
  
%***RELATIVE OD 
ACCURACY************************************** 
DL13=norm(Xest(1:3)-Xest(13:15))-norm(Xtru(1:3)-Xtru(13:15)); 
DL21=norm(Xest(1:3)-Xest(7:9))-norm(Xtru(1:3)-Xtru(7:9)); 

DL32=norm(Xest(7:9)-Xest(13:15))-norm(Xtru(7:9)-Xtru(13:15)); 
  
DL13v=norm(Xest(4:6)-Xest(16:18))-norm(Xtru(4:6)-Xtru(16:18)); 
DL21v=norm(Xest(10:12)-Xest(4:6))-norm(Xtru(10:12)-Xtru(4:6)); 
DL32v=norm(Xest(16:18)-Xest(10:12))-norm(Xtru(16:18)-Xtru(10:12)); 
  
DL = norm([DL13 DL21 DL32]); 
DLv = norm([DL13v DL21v DL32v]); 
REL = [DL DLv]; 
 
 
 
MCRUNbp.m (from Section 5.4 Orbit Accuracy) 
 
function [Mniter, MXest, Merr, Stderr, Merv, Stderv, MABSr, StdABSr, 
MABSv, StdABSv, MRELr, StdRELr, MRELv, StdRELv, MRMS, Mvar, 
MPU_L1, MPU_L2, MPU_L3, M_Pcov] = MCRUNbp() 
format long e 
 
x = 1; 
days = [1 3 5 7 10 15 20 25 30 35 37 40 45 50 55 60 65 70 75 80 85 90]; 
for d = [1 3 5 7 10 15 20 25 30 35 37 40 45 50 55 60 65 70 75 80 85 90]; 
    d;   
    x; 
    %***SET THE APPROPRIATE START TIME TO THE   
%CASE************************* 
    to_0 = 0;  %EPOCH, X_truth(1,1); %start of timespan 
    %***SET THE APPROPRIATE END TIME TO THE 
%CASE*************************** 
    tf = 60*60*24*d; %days 
    %***SET THE APPROPRIATE INTERVAL TIME TO THE 
%CASE********************** 
    I = 60*60*24; %sec, skips every 24 hours for 1 day intervals 1 meas/day 
    
%***TIMESPAN********************************************** 
    ts = to_0:I:tf; %timespan for INTERVALS 
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%*********************************************************** 
%***INITIAL CONDITION VECTOR  FROM NomOrb_half.mat  
%*********************************************************** 
%Xo = [X_traj(1,2:7) X_traj(1, 8:13) X_traj(1, 14:19) X_traj(1,20:25)]; 
%1x24 
Xo_0 = [9.071855731392364e-006, 1.481339600426210e+011, 
2.475763859214967e+009,... 
-3.007344842423256e+004, 1.841210487873900e-012, 
3.077216312703865e-014,... 
2.487592427287221e+009, 1.503039437121128e+011, -
1.292020540364669e+009,... 
-2.963517041188058e+004, 2.476377264069181e+002, 
4.268667617608362e+002,... 
-2.487592427287196e+009, 1.503039437121128e+011, -
1.292020540364669e+009,... 
-2.963517041188058e+004, -2.476377264069132e+002, -
4.268667617608363e+002,... 
-5.116553726769669e+010, 1.405761582972606e+011, 0,... 
-2.798843961236834e+004, -1.018695892245916e+004, 0];  
    
%*********************************************************** 
%***REFERENCE START VECTOR WITH ERROR aka "FUZZ" 
%ADDED ON 
 %*********************************************************** 
    errorstart = 0*[-1 1 1 1e-6 1e-6 1e-6 -1 1 1 1e-6 1e-6 1e-6 -1 1 1 1e-6 1e-
6 1e-6].*randn(1,18); %NO Guess Error 
    Xrefstart_0 = Xo_0 + [errorstart zeros(1,6)]; 
    
%*********************************************************** 
%READ IN SIGMA ERROR, BIASES & WEIGHTS FOR EACH CASE    
%*********************************************************** 
    c = 299792458; %m/s speed of light 
    tau = 1000; %sec, Doppler count time 
    Astd = 1e-15; %Allan Standard deviation for a Doppler Count time 
=1000s 
     

    pi1 = norm([Xrefstart_0(1:3) - Xrefstart_0(19:21)]); %m (1x1) range 
scalar for LISA 1 
    pi2 = norm([Xrefstart_0(7:9) - Xrefstart_0(19:21)]); 
    pi3 = norm([Xrefstart_0(13:15) - Xrefstart_0(19:21)]); 
        pi13 = norm([Xrefstart_0(1:3) - Xrefstart_0(13:15)]); %m (1x1) range 
scalar for LISA Leg 13 
        pi21 = norm([Xrefstart_0(7:9) - Xrefstart_0(1:3)]); 
        pi32 = norm([Xrefstart_0(13:15) - Xrefstart_0(7:9)]); 
     
    RTLT1 = (2*pi1)/c; %round-trip light time for LISA 1 
    RTLT2 = (2*pi2)/c; 
    RTLT3 = (2*pi3)/c; 
        RTLT13 = (2*pi13)/c; %round-trip light time for LISA Leg 13 
        RTLT21 = (2*pi21)/c; 
        RTLT32 = (2*pi32)/c; 
    %range error due to clock instability 
    ci1 = ((sqrt(2))*c*RTLT1*Astd)*sqrt(60/(1000)); 
    ci2 = ((sqrt(2))*c*RTLT2*Astd)*sqrt(60/(1000)); 
    ci3 = ((sqrt(2))*c*RTLT3*Astd)*sqrt(60/(1000)); 
    ci = norm([ci1 ci2 ci3]); 
            ci13 = ((sqrt(2))*c*RTLT13*Astd)*sqrt(60/(1000)); 
            ci21 = ((sqrt(2))*c*RTLT21*Astd)*sqrt(60/(1000)); 
            ci32 = ((sqrt(2))*c*RTLT32*Astd)*sqrt(60/(1000)); 
            cileg = norm([ci13 ci21 ci32]); 
  
    M1 = RTLT1/tau; %constant M 
    M2 = RTLT2/tau; 
    M3 = RTLT3/tau; 
    
            M13 = RTLT13/tau; %constant M 
            M21 = RTLT21/tau; 
            M32 = RTLT32/tau; 
    %range rate frequency instability to range rate error 
    f1 = ((sqrt(2+ log2(M1)))*c*Astd)*sqrt(60/(1000)); 
    f2 = ((sqrt(2+ log2(M2)))*c*Astd)*sqrt(60/(1000)); 
    f3 = ((sqrt(2+ log2(M3)))*c*Astd)*sqrt(60/(1000)); 
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    f = norm([f1 f2 f3]); 
             
    %***SIGMA ERRORS, S 
    sr = .60*sqrt(60/(30*60)); %m, for 60-sec average 
    srr =  3e-5*sqrt(60/(30*60)); %m/s, range rate error for 60-sec average 
    sa =  5e-8*sqrt((30*60)/(30*60)); %rad, right ascension error for 30-min 
average 
    sd =  5e-8*sqrt((30*60)/(30*60)); %rad, declination error for 30-min 
average 
    sir =  .60*sqrt(60/(30*60));%3*sqrt(1/60); %m, interspacecraft range 
error for 1-sec average 
    sirr =  3e-5*sqrt(60/(30*60));%1.5e-4*sqrt(1/60); %m/s, interspacecraft 
range rate error for 1-sec average 
     
    
%*********************************************************** 
%Observation Noise Covariances, Ri's 
%***********************************************************  
%With Noise************************************* 
  
R0a = [(sr + ci1) (srr + f1) sd sa].^2; 
R0b = [(sr + ci2) (srr + f2) sd sa].^2; 
R0c = [(sr + ci3) (srr + f3) sd sa].^2; 
R1 = [(sr+ ci1) (srr + f1) sd sa (sir + ci13) (sirr) (sr+ ci2) (srr+ f2)... 
   sd sa (sir+ci21) (sirr) (sr+ ci3) (srr+ f3) sd sa (sir+ci32) (sirr)].^2; 
R2a = [(sr+ ci1) (srr+ f1)].^2; 
R2b = [(sr+ ci2) (srr+ f2)].^2; 
R2c = [(sr+ ci3) (srr+ f3)].^2; 
R3 = [(sr+ ci1) (srr+ f1) (sir + ci13) (sirr) (sr+ ci2) (srr+ f2)... 
    (sir + ci21) (sirr) (sr+ ci3) (srr+ f3) (sir + ci32) (sirr)].^2; 
    
%***********************************************************  
%BIASES 
%*********************************************************** 
    
    %RANGE RATE 

    pdot1i = ((((Xrefstart_0(1) - Xrefstart_0(19))*(Xrefstart_0(4) - 
Xrefstart_0(22))) + ((Xrefstart_0(2) - Xrefstart_0(20))*... 
        (Xrefstart_0(5) - Xrefstart_0(23))) + ((Xrefstart_0(3) - 
Xrefstart_0(21))*(Xrefstart_0(6) - Xrefstart_0(24))))/pi1); %m/s 
  
    pdot2i =((((Xrefstart_0(7) - Xrefstart_0(19))*(Xrefstart_0(10) - 
Xrefstart_0(22))) + ((Xrefstart_0(8) - Xrefstart_0(20))*... 
        (Xrefstart_0(11) - Xrefstart_0(23))) + ((Xrefstart_0(9) - 
Xrefstart_0(21))*(Xrefstart_0(12) - Xrefstart_0(24))))/pi2); 
  
    pdot3i =((((Xrefstart_0(13) - Xrefstart_0(19))*(Xrefstart_0(16) - 
Xrefstart_0(22))) + ((Xrefstart_0(14) - Xrefstart_0(20))*... 
        (Xrefstart_0(17) - Xrefstart_0(23))) + ((Xrefstart_0(15) - 
Xrefstart_0(21))*(Xrefstart_0(18) - Xrefstart_0(24))))/pi3); 
     
           pdot13i = ((((Xrefstart_0(1) - Xrefstart_0(13))*(Xrefstart_0(4) - 
Xrefstart_0(16))) + ((Xrefstart_0(2) - Xrefstart_0(14))*... 
                (Xrefstart_0(5) - Xrefstart_0(17))) + ((Xrefstart_0(3) - 
Xrefstart_0(15))*(Xrefstart_0(6) - Xrefstart_0(18))))/pi13); %m/s 
  
            pdot21i =((((Xrefstart_0(7) - Xrefstart_0(1))*(Xrefstart_0(10) - 
Xrefstart_0(4))) + ((Xrefstart_0(8) - Xrefstart_0(2))*... 
                (Xrefstart_0(11) - Xrefstart_0(5))) + ((Xrefstart_0(9) - 
Xrefstart_0(3))*(Xrefstart_0(12) - Xrefstart_0(6))))/pi21); 
  
            pdot32i =((((Xrefstart_0(13) - Xrefstart_0(7))*(Xrefstart_0(16) - 
Xrefstart_0(10))) + ((Xrefstart_0(14) - Xrefstart_0(8))*... 
                (Xrefstart_0(17) - Xrefstart_0(11))) + ((Xrefstart_0(15) - 
Xrefstart_0(9))*(Xrefstart_0(18) - Xrefstart_0(12))))/pi32); 
    %range error due to unknown time-tag error 
    dT = 1e-6; %Station clock epoch error 
    g1 = dT*pdot1i; 
    g2 = dT*pdot2i; 
    g3 = dT*pdot3i; 
        g13 = dT*pdot13i; 
        g21 = dT*pdot21i; 
        g32 = dT*pdot32i; 
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    %clock rate offset 
    rT = 5e-14; %Station clock rate offset 
    h1 = c*RTLT1*rT; 
    h2 = c*RTLT2*rT; 
    h3 = c*RTLT3*rT; 
        h13 = c*RTLT13*rT; 
        h21 = c*RTLT21*rT; 
        h32 = c*RTLT32*rT; 
         
    br = 2.05; %2 m instrument bias  + 5 cm total bias 
    bir = 2; %10; %10 m bias for each LISA 
     
    B = [(br+g1+h1) (br+g2+h2) (br+g3+h3) (bir + g13 + h13) (bir + g21 + 
h21) (bir + g32 + h32)]; %biases 1x6 
    %B = [0 0 0 0 0 0]; %No biases 1x6 
    
%*********************************************************** 
 %***READ IN OTHER INPUTS 
%*********************************************************** 
    plt = 0; 
  
    
%*********************************************************** 
 %***CALL LISA_BPtot4.m to RUN DIFFERENT CASES 
 %*********************************************************** 
    %for i = 1:35, %100 random runs of each case 
    for i = 1, %1 run of each for full noise, 100 random runs of each case 
  
        for k = 1:length(ts) 
            %S = ([sr sr sr srr srr srr sd sd sd 0 0 0 sir sir sir sirr sirr sirr ci1 ci2 
ci3 f1 f2 f3 ci13 ci21 ci32]'*zeros(1, k+1))'; %No Noise, nx27 
            S = ([sr sr sr srr srr srr sd sd sd sa sa sa sir sir sir sirr sirr sirr ci1 ci2 
ci3 f1 f2 f3 ci13 ci21 ci32]'*ones(1, k+1))'; %Full Noise, nx27 
            %S = randn(k+1, 27).*([sr sr sr srr srr srr sd sd sd sa sa sa sir sir sir 
sirr sirr sirr ci1 ci2 ci3 f1 f2 f3 ci13 ci21 ci32]'*ones(1, k+1))'; %Random 
Noise, nx27 

            %errorstart = randn(k+1, 18).*([-1 1 1 1e-6 1e-6 1e-6 -1 1 1 1e-6 1e-
6 1e-6 -1 1 1 1e-6 1e-6 1e-6]'*(1000*ones(1,k+1))); %NO Guess Error   
            %errorstart = randn(1, 18).*([-1 1 1 1e-6 1e-6 1e-6 -1 1 1 1e-6 1e-6 
1e-6 -1 1 1 1e-6 1e-6 1e-6]*(1000.*ones(1,1))) 
            Xrefstart_0 = Xo_0 + [errorstart zeros(1,6)]; 
        end 
  
        %CASE 0: DSN & VLBI (All absolute data) 
        %[Xest, ABS, REL, RMS, var, PU_L1, PU_L2, PU_L3, err, erv, niter, 
Pcov] = MCLISA_bp(to_0, tf, I, Xrefstart_0, Xo_0, R1, R2, R3, S, B, plt, 
obs) 
        [Xest0(i,:), ABS0(i,:), REL0(i,:), RMS0(i,:), var0(i,:),PU0_L1(:,i), 
PU0_L2(:,i), PU0_L3(:,i), err0(i,:), erv0(i,:), niter0(i,:), Pcov0(i,:)] = 
MCLISA_bp(to_0, tf, I, Xrefstart_0, Xo_0, R0a, R0b, R0c, S, B, plt, 0); 
  
        %CASE 1: DSN, VLBI & RELATIVE 
        [Xest1(i,:), ABS1(i,:), REL1(i,:), RMS1(i,:),var1(i,:),PU1_L1(:,i), 
PU1_L2(:,i), PU1_L3(:,i), err1(i,:), erv1(i,:), niter1(i,:), Pcov1(i,:)] = 
MCLISA_bp(to_0, tf, I, Xrefstart_0, Xo_0, R1, R1, R1, S, B, plt, 1); 
  
        %CASE 2: DSN 
        [Xest2(i,:), ABS2(i,:), REL2(i,:), RMS2(i,:), var2(i,:), PU2_L1(:,i), 
PU2_L2(:,i), PU2_L3(:,i), err2(i,:), erv2(i,:), niter2(i,:), Pcov2(i,:)] = 
MCLISA_bp(to_0, tf, I, Xrefstart_0, Xo_0, R2a, R2b, R2c, S, B, plt, 2); 
  
        %CASE 3: DSN & RELATIVE 
        [Xest3(i,:), ABS3(i,:), REL3(i,:), RMS3(i,:), var3(i,:), 
PU3_L1(:,i),PU3_L2(:,i), PU3_L3(:,i), err3(i,:), erv3(i,:), niter3(i,:), 
Pcov3(i,:)] = MCLISA_bp(to_0, tf, I, Xrefstart_0, Xo_0, R3, R3, R3, S, B, 
plt, 3); 
    end 
    
%*********************************************************** 
%****ERROR ACCUMULATION & ANALYSIS 
%*********************************************************** 
    for j = x, 
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%4 Case [case 0(DSN/VLBI),case 1(DSN/VLBI/REL),case 2(DSN),case 
3(DSN/REL)] 
        niter_tot = [niter0(:,:), niter1(:,:), niter2(:,:), niter3(:,:)]; %nx4 
        M_niter(j,:)  = mean(niter_tot, 1); %1x6 
  
        Xest = [Xest0(:,:), Xest1(:,:), Xest2(:,:), Xest3(:,:)]; %n x 144 (1x24 
each) 
        M_Xest(j,:) = mean(Xest,1); %1x144 
  
        ABSr = [ABS0(:,1), ABS1(:,1), ABS2(:,1), ABS3(:,1)]; %ix6 
        M_ABSr(j,:) = mean(ABSr,1); %1x6 
        std_ABSr(j,:) = std(ABSr, 0, 1); %1x6 
  
        ABSv = [ABS0(:,2), ABS1(:,2), ABS2(:,2), ABS3(:,2)]; %ix6 
        M_ABSv(j,:) = mean(ABSv,1); %1x6 
        std_ABSv(j,:) = std(ABSv, 0, 1); %1x6 
  
        RELr = [REL0(:,1), REL1(:,1), REL2(:,1), REL3(:,1)]; %ix6 
        M_RELr(j,:) = mean(RELr, 1); %1x6 
        std_RELr(j,:) = std(RELr, 0, 1); %1x6 
  
        RELv = [REL0(:,2), REL1(:,2), REL2(:,2), REL3(:,2)]; %ix6 
        M_RELv(j,:) = mean(RELv,1); %1x6 
        std_RELv(j,:)= std(RELv, 0, 1); %1x6 
  
        RMS = [RMS0(:,:), RMS1(:,:), RMS2(:,:), RMS3(:,:)]; %ix18 (1x3 for 
each case) 
        M_RMS(j,:) = mean(RMS,1); %1x18 
  
        var = [var0(:,:), var1(:,:), var2(:,:), var3(:,:)]; %ix18 (1x3 for each case) 
        M_var(j,:) = mean(var,1); %1x18 
  
        PU_L1 = [PU0_L1(:,1);... 
            PU1_L1(:,1);... 
            PU2_L1(:,1);... 
            PU3_L1(:,1)]; %ix144(6x1 each) 
  

        M_PU_L1(:,j) = mean(PU_L1,2); 
  
        PU_L2 = [PU0_L2(:,1);... 
            PU1_L2(:,1);... 
            PU2_L2(:,1);... 
            PU3_L2(:,1)]; 
  
        M_PU_L2(:,j) = mean(PU_L2,2); 
  
        PU_L3 = [PU0_L3(:,1);... 
            PU1_L3(:,1);... 
            PU2_L3(:,1);... 
            PU3_L3(:,1)]; 
  
        M_PU_L3(:,j) = mean(PU_L3,2); 
  
        err = [err0(:,:), err1(:,:), err2(:,:), err3(:,:)]; %ix18 (1x3 each) 
        M_err(j,:) = mean(err,1); %1x18 
        std_err(j,:) = std(err, 0, 1); 
  
        erv = [erv0(:,:), erv1(:,:), erv2(:,:), erv3(:,:)]; %ix18 
        M_erv(j,:) = mean(erv,1); %1x18 
        std_erv(j,:) = std(erv, 0, 1);   
         
        Pcov = [Pcov0(1,:), Pcov1(1,:), Pcov2(1,:), Pcov3(1,:)]; %ix(18x3)= 
ix54 
        M_Pcov(j,:) = mean(Pcov,1); %1x(18x4) 
         
        if x < length(days) 
            x = x + 1 
        else x = length(days) 
        end 
    end     
Mniter = M_niter(:,:); 
MXest = M_Xest(:,:); 
Merr = M_err(:,:); 
Stderr = std_err(:,:); 
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Merv = M_erv(:,:); 
Stderv = std_erv(:,:); 
MABSr = M_ABSr(:,:); 
StdABSr = std_ABSr(:,:); 
MABSv = M_ABSv(:,:); 
StdABSv = std_ABSv(:,:); 
MRELr = M_RELr(:,:); 
StdRELr = std_RELr(:,:); 
MRELv = M_RELv(:,:); 
StdRELv = std_RELv(:,:); 
MRMS = M_RMS(:,:); 
Mvar = M_var(:,:); 
MPU_L1 = M_PU_L1(:,:); 
MPU_L2 = M_PU_L2(:,:); 
MPU_L3 = M_PU_L3(:,:); 
M_Pcov = M_Pcov(:,:); 
end
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