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ABSTRACT

A new upper bound is obtained for the singular perturbation parameter of an asymptotically
stable singularly perturbed system. General time-invariant systems with a single small parameter
are considered. The paper employs a Riccati equation whose solution is known to facilitate the
exact decoupling of fast and slow dynamics. An application of the Brouwer fixed point theorem
to the Riccati equation and of Liapunov’s direct method to the fast and slow subsystems results in
the desired upper bound. Computation of the estimate requires only the solution of two Liapunov
matrix equations. For the case of scalar fast and slow variables, an expression for the estimate is
evaluated and compared with the upper bound of Zien (L. Zien, J. Franklin Institute, 295, pp.
373-381, 1973).
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1. Introduction

Consider the system

7 = Az + By

(1)

637 = Cr + Dy

in which €¢>0 is a small real parameter, ¢ and y are vectors in " and R™ respectively, and
A ,B,C.,D are matrices of appropriate dimension. System (1) is referred to as a singularly per-
turbed system since its dimension drops from n +m to n when the parameter ¢ is formally set to
0. Theorem 1 below gives sufficient conditions for the asymptotic stability of (1) for all
sufficiently small values of the singular perturbation parameter € and has been derived by several
authors. See the excellent survey articles [17, 18, 19] for a discussion of results in singular pertur-
bation theory and for references to the early literature.

Notation. By ‘a:= b’ one intends that e is defined as b . For a square matrix G, (G ) denotes
the spectrum (set of eigenvalues) of . Throughout the paper the spectral (or L,) norm is used
and is indicated by | |. This is for simplicity and does not represent a limitation of the method.

(Recall that |P|'2 — Ama(P’ P) for any real matrix P, where A\, (P P) denotes the largest
eigenvalue of P° P; If P is a vector, this is the Euclidean norm of P [21]. ) Finally, J(¢) will
denote the Jacobian matrix

J(€) := [efO e_?D] (2)

of (1) at the equilibrium (z ,y ) = (0,0).

Recall that a matrix is a stability matrix (or simply stable) if its spectrum lies in the open
left half complex plane [3].

Theorem 1 [11]. Let D be nonsingular. If the matrices Ay:= A — BD™'C and D are stable,
then there exists an € > 0 such that the null solution of system (1) is asymptotically stable for all
€ € (0,%).

Since the parameter € typically represents a small physical quantity over which one has lit-
tle or no control, it is of practical significance to find explicit upper bounds ¢, on ¢ ensuring that
the conclusion of the theorem above is valid for all € € (0,6,). The aim of this paper is to derive
one such upper bound. The derivation consists of two main steps. First, the Brouwer fixed point
theorem is used to obtain an initial upper bound on ¢ which ensures the existence of a solution to
an associated algebraic matrix Riccati equation. This initial upper bound is parametrized by the
magnitude of a norm constraint imposed on a solution to the Riccati equation. The referenced
Riccati equation (Eq. (6) below) is useful since its solution(s) can be used to produce a nonsingular
similarity transformation whose effect is to explicitly separate the fast and slow dynamics of (1).
Next, Liapunov’s direct method is applied to obtain a bound on the norm of the solution to the
Riccati equation which ensures asymptotic stability of the fast and slow subsytems. An explicit
upper bound on the singular perturbation parameter ¢ readily follows.

It appears that Zien’s 1973 paper [23] was the first to obtain concrete results on this issue.
More recently, Javid [13] derived an upper bound valid for linear time-varying systems. Since
{28] and {13] used similar contraction mapping arguments on function space, it is not surprising
that the upper bound of [13] reduces to that of [23] in the time-invariant case. Sandell [20] has
studied the problem using the singular value decomposition, obtaining an inequality involving e
which was then used to yield explicit upper bounds in specific examples, though no generally
applicable formula for an upper bound was derived. Chow [7] contains a stability computation
for a class of nonlinear autonomous singularly perturbed systems which can be directly applied to



yield an explicit upper bound for ¢. Finally, Khalil [15] studies a class of nonlinear systems in
which several singular perturbation parameters €,,...,6,;4 may appear. An upper bound on
(e,€65 * - ~6M)1/M is obtained by a Liapunov function argument under the assumption that the
mutual ratios ¢; /(:j are bounded from above and below by known positive constants.

2. Separation of Fast and Slow Modes

It is well known [6, 16, 19, 18, 8, 1] that if D is nonsingular the Riccati equation for the
m Xn matrix L

DL — eLA + €eLBL - C =0 (3)

can be used to exactly separate the fast and slow dynamics of (1) for those values of ¢ for which
(3) has a solution. Moreover, one has the following representation for the spectrum of J (¢):

o(J(e)) =a(A - BL)|Jo(e'D + LB). (4)

It L exists, (4) implies that the eigenvalues of (A - BL) are the slow modes and those of
(¢1D + LB) are the fast modes of (1). In this paper Eq. (4) is all that is required from the
results on explicit separation of fast and slow modes and the reader is referred to the survey arti-
cles mentioned above for further details. Note that by Eq. (3) L =D'C + O( lel ). It will prove
convenient in the computations below to use the matrix

r:=>07"'C - L (5)
in favor of L, as =0 (|| ). In terms of T, (3) becomes [1]
DT +e¢D7'C -T)A,~ eI'BT + D' CBI'=o0, (6)

where A, — A - BD™(C is as defined in Theorem 1.
Rewrite Eq. (6) in the fixed point form

F(r)y=Tr (7)
where the parametrized mapping F', : R™ *"* R ™ X" is defined for any real € by
F(T):—= eD™{ (T ~D"C)A, +TBT - D'CBT }. 8)

A parametrized upper bound €,(«) on € will now be derived such that for any «>0 and for
all € € (0, €,(a)], [Tl < « implies |F (") < a. Proceeding, let o>0 be given and let ' € R™ X"
satisfy [l < «. From (8) one has

17 (o) < eI { (Il +ID'C) 1A, | + IBlIPP + ID-*CBIIrl }

<elD {(a +IDCl)|A,]| + ®IB] + «|D'CB]}. (9)

From (9) follows immediately that for |F (")) < « to hold it suffices that ¢ < ¢,(e) where ¢,(a) is
given by

o

D {ID"CllA,] + a(ID"CBI+IA,]) + «@IBI} (10)

Thus for any a>0, F is a continuous map of the closed ball B, := {I' € R™*" ;|| < «} into
itself whenever 0 < € < ¢,(a). Note that B, is homeomorphic to the closed unit ball in R ™" .
The Brouwer fixed point theorem ( [4], p. 54 and [12], p. 10 ) may now be invoked to establish the
existence of a solution I'(¢) to (7) in B, for any € € (0, ¢,(c)].

6(a) =

Theorem 2. For any « > 0 and for all € < ¢,(@), the Riccati equation (6) has at least one solu-
tion T'(e) with [I'(e)} < a.

Remark 1. Note that for any system (1) with B £ 0 (the generic and nontrivial case), the upper
bound €,(c) approaches 0 as a — oo. It is clear, however, that a solution of (6) in the ball B, for
a given o = ¢, will also belong to any ball B, with @ > «p. Therefore the upper bound of



Theorem 2 can be made less conservative by using instead of ¢;(a) the revised estimate
€,(a) := max ¢€,(8).
o< <

Remark 2. 1t is natural to attempt to factorize the quadratic appearing in the denominator of the
expression (10) for €,(c). In this regard, note that replacing |D*CB/| in (10) by |DC||B| results
in the new (in general more conservative) upper bound 61“ given by

(3

D00l - o) (A1 + dBl) (11)

€]’ (o) =

Remark 3. Note that in the derivation of Theorem 2 only existence of a solution I' to (6) needed
to be ensured. A further upper bound on ¢ to ensure uniqueness could easily be derived by a con-
traction mapping argument as in ( (8], pp. 16-18). However, this could only result in a more con-
servative final estimate and would thus be counterproductive.

3. Perturbational Stability Analysis

3.1. A basic perturbational result

The point of departure of this section is Brockett’s proof of a basic perturbational result on
stability of linear systems (Brockett [5], p. 205). In [5] one is concerned with the persistence of
exponential stability of time varying linear systems under sufficiently small linear perturbations.
The specialization of this result to the time-invariant case is elementary and is easily stated.

o, .
Proposttion 1. Let F' be a constant square matrix and suppose that = Fr is asymptotically
s.table. Then there is a x4 > 0 such that if A is a constant matrix with lal <u, then
z = (F + A)zx is also asymptotically stable.

Note that Proposition 1 follows from continuity of the eigenvalues of a matrix in its parameters
(Kato [14], p. 107). The proof of the time varying version of Proposition 1 in [5] will now be spe-
cialized to yield an explicit upper bound u' for |A|

Since F' is stable there is a unique, positive definite matrix ¢ which solves the Liapunov
matrix equation F' @ + QF = -I |5, 22]. Moreover, ¢ is given by the convergent integral

o !
Q = [eft efat (12)
o]

Using z’ Q@ as a candidate Liapunov function for the perturbed system z — (F + A)z, one
computes

%z' Qr =<' (F'Q + QF + QA + A’ Q)2
=-z's + 2 (QA + A Q) (13)
Noting that there is a g such that |A| < p implies
QA + a' Ql <1 (14)
completes the proof of Proposition 1.
To obtain an  explicit upper bound u', use the triangle inequality

loa + a' @l < Q] (lal + lar |) = 21@llal. (The last equality follows from the fact that
the spectral norm of a matrix equals that of its transpose [21]. ) Eq. (14) now yields the follow-
ing result.



Proposition 2. Let the assumptions of Proposition 1 hold. Then F' + A will be a stability
matrix if [A] < u* where

uoo= _2—|_Q_T (15)

and where @) is given by Eq. (12).

3.2. Stability of the slow subsystem

As noted earlier, (4) implies that the eigenvalues of the separated slow subsystem are pre-
cisely the eigenvalues of the matrix (A — BL) =: A’ if a solution L to (3) exists. In terms of T
(see Eq. (5)) this matrix is given by

A=A - BD'C + BT

= A, + BT, (16)
with T" a solution to (6). Proposition 2 now implies that A° is a stability matrix (i.e. the slow
modes are stable) if (i) A, is stable, and (ii) there is a solution " of (6) with |BT| < |22 T where

2
2 ALt A
¢ ¢
Q° = [e" " e % dt 17
(o]
This will be true if the hypotheses of Theorem 1 hold and if
1
N < ———rr 18)
21B11Q"| (

is satisfied, where T" is some solution to Eq. (6).

3.3. Stability of the fast subsystem

By Eq. (4) and the definition (5) of ', the eigenvalues of the fast subsystem are those of the
matrix ¢€!D + D'CB - I'B. Since ¢ > 0 the fast subsystem is stable if and only if the
matrix

Al =D + eD'CB - «'B (19)
is stable. By Proposition 2, this will be the case if (i) D is stable, and (ii) the inequality
1
leD'CB - Bl < —— (20)
2|Q7|

is valid, where @) !/ is defined as
e !
Q7 ::feD‘eD‘dt. (21)
0

By the triangle inequality and Eq. (18), the left side of (20) is not larger than
e (ID'CB| + L ). Defining
2|Q°|
o Q] |
@/l + 21Q°lID-*CB))
it now follows that the fast subsystem is stable if (i) a solution I' to (6) exists which satisfies the
bound (18), and (ii) ¢ < €.

(22)



4. The Upper Bound

It is now straightforward to give an upper bound ¢, on € such that for 0 << € < ¢, the
asymptotic stability of (1) is certain. Let the hypotheses of Theorem 1 be satisfied. By the
results of Section 3.2, the slow subsystem is well defined and its stability is ensured if there is a
solution |[I'| of Eq. (6) satisfying the inequality (18). By Theorem 2, this will be the case if
€ S €,(ov) where « is any positive number satisfying

1 —
S ———) o
“ = ZBlig  “© (23)

Finally, the fast subsystem will be well defined and stable if the last remark holds and if ¢ < ¢,
where ¢, is given by Eq. (22). By Eq. (4) stability of the fast and slow subsystems implies that of
the singularly perturbed system (1).

These remarks are summarized in the following theorem, in which the upper bound ¢, of
this paper is stated explicitly. Note that the freedom in « is reflected in taking a maximum over
0 < o < @in Eq. (24).

Theorem 3. Let the assumptions of Theorem 1 hold, so that both A, = — BD7IC and D are
stability matrices. Then the null solution of (1) is asymptotically stable for all ¢ in the open
interval (0, €,) where ¢, is given by

€ = min ( max ¢€/(x), € ),
o<a<a

(24)

and where ¢,(@), €; and @ are given by Egs. (10), (22) and (23) respectively.

Remark 4. Note that €, is simply min ( €,(&), €, ) where ¢; was defined in Remark 1 after
Theorem 2.

One anticipates the most laborious task in computing ¢, to be the computation of the
matrices @° and @ /. Rather than relying on the explicit form of these matrices revealed in Eqs.
(17), (21) it is advisable to use instead an efficient numerical algorithm for directly solving the
(linear) Liapunov matrix equations associated with ¢° and Q/ . Because of this flexibility, the
upper bound proposed here may prove less expensive to compute for large systems than that of
[23], since the latter requires the evaluation of integrals on [0, oo) in which the matrix exponen-
tials ¢ and e appear. See Davison and Man [9] and Davison [10] for an algorithm for the
numerical solution of Liapunov matrix equations. This algorithm converges in O (n®) steps,
where n is the number of rows (or columns) of the # X7 unknown matrix @ .

A modest amount of numerical experimentation indicates that the upper bound obtained
here fares respectably in relation to those of Zien, Chow and Khalil (see the Introduction). For
systems in which m = n = 1, so that z and y are scalars, however, Zien’s result can be shown
to be always less conservative than the one derived here. The formulae for this case are given
below. The lower case letters a,b,c,d represent the magnitudes of A,B,C,D in (1), respec-
tively, and a, := |A0 |. For this class of systems, Zien’s upper bound [23] was found to be given
by

2

(Zien) (25)

€ = .
0 2bc

The upper bound obtained using Theorem 3 above is

d2 i ag ¢
2 (agd + be) T =<2
o = d? .. %o c (26)
(o) + ey T 7T

Some intermediate calculations used in the derivation of Eq. (26) are as follows. The value of €,



a,c
is d2/(ay,d + cb). From (23) one computes & = a,/b. Define o := (b—(:i)l/z’ so that @ < o

when (a,/b) < (¢ /d) and " < @ otherwise. The upper bound ¢, is €,(@) in the former case

and €,(a”) in the latter. Hence the estimate (24) reduces to max ¢,(«) in the case n = m = 1.
0<a<a

5. Conclusions

The paper has presented a derivation of a new upper bound ¢, on the small paramecer € of a
singularly perturbed system (1) such that if Theorem 1 applies the asymptotic stability of (1) is
ensured if 0 < ¢ << ¢;,. The analysis consisted of applying the Brouwer fixed point theorem and
Liapunov’s direct method to obtain explicit estimates for well known results on time scale separa-
tion and on regular perturbation of stable linear systems. An expression for ¢, was then obtained
by considering the implications of these estimates for the stability of fast and slow subsystems
associated with system (1). Computation of the new upper bound involves only the numerical
solution of two Liapunov matrix equations, for which efficient algorithms are available. The esti-
mate of this paper was compared with Zien’s original estimate [23] for the case of scalar fast and
slow subsystems. For this case, the upper bound obtained here was shown to be the more conser-
vative of the two, though the degree of conservativeness depends heavily on the specific system
(see Eqgs. (25), (26)) being studied. Further work is necessary before any general conclusions on
the relative tightness of these and other existing estimates can be assessed for large systems, for
which their use is clearly the only recourse.
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