

ABSTRACT

Title of Dissertation: DEFINING THE RESOLUTION OF A NETWORK FOR
TRANSPORTATION ANALYSES: A NEW METHOD
TO IMPROVE TRANSPORTATION PLANNING
DECISIONS

Yuchen Cui, Doctor of Philosophy, 2016

Dissertation Directed by: Professor Marie Howland
School of Architecture, Planning, and Preservation
University of Maryland

 Professor Rolf Moeckel
 Department of Civil, Geo and Environmental Engineering
 Technical University Munich

Travel demand models are important tools used in the analysis of transportation plans,

projects, and policies. The modeling results are useful for transportation planners making

transportation decisions and for policy makers developing transportation policies.

Defining the level of detail (i.e., the number of roads) of the transport network in

consistency with the travel demand model’s zone system is crucial to the accuracy of

modeling results. However, travel demand modelers have not had tools to determine how

much detail is needed in a transport network for a travel demand model. This dissertation

seeks to fill this knowledge gap by (1) providing methodology to define an appropriate

level of detail for a transport network in a given travel demand model; (2) implementing

this methodology in a travel demand model in the Baltimore area; and (3) identifying

how this methodology improves the modeling accuracy.

 All analyses identify the spatial resolution of the transport network has great

impacts on the modeling results. For example, when compared to the observed traffic

data, a very detailed network underestimates traffic congestion in the Baltimore area,

while a network developed by this dissertation provides a more accurate modeling result

of the traffic conditions. Through the evaluation of the impacts a new transportation

project has on both networks, the differences in their analysis results point out the

importance of having an appropriate level of network detail for making improved

planning decisions.

 The results corroborate a suggested guideline concerning the development of a

transport network in consistency with the travel demand model’s zone system. To

conclude this dissertation, limitations are identified in data sources and methodology,

based on which a plan of future studies is laid out.

DEFINING THE RESOLUTION OF A NETWORK FOR TRANSPORTATION
ANALYSES: A NEW METHOD TO IMPROVE TRANSPORTATION

PLANNING DECISIONS

by

Yuchen Cui

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
 Professor Marie Howland, Co-chair

Professor Rolf Moeckel, Co-chair
Professor Gerrit Knaap
Dr. Frederick Ducca
Professor Paul Schonfeld

© Copyright by
Yuchen Cui

2016

 ii

DEDICATION

To my grandmother and grandfather

Thank you.

 iii

ACKNOWLEDGEMENTS

I am deeply grateful to my advisor Rolf Moeckel for his guidance and support throughout

my dissertation research as well as many project collaborations. His style of doing

modeling and research – simple, elegant, and efficient, has greatly influenced my own. It

has been an honor to work with him and get to know him as a mentor and a friend.

I am also deeply grateful to my advisor Marie Howland for her guidance, advice

and encouragement throughout my Ph.D. study at the University of Maryland. Marie has

always responded with a smile to my knocks on her office door. Her support has been

critical to my dissertation research and career choices.

I am grateful to my dissertation committee, Gerrit Knapp, Frederick Ducca and

Paul Schonfeld, for their constructive comments and suggestions to improve this work. I

am also grateful to Howie Baum who taught me planning theory and provided many

stimulating conversations on and beyond planning. Finally, my time at the UMD would

not have been enjoyable without my friends, Vanessa Leon, Zhi Li, and Basheer Saeed.

I am grateful for the financial support from the National Center for Smart Growth

Research and Education and a dissertation grant from the University of Maryland.

I want to thank my parents for their nurturing and their trust on all of my

decisions. My life would not have been the same without my husband, Xiao, whose love

and faith has made me a complete person.

I could not possibly be writing this dissertation if there had not been my maternal

grandmother and late grandfather, who devoted their lives to making me an educated and

strong person. This dissertation is dedicated to them.

 iv

TABLE OF CONTENTS

LIST OF TABLES ... vi	

LIST OF FIGURES .. vii	

1	
 INTRODUCTION .. 1	

1.1	
 Motivation .. 1	

1.2	
 Objective .. 3	

2	
 STATE OF THE ART .. 5	

2.1	
 Consistency between the Network and Zone Systems .. 5	

2.2	
 Define Network Resolution ... 11	

2.3	
 Summary of the Review .. 14	

3	
 DATA ... 15	

3.1	
 Maryland Statewide Transportation Model ... 15	

3.1.1	
 Model Structure .. 15	

3.1.2	
 Area Type .. 17	

3.1.3	
 Traffic Analysis Zones (TAZs) ... 18	

3.2	
 Highway Network Data ... 19	

3.2.1	
 Data Sources ... 19	

3.2.2	
 Modification on Centerline Network .. 22	

3.2.3	
 Link Attributes .. 26	

3.3	
 Validation Data .. 33	

4	
 METHODOLOGY ... 35	

4.1	
 A Comprehensive Model to Define Network Resolution 35	

4.2	
 Study Area ... 37	

4.2.1	
 Subarea Analysis ... 37	

4.2.2	
 Post-processing of Subarea Analysis .. 40	

4.2.3	
 Finest Highway Network .. 41	

4.2.4	
 Modification of Finest Network .. 43	

4.3	
 Trip Assignment .. 44	

4.3.1	
 Trip Assignment Method – All-or-nothing Assignment 44	

4.3.2	
 Iterative Trip Matrix Loading Method – Method of Successive Averages .. 45	

4.3.3	
 Path-tracing between Origins and Destinations .. 47	

4.3.4	
 Model Convergence Criteria ... 49	

4.3.5	
 Computational Efficiency ... 52	

4.3.6	
 Performance Measures .. 52	

4.4	
 Identify Irrelevant Links .. 55	

5	
 RESULTS AND ANALYSES .. 59	

5.1	
 Results of Subarea Analysis .. 59	

5.2	
 Adjustment of Computation Time ... 59	

5.2.1	
 Convergence Level ... 60	

5.2.2	
 Zero-volume Links on Finest Network ... 62	

 v

5.2.3	
 Modified Finest Network .. 65	

5.3	
 Identify Irrelevant Links .. 66	

5.3.1	
 Sort Origin-Destination Trip Table ... 67	

5.3.2	
 Path-tracing Model .. 68	

5.3.3	
 Identify and Remove Irrelevant Links .. 70	

5.4	
 Network-defining Models .. 72	

5.4.1	
 Results of a Provisional Model ... 72	

5.4.2	
 Zero-volume Links after Removing Irrelevant Links 75	

5.4.3	
 Smaller Steps of Irrelevant Link Removal .. 77	

5.4.4	
 Larger Coverage of OD Pairs ... 78	

5.5	
 Analyses of Finest Network and Final Network .. 81	

5.5.1	
 Comparison of Modeled Volumes – Individual Links 81	

5.5.2	
 Comparison of Modeled Volumes – Entire Network 83	

5.5.3	
 Comparison of Validation Results .. 85	

5.5.4	
 A Case Study on Final and Finest Networks .. 86	

5.6	
 Implementation of a New Transportation Project .. 88	

6	
 CONCLUSIONS AND IMPLICATIONS .. 93	

6.1	
 Summary of Research and Findings .. 93	

6.2	
 Implications for the Development of Travel Demand Models 96	

6.2.1	
 Develop a New Network ... 98	

6.2.2	
 Calibrate an Existing Network .. 99	

6.3	
 Future Direction ... 100	

APPENDIX A – MODEL DIRECTORY ... 102	

APPENDIX B – EXECUTABLE SCRIPTS AND CODES .. 104	

GLOSSARY ... 144	

REFERENCES ... 148	

 vi

LIST OF TABLES

Table 3.1 Area Type Look-up Table Defined by the BMC .. 17	

Table 3.2 Digital Street Files Provided by the SHA ... 19	

Table 3.3 Limitations of Three Networks ... 22	

Table 3.4 Definition of Functional Class .. 27	

Table 3.5 Look-up Table of Free Flow Speed Modified from the BMC Definition 30	

Table 3.6 Look-up Table of Link Capacity Modified from the BMC Definition 31	

Table 3.7 Traffic Count Stations ... 33	

Table 4.1 Example of Identification of Irrelevant Links – Trip Table 57	

Table 4.2 Example of Identification of Irrelevant Links – Trip Share Calculation 58	

Table 4.3 Example of Identification of Irrelevant Links – Trip Share Results 58	

Table 5.1 MSA Convergence Progression Based on Finest Network 60	

Table 5.2 Validation Results of Different Convergence Levels Applied to Finest Network
... 61	

Table 5.3 Links with Zero Volume in the PM Assignment on Finest Network 63	

Table 5.4 Comparison of Validation Results of the Fines Network and Its Modification 65	

Table 5.5 Distribution of Trip Demand Percentage .. 67	

Table 5.6 Path-tracing Result for Origin Zone 64 and Destination Zone 79 69	

Table 5.7 Link-volume Matrix Holding Path-tracing Results .. 70	

Table 5.8 Trip-share Matrix .. 71	

Table 5.9 Parameters and Validation Analysis of the Provisional Model 74	

Table 5.10 Parameters and Validation Analysis of the Smaller-Step-Model 77	

Table 5.11 Parameters and Validation Analysis of the Larger-Coverage-Model 79	

Table 5.12 Parameter Testing on Last Iteration on Network V5 80	

Table 5.13 VMT and VHT on Finest and Final Networks ... 84	

Table 5.14 Volume-count Agreement on Finest and Final Networks 85	

 vii

LIST OF FIGURES

Figure 1.1 Different spatial relationships between the network and zone systems 3	

Figure 3.1 Overview of MSTM model structure (source: MSTM User’s Guide) 16	

Figure 3.2 Zone system and area type distribution in the study area 18	

Figure 3.3 Digital networks provided by the SHA showing spatial representations 20	

Figure 3.4 Differences in spatial presentation of three networks 21	

Figure 3.5 Missing links in Baltimore City .. 23	

Figure 3.6 Misrepresentation of divided highway links ... 24	

Figure 3.7 Example of disconnected nodes .. 26	

Figure 3.8 Link attribute - functional class in the Baltimore area 28	

Figure 3.9 Link attribute - number of lanes in the Baltimore area 29	

Figure 3.10 Traffic count stations in the Baltimore area .. 34	

Figure 4.1 A comprehensive model to define network resolution 36	

Figure 4.2 MSTM network and study area boundary displayed in Cube 38	

Figure 4.3 Subarea network extraction renumbering in Cube .. 38	

Figure 4.4 MSTM subarea network of the study area .. 39	

Figure 4.5 Zone system defined for the study area ... 41	

Figure 4.6 Finest highway network with centroid connectors generated from zone
centroids .. 43	

Figure 4.7 Path-tracing method applied in trip assignment .. 48	

Figure 4.8 Example of trip matrix transformation and sorting procedure 49	

Figure 4.9 Example of identification of irrelevant links – trip assignment 57	

Figure 5.1 Trip assignment results on the finest network ... 63	

Figure 5.2 Trip assignment results on the modified finest network 66	

Figure 5.3 Procedure of sorting OD trip interchange ... 68	

Figure 5.4 Trip assignment result and path-tracing result for the 1st largest OD pair 69	

Figure 5.5 Decision-making process of identifying the ideal network resolution 73	

Figure 5.6 Example of zero-volume links on network v3 .. 76	

Figure 5.7 Example of a dangling zero-volume link on network v6 77	

Figure 5.8 Link flow rate distributions of interstate highway links 82	

Figure 5.9 Link flow rate distributions of freeway and expressway links 83	

Figure 5.10 Comparisons between the final and finest networks for zone 62 88	

Figure 5.11 The location and extent of I-695 new project in the fines network 89	

Figure 5.12 V/C ratio changes on finest network after implementing the new project 90	

Figure 5.13 V/C ratio changes on final network after implementing the new project 91	

 1

1 INTRODUCTION

1.1 Motivation

A travel demand model is a powerful transportation planning tool that provides planners

with estimates of traffic congestion and public transit ridership, which can further help

provide estimates of infrastructure requirements, air quality, water quality, and demand of

dwelling units through connections with other models. Travel demand models can be

used to test the impacts of alternative planning policies or infrastructure projects before

policies or projects are implemented.

The development of a travel demand model begins with the formation of a traffic

analysis zone (TAZ) system to represent travellers’ demand and a transport network

system to represent network supply. The spatial resolution of the TAZ system depends on

the types of information the travel demand model needs to provide for planning analyses,

the characteristics of the region being modeled, and the availability of geographic and

socio-economic data associated with the TAZs. As part of the modeling process, defining

the transport network’s level of detail (e.g. number of roads) in consistency with the level

of detail of the TAZ is critical to the modeling accuracy of a travel demand model. In

other words, the amount of detail in the transport network must be in proportion to the

amount of travel demand to be placed on the transport network.

For instance, if a travel demand model accounts for a greater spatial resolution

with a detailed TAZ system, where each zone covers a relatively small land area, its

transport network should incorporate the collectors and local roads. If transportation

planners want to understand regional travel patterns (on interstate highways and major

 2

arterials) and develop a statewide travel demand model, its TAZ system should be more

aggregated and therefore, lower class roads are usually removed from the transport

network.

An inconsistent spatial resolution between the network and zone systems will

result in inaccurate modeling results. However, travel demand modelers frequently

overlook the importance of the consistency in the level of detail between the network and

zone systems (1-3). If the network system has greater level of detail than the zone system,

congestion is likely to be underestimated. The reason is that some trips become intrazonal

trips given a comparatively coarse zone system. Since the trip assignment does not take

intrazonal trips into account, a network with too much detail compared to the zone

system will underrepresent congestion. If the network is over-simplified for a given zone

system, congestion will be overestimated as too many trips are loaded on a transport

network without the capacity to absorb them. Examples in Figure 1.1 help illustrate how

the spatial relationship between the network and zone systems influences modeling

results.

As depicted in Figure 1.1 (a), a coarser zone system and a finer network will

underestimate traffic congestion. The reason is that a highly aggregated zone system

produces more intrazonal trips that are not modeled by trip assignment, and fewer

interzonal trips must distribute on many more network links. Figure 1.1 (b) shows that a

finer zone system and a coarser network will overestimate traffic congestion. The reason

is that trips between zone pairs in reality would take different routes; however, there are

fewer links coded on the network, and therefore all these trips are forced onto the same

route. To date, there is no tools to define how much detail is needed for a transport

 3

network so that it is spatially consistent with a given zone system, as presented in Figure

1.1 (c).

Figure 1.1 Different spatial relationships between the network and zone systems

1.2 Objective

The objective of this dissertation is to develop a network-defining model and to identify

an ideal level of network detail for a given zone system in a travel demand model. The

specific research goals are the following:

• For a given zone system, develop measures and tools to assess the performance of

a specific network system and the zone-network spatial consistency.

• For a given zone system, develop a method to iteratively refine the network

resolution until it is spatially consistent with the zone system.

• Present methodology and a set of guidelines on how to define the network

resolution for a given zone system.

• Use a calibrated travel demand model to implement the network-defining model

in the Baltimore area (Baltimore County and Baltimore city), MD.

The criterion used to determine the ideal network is based on the comparison between

modeled traffic volumes and observed traffic counts. It can be expected that the research

 4

methodology proposed in this dissertation is easy to implement in other travel demand

models. The ultimate goal of this dissertation is providing more accurate modeling results

to transportation planners and policy makers, and thereby, to improve transportation

planning decisions.

 This dissertation begins with a review of previous research studies underlying the

study objective. In Chapter 3, the data sources and modeling platform are introduced.

Chapter 4 presents the research methodology, including study area, methods and

algorithms involved in the development of the network-defining model. The developed

networks and analysis results of network performance are presented in Chapter 5. The

dissertation concludes with a summary of research and findings, recommendations for the

development of travel demand models, and direction of future research.

 5

2 STATE OF THE ART

In this chapter, an overview of past research is presented and discussed. First, the

literature review surveys existing findings on how different zone and network structures

influence the modeling results. Specifically, the measures used in these studies to

evaluate the network performances are reviewed in detail. Second, some studies on

network aggregation are presented; and the review is focused on the criteria applied to

aggregating a detailed network into a less detailed one. The search for literature has not

located any study on how to define a network system in consistency with the zone system

in terms of their spatial resolutions.

2.1 Consistency between the Network and Zone Systems

Jansen and Bovy (4, 5) defined the spatial resolutions of the network and zone systems

concurrently, and investigated the effects of different spatial resolutions on the modeling

results of a travel demand model. To be specific, they defined the network system in

three levels of detail – fine, medium, and coarse by a reduction method. In the fine-level

model, the network was almost identical to the actual road network; the medium-level

model included all the arterial and collector roads; and the coarse-level model only

represented the arterial roads. Once the network system was defined, the zone system was

formed by the network links: the TAZs were the “holes” delimited by the network links.

As a result, the zone boundaries lined up with the network links. The authors

experimented three models using two assignment methods – all-or-nothing and

equilibrium, in a travel demand model developed for the Dutch city of Eindhoven.

 6

In analyzing the impacts of different levels of spatial detail on the modeling

results, the authors examined the frequency distributions of the link loads by three link

groups (primary, secondary and local roads) and compared the modeled volumes with

observed traffic counts for the fine-, medium-, and coarse-level models. They also

compared the analysis results of two different trip assignments. Results can be

summarized as follows: (1) for network-wide total modeled volumes, differences were

small between three models with different levels of detail; (2) the modeled volumes on

primary links were almost equal in the fine- and medium-level models but substantially

higher in the coarse-level model; (3) distributions of link loads in the fine- and medium-

level models were almost equal, whereas the distribution in the coarse-level model was

biased; (4) the modeled volumes in the fine-level model were the closest to the observed

traffic data; and (5) the equilibrium assignment outperformed the all-or-nothing

assignment in all three models.

Jansen and Bovy’s work is the first to prove that the level of spatial detail (i.e.

zone size and network resolution) of a travel demand model has significant impacts on

the modeling results. In particular, they strategically defined the fine-, medium-, and

coarse-level models and presented incremental improvement as the model’s level of

spatial detail increased. More importantly, Jansen and Bovy identified the sources of the

modeling errors: systematic error and random error. When downgrading the model from

a finer level (e.g. actual road network) to a coarser level (e.g. simplified network), the

assignment forced the same amount of trips through a smaller network, which introduced

the systematic error (bias); during the same process, there was also a change in routing

possibilities and redistributing volumes between routes due to network changes and

 7

equilibration, which introduced the random error (dispersion around the bias). In Jansen

and Bovy’s empirical study, the network reduction from the fine-level model to the

medium-level model led to a significant increase in modeled volumes on primary links,

which was the systematic error; the equilibration process (all-or-nothing or equilibrium)

redistributed traffic volumes on the network, which led to the dispersion around the

systematic error.

Long and Stover (1) conducted an empirical study exploring the impacts on traffic

assignment results of three network systems differing in spatial detail. The authors

selected the Waco, TX urban area for the study and defined three street systems with

different degrees of spatial detail: a normal-detail network, an intermediate network, and

a detailed network. The normal-detail network was a coarse network that only had higher

class links; the detailed network contained all existing streets; and the spatial detail of the

intermediate network was between the other two networks. In this study, all-or-nothing

trip assignment was applied to the three networks.

For screenline crossings, arterial streets and selected links, modeled volumes were

validated against observed traffic counts using root mean square error (RMSE).

Validation results of the three networks all showed some differences between traffic

counts and modeled volumes. In particular, the validation results on arterial and major

collector roads showed no improvement as the network detail increased; at the same time,

the computation time increased dramatically.

It is worth mentioning that the authors discussed the relationship between zone

size and network detail. For the detailed network, the authors constructed a zone system

constituted by city blocks; and for less detailed networks, small zones (city blocks) were

 8

aggregated to create a coarser zone system. In less detailed models, the authors found out

that trips that would be assigned to local streets in the detailed model had become

intrazonal and were not assigned on the present network. Furthermore, short trips that

would use local streets in the detailed model had to be rerouted to a higher class route.

Khatib, Chang, and Ou (2, 6) conducted a simulation study using the Idaho

statewide travel demand model to investigate how different zone structures and network

details affected modeling results. They developed 11 zone structures and two network

systems in different levels of spatial detail. The fine-level network system included

interstate, principal arterial, minor arterial, and major collector roads in both urban and

rural areas, and minor collector roads in rural areas; and the coarse-level network

included interstate, US, and state highway roads. The 11 zone structures varied in zone

size (county, census tract, and census block group) and centroid location.

 The authors examined the differences in model performance by comparing trip

length (average travel time) and percentage of interzonal trips between different models.

They also compared the modeled volumes with observed traffic counts by three

measures: ratio of modeled volumes over observed traffic counts, correlation between

modeled volumes and observed traffic counts, and percent root mean square error

(PRMSE) between modeled volumes and observed traffic counts. Results showed that the

level of network detail had little effect on modeled trip length and percentage of

interzonal trips. Regardless of zone structures, the PRMSE was higher on a less detailed

network; and a model with a larger zone size and a less detailed network always had a

lower PRMSE value.

 9

The most important contribution of this study is that it analyzed different

combinations of zone structures and network systems. The results suggested that the zone

structure and network system should always be consistent in their levels of spatial detail.

Another highlight from this study is that the influence of network detail on trip length

was small. This finding was consistent with Jansen and Bovy’s analysis of distributions

of link loads on the fine- and medium-level models. The examination of the PRMSE

values suggested that this indicator was more sensitive to the change of network detail

than the change of zone structure.

 Jeon et al. (7, 8) conducted an empirical study to analyze the impacts of different

zone structures and network systems on modeling results using a travel demand model

developed for Seoul City in Korea. Similar to Bovy and Jansen’s study, they defined

three levels of network detail: the fine-level model represented the road network in

reality; the medium-level model included expressway, major arterial, and minor arterial

roads; and the coarse-level model included expressway and major arterial roads. The

zone system was adapted to the network system: they were the “holes” formed by the

network so that the zone boundaries lined up with network links.

When analyzing these models with different levels of spatial detail, the authors

applied several performance measures, including the PRMSE and correlation coefficient

between modeled volumes and observed traffic counts. They also compared the modeled

results using derived socio-economic costs, which included vehicle operating costs, travel

time costs, environmental costs, and vehicle accident costs. These derived costs were

calculated by using travel speed, travel time, link length, and traffic volume.

 10

Comparing modeled volumes between the fine-, medium-, and coarse-level

models, they found that the reduction in network detail led to increased intrazonal trips

and rerouting effect. They also evaluated interaction effects between different levels of

network detail and zone sizes. Consistent with Khatib, Chang, and Ou’s findings, this

study emphasized the importance of having consistent zone and network systems in their

levels of spatial detail to achieve more accurate modeling results.

In summary, these studies conducted empirical research to evaluate how different

levels of network detail and zone structures affected the modeling results in a travel

demand model. Jansen and Bovy, Long and Stover and Jeon et al. developed the network

system first, then manually developed the zone structure according to the network detail;

while Khatib, Chang, and Ou developed the network system and the zone system

separately. Jansen and Bovy’s, Long and Stover’s and Jeon et al’s studies compared

models with consistent zone and network systems at different degrees of spatial

resolution (fine-, medium-, and coarse-level). Findings from Jansen and Bovy’s and Jeon

et al’s studies suggested that higher spatial resolution would yield more accurate

modeling results, while Long and Stover’s findings suggested no improvement as the

model’s degree of spatial detail increased. Khatib, Chang, and Ou’s as well as Jeon et al’s

studies conducted performance comparison between models with inconsistent zone and

network systems and models with consistent zone and network systems. Their findings

confirmed the importance of applying consistent zone and network systems in a travel

demand model to achieve more accurate modeling results.

 11

2.2 Define Network Resolution

To date, there has been no research conducted in defining the network resolution in

consistency with the zone system in a travel demand model. However, the longer

computation time associated with large size networks has motivated researchers to

simplify the network by extracting important links from a detailed network, or to solve

the network equilibrium problems on an aggregated version of the detailed network.

These studies proposed heuristic or theoretical methods in seeking less computationally

demanding solutions while preserving the modeling results of the original network. There

is a lack of consideration of the spatial relationship between the network and zone

systems in these studies. However, the network aggregation strategies, such as link

removal or link combination, as well as the parameters applied to defining the network

aggregation level or reduction scale, such as link flow under network equilibrium, should

shed some light on the research methodology of this dissertation.

Haghani and Daskin (9) provided a heuristic approach to extract a sub-network

from a detailed network. Their research was motivated to reduce computer storage and

computation time when solving network-related problems. The basic assumption of their

methodology is that, when traffic flows distribute over a network following user

equilibrium, there will be some links not carrying a significant amount of traffic volumes;

therefore, removing these insignificant links can reduce computational cost while the

modeling results on the original network can be reproduced on an aggregated network.

When the original network reached its equilibrium, the authors sequentially identified and

deleted one insignificant link at a time, if this link was below a certain percent of the

maximum equilibrium link flow on the network. They updated the network and trip

 12

matrix and provided modeling results after each model iteration until no better sub-

network can be found. Through the implementation in a network design problem, the

authors found that users’ travel time was overestimated on an aggregated network

compared to that was measured on the detailed network.

Ruddell and Raith (10) proposed a zonal-based aggregation method to find the

equilibrated assignment solution for the original network. This aggregation method first

grouped some zones together using a certain criterion, and then assigned trips to the

network using all-or-nothing assignment algorithm. After that, they applied a path

equilibration algorithm to reassign the all-or-nothing results on the shortest route(s)

between each origin-destination (OD) pair to achieve an equilibrium solution on the

aggregated network. For zones combined together, shortest paths were found using all-or-

nothing assignment and were later chained together with the assignment solution found

on the aggregated zone system. Finally, the equilibrated paths were transferred to the

original network. Through its implementation using different networks, the authors

concluded that this method could significantly shorten computation time to find a path-

based equilibrated solution for a given network.

Connors and Watling (11) presented an analytical framework for the network

aggregation problem. They considered the path-based costs as a function of commuters’

demand between OD pairs, and applied a linear cost-flow function to predict approximate

flows on the aggregated network. They implemented this method in a pilot study, which

had a highly aggregated two-link network and a detailed network. Their results (modeled

flows on the two links) revealed that by depending link flows on OD demand, the

predicted flows were very similar to the user-equilibrium solution computed on the

 13

detailed network. Even though the authors proved their algorithm could reproduce similar

traffic flows using an aggregated network, they did not provide a complete methodology

on how to define the aggregate network for a given detailed network.

Chan (12) presented a network aggregation technique to reproduce the trip

assignment results of a detailed network on an aggregated sub-network. The author first

categorized network links into five groups: the access links delivering flows to its

destination, the egress links carrying flows from its origin, the bypass links facilitating

turning movements, the line-haul links directly connecting two zones, and the intra links

carrying either intra-inter flows or only intra flows. The network aggregation followed

three steps for each OD pair: first, links were grouped into five groups as mentioned

above; secondly, travel times were summed up for links belonging to the same group;

finally, the weighted average travel time (use individual link volumes as weights) was

calculated as the travel time for each link group. The author compared the aggregated

network and detailed network in terms of their travel times. It was found that by using an

aggregated network could significantly reduced computation time to find a comparable

network assignment solution.

In summary, these studies aim to reproduce the equilibrium assignment results of

the detailed network on a less detailed network as a means to reduce computational

complexity. Haghani and Daskin proposed a link removal method, which identified and

removed an insignificant link from the detailed network per iteration. Their method

terminated the program when no better sub-network can be found. Both Chan’s and

Ruddell and Raith’s studies designed an aggregation method to approximate the

equilibrium solutions of the original network. Chan combined network links with similar

 14

functions for each OD pair; Ruddell and Raith applied a different aggregation approach

by combining adjacent zones, and then transferred the equilibrium solution found on the

aggregated zone system to the original model. Connors and Watling utilized the demand-

cost functions and cost-flow functions to establish a linear relationship between OD

demand and equilibrium flow on a certain link. Even though these articles are different

from this dissertation in their research objectives, they provided an important clue to start

from a detailed network, and approach the optimal network incrementally.

2.3 Summary of the Review

To summarize, several highlights can be identified from this review. First, empirical

evidence has been found regarding the effects of the zone-network spatial consistency on

the modeling accuracy of a travel demand model. Second, a variety of performance

measures have been used to validate the modeling results against observed traffic counts.

Third, on a detailed zone system, having a less detail network would lead to an

overestimation of traffic congestion, especially on higher class roads. Fourth, there has

been no solution provided on how to define the most appropriate level of network detail

given a zone system in a travel demand model. Finally, it would be promising to start

defining network resolution from a detailed network and incrementally refine it based on

certain rules.

 15

3 DATA

The development of a detailed network, implementation of methodology, and validation

analysis of modeling results require different data sources. This chapter describes the data

gathered for these functions. The Maryland State Highway Administration (SHA)

provided the data for network development. The implementation of this study is based on

the Maryland Statewide Transportation Model. The data used in validation analysis was

also provided by the SHA.

3.1 Maryland Statewide Transportation Model

The Maryland Statewide Transportation Model (MSTM) is a trip-based statewide travel

demand model. By design, the MSTM is a multi-layer model working at the regional,

statewide and urban levels. Its first layer represents national travel and freight patterns.

The second layer is a multi-state layer, including Maryland, Washington DC, Delaware

and selected areas in Pennsylvania, Virginia and West Virginia. The third layer is an

urban layer covered by two models developed by local Metropolitan Planning

Organizations (MPOs), and it is only used for model reconciliation purpose (see green

box in Figure 3.1) but not in the MSTM production model runs (13). The layer-based

approach allows for better representation of multiple trip types including short distance

trips and long-distance trips, as well as multiple travel modes, such as urban transit and

regional commercial vehicles.

3.1.1 Model Structure

Figure 3.1 summarizes the MSTM components within the multi-state and national layers.

On the person travel side, it includes a long distance travel model for person trips longer

 16

than 50 miles, accounting for through trips with at least one trip end within Maryland.

This component also includes a multi-state short distance travel model for person trips

classified by study area residents. The person travel model follows a three-step sequence,

including components of trip generation, destination choice (trip distribution), and mode

choice. On the freight side, it includes a commodity-flow based long-distance freight

model for truck trips that are longer than 50 miles.

Figure 3.1 Overview of MSTM structure (source: MSTM User’s Guide)

The outputs from the person travel side are 18 trip tables, including home-based work

trips for five income groups, home-based shopping trips for five income groups, home-

based other trips for five income groups, home-based school trips, non-home-based work

trips, and non-home-based other trips; and one trip table representing long-distance

person trips. The output from the truck side is one trip table representing short-distance

and long-distance truck trips.

 17

In total, there are 20 trip tables covering national and statewide travel patterns.

These outputs are important inputs for the Subarea Analysis, which will be discussed in

detail in Section 4.2.1.

3.1.2 Area Type

Area type is a measure to classify land use intensity, based on population and

employment density. A higher area type value indicates more intersections, driveways,

traffic signals, and turning movements, as well as lower capacity and travel speed in that

area. In this dissertation, the area type definition was provided by the Baltimore

Metropolitan Council (BMC) (14). Table 3.1 presents the area type look-up table. The

area type is an important variable to determine network attributes, including free flow

speed and link capacity.

Table 3.1 Area Type Look-up Table Defined by the BMC

Employment/Acre
Households/Acre

<
0.5

0.5 -
1.0

1.0 -
1.5

1.5 -
2.25

2.25
- 3.0

3.0 -
4.0

4.0 -
5.0

5.0 -
7.5

7.5 -
11 > 11

< 1.5 1 1 2 2 3 3 4 5 5 6

1.5 - 3.5 1 1 2 2 3 3 4 6 6 6

3.5 - 6.5 1 1 2 2 3 3 4 6 6 6

6.5 - 12 1 2 2 3 3 4 4 6 6 7

12 - 20 1 2 3 3 4 4 5 7 7 7

20 - 30 2 3 4 4 5 5 5 7 7 7

30 - 45 3 4 4 5 5 6 6 7 7 8

45 - 70 3 4 4 5 5 6 7 8 8 8

70 - 110 4 4 5 6 6 7 8 9 9 9

> 110 4 5 6 7 7 8 9 9 9 9

 18

3.1.3 Traffic Analysis Zones (TAZs)

The TAZs and their centroids were defined at the beginning of the MSTM development.

The TAZ delineation in the MSTM followed certain guidelines (13).

The MSTM has 1,588 zones compassing entire State of Maryland, State of

Delaware, and District of Columbia, and selected areas in the States of Virginia, West

Virginia, and Pennsylvania. This dissertation utilizes the zone system defined by the

MSTM, but in a smaller study area within the Baltimore County and Baltimore City

including 362 TAZs. The area type of this zone system is defined according to Table 3.1.

Figure 3.2 shows the MSTM-defined zone system in the dissertation’s study area, and its

area type distribution. Later in this chapter, the zone system along with its area type

attribute will be used in defining network attributes.

Figure 3.2 Zone system and area type distribution in the study area

 19

To make this research manageable and reduce the computation time, zones with similar

area type are aggregated. This procedure leads to a coarser zone system with 81 TAZs,

including eight external zones. Section 4.2.2 provides more details on the aggregation

process.

3.2 Highway Network Data

The highway network represents the transport system in a travel demand model.

Attributes on a highway links represent the level of service on that segment. A correct

representation of the highway network is crucial to achieving accurate modeling results.

In this section, the sources for network data, definition of network attributes, and

modifications made during the network development are discussed.

3.2.1 Data Sources

The spatial resolution of the MSTM network is not detailed enough as required by the

dissertation methodology. Digital street files were requested from the SHA for the

development of a detailed network system. Table 3.2 summarizes the digital files

provided by the SHA.

Table 3.2 Digital Street Files Provided by the SHA

File Name Date
Received Format Description

BaltimoreCounty&City_CL 05/2013 ArcGIS link
shapefile

Centerline network that
contains true shape of road links
in MD

Functional_Class_MD 06/2014 ArcGIS link
shapefile

Contains selected road links
with functional class in MD

Lanes_Speed_Limit_MD 06/2014 ArcGIS link
shapefile

Contains selected road links
with lane numbers and speed
limit in MD

 20

In order to create a network that represents the highway system serving the study area,

the Centerline network is used as the base network. Link attributes on every other

network will be joined to the Centerline network. Figure 3.3 presents the three networks

showing their spatial representations of the Baltimore area.

Figure 3.3 Digital networks provided by the SHA showing spatial representations

It can be noticed that the Centerline network represents a network system with more

detail, compared to the lane/speed limit network and functional class network. While the

three networks are consistent in geographic projection, the lane/speed limit and functional

class networks have less spatial resolution in the Baltimore City. When taking a closer

look at the three networks on top of each other as shown in Figure 3.4, it is obvious that

they are not consistent in their spatial presentation, especially at interchanges. For

instance, the lane/speed limit network does not distinguish divided highways (pointed by

arrow a); the functional class network has fragmented links at some locations (pointed by

arrow b); and the Centerline network has segmented links at interchanges (pointed by

arrow c), bridges, and tunnels where these links should not be intersected by other links.

 21

Figure 3.4 Differences in spatial presentation of three networks

To better understand the differences of the three networks, Table 3.3 summaries their

advantages and compares their limitations. For the sake of this dissertation, it requires a

detailed highway network that represents the highway system in reality. Ideally, the

detailed network should have correct attributes: speed limit, functional class, capacity,

and toll rate; and correct spatial representations: directionality of divided roads and one-

 22

way roads, and connectivity. Since none of the three networks meets these requirements,

several modifications will be undertaken to develop the detailed network.

Table 3.3 Limitations of Three Networks
File Name Limitations Advantages

BaltimoreCounty&City_CL

Segmented links at important
locations, including bridges,
tunnels, and interchanges; link
direction not indicated

True shape of road links

Functional_Class_MD
Fragmented links; link direction
not indicated; divided highway
links not distinguished

Contains function class on links

Lanes_Speed_Limit_MD Link direction not indicated Contains speed limit and
number of lanes on most links

3.2.2 Modification on Centerline Network

Since the Centerline network (BaltimoreCounty&City_CL) is supported by the ongoing

Centerline Project in the SHA, it is supposed to have the best spatial resolution and true

to shape. Other network attributes, including the functional class, number of lane, and

speed limit, will be joined onto the Centerline network. Based on the Centerline network,

efforts are made to reconcile the spatial inconsistencies of these networks.

3.2.2.1 Missing Attributes in Baltimore City

Figure 3.5 is a zoom-in map of the Baltimore City. Because of the missing links on the

lane/speed limit and functional class networks, the Centerline network does not have any

attribute defined on these links. Eventually, the number of lanes, speed limit, and

functional class were manually added to these links on the Centerline network.

 23

Figure 3.5 Missing links in Baltimore City

3.2.2.2 Missing Attributes on Divided Highways

As indicated in Table 3.2, the functional class network does not distinguish divided

highway links. For instance, a one-way divided highway link is shown as a two-way

undivided link. As a result, on divided highways of the Centerline network, only links in

one direction have functional class defined, as presented in Figure 3.6. In ArcGIS, the

 24

Transfer Attributes function was used to add missing attribute to links in the other

direction. The transfer distance is 80 feet.

 A search of zero-value attribute was conducted in ArcGIS to add missing

attributes on the Centerline network. After this step, every link on the Centerline network

has number of lanes, speed limit, and functional class coded in their network attributes.

Figure 3.6 Misrepresentation of divided highway links

3.2.2.3 Connectivity on Special Highway Segments

Another shortcoming of the Centerline network is its segmented links at bridge and

tunnel crossings, and at some interchanges. Links at these locations appear to intersect on

 25

a two-dimensional map, but in fact one link passes under the other one(s). A network

with segmented bridges, tunnels and interchanges cannot be used in trip assignment

because trips will be assigned on routes that do not exist in reality.

 In ArcGIS, the National Bridge/Tunnel Inventory network was used to fix this

problem. A considerable amount of manual work was spent on connecting segmented

bridge and tunnel links and interchanges. After checking the connectivity of the

Centerline network, it assures that this network can be used in trip assignment.

3.2.2.4 Ramp Indication

By this step, the Centerline network has been imported into Cube, and will be prepared

for following analyses. Highway ramps were identified with “RP” in their network

attribute and were imported as one-way links in Cube. The directionality and connectivity

of ramp links were checked manually in Cube to make sure that all ramps are correctly

connected to highway exits and entrances.

3.2.2.5 Directionality of Divided Highways

Since the ArcGIS is unable to identify directionality, all links (except ramp links) were

imported in Cube as two-way links. However, this approach creates redundant links on

divided highways. For instance, a one-way divided highway link is shown as a two-way

divided highway link in Cube. Defining correct directionality of divided highway links is

a crucial step to trip assignment. Eventually, the redundant links (link direction not

consistent with road direction) on divided highways were removed manually in Cube.

 26

3.2.2.6 Node with Gaps

Figure 3.7 is an example illustrating the connectivity problem between two nodes. In this

example, nodes 423 and 424 appear to be connected, but in fact there is a small gap

between them. The disconnected nodes would result in disconnected links, which are link

422-423 and link 424-425. The disconnected links would lead to inaccurate trip

assignment results. To fix this problem, the Grouping Limit of 3.5 feet was specified in

Cube when creating network from an ArcGIS file. The Grouping Limit function works in

a way to connect nodes within the distance specified. In this study, several Grouping

Limit values were tested and 3.5 feet works the best to create a well connected network.

Figure 3.7 Example of disconnected nodes

3.2.3 Link Attributes

3.2.3.1 Functional Classification

The functional classification defines the character of service a roadway segment provides.

It is an important variable to determine other link attributes, including free flow speed

and link capacity.

422

423
424

425

Zoom-in

 27

The original definition of the functional classification categories (also functional

class in short) was provided by the SHA in the functional class network. The SHA only

defines seven links classes. To better represent the network attribute, functional class is

also defined for ramp links and centroid connectors. Table 3.4 presents the functional

class defined for the network system. Figure 3.8 shows the distribution of link functional

class on the network.

Table 3.4 Definition of Functional Class
Functional Class Definition

1 Interstate

2 Principal Arterial – Other Freeways and
Expressways

3 Principal Arterial – Other

4 Minor Arterial

5 Major Collector

6 Minor Collector

7 Local

8 High Speed Ramp

9 Medium Speed Ramp

10 Low Speed Ramp

11 Centroid Connector

 28

Figure 3.8 Link attribute - functional class in the Baltimore area

 29

3.2.3.2 Number of Lanes

The number of lanes is defined for each link segment on the network, using the

lane/speed limit network provided by the SHA. Figure 3.9 shows the distribution of

number of lanes on the network. The number of lanes will be used to calculate link

capacity on multi-lane highways.

Figure 3.9 Link attribute - number of lanes in the Baltimore area

 30

3.2.3.3 Free Flow Speed

The link speed is an important network attribute. In trip assignment, link speed is used to

compute link travel time and volume. The Federal Highway Administration defines free

flow speed as the “mean speed of passenger cars measured during low to moderate flows,

usually up to 1300 passenger cars per hour per lane”. In this study, the free flow speed is

determined through a look-up table provided by the BMC (15). The area type and

functional class given in the BMC look-up table are not consistent with their definitions

in the current study. To match the definitions of link attributes on the current network, the

BMC table is modified accordingly as presented in Table 3.5.

Table 3.5 Look-up Table of Free Flow Speed Modified from the BMC Definition
 Area Type

Functional Class
1 2 3 4 5 6 7 8 9

Interstate SPDP*=>65 63 63 62 59 58 58 58 58 58

Interstate SPDP=60 58 58 56 56 55 55 54 54 54

Interstate SPDP=55 54 54 54 52 51 50 46 45 42

Interstate SPDP<55 52 52 48 46 46 46 42 41 38

Freeway SPDP=>65 62 61 60 58 57 56 56 54 54

Freeway SPDP=60 57 56 55 55 53 53 52 48 44

Freeway SPDP=55 53 53 53 51 50 48 47 45 43

Freeway SPDP<55 48 46 46 46 43 39 32 27 25

Principal Arterial 37 37 36 33 28 26 23 22 19

Minor Arterial 34 32 28 26 26 23 22 19 18

Collector 31 28 22 20 20 19 17 15 15

Interstate High Speed
Ramp 46 46 46 46 46 46 44 44 44

 31

Interstate Medium
Speed Ramp 28 28 28 28 28 28 26 26 26

Interstate Low Speed
Ramp 18 18 18 18 18 18 16 16 16

Freeway Medium
Speed Ramp 22 22 22 22 22 22 22 22 22

Freeway Low Speed
Ramp 14 14 14 14 14 14 14 14 14

Centroid Connector 30 25 25 25 20 20 20 15 15

* SPDP is posted speed

3.2.3.4 Link Capacity

The Highway Capacity Manual defines capacity as “the maximum sustained 15 minutes

flow rate, expressed in passenger cars per hour per lane, that can be accommodated by a

uniform freeway segment under prevailing traffic and roadway conditions in one

direction of flow.” (16) The Highway Capacity Manual discusses a broad range of factors

that affect capacity, including area type, lane and shoulder widths, transit stops, truck

movements, median treatments, intersection types, signal timing, etc. The Highway

Capacity Manual also recommends defining capacity under Level of Service E, which is

when traffic flow becomes irregular and speed varies rapidly.

Following the recommendations in the Highway Capacity Manual, the BMC

defined the link capacity (vehicles per hour per lane) as a function of area type, functional

class and number of lanes (15). The BMC look-up table is modified to be consistent with

the definitions of link attributes on the current network, as presented in Table 3.6.

Table 3.6 Look-up Table of Link Capacity Modified from the BMC Definition
 Area Type

Functional Class
1 2 3 4 5 6 7 8 9

Interstate 4-6 lanes 2400 2350 2350 2350 2300 2300 2250 2250 2200

Interstate 2-3 lanes 2200 2150 2150 2150 2100 2100 2050 2050 2000

 32

Interstate 1 lane 1800 1750 1750 1750 1700 1700 1700 1600 1600
Principal Arterial
multilane 2100 2050 2000 1950 1950 1900 1900 1900 1900

Principal Arterial 1-2
lanes 1500 1450 1400 1350 1350 1300 1300 1300 1300

Principal Arterial
multilane 2100 2050 2000 1950 1950 1900 1900 1900 1900

Principal Arterial 1-2
lanes 1500 1450 1400 1350 1350 1300 1300 1300 1300

Principal Arterial
Other multilane 1150 1150 1150 1100 1100 1050 1050 1000 1000

Principal Arterial
Other 1-2 lanes 1050 1050 1050 1000 1000 950 950 900 900

Minor Arterial
multilane 900 900 900 850 850 800 800 750 750

Minor Arterial 1-2
lanes 800 800 800 800 750 750 750 750 750

Major Collector &
Minor Collector 800 800 800 800 750 750 750 700 700

Local 800 800 800 800 750 750 750 700 700

Interstate High Speed
Ramp 2200 2150 2100 2050 2050 2000 2000 2000 2000

Freeway Medium
Speed Ramp 2050 2000 2000 2000 1950 1950 1950 1900 1900

Freeway Low Speed
Ramp 1900 1850 1850 1850 1800 1800 1800 1750 1750

Centroid Connector 3000 3000 3000 3000 3000 3000 3000 3000 3000

3.2.3.5 Toll Rate

In trip assignment, it takes road pricing into account when computing link travel time. In

the study area, there are three toll roads in the year of 2007 (model’s base year): (1) the

Fort McHenry Tunnel is tolled in westbound and eastbound directions, each at a flat-rate

of $4.00; (2) the Harbor Tunnel is tolled in westbound and eastbound directions, each at a

flat-rate of $4.00; and (3) the Key Bridge is tolled in westbound and eastbound directions,

each at a flat rate of $4.00.

 33

3.3 Validation Data

Validation is an important component of travel demand models. The reproduction of

observed traffic conditions by the modeling results is a critical validation criterion. The

validation data were provided by the SHA on an hourly basis. The data represent

observed traffic counts collected by the SHA at a number of count stations during certain

days in the year of 2007. In this study, the count data used to validate the modeling

results is defined as average daily PM counts, which were collected from the PM time

periods (4:00 PM – 7:00 PM) in 2007.

According to the location description provided by the SHA, the count data were

manually matched with links on the current network. In total, there are 210 count stations

identified on the network, 42 of which are within the Baltimore City. Table 3.7 shows the

number of count stations for each function class. Figure 3.10 shows the distribution of the

count stations in the study area.

Table 3.7 Traffic Count Stations
Functional Class Number of Stations

Interstate 25

Principal Arterial – Other
Freeways and Expressways 16

Principal Arterial – Other 114

Minor Arterial 38

Minor Collector	
 12

Local	
 3

 34

Figure 3.10 Traffic count stations in the Baltimore area

 35

4 METHODOLOGY

In this chapter, the research methodology is presented. First, it develops a comprehensive

model to define the network resolution. After that, it prepares the study area, the zone

system and the finest network system in Section 4.2. Section 4.3 describes how to assign

a trip table to the network and evaluation criteria of assignment results. Section 4.4

presents algorithms developed to identify irrelevant links on a network for a given zone

system.

4.1 A Comprehensive Model to Define Network Resolution

Briefly, this model is an iterative process to remove irrelevant links starting from the

finest network. Figure 4.1 shows the complete procedure. Each component of the model

will be discussed in greater detail in the following sections.

First, this model performs the trip assignment (see Section 4.3) on the finest

network. Then, it identifies links on the finest network that have not been assigned any

volume. These links are irrelevant for the given zone system and should be removed (see

Section 4.2.4). The assignment results are validated against observed traffic count data.

Performance measures are calculated to evaluate if the modeled traffic volumes are close

enough to the traffic conditions in reality (see Section 4.3.6).

After that, if the validation result is satisfactory, the program is terminated and the

developed network is exported. If not, this program continues to identify irrelevant links

(see Section 4.4) on the current network and removes them from subsequent iteration(s).

The objective of the validation analysis is to (1) minimize the %RMSE, |%DIFF|, |AE|

 36

and |DSD| values; and to (2) maximize the 𝑅! value. It is assumed that the level of

network detail is consistent with the zone system when the objective is achieved.

Figure 4.1 A comprehensive model to define network resolution

Validate result against observed traffic data; and
determine if it is satisfactory

Run trip assignment on finest network

Remove zero-volume links from finest network

Yes

Terminate the program and
output current network

No

Identify irrelevant links
and remove them

Run traffic assignment
on updated network

Read trip table for study area

 37

4.2 Study Area

The trip table, which represents the travel demand in the study area, is obtained after the

trip generation, trip distribution and mode choice steps in a travel demand model.

Originally, there are 1,674 TAZs delineated in the MSTM. In this dissertation, the study

area has been defined within the Baltimore area (Baltimore County and Baltimore City).

In order to acquire the trip interchanges in the study area, the Subarea Analysis is applied.

4.2.1 Subarea Analysis

The subarea analysis was conducted in Cube using the MSTM outputs of the person

travel and truck travel models (See Section 3.1.1). It utilizes the original MSTM network

and its zone system to extract the trip table for the study area. The subarea analysis is

performed as follows.

First, the boundary of the Baltimore area is prepared in ArcGIS. In Cube’s

Network Program, the original MSTM network is imported as the Highway Layer; the

map of the Baltimore area boundary is imported as the Boundary Layer, and both layers

must be made visible, as presented in Figure 4.2. The blue links indicate the MSTM

network links, and the highlighted polygon indicates the boundary of the Baltimore area.

Second, a subarea network is created using the Sub-Area Extraction tool in Cube.

It renumbers the MSTM zones and nodes by consecutive numbers, as shown in Figure

4.3. On the subarea network, the zone range within study area is 1 – 298, the external

zone range is 299 – 362, and the node range is 400 – 4408. Figure 4.4 shows the MSTM

network representation of the Baltimore area.

 38

Figure 4.2 MSTM network and study area boundary displayed in Cube	

Figure 4.3 Subarea network extraction renumbering in Cube

 39

Figure 4.4 MSTM subarea network of the study area

The MSTM considers highway travel (automobile and truck) and transit trips (light rail,

Amtrak, etc.) for four time-of-day periods. In this study, highway travel during AM (6:30

AM – 9:30 AM) and PM (3:30 PM – 6:30 PM) periods is considered. After extracting the

subarea network, the trip assignment is performed, assigning trip tables on the subarea

network to obtain the subarea trip tables for morning and afternoon peak hours,

respectively.

 40

4.2.2 Post-processing of Subarea Analysis

The subarea trip tables include OD interchanges for 362 zones, containing 20 vehicles

classes: drive alone for five income groups, shared ride with two occupants for five

income groups, shared ride with 3 occupants for five income groups, long-distance autos,

commercial vehicles, short distance single-unit trucks, short distance multi-unit trucks,

and long-distance trucks. Considering that the following analyses will evaluate the spatial

consistency of the network and zone systems based on the overall trip pattern on the

network, only the total amount of trips assigned on the network will be relevant.

Eventually, the 20 trip tables (of 20 vehicle classes) were summed up to one trip table in

Cube.

Furthermore, several model runs have been tested on zone systems differing in

zone size. The testing results showed that having a coarser zone system could

substantially increase computational efficiency of the model. Therefore, in the study area,

the trip interchanges on the MSTM-defined zone system (362 TAZs) were aggregated to

a coarser zone system (81 TAZs) by a Cube script. The aggregated zone system includes

eight external zones and 74 internal zones.

 As a result, the trip table used in the following analyses contains 81 TAZs and it

accounts for the total number of vehicles traveling in and through the study area. Figure

4.5 presents the MSTM-defined zone system and the aggregated zone system. The

external zones are highlighted in red, and they represent the locations where through trips

(with at least one trip end within the Baltimore area) enter the internal zones.

 41

Figure 4.5 Zone system defined for the study area

4.2.3 Finest Highway Network

Given the defined zone system, the quest for an appropriate level of network resolution

starts with the finest network system. This study only considers vehicle trips and highway

network, excluding transit trips and transit network from the model development. In a

travel demand model, transit trip assignment is usually performed separately from

highway trip assignment, and transit trips are often assigned on fixed transit routes. That

is to say, the assignment results of transit trips do not have any impact on the assignment

results of highway trips. Therefore, only vehicle trips on highway network are

represented in this study.

 42

The finest network system was developed in ArcGIS and finalized in Cube based

on the Centerline network and several road networks provided by the SHA. The data

sources and definitions of network attributes have been described in Chapter 3.

 The zone centroids and centroid connectors were created in Cube. The centroids

are defined at the center (gravity point) of each zone. The centroid connectors are created

for each zone, following several rules:

• The maximum number of centroid connectors is 4. 	

• The maximum distance for connectors is 4 miles.	

• Only connect to minor collectors and local roads.	

• Spread connections to the closest nodes in as many directions as possible.	

This approach guarantees that there are sufficient centroid connectors created for each

zone that can transport traffic flows in different directions on the network. The centroid

connectors are made connect with lower class roads so that travellers can fulfill their trips

by taking lower class roads first before getting onto higher class roads, then getting off

from higher class roads to lower class roads before arriving at their destinations. This

approach makes sure that trips will be assigned through centroid connectors onto the

network in a way that is as close to real travel patterns as possible. Figure 4.6 shows the

finest highway network and its centroid connectors. 	

 43

Figure 4.6 Finest highway network with centroid connectors generated from zone
centroids

4.2.4 Modification of Finest Network

An initial trip assignment was performed on the finest network to test if it is routable.

Visual inspection was conducted to evaluate the assignment results, including (1) all

 44

interstate highway links should have volumes; (2) for those links on interstate highway,

freeway, expressway, and major arterial that do not have volumes, check their connection

with adjacent links; and (3) ramps should be properly assigned.

 It is expected that the finest network is over-detailed compared to the highly

aggregated zone system; therefore it might result in a portion of links that will not be

used by any OD pairs. This group of zero-volume links is an indication that they are over

detailed for the coarse zone system. Before conducting further analyses, these unused

links should be removed from the finest network to accelerate the development of a more

consistent zone-network system. Meanwhile, a network with fewer links can substantially

save the model’s computation time.

4.3 Trip Assignment

The quantitative analysis of transport movement over a physical network is performed

with the aid of a network model, which presents the transport network and computes the

traffic flows on the network links. Such models are descriptive of travellers’ behavioral

patterns and are usually referred to as network equilibrium models (17). Various

algorithms have been developed to solve network models by characterizing a way in

which road users travel from origins to destinations on the corresponding network. This

section will discuss trip assignment method, model convergence criteria, contributing

factors to model’s computation time, and evaluation method of assignment results.

4.3.1 Trip Assignment Method – All-or-nothing Assignment

The all-or-nothing assignment is the simplest assignment method. It assumes that all

users experience no congestion and perceive the road attributes (e.g. travel cost) in the

 45

same way, which means all users choose the same shortest path (i.e. travel time or travel

distance) between OD pairs.

 The all-or-nothing assignment method does not represent what road users would

actually experience in reality. However, it is a basic assignment method used for other

assignment techniques to reach a desirable assignment result.

4.3.2 Iterative Trip Matrix Loading Method – Method of Successive Averages

The behavioral assumption of network equilibrium models is the Wardrop’s user-

equilibrium (18), which states “the journey times in all routes actually used are equal and

less than those which would be experienced by a single vehicle on any unused route.”

When a network reaches a user-optimized equilibrium, no user may lower his/her

generalized cost (sum of monetary and non-monetary costs of a trip) by changing to an

alternative route. When congestion (delay) occurs on the network, the solution to the

network equilibrium problem becomes a nonlinear cost-network equilibrium problem.

Many assignment methods have been developed to approximate to the equilibrium

conditions as described in the Wardrop’s user-equilibrium principle. Discussion of the

problem’s nonlinear solutions is beyond the scope of this dissertation, and is described

elsewhere (19).

 In travel demand models, some trip assignment methods have been developed to

load trip tables onto the network in several iterations, taking into account the relationship

of users’ travel cost (time) and link flow. These methods compute link travel speed or

travel time for the current iteration and use the results in the next iteration, until the

assignment results achieve a predefined convergence level. The method of successive

 46

averages (MSA) remains by far the most widely used iterative averaging method, which

produces a heuristic solution of network equilibrium problem. Generally, the MSA

calculates network flows for current iteration by taking a linear combination of network

flow from a previous iteration and an all-or-nothing assignment result for the current

iteration (19, 20). In this dissertation, the MSA loads the trip table obtained in Section

4.1.2 at zone centroids and then assigns it onto the highway network through centroid

connectors by five steps.

 Step 1: Initialize all flows to zero, and set the current iteration to zero.

 Step 2: Update link cost at the current iteration, and update n = n + 1.

𝐶𝑜𝑠𝑡! = 𝑇! +
𝑇𝑂𝐿𝐿!
𝑉𝑜𝑇 + 0.25 × 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸!

𝑇! = 60 × (𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸!/𝐹𝐹𝑆𝑃𝐷!)

where

 𝐶𝑜𝑠𝑡! is the cost on link a

 𝑇𝑂𝐿𝐿! is the toll rate on link a

 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸! is the link length of link a

 𝑉𝑜𝑇 is a traveler’s value of time; it is 8.4 cents/minute

 𝐹𝐹𝑆𝑃𝐷! is the free flow speed on link a

Step 3:Perform an all-or-nothing assignment and calculate auxiliary flows.

Step 4: Calculate network flows at the current iteration as

 47

𝑉!! = 1− ∅ 𝑉!!!! + ∅𝐹!

where

k is the current iteration

 𝑉!! is the current flow on link a

 ∅ is 1/k

 𝐹! is the auxiliary flow (calculated by all-or-nothing) on link a

Step 5: At the end of the current iteration, model convergence criteria are used to

evaluate the solution’s approximation to Wardrop’s user-equilibrium. If the criteria are

met, stop; otherwise proceed to Step 2.

4.3.3 Path-tracing between Origins and Destinations

The trip assignment is a two-step procedure. First, paths are built from each origin zone

to every destination zone that it connects to. The second step is to load each trip

interchange of the trip table to the path(s) between the OD pair it represents. When a

travel path is built using a certain link, the traffic volume carried by this path will be

loaded onto this link. After the entire trip table is assigned on the network, the assignment

result on a link represents the accumulated volumes from trip interchange(s) that have

built path(s) using this link.

In order to identify links that are irrelevant to represent trip interchanges in the

study area, it is important to know how many trips that each individual link carries for

each OD pair. Figure 4.7 presents the path-tracing model from origin i to destination j for

all selected OD pairs.

 48

Figure 4.7 Path-tracing method applied in trip assignment

The procedure presented in Figure 4.7 was developed in Cube utilizing its SELECTLINK

function. When implementing the path-tracing model, it starts from the OD pair with

highest trip interchange and proceeds to the next OD pair in descending order. Sorting all

OD pairs from highest trip interchange can help select the most important OD pairs,

which carry a large enough proportion of the travel demand in the study area to identify

irrelevant links. Given limited computing resources, it would be more efficient to analyze

selected OD pairs than running the model for all OD pairs.

To sort OD pairs from highest trip interchange, a Cube script was developed to

read in the trip table and write out its trip interchanges as individual records. A Java code

Input

Output

Read origin i, destination j

Run traffic assignment for all
OD pairs; simultaneously trace
path(s) built between OD pair i
and j

Assigned volumes for all
OD pairs on entire
network

Assigned volumes for ODij;
this value is zero for links
not on the paths built for
ODij

Repeat for
next i and j

 49

was developed to index interzonal trip interchange records, and sort them in descending

order. Figure 4.8 presents the trip table transformation and sorting procedure.

Figure 4.8 Example of trip matrix transformation and sorting procedure

After the path-tracing model is completed, its results are further processed in Cube. For

each OD pair of the model, the Cube script writes out a separate assignment result file,

which only contains links on the path(s) built for this OD pair.

4.3.4 Model Convergence Criteria

In order to compare the assignment solutions computed by different assignment

techniques, several criteria have been developed by travel demand modelers. The most

important criterion is the relative gap, which is often used to measure how close an

approximation is to Wardrop’s user-equilibrium (21). The relative gap is calculated as

follows.

𝑅𝐸𝐿.𝐺𝐴𝑃 =
𝑉𝐸!!!×𝐶𝑂𝑆𝑇𝐸!!! − 𝑉𝐴!×𝐶𝑂𝑆𝑇𝐸!!!!

!!!
!
!!!

𝑉𝐸!!!×𝐶𝑂𝑆𝑇𝐸!!!!
!!!

where

a. Trip Matrix in Cube

b. Individual Records for Trip Interchanges c. Indexed Individual Trip Interchanges

d. Sorted Result

 Destination
Origin 1 2 3 4 5

1 20559 1139 1187 332 331
2 1319 1892 1419 205 224
3 1362 1426 10664 1127 1671
4 273 154 891 6657 1259
5 310 186 1465 1352 6982

Origin Destination Trip Interchange
1 1 20559
1 2 1139
1 3 1187
1 4 332
1 5 331

Index Origin Destination Trip Interchange
0 1 2 1139
1 1 3 1187
2 1 4 332
3 1 5 331
4 1 6 198
5 1 7 1057

Order Index
0 5775
1 6247
2 5774
3 2663
4 3980
5 5099

 50

k is the current iteration

 N is the number of links

 𝑉𝐸! is the link equilibrium volume for iteration k

 𝐶𝑂𝑆𝑇𝐸! is the link travel cost based on the equilibrium volume 𝑉𝐸!

𝑉𝐴! is the link volume from an all-or-nothing assignment to the minimum cost

paths based on 𝐶𝑂𝑆𝑇𝐸!!!

The relative gap measures the excess travel cost over the entire network of the current

solution compared to the travel cost of an equilibrium solution. The relative gap would be

zero when the current solution reaches Wardrop’s user-equilibrium condition. A perfect

equilibrium solution, or a zero-value relative gap, is rarely achieved due to the non-

linearity of the equilibrium problem (22). The level of convergence achieved by an

assignment technique is highly dependent on the size of the network, number of zones,

level of congestion, and number of vehicle classes. It has been recommended that a

relative gap of 0.0001 should be used to assure that the assignment result is an

equilibrium solution (22).

Sometimes, results of several other criteria are reported to help assess if an

assignment result reaches the desirable level of convergence. These criteria include the

Average Absolute Volume Difference (AAD), Gap and Root Mean Squared Error of the

Differences (RMSE).

The AAD calculates how successive iterations differ in their average modeled

volumes.

 51

𝐴𝐴𝐷 = 𝑉! − 𝑉!!!

where

𝑉! is the average of modeled traffic volume at the kth iteration

𝑉!!! is the average of modeled traffic volume at the k-1th iteration

The Gap calculates relative difference between two successive iterations in their modeled

volumes.

𝐺𝐴𝑃 =
𝑉𝐸!×𝐶𝑂𝑆𝑇𝐸! − 𝑉𝐸!!!×𝐶𝑂𝑆𝑇𝐸!!!!

!!!
!
!!!

𝑉𝐸!!!×𝐶𝑂𝑆𝑇𝐸!!!!
!!!

where

 k is the current iteration

 N is the number of links

 𝑉𝐸! is the link equilibrium weighted volume for iteration k

 𝐶𝑂𝑆𝑇𝐸! is the link travel cost based on the equilibrium volume 𝑉𝐸!

𝑉𝐴! is the link volume from an all-or-nothing assignment to the minimum cost

paths based on 𝐶𝑂𝑆𝑇𝐸!!!

The RMSE calculates the root mean squared error of the difference in modeled volumes

between two successive iterations.

𝑅𝑀𝑆𝐸 =
𝑉𝐸 − 𝑉𝐸′ !!

!!!
𝑁

where

𝑁 is the number of links

 52

VE is the link equilibrium weighted volume for the current iteration

VE’ is the link equilibrium weighted volume for the previous iteration

In this dissertation, the relative gap will be used as the primary convergence criterion to

determine the convergence level of an assignment result. Other convergence criteria will

be reported when comparing two successive iterations of an assignment result.

4.3.5 Computational Efficiency

When computing a trip assignment solution, the computational efficiency depends on

several factors. The number of links in the network system and number of zones define

the problem complexity; the computing environment determines how fast the machine

can calculate the problem; and the convergence level decides when the program can stop

for a desirable solution.

 When implementing this methodology, efforts were made to reduce the

computation time to find the most appropriate network resolution. Specifically, the zone

size has been reduced and a looser convergence criterion has been applied. However, for

the development of a production model in the future, original zone system of a travel

demand model should be in use, and a more strict convergence level should be applied.

4.3.6 Performance Measures

In order to measure how well the assignment results represent traffic conditions in reality,

it is important to validate the results against observed traffic data. Several performance

measures are identified and calculated to evaluate the validation results.

Correlation Coefficient

 53

The correlation coefficient is applied to evaluate the extent to which the modeled

volumes and actual traffic counts are correlated.

𝑅 =
1
𝑁

𝑉! − 𝑉! 𝑉! − 𝑉!
𝜎!𝜎!

!

!!!

where

𝑁 is the number of links

𝑉! is the average of modeled traffic volumes

𝑉! is the modeled link volume

𝑉! is the average of observed traffic volumes

𝑉! is the observed link traffic volume

𝜎! is the standard error of modeled volumes

𝜎!is the standard error of observed traffic volumes

Root Mean Square Error (RMSE) and Percent Root Mean Square Error (%RMSE)

The RMSE and %RMSE measure the variance between modeled volumes and observed

traffic counts.

𝑅𝑀𝑆𝐸 =
𝑉! − 𝑉! !!

!!!
𝑁

%𝑅𝑀𝑆𝐸 =
100
𝑉!

𝑉! − 𝑉! !!
!!!

𝑁 %

where

 54

𝑁 is the number of links

𝑉! is the modeled link volume

𝑉! is the average of observed traffic volumes

𝑉! is the observed link volume

Average Error (AE), Difference between Standard Deviations (DSD)

The AE and DSD evaluate the systematic error as a result of spatial aggregation (4).

These two performance measures evaluate the differences between modeled volumes and

observed traffic counts that are caused by a change in the level of network detail. In this

study, this difference is the result of forcing the same amount of trips to be assigned over

a smaller network (after network reduction).

𝐴𝐸 = 𝑉! − 𝑉!

𝐷𝑆𝐷 = 𝑆𝐷! − 𝑆𝐷! =
𝑉! − 𝑉! !!

!!!
𝑁 − 1 −

𝑉! − 𝑉! !!
!!!
𝑁 − 1

where

𝑁 is the number of links

𝑉! is the average of modeled traffic volumes

𝑉! is the modeled link volume

𝑉! is the average of observed traffic volumes

𝑉! is the observed link volume

Percent Difference

 55

The difference between total observed counts and total modeled traffic volumes is

measured. The percent difference evaluates if the current network overestimate or

underestimate the traffic conditions as a whole.

% 𝐷𝐼𝐹𝐹 =
𝑉!!

!!! − 𝑉!!
!!!

𝑉!!
!!!

where

𝑁 is the number of links

𝑉! is the modeled link volume

𝑉! is the observed link volume

4.4 Identify Irrelevant Links

The essence of this methodology is to identify links that are not relevant to represent the

trip interchanges in the given zone system, and remove these links from the network

system. It starts with the finest network developed for the Baltimore area, and removes

links iteratively.

As defined in this study, the irrelevant links, which predominately carry

intrazonal trips, are not important to carry interzonal trips between OD pairs. For a given

zone system, its irrelevant links are assumed not to carry a significant amount of trips for

any OD pairs. However, inclusion of irrelevant links on the network would lead to an

underestimation of traffic conditions on major routes. The criterion used for the

identification of irrelevant links is defined as follows.

 Let N (V, L) represent a network system, where V is the set of nodes and L is the

set of links. Let Z (O, D) represent a zone system, where O is the set of origins and D is

 56

the set of destinations, and O ∈ V, D ∈ V. Let 𝑣!! be the volume on link i originated from

zone o; 𝑣!! be the volume on link i destined to zone d; and 𝑣!!" be the volume on link i

originated from zone o and destined to zone d. Let 𝑣! denote the volume on link i, and

𝑣! = 𝑣!!!∈! = 𝑣!!!∈! = 𝑣!!"!∈!!∈! , i ∈ L, o ∈ O, and d ∈ D,

which is a summation over assigned volumes on link i for all OD pairs.

Let M = 𝑚!
! be a trip matrix, which contains number of o rows and number of d

columns. Let 𝑚!
! represent the trip interchange for OD pair od.

Let 𝑇𝑅!!" 𝑣!!" = 𝑣!!"/𝑚!
! represent the trip share of link i for an OD pair od,

which is calculated by dividing link volume by trip interchange between OD pair od.

 Let 𝐾∗ denote a set of irrelevant links, where 𝐾∗ ∈ L. The identification of 𝐾∗

follows several steps.

Step 1: Calculate link trip share 𝑇𝑅! = max (𝑇𝑅!!" 𝑣!!"), which represents the

maximum trip share that link i carries.

Step 2: Specify 𝒶∗ or maximum number of 𝐾∗ that can be identified on N (V, L).

Compute 𝒶∗ = number of 𝐾∗ / number of L. The set of 𝐾∗ is composed of links with

smallest 𝑇𝑅! on N (V, L).

Step 3: Identify 𝑇𝑅∗ denoting the cutoff point between irrelevant and relevant

links. For any identified irrelevant link, if its link trip share 𝑇𝑅! > 𝑇𝑅∗ (∀ 𝑘 ∈ 𝐾∗),

adjust the maximum number of irrelevant links (𝒶∗) as specified in step 2, such that

𝑇𝑅! ≤ 𝑇𝑅∗ (∀ 𝑘 ∈ 𝐾∗).

 57

Step 4: Remove 𝐾∗ from N (V, L), run trip assignment on N (V, L − 𝐾∗), and

provide performance measures for N (V, L − 𝐾∗).

An example is given below to illustrate how this method (steps 1, 2, and 3)

identifies irrelevant links for a given zone system. Table 4.1 presents the trip table of a

given three-zone system, where there are 20 vehicles traveling from origin 1 to

destination 3. Figure 4.9 shows the path-tracing assignment result from origin 1 to

destination 3.

Table 4.1 Example of Identification of Irrelevant Links – Trip Table
 Destination

Origin

1 2 3 Total

1 10 15 20 45

2 25 5 30 60

3 5 20 10 35

Total 40 40 60 140

Figure 4.9 Example of identification of irrelevant links – trip assignment

The calculation of trip share from origin 1 to destination 3 is presented in Table 4.2.

Same procedure is performed for the rest of OD pairs in the given zone system, as

presented in Table 4.3.

L1=4

L2=6

L3=10

ZONE 1

ZONE 3

L4=16

 58

Table 4.2 Example of Identification of Irrelevant Links – Trip Share Calculation
Link Volume Trip Share

1 4 vehicles 4/20 = 20%

2 6 vehicles 6/20 = 30%

3 10 vehicles 10/20 =50%

4 16 vehicles 16/20 = 80%

Table 4.3 Example of Identification of Irrelevant Links – Trip Share Results
 O-D Pair
Link 1-2 1-3 2-3 2-1 3-2 3-1

1 15% 20% 18% 15% 17% 10%

2 20% 30% 7% 0 0 0

3 0 50% 87% 33% 19% 0

4 0 80% 25% 9% 0 15%

...

20 0 0 35% 25% 0% 58%

If an initial 𝒶∗ is identified as 10% or 2 links on the current network containing 20 links,

link 1 and link 2 are identified as irrelevant links because their link trip shares (𝑇𝑅! = 20%

and 𝑇𝑅! = 30%) are the smallest two out of the 20 links. If 𝑇𝑅∗= 20% is applied to

identify irrelevant links, it is found that 𝑇𝑅! is greater than the 𝑇𝑅∗. After adjusting 𝒶∗ =

5%, eventually link 1 is identified as irrelevant link on the current network for the given

zone system.

 59

5 RESULTS AND ANALYSES

Results and analyses of the subarea analysis and the network-defining model are

presented in this chapter.

5.1 Results of Subarea Analysis

The subarea analysis was performed for the AM peak period and PM peak period. As

discussed in Section 4.2.2, 20 vehicle classes were combined into one to capture the

entire traffic movement in the study area. As found in the results, total number of trips

during the AM peak period is 860,789; and total number of trips during the PM peak

period is 1,304,024. It is obvious that the study area experiences busier traffic during the

PM peak period.

Therefore, trip table of the PM peak period is utilized to represent the travel

demand of the given zone system. It can be expected that, with busier traffic movement

in the study area, a change in the network resolution would result in an obvious change in

the assignment results.

5.2 Adjustment of Computation Time

The proposed method to define the network resolution for a given zone system requires

an iterative model-run of the trip assignment. Given the limitation of the current software

used for trip assignment, it can only trace the path-building for one OD pair at a time.

The 6,561 OD pairs (81 origins by 81 destinations) on the current zone system would

need to run the trip assignment 6,561 times to get the complete path-building results for

all OD pairs. Due to the limited computing resources when developing the methodology,

several adjustments were made to reduce the model’s computation time.

 60

Some adjustments have already been addressed in previous sections. In the

beginning of this study, the zone system was reduced from 362 TAZs to 81 TAZs (see

Section 3.1.3). By using a coarser zone system, it works equally well to develop and

implement the methodology, while the model runtime on the coarser zone system is 70%

of that on the original zone system, all else being equal. After all, the methodology

should be able to develop a network for any given zone system. In Section 4.2.2, 20

vehicle classes (in 20 trip tables) were aggregated into one vehicle class (in one trip table),

representing the total travel demand.

To further accelerate the entire modeling procedure, several adjustments will be

made, including removing irrelevant links from the initial finest network, loosening the

convergence level, and analyzing a selected number of OD pairs for the identification of

irrelevant links.

5.2.1 Convergence Level

Given the current computing environment (Windows Server 2008 R2, Intel(R) Xeon(R)

CPU, 16 processors), the MSA algorithm applied in the trip assignment approximates to

the user-equilibrium solution faster than other assignment algorithms. Table 5.1 presents

the progression of model convergence, until the relative gap reaches a desirable level

(relative gap = 0.0001) at the 318th iteration.

Table 5.1 MSA Convergence Progression Based on Finest Network

Iteration Relative
Gap

Root Mean Square Error
(RMSE)	
 Gap

Average Absolute
Volume Difference

(AAD)	

1 0 -- 0 --

2 0.89488 2,411 0.47113 1,412

3 0.8213 1,089 0.49924 635

 61

4 0.59275 590 0.31501 349

5 0.44471 409 0.21148 234

6 0.22642 336 0.07094 180

7 0.21465 238 0.06422 134

8 0.11071 197 0.02363 109

9 0.11429 169 0.0023 91

10 0.08739 148 0.00034 78

... ...	
 ...	
 	

310 0.00022 3 0.00014 2

311 0.00013 3 2.49E-06 2

312 0.00023 3 0.00011 2

313 0.00027 3 4.41E-05 2

314 0.00081 3 0.00015 2

315 0.00041 3 8.17E-05 2

316 0.00037 3 5.41E-05 2

317 0.00010 3 1.70E-05 1

318 0.00004 3 2.71E-05 2

The predefined convergence level has a great impact on the model runtime. It is a trade-

off between longer model runtime and closer approximation to the user-equilibrium

solution as well as improved validation results. Table 5.2 compares the model runtime

and validation statistics by applying different convergence criteria.

Table 5.2 Validation Results of Different Convergence Levels Applied to Finest Network

Relative
Gap Runtime

Number
of

Iterations
𝑹𝟐 %RMSE %Diff Ave.

Error
Diff. of

Std. Dev.

0.0001 26 min 08’ 318 0.865599 43.70% -3.11% -142.210 -417.515

0.0005 25 min 37’ 296 0.865934 43.72% -3.02% -166.952 -396.120

0.001 21 min 36’ 255 0.866004 43.70% -3.00% -138.203 -435.402

0.005 7 min 51’ 93 0.867960 43.08% -2.44% -112.396 -419.362

0.01 4 min 29’ 50 0.869527 42.59% -1.97% -91.039 -396.863

0.02 2 min 44’ 31 0.872036 41.90% -1.39% -63.965 -363.425

 62

On the current machine, if the convergence level is set at relative gap = 0.01, analyzing

1,000 OD pairs takes only 21% of the time by setting relative gap at 0.001. Obviously,

the model runtime could be saved substantially by applying a looser convergence level.

5.2.2 Zero-volume Links on Finest Network

After the finest network was developed in Section 4.2.3, the MSA algorithm assigned the

PM peak trip table on it.

Figure 5.1 presents the initial trip assignment results. The finest network with

assigned volumes was scrutinized. Overall, the assignment results are consistent with

expectation, and some specific observations can be made: (1) links on interstate highways

are well connected with ramp links; (2) links with higher functional class have larger

traffic volumes assigned to them; and (3) a number of local links do not have any

assigned volumes. Generally, it is a good practice to examine zero-volume links to

identify network errors, such as connectivity and directionality issues. Table 5.3

summarizes the zero-volume links by functional class on the finest network. The large

portion of zero-volume links (62.85%) is due to the inconsistent spatial resolution

between the detailed network and highly aggregated zone system. However, the higher

class links with no volume assigned are worth a careful examination.

 63

Figure 5.1 Trip assignment results on the finest network

Table 5.3 Links with Zero Volume in the PM Assignment on Finest Network
Functional Class Number of Zero-

volume Links
Total Number of

Links
Percent of Total Zero-

Volume Links
Interstate 35 908 3.85%
Principal Arterial – Other
Freeways and Expressways 68 495 13.74%

Principal Arterial – Other 541 9,071 5.96%
Minor Arterial 3,440 15,118 22.75%
Major Collector 12,350 18,828 65.59%
Minor Collector 3,798 4592 82.71%
Local 64,501 84,739 76.12%
High Speed Ramp 154 802 19.20%
Medium Speed Ramp 36 109 33.03%
Low Speed Ramp 9 12 75.00%
Centroid Connector 150 690 21.74%
Total Zero-volume Links 85,082 135,364 62.85%

 64

For the zero-volume interstate highway links, most of these links have been mistakenly

identified as “interstate highway” in their network attribute due to the inconsistent

network representations of different data sources within the Baltimore City (see Section

3.2.3.1), where most of these links are located. In a few cases, the zero-volume interstate

highway links are dangling links due to the connectivity issues in the original Centerline

network. It can be noticed that, some arterials are not used either and most of them are in

the Baltimore City. The reason is that the grid network in the Baltimore City provides

many alternatives to road users.

Visual inspections were conducted on entrance and exit ramps as well. Having

checked the connection between ramps and adjacent links, it is found that the group of

unused ramps is the result of the inconsistent network and zone systems. For instance, the

zero-volume ramps at some interchanges are due to the low traffic volumes at these

locations. The detailed network gives road users other alternatives so that they have

bypassed the zero-volume ramps and taken others exits/entrances to lower their travel

time. There are a number of collector and local links that do not receive any volume,

which is also the consequence of having inconsistent network and zone systems.

Removing the zero-volume links is assumed to have no influence on the modeling

results but could potentially reduce the model’s computation time. Therefore, these links

are eliminated from the finest network and the rest of the links form the modified finest

network.

 65

5.2.3 Modified Finest Network

Figure 5.2 shows the assignment results after removing links that were not assigned any

volume on the finest network. The model runtime was reduced from 4 min 29 sec for the

finest network to 4 min 08 sec for the modified finest network. Their validation results

are compared and presented in Table 5.4. The comparison of validation results reveals

that the modified finest network has similar validation results as the original network.

The slight differences in the validation statistics are due to the removal of eight zero-

volume links where count stations are placed. To keep the validation analysis consistent

throughout the study, only validation links that have modeled volumes are used in the

analysis.

Table 5.4 Comparison of Validation Results of the Fines Network and Its Modification

Number
of Zones

Number
of Links 𝑹𝟐 RMSE %

RMSE % Diff. Average
Error

Difference
of Std. Dev.

81 135,364 0.867022 1861.6380 42.82% -2.70% -120.59 -360.877

81 48,339 0.870226 1847.3933 42.59% -2.21% -101.83 -399.727

According to the percent difference in Table 5.4, it can be seen that the total modeled

volumes on the count stations are lower than the observed traffic counts, indicating that

the traffic condition is underestimated on the current network.

 66

Figure 5.2 Trip assignment results on the modified finest network

5.3 Identify Irrelevant Links

As proposed in Section 4.4, it is essential to retrieve the path-building records for all OD

pairs in the study area to identify the irrelevant links. Then, trip shares are calculated for

each link and for every OD pair it belongs to. This method is implemented through

several modeling components, most of which were developed in Java.

 67

5.3.1 Sort Origin-Destination Trip Table

There are 6,561 OD pairs in the study area. If unlimited computing resources were

available, analyzing all 6,561 OD pairs would be preferable. However, given the

available computing resources, running the path-tracing model for 6,561 OD pairs would

take 18 days. To make this process more efficient, the most important 1,000 OD pairs

(intra-zonal OD pairs excluded) were chosen to identify the irrelevant links. The trip table

is sorted in descending order in terms of their trip interchange values. Table 5.5 presents

sorting results and Figure 5.3 illustrates the sorting procedure.

Table 5.5 Distribution of Trip Demand Percentage

OD Pairs Trip Demand Percentage

Largest 500 480,343 52.9%

Largest 1,000 629,486 69.3%

Largest 1,500 714,038 78.6%

Largest 2,000 769,650 84.7%

Largest 2,500 809,697 89.1%

Largest 3,000 839,399 92.4%

Largest 4,000 861,198 94.8%

Largest 4,500 877,332 96.6%

Largest 5,000 889,148 97.9%

Largest 5,500 897,715 98.8%

Largest 6,000 903,644 99.5%

All 6,561 908,281 100%

The first 1,000 OD pairs carry 69.3% of the total travel demand in the study area. It is

assumed that this large amount of trips would be sufficient in identifying irrelevant links.

 68

Meanwhile, running the path-tracing model for 1,000 OD pairs would reduce the runtime

of the path-tracing model to about 1.5 days.

Figure 5.3 Procedure of sorting OD trip interchange

5.3.2 Path-tracing Model

The path-tracing model begins with the OD pair with the largest trip interchange. The trip

assignment program assigns the trip table on the entire network, while keeping track of

links used by this selected OD pair. This procedure is repeated 1,000 times to record the

path-tracing results for the selected 1,000 OD pairs. Figure 5.4 presents the trip

assignment result for the entire network with the path-tracing result for the 1st largest OD

pair.

Input

Output

Origins i, destinations j, trip interchange ODij

Sort ODij in descending order

Origin [1] = i
Destination [1] = j
...
Origin [1000] = i
Destination [1000] = j

 69

Figure 5.4 Trip assignment result and path-tracing result for the 1st largest OD pair

For each of the selected OD pairs, there is a separate output file containing link numbers

and volumes on the path(s) built between that specific OD pair. Table 5.6 shows the path-

tracing result for the 1st largest OD pair on the modified finest network.

Table 5.6 Path-tracing Result for Origin Zone 64 and Destination Zone 79
Start Node_End Node Start Node End Node Link Volume

64_7060 64 7060 1551

 70

64_7128 64 7128 3324

64_7407 64 7407 1773

...

1002_79 1002 79 111

1004_79 1004 79 111

5.3.3 Identify and Remove Irrelevant Links

A Cube script was developed to index links on the current network. For each OD pair, a

Java program reads in its path-tracing result to calculate the trip shares for links

belonging to this OD pair. In particular, a link-volume matrix (two-dimensional arrays) is

created in Java to hold and analyze the path-tracing results. The link index and sorted OD

array (by trip interchange) represent the row and column numbers in the link-volume

matrix, as presented in Table 5.7.

Table 5.7 Link-volume Matrix Holding Path-tracing Results
 1st OD 2nd OD ... 999th OD 1000th OD

Link 1 𝑉𝑜𝑙!,! 𝑉𝑜𝑙!,! ... 𝑉𝑜𝑙!,!!! 𝑉𝑜𝑙!,!"""

Link2 𝑉𝑜𝑙!,! 𝑉𝑜𝑙!,! ... 𝑉𝑜𝑙!,!!! 𝑉𝑜𝑙!,!"""

...

Link 48338 𝑉𝑜𝑙!"##",! 𝑉𝑜𝑙!"##",! 𝑉𝑜𝑙!"##",!"""

Link 48339 𝑉𝑜𝑙!"##$,! 𝑉𝑜𝑙!"##$,! ... 𝑉𝑜𝑙!"##$,!!! 𝑉𝑜𝑙!"##$,!"""

After that, each element in Table 5.7 is divided by the trip interchange of corresponding

OD pair to calculate a trip-share matrix, as presented in Table 5.8. A Java program was

developed to analyze the trip share results for the current network and identify irrelevant

links to be removed.

 71

Table 5.8 Trip-share Matrix
 1st OD 2nd OD ... 999th OD 1000th OD

Link 1 𝑇𝑅!,! 𝑇𝑅!,! ... 𝑇𝑅!,!!! 𝑇𝑅!,!"""

Link2 𝑇𝑅!,! 𝑇𝑅!,! ... 𝑇𝑅!,!!! 𝑇𝑅!,!"""

...

Link 48338 𝑇𝑅!"##",! 𝑇𝑅!"##",! 𝑇𝑅!"##",!"""

Link 48339 𝑇𝑅!"##$,! 𝑇𝑅!"##$,! ... 𝑇𝑅!"##$,!!! 𝑇𝑅!"##$,!"""

In this study, the percentage of total number of links is the primary parameter to identify

irrelevant links. It represents that the total number of irrelevant links should be no more

than the defined percentage of total number of links on the current network. When the

program identifies the number of irrelevant links, it concurrently identifies their trip share

cut-off point, the value of which represents that the irrelevant links carry no more than

this amount of trip share for any of the OD pairs on the current network.

To get the Java program started, an initial value of 0.1 is set for the percentage of

total number of links. It can be increased or reduced depending on the network’s

sensitivity to the removal of irrelevant links. The trip share cut-off point evaluates how

important the irrelevant links are in relation to the network, and it can be used as an

alternative of the primary parameter to identify irrelevant links.

To prevent the program from removing important links for OD pairs other than

the selected 1,000 OD pairs, another parameter – the link volume-over-capacity (v/c)

ratio is applied to the Java program. The link v/c ratio is calculated as dividing its

assigned volume by its capacity. If it were computationally feasible to run this program

with all of the OD pairs, the link v/c ratio would not be necessarily applied.

 72

5.4 Network-defining Models

The network-defining model is developed following the methodology given in Section

4.1. It is a composite model including a path-tracing component developed in Cube, a

link-identifying component developed in Java, a link-removing component developed in

Cube, and a validation component developed in Java. There are several variables

involved in the model implementation, and each of them plays a part in determining the

final solution. In this section, different variables will be experimented and results will be

compared.

5.4.1 Results of a Provisional Model

Given the limited computing power, a provisional model was developed first as a proof-

of-concept of the proposed methodology. It is expected that the network defined by the

provisional model may not be the most accurate one, but it can narrow down the solution

to a smaller scope. The development of the provisional model could also provide an

estimate of the model runtime.

Figure 5.5 presents a flowchart, illustrating how does the provisional model read

and export results as well as identify and remove irrelevant links during each iteration of

the model. The programs executed in Cube are denoted a [C], and programs executed in

Java are denoted a [J]. The main parameters applied in each of the iterations are displayed

in the flowchart. The control parameter – link v/c ratio, is defined as 0.5 to keep

important links from being removed in the provisional model. In the 9th iteration,

validation results start to worsen (see Table 5.9), suggesting that the ideal network

resolution has been reached before the 9th iteration

 73

Figure 5.5 Decision-making process of identifying the ideal network resolution

As presented in the flowchart above, the provisional model starts with the modified finest

network, and identifies a small number of irrelevant links for the first three iterations to

test the model’s sensitivity. The slowly decreasing %RMSE and improving %Difference

suggest that, the network resolution is becoming more consistent with the given zone

system. To accelerate the process, starting from the 5th iteration, the number of irrelevant

links to be removed is increased to 10% of total links on the present network. At the 6th

[C] Path-trace
OD pairs on
modified finest
network (v2);
export results

[J] Calculate trip shares;
identify irrelevant links:
0.1% of total links, trip
share less than 1.53%

[J] Validation
analysis of
revised
network (v3)

[C] Remove
irrelevant links
from network
(v2)

[C] Path-
tracing results
on revised
network (v3)

[J] Calculate trip shares;
identify irrelevant links:
0.1% of total links, trip
share less than 1.67%

[C] Remove
irrelevant links
from network
(v3)

[J] Validation
analysis of
revised
network (v4)

1st Iteration

2nd Iteration

[C] Path-
tracing results
on revised
network (v4)

3rd Iteration
[J] Calculate trip shares;
identify irrelevant links:
0.1% of total links, trip
share less than 3.05%

[C] Remove
irrelevant links
from network
(v4)

[J] Validation
analysis of
revised
network (v5)

[C] Path-
tracing results
on revised
network (v5)

[J] Calculate trip shares;
identify irrelevant links:
10% of total links, trip
share less than 3.79%

4th Iteration
[C] Remove
irrelevant links
from network
(v5)

[J] Validation
analysis of
revised
network (v6)

[C] Path-
tracing results
on revised
network (v6)

5th Iteration
[J] Calculate trip shares;
identify irrelevant links:
10% of total links, trip
share less than 13.03%

[C] Remove
irrelevant links
from network
(v6)

[J] Validation
analysis of
revised
network (v7)

[C] Path-
tracing results
on revised
network (v7)

[J] Calculate trip shares;
identify irrelevant links:
10% of total links, trip
share less than 30.40%

[C] Remove
irrelevant links
from network
(v7)

[J] Validation
analysis of
revised
network (v8)

6th Iteration

[C] Path-
tracing results
on revised
network (v8)

[J] Calculate trip shares;
identify irrelevant links:
10% of total links, trip
share less than 59.39%

[C] Remove
irrelevant links
from network
(v8)

[J] Validation
analysis of
revised
network (v9)

7th Iteration

 74

iteration, the validation analysis reaches its best result so far, and it begins to decline

from the 7th iteration. Table 5.9 shows model parameters and validation results for each

of the model iterations. The convergence level of the provisional model was set at

relative gap = 0.02, and it took about 35 hours to compute each of the model iterations.

In Table 5.9, performance measures are calcualted to evaluate the agreement

between modeled volumes and observed traffic counts. These measures include the 𝑅!,

RMSE, %RMSE, %Difference, Average Error, and Difference of Standard Deviation

(see Section 4.3.6). Characteristics of the current network are reported, including the total

number of links and zero-volume links. Last two columns represent the parameters used

to identify the irrelevant links.

Table 5.9 Parameters and Validation Analysis of the Provisional Model

V

Validation Results
Current
Network

Characteristics

Parameters of
Identifying

Irrelevant Link

𝑹𝟐	
 RMSE	
 %
RMSE	
 % Diff	
 Ave.

Error	

Diff. of
Std.
Dev.	

Total
Links	

Zero-
vol

Links	

%
Total
Links	

Trip-
share	

1 0.86702 1861.6380 42.82% -2.70% -120.59 -360.88 135,364 85,082 - -

2 0.87023 1847.3933 42.59% -2.21% -101.83 -399.73 48,339 0 0.1% 1.53%

3 0.87065 1844.6211 42.53% -2.21% -101.88 -407.46 48,293 119 0.1% 1.67%

4 0.87025 1846.8487 42.47% -1.95% -90.00 -404.60 48,145 181 0.1% 3.05%

5 0.87038 1846.5262 42.52% -2.09% -96.35 -416.43 47,927 27 10% 3.79%

6 0.87270 1835.8977 41.90% -0.43% -20.00 -402.67 43,115 1857 10% 13.03%

7 0.86750 1877.2679 42.71% 0.26% 12.44 -322.20 37,170 1000 10% 30.40%

8 0.87256 1894.0751 43.27% 4.02% 195.27 -165.10 32,589 856 10% 59.39%

9 0.86343 2020.6505 44.65% 9.81% 488.32 -160.06 28,592 1679 STOP -

Network v1 is the finest network and network v2 is the modified finest network, in which

all links that received no volume in the initial assignment were removed (see Section

 75

5.2.3). From the validation results, several observations can be made: (1) it is consistent

with expectations that removing irrelevant links from a finer network can improve the

zone-network consistency to a certain degree; (2) when removing links from the network,

the modeling results first underestimate traffic conditions but gradually move forward to

an overestimation; and (3) removing 10% of total links seems to be a big leap between

the 5th and 6th iterations and between the 6th and 7th iterations, as it is very likely that the

ideal network is somewhere between the 5th and 7th iterations.

5.4.2 Zero-volume Links after Removing Irrelevant Links

It can be seen from Table 5.9 that removing irrelevant links can lead to a number of zero-

volume links on the network. There seems to have a linear relationship between the

number of irrelevant links identified and the number of zero-volume links. The zero-

volume links could be a result of redistributing traffic flows on a smaller network, or it

could be due to network discontinuity. Therefore, it is necessary to examine the cause of

zero-volume links to make sure that there is no discontinuity issue.

 For instance, after removing 0.1% of total links as irrelevant links from network

v2, there are 119 zero-volume links on network v3. Figure 5.6 presents some zero-

volume links on network v3. The highlighted links had 10 vehicles assigned on network

v2 but became unused on network v3. Meanwhile, this path is correctly connected to the

network after checking its connectivity with adjacent links. Obviously, these 10 vehicles

were rerouted to other paths on network v3, which could reduce users’ travel time. After

conducting the same visual inspection on all other zero-volume links, it can be concluded

that the MSA algorithm redistributed traffic flows on the new network, therefore leaving

 76

some links unused. Furthermore, since a looser convergence level was applied in the

provisional model, the assignment results may not be equilibrium solutions.

Figure 5.6 Example of zero-volume links on network v3

If looking at zero-volume links on network v6, which is the product after removing 10%

of total links on network v5, it is found that several zero-volume links are dangling links.

Figure 5.7 demonstrates an example of a dangling zero-volume link, which carried 12

vehicles on network v5. This link became a dangling link after its connecting links were

removed as irrelevant links from network v5. Because only the most important 1,000 OD

pairs were considered in identifying irrelevant links in the provisional model, it is

possible that the dangling link was not used by any of the 1,000 OD pairs. If more than

1,000 OD pairs were included in the analysis, it is assumed that the number of dangling

links would be smaller. However, due to the limited computing power, applying all of the

OD pairs were not feasible for the time being.

Volume on v2 = 10 vehicles
Volume on v3 = zero

 77

Figure 5.7 Example of a dangling zero-volume link on network v6

5.4.3 Smaller Steps of Irrelevant Link Removal

Considering that the model is sensitive to the number of irrelevant links removed,

removing a large portion of links during each of the model iterations may not lead to a

precise solution. It is necessary to apply a smaller variable to identify and remove

irrelevant links. Table 5.10 presents the results of the provisional model after applying a

smaller removal step from the 5th iteration on. This model starts from network v5 in

Table 5.9.

Table 5.10 Parameters and Validation Analysis of the Smaller-Step-Model

V

Validation Results
Current
Network

Characteristics

Parameters of
Identifying
Irrelevant

Link

𝑹𝟐	
 RMSE	
 %
RMSE	
 % Diff	
 Ave.

Error	

Diff. of
Std.
Dev.	

Total
Links	

Zero-
vol

Links	

%
Total
Links	

Trip-
share	

5 0.87038 1846.5262 42.52% -2.09% -96.35 -416.43 47,927 27 5% 3.26%

5.1 0.87255 1835.2628 41.97% -0.87% -40.68 -419.49 45,544 1220 5% 3.58%

5.2 0.87282 1834.9602 41.88% -0.42% -19.62 -400.59 42,175 834 5% 6.44%

5.3 0.87071 1855.7071 42.43% -0.05% -2.24 -366.21 39,379 438 2% 3.23%

Volume on v5 = 12 vehicles
Volume on v6 = zero

 78

5.4 0.87263 1842.5307 42.04% 0.17% 7.87 -315.26 38,172 244 STOP -

After comparing the results in Table 5.9 and Table 5.10, it can be seen that the best

networks calculated by the two approaches have reached similar resolution (zero-volume

links excluded). In Table 5.9, the optimal network is v6 with 41,258 links; and in Table

5.10, the optimal network is v5.2 with 41,341 links. Comparing their validation results,

network v5.2 is slightly better than network v6. The findings suggest that the order of

removing irrelevant links may not play an important role in determining the optimal

network resolution. However, removing irrelevant links in smaller steps can help locate a

more consistent network resolution for a given zone system.

5.4.4 Larger Coverage of OD Pairs

In this section, the most important 2,000 OD pairs, which accounts for almost 85% of the

travel demand in the study area, are applied. The model results, as presented in Table

5.11, will be compared with networks developed by the provisional model, which

analyzed the most 1,000 OD pairs. Since there are still a number of OD pairs that are not

taken into analysis, the control parameter v/c ratio of 0.5 is still in use to prevent the

model from removing important links for unselected OD pairs. The runtime for each of

the model iterations takes about 70 hours, which is as twice as that of running an iteration

with 1,000 OD pairs.

The model starts with the modified finest network and proceeds by removing 5%

of total links as irrelevant links. When the improvement of validation results begins to

slow down, it suggests that the resolution of the current network is close to the optimal

one. At this point, it is necessary to start applying a smaller step to the link removal,

 79

which is network v4 in Table 5.11. The validation results continue to improve until

network v5, and additional efforts are made for the final iteration on network v5 (see

Table 5.12). Links are removed from v5 in 1-percent increments (1%, 2%, 3%,…, 10%)

to gradually narrow down to the optimal network resolution.

Table 5.11 Parameters and Validation Analysis of the Larger-Coverage-Model

V

Validation Results
Current
Network

Characteristics

Parameters of
Identifying
Irrelevant

Link

𝑹𝟐	
 RMSE	
 %
RMSE	
 % Diff	
 Ave.

Error	

Diff. of
Std.
Dev.	

Total
Links	

Zero-
vol

Links	

%
Total
Links	

Trip-
share	

1	
 0.86702	
 1861.6380	
 42.82%	
 -2.70%	
 -120.59	
 -360.88	
 135,364	
 85,082	
 -­‐	
 -­‐	

2 0.87236 1830.7008 41.98% -1.67% -76.94 -373.22 48,339 70 5% 3.12%

3 0.87396 1822.5717 41.72% -1.20% -55.80 -400.07 45,930 637 5% 3.64%

4 0.87667 1805.3509 41.34% -0.97% -45.21 -401.72 43,076 257 2% 4.60%

5 0.87622 1807.5112 41.14% -0.37% -17.12 -376.06 41,963 87 see Table 5.12

For networks v5 to v6.10, the negative values of Percent Difference, Average Error and

Difference of Std. Dev. imply that, these networks all underestimate the traffic conditions

to some extent. This is in part due to the removal of some links from validation analysis.

Another reason could be, the assigned volumes on the removed links have been

redistributed to other routes, the effect of which is not captured on the links used for

validation analysis. After removing 3% of total links from network 5, network v6.3 in

Table 5.12 has the best validation results compared to the other nine networks, and

therefore it is selected as the optimal network.

There are several interesting findings when comparing network v6.3 in Table 5.11

with network v5.2 in Table 5.10. First, network v6.3 has fewer links (N = 40,514) than

network v5.2 (N = 41,341) but with improved validation results. This finding implies that

 80

the resolution of network v6.3 is more consistent with the resolution of the zone system.

Second, the optimal networks developed by the two models have similar degree of

agreement with the observed traffic counts. However, running the model with the most

important 2,000 OD pairs takes twice the time of running a model with the most

important 1,000 OD pairs. Given the limited computing power, running the model with

1,000 OD pairs would be sufficient to achieve a desirable network resolution.

Table 5.12 Parameter Testing on Last Iteration of Network V5

V

Validation Results Current Network
Characteristics

𝑹𝟐 RMSE %
RMSE % Diff Ave.

Error

Diff. of
Std.
Dev.

Total
Links

Zero-
vol

Links

5 0.87622 1807.5112 41.14% -0.37% -17.12 -376.06 41,963 87

Test 1: Remove 1% Total Links with Trip-share of 6.37%

6.1 0.87567 1813.6637 41.35% -0.38% -17.92 -398.21 41,531 38

Test 2: Remove 2% Total Links with Trip-share of 6.61%

6.2 0.87560 1815.1927 41.39% -0.33% -15.55 -409.31 41,039 100

Test 3: Remove 3% Total Links with Trip-share of 8.15%

6.3 0.87622 1810.9483 41.25% -0.22% -10.31 -417.97 40,623 109

Test 4: Remove 4% Total Links with Trip-share of 9.77%

6.4 0.87525 1817.8093 41.44% -0.30% -14.22 -412.84 40,229 115

Test 5: Remove 5% Total Links with Trip-share of 11.98%

6.5 0.87358 1829.4401 41.59% -0.03% -1.44 -400.18 39,817 105

Test 6: Remove 6% Total Links with Trip-share of 13.00%

6.6 0.87433 1824.2597 41.60% -0.34% -16.31 -406.66 39,377 155

Test 7: Remove 7% Total Links with Trip-share of 16.09%

6.7 0.87578 1815.4524 41.46% -0.27% -12.91 -387.09 38,978 187

Test 8: Remove 8% Total Links with Trip-share of 16.38%

6.8 0.87462 1824.3214 41.74% -0.46% -21.51 -407.12 38,532 208

Test 9: Remove 9% Total Links with Trip-share of 19.43%

6.9 0.87410 1828.6043 41.73% -0.21% -9.95 -428.85 38,116 213

Test 10: Remove 10% Total Links with Trip-share of 22.58%

6.10 0.87417 1831.1351 42.00% -0.34% -16.22 -430.99 37,696 235

 81

Given all the networks developed so far, network v6.3 has the most appropriate

resolution for the given zone system. Therefore, this network will be used as the final

network in the following analyses.

5.5 Analyses of Finest Network and Final Network

Given the finest network and the final network developed in previous sections, a user-

equilibrium solution is computed by the MSA assignment on both networks by applying

the recommended convergence level of relative gap = 0.0001. Comparison analyses will

be conducted to illustrate the improved modeling results on the final network.

5.5.1 Comparison of Modeled Volumes – Individual Links

The frequency distributions of link flow rate at the interstate highway level as well as at

the freeway and expressway level are examined. The link flow rate is calculated as

vehicle per hour per lane (VPHPL).

Interstate Highway

Figure 5.8 shows the flow rate distributions of interstate highway links (functional class =

1) on the finest and final networks. Overall, same tendency can be observed on both

networks: a large amount of links is clustered around 1,500 vphpl, and a fairly small

group of links distributes at two tails. Differences can be observed as well. For instance,

on the final network, there is a slight increase between 1,300 – 1,400 vphpl and between

1,800 – 2,000 vphpl.

 82

Figure 5.8 Link flow rate distributions of interstate highway links

Freeway and Expressway

Figure 5.9 shows the flow rate distributions of freeway and expressway links (functional

class = 2). Overall, the distributions on both networks are nearly equal. The final network

just has a few more heavy-load links than the finest network.

 83

Figure 5.9 Link flow rate distributions of freeway and expressway links

From the analyses above, it is obvious that the flow rate distributions of interstate

highway as well as freeway and expressways do not change significantly between the

final and finest networks.

5.5.2 Comparison of Modeled Volumes – Entire Network

Vehicle Miles Traveled (VMT) and Vehicle Hours Traveled (VHT) are important

measurements of the magnitude of the overall traffic volumes. To calculate the VMT for

the current network, the product of the number of vehicles on every link is multiplied by

the length of the link as link VMT, then all link VMTs on the network are summed up as

 84

the total VMT. The VHT is calculated by multiplying the travel time and the number of

vehicles on every link and summing it up for all links on the network.

Table 5.13 VMT and VHT on Finest and Final Networks

Functional
Class

VMT VHT

Finest Final % Change Finest Final %
Change

Interstate 2,870,091 2,880,258 0.35% 70,695 70,903 0.29%

Freeways and
Expressways 293,903 290,159 -1.27% 8,997 8,880 -1.30%

Major Arterial 1,388,310 1,405,745 1.26% 65,548 67,564 3.08%

Minor Arterial 945,689 941,698 -0.42% 51,925 50,919 -1.94%

Major Collector 559,832 557,443 -0.43% 58,625 62,511 6.63%

Minor Collector 94,841 91,804 -3.20% 4,398 4,213 -4.21%

Local 1,171,515 1,165,687 -0.50% 106,666 107,046 0.36%

Total 9,058,755 9,074,768 0.18% 464,750 470,310 1.20%

Several observations can be made from Table 5.13. First, interstate highway links and

principal arterial links gained more VMT and VHT on the final network. However, it is

unexpected for the freeways and expressway links to have less VMT and VHT on the

final network, because freeways and expressways are supposed to take some volumes

from the removed links. One explanation is that the relatively small amount of freeway

and expressway links is very sensitive to the change made on these roads. Actually, 13%

(55 out of 438) of the freeway and expressway links were removed from the finest

network due to their very small trip shares, and the change in the number of links has

resulted in a shift of volumes between routes accordingly. The lower class links all

experienced a loss of VMT or VHT on the final network. It is reasonable to have declined

VMT and VHT on minor roads and collectors, because many of these roads were

removed as irrelevant links.

 85

5.5.3 Comparison of Validation Results

Further insights into the improvement of the final network can be gained by comparing

molded volumes with observed traffic counts on a link-by-link basis. There are 210

directional count stations in the present study. The number of links with assigned

volumes varies with the changes in network resolution. The validation results are

conducted for links that have assigned volumes and observed counts. The analysis results

are presented for all links and by functional class.

Table 5.14 Volume-count Agreement on Finest and Final Networks

Network Link
Group N*

Validation Results

𝑹𝟐 RMSE %
RMSE % Diff Ave.

Error

Diff. of
Std.
Dev.

Finest	

All 204 0.865599 1880.7360 43.70% -3.11% -142.21 -417.52

Interstate 25 0.384376 3746.4725 24.14% -7.64% -1283.64 -632.08

Freeway/
Expressway 16 0.550139 2250.0237 40.70% -11.49% -717.50 -611.72

Major
Arterial 114 0.256253 1477.5869 48.36% 5.00% 145.38 489.45

Minor
Arterial 38 0.223629 1053.4703 75.56% -1.09% -16.74 -1.68

Final

All 197 0.874648 1822.7150 41.96% -1.27% -59.57 -401.42

Interstate	
 25 0.423653 3574.8484 22.76% -6.52% -1095.32 -539.59

Freeway/
Expressway	
 16 0.547120 2258.1611 40.86% -11.52% -719.56 -610.36

Major
Arterial 114 0.314003 1433.6000 46.55% 8.04% 237.43 413.91

Minor
Arterial 38 0.250481 1079.3571 75.58% 3.39% 53.88 39.40

* links with functional class lower than Minor Arterial are excluded from validation analysis due to a very small
sample size

By comparing the overall validation results between the finest and final networks, the

better agreement with observed traffic counts on the final network indicates an improved

network-zone consistency. According to Table 5.14, trips assigned on interstate

 86

highways, freeways and expressways are underestimated in general, but the degree of

underestimation is lower on the final network. On the contrary, major arterial and minor

arterial links carry more assigned volumes than the observed traffic counts.

Taking the results in Table 5.13 and Table 5.14 together, the changes in the

validation results between the finest and final networks are consistent with expectation.

On the final network, interstate highway links and major arterial links were assigned

more volumes, taking away traffic from the removed lower class links, which improves

the overall validation results. No substantial changes can be observed for a small number

of freeway and expressway links (N = 16). The minor arterial links actually experience a

loss of VMT and VHT on the final network, according to the results in Table 5.13.

However, the results in Table 5.14 reveal that the minor arterial links overestimate the

traffic conditions. Again, the small sample size of the validation links may confound the

validation results.

5.5.4 A Case Study on Final and Finest Networks

Findings from previous sections suggest that it is necessary to closely examine the

changes in assigned volumes in areas where massive irrelevant links are removed. Figure

5.10 presents a case study for zone 62, looking into the details on the final and finest

networks. Links from five functional classes are closely examined, including I-95

(interstate highway), Belair Road (principal arterial), Rossville Road (minor arterial),

Perry Hall Boulevard (minor arterial), King Avenue (major collector), and Linda Avenue

(local road).

 87

After removing irrelevant links from the finest network, the I-95 segment shows a

very small increase in its assigned volumes in the northbound direction and a slight

decline in the southbound direction. A decrease in assigned volumes is also found in the

westbound Linda Avenue, eastbound King Avenue and southbound Perry Hall Boulevard,

but the differences between the final and finest volumes are insignificant (by 1%). These

marginal changes indicate that these links are not very sensitive to the changes made on

the network resolution. Especially for the interstate highway links, they do not receive a

lot of volumes from the removed links. Furthermore, on the final network, a significant

increase in assigned volumes can be observed on the Belair Road and Rossville Road in

both directions, Perry Hall Boulevard and Linda Avenue in the northbound direction, and

King Avenue in the westbound direction. It is obvious that these roads have received

additional volumes from removed links. Considering the relatively small volumes on the

removed links, it is reasonable to have a small volume growth on some of these roads.

 A closer inspection of Figure 5.10 reveals an important finding. For major

collector, minor arterial and local roads, it is more likely for them to absorb volumes

from removed links than the higher class links.

 88

Figure 5.10 Comparisons between the final and finest networks for zone 62

5.6 Implementation of a New Transportation Project

Ultimately, it is important for this dissertation to explore the ability of the final network

to provide forecasts of the impacts of proposed highway projects. In this section, a

proposed project is taken from the BMC 2040 long range plan and coded on the final and

finest networks.

The chosen project is part of the BMC 2040 planning scenario and involves the

widening of I-695 from 3 lanes to 4 lanes in each direction on the section connecting I-95

Volumes on I-95 NB/SB
Final: 23,660 / 19,219
Finest: 23,621 / 19,270

Volumes on Belair Road NB/SB
Final: 4,001 / 3,046
Finest: 3,949 / 2,884

Volumes on Perry Hall Blvd. NB/SB
Final: 1,851 / 1,663
Finest: 1,819 / 1,684

Volumes on Linda Ave. EB/WB
Final: 730 / 806
Finest: 670 / 818

Volumes on King Ave. EB/WB
Final: 3,422 / 2,429
Finest: 3,433 / 2,378

Volumes on Rossville Road NB/SB
Final: 2,074 / 2,676
Finest: 1,722 / 2,609

 89

and MD 122 (23). To evaluate the impacts of this new project, a pair of model runs is

compared with and without the project. This was done for both the finest network and the

final network during the PM peak hour period. The traffic assignments achieved a

convergence level with a relative gap = 0.0001 using the MSA algorithm. The extent and

location of the I-695 widening project are shown in Figure 5.11.

.

Figure 5.11 The location and extent of I-695 new project in the fines network

 90

The impacts of the new project on the finest network and the final network are presented

in Figure 5.12 and Figure 5.13. On the finest network, after adding the new project, the

v/c ratio of 624 links dropped below one, while the v/c ratio of 447 links increase above

one. Same patterns can be observed on the final network, where the v/c ratio on 603 links

declined below one while on 410 links risen above one. The similar changes observed in

the v/c ratio on both networks imply that the final network is very well connected to

represent the extent of the new project’s impacts.

Figure 5.12 V/C ratio changes on finest network after implementing the new project

 91

Figure 5.13 V/C ratio changes on final network after implementing the new project

More specifically, the VHT on the finest network deceased by 3.21% from 464,356 to

449,440; and the VHT on the final network declined by 3.32% from 466,118 to 450,651.

The finest network underestimates the real traffic conditions to a larger degree, which

makes it react not as sensitively as the final network.

 When looking at the impacts of the new project on the entire Interstate Highway

I-695, the final network revealed a more convincing result. On the finest network, the

VMT on I-695 grew from 1,107,230 to 1,186,882, while the VMT on the final network

increased from 1,111,309 to 1,187,522. The detailed finest network provides more

alternative routes to road users, which makes it underestimate the VMT on the I-695 in

both conditions (before and after the project implementation).

 92

What can be concluded from these findings is that, the modeled volumes on a

consistent zone-network system are much more closer to the traffic conditions in reality.

When evaluating a new project before its implementation, it is desirable to have a model

that can reproduce the actual traffic volumes as much as possible. From the analyses

above, it is evident that that the finest network underestimates the VHT on the entire

network and the VMT on the interstate highway, where the new project is going to be

implemented. As for the final network, its network resolution is more consistent with the

zone system; therefore its predictions of the new project’s impacts should be more

accurate. A more accurate modeling result can further lead to improved planning

decisions, especially when it comes to the implementation of new projects.

 93

6 CONCLUSIONS AND IMPLICATIONS

6.1 Summary of Research and Findings

The quest for more accurate modeling results has been one of the central problems in the

development of a travel demand model, and is certainly continuing to be. The consistency

between the spatial resolutions of the network and zone systems plays an important role

in influencing the modeling accuracy. This research answers two of the basic questions:

how to evaluate the consistency of the zone and network systems? How to define the

spatial resolution of the network system in consistency with a given zone system?

 Some progress has been made in answering the first problem. Evidence found in

empirical studies has proven that consistent network and zone systems can improve the

agreement between modeled volumes and observed traffic data. However, no method in

defining consistent network and zone systems has been provided. The second problem

mentioned above is more important but rarely researched. A body of literature has

focused on aggregating network resolution in order to reduce computation time, but little

attention has been given to the impact of zone-network consistency on modeling results.

 This dissertation set out to develop a network-defining model, which defines the

spatial resolution of the network system in consistency with a given zone system. This

model determines the zone-network consistency by evaluating the degree of agreement

between modeled volumes and observed traffic counts. Several data sources and a

calibrated travel demand model were prepared for the model implementation.

 94

 The model implementation was carried out in the Baltimore area, including the

Baltimore County and Baltimore City. The implementation has experimented three

models:

(1) A provisional model (Model I), which analyzed the largest 1,000 OD pairs.

For each iteration of the model, it identified and removed 10% of the total

links, which had lowest link trip shares on the current network.

(2) A revised version of the provisional model (Model II), which identified and

removed 5% of the total links for each iteration of the model.

(3) A Model III, which analyzed the largest 2,000 OD pairs. For each iteration of

the model, it identified and removed no more than 5% of the total links.

The final networks developed by the three models have reached similar levels of spatial

detail: Model I has 41,258 links, Model II has 41,341 links, and Model III has 40,514

links. Model III has the best validation results among the three models, followed by

Model II. However, Model III’s runtime (9 days) is significantly longer than the other

two models (3 days for Model II and 1.5 days for Model I). There is a noticeable trade-

off between modeling accuracy and computation time. If the computing resources were

made unlimited, applying a smaller variable in identifying and removing irrelevant links

or/and analyzing a greater number of OD pairs is recommended.

 The performances of the final model (Model III) and the finest model were

analyzed in three aspects:

(1) For interstate highways, freeways and expressways, frequency distributions of

individual link flow rate were compared for the two models.

(2) VMT and VHT of each functional class were compared for the two models.

 95

(3) Validation analysis was performed on the two models, assessing the

agreement between modeled volumes and observed traffic counts.

Findings can be summarized as follows. First, the distributions of link flow rate on the

final and finest networks are similar. This finding implies that, removing a certain

amount of low trip-share links is a feasible method; it increases the consistency between

the network and zone resolutions without disrupting the network connectivity on

important routes. Second, compared to the finest network, the final network assigned the

same amount of trips through a smaller network. Most of the volumes on the removed

links were taken over by major arterial roads, as suggested by the increased VMT on

these roads. Adding volumes to the remaining links led to a growth in VHT for most of

the link groups. This finding suggests that the MSA assignment algorithm worked well in

redistributing volumes on the final network, and it reacted sensitively to the changes

made on the network resolution. Third, according to the validation analysis, modeled

volumes on the final network were closer to observed traffic counts. This finding proves

that refining the network resolution by removing low trip-share links improved modeling

accuracy significantly. Taken these findings together, it can be concluded that this

dissertation provided a feasible methodology to define the network resolution to be

consistent with a given zone system.

 More convincing findings can be found by evaluating the impacts of a new

project on the final and finest networks. The Baltimore 2040 long range plan has

proposed a new transportation project on Interstate Highway I-695. Compared to the

modeling results of the final network, the finest network underestimated the congestion

before and after the project implementation to a large degree. It is expected the final

 96

network, which is more consistent with the zone system in their spatial resolutions,

provided a more accurate prediction of the new transportation project’s impacts in the

study area. It is further expected that the final network can help planners and

policymakers make improved planning decisions before project implementations.

This dissertation is associated with several limitations. First, the collected

observed traffic count data are insufficient for lower class links to establish statistical

analyses for them. It would be ideal to develop a validation data pool, including a

sufficient amount of data for each functional class. Random samples can be drawn from

this data pool to deliver statistically robust validation results. Second, different network

sources were used to develop the finest network. Consolidating inconsistent network

representations demanded a considerable amount of manual efforts and quality checks. If

there were a network, which has perfect spatial representation of the road network in

reality, not only ineffectiveness but also human errors could be avoided when developing

the finest network. Third, the methodology was implemented in an economical way due

to limited computing resources. When more resources were made available, it would be

ideal to apply a stricter model convergence level and expand the analysis to all OD pairs.

6.2 Implications for the Development of Travel Demand Models

Previous chapters have provided insights into and solutions for how to develop the

network resolution in consistency with a given zone system and presented results and

analyses of the final network developed. When comparing with observed traffic counts,

the final network produced reliable modeling results. These findings point out that it is

critical to have consistent network and zone systems in travel demand models, especially

 97

when planners and policymakers use the modeling results to conduct impact analysis for

new planning projects or policies.

 Travel demand modelers have been aware of the importance of the zone-network

relationship. For example, according to the U.S. Department of Transportation:

“Experience in traffic assignment application indicates that this zone-network

compatibility helps ensure that assignment results will be as accurate as possible

regardless of the level of detail and the objectives of the study.” (24). The Ohio

Transportation Department recognized the importance of the zone-network consistency

when developing their travel demand models, and used it for network calibration if

certain areas overestimated or underestimated traffic conditions (3). A recent National

Cooperative Highway Research Program Report also points out: “Highway networks are

developed to be consistent with the TAZ system...network coding is finer for developed

areas containing small zones and coarser for less-developed areas containing larger

zones.” (25)

 However, none of these reports provide a systematic solution or specific

guidelines for defining spatially consistent zone and network systems. In sections below,

guidelines and recommendations are provided to travel demand modelers on how to

develop a network system to be consistent with the given zone system, and how to alter

the current network system to be consistent with the given zone system during the stage

of model calibration.

 98

6.2.1 Develop a New Network

When developing a travel demand model, it is ideal to develop a new network for a given

zone system. The type of analyses as well as other input data for the study area determine

the level of detail for the zone system. After that, the highway network can be developed

according to the methodology presented in this dissertation. It is desirable to develop

separate networks for different time-of-day periods to include operational changes, such

as reversible lanes or congestion pricing.

 Specifically, it is recommended to develop the highway network following

guidelines given below.

 Step 1: Start from the finest possible highway network and assign basic attributes

to network links, including link length, number of lanes, area type, functional class, free

flow speed and capacity; other operational attributes can be considered as well, including

traffic signals, reversible lanes, turning movement penalties, and toll rates. Prepare traffic

count data for the same modeling year or the same time-of-day period, and match the

count data with corresponding network links.

 Step 2: Determine assignment method and convergence level to be used by the

network-defining model, and the number of OD pairs to be analyzed in the model. By

applying stringent assignment criterion and analyzing a large amount of OD pairs, it is

supposed to provide more reliable modeling results. However, the trade-off between

computation time and modeling accuracy should be taken into account.

Step 3: Determine the maximum number of irrelevant links to be removed, and/or

the maximum link trip share of the irrelevant links. The network-defining model

 99

identifies irrelevant links when at least one of the criteria is met. These variables can be

adjusted for each iteration of the model, and it is recommended to assigned smaller

values to these variables when the difference between validation results of two iterations

becomes smaller. Other parameters can be applied to control the types of links to be

removed, such as lower class links or links with low v/c ratio.

Step 4: By the time the validation results start to decrease, terminate the model

and export the network developed in previous iteration as the final network.

6.2.2 Calibrate an Existing Network

In the stage of model calibration for a travel demand model, if the agreement between

modeling results and observed traffic counts is still not desirable after calibrating all other

model components, it is worth checking the spatial relationship between the network and

zone systems. It is recommended to adjust the network resolution following the

guidelines given below.

 Step 1: Visualize the modeled volumes and traffic counts along with the network

and zone systems on a map. If the model overestimates or underestimates traffic

conditions in a particular area, it indicates that it is necessary to examine closely on the

zone-network relationship in that area.

 Step 2: For a modeling area where overestimation of traffic conditions occurs,

look into the modeling results on the network links in that area. If the modeled volumes

are significantly higher than observed traffic counts on most of these links, add a few

links representing lower class roads in that area. Compare the modeled volumes and

traffic counts again after running trip assignment on the revised network. If the additional

 100

links alleviate the overestimation problem, add a few more links at each time until the

validation results are desirable.

 Step 3: For an area where underestimation of traffic conditions occurs, remove a

few links representing lower class roads in that area. After running traffic assignment on

the revised network, compare the modeled volumes and traffic counts again. If the

eliminated links alleviate the underestimation problem, remove a few more links at each

time until the validation results are desirable.

6.3 Future Direction

In concluding this dissertation, four areas are identified to direct future research. First, it

is desirable to have access to different data sources, which might have a perfect network

representation to develop the finest network (i.e. the OpenStreetMap). At the same time,

more efforts should be spent on collecting traffic count data to support a robust validation

analysis.

 Second, when applying the path-tracing method in trip assignment for selected

OD pairs, current models processed one OD pair at a time and repeated the same

procedure as many times as the number of OD pairs to be analyzed. To make the path-

tracing method more efficient, it is worth exploring an advanced approach to retrieve the

path-tracing results for all OD pairs at the same time.

 Third, this dissertation did not fully explore other possible methods to identify

irrelevant links. In future research, the identification of irrelevant links should be further

investigated using different parameters, such as link volumes or rank of link volumes on

the entire network. In addition to that, it would be interesting to compare the final

 101

networks developed by different methods and find out the most efficient and effective

method to identify irrelevant links.

 Finally, the ultimate goal of this research is to develop a network-defining model,

which is compatible with major travel demand modeling software packages. It would be

ideal to integrate this model with existing travel demand models and define the most

appropriate network resolution for a given zone system as part of the modeling process.

 102

APPENDIX A – MODEL DIRECTORY

The complete directory for the Network-defining model (with 2000 OD pairs) is

presented below. * denotes the current iteration. Folders not expanded in the directory

contain codes developed by a third party, or contain interim files.

\Models
 Run MSTM v1.0.60.EXE
 \Base_2007

\SubareaAnalysis
RunSubarea.bat

 BaltimoreCoCi.net
 BaltSubarea_AM.trp

BaltSubarea_PM.trp
subareaVehPM.trp
subareaVehAM.trp
MSTM_VehSub_AM.net
MSTM_VehSub_PM.net
zoneTransfer.s
HwyAssignSubAreaBalt.s
aggregateSubarea.s
\Shapefiles

 \Print
\NetworkDefiningModel
 \NetworkFile

 \Analysis
 linkIndex.s
 exportLinkOD.s
 validation.s
 removeLinks.s
 removeZeroLinks.s
 defAttrCC.s
 defAttrByFunc(1-9).s
 defAreaType.s
 matToOD.s

\ Assignment
 RunDissertNonZeroOneIncOD.bat

RunDissert_Post.bat
 HwyAssign_Dissert_ODSplit.s

HwyAssign_Dissert_Post.s
 baltNetwork_run*.net

Dissert_Veh_PM*.net
subareaVehPM_81zones.trp
parameter.dat

 103

selectlink2000.txt
\81zones
\Output
\Print

 \Java
 \repository
 \javaModel
 \src
 linkDatabase.java
 linkRecord.java
 sortOD.java
 tripMatrix.java
 validation.java
 \ openCsv
 \ commons-math-2.2-src
 \ common-base
 \data
 validationStation.csv
 Dissert_Veh_PM*.dbf

validationLinks_*.dbf
validationLinks_*.csv
resultsAll.csv
resultsInt.csv
resultsFree.csv
resultsMajor.csv
resultsMinor.csv

 \TraceOD
 \81zones
 selOD.csv
 excLink_*.csv
 linkIndex_*.csv
 Links*_OD(1-2000).csv
 Dissert_Veh_PM*_OD(1-2000).dbf

 104

APPENDIX B – EXECUTABLE SCRIPTS AND CODES

The key Cube scripts and Java codes are attached below with comments.

Cube Script – validation.s

; Yuchen's Dissertation
; This script computes validate total trips and by functional class (SWFT)
; Main Directory: Models\NetworkDefiningModel\Analysis
; Yuchen Cui - 04/16/2015

 v = '5'
;network version

RUN PGM=NETWORK PRNFILE='CubePRN\Convert Network to DBF.PRN'
MSG='Validation - Convert Network to DBF-2'
NETI = Assignment\Dissert_Veh_PM@v@.net
;pay attention to the file name of assignment result
LINKO = Java\data\Dissert_Veh_PM@v@.dbf
ENDRUN

RUN PGM=MATRIX MSG='Use DBISEEK to extract validation links'
FILEO RECO[1] = Java\data\validationLinks_@v@.dbf,
FIELDS= A, B, A_B, CLASS, FIPS, Station, Direction, 15_18, 16_19, Total, diff15_18,
diff16_19

FILEI DBI[2] = Java\data\Dissert_Veh_PM@v@.dbf, SORT = A, B
;this file contains full link information of the entire network
;IMPORTANT: in order to use DBISeek, users need to sort all arguments to
;be used in DBISeek in the script later

FILEI DBI[1] = Java\data\validationStation.csv,
A(N) = 1, B(N) = 2, A_B(C) = 3, CLASS(N) = 4, FIPS(C) =5, Station(C) = 6,
Direction(C) = 7, ThreeToSix(N) = 8, FourToSeven(N) = 9
;this file is provides the validation links to be extracted
;CSV file can be inputed as DBI, and A(N)=1 indicates the 1st data field's
;name and B(N)=2 indicates the 2nd data field's name

ZONES = 1

LOOP _K = 2, DBI.1.NUMRECORDS
;for each link to be extracted
 _READ1 = DBIREADRECORD(1, _K)
 ;get A node and B node
 myA = DI.1.A

 105

 myB = DI.1.B
 myAB = DI.1.A_B
 myCLASS = DI.1.CLASS
 myFIPS = DI.1.FIPS
 myStation = DI.1.Station
 myDirection = DI.1.Direction
 my1518 = DI.1.ThreeToSix
 my1619 = DI.1.FourToSeven

 IF (DBISEEK(2, myA, myB) == 0)
 myLink = DBISEEK(2, myA, myB)
 ;find the specific link record index in the network file
 _READ2 = DBIREADRECORD(2, myLink)
 ;read the link information in the network file
 RO.A = myA
 RO.B = myB
 RO.A_B = myAB
 RO.CLASS = myCLASS
 RO.FIPS = myFIPS
 RO.Station = myStation
 RO.Direction = myDirection
 RO.15_18 = my1518
 RO.16_19 = my1619

 RO.Total = DI.2.TOTAL_VOL
 RO.diff15_18 = DI.2.TOTAL_VOL - my1518
 RO.diff16_19 = DI.2.TOTAL_VOL - my1619

 ELSE
 RO.A = myA
 RO.B = myB
 RO.A_B = myAB
 RO.CLASS = myCLASS
 RO.FIPS = myFIPS
 RO.Station = myStation
 RO.Direction = myDirection
 RO.15_18 = my1518
 RO.16_19 = my1619

 RO.Total = 0
 RO.diff15_18 = 0 - my1518
 RO.diff16_19 = 0 - my1619

 ENDIF

 WRITE RECO = 1

 106

 ;write out the record
ENDLOOP

ENDRUN

RUN PGM=MATRIX MSG='Convert DBF back to CSV '
FILEI DBI[1] = Java\data\validationLinks_@v@.dbf

FILEO PRINTO[1] = Java\data\validationLinks_@v@.csv

PRINT PRINTO=1 CSV=T LIST = 'A','B','A_B','CLASS', 'FIPS', 'Station', 'Direction',
'15_18', '16_19', 'Total', 'diff15_18', 'diff16_19'

ZONES = 1

LOOP _K=1, DBI.1.NUMRECORDS
;loop over all record in the DBF file (DBI.1.NumRecords = 3)
 _myRec = DBIREADRECORD(1,_K) ;read first record in DBF
file
 PRINT PRINTO=1 CSV=T LIST = DI.1.A, DI.1.B, DI.1.A_B, DI.1.CLASS,
DI.1.FIPS, DI.1.Station,
 DI.1.Direction, DI.1.15_18, DI.1.16_19, DI.1.Total, DI.1.diff15_18, DI.1.diff16_19
 ;after record is read, use DI.#.fieldName to retrive the value
ENDLOOP

ENDRUN

Java Script – validation.java

/**
 * Created by Yuchen Cui on 4/16/2015.
 * The validation class is used to read validation link files and calculate validation
statistics
 */

 import com.opencsv.CSVReader;
 import com.opencsv.CSVWriter;
 import org.apache.commons.math.stat.correlation.PearsonsCorrelation;
 import org.apache.commons.math.stat.descriptive.DescriptiveStatistics;

 import java.io.FileReader;
 import java.io.FileWriter;
 import java.util.Iterator;
 import java.util.List;

 public class validation {
 public static void main(String[] args) {

 107

 //define file names
 int v = 5;
 String file = "validationLinks_"+v+".csv";

 linkDatabase station = new linkDatabase(); //for all 210 validation links
 linkDatabase station1 = new linkDatabase(); //25 interstate
 linkDatabase station2 = new linkDatabase(); //16 freeway&expressway
 linkDatabase station3 = new linkDatabase(); //114 major arterial
 linkDatabase station4 = new linkDatabase(); //38 minor arterial
 linkDatabase station5 = new linkDatabase(); //12 major collector
 linkDatabase station7 = new linkDatabase(); //3 local
 linkDatabase station8 = new linkDatabase(); //2 high-speed ramp

 //column numbers in countStation.csv
 int aNode = 0;
 int bNode = 1;
 int abNode = 2;
 int funcClass = 3;
 int fips = 4;
 //int stationID = 5;
 //int direction = 6;
 int count15_18 = 7;
 int count16_19 = 8;
 int totalVol = 9;
 int diff15_18 = 10;
 int diff16_19 = 11;

 System.out.println("Read link file: validationLinks.csv");
 try {
 CSVReader stationReader = new CSVReader(new FileReader(file));
 String [] nextStation;
 int iteration = 0; // skip first line

 while ((nextStation = stationReader.readNext()) != null) {
 if(iteration == 0) {
 iteration++;
 continue;
 }

 if (Math.round(Float.valueOf(nextStation[funcClass])) == 1){
 station1.addLink(nextStation[abNode]);
 station1.addAttributes(Math.round(Float.valueOf(nextStation[count15_18])),
nextStation[abNode]);

station1.addAttributes(Math.round(Float.valueOf(nextStation[count16_19])),
nextStation[abNode]);

 108

 station1.addAttributes(Math.round(Float.valueOf(nextStation[totalVol])),
nextStation[abNode]);
 station1.addAttributes(Math.round(Float.valueOf(nextStation[diff15_18])),
nextStation[abNode]);
 station1.addAttributes(Math.round(Float.valueOf(nextStation[diff16_19])),
nextStation[abNode]);
 }

 if (Math.round(Float.valueOf(nextStation[funcClass])) == 2){
 station2.addLink(nextStation[abNode]);

station2.addAttributes(Math.round(Float.valueOf(nextStation[count15_18])),
nextStation[abNode]);

station2.addAttributes(Math.round(Float.valueOf(nextStation[count16_19])),
nextStation[abNode]);
 station2.addAttributes(Math.round(Float.valueOf(nextStation[totalVol])),
nextStation[abNode]);
 station2.addAttributes(Math.round(Float.valueOf(nextStation[diff15_18])),
nextStation[abNode]);
 station2.addAttributes(Math.round(Float.valueOf(nextStation[diff16_19])),
nextStation[abNode]);
 }

 if (Math.round(Float.valueOf(nextStation[funcClass])) == 3){
 station3.addLink(nextStation[abNode]);

station3.addAttributes(Math.round(Float.valueOf(nextStation[count15_18])),
nextStation[abNode]);

station3.addAttributes(Math.round(Float.valueOf(nextStation[count16_19])),
nextStation[abNode]);
 station3.addAttributes(Math.round(Float.valueOf(nextStation[totalVol])),
nextStation[abNode]);
 station3.addAttributes(Math.round(Float.valueOf(nextStation[diff15_18])),
nextStation[abNode]);
 station3.addAttributes(Math.round(Float.valueOf(nextStation[diff16_19])),
nextStation[abNode]);
 }

 if (Math.round(Float.valueOf(nextStation[funcClass])) == 4){
 station4.addLink(nextStation[abNode]);

station4.addAttributes(Math.round(Float.valueOf(nextStation[count15_18])),
nextStation[abNode]);

 109

station4.addAttributes(Math.round(Float.valueOf(nextStation[count16_19])),
nextStation[abNode]);
 station4.addAttributes(Math.round(Float.valueOf(nextStation[totalVol])),
nextStation[abNode]);
 station4.addAttributes(Math.round(Float.valueOf(nextStation[diff15_18])),
nextStation[abNode]);
 station4.addAttributes(Math.round(Float.valueOf(nextStation[diff16_19])),
nextStation[abNode]);
 }

 if (Math.round(Float.valueOf(nextStation[funcClass])) == 5){
 station5.addLink(nextStation[abNode]);

station5.addAttributes(Math.round(Float.valueOf(nextStation[count15_18])),
nextStation[abNode]);

station5.addAttributes(Math.round(Float.valueOf(nextStation[count16_19])),
nextStation[abNode]);
 station5.addAttributes(Math.round(Float.valueOf(nextStation[totalVol])),
nextStation[abNode]);
 station5.addAttributes(Math.round(Float.valueOf(nextStation[diff15_18])),
nextStation[abNode]);
 station5.addAttributes(Math.round(Float.valueOf(nextStation[diff16_19])),
nextStation[abNode]);
 }

 if (Math.round(Float.valueOf(nextStation[funcClass])) == 7){
 station7.addLink(nextStation[abNode]);

station7.addAttributes(Math.round(Float.valueOf(nextStation[count15_18])),
nextStation[abNode]);

station7.addAttributes(Math.round(Float.valueOf(nextStation[count16_19])),
nextStation[abNode]);
 station7.addAttributes(Math.round(Float.valueOf(nextStation[totalVol])),
nextStation[abNode]);
 station7.addAttributes(Math.round(Float.valueOf(nextStation[diff15_18])),
nextStation[abNode]);
 station7.addAttributes(Math.round(Float.valueOf(nextStation[diff16_19])),
nextStation[abNode]);
 }

 if (Math.round(Float.valueOf(nextStation[funcClass])) == 8){
 station8.addLink(nextStation[abNode]);

 110

station8.addAttributes(Math.round(Float.valueOf(nextStation[count15_18])),
nextStation[abNode]);

station8.addAttributes(Math.round(Float.valueOf(nextStation[count16_19])),
nextStation[abNode]);
 station8.addAttributes(Math.round(Float.valueOf(nextStation[totalVol])),
nextStation[abNode]);
 station8.addAttributes(Math.round(Float.valueOf(nextStation[diff15_18])),
nextStation[abNode]);
 station8.addAttributes(Math.round(Float.valueOf(nextStation[diff16_19])),
nextStation[abNode]);
 }

 station.addLink(nextStation[abNode]);
 station.addAttributes(Math.round(Float.valueOf(nextStation[count15_18])),
nextStation[abNode]);
 station.addAttributes(Math.round(Float.valueOf(nextStation[count16_19])),
nextStation[abNode]);
 station.addAttributes(Math.round(Float.valueOf(nextStation[totalVol])),
nextStation[abNode]);
 station.addAttributes(Math.round(Float.valueOf(nextStation[diff15_18])),
nextStation[abNode]);
 station.addAttributes(Math.round(Float.valueOf(nextStation[diff16_19])),
nextStation[abNode]);

 }
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 System.out.println(station.size()+ " total links");
 System.out.println(station1.size()+ " interstate highway links");
 System.out.println(station2.size()+ " freeway&expressway links");
 System.out.println(station3.size() + " major arterial links");
 System.out.println(station4.size() + " minor arterial links");
 System.out.println(station5.size() + " major collector links");
 System.out.println(station7.size() + " local links");
 System.out.println(station8.size() + " high-speed ramp links");

 //All
 System.out.println("Calculating Validation Statistics");
 //Read total volumes and observed counts and store into array lists.
 double[] volume = new double [station.size()];
 DescriptiveStatistics statsVol = new DescriptiveStatistics ();
 double[] countFive = new double [station.size()];

 111

 double[] countSix = new double [station.size()];
 DescriptiveStatistics diffFive = new DescriptiveStatistics ();
 DescriptiveStatistics diffSix = new DescriptiveStatistics ();
 DescriptiveStatistics statsFive = new DescriptiveStatistics ();
 DescriptiveStatistics statsSix = new DescriptiveStatistics ();

 Iterator<linkRecord> itrVol = station.iterator();
 for (int i = 0; i < station.size();i++){
 while (itrVol.hasNext()){
 List<Integer> listVol = itrVol.next().getAttributes();
 if (listVol.get(2) != 0) { //exclude zero-flow validation links
 volume[i] = (double) listVol.get(2);
 statsVol.addValue((double) listVol.get(2));
 countFive[i] = (double) listVol.get(0);
 countSix[i] = (double) listVol.get(1);
 statsFive.addValue((double) listVol.get(0));
 statsSix.addValue((double) listVol.get(1));
 diffFive.addValue((double) listVol.get(3));
 diffSix.addValue((double) listVol.get(4));
 break;
 }
 }
 //System.out.println(volume[i]);
 }

 System.out.println();
 System.out.println("Calculating Squared Pearson Correlation");
 double corrFive = new PearsonsCorrelation().correlation(volume, countFive);
 double corrSix = new PearsonsCorrelation().correlation(volume, countSix);
 double rSquareFive = corrFive*corrFive;
 double rSquareSix = corrSix*corrSix;

 System.out.println ("R-Square 3pm-5pm = " + rSquareFive);
 System.out.println ("R-Square 4pm-6pm = " + rSquareSix);

 System.out.println();
 System.out.println("Calculating Root Mean Square Error");
 double sumSquareDiffFive = diffFive.getSumsq();
 double sumSquareDiffSix = diffSix.getSumsq();
 double rmseFive = Math.sqrt(sumSquareDiffFive/station.size());
 double rmseSix = Math.sqrt(sumSquareDiffSix/station.size());
 System.out.println ("Root Mean Square Error 3pm-5pm = " + rmseFive);
 System.out.println ("Root Mean Square Error 4pm-6pm = " + rmseSix);

 System.out.println();
 System.out.println("Calculating Percentage Root Mean Square Error");

 112

 double pctgRmseFive = rmseFive * 100 * station.size() / statsVol.getSum();
 double pctgRmseSix = rmseSix * 100 * station.size() / statsVol.getSum();
 System.out.println ("% Root Mean Square Error 3pm-5pm = " + pctgRmseFive +
"%");
 System.out.println ("% Root Mean Square Error 4pm-6pm = " + pctgRmseSix +
"%");

 System.out.println("Calculating Absolute Error and Difference of Standard
Deviations");
 double pctFive = 100*(statsVol.getSum()- statsFive.getSum())/statsFive.getSum();
 double pctSix = 100*(statsVol.getSum()- statsSix.getSum())/statsSix.getSum();
 double avgErrorFive = statsVol.getMean() - statsFive.getMean();
 double avgErrorSix = statsVol.getMean() - statsSix.getMean();
 double dsdFive = statsVol.getStandardDeviation() -
statsFive.getStandardDeviation();
 double dsdSix = statsVol.getStandardDeviation() - statsSix.getStandardDeviation();
 System.out.println ("% Diff 3pm-5pm = " + pctFive);
 System.out.println ("% Diff 4pm-6pm = " + pctSix);
 System.out.println ("Average Error 3pm-5pm = " + avgErrorFive);
 System.out.println ("Average Error 4pm-6pm = " + avgErrorSix);
 System.out.println ("DSD 3pm-5pm = " + dsdFive);
 System.out.println ("DSD 4pm-6pm = " + dsdSix);

 try {
 FileWriter fileAll = new FileWriter("resultsAll.csv",true);
 CSVWriter writer = new CSVWriter(fileAll, '\t');
 //write out validation results for all links
 String resultsAll[] =
{String.valueOf(rSquareFive),",",String.valueOf(rSquareSix),",",
 String.valueOf(rmseFive),",",String.valueOf(rmseSix),",",
 String.valueOf(pctgRmseFive),",",String.valueOf(pctgRmseSix),",",
 String.valueOf(pctFive),",",String.valueOf(pctSix),",",
 String.valueOf(avgErrorFive),",",String.valueOf(avgErrorSix),",",
 String.valueOf(dsdFive),",",String.valueOf(dsdSix)};
 writer.writeNext(resultsAll, false);
 writer.close();
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 //Interstate
 System.out.println();
 System.out.println("Calculating Validation Statistics for Interstate Highway");
 //Read total volumes and observed counts and store into array lists.
 double[] volume1 = new double [station1.size()];

 113

 DescriptiveStatistics statsVol1 = new DescriptiveStatistics ();
 double[] countFive1 = new double [station1.size()];
 double[] countSix1 = new double [station1.size()];
 DescriptiveStatistics diffFive1 = new DescriptiveStatistics ();
 DescriptiveStatistics diffSix1 = new DescriptiveStatistics ();
 DescriptiveStatistics statsFive1 = new DescriptiveStatistics ();
 DescriptiveStatistics statsSix1 = new DescriptiveStatistics ();

 Iterator<linkRecord> itrVol1 = station1.iterator();
 for (int i = 0; i < station1.size();i++){
 while (itrVol1.hasNext()){
 List<Integer> listVol1 = itrVol1.next().getAttributes();
 if(listVol1.get(2) != 0) {
 volume1[i] = (double) listVol1.get(2);
 statsVol1.addValue((double) listVol1.get(2));
 countFive1[i] = (double) listVol1.get(0);
 countSix1[i] = (double) listVol1.get(1);
 statsFive1.addValue((double) listVol1.get(0));
 statsSix1.addValue((double) listVol1.get(1));
 diffFive1.addValue((double) listVol1.get(3));
 diffSix1.addValue((double) listVol1.get(4));
 break;
 }
 }
 //System.out.println(volume[i]);
 }

 System.out.println();
 System.out.println("Calculating Squared Pearson Correlation");
 double corrFive1 = new PearsonsCorrelation().correlation(volume1, countFive1);
 double corrSix1 = new PearsonsCorrelation().correlation(volume1, countSix1);
 double rSquareFive1 = corrFive1*corrFive1;
 double rSquareSix1 = corrSix1*corrSix1;

 System.out.println ("R-Square 3pm-5pm, Interstate = " + rSquareFive1);
 System.out.println ("R-Square 4pm-6pm, Interstate = " + rSquareSix1);

 System.out.println();
 System.out.println("Calculating Root Mean Square Error");
 double sumSquareDiffFive1 = diffFive1.getSumsq();
 double sumSquareDiffSix1 = diffSix1.getSumsq();
 double rmseFive1 = Math.sqrt(sumSquareDiffFive1/station1.size());
 double rmseSix1 = Math.sqrt(sumSquareDiffSix1/station1.size());
 System.out.println ("Root Mean Square Error 3pm-5pm, Interstate = " +
rmseFive1);
 System.out.println ("Root Mean Square Error 4pm-6pm, Interstate = " + rmseSix1);

 114

 System.out.println();
 System.out.println("Calculating Percentage Root Mean Square Error");
 double pctgRmseFive1 = rmseFive1 * 100 * station1.size() / statsVol1.getSum();
 double pctgRmseSix1 = rmseSix1 * 100 * station1.size() / statsVol1.getSum();
 System.out.println ("% Root Mean Square Error 3pm-5pm = " + pctgRmseFive1 +
"%");
 System.out.println ("% Root Mean Square Error 4pm-6pm = " + pctgRmseSix1 +
"%");

 System.out.println("Calculating Absolute Error and Difference of Standard
Deviations");
 double pctFive1 = 100*(statsVol1.getSum()-
statsFive1.getSum())/statsFive1.getSum();
 double pctSix1 = 100*(statsVol1.getSum()-
statsSix1.getSum())/statsSix1.getSum();
 double avgErrorFive1 = statsVol1.getMean() - statsFive1.getMean();
 double avgErrorSix1 = statsVol1.getMean() - statsSix1.getMean();
 double dsdFive1 = statsVol1.getStandardDeviation() -
statsFive1.getStandardDeviation();
 double dsdSix1 = statsVol1.getStandardDeviation() -
statsSix1.getStandardDeviation();
 System.out.println ("Average Error 3pm-5pm, Interstate = " + avgErrorFive1);
 System.out.println ("Average Error 4pm-6pm, Interstate = " + avgErrorSix1);
 System.out.println ("DSD 3pm-5pm, Interstate = " + dsdFive1);
 System.out.println ("DSD 4pm-6pm, Interstate = " + dsdSix1);

 try {
 FileWriter fileInt = new FileWriter("resultsInt.csv",true);
 CSVWriter writerInt = new CSVWriter(fileInt, '\t');
 //write out validation results for interstate links
 String resultsInt[] =
{String.valueOf(rSquareFive1),",",String.valueOf(rSquareSix1),",",
 String.valueOf(rmseFive1),",",String.valueOf(rmseSix1),",",
 String.valueOf(pctgRmseFive1), ",",String.valueOf(pctgRmseSix1),",",
 String.valueOf(pctFive1),",",String.valueOf(pctSix1),",",
 String.valueOf(avgErrorFive1),",",String.valueOf(avgErrorSix1),",",
 String.valueOf(dsdFive1),",",String.valueOf(dsdSix1)};
 writerInt.writeNext(resultsInt, false);
 writerInt.close();
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 //Freeway

 115

 System.out.println();
 System.out.println("Calculating Validation Statistics for Freeway & Expressway");
 //Read total volumes and observed counts and store into array lists.
 double[] volume2 = new double [station2.size()];
 DescriptiveStatistics statsVol2 = new DescriptiveStatistics ();
 double[] countFive2 = new double [station2.size()];
 double[] countSix2 = new double [station2.size()];
 DescriptiveStatistics diffFive2 = new DescriptiveStatistics ();
 DescriptiveStatistics diffSix2 = new DescriptiveStatistics ();
 DescriptiveStatistics statsFive2 = new DescriptiveStatistics ();
 DescriptiveStatistics statsSix2 = new DescriptiveStatistics ();

 Iterator<linkRecord> itrVol2 = station2.iterator();
 for (int i = 0; i < station2.size();i++){
 while (itrVol2.hasNext()){
 List<Integer> listVol2 = itrVol2.next().getAttributes();
 if(listVol2.get(2) != 0) {
 volume2[i] = (double) listVol2.get(2);
 statsVol2.addValue((double) listVol2.get(2));
 countFive2[i] = (double) listVol2.get(0);
 countSix2[i] = (double) listVol2.get(1);
 statsFive2.addValue((double) listVol2.get(0));
 statsSix2.addValue((double) listVol2.get(1));
 diffFive2.addValue((double) listVol2.get(3));
 diffSix2.addValue((double) listVol2.get(4));
 break;
 }
 }
 //System.out.println(volume[i]);
 }

 System.out.println();
 System.out.println("Calculating Squared Pearson Correlation");
 double corrFive2 = new PearsonsCorrelation().correlation(volume2, countFive2);
 double corrSix2 = new PearsonsCorrelation().correlation(volume2, countSix2);
 double rSquareFive2 = corrFive2*corrFive2;
 double rSquareSix2 = corrSix2*corrSix2;

 System.out.println ("R-Square 3pm-5pm, Interstate = " + rSquareFive2);
 System.out.println ("R-Square 4pm-6pm, Interstate = " + rSquareSix2);

 System.out.println();
 System.out.println("Calculating Root Mean Square Error");
 double sumSquareDiffFive2 = diffFive2.getSumsq();
 double sumSquareDiffSix2 = diffSix2.getSumsq();
 double rmseFive2 = Math.sqrt(sumSquareDiffFive2/station2.size());

 116

 double rmseSix2 = Math.sqrt(sumSquareDiffSix2/station2.size());
 System.out.println ("Root Mean Square Error 3pm-5pm, Interstate = " +
rmseFive2);
 System.out.println ("Root Mean Square Error 4pm-6pm, Interstate = " + rmseSix2);

 System.out.println();
 System.out.println("Calculating Percentage Root Mean Square Error");
 double pctgRmseFive2 = rmseFive2 * 100 * station2.size() / statsVol2.getSum();
 double pctgRmseSix2 = rmseSix2 * 100 * station2.size() / statsVol2.getSum();
 System.out.println ("% Root Mean Square Error 3pm-5pm = " + pctgRmseFive2 +
"%");
 System.out.println ("% Root Mean Square Error 4pm-6pm = " + pctgRmseSix2 +
"%");

 System.out.println("Calculating Absolute Error and Difference of Standard
Deviations");
 double pctFive2 = 100*(statsVol2.getSum()-
statsFive2.getSum())/statsFive2.getSum();
 double pctSix2 = 100*(statsVol2.getSum()-
statsSix2.getSum())/statsSix2.getSum();
 double avgErrorFive2 = statsVol2.getMean() - statsFive2.getMean();
 double avgErrorSix2 = statsVol2.getMean() - statsSix2.getMean();
 double dsdFive2 = statsVol2.getStandardDeviation() -
statsFive2.getStandardDeviation();
 double dsdSix2 = statsVol2.getStandardDeviation() -
statsSix2.getStandardDeviation();
 System.out.println ("Average Error 3pm-5pm, Interstate = " + avgErrorFive2);
 System.out.println ("Average Error 4pm-6pm, Interstate = " + avgErrorSix2);
 System.out.println ("DSD 3pm-5pm, Interstate = " + dsdFive2);
 System.out.println ("DSD 4pm-6pm, Interstate = " + dsdSix2);

 try {
 FileWriter fileFree = new FileWriter("resultsFree.csv",true);
 CSVWriter writerFree = new CSVWriter(fileFree, '\t');
 //write out validation results for free-way links
 String resultsFree[] =
{String.valueOf(rSquareFive2),",",String.valueOf(rSquareSix2),",",
 String.valueOf(rmseFive2),",",String.valueOf(rmseSix2),",",
 String.valueOf(pctgRmseFive2), ",",String.valueOf(pctgRmseSix2),",",
 String.valueOf(pctFive2),",",String.valueOf(pctSix2),",",
 String.valueOf(avgErrorFive2),",",String.valueOf(avgErrorSix2),",",
 String.valueOf(dsdFive2),",",String.valueOf(dsdSix2)};
 writerFree.writeNext(resultsFree, false);
 writerFree.close();
 }catch (Exception e) {
 throw new RuntimeException(e);

 117

 }finally {}

 //Major Arterial
 System.out.println();
 System.out.println("Calculating Validation Statistics for Major Arterial");
 //Read total volumes and observed counts and store into array lists.
 double[] volume3 = new double [station3.size()];
 DescriptiveStatistics statsVol3 = new DescriptiveStatistics ();
 double[] countFive3 = new double [station3.size()];
 double[] countSix3 = new double [station3.size()];
 DescriptiveStatistics diffFive3 = new DescriptiveStatistics ();
 DescriptiveStatistics diffSix3 = new DescriptiveStatistics ();
 DescriptiveStatistics statsFive3 = new DescriptiveStatistics ();
 DescriptiveStatistics statsSix3 = new DescriptiveStatistics ();

 Iterator<linkRecord> itrVol3 = station3.iterator();
 for (int i = 0; i < station3.size();i++){
 while (itrVol3.hasNext()){
 List<Integer> listVol3 = itrVol3.next().getAttributes();
 if(listVol3.get(2) != 0) {
 volume3[i] = (double) listVol3.get(2);
 statsVol3.addValue((double) listVol3.get(2));
 countFive3[i] = (double) listVol3.get(0);
 countSix3[i] = (double) listVol3.get(1);
 statsFive3.addValue((double) listVol3.get(0));
 statsSix3.addValue((double) listVol3.get(1));
 diffFive3.addValue((double) listVol3.get(3));
 diffSix3.addValue((double) listVol3.get(4));
 break;
 }
 }
 //System.out.println(volume[i]);
 }

 System.out.println();
 System.out.println("Calculating Squared Pearson Correlation");
 double corrFive3 = new PearsonsCorrelation().correlation(volume3, countFive3);
 double corrSix3 = new PearsonsCorrelation().correlation(volume3, countSix3);
 double rSquareFive3 = corrFive3*corrFive3;
 double rSquareSix3 = corrSix3*corrSix3;

 System.out.println ("R-Square 3pm-5pm, Interstate = " + rSquareFive3);
 System.out.println ("R-Square 4pm-6pm, Interstate = " + rSquareSix3);

 System.out.println();
 System.out.println("Calculating Root Mean Square Error");

 118

 double sumSquareDiffFive3 = diffFive3.getSumsq();
 double sumSquareDiffSix3 = diffSix3.getSumsq();
 double rmseFive3 = Math.sqrt(sumSquareDiffFive3/station3.size());
 double rmseSix3 = Math.sqrt(sumSquareDiffSix3/station3.size());
 System.out.println ("Root Mean Square Error 3pm-5pm, Interstate = " +
rmseFive3);
 System.out.println ("Root Mean Square Error 4pm-6pm, Interstate = " + rmseSix3);

 System.out.println();
 System.out.println("Calculating Percentage Root Mean Square Error");
 double pctgRmseFive3 = rmseFive3 * 100 * station3.size() / statsVol3.getSum();
 double pctgRmseSix3 = rmseSix3 * 100 * station3.size() / statsVol3.getSum();
 System.out.println ("% Root Mean Square Error 3pm-5pm = " + pctgRmseFive3 +
"%");
 System.out.println ("% Root Mean Square Error 4pm-6pm = " + pctgRmseSix3 +
"%");

 System.out.println("Calculating Absolute Error and Difference of Standard
Deviations");
 double pctFive3 = 100*(statsVol3.getSum()-
statsFive3.getSum())/statsFive3.getSum();
 double pctSix3 = 100*(statsVol3.getSum()-
statsSix3.getSum())/statsSix3.getSum();
 double avgErrorFive3 = statsVol3.getMean() - statsFive3.getMean();
 double avgErrorSix3 = statsVol3.getMean() - statsSix3.getMean();
 double dsdFive3 = statsVol3.getStandardDeviation() -
statsFive3.getStandardDeviation();
 double dsdSix3 = statsVol3.getStandardDeviation() -
statsSix3.getStandardDeviation();
 System.out.println ("Average Error 3pm-5pm, Interstate = " + avgErrorFive3);
 System.out.println ("Average Error 4pm-6pm, Interstate = " + avgErrorSix3);
 System.out.println ("DSD 3pm-5pm, Interstate = " + dsdFive3);
 System.out.println ("DSD 4pm-6pm, Interstate = " + dsdSix3);

 try {
 FileWriter fileMajor = new FileWriter("resultsMajor.csv",true);
 CSVWriter writerMajor = new CSVWriter(fileMajor, '\t');
 //write out validation results for major arterial links
 String resultsMajor[] =
{String.valueOf(rSquareFive3),",",String.valueOf(rSquareSix3),",",
 String.valueOf(rmseFive3),",",String.valueOf(rmseSix3),",",
 String.valueOf(pctgRmseFive3), ",",String.valueOf(pctgRmseSix3),",",
 String.valueOf(pctFive3),",",String.valueOf(pctSix3),",",
 String.valueOf(avgErrorFive3),",",String.valueOf(avgErrorSix3),",",
 String.valueOf(dsdFive3),",",String.valueOf(dsdSix3)};
 writerMajor.writeNext(resultsMajor, false);

 119

 writerMajor.close();
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 //Minor Arterial
 System.out.println();
 System.out.println("Calculating Validation Statistics for Minor Arterial");
 //Read total volumes and observed counts and store into array lists.
 double[] volume4 = new double [station4.size()];
 DescriptiveStatistics statsVol4 = new DescriptiveStatistics ();
 double[] countFive4= new double [station4.size()];
 double[] countSix4 = new double [station4.size()];
 DescriptiveStatistics diffFive4 = new DescriptiveStatistics ();
 DescriptiveStatistics diffSix4 = new DescriptiveStatistics ();
 DescriptiveStatistics statsFive4 = new DescriptiveStatistics ();
 DescriptiveStatistics statsSix4 = new DescriptiveStatistics ();

 Iterator<linkRecord> itrVol4 = station4.iterator();
 for (int i = 0; i < station4.size();i++){
 while (itrVol4.hasNext()){
 List<Integer> listVol4 = itrVol4.next().getAttributes();
 if(listVol4.get(2) != 0) {
 volume4[i] = (double) listVol4.get(2);
 statsVol4.addValue((double) listVol4.get(2));
 countFive4[i] = (double) listVol4.get(0);
 countSix4[i] = (double) listVol4.get(1);
 statsFive4.addValue((double) listVol4.get(0));
 statsSix4.addValue((double) listVol4.get(1));
 diffFive4.addValue((double) listVol4.get(3));
 diffSix4.addValue((double) listVol4.get(4));
 break;
 }
 }
 //System.out.println(volume[i]);
 }

 System.out.println();
 System.out.println("Calculating Squared Pearson Correlation");
 double corrFive4 = new PearsonsCorrelation().correlation(volume4, countFive4);
 double corrSix4 = new PearsonsCorrelation().correlation(volume4, countSix4);
 double rSquareFive4 = corrFive4*corrFive4;
 double rSquareSix4 = corrSix4*corrSix4;

 System.out.println ("R-Square 3pm-5pm, Interstate = " + rSquareFive4);
 System.out.println ("R-Square 4pm-6pm, Interstate = " + rSquareSix4);

 120

 System.out.println();
 System.out.println("Calculating Root Mean Square Error");
 double sumSquareDiffFive4 = diffFive4.getSumsq();
 double sumSquareDiffSix4 = diffSix4.getSumsq();
 double rmseFive4 = Math.sqrt(sumSquareDiffFive4/station4.size());
 double rmseSix4 = Math.sqrt(sumSquareDiffSix4/station4.size());
 System.out.println ("Root Mean Square Error 3pm-5pm, Interstate = " +
rmseFive4);
 System.out.println ("Root Mean Square Error 4pm-6pm, Interstate = " + rmseSix4);

 System.out.println();
 System.out.println("Calculating Percentage Root Mean Square Error");
 double pctgRmseFive4 = rmseFive4 * 100 * station4.size() / statsVol4.getSum();
 double pctgRmseSix4 = rmseSix4 * 100 * station4.size() / statsVol4.getSum();
 System.out.println ("% Root Mean Square Error 3pm-5pm = " + pctgRmseFive4 +
"%");
 System.out.println ("% Root Mean Square Error 4pm-6pm = " + pctgRmseSix4 +
"%");

 System.out.println("Calculating Absolute Error and Difference of Standard
Deviations");
 double pctFive4 = 100*(statsVol4.getSum()-
statsFive4.getSum())/statsFive4.getSum();
 double pctSix4 = 100*(statsVol4.getSum()-
statsSix4.getSum())/statsSix4.getSum();
 double avgErrorFive4 = statsVol4.getMean() - statsFive4.getMean();
 double avgErrorSix4 = statsVol4.getMean() - statsSix4.getMean();
 double dsdFive4 = statsVol4.getStandardDeviation() -
statsFive4.getStandardDeviation();
 double dsdSix4 = statsVol4.getStandardDeviation() -
statsSix4.getStandardDeviation();
 System.out.println ("Average Error 3pm-5pm, Interstate = " + avgErrorFive4);
 System.out.println ("Average Error 4pm-6pm, Interstate = " + avgErrorSix4);
 System.out.println ("DSD 3pm-5pm, Interstate = " + dsdFive4);
 System.out.println ("DSD 4pm-6pm, Interstate = " + dsdSix4);

 try {
 FileWriter fileMinor = new FileWriter("resultsMinor.csv",true);
 CSVWriter writerMinor = new CSVWriter(fileMinor, '\t');
 //write out validation results for minor arterial links
 String resultsMinor[] =
{String.valueOf(rSquareFive4),",",String.valueOf(rSquareSix4),",",
 String.valueOf(rmseFive4),",",String.valueOf(rmseSix4),",",
 String.valueOf(pctgRmseFive4), ",",String.valueOf(pctgRmseSix4),",",
 String.valueOf(pctFive4),",",String.valueOf(pctSix4),",",

 121

 String.valueOf(avgErrorFive4),",",String.valueOf(avgErrorSix4),",",
 String.valueOf(dsdFive4),",",String.valueOf(dsdSix4)};
 writerMinor.writeNext(resultsMinor, false);
 writerMinor.close();
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 //Collector
 System.out.println();
 System.out.println("Calculating Validation Statistics for Major Collector");
 //Read total volumes and observed counts and store into array lists.
 double[] volume5 = new double [station5.size()];
 DescriptiveStatistics statsVol5 = new DescriptiveStatistics ();
 double[] countFive5= new double [station5.size()];
 double[] countSix5 = new double [station5.size()];
 DescriptiveStatistics diffFive5 = new DescriptiveStatistics ();
 DescriptiveStatistics diffSix5 = new DescriptiveStatistics ();
 DescriptiveStatistics statsFive5 = new DescriptiveStatistics ();
 DescriptiveStatistics statsSix5 = new DescriptiveStatistics ();

 Iterator<linkRecord> itrVol5 = station5.iterator();
 for (int i = 0; i < station5.size();i++){
 while (itrVol5.hasNext()){
 List<Integer> listVol5 = itrVol5.next().getAttributes();
 if(listVol5.get(2) != 0) {
 volume5[i] = (double) listVol5.get(2);
 statsVol5.addValue((double) listVol5.get(2));
 countFive5[i] = (double) listVol5.get(0);
 countSix5[i] = (double) listVol5.get(1);
 statsFive5.addValue((double) listVol5.get(0));
 statsSix5.addValue((double) listVol5.get(1));
 diffFive5.addValue((double) listVol5.get(3));
 diffSix5.addValue((double) listVol5.get(4));
 break;
 }
 }
 //System.out.println(volume[i]);
 }

 System.out.println();
 System.out.println("Calculating Squared Pearson Correlation");
 double corrFive5 = new PearsonsCorrelation().correlation(volume5, countFive5);
 double corrSix5 = new PearsonsCorrelation().correlation(volume5, countSix5);
 double rSquareFive5 = corrFive5*corrFive5;
 double rSquareSix5 = corrSix5*corrSix5;

 122

 System.out.println ("R-Square 3pm-5pm, Interstate = " + rSquareFive5);
 System.out.println ("R-Square 4pm-6pm, Interstate = " + rSquareSix5);

 System.out.println();
 System.out.println("Calculating Root Mean Square Error");
 double sumSquareDiffFive5 = diffFive5.getSumsq();
 double sumSquareDiffSix5 = diffSix5.getSumsq();
 double rmseFive5 = Math.sqrt(sumSquareDiffFive5/station5.size());
 double rmseSix5 = Math.sqrt(sumSquareDiffSix5/station5.size());
 System.out.println ("Root Mean Square Error 3pm-5pm, Interstate = " +
rmseFive5);
 System.out.println ("Root Mean Square Error 4pm-6pm, Interstate = " + rmseSix5);

 System.out.println();
 System.out.println("Calculating Percentage Root Mean Square Error");
 double pctgRmseFive5 = rmseFive5 * 100 * station5.size() / statsVol5.getSum();
 double pctgRmseSix5 = rmseSix5 * 100 * station5.size() / statsVol5.getSum();
 System.out.println ("% Root Mean Square Error 3pm-5pm = " + pctgRmseFive5 +
"%");
 System.out.println ("% Root Mean Square Error 4pm-6pm = " + pctgRmseSix5 +
"%");

 System.out.println("Calculating Absolute Error and Difference of Standard
Deviations");
 double pctFive5 = 100*(statsVol5.getSum()-
statsFive5.getSum())/statsFive5.getSum();
 double pctSix5 = 100*(statsVol5.getSum()-
statsSix5.getSum())/statsSix5.getSum();
 double avgErrorFive5 = statsVol5.getMean() - statsFive5.getMean();
 double avgErrorSix5 = statsVol5.getMean() - statsSix5.getMean();
 double dsdFive5 = statsVol5.getStandardDeviation() -
statsFive5.getStandardDeviation();
 double dsdSix5 = statsVol5.getStandardDeviation() -
statsSix5.getStandardDeviation();
 System.out.println ("Average Error 3pm-5pm, Interstate = " + avgErrorFive5);
 System.out.println ("Average Error 4pm-6pm, Interstate = " + avgErrorSix5);
 System.out.println ("DSD 3pm-5pm, Interstate = " + dsdFive5);
 System.out.println ("DSD 4pm-6pm, Interstate = " + dsdSix5);

 try {
 FileWriter fileCol = new FileWriter("resultsCol.csv",true);
 CSVWriter writerCol = new CSVWriter(fileCol, '\t');
 //write out validation results for collector links
 String resultsCol[] =
{String.valueOf(rSquareFive5),",",String.valueOf(rSquareSix5),",",

 123

 String.valueOf(rmseFive5),",",String.valueOf(rmseSix5),",",
 String.valueOf(pctgRmseFive5), ",",String.valueOf(pctgRmseSix5),",",
 String.valueOf(pctFive5),",",String.valueOf(pctSix5),",",
 String.valueOf(avgErrorFive5),",",String.valueOf(avgErrorSix5),",",
 String.valueOf(dsdFive5),",",String.valueOf(dsdSix5)};
 writerCol.writeNext(resultsCol, false);
 writerCol.close();
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}
 }

 }

Cube Script – linkIndex.s

; Yuchen's Dissertation
; This script reads Dissert_Veh_PM.net and index its links
; Main Directory: Models\NetworkDefiningModel\Analysis
;Yuchen Cui - 07/25/2015

 v = '5'

 RUN PGM=NETWORK MSG = 'Convert output NET to DBF'
 NETI = Assignment\Dissert_Veh_PM@v@.net
 LINKO = TraceOD\81zones\Dissert_Veh_PM@v@_link.dbf
 ENDRUN

 RUN PGM=MATRIX MSG = 'Index link and convert DBF to CSV'

 FILEI DBI[1] = TraceOD\81zones\Dissert_Veh_PM@v@_link.dbf
 FILEO PRINTO[1] = TraceOD\81zones\linkIndex_@v@.csv

 ZONES = 1

 LOOP _K = 1, DBI.1.NUMRECORDS
 ;loop over all record in the DBF file
 _myRec = DBIREADRECORD(1,_K)
 ;read first record in DBF file
 myAB = Ltrim(Str(DI.1.A,10,0))+ '_' + Ltrim(Str(DI.1.B,10,0))

 PRINT LIST = myAB(T), DI.1.A(N), DI.1.B(N), DI.1.TOTAL_VOL(N),
DI.1.VolCap, _K PRINTO=1
 CSV=T
 ;after record is read, use DI.#.fieldName to retrive the value
 ENDLOOP

 124

 ENDRUN

Cube Script – removeLinks.s

; Yuchen's Dissertation
; This script remove low trip-share links in baltNetwork_run.net
; Main Directory: Models\NetworkDefiningModel\Analysis
;Yuchen Cui - 10/29/2015

 v = '5', v1 = '6'

 RUN PGM=NETWORK MSG = 'Convert output NET to DBF'
 NETI = Assignment\baltNetwork_run@v@.net
 LINKO = NetworkFile\baltNetwork_run@v@_link.dbf
 NODEO = NetworkFile\baltNetwork_run@v@_node.dbf
 ENDRUN

 RUN PGM=MATRIX MSG = 'remove low trip-share in baltNetwork_run.net'

 FILEO RECO[1] = NetworkFile\baltNetwork_run@v@_updateLink.dbf,
 FIELDS= A, B, ROUTEID, ROADNAMELO, ROADNAMESH, ID_PREFIX,
ID_RTE_NO, FIPS,
 TOLL_AM, TOLL_PM, BMP, EMP, SMZRMZ, AREATYPE,
 LANE, FUNCCLASS, FFSPD, CAPACITY, FUNCTIONAL, DISTANCE,
ONEWAY,
 PMLIMIT, A_B, DISABLED
 FILEI DBI[2] = NetworkFile\baltNetwork_run@v@_link.dbf
 ;this file contains full link information of the entire network
 ;IMPORTANT: in order to use DBISeek, users need to sort all arguments to
 ;be used in DBISeek in the script later

 FILEI DBI[1] = TraceOD\81zones\excLink_@v@.csv, A=1,B=2, SORT = A, B
 ;this file is provides the links to be extracted
 ;CSV file can be inputed as DBI, and A(N)=1 indicates the 1st data field's
 ;name and B(N)=2 indicates the 2nd data field's name

 ZONES = 1

 LOOP _K = 1, DBI.2.NUMRECORDS
 ;for each link to be extracted. We skip the first row since it's the header.
 _READ1 = DBIREADRECORD(2, _K)
 ;get A node and B node
 myA = DI.2.A
 myB = DI.2.B
 myROUTEID = DI.2.ROUTEID
 myROADNAMELO = DI.2.ROADNAMELO
 myROADNAMESH = DI.2.ROADNAMESH

 125

 myID_PREFIX = DI.2.ID_PREFIX
 myID_RTE_NO = DI.2.ID_RTE_NO
 myFIPS = DI.2.FIPS
 myTOLL_AM = DI.2.TOLL_AM
 myTOLL_PM = DI.2.TOLL_PM
 myBMP = DI.2.BMP
 myEMP = DI.2.EMP
 mySMZRMZ = DI.2.SMZRMZ
 myAREATYPE = DI.2.AREATYPE
 myLANE = DI.2.LANE
 myFUNCCLASS = DI.2.FUNCCLASS
 myFFSPD = DI.2.FFSPD
 myCAPACITY = DI.2.CAPACITY
 myFUNCTIONAL = DI.2.FUNCTIONAL
 myDISTANCE = DI.2.DISTANCE
 myONEWAY = DI.2.ONEWAY
 myPMLIMIT = DI.2.PMLIMIT
 myAB = Ltrim(Str(DI.2.A,10,0))+ '_' + Ltrim(Str(DI.2.B,10,0))
 myDISABLED = DI.2.DISABLED

 IF (DBISEEK(1, myA, myB) == 0)
 ;find the specific link record index in the CSV link file
 RO.A = myA
 ;if found, update DISABLED field to 1
 RO.B = myB
 RO.ROUTEID = myROUTEID
 RO.ROADNAMELO = myROADNAMELO
 RO.ROADNAMESH = myROADNAMESH
 RO.ID_PREFIX = myID_PREFIX
 RO.ID_RTE_NO = myID_RTE_NO
 RO.FIPS = myFIPS
 RO.TOLL_AM = myTOLL_AM
 RO.TOLL_PM = myTOLL_PM
 RO.BMP = myBMP
 RO.EMP = myEMP
 RO.SMZRMZ = mySMZRMZ
 RO.AREATYPE = myAREATYPE
 RO.LANE = myLANE
 RO.FUNCCLASS = myFUNCCLASS
 RO.FFSPD = myFFSPD
 RO.CAPACITY = myCAPACITY
 RO.FUNCTIONAL = myFUNCTIONAL
 RO.DISTANCE = myDISTANCE
 RO.ONEWAY = myONEWAY
 RO.PMLIMIT = myPMLIMIT
 RO.A_B = myAB

 126

 RO.DISABLED = 1
 ELSE
 RO.A = myA
 ;if not found, just write out original attributes, where DISABLED is 0
 RO.B = myB
 RO.ROUTEID = myROUTEID
 RO.ROADNAMELO = myROADNAMELO
 RO.ROADNAMESH = myROADNAMESH
 RO.ID_PREFIX = myID_PREFIX
 RO.ID_RTE_NO = myID_RTE_NO
 RO.FIPS = myFIPS
 RO.TOLL_AM = myTOLL_AM
 RO.TOLL_PM = myTOLL_PM
 RO.BMP = myBMP
 RO.EMP = myEMP
 RO.SMZRMZ = mySMZRMZ
 RO.AREATYPE = myAREATYPE
 RO.LANE = myLANE
 RO.FUNCCLASS = myFUNCCLASS
 RO.FFSPD = myFFSPD
 RO.CAPACITY = myCAPACITY
 RO.FUNCTIONAL = myFUNCTIONAL
 RO.DISTANCE = myDISTANCE
 RO.ONEWAY = myONEWAY
 RO.PMLIMIT = myPMLIMIT
 RO.A_B = myAB
 RO.DISABLED = myDISABLED
 ENDIF

 WRITE RECO = 1
 ;write out the record
 ENDLOOP
 ENDRUN

 RUN PGM=NETWORK MSG='Network - Convert to DBF-2 to NETWORK'
 LINKI = NetworkFile\baltNetwork_run@v@_updateLink.dbf
 NODEI = NetworkFile\baltNetwork_run@v@_node.dbf

 NETO = NetworkFile\baltNetwork_run@v@Disabled.net
 ENDRUN

 RUN PGM=NETWORK MSG = 'Delete zero-volume links in baltNetwork_run8.net'

 FILEO NETO = Assignment\baltNetwork_run@v1@.net
 FILEI LINKI[1] = NetworkFile\baltNetwork_run@v@Disabled.net

 127

 PROCESS PHASE=LINKMERGE
 IF (LI.1.DISABLED==1)
 delete
 ENDIF

 ENDPROCESS

 ENDRUN

Cube Script – exportLinkOD.s

; Yuchen's Dissertation
 ; This script export non-zero selTotal values from *.NET to *.DBF;
 ; Main Directory: Models\NetworkDefiningModel
 ; Post processing after OD-split Highway Assignment

v = 5

LOOP _K = 1,2000
RUN PGM=NETWORK PRNFILE='Print\Convert Network to DBF.PRN'
MSG='Export link per OD - Convert Network to DBF-2'
FILEI LINKI[1] = Assignment\81zones\Dissert_Veh_PM@v@_OD@_K@.net
;pay attention to the file name of assignment result
FILEO LINKO = TraceOD\81zones\Dissert_Veh_PM@v@_OD@_K@.dbf

PROCESS PHASE=LINKMERGE
 IF (LI.1.selTotal==0)
 delete
 ENDIF
ENDPROCESS
ENDRUN

RUN PGM=MATRIX MSG = 'DBF to CSV'
 FILEI DBI[1] = TraceOD\81zones\Dissert_Veh_PM@v@_OD@_K@.dbf
 FILEO PRINTO[1] = TraceOD\81zones\Links@v@_OD@_K@.csv

 ZONES = 1

 LOOP _L = 1, DBI.1.NUMRECORDS
 ;loop over all record in the DBF file
 _myRec = DBIREADRECORD(1,_L)
 ;read first record in DBF file
 myAB = Ltrim(Str(DI.1.A,10,0))+''+Ltrim(Str(DI.1.B,10,0))
 PRINT LIST = _myAB, DI.1.A(N), DI.1.B(N), DI.1.SELTOTAL(N), PRINTO=1
CSV=T
 ;after record is read, use DI.#.fieldName to retrive the value
 ENDLOOP

 128

ENDRUN

ENDLOOP

Cube Script – removeZeroLinks.s

; Yuchen's Dissertation
; This script remove zero-volume links in baltNetwork_run.net
; Main Directory: Models\NetworkDefiningModel
;Yuchen Cui - 10/29/2015

 v = '6', v1 = '7'

 RUN PGM=NETWORK MSG = 'Convert output NET to DBF'
 NETI = Assignment\baltNetwork_run@v@.net
 LINKO = NetworkFile\baltNetwork_run@v@_link.dbf
 NODEO = NetworkFile\baltNetwork_run@v@_node.dbf
 ENDRUN

 RUN PGM=NETWORK MSG = 'Convert output NET to DBF'
 NETI = Assignment\Dissert_Veh_PM@v@.net
 LINKO = NetworkFile\Dissert_Veh_PM@v@_link.dbf
 ENDRUN

 RUN PGM=MATRIX MSG = 'Convert Dissert_Veh_PM.dbf to zeroLinks.csv'

 FILEI DBI[1] = NetworkFile\Dissert_Veh_PM@v@_link.dbf
 FILEO PRINTO[1] = NetworkFile\zeroLinksPM@v@_81zone.csv

 ZONES = 1

 LOOP _K = 1, DBI.1.NUMRECORDS
 ;loop over all record in the DBF file
 _myRec = DBIREADRECORD(1,_K)
 ;read first record in DBF file
 IF (DI.1.TOTAL_VOL = 0)
 PRINT LIST = DI.1.A(N), DI.1.B(N) PRINTO=1 CSV=T
 ;after record is read, use DI.#.fieldName to retrive the value
 ENDIF
 ENDLOOP

 ENDRUN

 RUN PGM=MATRIX MSG = 'remove low trip-share in baltNetwork_run.net'

 FILEO RECO[1] = NetworkFile\baltNetwork_run@v@_updateLink.dbf,

 129

 FIELDS= A, B, ROUTEID, ROADNAMELO, ROADNAMESH, ID_PREFIX,
ID_RTE_NO, FIPS,
 TOLL_AM, TOLL_PM, BMP, EMP, SMZRMZ, AREATYPE,
 LANE, FUNCCLASS, FFSPD, CAPACITY, FUNCTIONAL, DISTANCE,
ONEWAY,
 PMLIMIT, A_B, DISABLED

 FILEI DBI[2] = NetworkFile\baltNetwork_run@v@_link.dbf
 ;this file contains full link information of the entire network
 ;IMPORTANT: in order to use DBISeek, users need to sort all arguments to
 ;be used in DBISeek in the script later

 FILEI DBI[1] = NetworkFile\zeroLinksPM@v@_81zone.csv, A=1,B=2, SORT = A, B
 ;this file is provides the links to be extracted
 ;CSV file can be inputed as DBI, and A(N)=1 indicates the 1st data field's
 ;name and B(N)=2 indicates the 2nd data field's name

 ZONES = 1

 LOOP _K = 1, DBI.2.NUMRECORDS
 ;for each link to be extracted. We skip the first row since it's the header.
 _READ1 = DBIREADRECORD(2, _K)
 ;get A node and B node
 myA = DI.2.A
 myB = DI.2.B
 myROUTEID = DI.2.ROUTEID
 myROADNAMELO = DI.2.ROADNAMELO
 myROADNAMESH = DI.2.ROADNAMESH
 myID_PREFIX = DI.2.ID_PREFIX
 myID_RTE_NO = DI.2.ID_RTE_NO
 myFIPS = DI.2.FIPS
 myTOLL_AM = DI.2.TOLL_AM
 myTOLL_PM = DI.2.TOLL_PM
 myBMP = DI.2.BMP
 myEMP = DI.2.EMP
 mySMZRMZ = DI.2.SMZRMZ
 myAREATYPE = DI.2.AREATYPE
 myLANE = DI.2.LANE
 myFUNCCLASS = DI.2.FUNCCLASS
 myFFSPD = DI.2.FFSPD
 myCAPACITY = DI.2.CAPACITY
 myFUNCTIONAL = DI.2.FUNCTIONAL
 myDISTANCE = DI.2.DISTANCE
 myONEWAY = DI.2.ONEWAY
 myPMLIMIT = DI.2.PMLIMIT
 myAB = Ltrim(Str(DI.2.A,10,0))+ '_' + Ltrim(Str(DI.2.B,10,0))

 130

 myDISABLED = DI.2.DISABLED

 IF (DBISEEK(1, myA, myB) == 0)
 ;find the specific link record index in the CSV link file
 RO.A = myA
 ;if found, update DISABLED field to 1
 RO.B = myB
 RO.ROUTEID = myROUTEID
 RO.ROADNAMELO = myROADNAMELO
 RO.ROADNAMESH = myROADNAMESH
 RO.ID_PREFIX = myID_PREFIX
 RO.ID_RTE_NO = myID_RTE_NO
 RO.FIPS = myFIPS
 RO.TOLL_AM = myTOLL_AM
 RO.TOLL_PM = myTOLL_PM
 RO.BMP = myBMP
 RO.EMP = myEMP
 RO.SMZRMZ = mySMZRMZ
 RO.AREATYPE = myAREATYPE
 RO.LANE = myLANE
 RO.FUNCCLASS = myFUNCCLASS
 RO.FFSPD = myFFSPD
 RO.CAPACITY = myCAPACITY
 RO.FUNCTIONAL = myFUNCTIONAL
 RO.DISTANCE = myDISTANCE
 RO.ONEWAY = myONEWAY
 RO.PMLIMIT = myPMLIMIT
 RO.A_B = myAB
 RO.DISABLED = 1
 ELSE
 RO.A = myA
 ;if not found, just write out original attributes, where DISABLED is 0
 RO.B = myB
 RO.ROUTEID = myROUTEID
 RO.ROADNAMELO = myROADNAMELO
 RO.ROADNAMESH = myROADNAMESH
 RO.ID_PREFIX = myID_PREFIX
 RO.ID_RTE_NO = myID_RTE_NO
 RO.FIPS = myFIPS
 RO.TOLL_AM = myTOLL_AM
 RO.TOLL_PM = myTOLL_PM
 RO.BMP = myBMP
 RO.EMP = myEMP
 RO.SMZRMZ = mySMZRMZ
 RO.AREATYPE = myAREATYPE
 RO.LANE = myLANE

 131

 RO.FUNCCLASS = myFUNCCLASS
 RO.FFSPD = myFFSPD
 RO.CAPACITY = myCAPACITY
 RO.FUNCTIONAL = myFUNCTIONAL
 RO.DISTANCE = myDISTANCE
 RO.ONEWAY = myONEWAY
 RO.PMLIMIT = myPMLIMIT
 RO.A_B = myAB
 RO.DISABLED = myDISABLED
 ENDIF

 WRITE RECO = 1
 ;write out the record

 ENDLOOP
 ENDRU

 RUN PGM=NETWORK MSG='Network - Convert to DBF-2 to NETWORK'

 LINKI = NetworkFile\baltNetwork_run@v@_updateLink.dbf
 NODEI = NetworkFile\baltNetwork_run@v@_node.dbf

 NETO = NetworkFile\baltNetwork_run@v@Disabled.net
 ENDRUN

 RUN PGM=NETWORK MSG = 'Delete zero-volume links in baltNetwork_run8.net'

 FILEO NETO = Assignment\baltNetwork_run@v1@.net
 FILEI LINKI[1] = NetworkFile\baltNetwork_run@v@Disabled.net

 PROCESS PHASE=LINKMERGE
 IF (LI.1.DISABLED==1)
 delete
 ENDIF

 ENDPROCESS
 ENDRUN

Java Script – sortOD.java

/**
 * Created by Yuchen Cui on 6/17/2015.
 * The sortOD application class is used to sort and index OD trip records
 */

 import com.opencsv.CSVReader;
 import com.opencsv.CSVWriter;

 132

 import com.pb.common.util.IndexSort;

 import java.io.*;
 import java.util.Iterator;

 public class sortOD {
 public static void main(String[] args) throws IOException {
 //define input file names
 String file = "subareaVehPMOD.csv";
 linkDatabase tripRec = new linkDatabase(); //for all OD trip records

 //column numbers in subareaVehPMOD.csv
 int origin = 0;
 int destination = 1;
 int trips = 2;

 System.out.println("Read link file: subareaVehPMOD.csv");
 int seq = 0;
 try {
 CSVReader tripReader = new CSVReader(new FileReader(file));
 String [] nextTrip; //number of OD trips in the table: 106212

 while ((nextTrip = tripReader.readNext()) != null) {
 String tripOrigin = nextTrip[origin];
 String tripDestination = nextTrip[destination];
 String id = String.valueOf(seq);

 //add OD as id to each trip record
 if (!nextTrip[origin].equals(nextTrip[destination])) {
 tripRec.addLink(id);
 //add attributes: origin, destination, trips
 tripRec.addAttributes(Integer.valueOf(nextTrip[origin]), id);
 tripRec.addAttributes(Integer.valueOf(nextTrip[destination]), id);
 tripRec.addAttributes(Math.round(Float.valueOf(nextTrip[trips])), id);

 //System.out.println(tripRec.getAttributes(id).get(trips));
 seq++;
 }
 }
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 System.out.println("Write indexed OD records: indexedVehPMOD.csv");

 133

 int[] trip = new int [tripRec.size()];
 try {
 CSVWriter writer = new CSVWriter(new FileWriter("indexedVehPMOD.csv"),
'\t');
 Iterator<linkRecord> itrCount = tripRec.iterator();

 while (itrCount.hasNext()){
 linkRecord odRec = itrCount.next();
 String tripIndex = odRec.getNum();
 trip[Integer.valueOf(tripIndex)] = odRec.getAttributes().get(2);

 String[] entries = odRec.writeToStrings();
 writer.writeNext(entries, false);
 }
 writer.close();

 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 System.out.println("Starting to sort trip[]");
 IndexSort sort = new IndexSort();
 int[] tripSortedIndex = sort.indexSort(trip);

 System.out.println("Write sorted trip index to database");
 linkDatabase indexRec = new linkDatabase();

 //print out in ascending order
 for (int i = 0; i < tripRec.size(); i++){
 String indexID = String.valueOf(i);
 //System.out.println(indexID);
 indexRec.addLink(indexID);
 indexRec.addAttributes(tripSortedIndex[i],indexID);
 }

 //System.out.println("Sorted Trip Index: " + Arrays.toString(tripIndex));

 System.out.println("Write sorted trip index: sortedTripIndex.csv");
 try {
 CSVWriter writer = new CSVWriter(new FileWriter("sortedTripIndex.csv"), '\t');
 Iterator<linkRecord> itrCount = indexRec.iterator();

 while (itrCount.hasNext()){
 linkRecord odRec = itrCount.next();

 134

 //System.out.println(odRec.getAttributes());
 String[] entries = odRec.writeToStrings();
 writer.writeNext(entries, false);
 }
 writer.close();

 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 System.out.println("Write first 4000 ODs: sortedOD.csv");

 int maxOD = 3000;
 try (PrintStream out = new PrintStream(new
FileOutputStream("selectlink"+maxOD+".txt"))) {
 for (int j = 1; j <= maxOD; j++) {
 int odIndex = tripSortedIndex[tripRec.size() - j];
 //System.out.println(odIndex);
 String od = String.valueOf(odIndex);
 int originNum = tripRec.getAttributes(od).get(origin);
 int destNum = tripRec.getAttributes(String.valueOf(od)).get(destination);
 //System.out.println(originNum + " " + destNum);
 out.print("myA["+j+ "] = " + String.valueOf(originNum));
 out.println();
 out.print("myB["+j+ "] = " + String.valueOf(destNum));
 out.println();
 }
 out.close();
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 System.out.println("Write first 4000 ODs: selOD.csv");
 try {
 CSVWriter writer = new CSVWriter(new FileWriter("selOD.csv"), '\t');
 for (int k = 1; k <= maxOD; k++) {
 int odIndex = tripSortedIndex[tripRec.size() - k];
 //System.out.println(odIndex);
 String od = String.valueOf(odIndex);
 int originNum = tripRec.getAttributes(od).get(origin);
 int destNum = tripRec.getAttributes(od).get(destination);
 int odDemand = tripRec.getAttributes(od).get(trips);
 String odID[] =
{String.valueOf(originNum)+String.valueOf(destNum),",",String.valueOf(odDemand)};
 writer.writeNext(odID, false);
 }

 135

 writer.close();
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}
 }
 }

Java Script – tripMatrix.java

 /**
 * Created by Yuchen Cui on 3/26/15.
 * This java class is used to identify irrelevant links
 */

 import com.opencsv.CSVReader;
 import com.opencsv.CSVWriter;
 import com.pb.common.matrix.CSVMatrixWriter;
 import com.pb.common.matrix.Matrix;

 import java.io.File;
 import java.io.FileReader;
 import java.io.FileWriter;
 import java.util.ArrayList;
 import java.util.HashMap;
 import java.util.List;
 import java.util.Random;

 public class tripMatrix {
 public static void main(String[] args) {

 /*Random rand = new Random();
 for (int i = 0; i < 10; i++){
 if (rand.nextFloat()>0.8) System.out.println("Yeap");

 }
 */
 //define file names
 int maxOD = 2000;
 int v = 14;

 String linkFile = "linkIndex_"+v+".csv";
 String odFile = "selOD.csv";

 int A_B = 0;
 int O_D = 0;
 int aNode = 1;
 int bNode = 2;

 136

 int asgnVol = 3;
 int volcap = 4;
 int index = 5;

 HashMap<String, Integer> linkMap = new HashMap<>();
 HashMap<String, Integer> linkVolMap = new HashMap<>();
 HashMap<String, Float> linkVCMap = new HashMap<>();
 int maxLinkIDNumber = Integer.MIN_VALUE;

 System.out.println("Read link file: linkIndex.csv");
 try {
 CSVReader linkReader = new CSVReader(new FileReader(linkFile));
 String[] nextLink;

 while ((nextLink = linkReader.readNext()) != null) {
 String linkID = nextLink[A_B];
 String linkIndex = nextLink[index];
 String linkVC = nextLink[volcap];
 String linkVol = nextLink[asgnVol];
 linkMap.put(linkID, Integer.valueOf(linkIndex));
 linkVolMap.put(linkID, Integer.valueOf(linkVol));
 linkVCMap.put(linkID, Float.valueOf(linkVC));
 maxLinkIDNumber = Math.max(maxLinkIDNumber,
Integer.valueOf(linkIndex));
 }
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 int[] linkArray = new int[linkMap.size()]; //store link index
 String[] linkABNames = new String[maxLinkIDNumber + 1]; //store link ID
 int position = 0;
 for (String linkId: linkMap.keySet()) {
 linkArray[position] = linkMap.get(linkId);
 linkABNames[linkMap.get(linkId)] = linkId;
 position++;
 }
 System.out.println(linkABNames[2]);

 System.out.println("reserve link index in an int[]");

 System.out.println("Read link file:selOD.csv");
 System.out.println("reserve OD index in an int[]");
 int[] odArray = new int [maxOD];
 int[] odDemand = new int[maxOD];
 try {

 137

 CSVReader odReader = new CSVReader(new FileReader(odFile));
 String[] nextOD;
 int k = 0;
 //change k range
 while ((nextOD = odReader.readNext()) != null && k < maxOD) {
 String odID = nextOD[O_D];
 //add OD as "i"+"j"
 odArray[k] = Integer.parseInt(odID.trim());
 odDemand[k] = Integer.parseInt(nextOD[1].trim());
 k++;
 }
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}

 System.out.println(odArray.length);

 System.out.println("Start to write to matrix for link volumes of selected OD");
 Matrix linkByOD = new Matrix(linkArray.length, odArray.length);
 Matrix tripShare = new Matrix(linkArray.length, odArray.length);
 linkByOD.fill(0);
 tripShare.fill(0);
 /*linkByOD.setValueAt(1,1,270);
 (linkByOD.getValueAt(1, 1)); */

 //set external numbers using linkArray[] and odArray[];
 linkByOD.setExternalNumbersZeroBased(linkArray, odArray);
 tripShare.setExternalNumbersZeroBased(linkArray, odArray);

 for (int k = 1; k <= maxOD; k++) {
 int odIndex = odArray[k-1];
 try {
 System.out.println("reading Links_OD"+k+".csv");
 String inputFile = "Links"+v+"_OD"+k+".csv";
 CSVReader linkReader = new CSVReader(new FileReader(inputFile));
 String[] nextLink;

 while ((nextLink = linkReader.readNext()) != null) {
 String linkID = nextLink[A_B];
 int linkIndex = linkMap.get(linkID);
 int vol = Integer.parseInt(nextLink[3].trim());
 linkByOD.setValueAt(linkIndex, odIndex, vol);
 }
 } catch (Exception e) {
 throw new RuntimeException(e);
 } finally {

 138

 }
 }
 System.out.println(linkByOD.getSum());

 System.out.println("calculating tripShare.matrix");
 //List<Integer> linkList = new ArrayList<Integer>();
 for (int k = 0; k < maxOD; k++) {
 float totOD = odDemand[k];
 for (int j = 0; j < linkArray.length; j++) {
 float volLinkByOD = linkByOD.getValueAt(linkArray[j], odArray[k]);
 tripShare.setValueAt(linkArray[j], odArray[k], volLinkByOD / totOD);
 }
 }
 System.out.println(tripShare.getSum());

 CSVMatrixWriter linkByODMat = new CSVMatrixWriter(new
File("linkByODMat.csv"));
 linkByODMat.writeMatrix(linkByOD);

 CSVMatrixWriter tripShareMat = new CSVMatrixWriter(new
File("tripShareMat.csv"));
 tripShareMat.writeMatrix(tripShare);

//System.out.println(linkByOD.getValueAt(indexDatabase.getAttributeAt("4970_5066",
0), 359248));

 System.out.println("analyzing tripShare.matrix and write results to
resultMat.matrix");
 int[] catArray = {0,1,2,3};
 double cat0 = 0;
 double cat1 = 0.2; //initial trip share cutoff value
 double cat2 = 1;
 double maxVC = 0.5;
 double maxPct = 0.1; //1% of total links
 double inc = 0.0001; //increment of trip share cap
 System.out.println(String.valueOf(linkArray.length*maxPct));

 Matrix resultMat = new Matrix(linkArray.length, catArray.length);
 //set external numbers using linkArray[] and odArray[];
 resultMat.setExternalNumbersZeroBased(linkArray, catArray);

 while (cat1 < 1) {
 resultMat.fill(0);

 for (int k = 0; k < linkArray.length; k++){
 int linkID = linkArray[k];

 139

 for (int j = 0; j < odArray.length; j++){

 int odID = odArray[j];
 double tripShareValue = tripShare.getValueAt(linkID,odID);
 //category 0: tripShare == 0
 if (tripShareValue == cat0){
 float count = resultMat.getValueAt(linkID, catArray[0]);
 count++;
 resultMat.setValueAt(linkID, catArray[0], count);
 }
 //category 1:0 <=tripShare< cat1
 if (tripShareValue > cat0 && tripShareValue < cat1){
 float count = resultMat.getValueAt(linkID, catArray[1]);
 count++;
 resultMat.setValueAt(linkID, catArray[1], count);
 }
 //category 2: cat1 <=tripShare< 1
 if (tripShareValue >= cat1 && tripShareValue < cat2){
 float count = resultMat.getValueAt(linkID, catArray[2]);
 count++;
 resultMat.setValueAt(linkID,catArray[2], count);
 }
 //category 3: tripShare == 1
 if (tripShareValue == cat2){
 float count = resultMat.getValueAt(linkID, catArray[3]);
 count++;
 resultMat.setValueAt(linkID, catArray[3], count);
 }
 }
 //System.out.println("count of 100% OD trip share: " +
resultMat.getValueAt(linkID,catArray[4]));
 }
 //System.out.println(resultMat.getSum());
 //CSVMatrixWriter resultLinkCat = new CSVMatrixWriter(new
File("linkByCat.csv"));
 //resultLinkCat.writeMatrix(resultMat);

 System.out.println("write out links to a list, control total number of irrelevant
links");
 List<String> excLinkList = new ArrayList<String>();
 for (int k = 0; k < linkArray.length; k++) {
 int linkIndex = linkArray[k];
 String linkAB = linkABNames[linkIndex];
 double linkVC = linkVCMap.get(linkAB);
 float countCat0 = resultMat.getValueAt(linkIndex, catArray[0]);
 float countCat1 = resultMat.getValueAt(linkIndex, catArray[1]);

 140

 float countCat2 = resultMat.getValueAt(linkIndex, catArray[2]);
 float countCat3 = resultMat.getValueAt(linkIndex, catArray[3]);

 //find links that carries no more than cat1 TR for any OD
 if (countCat0 > 0 && countCat1 > 0 && countCat2 == 0 && countCat3 == 0
&& linkVC < maxVC) {
 excLinkList.add(linkABNames[linkIndex]);
 }
 }
 System.out.println("excLinkList size is " + String.valueOf(excLinkList.size()));

 if (excLinkList.size() < linkArray.length*maxPct) {
 cat1 = cat1 + inc; //update trip share cutoff point
 System.out.println("trip share cutoff point is " + cat1);
 try {
 System.out.println("write out excluded links to excLink.csv");
 CSVWriter writer = new CSVWriter(new FileWriter("excLink_"+v+".csv"),
'\t');
 for (int k = 0; k < excLinkList.size(); k++) {
 String linkAB = excLinkList.get(k);
 int linkVolume = linkVolMap.get(linkAB);
 float linkVC = linkVCMap.get(linkAB);

 String excLink[] = {linkAB.split("_")[0], ",", linkAB.split("_")[1], ",",
String.valueOf(linkVC),
 ",", String.valueOf(linkVolume), ",", linkAB};
 writer.writeNext(excLink, false);
 }
 writer.close();
 }catch (Exception e) {
 throw new RuntimeException(e);
 }finally {}
 }
 else {
 System.exit(0);
 }
 }
 }
 }

Cube Script – HwyAssign_Dissert_ODSplit.s

 ; Yuchen Cui’s Dissertation
 ; Main directory: Models\NetworkDefiningModel\Assignment
 ; Trip assignment on *.net
 ; Version 1.0
 ;Yuchen Cui – 09/07/2014

 141

 maxIterns = 1000
 DISTRIBUTE INTRASTEP= 1
 prd = 'PM', spd='FFSPD', ConFac = 0.34, v = 10
 READ FILE= parameter.dat

 LOOP myCounter=1,2000
 ; OD coverage

 RUN PGM=MATRIX
 zones=1
 ARRAY myA=2000, myB=2000
 ;change array length according to OD coverage

 READ FILE="selectlink2000.txt"

 toListA=myA[@myCounter@]
 toListB=myB[@myCounter@]
 LOG PREFIX=myMatrix VAR=toListA, toListB
 ENDRUN

RUN PGM=HIGHWAY PRNFILE='Print\Highway
Assignment_linkDis_oneInc_ODSplit.PRN' MSG='PM Highway Assignment for each
OD selected'
 FILEI NETI = baltNetwork_run@v@.net

 FILEI MATI[1] = subareaVehPM_81zones.trp
 ;1 tables of 20 vehicle classes combined

 FILEO NETO = Output\DissertHwyAsgn_PM@v@_OD@myCounter@.tmp

 DistributeINTRASTEP ProcessID='HwyAssignIDP',ProcessList=1-20,

MinGroupSize=4, SavePrn=T
PARAMETERS ZONEMSG=20,MAXITERS=@maxIterns@, COMBINE=AVE,
RELATIVEGAP = 0.02, GAP= 0, AAD=0, RAAD=0, RMSE=0

PROCESS PHASE=LINKREAD
 T0 = 60* (LI.DISTANCE/LI.FFSPD)
 C = LI.CAPACITY*LI.LANE/@ConFac@ ; capacity
 LW.COSTa = T0 + (LI.TOLL_@prd@/@VoTa@) + 0.25*LI.DISTANCE

;five income groups combined

 ; Recode facility type (FUNCCLASS) into VDF groups.
 IF (LI.FUNCCLASS = 1,2,8,9,10) LINKCLASS = 1 ; Freeway/Expwy
& Ramps
 IF (LI.FUNCCLASS = 3,4) LINKCLASS = 2 ; Arterial

 142

 IF (LI.FUNCCLASS = 5,6,7) LINKCLASS = 3 ; Collectors/Local
 IF (LI.FUNCCLASS = 11) LINKCLASS = 4 ; Centroid Connectors

 ; Set link usage restrictions for this Highway Assignment.
 IF (LI.@prd@LIMIT = 4) ADDTOGROUP = 1 ; no Trucks (MT or HT)
 IF (LI.DISABLED = 1) ADDTOGROUP = 2 ENDPROCESS

 PROCESS PHASE=ILOOP
 ;this PATHLOAD statement builds paths on TRAVEL COST, assigns each vehicle
classV
 PATHLOAD PATH=LW.COSTa, EXCLUDEGROUP=2, VOL[1] = MI.1.1,
MW[1] = MI.1.1,
 SELECTLINK = (A=@myMatrix.toListA@ && B=@myMatrix.toListB@),
VOL[2]=MW[1]
 ENDPROCESS

 PROCESS PHASE=ADJUST
 function {
 V=VOL[1]

 TC[1] = Min(T0 * (1 + 0.70*(V/C)^8), T0*100)
 TC[2] = Min(T0 * (1 + 0.55*(V/C)^6), T0*100)
 TC[3] = Min(T0 * (1 + 0.17*(V/C)^4), T0*100)
 TC[4] = T0
 }

 LW.COSTa=TIME + (LI.TOLL_@prd@/@VoTa@) + 0.25*LI.DISTANCE

 ENDPROCESS
 ENDRUN
 ENDLOOP

Cube Script – HwyAssign_Dissert_Post.s

 ; Yuchen's Dissertation
 ; This script post process *.TMP to *.NET
 ; Main Directory: Models\NetworkDefiningModel
 ; Post processing after Highway Assignment

 v = 10

 LOOP myCounter = 1,2000

 RUN PGM=NETWORK PRNFILE='Print\PM Highway Assignment OD Split - Post
Process.PRN' MSG='PM Highway Assignment - Post Process'
 FILEI LINKI[1] = Output\DissertHwyAsgn_PM@v@_OD@myCounter@.tmp

 143

 Vehicles = V1_1
 SelTotal = V2_1
 Total_Vol = V_1
 VHT = VHT_1
 VMT = VDT_1
 AsgnCSPD = CSPD_1
 VolCap = VC_1
 CongTime = TIME_1

 FILEO NETO = 81zones\Dissert_Veh_PM@v@_OD@myCounter@.net, EXCLUDE =
;Exclude indicated fields and combined income groups
 V1_1,V2_1,
 V1T_1,V2T_1,
 VT_1, V_1, TIME_1, VC_1, CSPD_1, VDT_1, VHT_1, TOT_VOL
 ENDRUN
 ENDLOOP

 144

GLOSSARY

Resolution – It is a geographic term applied throughout this dissertation. The definition

given by the Data West Research Agency is: “It is a measure of the accuracy or detail of

a graphic display. It represents the minimum difference or distance between two

independently measured or computed values or objects that can be distinguished by the

measurement or analytical method, or sensor being considered or used. In this study, it

stands for how fine the geographic detail of an object is, such as the number of road links

within the object or the size of the object.” (26)

Geographic Information System (GIS) – A GIS is a computer system that can create,

store, manage, edit, analyze, and display geographical data. The Esri's ArcGIS is a GIS

tool that can create and edit maps, compile and manage geographical data in a

geodatabase, and analyze geographical data in a range of tools.

Travel Demand Forecasting – It is a process of estimating the number of trips made

using a specific transportation mode (e.g. automobile, truck, bus, and bicycle) on a

specific route.

Traffic Analysis Zone (TAZ) – A TAZ is a geographic unit that is used to aggregate

trips into a manageable area. The size of a TAZ varies depending on the analytical unit it

needs to address. A TAZ could be as small as a single building; however the development

of a finer TAZ system is often limited by data unavailability and increasing

computational burden.

Transportation Network - A Transportation Network is composed of a series of links

and nodes. A link represents a segment of street and contains attributes of the street

 145

segment, and a node represents an intersection, or a point where network attributes are

about to change.

Centroid and Centroid Connector – A Centroid is a special kind of node that is usually

created at the center of gravity point of a TAZ. A Centroid connects its TAZ to the

Transportation Network through a fictitious link called Centroid Connector. Usually a

Centroid Connector is not allowed to connect to major arterial, freeways, or ramps.

Origin/Destination (OD) Trip Interchange – For a specific trip, its Origin is a zone

where this trip begins; its Destination is a zone where this trip ends. A specific trip

traveling from an Origin to a Destination with no intermediate stops represents a Trip

Interchange.

Trip Table and Trip Matrix – For a given zone system, its Trip Table or Trip Matrix,

which contains the OD Trip Interchanges, is a matrix of vehicles or persons traveling

from one TAZ to another. Each row of the matrix represents trips traveling from one

TAZ to all others while each column of the matrix represents trips coming to one TAZ

from all others. Trip Interchanges in the Trip Table are loaded at Centroid and then

assigned onto the Transportation Network through Centroid Connectors.

Travel Demand Model (TDM) – A TDM is a computer-based travel demand forecasting

tool. A TDM usually follows the conventional sequential four-step process: Trip

Generation, Trip Distribution, Mode Choice, and Trip Assignment. Citilabs’ Cube is a

computer software package developed for transportation modeling, containing several

modeling modules and extensions.

 146

Trip Purpose – It is common that people travel for different reasons. A TDM usually

defines trips by Trip Purpose, such as home-based work, home-based school, home-based

shopping, or non-home based.

Travel Mode – It can be generally classified into automobile, transit, walking and

bicycling. Some TDMs define transit modes by access mode (automobile, walking, and

bicycling) or by service type (local bus, light rail, and train) Some TDMs define

automobile mode by occupancy level (drive alone, shared ride with two occupants,

shared ride with three occupants, etc.).

Trip Generation – Its purpose is to estimate how many trips of each type that begin or

end in each geographic unit. In a TDM, this step calculates how many vehicle trips or

person trips by modes (e.g. automobile, walking, and bicycling) are produced and

attracted in each TAZ. The output of Trip Generation is trip productions and trip

attractions in each TAZ by Trip Purpose.

Trip Distribution – Its purpose is to estimate how many trips travel between zones. In a

TDM, this step relates the trip productions and attractions from the Trip Generation step.

The output of Trip Distribution is production-attraction Trip Tables by Trip Purpose.

Mode Choice – Its purpose is to split trips in the Trip Tables by Travel Mode. This step

calculates how many trips between zones are made by each type of mode. The output of

Mode Choice is Trip Tables by Travel Mode by Trip Purpose.

Trip Assignment – Its purpose is to routes vehicle trips and transit trips from the OD

Trip Table onto a highway network and a transit network. This step calculates how many

 147

trips take specific paths through a road or transit network. The result of Trip Assignment

is traffic volumes on network links by time of day and by Travel Mode.

External Travel and External Zone – The External Travel refers to trips that begin and

end in External Zones, which are TAZs outside a TDM’s model area. In a TDM, its

External Travel is estimated by Trip Generation and Trip Distribution and is usually

represented in OD Trip Tables including External Zones and zones within the model area.

Intrazonal Trip and Interzonal Trip – An Intrazonal Trip refers to a trip whose Origin

and Destination are within the same zone. An Interzonal Trip refers to a trip whose

Origin and Destination are in two different zones. Only Interzonal Trips will be loaded

onto the Transportation Network in the Trip Assignment.

Java – It is a computer programming language, which was originally developed by Sun

Microsystems (merged into Oracle Corporation later on).

 148

REFERENCES

1. Texas Transportation Institute. The Effect of Network Detail on Traffic Assignment Results.
Texas Transportation Institute, Texas A&M University, 1967.

2. Chang, K., Z. Khatib, and Y. Ou. Effects of Zoning Structure and Network Detail on Traffic
Demand Modeling. Environment and Planning B, Vol. 29, No. 1, 2002, pp. 37-52.

3. Giaimo, G. Travel Demand Forecasting Manual 1 – Traffic Assignment Procedures . Ohio
Department of Transportation, 2001.

4. Bovy, P., and G. Jansen. Network Aggregation Effects upon Equilibrium Assignment
Outcomes: An Empirical Investigation. Transportation Science, Vol. 17, No. 3, 1983, pp. 240-
262.

5. Jansen, G., and P. Bovy. The Effect of Zone Size and Network Detail on all-Or-Nothing and
Equilibrium Assignment Outcomes. Traffic Engineering & Control, Vol. 23, No. HS-033 448,
1982.

6. Khatib, Z., K. Chang, and Y. Ou. Impacts of Analysis Zone Structures on Modeled Statewide
Traffic. Journal of Transportation Engineering, Vol. 127, No. 1, 2001, pp. 31-38.

7. JEON, J., S. KHO, D. KIM, and J. LEE. Interactions of Aggregated Zoning and Network
Systems: A Case Study of Seoul City. Journal of the Eastern Asia Society for Transportation
Studies, Vol. 8, 2010.

8. Jeon, J., S. Kho, J. J. Park, and D. Kim. Effects of Spatial Aggregation Level on an Urban
Transportation Planning Model. KSCE Journal of Civil Engineering, Vol. 16, No. 5, 2012, pp.
835-844.

9. Haghani, A. E., and M. S. Daskin. Network Design Application of an Extraction Algorithm for
Network Aggregation. Transportation Research Record, No. 944, 1983.

10. Ruddell, K., and A. Raith. Initializing the Traffic Assignment Problem by Zone Aggregation
and Disaggregation. Transportation Research Record: Journal of the Transportation Research
Board, No. 2466, 2014, pp. 52-57.

11. Connors, R., and D. Watling. Aggregation of Traffic Networks using Sensitivity Analysis.
UTSG, January, 2008.

12. Chan, Y. A Method to Simplify Network Representation in Transportation Planning.
Transportation Research, Vol. 10, No. 3, 1976, pp. 179-191.

13. University of Maryland College Park, and Parsons Brinckerhoff. Maryland Statewide
Transportation Model User's Guide. Maryland State Highway Administration, Maryland, 2011.

14. Baltimore Metropolitan Council. Travel Forecasting Model Calibration Report. , 2006.

 149

15. ———. Baltimore Region Travel Demand Model for Base Year 2000 (Task Report 04-01). ,
2004.

16. National Research Council (U.S.). Transportation Research Board. HCM 2010: Highway
Capacity Manual. Transportation Research Board, 2010.

17. Florian, M., and D. Hearn. Network Equilibrium Models and Algorithms. Handbooks in
Operations Research and Management Science, Vol. 8, 1995, pp. 485-550.

18. Wardrop, J. G. ROAD PAPER. SOME THEORETICAL ASPECTS OF ROAD TRAFFIC
RESEARCH. In ICE Proceedings: Engineering Divisions, Thomas Telford, 1952, pp. 325-362.

19. de Dios Ortuzar, J., and L. G. Willumsen. Modelling Transport. John Wiley & Sons, 2011.

20. Sheffi, Y. Urban Transportation Networks. , 1985.

21. Rose, G., M. S. Daskin, and F. S. Koppelman. An Examination of Convergence Error in
Equilibrium Traffic Assignment Models. Transportation Research Part B: Methodological, Vol.
22, No. 4, 1988, pp. 261-274.

22. Boyce, D., B. Ralevic-Dekic, and H. Bar-Gera. Convergence of Traffic Assignments: How
Much is enough? Journal of Transportation Engineering, Vol. 130, No. 1, 2004, pp. 49-55.

23. Baltimore Regional Transportation Board. Maximize2040 Draft Plan. Baltimore Metropolitan
Council, Baltimore, Maryland, 2015.

24. Comsis Corporation., United States., Office of Highway Planning., Urban Planning Division.,
United States.,Federal Highway Administration.,. Traffic Assignment, August 1973 : Methods,
Applications, Products. U.S. Dept. of Transportation, Federal Highway Administration ; For sale
by the Supt. of Docs., U.S. G.P.O., [Washington, D.C.?]; Washington, D.C., 1973.

25. National Cooperative Highway Research Program. Travel Demand Forecasting: Parameters
and Techniques. 716, Transportation Research Board, Washington, D.C., 2012.

26. Wood, S. J., and E. J. Wood. A Practitioner’s Guide to GIS-Terminology. , 2000.

