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Microbiome sequencing allows researchers to reconstruct bacterial community census 

profiles at resolutions greater than previous methodologies. As a result, increasingly 

large numbers of these taxonomic community profiles are now generated, analyzed, 

and published by researchers in the field. In this work, I present new methods and 

software infrastructure for visualization and sharing of microbiome data. The overall 

goal is to enable a researcher to complete cycles of exploratory and confirmatory 

analysis over metagenomic data. I describe Metaviz, an interactive statistical and 

visual analysis tool specifically designed for effective taxonomic hierarchy navigation 

and data analysis feature selection. I next detail the incorporation of Metaviz into the 

Human Microbiome Project Data Portal. I then show a novel method to visualize 

longitudinal data across multiple features built as an extension over Metaviz. Finally, 

previous work has shown that specific subjects in an experimental cohort can be 

identified using their microbiome data. I developed software using a secure multi-



  

party computation library to complete comparative analyses of metagenomic data 

across cohorts without directly revealing feature count values for individuals.  
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Chapter 1: Introduction 

1.1 Microbiome sequencing 

A microbiome is the collection of microbial organisms in an environment. High throughput DNA 

sequencing provides a mechanism to generate a microbial community census. Current research focuses 

on identification of the microbiome in human body sites1 and different ecological domains2. For human 

health, studies are designed as large observational epidemiological studies or smaller controlled 

experiments. Initial large observational studies focused on identifying the microbiome of healthy 

individuals, examining known and detecting novel pathogens in diarrheal diseases3 and observing the 

relationship between the obesity and an individual’s microbiome4. One large epidemiological study of 

note is the Global Enteric Multi-Center Study, which gathered stool samples from children with diarrheal 

disease and matched controls in four countries to identify associations between microbiome structure and 

disease status5. Another prominent study examined the microbiome of individuals with Inflammatory 

Bowel Disease with a focus on Crohn’s disease6.  Recent and ongoing work in the field investigates the 

feasibility and effectiveness of modifying the microbiome of an organism to potentially alter host health.  

Researchers create microbiome community profiles for a community by first taking a sample and 

extracting DNA. Next, one of two high-throughput sequencing methods is employed. The first method 

amplifies specific variable regions of the 16S ribosomal RNA gene. After the products are sequenced, the 

reads are clustered and annotated against a taxonomic annotation reference database. The number of 

times a given taxonomic unit is observed for each sample is computed into a count table that serves as the 

main object of subsequent downstream analysis. The other sequencing method is whole metagenome 

shotgun sequencing. The reads from this sequencing approach are either aligned to reference genomes, 

assembled, used in k-mer based taxonomic classification7, or compared against clade-specific gene 

catalogues8 to produce taxonomic profiles. Marker gene sequencing surveys are more accessible to 
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perform than whole metagenome shotgun sequencing and are more often used. Metagenome sequencing 

allows for gene-level resolution and functional profiling while marker gene surveys must rely on a 

functional inference estimation.   

1.2 Microbiome Data Analysis 

 Examining collections of microbiome requires processing pipelines and robust analysis methods. 

Looking at historical data analysis techniques, the recommendation from John W. Tukey is for multiple 

rounds of exploratory data analysis and confirmatory data analysis9. Figure 1 shows the rounds of 

successive refinement of trend identification and testing if the result is more likely than random chance. 

With this approach, robust confirmatory and exploratory methods are needed to interrogate datasets for 

results. 

 

Figure 1: Tukey Data Analysis Ideal 
 

Data visualization is an essential aspect of exploratory data analysis. Several projects provide 

mechanisms for visualization of microbiome data. One widely used approach is Krona that displays the 

taxonomic hierarchy as a Sunburst diagram with relative abundance of a given taxa represented as the arc 

length at that level of the taxonomy10. Taxonomer performs both read taxonomic assignment and 

visualization of results using a sunburst diagram to visualize features11. The R package Pavian 

incorporates Shiny and D3.js components to enable interactive analysis of results for metagenomic 
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classification tools12. VAMPS is a web-service that provides a JavaScript and PHP-based metagenomics 

visualization toolkit of datasets uploaded by researchers13. Anvi’o is a multiomics platform that supports 

analysis using custom JavaScript visualizations14. The web-service MicrobiomeDB hosts microbiome 

community taxonomic profile data from open datasets and uses Shiny to visualize data15. 

The bulk of confirmatory data analysis is often carried out using statistical methods that 

implement a hypothesis testing procedure. Statistical methods for microbiome sequencing data include 

biomarker discovery and phylogenetic analysis. metagenomeSeq is an R/Bioconductor package which 

implements a method for normalization and differential abundance testing using a zero-inflated Gaussian 

mixture model16. phyloseq is an R/Bioconductor package for analysis of microbiome data including 

ordination methods and diversity analysis17. For visualization, metagenomeSeq and phyloseq offer static 

plotting utilities. 

Metaviz provides a comprehensive interactive exploratory utility for microbial marker-gene 

sequencing and whole metagenome shotgun sequencing data with integration to confirmatory analysis 

utilities from the R/Bioconductor metagenomeSeq package. Metaviz is unique compared to the other 

tools listed above as it works with data from both sequencing methods, hosts datasets as a web-service, 

can be used as a standalone instance, generates high quality graphics, and links tightly with a statistical 

testing package.  

1.3 Genomic Sequencing Project Data Access and Coordination 

Prominent Projects 

The ENCODE Data Coordination Center hosts a comprehensive data portal which includes 

dataset curation and archiving, reprocessing capabilities on updates of reference genomes, and sample 

selection utilities18. The portal serves data from several projects including the Epigenome Roadmap and 

links to UCSC Genome Browser and ENSEMBLE Browser for visualization19. The TCGA Data Portal 
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was a comprehensive resource of cancer genome data and now is moving the Genomic Data Commons 

TCGA20. 

Data Security and Privacy 

Addressing privacy and security concerns is a vital aspect of large-scale sequencing projects. 

There are two motivations to share genomic and physical attribute data broadly from a scientific 

perspective. First is the statistical power of observational tests. The power of a statistical test relies on the 

sampling size and method, therefore enabling many researchers to share data can lead to a stronger 

statistical result. The second reason for sharing genomic data is reproducibility of results. Scientific 

studies are designed and described so that other researchers can produce the result following the same 

procedure over the same material. For genomic data analysis, the functions are made public but the 

genomic data itself also needs to be accessible by other scientists in a way that addresses privacy 

concerns. 

Several proposals exist for accomplishing the goal of sharing data between researchers while 

offering various level of privacy guarantees. These fall into three broad areas: (1) Access control in 

which a data custodian manages which parties can view and run analysis over research participants' data, 

(2) Statistical perturbation of data or output where the identity of any individual sequence is guaranteed 

to not be inferred by other parties running queries over participant data, (3) Secure multi-party 

computation in which nothing except the function output, and anything that can be logically inferred 

from it, is revealed during evaluation.  

Access control forms the basis of the current policy for an NIH genomic research data-

management system known as the Database for Genotypes and Phenotypes (dbGAP). In this setting, the 

security of private medical information rests on data analysts and the institutions that hold the data. Once 

a participant provides data to a research group, those analysts are responsible for IT security while 
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processing data. When sharing data with other institutions, data is sent to another researcher who is then 

trusted to securely store and manage access to a copy of the data during the study. As recent attacks on 

medical records systems at various US hospitals, health insurance companies, and government employee 

record databases demonstrate, warehousing vast amounts of data leaves them particularly vulnerable to 

attack. Further, in dbGAP, patients need to provide broad consent to allow research data to be released to 

other parties. When additional data needs to be gathered or released to other analysts, re-consenting 

patients is a time-consuming and cumbersome task. 

Statistical perturbation of analysis results, most widely implemented as differential privacy, is a 

second approach for researchers to provide privacy guarantees to participants. In this setting, a researcher 

maintains a data set and allows other researchers to perform queries over the data. Informally, the results 

of these queries are perturbed in such a manner that an adversary, with access to query results over a data 

set in which one specific participant has a set of values and results from another data set with that 

specific participant having a different set of values, will not be able to infer any information about that 

individual by examining the results21. While this approach enables provable security, it is complicated for 

users to reason about tradeoffs between privacy budget and usability of data. 

Secure multi-party computation is a current research area and its intended use case closely 

matches that of researchers sharing data. This approach provides another track to navigate the 

intersection of data sharing utility and research participant privacy. The security guarantee with secure 

multi-party computation (SMC) is that nothing beyond the function output can be learned about the 

private input of either party. A recent contribution in the SMC space for genomic data analysis shows the 

promise of this technique for data22. This work introduces a “percent revealed” metric which is an 

appropriate mechanism to differentiate between the guarantees that SMC provides compared to 

differential privacy or access control. 
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1.4 Contributions 

This dissertation contributes microbiome data analysis software along with data access 

infrastructure for integrative and comparative studies.  

1.  Metaviz – Interactive visualization for exploratory analysis of community taxonomic profile data. 

Metaviz is a web application for visualization of microbiome abundance data. The application can 

visualize marker-gene or whole metagenome shotgun sequencing data. Metaviz introduces a navigation 

utility for the taxonomic hierarchy.  

2. Metaviz integration with the Human Microbiome Project (HMP) Data Infrastructure. We describe the 

design and implementation of linking between the HMP Data Portal and Metaviz. Also, we present an 

analysis of a subset of data from the HMP using Metaviz and metagenomeSeq.  

3. Microbial community longitudinal and functional profiling visualizations in Metaviz. This work 

expands the visualizations available in Metaviz for longitudinal data using sparklines as the entries of a 

heatmap to show trends across the set of features. This work also introduces an interactive filter for 

community functional profile data using the navigation mechanism in Metaviz, provides a mechanism to 

import and export taxa of interest, and connects Metaviz to external information sources.  

4. Privacy-preserving microbiome analysis using secure computation. In 2015, Franzosa et al. showed 

that it was possible to use microbiome features to identify individuals at different time points in the HMP 

dataset23. This work implements statistical analysis functions using a library for secure multi-party 

computation. The goal of this project is to allow researchers to compute analyses over shared microbiome 

abundance matrices without revealing the underlying counts directly. 
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Figure 2: Microbiome Data Analysis Contributions 

These contributions address specific aspects of the exploratory and confirmatory data analysis 

cycle. Figure 2 shows the relationships between contributions to the microbiome data analysis area. 

Metaviz is an interactive utility for navigating a taxonomic hierarchy and linked quantitative 

measurement visualizations. Linking Metaviz to the Human Microbiome Project data access center web 

portal leverages existing data resources to provide the community with a powerful analysis approach. 

MicrobiomeSC addresses privacy concerns through using a secure data-sharing protocol to ensure data is 

widely-accessible in the current phase of expanding microbiome research. These contributions fit within 

the data analysis model championed by Tukey, advance exploratory data analysis with novel 

visualizations, and ease the burden on researchers of sharing data for confirmatory analysis. 
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Chapter 2: Metaviz: interactive statistical and visual analysis of 
metagenomic data 

A version of this work is published in Nucleic Acids Research with the following citation: 
Justin Wagner*, Florin Chelaru*, Jayaram Kancherla*, Joseph N Paulson*, Alexander Zhang, Victor 
Felix, Anup Mahurkar, Niklas Elmqvist, Héctor Corrada Bravo; Metaviz: interactive statistical and 
visual analysis of metagenomic data, Nucleic Acids Research, Volume 46, Issue 6, 6 April 2018, Pages 
2777–2787, https://doi.org/10.1093/nar/gky136.  
This work is joint with: Florin Chelaru, Jayaram Kancherla, Joseph N. Paulson, Victor Felix, Anup 
Mahurkar, Niklas Elmqvist, and Héctor Corrada Bravo.  

2.1 Introduction 

High-throughput sequencing of microbial communities provides a tool to characterize 

associations between the host microbiome and health status, detect pathogens, and identify the interplay 

of an organism’s microbiome with the built environment. Recent highlights include work on the 

specificity of the human skin microbiome24, diversity in the ocean microbiome2, and cataloging the 

global virome25. Effective analysis tools and appropriate statistical models for this type of data are vital 

to derive and communicate significant insights from these experiments. In other high-throughput 

sequencing assays, including those for genome26, transcriptome, and epigenome27, next-generation 

genome browsers that integrate exploratory computational and visual analysis have proven to be effective 

analysis tools. Exploratory analysis tools for microbiome data are scarce however, partially stemming 

from the challenge that microbiome features, the units of measurement and analysis, are organized in a 

taxonomic hierarchy. Specifically, while the linear structures of tracks and ranges used in genome 

browsers provide a natural scheme for navigation in genomic visualization, a hierarchical exploration 

technique is not readily available. In this paper, we present the Metaviz tool for effective interactive 

exploration, analysis, and data visualization of hierarchically organized metagenomic features. 

https://doi.org/10.1093/nar/gky136
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Motivation  

As an illustrative use case for statistically-guided interactive visualization, we consider a data 

analysis from the Moderate to Severe Diarrheal (MSD) disease study among children in four countries of 

the developing world 3. A typical analysis for this case-control study includes statistical testing to 

compare taxa abundance between children with and without diarrhea to find novel associations between 

health and disease. The metagenomeSeq Bioconductor package 

[http://bioconductor.org/packages/release/bioc/html/metagenomeSeq.html] is a popular tool to identify 

differentially abundant features16. In this tool, we target workflows after an abundance matrix has been 

computed. A standard workflow starts with the data analyst obtaining sequence counts indicating the 

abundance of annotated operational taxonomic units (OTUs) for each sample in a study with phenotypic 

and experimental characteristics of these samples available as metadata. The workflow proceeds by the 

data analyst aggregating counts to a specific level of the taxonomic hierarchy (e.g. species or genus) and 

obtaining differential abundance inferences by computing log fold changes and p-values for each taxon 

between case and control groups. She then selects features with a log fold change beyond a given 

threshold and p-value cutoff as differentially abundant taxa. Next, she visualizes the abundance of these 

filtered features across samples in a heatmap. After interpreting the plot, she may decide to change the 

feature selection parameters or further explore the taxonomic hierarchy which requires another iteration 

of computing the feature set and visualization. In this case, each refinement of statistical analysis 

parameters produces another visualization with no linking between results.  

Our design of the Metaviz application for interactive visualization and analysis makes this 

workflow much more effective: for instance, once a set of differentially abundant features is selected, the 

data analyst can interactively visualize abundance data for those specific features. She can then explore 

the hierarchy of features, aggregate counts to any level of the taxonomy, and identify sub-structures that 
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are difficult to ascertain at lower levels of the taxonomic hierarchy. Further, she may calculate 

differential abundance at a different level of the hierarchy then dynamically explore these inferences in 

the same Metaviz workspace, thus streamlining her exploration of a complex set of differential 

abundance results using statistical and visualization tools. 

Related Work 

Taxonomer performs both read taxonomic assignment and visualization of results using a 

sunburst diagram to visualize features11. Pathostat is a Shiny application that computes statistical 

metagenomic analyses, visualizes results, and is integrated with different Bioconductor packages 

[http://bioconductor.org/packages/release/bioc/html/PathoStat.html]. Pavian is an R package which 

incorporates Shiny and D3.js components to enable interactive analysis of results for metagenomic 

classification tools [https://doi.org/10.1101/084715]. Panviz is a tool for exploring annotated pan genome 

datasets based on D3.js libraries28. Krona is a web-based tool for metagenomics visualization that 

provides a sunburst diagram to navigate the feature space29. VAMPS is a web-service that provides a 

JavaScript and PHP-based metagenomics visualization toolkit of datasets uploaded by researchers13. 

Anvi’o is a multiomics platform that supports analysis using custom JavaScript visualizations14. 

MicrobiomeDB is a web-service that hosts microbiome community taxonomic profile data from open 

datasets and uses Shiny to visualize data15. 

Encompassing the features of these tools, Metaviz provides a comprehensive interactive 

visualization environment using JavaScript and D3.js for microbial marker-gene sequencing and whole 

metagenome shotgun sequencing data with integration to R/Bioconductor. In contrast to these tools, 

Metaviz uses FacetZoom which is more suited than sunburst diagrams for browsing the hierarchical 

structure of metagenomic data across many samples by enabling taxonomic feature selection spanning 

multiple levels of a taxonomy. Further, Metaviz can analyze data from either a database or R which 
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makes it more efficient and scalable than Shiny based tools which are limited by in-memory processing. 

Metaviz implements the WebSockets protocol directly, which allows for use of data transfer types 

beyond those specified in Shiny to support flexible and extensible custom JavaScript visualizations.  

2.2 Materials and Methods 

Metaviz is a web browser-based tool for interactive exploratory microbiome data analysis. It can 

visualize abundance data served from an interactive R session or query data from a graph database 

server. Here, we present the architecture of Metaviz from the web-browser application to database 

storage. A web-browser based application provides flexibility for users and “run anywhere” functionality 

when deploying the tool. We built upon the D3.js project for an aesthetically pleasing and effective suite 

of plots and charts. The data back end serves an abundance matrix with taxonomic annotation for 

features, in our case OTUs, and the front end is a JavaScript application for data visualization. Given the 

structure of metagenomic data, the user navigation tools and the database storage are tailored to 

taxonomic hierarchies. We moved from a relational database model used in Epiviz30, our previous 

interactive data analysis tool for functional genomic data such as gene expression and methylation data, 

to a graph database to manage the feature hierarchy and abundance counts. The fundamental operation 

enabled by this data backend is to efficiently aggregate abundance counts to a specific subset of nodes in 

the taxonomic hierarchy during interactive exploration. 

Visualization layer 

Implementing the visualization layer for this application presents several challenges for 

displaying, navigating, and manipulating data from a feature-rich hierarchy. Design considerations for 

metagenomic data analysis include: 1) size of the feature space; 2) depth of the feature hierarchy; and 3) 

number of samples. Given these characteristics, we focused the design of Metaviz on efficient traversal 
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of the feature space and defining feature selections across the taxonomy. In addition, we engineered the 

navigation tools to be applicable across datasets and persistent between user sessions for collaboration 

and publication of results. 

In Figure 3 we demonstrate the visualization layer of Metaviz on the MSD marker-gene survey 

dataset. The bottom panel is a navigation control designed to effectively explore the taxonomic feature 

hierarchy and aggregate count values of features to any set of taxonomic nodes. The top panel consists of 

a heatmap with the color intensity set as the observed count of a feature (column) in a sample (row). The 

rows are dynamically clustered based on Euclidean distance of the count vectors for each sample and a 

dendrogram shows the clustering result. The top panel also includes a PCA plot over all the features of 

the samples in the heatmap. The stacked bar plots in the second row render, for each sample (column), 

the proportion of counts for each microbial feature. The separate plots show case (left) or control (right) 

samples based on dysentery status and the columns are samples grouped by age range. This collection of 

charts provides multiple views of the same data and is dynamically updated upon user interaction with 

the navigation tool to achieve exploratory iterative visualization. 
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Figure 3: Metaviz interactive visualization of childhood severe diarrhea study 
A subset of 50 samples (25 case and 25 control for dysentery) from the Moderate to Severe Childhood Diarrheal 
Disease study3. The FacetZoom control on the bottom panel is used for exploration of the taxonomic organization 
of metagenomic features. Node opacity in the FacetZoom indicates the set of taxonomic features selected across all 
appropriate visualizations in the Metaviz workspace. Each node can be in one of three possible states as indicated 
by the icon in its lower left corner: 1) aggregated, where counts of descendants of this node are aggregated and 
displayed in other charts, 2), expanded, where counts for all descendants of this node are visualized in other charts, 
or 3) removed, where this node and all its descendants are removed from all the other charts. The left column of 
the FacetZoom control indicates the levels of the taxonomy and the overall selection for nodes at each taxonomic 
level. Hovering the mouse over FacetZoom panels highlights the corresponding features in other charts through 
brushing. The top left chart is a heatmap showing log-transformed counts with color intensity corresponding to the 
abundance of that feature (column) in that sample (row). The dynamically computed and rendered row dendrogram 
shows Euclidean distance hierarchical clustering of samples with color indicating case/control status of each 
sample. The yellow highlighted column is linked between charts and FacetZoom control through brushing. The top 
right chart is a PCA plot over all features at the current aggregation level (order). The stacked bar plot on the left of 
the second row shows proportion of selected features in each case sample (columns) while the right chart shows 
control samples. In both, sample counts are grouped and aggregated by age range. This is available as a Metaviz 
workspace at http://metaviz.cbcb.umd.edu/?ws=yA4BWgUOTiq. 

http://metaviz.cbcb.umd.edu/?ws=yA4BWgUOTiq
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Navigation Mechanism - FacetZoom  

We developed Metaviz to navigate the complex hierarchical structure of microbiome feature data 

and perform the visualization tasks of overview, zoom, and filter. We incorporate the FacetZoom31 

design, which visualizes a hierarchy using a tree structure showing a subset of levels at one time. We 

chose this approach to handle the limitations in the screen size and performance of rendering trees with 

tens of thousands of nodes. We extended the original FacetZoom design to perform interactive 

aggregation and removal of microbial lineages. We refer to our navigation tool, shown in the bottom 

panel of Figure 3, as a FacetZoom control for the rest of the manuscript. 

The nodes of the FacetZoom control indicate how the abundance counts for taxonomic features 

are displayed in the other charts of the Metaviz workspace. Every node of the FacetZoom control can 

receive mouse-click input from the user. A click on a node sets that feature as the root of a dynamically 

rendered subtree. Each node can be in one of three possible states as indicated by an icon in its lower left 

corner: 1) aggregated, where counts of descendants of this node are aggregated and displayed as a single 

feature in other charts, 2) expanded, where counts for all descendants of this node are visualized as 

separate features in other charts, or 3) removed, where this node and all its descendants are removed 

completely from the other charts. The state of a node determines the state of its descendants. Node 

opacity in the FacetZoom control indicates the set of taxonomic units selected across all appropriate 

visualizations in the Metaviz workspace. Hovering the mouse over FacetZoom nodes highlights the 

corresponding features in other charts through brushing as shown in Figure 3. The bottom node of the 

FacetZoom visualization displays the taxonomic lineage of the corresponding feature at the root of the 

subtree currently in view.  

The FacetZoom control includes a level-wise aggregation indicator panel on left side. Each 

element of the indicator panel can be used to set the aggregation state of all nodes at a given depth. The 
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letter on each element of the panel identifies the taxonomic level with “P” denoting phylum and “O” 

signifying order, for instance. The panel on the right provides a persistent global view of the hierarchy to 

identify where in the full taxonomy the current subtree selected by the user is located. As an example, 

when the FacetZoom is displaying nodes from class to genus, only these elements are highlighted in the 

levels indicator panel. 

The bar at top of the FacetZoom sets the range of features shown in the other charts in the 

visualization workspace. The bar is a flexible component with arrows to control movement left or right 

and expansion over the full range of the current subtree. Updates to the filter bar triggers queries over the 

count data and those results are automatically propagated to the other charts in the workspace. 

As described, the FacetZoom controls which features are included in plots and charts of count data in a 

Metaviz workspace. We detail our implementation of heatmaps, stacked bar plots, scatter plots, and line 

plots in Appendix A Materials Section II. 

Metaviz supports text-based search for quick navigation to specific taxonomic features. A user 

can enter the name of a taxonomic feature of interest into a search box on the toolbar. The search 

provides auto-complete and lists features that contain the character string in a drop-down list. Once a user 

selects a feature, the navigation bar in the FacetZoom control will update to encompass that feature and 

all linked data visualizations update as well. 

Metaviz includes a dynamic boxplot, created by clicking on column labels of a heatmap, to offer 

details-on-demand of taxonomic feature count distributions across samples of interest. A box and whisker 

glyph are created for each sample group selected based on criteria defined over sample metadata criteria. 

Text-search can also be used within the boxplot to select any feature in the hierarchy and display counts 

aggregated to that feature.   
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Data layer  

A key difference between microbiome sequencing data and other genomic data is the hierarchical 

organization of its features, which drives the design of the Metaviz back end. Our data model of 

microbiome datasets includes the observed counts for each feature in every sample, the hierarchical 

taxonomic feature annotations and metadata such as phenotypic, behavioral, and environmental 

information for each sample. A query triggered from user interaction operates over these three data types 

and computes aggregations on the count data to the specified hierarchy level. 

To achieve interactive visualizations with reasonable query response times, we used a graph 

database architecture. In a graph database, nodes and edges in a graph are objects that can be queried 

directly. This is a contrast to relational databases in which samples are rows and sample attributes are 

columns. Each table in a relational database encompasses all the required data fields for the observations 

in that table while keys handle relationships between tables. We use a graph database to store each 

taxonomic feature as a node in the graph with edges connecting nodes as specified by the taxonomic 

information. This system uses a natural representation of the hierarchical organization of this data while 

avoiding costly join operations in a relational database. We also store samples as nodes and the count 

value for a feature in a sample is an edge between leaf feature nodes and sample nodes. This graph 

database structure is shown in Figure 4. 
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Figure 4: Metaviz query processing and Graph DB structure 
Shown are two Metaviz deployment options, which can be used concurrently if desired. In one deployment option 
(left), the Metaviz JavaScript front end makes requests to a Python application querying a graph database using 
HTTP. In the other deployment option (right), abundance matrices are loaded into a metavizr session which uses 
the WebSocket protocol to communicate to the JavaScript component, allowing two-way communication between 
JavaScript and an interactive R session. The graph on the left shows how abundance matrices are stored in the 
graph database. Nodes in the graph correspond to metagenomic features or samples, edges between metagenomic 
features denote taxonomic relationship, edges at the leaf level of the taxonomy connect to samples and store the 
corresponding abundance counts. In either deployment option, aggregation queries are evaluated in response to 
FacetZoom control selections in the UI and require summing, for each sample, the counts for features in a selected 
taxonomic subtree.  

Materials 

We utilized several datasets during the design and testing of Metaviz. The first is the MSD dataset 

which was gathered from a cohort of 992 children across four countries with an age range of 0-60 

months. Fecal samples were gathered from subjects with diarrhea and healthy controls. Specific details 
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for data generation, preprocessing, and annotation are covered in Pop et al.3. To study time series, we 

used a longitudinal E. coli analysis dataset gathered from 12 participants who were challenged with E. 

coli and subsequently treated with antibiotics. Stool samples were gathered from participants each day 

starting 1 day pre-infection until 9 days post-infection. Experimental and sample details are available in 

Pop et al.32. We benchmarked our system with data from the Human Microbiome Project which is 

available at the Data Analysis and Coordination website [https://www.hmpdacc.org/hmp/]. We retrieved 

the data as a prepared phyloseq object [http://joey711.github.io/phyloseq-demo/HMPv35.RData] and 

chose the subset of samples processed at the Washington University Genome Center.  

2.3 Results and Discussion 

To inform the choice of database architecture, we benchmarked an implementation using a 

relational database against using a graph database. The relational database uses MySQL 

[https://www.mysql.com/] as the database management system and PHP [http://php.net/] to handle 

requests from the web browser client. The graph database configuration uses Neo4j [https://neo4j.com/] 

and the Flask web development framework [http://flask.pocoo.org/]. In the benchmarks, we deploy our 

backend services on an Amazon EC2 t2.small instance and used the wrk tool [https://github.com/wg/wrk] 

to send HTTP requests. The testing dataset consisted of 62 samples, 973 features, and 7 hierarchy levels. 

We observed that the graph database provides approximately 5x lower latency. We also modified the 

relational design to pre-compute a join operation between the sample, hierarchy, and count tables then 

store that in the database. This design decreases query response time but increases the size of the 

database. Compared to this implementation, our graph database implementation showed approximately 

50% lower latency. We present our benchmark results in Figure 5.  
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Figure 5: Metaviz database architecture benchmarks 
We use the wrk tool to benchmark UI requests to three database architectures for storing abundance matrices and 
feature hierarchies (taxonomies): (1) Graph DB, using Neo4j with a Python Flask web service, (2) Relational DB 
Pre-computed Join, using a MySQL implementation with a JOIN of the 3 tables of features, values, and samples 
pre-computed and stored as a table, (3) Relational DB On-The-Fly Join, a MySQL implementation with computing 
a JOIN across the three tables for each query. For (2) and (3), a PHP application issues queries to the database in 
response to requests from the UI. We deployed each implementation on an Amazon EC2 t2.small instance and the 
dataset used across all instances consisted of 62 samples, 973 features, and 7 hierarchy levels. The upper panel 
shows query latency including standard error across 5 days of measurements. In addition to the latency of 
processing each request, we also measure the number of requests per second processed providing a measure of 
throughput in our application. In both performance measures, we see significant benefits of a Python-Neo4j 
deployment compared to a PHP-MySQL stack for Metaviz tasks. 
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Whole Metagenome Shotgun Sequencing Data 

We designed Metaviz to render community taxonomic profile data derived from whole 

metagenome shotgun sequencing in addition to marker gene sequencing. The results of this sequencing is 

often reported in relative abundance, which is converted to counts through multiplying by read depth, at 

inner nodes of taxonomy instead of counts at leaf nodes only in marker gene data8. Feature selection 

queries, or specification of tree cuts, at various levels of the hierarchy do not compute aggregation and 

instead are directly returned from the inner node counts.   

metavizr 

Metaviz expands the analysis that can be performed from Bioconductor through the metavizr 

package [https://bioconductor.org/packages/release/bioc/html/metavizr.html]. Interactive visualization of 

microbiome statistical analysis results allows a user to explore the data at various levels of detail and 

report those findings in an accessible, aesthetically pleasing interface. Metavizr uses the metagenomeSeq 

Bioconductor package to load the feature, count, and sample data into a data object. Metavizr 

communicates with a Metaviz web browser application instance using a WebSocket connection. A 

FacetZoom control along with data charts and plots can be added to the Metaviz workspace interactively 

from the R session. A user can specify taxonomic features for visualization from the results of statistical 

testing as discussed in the Motivation section. Metaviz can be used with other Bioconductor packages 

beyond metagenomeSeq for analysis. As an example, we use the vegan CRAN package to compute alpha 

diversity [https://cran.r-project.org/web/packages/vegan/index.html] for microbial community-level 

analysis. GitHub gists can be used through metavizr to modify any plot or chart display setting using 

JavaScript in addition to customization facilities provided directly by the metavizr package itself. Finally, 

a persistent workspace identifier can be used to reproduce the visual analysis of a collaborator after 

metavizr loads the dataset. To measure the performance of metavizr, we benchmarked the memory usage 
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and run-time of aggregation operations using a subset of the Human Microbiome Project dataset, which 

we describe in the Methods and Materials section. We ran the benchmark on an AWS ec2 t2.large 

instance to simulate the configurations of a typical laptop used for analysis using R/Bioconductor. We 

present the performance results in Appendix A Figure 2. We found metavizr to provide suitably 

responsive behavior for datasets up to 1,000 samples and 25,000 features and recommend switching to 

the graph database backend for larger datasets. 

UMD Metagenome Browser 

We loaded samples from a variety of marker gene and whole metagenome shotgun sequencing 

studies into the UMD Metagenome Browser – a Metaviz instance hosted by the University of Maryland 

Center for Bioinformatics and Computational Biology at http://metaviz.cbcb.umd.edu. The whole 

metagenome shotgun data is from the R/Bioconductor package curatedMetagenomicData 

[https://bioconductor.org/packages/release/data/experiment/html/curatedMetagenomicData.html] which 

provides curated data from metagenomic studies for dozens of diseases across multiple body sites33. A 

total of 7,115 samples are available from the UMD Metagenome Browser. Figure 6 lists the datasets, 

sample sites, and descriptions of the available metadata. With the UMD Metagenome Browser, an 

analyst can choose from the datasets available to complete a study and share results through a persistent 

Metaviz workspace. 

 

http://metaviz.cbcb.umd.edu/


22 

 

 

 

Figure 6: UMD Metagenome Browser Sample Summary 
The publicly available Metaviz instance at http://metaviz.cbcb.umd.edu hosts data from several published studies 
which were generated using marker gene survey and whole metagenome shotgun sequencing. A total of 26 
datasets with 7,115 samples across 31 health conditions and 32 countries are available. Host age ranges from 0 
months to subjects over 90 years old. Among the metadata available is reported gender or sex of subject, antibiotic 
or pharmaceutical usage data, and time course measurements.  

Deployment 

We support two other deployment mechanisms of Metaviz for users to interactively visualize an 

abundance matrix with hierarchical feature annotations depending on analysis needs. For interactive joint 

exploratory statistical and visual analysis, data analysts can load the abundance matrices into a Metaviz 

instance through metavizr. Also, we provide Docker [http://www.docker.com] scripts so users can build 

and deploy containers of the database, load the abundance matrix to the database, and host the web-

browser application as an independent Metaviz instance [https://github.com/epiviz/metaviz-docker]. 
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Use Case 1: Exploration of MSD childhood diarrhea study in developing countries 

To demonstrate the analysis utility of Metaviz we report on a new analysis of the MSD dataset. 

To visualize and explore samples, we examined the data from each of the four countries in the study 

separately and aggregated taxonomic features to the order level. In this analysis, we set case status as 

those with dysentery and control status as those without blood in stool, meaning that samples with 

diarrhea and healthy samples are in the control group for dysentery. We chose this analysis to expand 

upon the work from the author’s original investigation, which studied healthy versus diarrhea and 

dysenteric versus non-dysenteric diarrhea 3. This analysis is exemplary of case-control studies commonly 

employed in microbiome data investigation. For our exploration, we used three visualizations, a heatmap, 

a dynamic boxplot, and two stacked bar plots to identify differences in the microbial communities in case 

and control across age ranges by country. We created boxplots for details-on-demand of specific 

taxonomic features based on visual analysis of the heatmap. In the heatmap, row colors were set by 

dysentery status and each stacked bar plot consisted of the case and control samples for dysentery of each 

country. We also grouped the samples in the stacked bar plot by age range.  

For visual inspection of differential abundance, we ordered each heatmap by dysentery status so 

that all case and control samples are grouped together. We looked at the heatmap and removed features 

with low abundance using the FacetZoom control. We then examined each column individually, 

identifying the number of samples with a feature present and the distribution of samples with high or low 

intensity. For features of interest, we then created a boxplot by clicking the column label in the heatmap. 

The boxplot shows the counts aggregated to that feature for case and control dysentery groups. Using 

these two visualizations of count data, we called the feature as more abundant in case samples, more 

abundant in control samples, or as no difference in abundance across groups. When we identified a 

difference in abundance for a feature, we used the FacetZoom to aggregate counts to the next level lower 
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in the hierarchy, restrict the heatmap to show only children of that feature, and updated the boxplot to 

identify differences in abundance at that level of the hierarchy. We performed this systematic approach to 

inspect each feature from the order level to the species level. We compared the results of visual analysis 

by computing the log fold change using metagenomeSeq and report those features detected through our 

visualization process and list the results of statistical testing. When using metagenomeSeq, counts were 

normalized using cumulative sum scaling (with p = 0.75) and binary dysentery status as the variable of 

interest in the fitFeatureModel method for differential abundance. The threshold for differential 

abundance was an absolute log fold change of at least 1 and an adjusted p-value < .1 when comparing 

samples using dysentery status.  

Appendix A Figures 3 and 4 show our visual analysis for Bangladesh samples. From the heatmap 

and boxplot analysis of these samples, the following taxa appear more abundant in the samples with 

dysentery than the control samples: Actinomycetales, Enterobacteriales, Lactobacillales, Pasteurellales, 

Pseudomonadales, Micrococcaceae, Enterobacteriaceae, Carnobacteriaceae, Streptococcaceae, 

Pasteurellaceae, Moraxellaceae, Rothia, Escherichia, Shigella, Granulicatella, Streptococcus, 

Haemophilus, Acinetobacter, Escherichia coli, Escherichia sp. oral clone 3RH-30, Granulicatella 

adiacens, Streptococcus equinus, Streptococcus mitis, Streptococcus parasanguinis, Streptococcus 

salivarius, Haemophilus parainfluenzae, and Acinetobacter sp. SF6. Correspondingly, the following taxa 

appear more abundant in the control samples as compared to the case samples: Coriobacteriales, 

Bacteroidales, Clostridiales, Coriobacteriaceae, Bacteroidaceae, Porphyromonadaceae, Clostridiaceae, 

Eubacteriaceae, Lachnospiraceae, Ruminococcaceae, Collinsella, Bacteroides, Clostridium, 

Eubacterium, Dorea, Faecalibacterium, Ruminococcus, Collinsella sp. CB20, Bacteroides fragilis, 

Faecalibacterium prausnitzii, Faecalibacterium sp. DJF_VR20, and Ruminococcus gnavus. Examining 

the stacked bar plots at the order level, Clostridiales exhibits low proportion in the case samples at 0-6 
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and 6-12 months, a lower level compared to control samples at 12-18 months, and then a similar 

proportion in both groups for 18-24 and 24-60 months. With the control samples, Bacteroidales shows a 

greater proportion at all intervals after 0-6 months. 

Using metagenomeSeq, we find the following taxa to have significant difference in abundance for 

Bangladesh samples: Enterobacteriales (log fold change = 1.38, adjusted p-value = 1.46E-04), 

Pasteurellales (2.47, 4.16E-12), Coriobacteriales (-1.38, 9.88E-04), Bacteroidales (-1.19, 7.56E-04), 

Clostridiales (-1.09, 6.45E-04), Enterobacteriaceae (1.37, 2.26E-04), Carnobacteriaceae (1.52, 3.23E-05), 

Streptococcaceae (1.41, 5.00E-05), Pasteurellaceae (2.46, 1.43E-11), Coriobacteriaceae (-1.37, 1.95E-

03), Bacteroidaceae (-1.09, 1.16E-02), Ruminococcaceae (-1.09, 3.17E-03), Escherichia (1.33, 6.50E-

04), Granulicatella (1.51, 8.29E-05), Streptococcus (1.33, 2.91E-04), Haemophilus (2.42, 6.12E-11), 

Collinsella (-1.48, 3.89E-03), Bacteroides (-1.08, 2.27E-02), Ruminococcus (-1.18, 3.89E-03), 

Escherichia coli (1.33, 1.71E-03), Granulicatella adiacens (1.51, 1.92E-03), Streptococcus mitis (1.16, 

1.50E-02), Streptococcus parasanguinis (1.07, 1.71E-03), Streptococcus salivarius (1.02, 2.11E-02), 

Haemophilus parainfluenzae (2.26, 3.04E-07), Collinsella sp. CB20 (-1.26, 3.68E-02), and 

Ruminococcus gnavus (-1.18, 3.48E-02). We present the results for visual analysis and metagenomeSeq 

differential abundance calculation for each country in Appendix A Tables 1-4 and in Section III of 

Appendix A Materials.  

The previously published analysis of dysenteric versus non-dysenteric diarrhea grouped samples 

from all countries and identified OTUs associated with dysenteric stool, including those from the 

following taxa: Haemophilus, Streptococcus, Granulicatella, Escherichia coli, and Enterobacter 

cancerogenus 3. While using the heatmap, boxplot, and FacetZoom control to explore each country we 

observed greater abundance in case samples for Haemophilus in Bangladesh, The Gambia, Mali, and 

Kenya; Streptococcus salivarius in Bangladesh; Granulicatella in Bangladesh and The Gambia; 
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Escherichia coli in Bangladesh and The Gambia; and Enterobacter cancerogenus in Kenya. Examining 

results across all countries, three taxa showed greater abundance among case samples through visual 

inspection and were statistically significant using metagenomeSeq: Pasteurellales, Pasteurellaceae, and 

Haemophilus. 

Features that showed statistically significant difference in abundance in more than one country 

but not all are Enterobacteriales and Enterobacteriaceae in Bangladesh and The Gambia. Some features 

with differential abundance in only one country include Coriobacteriales, Bacteroidales, 

Coriobacteriaceae, Collinsella, Ruminococcus, Collinsella sp. CB20, Ruminococcus gnavus, and 

Streptococcus parasanguinis in Bangladesh. A literature examination revealed that Ruminococcus 

gnavus has been identified as present in patients with Crohn’s Disease that relapsed six months after 

surgical treatment 34. Streptococcus parasanguinis has been identified as having higher relative 

abundance in cancers of the gastric body in patients without Helicobacter pylori infection 35. In samples 

from The Gambia, Actinomycetales is more abundant in case than control which is notable given that 

Tropheryma whipplei is the only identified enteric pathogen in the order 36,37 and that was not identified 

as differentially abundant by either visual analysis or statistical testing. It is important to note that for The 

Gambia, Kenya, and Mali, samples without dysentery outweighed those with dysentery. 

Use Case 2: Analysis of longitudinal metagenomic studies 

Another use case of Metaviz is the analysis of longitudinal metagenomic datasets. We followed the 

analysis using smoothing spline ANOVA as described in Paulson et al. [https://doi.org/10.1101/099457] 

for a longitudinal dataset characterizing host response to a challenge with enterotoxigenic E. coli 32. The 

metagenomeSeq Bioconductor package provides the fitMultipleTimeSeries function for fitting a 

smoothing spline and performing SS-ANOVA testing. Using fitMultipleTimeSeries, the formula 

considered if diarrhea developed at any day as well when antibiotics were given to the individual. To 
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visualize the results, we use a line plot with time points on the X-axis, log fold change on the Y-axis, and 

each line representing a taxonomic feature. The FacetZoom is linked to the line plot and the path through 

the hierarchy is highlighted when hovering over a given line. We also created a stacked line plot of 

counts aggregated to the species level for those species that were found to be differentially abundant for 

an interval of at least 2 days using the SS-ANOVA model. Figure 7 shows the Metaviz workspace for 

this analysis with the spline plot on the top, one sample with diarrhea on the left and one sample without 

diarrhea at any day on the right.  We chose one pair because antibiotics were administered on different 

days across samples therefore averaging counts across case and control groups is not representative of 

response for the treatment applied. Each column in the stacked line plots represent the measurement 

taken at the day since infection. Antibiotics were administered at days 3 through 5 for the case sample 

and days 4 through 6 for the control sample. Examining the stacked plots Bacteriodes plebeius shows 

high proportion in the case sample on the day after antibiotics are administered then a decrease two days 

after treatment was complete to a similar level as in the control sample. This procedure can be 

generalized to time series analysis of microbiome data when investigating differential abundance across 

time points.  
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Figure 7: Interactive visualization of smoothing spline differential analysis of longitudinal study 
We use Metaviz to explore a longitudinal analysis of the dataset from an enterotoxigenic E. coli study 32. Count 
data was aggregated to the species level and a smoothing-spline ANOVA model was fit using the fitTimeSeries 
function of the metagenomeSeq Bioconductor package. Features with a statistically significant interval of 2 days or 
longer as estimated by the smoothing spline model at any time point were selected for visualization. The line plot 
is linked via brushing with the FacetZoom control and a stacked plot showing feature count proportions for a 
sample that developed diarrhea and a sample with no diarrhea. 

2.4 Conclusion 

In this paper, we presented the design and performance of Metaviz, a web-browser based 

interactive visualization and statistical analysis tool for microbiome data. We described design decisions 

for operating over abundance matrices with tens of thousands of features, thousands of samples, and 

complex feature hierarchies. We use a graph database for storing community abundance profile matrices 
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as the features have a hierarchy derived from taxonomic databases. We also developed the metavizr 

Bioconductor package providing tight integration of the Metaviz interactive visualization tool and 

computational and statistical analyses using Bioconductor packages. We used Metaviz to analyze 

existing datasets and our results highlight the power of interactive visualization coupled with 

complementary statistical analysis to examine microbiome data. A major contribution of this work is the 

navigation utility that adapts information visualization techniques to effectively explore and manipulate 

the rich feature hierarchy of metagenomic datasets. Another significant contribution is the UMD 

Metagenome Browser web service available to host abundance matrices that allows researchers to 

explore and share results. We expect that Metaviz will prove useful for researchers in analyzing 

microbiome sequencing studies as genome browsers have for genomic data.  

An avenue for continued research in this area is robust visualization of whole metagenome 

shotgun sequencing data. This will involve both navigation of the feature taxonomy tree as well as 

exploration of specific genes for each bacterial feature. This will be a useful visualization as strain level 

analysis of metagenomic datasets will likely be essential for research and clinical applications. Also, 

functional annotations could be incorporated to explore associations with host health status. These 

features could be examined alongside metabolome data to inspect interactions and identify the 

associations between microbiome community abundances and host cellular processes. 
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Chapter 3: Interactive Exploratory Data Analysis of Human Microbiome 
Project Phase II Data Using Metaviz 

This work is currently in preparation for submission to the appropriate venue. This work is joint with 
Jayaram Kancherla, Domenick Braccia, James Matsumura, Victor Felix, Jonathan Crabtree, Anup 
Mahurkar, and Hector Corrada Bravo. 

3.1 Introduction 

Metagenomics allows researchers to perform a microbial community census and identify 

associations between host phenotype and community status. Metagenomics has been used successfully to 

track pathogen spread38 and identify intervention strategies in childhood malnutrition39. Integrative 

analysis of samples using multiple sequencing technologies allows for comparison at various levels of 

granularity. The second phase of the Human Microbiome Project (HMP2) offers a unique opportunity to 

test hypotheses of interactions between the microbial community in humans and disease. We use 

Metaviz, an interactive microbiome exploratory data analysis tool, to examine this dataset.  

In this work we describe infrastructure to connect Metaviz with the HMP2 Data Coordination 

Center web portal. We also describe analyses using both Metaviz and a statistical testing package for 

differential abundance analysis, metagenomeSeq, in illustrative use cases with the HMP2 data collection. 

We perform exploratory analysis with Metaviz and confirmatory analysis with metagenomeSeq on two 

datasets from HMP data portal. These studies demonstrate the usefulness of a combined approach to 

accessing and analyzing data from this resource. Our examples show that users can share findings and 

interpretations with visualizations in Metaviz and the HMP data resources. 

Human Microbiome Project Phase II 

The second phase of the HMP, also called the Integrative Human Microbiome Project, consisted 

of focused studies of three diseases – Inflammatory Bowel Disease (IBD), Type II Diabetes (T2D), and 

Pre-term Pregnancy (PTB)40. The overall goal of the project was to identify associations between human 
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microbiome community census data and the three diseases. Each of the studies were structured for that 

disease and involved separate subject cohorts. 

Metaviz  

Metaviz is a web-based interactive visualization tool for microbiome data analysis. The 

architecture consists of a JavaScript and D3.js-based front-end suite of charts and a navigation 

component that shows a subset of taxonomic hierarchy levels at one time. Metaviz supports two backend 

data stores – a graph database and the metavizr R/Bioconductor package. Metaviz is tightly integrated 

with the metagenomeSeq statistical testing package so differential abundance testing results can be 

viewed directly in a Metaviz session. We host an instance of Metaviz that we call the UMD Metagenome 

Browser [http://metaviz.cbcb.umd.edu]. 

Related Work 

Visualization tools for large-scale sequencing consortium projects provide a mechanism to 

explore and interact with data from multiple studies. These applications help users analyze individual 

datasets and examine trends across the entire project. MAGI is a web-application that enables a user to 

examine data from TCGA data41. The Earth Microbiome Project provides an interactive visualization 

web-application to analyze its data42.  EMPeror offers interactive 3D visualizations of PCA plots to show 

distances between microbiome samples43.  QIIME packages a number of tools for static plotting of 

Principal Coordinate Analysis and stacked bar plots44. Metaphlan2 uses a visualization package called 

GraphPhlan to produce phylogenetic trees and other plots45. 

3.2 Metaviz integration with HMP infrastructure 

The HMP Data Access and Coordination maintains a repository and web portal 

[http://ihmpdcc.org]. From this web portal, users can browse metadata for datasets, raw sequencing files, 
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and processed files including taxonomic community profile abundance matrices. We implemented 

several mechanisms to interact with the HMP data resources through Metaviz. 

Data loaded into UMD Metagenome Browser 

We loaded the 16S community profile abundance matrices for the samples from the IBD, T2D, 

and PTP studies into the UMD Metagenome Browser [http://metaviz.cbcb.umd.edu]. A user can select 

each dataset from the application start screen. Figure 8 details the number of samples from each project 

currently available in the UMD Metagenome Browser. 

 

 

Figure 8: Metaviz and HMP 2 Data Infrastructure Integration 
Top: UMD Metagenome Browser data. Middle: Single sample link from data portal to UMD Metagenome 
Browser. Bottom: Multiple samples manifest file upload and selection to UMD Metagenome Browser. We provide 
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several mechanisms to access the HMP dataset from Metaviz. First, we loaded the 3 datasets (IBD, T2D, and PTB) 
into the hosted instance of Metaviz directly. A user can choose any of these datasets from the data selections 
screen then samples can be chosen within each dataset. We also link to the HMP Data Portal for single samples as 
shown in the Middle panel. Finally, the HMP Data Portal provides a “cart” functionality where a user can select 
multiple samples and download a manifest listing those files. A user can upload a manifest file containing 
selections from the 16S community abundance profiles from the same dataset (IBD, T2D, or PTB) to the UMD 
Metagenome Browser and a new Metaviz workspace is created with those files. 

HMP Data Portal linking to Metaviz 

When browsing the files available from the HMP Data Portal, a user can view an individual 

abundance matrix in Metaviz using a link from the file description page. When the user clicks the link, a 

redirect occurs to the UMD Metagenome Browser with a new workspace containing a FacetZoom 

navigation utility and a heatmap for that file. Figure 8 shows the direct link functionality. 

Metaviz import of Data Portal Manifest 

In the HMP data portal, a user can select files with a shopping cart utility and download the 

selections as a manifest file. In the UMD Metagenome Browser, the user can upload the manifest file to 

create a Metaviz workspace on the fly for those samples. Currently, only files from the same project can 

be viewed in one workspace. Resolving taxonomic hierarchies across datasets in Metaviz is future work 

that could use a utility such as the metagenomeFeatures R/Bioconductor package46.  Figure 8 shows the 

manifest file workflow. 

metavizr analysis of WGS vs 16S data from same samples  

In the IBD cohort of the HMP2 dataset, a subset of samples was sequenced using whole 

metagenome and 16S sequencing. We developed functions in metavizr to compare 16S and whole 

metagenome data for individual samples. Using the taxonomic profiles of the IBD samples, we matched 

the taxonomic features discovered with both sequencing methods. With this subset of features, we 

generated a single taxonomic hierarchy then loaded the 16S and whole metagenome abundance 

measurements into a metavizr object.  
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We presented this utility at a training workshop hosted by the Institute for Genome Science called 

the HMP Cloud Workshop. The workshop organizers developed a data analysis toolkit named Chiron 

[https://github.com/IGS/Chiron] for operating on microbiome in a cloud environment. We incorporated 

metavizr and Metaviz into Chiron. We created stacked plots and scatter plots that link to a single 

FacetZoom to compare the data from each sequencing method. Figure 9 shows an example analysis. 

 
Figure 9: Comparison between 16S and WGS taxonomic profiling using metavizr 
We identified taxa present in the taxonomic hierarchy for each method and created a merged dataset. A FacetZoom 
shows the common features, two Stacked Plots show the proportion of all features aggregated to the Order level, 
and a set of scatter plots for samples with WGS abundance on the X-axis and 16S abundance on the Y-axis. For 
WGS, the relative proportion output from MetaPhlan for taxa at the order level are multiplied by read depth. The 
scatter plots show the variability in taxonomic community census estimates between sequencing methods. A 
stacked plot visualization is shown in the main HMP consortium manuscript at the genus and species level across 
samples1. We allow a user to make specific selections of the FacetZoom to compare taxa at various levels. The 
scatter plot also allows resolution at the single sample. 

Metaviz Usability Testing 

 We developed Metaviz based on input from researchers with expertise in interactive genomic 

visualization and microbiome association testing. The initial Metaviz prototypes identified interactive 

exploratory microbiome visualization needs and mapped out solutions47. Following design and 
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implementation, we presented Metaviz in several public presentations. Two of these workshop 

presentations included extensive user interaction with the Metaviz application by audience members – 

one for the HMP Cloud Workshop and another at the annual conference for Bioconductor – BioC 2017. 

For the HMP Cloud Workshop we created a step-by-step tutorial in Chiron and instructed the 50 

attendees to use Metaviz with a subset of the HMP data. We also demonstrated how to use the metavizr 

package to perform analyses as shown in Figure 9. While audience members completed the tutorial, we 

informally tracked user progress and asked a subset of users afterwards about overall usability. With this 

feedback we updated the tutorial and data selection mechanisms. We next presented a workshop tutorial 

at BioC 2017 with a dataset from the curatedMetagenomicData Bioconductor package. Through these 

informal user sessions, we determined the interactive data visualizations and FacetZoom navigation 

utility were useful for exploration of the taxonomic community profile data.  We leave as future work a 

formal user study to identify the needs of the HMP community and areas of improvement for Metaviz 

visualization and navigation utilities. In these studies, we plan to measure the effort to perform a given 

set of tasks and identify new visualizations users want for emerging microbiome data types. 

3.3 Methods and Results 

Inflammatory Bowel Disease Dataset 

The IBD study consisted of two phases, a pilot which we refer to in this work as the IBD Stool 

Pilot and a larger phase that we call IBD HMP2. We use the taxonomic profiles for each phase available 

from the IBD project website [www.ibdmdb.org] and use the same taxonomic classification identifiers 

reported in those results. We also used the ‘ExternalID’ field as a unique identifier for samples. We first 

loaded the taxonomic profile results for each subset into metagenomeSeq objects and performed filtering 

resulting in the IBD Stool Pilot with 51 samples and the IBD HMP2 with 154 samples. We used Metaviz 
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for exploratory analysis and metagenomeSeq for confirmatory statistical testing. We examined each 

dataset separately and used a local copy of Metaviz with each data subset loaded.  

IBD Stool Pilot 

The IBD Stool Pilot dataset contains 16S and whole metagenome sequencing results of stool 

samples from 41 Crohn’s Disease subjects and 10 Ulcerative Colitis subjects. For the analysis, we use 

Metaviz to visually identify taxa that showed a difference in abundance between Crohn’s Disease and 

Ulcerative Colitis subjects.  Figure 10 shows a typical visualization and Appendix B Table 1 lists the 

visual analysis results. 

 

Figure 10: Metaviz Analysis of IBD Stool 16S Pilot Dataset 
A Metaviz workspace with a FacetZoom taxonomic hierarchy, heatmap, and boxplot for the specific 
feature in this instance s__:369227. We identified features at each level of the hierarchy using this 
integrative view and the results for features with a potential differential abundance are listed in Appendix 
B Table 1.  
 

We also used metagenomeSeq to test the abundance of features aggregated to each level of the 

taxonomy using the fitFeatureModel method. As shown in Table 1, two species had an absolute log fold-
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change greater than 1 and adjusted p-value less than .1. Comparing the visual analysis results in 

Appendix B Table 1 and the metagenomeSeq differential abundance testing results in Table 1 shows that 

the taxonomic feature s__:369227 was identified using both methods. 

Table 1: metagenomeSeq analysis of IBD Stool 16S Pilot Dataset 

 Log fold change se p-value Adjusted p-value 

s__:369227 1.864583442 0.431193725 1.53061E-05 0.000734694 

s__:363232 1.193035074 0.275415013 1.47914E-05 0.000734694 
We used the fitFeatureModel of metagenomeSeq and aggregated counts to each level of the taxonomic 
hierarchy. Our analysis identified s__:369227 under family Lachnospiracea and s__:363232 under genus 
Dorea as differentially abundant between samples from subjects diagnosed with Ulcerative Colitis and 
Crohn’s Disease. 
 

IBD HMP2 

The IBD HMP2 dataset consists of 75 samples from Crohn’s Disease (CD) subjects, 37 samples 

from Ulcerative colitis (UC) subjects, and 42 samples from subjects without IBD (nonIBD). For these 

samples, we analyzed the 16S sequencing data of an intestinal biopsy. In our analysis, we first 

investigated if any taxonomic features showed a difference in abundance between the three groups. 

Figure 11 shows an example using Metaviz for the visual inspections. We list the taxa that we found as 

different between groups in Appendix B Table 2. We compute an F-statistic to determine if any 

taxonomic feature is associated with at least one group. Currently, fitFeatureModel does not support 

model matrices with more than 2 columns, so we used the fitZig method and constructed contrasts for 

testing between groups. Appendix B Table 3 lists the results from this analysis. 
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Figure 11: IBD HMP2 Multiple Groups Analysis 
Using visual analysis through a heatmap and boxplots we identified taxonomic features that showed a 
difference in abundance between the three subject diagnosis categories: UC, CD, or nonIBD. We 
computed the F-statistic using the fitZig method in metagenomeSeq and list the findings in Appendix B 
Table 3.  

 

For testing pair-wise comparisons between the three groups – UC, CD, and nonIBD - we used 

Metaviz to visually compare each group and performed statistical association testing with 

fitFeatureModel. Appendix B Table 4 shows the metagenomeSeq results for each group comparison. 

Appendix B Tables 5-7 list the results for Metaviz visual analysis between the groups with counts 

aggregated to each level of the taxonomic hierarchy.  

From the pair-wise comparisons for the Crohn’s Disease and subjects without IBD, we highlight 

the utility of tight linking between Metaviz for exploratory analysis and metagenomeSeq for confirmatory 

analysis. We focus on three taxonomic features, one identified as potentially differentially abundant with 

Metaviz, one identified as differentially abundant with metagenomeSeq, and one identified with both 
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methods. We show the Metaviz boxplot and heatmap along with the metagenomeSeq log fold-change 

results for the three taxonomic features in Figure 12.  

 

Figure 12: CD vs nonIBD Metaviz and metagenomeSeq comparison 
Comparing results from using Metaviz and metagenomeSeq to investigate associations between CD and 
nonIBD. We show one feature each from those identified using Metaviz and metagenomeSeq, found 
using Metaviz only, and found using metagenomeSeq only. The impact of using a mixture model is 
evident when considering the metagenomeSeq result compared to those from Metaviz. Linking 
exploratory analysis with confirmatory analysis helps an analyst curate results for collaborators. 
  

3.4 Discussion 

We now detail the biological significance of the results from exploratory analysis and differential 
abundance testing. 

IBD Stool Pilot 

From the metagenomeSeq results, the first taxonomic feature, s__:369227, is a member of the 

Lachnospiraceae family which are strictly anaerobic 49. Members of Lachnospiraceae are abundant in 
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human intestinal tracts and have been linked specifically to production of butyric acid49. Also, 

colonization with a specific strain of Lachnospiraceae in obese mice has been linked to development of 

hyperglycemia50.  The second taxon, s__:363232, is a member of the genus Dorea which has recently 

been shown to be associated with diarrhea predominant Irritable Bowel Syndrome51. In the IBD Stool 

Pilot dataset, the number of Crohn’s Disease versus Ulcerative Colitis samples is unbalanced. This is a 

potential cause of only one visually identified taxonomic feature being found as statistically significant. 

One consideration with our visual analysis approach of a heatmap and boxplot is that the effect size can 

be interpreted but the standard error is not as apparent. 

IBD HMP2 

As this dataset involved pair-wise comparison between groups, we first consider the results of 

comparing samples from UC and nonIBD subjects. We found Verrucomicrobia along with the following 

members of the lineage to have a statistically significant difference in abundance between groups with 

higher abundance in nonIBD than UC subjects:  Verrucomicrobiae, Verrucomicrobiales, 

Verrucomicrobeae, genus Akkermansia, and one species. Akkermansia has been identified in a signaling 

between gut epithelial cells to control obesity related to diet52. The lower abundance in UC samples could 

indicate that the interaction between the inflamed gut epithelial cells is not functioning properly and 

could be a result of the lower abundance of Akkermansia. We also found Megasphaera to have 

statistically significant greater abundance in nonIBD compared to UC subjects. In a study of Malawian 

children for environmental enteric dysfunction, Megasphaera was shown to be more prevalent in 

children with the condition compared to children without53. In that paper, the authors also note that 

Megasphaera was identified as associated with HIV positive status54. Given previous findings about 

Megasphaera, the lower abundance in UC patients is notable as higher prevalence was associated with 

other intestinal disorders. Also, we identified Citrobacter as statistically significant higher abundance in 
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UC compared to nonIBD subjects. A recent study that involved sequencing the endoscopic equipment of 

subjects with UC, CD, and without IBD had a similar finding55. We also identified Dielma, a genera of 

the family Erysipelotrichaceae in the phylum Firmicutes, as higher in UC than nonIBD samples. We did 

not find Dielma to be well characterized in human health during a literature review. 

From testing between subjects with CD and nonIBD, we found several bacteria with statistically 

significant differential abundance. Highlighting some of our findings, Fusobacteria, Fusobacteriaceae, 

Fusobacteriales, Fusobacteriia, and Fusobacterium all showed significantly greater abundance in CD 

compared to nonIBD subjects. Fusobacterium has previously been reported to have high prevalence 

associated with CD56.  The taxonomic feature Lachnospiraceae_ND3007_group showed a significantly 

lower abundance in CD compared to nonIBD. This taxonomic feature is a member of the family 

Lachnospiraceae, which was observed to have lower abundance in CD subjects compared to nonIBD in a 

prior study6. 

Comparing the taxonomic profiles of samples from UC and CD subjects, we found 

Veilloneliaceae as significantly more abundant in CD subjects than UC.  Veilloneliaceae was identified 

as associated with higher abundance in CD compared to nonIBD samples in a study of new onset IBD6. 

Exploratory and Confirmatory Analysis 

The results presented in Figure 12 show the power of combining exploratory visualization and 

confirmatory statistical testing. The impact of using a zero-inflated model is evident when considering 

the metagenomeSeq result. During Metaviz inspection of the dataset, we did not identify Coprobacter as 

potentially differentially abundant. But we found a significant log fold-change when comparing CD to 

nonIBD groups using metagenomeSeq. This disparity between the visual inspection and statistical result 

helps with interpretation of the role Coprobacter might play in CD compared to nonIBD. 
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On an axis of exploratory at one end and confirmatory at the other, visualization techniques lie in 

the exploratory range while statistics can be used for both exploration and confirmatory analysis of a 

dataset. Biologists who are concerned with confirmation as opposed to exploration need to convey the 

results of analysis to collaborators and the scientific community. Visualizations can help curate statistical 

results. Interactive figures are a promising avenue for allowing researchers to curate results and make 

them accessible to the readers with several publishing venues incorporating visualization infrastructure 

for articles 57.  

3.5 Conclusion 

In this work we presented software infrastructure linking Metaviz to the HMP data resources. We 

detailed the 16S taxonomic community profile data from the HMP available in the UMD Metagenome 

Browser. We then described linking the UMD Metagenome Browser to the HMP Data Portal for single 

files and the manifest file utility for multiple file selections. We also performed visual exploratory and 

confirmatory differential abundance analysis of data from the IBD study. We first visualize 16S and 

whole metagenome sequencing abundance measurements for the same samples in metavizr. Then we use 

Metaviz and metagenomeSeq to analyze two datasets, IBD Stool Pilot and HMP2 IBD, to examine 

microbiome feature abundances in samples from subjects with Ulcerative Colitis, Crohn’s disease, and 

without IBD. These illustrative analyses demonstrate the utility of Metaviz for integrative analysis with 

the HMP data resources. During this work, we identified two avenues for future research with Metaviz. 

First, a mechanism to filter taxonomic features for statistical testing based on visualization would be 

useful. Second, the metadata available from the HMP DCC is only that which has been approved for 

public release and methods to complete analyses over confidential data are desirable for microbiome 

data. 
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Chapter 4: Visualization of Longitudinal and Microbial Community 
Functional Profiling Data with Metaviz 

This work is currently in preparation for submission to an appropriate venue. This work is joint with 
Jayaram Kancherla, Niklas Elmqvist, and Hector Corrada Bravo. 

4.1 Introduction 

Data visualization is a vital component in the process of data analysis. Visualization allows an 

analyst to gain insights into the data beyond summary statistics and to identify possible linear and non-

linear trends as well as detecting outliers. In this work, we describe visualizations of longitudinal and 

microbial community functional profiling data in Metaviz, an interactive exploratory microbiome data 

analysis web-application. We also detail new utilities for microbiome data analysis available in Metaviz 

including a mechanism to store and lookup information on taxa of interest as well as a stack of operations 

to keep track of user interactions.  

Related Work 

Interactive and static visualization approaches are used in microbiome visualization to explore 

associations between disease and community profile. MEGAN is a widely used method for taxonomic 

analysis of microbiome sequencing data and includes a utility to create visualizations of relationships 

between taxonomic community members58. EMPeror offers interactive 3D visualizations of PCA plots to 

show distances between microbiome samples43. Phinch is a web-based interactive visualization tool that 

renders stacked bar plots of count data and interactive literature search to show the functions of 

taxonomic features59. BURRITO is the first interactive visualization for taxonomic and functional 

annotation data60.  
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Metaviz 

Metaviz is an interactive visualization web-application for exploratory microbiome data analysis. 

The application consists of a JavaScript and D3.js-based frontend suite of charts and a FacetZoom 

navigation component. The backend is either a graph database or the metavizr R/Bioconductor package. 

A limitation of the current Metaviz is that the FacetZoom navigation component operates with a 

taxonomic hierarchy but other hierarchies such as those in KEGG are used in metagenomic analysis. 

Also, visualizations of longitudinal data in Metaviz are mainly carried out with line plots that can be 

overcrowded when investigating the abundance of many features across multiple subjects. Finally, while 

Metaviz currently offers tight coupling with the R/Bioconductor environment for statistical testing, the 

user is responsible for keeping track of taxa of interest and looking up information about those features. 

This work introduces new methods to address these specific limitations. 

4.2 Visualizations and User Interactions 

We detail new utilities in Metaviz for visualizations of microbiome community functional profile 

and longitudinal data. We also describe a mechanism for keeping track of taxa of interest, linking to 

external literature resources, and a method to keep track of interactions with the FacetZoom navigation 

component. 

Functional Profiling Data  

Metaviz works well for community taxonomic abundance data but incorporating other data types 

is a current limitation. One specific data type is functional profile data. A visualization tool, BURRITO, 

provides a mechanism to investigate both community taxonomic abundance profile and functional profile 

data60. Our database architecture stores hierarchical taxonomic data and we modified it to hold functional 

data as well. For creating a map between the taxonomic features we use PICRUSt utilities to infer 

functional annotations given marker-gene data similar to BURRITO61.  
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For visualizing the functional annotation hierarchy, we use a FacetZoom approach. We use the 

functional information primarily as a filter on the taxonomic features. Users can build a filter and apply it 

over the taxonomic hierarchy which is then used in heatmaps and stacked plots for taxonomic abundance 

measurements. The user interface for the functional annotation FacetZoom involves adding or removing 

a functional feature by clicking an icon on the node itself. The user then clicks a button to filter the 

taxonomic hierarchy FacetZoom. Figure 13 shows these a taxonomic hierarchy FacetZoom, a functional 

hierarchy FacetZoom, and a heatmap as well as the interaction for filtering based on functional 

information. 

 

Figure 13: Functional Annotation Filter 
Marker-gene sequencing provides a taxonomic community profile for a sample. Functional annotations can be 
inferred using this data and Metaviz includes a mechanism to filter taxonomic features based on functions. As the 
functional annotations have a hierarchical form, the FacetZoom can be used to show this as well. The figure shows 
an example with the 10 samples from the msd16s dataset and a subset of 176 KEGG Ortholog (KO) terms loaded 
into a Metaviz database. A) shows a taxonomic FacetZoom, KO FacetZoom, and a heatmap with no filter applied. 
B) shows the result of choosing specific KO functions to filter the taxonomic hierarchy with and the resulting 
heatmap of those taxonomic features. 
 
We support what we term a “functional lens”. In the setting, the user is a microbiologist who creates a 

heatmap and FacetZoom to explore a dataset. The user can click on the bookmark symbol of a 
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FacetZoom node for any taxonomic feature of interest to keep track of it. The user can then update the 

functional filter to find features with similar functions. We show this utility in Appendix C Figure 1. 

Longitudinal Visualization with Spark Lines 

The existing Metaviz implementation offers longitudinal analysis through a line plot. Although 

we designed specific mechanisms for microbiome data analysis, such as interactive smoothing parameter 

adjustment, the number of features and samples in a line plot can lead to overcrowding. To allow a user 

to identify the change in a feature over time across all subjects in a dataset, we introduce a new 

longitudinal visualization for microbiome analysis. We adapt the heatmap that currently colors elements 

of a matrix according to the abundance of a given feature in a specific sample. To show the change in 

longitudinal measurements for a subject we use the spark line technique as the elements of a heatmap 

matrix. A sparkline is a small graphic that presents the trend of a dataset so a user can quickly identify 

changes 62. Figure 14 shows the use of sparklines. In this dataset, which is explored in Use Case 2 of 

Chapter 2, study subjects were challenged with enterotoxigenic E. coli and then sampled for multiple 

timepoints. Antibiotics were administered to the subjects and this perturbation is marked in each 

sparkline by changing line color from blue to orange. Also, the box for each sparkline is colored to 

highlight series of interest. A sparkline box is highlighted if the difference between consecutive 

measurements for that feature in that subject is beyond one standard deviation of the mean difference 

across all subjects between those timepoints. For specific exploration of grouping, we developed a 

details-on-demand view as shown in Appendix C Figure 2. In this case we show two subject groups, 

those that developed diarrhea at any point during the experiment and those that did not. The user has an 

option to show a filled contour for each group as shown in Appendix C Figure 2 or the user can choose 

lines showing different summaries for each time point across all subjects in each group. 
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Figure 14:Heatmap with Sparklines for longitudinal data 
In longitudinal microbiome experiments it is useful to get an overview of changes in feature abundance at different 
time points. This heatmap provides a mechanism for users to identify trends across features and subjects. Each 
sparkline is colored according to a perturbation which in this case was administration of antibiotics to the subjects 
under study. Also, each box is colored according to the difference of measurements between timepoints for that 
subject/feature pair being outside one standard deviation from the mean difference for all subjects between those 
timepoints. A user can then click on a column of the sparkline heatmap and then inspect all measurements of that 
feature across subjects. We provide a contour map and averages lines grouped by case/control status. 
 

Taxa of Interest, Export and Import 

We provide a utility for a user to keep track of taxonomic features of interest found through visual 

exploration. A user can export the list of features or import a new list. Appendix C Figure 1 shows the 
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process of finding functions that an individual taxonomic feature is associated with then finding 

taxonomic features with similar functions.  

External Data Source Links 

We link each item in the taxa of interest space to Pubmed [http://www.pubmed.com]. This 

provides users a quick mechanism to review literature for a specific taxon that is of interest in a 

visualization. Figure 15 shows the workflow. During microbiome data analysis, understanding the role of 

specific bacteria and lineages is vital.  

 

Figure 15: External Data Source Link 
Metaviz links taxa of interest to Pubmed for information lookup. A user then has access to the rest of the NCBI 
utilities with that feature name. With microbiome analysis, the large feature space can be quickly investigated 
through inspecting literature for taxa of interest. A) A Metaviz workspace in which a user can click any node in the 
FacetZoom to link to external information. B) Pubmed search results with taxonomic feature as query. 

Operation Stack 

Each FacetZoom navigation operation can be stored in a stack of operations. The stack is 

represented by buttons with each showing a glyph of the operation that was performed. Each button can 

be clicked on to revert the hierarchy and the workspace to that state. Figure 16 shows the current 

implementation of the stack of operations in Metaviz. 
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Figure 16: Stack of operations demonstration 
A State Log for each user interaction with the taxonomic FacetZoom. (A) State Log is initialized with the first 
button showing the initial hierarchy view. (B) On descent to a lower level of the taxonomy, the State Log shows 
that the root of the subtree shown in the FacetZoom is now closer to leaf nodes. (C) After a click on a State Log 
button, the operations are popped off to recover the prior state. In this case, the subtree displayed in the FacetZoom 
is now at the original level.  

4.3 Architecture 

We designed and implemented improvements to Metaviz while keeping the existing architecture 

of the application. 
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Backend 

We store community functional profile information in a graph database backend. For the 

taxonomic hierarchy in the Metaviz graph database, we represent taxa as nodes, taxonomic hierarchy 

relationships using edges, samples as nodes, and counts of taxa in specific samples as edges. Aggregation 

queries with sample and feature selections are then handled by the Neo4j query execution utility. With 

functional data, we represent the KO terms as nodes with relations between functional annotations as 

edges. Edges then link functional terms to taxa in the taxonomic hierarchy. A filter is generated using 

functional annotations and the filter is applied to taxonomic hierarchy as well as count aggregation 

queries. 

Components library 

The new Epiviz web components library provides a framework to develop extensible HTML 

components63. We plan to migrate all Metaviz utilities to this framework to ease of future development. 

4.4 Discussion and Conclusions 

In this work, we present new methods to use Metaviz for exploratory analysis of microbial 

community functional profile data and longitudinal data. We also implement several utilities to improve 

the Metaviz user experience including keeping a stack of user interactions, a space for storing taxa of 

interest identified through visual inspection and linking to external data sources. In previous work we 

showed that users can validate insights identified from statistical testing approaches on large microbiome 

sequencing datasets using interactive visualization. The mechanisms for longitudinal and community 

functional profile data will enable analysts to examine data from experiments targeting perturbation of 

microbiomes.  
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Chapter 5:  Privacy-preserving microbiome analysis using secure 
computation 

A version of this work is published in Bioinformatics with the following citation:  
Justin Wagner, Joseph N. Paulson, Xiao Wang, Bobby Bhattacharjee, Héctor Corrada Bravo; Privacy-
preserving microbiome analysis using secure computation, Bioinformatics, Volume 32, Issue 12, 15 June 
2016, Pages 1873–1879, https://doi.org/10.1093/bioinformatics/btw073. 
This is joint work with Joseph Paulson, Xiao Wang, Bobby Bhattacharjee, and Hector Corrada Bravo. 

5.1 Introduction 
Microbiome sequencing seeks to characterize and classify the composition and structure of 

microbial communities from metagenomic DNA samples. It is estimated that only 1 in 10 cells in and on 

a person’s body contain that individual’s DNA4, the remainder corresponding to microbial DNA, most 

from organisms that cannot be cultured and studied in the laboratory. 

The Human Microbiome Project (HMP)64, the Global Enteric Multi-Center Study (MSD) 3, the 

Personal Genome Project65 and the American Gut Project66 aim to characterize the ecology of human 

microbiota and its impact on human health. Potentially pathogenic or probiotic bacteria can be identified 

by detecting significant differences in their distribution across healthy and disease populations. While the 

biology has led to promising results, privacy concerns of microbiome research are now being identified 

with no secure analysis tools available. 

Recent work by Franzosa et al. (2015) shows that microbiome data are an unique identifier across 

time points in a dataset and could be used to link a sensitive attribute to an individual23. Earlier work by 

Fierer et al. (2010) showed that it is possible to identify an object that an individual touched by 

comparing microbiome samples from the object and the individual’s hand67. We provide a thorough 

review of microbiome sequencing and a categorization of microbiome privacy considerations in the 

Appendix D. To counter these concerns, we present an implementation and evaluation of metagenomic 

association analyses in a secure multi-party computation (SMC) framework. For this work, we focus on 

garbled circuits, a cryptographic technique that evaluates a function over private inputs from two parties. 

https://doi.org/10.1093/bioinformatics/btw073
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In this article, we concentrate on the case where two parties, each holding organism abundances in a set 

of case and control samples, are interested in performing an association analysis (e.g. determining 

organisms that are differentially abundant in cases) over their combined data, without revealing organism 

abundances in any specific sample. 

We provide a detailed review of this approach in Section 3 and benchmark our secure 

implementation of commonly used microbiome analyses on three public datasets. We also quantify the 

statistical gain of analysis using combined datasets by simulation with a dataset that contains samples 

from four different countries. 

We believe that implementing metagenomic analyses in an SMC framework will prove beneficial 

to researchers focused on the human microbiome as well as the secure computation community. 

Computational biologists will benefit from a method that allows efficient and secure function evaluation 

over datasets which they may be obligated to keep confidential. Security researchers can draw on the 

findings from our work and construct protocols that enable sharing large, sparse datasets to perform 

analysis. 

5.2 System and methods 

Our secure metagenomic analysis system is built upon garbled circuits68, which we describe in 

this Section. We then detail our system including participants along with alternative approaches in the 

design space for privacy-preserving analysis. 

Garbled circuits 

Two parties, one holding input x and another holding input y, wish to compute a public function 

F(x, y) over their inputs without revealing anything besides the output. The parties could provide their 

inputs to a trusted third-party that computes the function and reveals the output to each party. However, 
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modern cryptography offers a mechanism to run a protocol between only the two parties while achieving 

the desired functionality. The main idea behind garbled circuits is to represent the function to be 

computed as a Boolean circuit over the inputs from both parties and use encryption to hide the input of 

each party during evaluation by mapping each 0 and 1 bit of the inputs unto random strings that still 

compute the same result. At the end of circuit evaluation, the resulting random strings can be mapped 

back to appropriate 0 and 1 bit values that can then be released to each party. In this way, each party 

learns F(x, y) without learning anything else about the input of x and y. Figure 17 illustrates the garbled 

circuits protocol.  

 

Figure 17: Schematic illustration of the garbled circuits protocol. 
For analyses discussed in this paper, parties P1 and P2 are researchers performing a statistical analysis over 
combined data. They provide metagenomic count matrices, or locally precomputed statistics computed from count 
matrices, along with case/control status as input. Function F(x, y) is determined by the analysis performed, e.g. test 
on difference in Alpha Diversity between case and control. The ‘garbling’ in step (B) also includes randomly 
permuting the rows of the truth table so that the inputs are not revealed by the ordering - we omit this from the 
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figure for clarity. A review of the Oblivious Transfer protocol used in step (D) is provided in Appendix D Section 
S3. 

System participants 

We consider the case in which parties located in two policy-domains want to perform 

metagenomic analyses over shared data. Examples of policy-domains include countries with differing 

privacy laws or institutions (universities, companies) that stipulate different data disclosure procedures. 

For i∈1,2, denoting PDi as a policy domain, Ri as a researcher in policy domain i, Di as the data 

from Ri, F as the set of functions that a set of Ris would like to compute we consider the following 

setting: 

R1 and R2 would like to compute F over combined D1 and D2 but cannot do so by 

broadcasting the data as either PD1 or PD2 does not allow for public release or reception of 

individual-level microbiome data. We set |i|=2 but this setting could be generalized to any i. 

Policy domains naturally arise due to differences in privacy laws. For example, studies currently 

funded by the NIH are required to release non-human genomic sequences including human microbiome 

data (http://gds.nih.gov/PDF/NIH_GDS_Policy.pdf). In contrast, the European General Data Protection 

Regulation, which is currently in draft form, lists biometric data and ‘any “data concerning health” means 

any personal data which relates to the physical or mental health of an individual, or to the provision of 

health services to the individual’ as protected information that is not to be released publicly 

(http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P7-TA-2014-

0212+0+DOC+XML+V0//EN). Therefore, researchers in the USA and EU may encounter different 

policies for data release but still have an interest in computing metagenomic analyses over shared data. 

Also, given the results published by Franzosa et al., some institutions may re-evaluate microbiome data 

release policies. 

http://gds.nih.gov/PDF/NIH_GDS_Policy.pdf
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P7-TA-2014-0212+0+DOC+XML+V0//EN
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P7-TA-2014-0212+0+DOC+XML+V0//EN
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Threat model 

We consider researcher R1, who has a microbiome sample from a victim mixed with other 

samples, to be a semi-honest adversary, or one that follows the protocol but examines the transcript to 

learn more information than it should. Researcher R2 is examining an association for a specific trait and 

would like to expand her study to use samples held by R1. R1 wants to determine if the victim is in R2’s 

dataset and thus learn a sensitive attribute of the victim such as disease status. 

The attacks of Fierer et al. and Franzosa et al. operate over the vector of feature counts for a 

given sample. For the analyses studied in this article, an adversary will have no better chance of 

reconstructing the count vector for a specific sample than guessing the majority, or mode, of the count of 

any specific feature in this system. Through using a garbled circuit implementation of metagenomic 

analyses, R2 will be able to keep the vector of microbiome features for any sample private, learn the 

outputs of functions that she would like to learn over the shared data, and prevent R1 from completing the 

attack. 

Solution design approaches 

We consider different approaches to allow two parties to compute analyses over data which each 

must keep confidential. 

Access control plus trusted third party 

In the USA, the NIH has recognized re-identification through publicly posted genomic data as a 

realistic threat. Therefore, policy allows for publication of summary statistics and transfer of individual 

level sequencing data through access control using the Database for Genotypes and Phenotypes69. Once a 

researcher receives permission to access data, she is provided the data and is required to maintain the 

access control list for her research group. We look to remove the need for access control by 

implementing the queries that a researcher would like to run without revealing the data directly. 
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Differential privacy 

Statistical perturbation of analysis results, most widely implemented as differential privacy, is a 

second approach for researchers to provide privacy guarantees to participants. In this setting, a researcher 

maintains a data set and allows other researchers to perform queries over the data. Informally, the results 

of these queries are perturbed in such a manner that an adversary, with access to query results over a data 

set in which one specific participant has a set of values and results from another data set with that 

specific participant having a different set of values, will not be able to infer any information about that 

individual by examining the results21. Although this approach provides provable privacy guarantees, the 

introduction of statistical noise has not gained traction in the computational biology research community. 

Also, recent work showed that learning warfarin dosage models on differentially private data sets 

introduces enough noise that the dosage recommendation could be fatal to patients70. 

Secure multiparty computation 

An alternative solution which we undertake is using secure computation to perform metagenomic 

analyses. Other researchers have presented SMC for computing secure genome-wide association studies 

using secret-sharing, but that particular approach requires the use of three parties for computing tasks71. 

We address the feasibility of using garbled circuits to implement metagenomic analyses in terms of 

running time, network traffic, and accuracy. We believe that garbled circuits is the best approach for this 

scenario as it allows for direct communication between two parties and models research settings well. 

Further, garbled circuits can handle a variety of adversaries beyond the semi-honest one that we consider 

in this work. 

5.3 Implementation 

In this section, we describe how we implemented metagenomic analyses in garbled circuits and 

detail an evaluation of our system. 
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Metagenomics using garbled circuits 

FlexSC 

FlexSC, the back end of ObliVM, is a framework for secure computation including garbled circuits with 

a semi-honest adversary72. FlexSC allows users to write a function in Java for two parties to compute 

then compiles and evaluates the garbled circuit representation of that function. We implemented all 

metagenomic tests as Java packages then compiled and ran each with FlexSC. Our initial work on χ2-test 

was based on a χ2-test implementation using SNP data 

(https://github.com/wangxiao1254/idash_competition). 

Metagenomic analysis assumptions 

For this article, we perform all analyses at the species taxonomic level. As detailed in Appendix D 

Section 1, OTUs are generated from direct pairwise comparison of sequencing reads. This is a compute-

intensive process when performed on clear text73. We do not attempt it in SMC for this work and assume 

each party performs this operation locally. We assume that each party will annotate each resulting OTU 

by matching to a common reference database, previously agreed upon by both parties (note that this 

reference database is orthogonal to sample-specific sequencing results obtained by each party). For 

illustration we assume that the agreed upon reference database yields annotation at the microbial species 

level. We also assume that parties can split data into case and control groups based on an agreed upon 

phenotype. Finally, we do not consider features that have all zeros in the case or control group for either 

party. 

Design approaches 

We took several approaches to implement each statistic. Since the metagenomic datasets we examined 

are at least 80% sparse and this trend is expected with OTU data16, we make design choices to make 

computation with garbled circuits feasible. We now detail each implementation of the χ2 -test, odds ratio, 

https://github.com/wangxiao1254/idash_competition
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/12/10.1093_bioinformatics_btw073/2/btw073_Supplementary_Data.zip?Expires=1527360907&Signature=Gk5Mm4y3OnbLoxUk06T9bacuzkUg9GIBAA3fL8z-e66O5chyq91peg8jpXgMhFiT7qPU0g4B5XFrhdKQVXWuELnSrVHBFOA%7ESC41e4nuVmrtRVhFyQbu0NJxqg75qkdONX9hA5cs-OwcsOkZ8alJpWUszVYuD%7Ew3Kds1oSruYaSZh5aatwOTugX%7ERscK2z01kH4rXSQHlKn3DFL27Xss7hBmEStJ-%7EjbM59mhmJbRaVW6QgfrHHVlaFDpZaDpdzpww9q8A12r0q%7ENr2HyE-Xqmbgce3f5GsfLV7688BslW6ugdnquqDIq2fMKD1aG34ug6tWSRTIO%7EDHjPNeOP9oWQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/12/10.1093_bioinformatics_btw073/2/btw073_Supplementary_Data.zip?Expires=1527360907&Signature=Gk5Mm4y3OnbLoxUk06T9bacuzkUg9GIBAA3fL8z-e66O5chyq91peg8jpXgMhFiT7qPU0g4B5XFrhdKQVXWuELnSrVHBFOA%7ESC41e4nuVmrtRVhFyQbu0NJxqg75qkdONX9hA5cs-OwcsOkZ8alJpWUszVYuD%7Ew3Kds1oSruYaSZh5aatwOTugX%7ERscK2z01kH4rXSQHlKn3DFL27Xss7hBmEStJ-%7EjbM59mhmJbRaVW6QgfrHHVlaFDpZaDpdzpww9q8A12r0q%7ENr2HyE-Xqmbgce3f5GsfLV7688BslW6ugdnquqDIq2fMKD1aG34ug6tWSRTIO%7EDHjPNeOP9oWQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA


58 

 

 

Differential Abundance and Alpha Diversity. To measure the impact of our design choices we 

implemented a naive algorithm for each statistic and compared results. 

Precomputation 

We first developed a method that finds an aggregate statistic at each party so that only those values are 

circuit inputs. This method is a straightforward approach to reduce the amount of operations and data in 

the secure computation protocol. As expected, for each statistic this approach had the best performance 

on all the datasets we evaluated. Appendix D Figure 2 shows the process for calculating a χ2-test and 

odds ratio on precomputed contingency table counts. An issue with this approach is not all analyses that 

researchers are interested in computing may be able to be performed over locally generated aggregates. 

Sparse matrix 

We devised two methods to account for the sparsity of the feature count matrices we used for 

evaluation. We first followed an approach introduced by Nikolaenko et al. (2013) to perform sparse 

matrix factorization in garbled circuits74. We detail our work with this technique in the  Appendix D 

Section S4. As our contribution, we took a conceptually simpler approach that input the non-zero 

elements for each feature to the circuit and operated over those elements directly. As shown in Figure 18 

and Figure 19, this method significantly reduces the number of operations that need to be performed in 

the secure protocol and offers reasonable running times compared to the precomputation approach. 

Presence/absence 

We implemented the χ2-test and odds ratio to perform presence/absence association testing. We 

provide a review of χ2-test and odds ratio in  Appendix D Section 1. 

For the precomputation technique, each party splits its data into case and control groups on a 

characteristic determined outside of this protocol. Each party then locally computes the contingency table 

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/12/10.1093_bioinformatics_btw073/2/btw073_Supplementary_Data.zip?Expires=1527360907&Signature=Gk5Mm4y3OnbLoxUk06T9bacuzkUg9GIBAA3fL8z-e66O5chyq91peg8jpXgMhFiT7qPU0g4B5XFrhdKQVXWuELnSrVHBFOA%7ESC41e4nuVmrtRVhFyQbu0NJxqg75qkdONX9hA5cs-OwcsOkZ8alJpWUszVYuD%7Ew3Kds1oSruYaSZh5aatwOTugX%7ERscK2z01kH4rXSQHlKn3DFL27Xss7hBmEStJ-%7EjbM59mhmJbRaVW6QgfrHHVlaFDpZaDpdzpww9q8A12r0q%7ENr2HyE-Xqmbgce3f5GsfLV7688BslW6ugdnquqDIq2fMKD1aG34ug6tWSRTIO%7EDHjPNeOP9oWQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/12/10.1093_bioinformatics_btw073/2/btw073_Supplementary_Data.zip?Expires=1527360907&Signature=Gk5Mm4y3OnbLoxUk06T9bacuzkUg9GIBAA3fL8z-e66O5chyq91peg8jpXgMhFiT7qPU0g4B5XFrhdKQVXWuELnSrVHBFOA%7ESC41e4nuVmrtRVhFyQbu0NJxqg75qkdONX9hA5cs-OwcsOkZ8alJpWUszVYuD%7Ew3Kds1oSruYaSZh5aatwOTugX%7ERscK2z01kH4rXSQHlKn3DFL27Xss7hBmEStJ-%7EjbM59mhmJbRaVW6QgfrHHVlaFDpZaDpdzpww9q8A12r0q%7ENr2HyE-Xqmbgce3f5GsfLV7688BslW6ugdnquqDIq2fMKD1aG34ug6tWSRTIO%7EDHjPNeOP9oWQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/12/10.1093_bioinformatics_btw073/2/btw073_Supplementary_Data.zip?Expires=1527360907&Signature=Gk5Mm4y3OnbLoxUk06T9bacuzkUg9GIBAA3fL8z-e66O5chyq91peg8jpXgMhFiT7qPU0g4B5XFrhdKQVXWuELnSrVHBFOA%7ESC41e4nuVmrtRVhFyQbu0NJxqg75qkdONX9hA5cs-OwcsOkZ8alJpWUszVYuD%7Ew3Kds1oSruYaSZh5aatwOTugX%7ERscK2z01kH4rXSQHlKn3DFL27Xss7hBmEStJ-%7EjbM59mhmJbRaVW6QgfrHHVlaFDpZaDpdzpww9q8A12r0q%7ENr2HyE-Xqmbgce3f5GsfLV7688BslW6ugdnquqDIq2fMKD1aG34ug6tWSRTIO%7EDHjPNeOP9oWQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/12/10.1093_bioinformatics_btw073/2/btw073_Supplementary_Data.zip?Expires=1527360907&Signature=Gk5Mm4y3OnbLoxUk06T9bacuzkUg9GIBAA3fL8z-e66O5chyq91peg8jpXgMhFiT7qPU0g4B5XFrhdKQVXWuELnSrVHBFOA%7ESC41e4nuVmrtRVhFyQbu0NJxqg75qkdONX9hA5cs-OwcsOkZ8alJpWUszVYuD%7Ew3Kds1oSruYaSZh5aatwOTugX%7ERscK2z01kH4rXSQHlKn3DFL27Xss7hBmEStJ-%7EjbM59mhmJbRaVW6QgfrHHVlaFDpZaDpdzpww9q8A12r0q%7ENr2HyE-Xqmbgce3f5GsfLV7688BslW6ugdnquqDIq2fMKD1aG34ug6tWSRTIO%7EDHjPNeOP9oWQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
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counts on the split data. These contingency table counts are each party’s input into the circuit. Within the 

circuit, the counts are summed for both case and control groups then the χ2-statistic along with the odds 

ratio are computed for each feature. 

In the sparse matrix approach, the total number of samples and all non-zero elements for each 

feature are input to a garbled circuit. The circuit first adds the number of non-zero elements to compute 

the present contingency table counts then uses the total number of samples to find the absent counts. 

Differential abundance 

For calculating differential abundance, we implemented a two-sample t-test for testing the mean 

abundance between case and control groups. We assume normalization of sequencing counts can be 

accomplished in a preprocessing step between both parties. We make this assumption because we use 

normalized datasets in our evaluation. We leave implementation of normalization techniques in garbled 

circuits to future work. 

For review of two-sample t-test we refer the reader to the  Appendix D Section 1. We examined 

the process for calculating mean, variance and the t-statistic to determine what optimizations can be made 

for computing in a circuit. To avoid processing all samples within the computation framework, we 

observe transformations that reduce the total number of operations. In the Appendix D, we show how 

mean abundance and variance can be computed using the sum, sum of squares and total number of 

elements from each party. For precomputation, as each institution only needs to provide three values per 

feature we calculate them locally. In the circuit, a two-sample t-statistic to test difference between case 

and control groups is computed. 

For the sparse matrix approach, the total sum and sum of squares are calculated in the circuit 

using the non-zero elements for each feature. Mean abundance along with variance can then be calculated 

and used compute the two-sample t-test. We refer the reader to  Appendix D Section 4 for more detail. 

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/12/10.1093_bioinformatics_btw073/2/btw073_Supplementary_Data.zip?Expires=1527360907&Signature=Gk5Mm4y3OnbLoxUk06T9bacuzkUg9GIBAA3fL8z-e66O5chyq91peg8jpXgMhFiT7qPU0g4B5XFrhdKQVXWuELnSrVHBFOA%7ESC41e4nuVmrtRVhFyQbu0NJxqg75qkdONX9hA5cs-OwcsOkZ8alJpWUszVYuD%7Ew3Kds1oSruYaSZh5aatwOTugX%7ERscK2z01kH4rXSQHlKn3DFL27Xss7hBmEStJ-%7EjbM59mhmJbRaVW6QgfrHHVlaFDpZaDpdzpww9q8A12r0q%7ENr2HyE-Xqmbgce3f5GsfLV7688BslW6ugdnquqDIq2fMKD1aG34ug6tWSRTIO%7EDHjPNeOP9oWQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/12/10.1093_bioinformatics_btw073/2/btw073_Supplementary_Data.zip?Expires=1527360907&Signature=Gk5Mm4y3OnbLoxUk06T9bacuzkUg9GIBAA3fL8z-e66O5chyq91peg8jpXgMhFiT7qPU0g4B5XFrhdKQVXWuELnSrVHBFOA%7ESC41e4nuVmrtRVhFyQbu0NJxqg75qkdONX9hA5cs-OwcsOkZ8alJpWUszVYuD%7Ew3Kds1oSruYaSZh5aatwOTugX%7ERscK2z01kH4rXSQHlKn3DFL27Xss7hBmEStJ-%7EjbM59mhmJbRaVW6QgfrHHVlaFDpZaDpdzpww9q8A12r0q%7ENr2HyE-Xqmbgce3f5GsfLV7688BslW6ugdnquqDIq2fMKD1aG34ug6tWSRTIO%7EDHjPNeOP9oWQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
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Alpha diversity 

We use a two-sample t-test to determine the significance of mean Alpha Diversity difference 

between case and control groups. Given that FlexSC does not currently compute logarithm, we measure 

Alpha Diversity as Simpson’s index: 𝐷𝐷 = (∑𝑛𝑛(𝑛𝑛 − 1))  ÷𝑁𝑁(𝑁𝑁 − 1) where n is the number of OTU 

counts for OTUi and N is the total number of counts observed in a sample. 

For precomputation, we locally compute Simpson’s index for each sample. These values are input 

into the circuit where they are summed, mean and variance is taken, and the t-statistic is calculated. In 

Alpha Diversity, all samples in case and control must be processed together as opposed to 

Presence/Absence and Differential Abundance which can be computed per feature. 

For our sparse computation design, the two values for Simpson’s index, ∑n(n−1) and N(N−1) are 

generated over each sample in the circuit during one pass through the matrix. Then a pass over an array 

of these values using division yields Simpson’s index from which the total sum and sum of squares can 

be used to compute the two-sample t-test between case and control groups. 

Evaluation 

We evaluated our implementation using two Amazon EC2 r3.2xLarge instances with 2.5 GHz processors 

and 61 GB RAM running Amazon Linux AMI 2015.3. We measured the size of the circuit generated, 

running time and network traffic between both parties for each metagenomic statistic and dataset. Circuit 

size serves as a useful comparison metric since it depends on the function and input sizes but is 

independent of hardware. Running time and network traffic are helpful in system-design decisions and 

benchmarking of deployments. 

Datasets 

We used OTU count data from the Personal Genome Project (PGP)65, the HMP64, and the Global Enteric 

MSD3. We retrieved the MSD data from the project website 
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(ftp://ftp.cbcb.umd.edu/pub/data/GEMS/MSD1000.biom) as well as the PGP and HMP datasets are from 

the American-Gut project site (https://github.com/biocore/American-Gut/tree/master/data) 66. We used 

the tongue as the case and gingiva as control for the HMP data. For PGP, we set forehead as case and left 

palm as control. Case and control criteria for the MSD dataset were already set by the researchers that 

publish the data depending on disease phenotype. After aggregating to species and removing features 

which hold all zeros for either the case or the control group, the PGP contains 168 samples and 277 

microbiome features, the HMP has 694 samples and 97 features, and the MSD dataset consists of 992 

samples and 754 features.  Appendix D Table 2 summarizes the size and sparsity of each dataset. 

Efficiency of secure computation 

Circuit size 

Figure 18 shows the circuit size per feature for each experiment. As a result of the work by Kolesnikov 

and Schneider (2008), XOR gates in each circuit do not require costly network traffic and computation, 

therefore the total number of non-XOR gates is reported for each statistic and dataset75. Using 

precomputation, the complexity of the equation in terms of arithmetic operations to calculate each 

statistic determines the circuit size. This explains the circuit sizes for odds ratio and χ2 test as compared 

with Differential Abundance. For Alpha Diversity, all rows and columns are preprocessed with only the 

two-sample t-test computed in the circuit. With the sparse implementation, the complexity of the test 

along with the number of non-zero elements in the dataset directly affects circuit size.  

http://ftp/ftp.cbcb.umd.edu/pub/data/GEMS/MSD1000.biom
https://github.com/biocore/American-Gut/tree/master/data
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/12/10.1093_bioinformatics_btw073/2/btw073_Supplementary_Data.zip?Expires=1527360907&Signature=Gk5Mm4y3OnbLoxUk06T9bacuzkUg9GIBAA3fL8z-e66O5chyq91peg8jpXgMhFiT7qPU0g4B5XFrhdKQVXWuELnSrVHBFOA%7ESC41e4nuVmrtRVhFyQbu0NJxqg75qkdONX9hA5cs-OwcsOkZ8alJpWUszVYuD%7Ew3Kds1oSruYaSZh5aatwOTugX%7ERscK2z01kH4rXSQHlKn3DFL27Xss7hBmEStJ-%7EjbM59mhmJbRaVW6QgfrHHVlaFDpZaDpdzpww9q8A12r0q%7ENr2HyE-Xqmbgce3f5GsfLV7688BslW6ugdnquqDIq2fMKD1aG34ug6tWSRTIO%7EDHjPNeOP9oWQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
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Figure 18: Circuit size per feature for each implementation and dataset.  
The feature count for Alpha Diversity is the number of samples. The differences in Alpha Diversity between 
datasets is explained by the number of samples for PGP (168) being much lower than that of HMP (694) and MSD 
(992). PC, Pre-compute.  

Running time 

For the sparse implementation, the running time was proportional to the size and number of non-

zero elements in each dataset. For precomputation, Alpha Diversity was affected by the number of 

samples in each dataset. The running time for the χ2 test, odds ratio, and Differential Abundance were 

proportional to the number of features (rows) processed. Figure 19 summarizes the effects of input size 

and algorithm complexity on running time.  
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Figure 19: Running time for each statistic and each dataset in minutes.  
In each statistic, the number of arithmetic operations determined the running time. The size of the dataset along 
with sparsity contributed to running time for the sparse implementations. Alpha Diversity MSD Naive did not run 
to completion on the EC2 instance size due to insufficient memory. Based on the circuit size and the number of 
gates processed per second for other statistics, we estimate the running time to be 378 min. PC, Pre-compute. 
 

Network traffic 

 Appendix D Table 5 shows the network traffic for each experiment. The increase in network traffic 

between the precomputation and sparse implementations is more significant than the differences in 

running times of those approaches. We believe that the network traffic for the precompute 

implementation is quite good for the security guarantees provided with using garbled circuits while the 

sparse approach presents an acceptable tradeoff depending on the network resources available. 

Accuracy 

We compared the accuracy of our implementation results to computing the statistic using standard R 

libraries. Table 2 lists the accuracy of results for the χ2 statistic, odds ratio, as well as the t-test results for 

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/12/10.1093_bioinformatics_btw073/2/btw073_Supplementary_Data.zip?Expires=1527360907&Signature=Gk5Mm4y3OnbLoxUk06T9bacuzkUg9GIBAA3fL8z-e66O5chyq91peg8jpXgMhFiT7qPU0g4B5XFrhdKQVXWuELnSrVHBFOA%7ESC41e4nuVmrtRVhFyQbu0NJxqg75qkdONX9hA5cs-OwcsOkZ8alJpWUszVYuD%7Ew3Kds1oSruYaSZh5aatwOTugX%7ERscK2z01kH4rXSQHlKn3DFL27Xss7hBmEStJ-%7EjbM59mhmJbRaVW6QgfrHHVlaFDpZaDpdzpww9q8A12r0q%7ENr2HyE-Xqmbgce3f5GsfLV7688BslW6ugdnquqDIq2fMKD1aG34ug6tWSRTIO%7EDHjPNeOP9oWQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
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Differential Abundance and Alpha Diversity. The differences in our garbled circuits results compared to 

the R values appear to be the result of circuit complexity. The floating-point arithmetic operations in 

FlexSC are software implementations. Therefore, the operations are subject to rounding errors that are 

rarely observed on modern processors which have hardware level support for floating-point arithmetic.  

Table 2: Accuracy  
 PGP  HMP  MSD  
Chi-square statistic  7.84e-07  7.48e-06  7.02e-08  
Chi-square P-value  2.00e-07  2.14e-06  9.72e-08  
odds ratio  1.60e-13  5.42e-13  2.44e-13  
Differential abundance     

t-statistic  0.023  0.0017  0.0012  
Differential abundance     

degrees of freedom  2.7e-4  2.5e-4  0.0028  
Differential abundance     

P-value  0.0024  0.0026  0.0011  
Alpha Diversity     

t-statistic  0.0038  0.017  0.0049  
Alpha Diversity     

degrees of freedom  1.48e-05  9.7e-4  2.2e-4  
Alpha Diversity     

P-value  0.0088  0.044  0.014  
Results were generated using the R chisq.test{stats}, odds.ratio{abd}, t.test{stats}, 
and diversity{vegan} against our implementation in ObliVM for the χ2-test, odds 
ratio, differential abundance and Alpha Diversity. We use Normalized Mean 
Squared Error: ∥x−y∥2/∥x∥2 with x as the value output by R and y the value from 
our implementation. For comparing P-values, we use the log10P-value and exclude 
any exact matches [since log10(0) = −Inf in R] while computing the mean. 

 

We investigated if our implementation yielded any false positives and false negatives with the 

results from R acting as ground truth. For the P-values of Differential Abundance in PGP, HMP, and 

MSD datasets we found no false positives or false negatives for a significance level of 0.05. 

Significant features discovered through data-sharing 

Researchers in different policy domains may be forced to compute analyses on partial data. We 

measured the effect of using our implementation for data-sharing between policy domains. The MSD 
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dataset provides a means to simulate secure computation of microbiome analyses between different 

countries. The data were gathered from Kenya, The Gambia, Bangladesh and Mali. We simulate each 

country performing secure Differential Abundance pair-wise with the other countries. We observed that 

sharing data resulted in a substantial increase (at minimum a 98% increase) in the number of species 

found to be differentially abundant between case and control groups. Table 3 summarizes the results.  

Table 3: Feature Testing Across Domains 
 Features found  Total increase  

Kenya only  47  N/A  
Gambia only  84  N/A  
Mali only  58  N/A  
Bangladesh only  75  N/A  
Kenya + The Gambia  133  86  
Kenya + Mali  112  65  
Kenya + Bangladesh  138  91  
Gambia + Bangladesh  166  82  
Mali + Gambia  167  109  
Mali + Bangladesh  169  111  
When computing data with another policy domain, each country saw an increase in 
the number of features detected to be significantly different between case and control 
groups. 

 

Metagenomic codes 

We also evaluated our implementation on the genetic marker data that showed the greatest 

identification power in the metagenomic codes analysis 23. The data are also from the HMP and consists 

of a total of 85 samples and 221,111 features. Due to the large number of features and sparsity of the 

data, we implemented a filtering garbled circuit in which we first return a vector to each party denoting if 

a given feature meets a presence cutoff and then have each party input those features into our existing 

implementations to compute the statistical test. For χ2, the 1,729,851,751 gate circuit (circuit size of 7823 

Non-Free gates per feature) is evaluated in 67.4 min, with 51,926.35 MB sent to the evaluator, and 1 

642.53 MB sent to generator. For odds ratio, the 632,918,505 gate circuit is evaluated in 33.18 min, with 
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20,542.84 MB sent to the evaluator, and 1,642.29 MB sent to generator. This result shows that the secure 

comparative analyses we would like to perform are possible given the legitimate concerns raised by 

Franzosa et al. 

5.4 Discussion 

In this section, we describe related work and provide a context for our contribution. We also 

discuss a use case for our solution in building datasets and finally present conclusions we formed during 

our work. 

Related work 

As we are the first, to our knowledge, to approach secure microbiome analysis, we review related 

work on privacy-preserving operations over human DNA. 

Secure DNA sequence matching and searching 

Comparing two DNA segments is essential to genome alignment and identifying the presence of a 

disease-causing mutation. One approach is to use an oblivious finite state machine for privacy-preserving 

approximate string matching76. FastGC, the predecessor of the FlexSC library, was benchmarked by 

computing Levenstein distance and the Smith-Waterman algorithm between private strings held by two 

parties77. More recently, Wang et al. (2015) compute approximate edit-distance using whole genome 

sequences78. 

Privacy-preserving Genome-wide association studies 

Prior work has shown that secure computation between two institutions on biomedical data is 

possible by using a three-party secret-sharing scheme71. The authors present an implementation of a χ2-

test over SNP data using the Sharemind framework. Other researchers have presented a modification of 
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functional encryption that enables a person to provide her genome and phenotype to a study but only for 

a restricted set of functions based on a policy parameter79. 

Prior works have built systems for genomic studies using different cryptographic protocols, 

including systems using additive homomorphic encryption80 and systems using fully homomorphic 

encryption81. When compared with these works, we use a garbled circuit protocol with circuits for 

floating-point operations. Our system has two unique advantages compared to these prior works: (1) We 

can benefit from a long line of work on improving the practicality of garbled circuits 77,75,82 and (2) 

Floating-point operations ensure us a small and bounded error even after multiple operations. 

Secure genetic testing 

For using sequencing results in the clinical realm, paternity determination and patient-matching is 

possible using private set intersection83. Also, it is feasible to utilize homomorphic encryption for 

implementing disease-risk calculation without revealing the value of any genomic variant84. 

Patient pool 

A novel application of multi-party secure computation approaches to genomic analysis are patient 

pool designs that can benefit patient groups, specifically those suffering from rare diseases or those with 

insufficient data in existing repositories for association studies. The recent announcement by 23andMe to 

begin drug development on its genome variant datasets highlights the value of biomarker data. We 

imagine a scenario where individuals can use our solution to create and manage datasets in order to 

charge drug developers to run analysis functions over the data. The companies will have to be non-

colluding as otherwise all function results could be shared among companies. The current regulatory 

process for drug development allows a mechanism to enforce this constraint. 

The patient pool can be paid to compute a function to over its data and sign the output. Upon 

requesting drug trial permission in the USA, a company is required to hand over all data from research, 
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which in this case would include the output of the patient pool analysis and signatures over those results. 

The FDA could verify the signatures to enforce non-collusion between companies. This provides a 

mechanism to create high-quality datasets that are accessible to a variety of companies and ensure 

patients are compensated for their efforts. 

5.5 Conclusions 

In this article, we show that it is possible to perform metagenomic analyses in a secure 

computation framework. Our implementation made use of precomputation steps to minimize the number 

of operations performed in secure computation making the use of garbled circuits feasible. We also 

implemented sparse-matrix methods for each statistic. We took this step in order to prove the 

applicability of this solution for other analyses when the data itself acts as sufficient statistics, such as for 

the Wilcoxon rank-sum test. We also explored potential applications of our implementation in patient 

pool designs. 

Although the storage and sharing of medical data is ultimately a policy matter, providing a 

technical solution is useful to forming good policy. We believe that given the time costs associated with 

re-consenting patients to release data to another researcher or creating a legal contract stipulating a data 

receiver’s responsibility, that the running times we presented for metagenomic analyses are a reasonable 

tradeoff. 

DNA-sequencing technologies are entering a period of unprecedented applicability in clinical and 

medical settings with a concomitant need for regulatory oversight over each individual’s sequencing data. 

We believe that addressing privacy concerns through computational frameworks similar to those used in 

this article is paramount for patients while allowing researchers to have access to the largest and most 

descriptive datasets possible. We expect that secure computation and storage of DNA sequencing data, 
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both the individual’s DNA and their metagenomic DNA, will play an increasingly significant role in the 

biomedical research and clinical practice landscape. 
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Chapter 6:  Conclusion 

In this dissertation we present software infrastructure and new visualization approaches for 

investigating microbiome data. We center the work around the data analysis ideal of successive rounds of 

exploratory and confirmatory analysis. Visualization is a vital component of exploratory analysis and 

Metaviz includes a navigation utility suited for hierarchical microbiome data. We developed Metaviz to 

interface with the metagenomeSeq Bioconductor package for microbiome differential abundance 

statistical testing. We support interactive, exploratory visual analysis through the metavizr Bioconductor 

package to produce visualizations based on statistical analysis results. We developed infrastructure for 

integrative analysis across multiple datasets from the Human Microbiome Project as well as implemented 

statistical tests in a secure data sharing mechanism. With microbiome sequencing projects moving 

towards the study of microbial community perturbation and functional community profiles, we developed 

a novel longitudinal visualization for multiple features along with a mechanism for inspecting functional 

and taxonomic hierarchies. 

Specific Contributions 

1.  Metaviz – Interactive visualization for exploratory analysis of community taxonomic profile data. 

Metaviz is a web application for visualization of microbiome community abundance profile data. The 

application can visualize marker-gene or whole metagenome shotgun sequencing data. Metaviz 

introduces a navigation utility for the taxonomic hierarchy.  

2. Metaviz integration with the Human Microbiome Project (HMP) Data Infrastructure. We describe the 

design and implementation of linking between the HMP Data Portal and Metaviz. Also, we present an 

analysis of a subset of data from the HMP using Metaviz and metagenomeSeq.  

3. Microbial community longitudinal and functional profiling visualizations in Metaviz. This work 

expands the visualizations available in Metaviz for longitudinal data using sparklines as the entries of a 



71 

 

 

heatmap to show trends across the set of features. This work also introduces an interactive filter for 

community functional profile data using the navigation mechanism in Metaviz, provides a mechanism to 

import and export taxa of interest, and connects Metaviz to external information sources.  

4. Privacy-preserving microbiome analysis using secure computation. In 2015, Franzosa et al. showed 

that it was possible to use microbiome features to identify individuals at different time points in the HMP 

dataset23. This work implements statistical analysis functions using a library for secure multi-party 

computation. The goal of this project is to allow researchers to compute analyses over shared microbiome 

abundance matrices without revealing the underlying counts directly. 

 

Future Work 

 Metaviz enables exploratory analysis of microbiome feature count data and the results of 

confirmatory analysis. However, to fully realize the data analysis model championed by Tukey, we need 

a formal method to incorporate the results of interactive, visual exploratory analysis into confirmatory 

analysis. We envision two general approaches, one with feature selection for statistical tests based on the 

visualization results and another using the visualization to provide a list of recommended statistical tests 

or parameter selections. An issue with feature selection when applied to domains with large numbers of 

features such as genomics is handling the multiple testing problem. One method used in gene expression 

analysis filters features based on independent values to those under test such as median and variance but 

that method is not easily extended to a visualization-based selection as the filter would not be 

independent85.  

A concern with Metaviz and interactive exploratory data analysis in general is that p-hacking can 

arise from failing to provide an appropriate mechanism for incorporating statistical testing. An example 

is an analyst visually finding interesting associations and then performing confirmatory statistical tests on 
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only those features without properly correcting for the multiple comparisons. One possible method to 

address this problem is to split the dataset in two randomly and perform exploratory on one part then 

using the hold out data for confirmatory analysis. Zgraggen et al. examined the issue of multiple 

comparison problem with interactive visualization and describe an approach using a procedure where 

implicit hypothesis tests from exploratory analysis are modeled along with explicit confirmatory analyses 

to control the false discovery rate86. The authors compare the results of this procedure against using a 

holdout validation dataset for all confirmatory analysis. As the authors highlight, keeping a holdout 

confirmation dataset is prohibitively expensive in many instances.  

Another mechanism for operating with a holdout dataset is differential privacy. With this 

approach, the holdout dataset can be used repeatedly. Differential privacy provides guarantees that 

functions computed on a dataset are not distinguishable based on the value for a single entry. The holdout 

procedure operates with the function run on the available dataset then a differential privacy mechanism 

computes if the difference between the analysis function’s result on the holdout dataset is close to the 

result on the training dataset within a threshold87.   

 Visualizations could also be used as a test statistic directly with prior work showing the 

usefulness of this approach. Specifically, Wikham et al. develop a software package for visual statistical 

inference – first one for sampling from a null distribution of a dataset then presenting plots of that along 

with a second mechanism to sample from the given dataset88. The methods are named the Rorschach and 

Lineup techniques89. Majumder et al. apply the Lineup protocol to linear model and test with human 

subjects to identify if a trends in the data can be identified90. In related work on user ability to identify 

significant trends from a visualization, instructors of a massive online course tested if students inferred an 

association between two variables in a course work assignment91. These findings collectively support the 

idea that visualization can be suitable as a statistical test and filtering mechanism.   
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Another avenue of continued development of Metaviz is a recommendation system for 

visualizations or microbiome features of interest. We could adapt collaborative filtering techniques to 

identify visualizations or features that users could find interesting92. Collaborative filtering generally 

operates over measures of similarity between objects. The Voyager tool showed recommendations to be a 

successful approach for an interactive visualization tool93. In Metaviz, the similarity measures between 

visualizations could include summary statistics of the underlying data, distance measurements within 

data under examination such as the dendrogram clustering metric in the heatmap, and measures of the 

graphic itself including intensity of blue or total number of colored pixels.   

The architecture of the Metaviz web application allows for implementing solutions to the multiple 

comparison problem, using visualizations as statistical tests, and a recommendation system. For instance, 

the data import utility could split a dataset into training and holdout subsets. A user could perform 

interactive visualization with the training set and then test the results of any associations using a 

differentially private mechanism with the holdout dataset also stored in the Metaviz backend. The web 

application architecture of Metaviz offers an opportunity to employ interaction logging to identify which 

utilities, datasets, and visualizations analysts use most frequently. Interaction logging with Metaviz could 

also help with addressing multiple comparison problem. The recommendation system could be refined 

through the interaction log data to identify similar users, visualizations for a given dataset, or similar 

features in other datasets.  

In addition to robust exploratory and confirmatory data analysis tools, data access and data 

sharing are critical to advancing microbiome sequencing studies. To address concerns about data privacy 

and long-term data storage, security protocols could be incorporated to several Metaviz utilities. Beyond 

a statistical testing holdout mechanism, differential privacy protocols could be used with visualization 

and exploratory analysis of datasets in a could help users that need to investigate data to which they do 
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not have direct access. Also, visualizations that rely on computed measurements or aggregations could 

work with secure computation protocols as the individual data counts of a matrix should not be revealed 

directly. Stacked bar plots that show the proportion of a feature in a given sample are one appropriate 

visualization. The incorporation of secure data-sharing protocols into large sequencing-based consortium 

projects will be vital to share data broadly. Interactive visualization for exploratory analysis coupled with 

robust confirmatory analysis and secure data sharing utilities is vital to advance computational biology. 

 



75 

 

 

Appendix 

Appendix A. 

Section I: Using Information Visualization Techniques for Microbiome Data  

Our design for the visualization layer is motivated by results in the information visualization 

literature for displaying large tree structures with associated complex data. In this section, we provide a 

brief review of pertinent visualization techniques. To provide a basis for our design decisions, we present 

metagenomic visual analysis operations in relation to the Task by Data Type Taxonomy for Data 

Visualization94. In microbiome sequencing projects, sample data is multi-dimensional with study-specific 

attributes, e.g. age, sex, gathered in each experiment. Feature data is tree-structured with a node fan-out 

dependent on the bacterial hierarchy of the annotation database and the ecological community observable 

in each sample.  

We review the tasks presented by Shneiderman for completeness. These consist of the following: 

1) Overview: gain an overview of the entire collection; 2) Zoom: Zoom in on items of interest; 3) Filter: 

filter out uninteresting items; 4) Details-on-demand: Select an item or group and get details when 

needed; 5) Relate: View relationships among items; 6) History: Keep a history of actions to support 

undo, replay, and progressive refinement; 7) Extract: Allow extraction of sub-collections and of the 

query parameters94. Our task taxonomy below builds upon and generalizes the description of features 

presented in the Krona interactive visualization tool29, also based on the Shneiderman interactive 

visualization task taxonomy. 

We now discuss the specific operation and goal for each task with regards to microbiome 

analysis. The overview task consists of examining global patterns in feature abundance among samples 

across levels of the taxonomic hierarchy. This task is also accomplished by presenting statistics that 

summarize feature variance and observed ecological diversity. The zoom task requires navigation to the 
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lowest levels of the feature hierarchy as well as inspection of individual sample data. The filter task 

consists of removing or expanding taxonomic features and samples. With taxonomic community profile 

data, several operations need to be enabled, first a level-wise filtering and then removal of features at a 

given depth along with aggregating to a specific point in the hierarchy. Details-on-demand includes 

showing all children of a given node, text-based search for features that contain a character string, and 

the utility to visualize the same data in different views. Relate is enabled by linking multiple data views 

with the feature hierarchy along with group-by and color-by operations over sample attributes. History 

requires keeping track of the current position during navigation of a feature hierarchy as well as the 

ability to select and remove nodes as desired. Finally, extract entails capturing the parameters to recreate 

an analysis. Specific to microbiome analysis, the extract task also should encompass providing a 

mechanism to interoperate between annotation databases and retrieving cluster center sequences from a 

dataset. 

Section II. Data Plots and Charts 

We provide several visualizations of feature count data. These allow the user to explore 

relationships between sample phenotype and metagenomic features. The first is a heatmap with rows as 

samples and columns as features95. The heatmap is an interactive component from which a user can 

select to show a dendrogram of a dynamic clustering over features or samples. If the user chooses not to 

employ clustering, rows can be re-ordered based on a sample metadata attribute. We also provide several 

utilities on the samples including color-by and modifying the displayed name of any sample attribute. 

Figure 1 shows a heatmap of the msd16s dataset with the colors for sample rows set based on dysentery 

status. 
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Metaviz heatmaps include dendrograms that are calculated with commonly used distance metrics. 

In addition to Euclidean distance, the following dissimilarity measures are available based on the 

implementations in the vegan R package [https://cran.r-project.org/web/packages/vegan/index.html]: 

Manhattan, Canberra, Bray-Curtis, Kulczynski, Jaccard, Gower, Morisita, Horn-Morisita, and Binomial.  

Another visualization in Metaviz is the stacked bar plot that shows the proportion of features in each 

sample. A column is a sample or group of samples, a row represents the bin counts for that feature, and 

each row is colored by taxa that is linked for highlighting to the FacetZoom and all other charts in the 

workspace. On the stacked plot, we implemented a group-by function to aggregate samples based on a 

sample metadata attribute. This plot is useful for comparing microbial community composition between 

individual samples or groups. Figure 3 shows two stacked bar plots that are split based on sample 

dysentery status and grouped by age range.  

Metaviz supports scatter plots to visualize feature count values of selected samples in a X, Y 

coordinate plane. A scatter plot is useful for fast identification of distribution and spread across 

measurements. The scatter plot has a color-by feature to color points based on a specific sample metadata 

attribute. In addition, we include PCA and PCoA scatter plots for community level analysis. For instance, 

a PCA plot is shown in the upper right corner of Figure 1. Another scatter plot is the PCoA plot that is 

shown in the upper right side of Appendix A Figure 5. 

Further, Metaviz includes a line plot with each line representing a feature, the height of the line 

denoting abundance, and the samples across the X-axis. We find the line plot useful for examining time-

series data.  

Metaviz allows a user to generate a boxplot of alpha diversity values for selected samples. Boxes 

can be generated for samples belonging to a metadata attribute for example case or control status. 

Appendix A Figure 6 shows a Metaviz workspace with an alpha diversity boxplot. 
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All data plots and charts added to the workspace are linked to the feature nodes on the 

FacetZoom. Hovering over a feature column in a heatmap highlights that feature in all other plots as well 

as the path through the hierarchy for that feature in the FacetZoom. This brushing and linking is essential 

to providing integrative visual analysis. Also, each plot and chart has a toolbar that can be used to modify 

presentation settings, the color scheme, saving the chart, and writing custom JavaScript for that chart. 

The toolbar is shown in the upper right-hand corner of the FacetZoom in Appendix A Figure 1. 

Individual charts can be saved as SVG or PDF files. Metaviz also allows users to render complete 

workspaces as PDF files. The process captures each SVG chart in the workspace and combines the 

individual charts to generate a single page. Alternatively, since Metaviz is a JavaScript application and it 

cannot send requests to the browser to generate a screenshot, users can capture a static image of the 

workspace that shows brushing or linking across charts, the user will need to use the browser screenshot 

function. 

Section III: Exploration of MSD childhood diarrhea study in developing countries  

In the main paper, we discuss results of visual and statistical analysis of Bangladesh samples in 

the MSD dataset. In this Section, we discuss results for the other three countries. Building the same 

Metaviz plots for The Gambia, we note that the number of control samples outweighs the number of case 

samples and no case samples from the 0-6 month age range are present. Examining the heatmap and 

interactive boxplots, the following taxa are more abundant in case than control samples: 

Actinomycetales, Lactobacillales, Campylobacterales, Enterobacteriales, Pasteurellales, 

Pseudomonadales, Actinomycetaceae, Micrococcaceae, Carnobacteriaceae, Streptococcaceae, 

Campylobacteraceae, Enterobacteriaceae, Pasteurellaceae, Moraxellaceae, Porphyromonadaceae, 

Actinomyces, Rothia, Granulicatella, Streptococcus, Campylobacter, Citrobacter, Dickeya, Escherichia, 

Klebsiella, Shigella, Haemophilus, Acinetobacter, Parabacteroides, Rothia mucilaginosa, Granulicatella 
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adiacens, Granulicatella sp. oral clone ASCG05, Streptococcus mitis, Streptococcus oralis, 

Streptococcus parasanguinis, Streptococcus sanguinis, Streptococcus sp. C101, Streptococcus sp. oral 

clone ASCC01, Streptococcus sp. oral clone ASCE09, Citrobacter freundii, Erwinia chrysanthemi, 

Escherichia coli, Klebsiella pneumoniae, Haemophilus haemolyticus, Haemophilus parainfluenzae, 

Haemophilus sp. oral clone BP2-46. While the following taxa are more abundant in control samples than 

case: Bacteroidales, Clostridiales, Prevotellaceae, Eubacteriaceae, Prevotella, Eubacterium, Prevotella 

copri, Prevotella histicola, Prevotella sp. BI-42, Prevotella sp. DJF_B112, Prevotella sp. DJF_B116, 

Prevotella sp. DJF_LS16, Prevotella sp. DJF_RP53, and Prevotella sp. oral clone BP1-28. Examining 

the stacked plots, we first notice the proportion of Bacteroidales increases with age in the control samples 

as compared to the dysentery group. Lactobacillales decreases in proportion as age increases for both the 

case and control samples with a large decrease from 18-24 to 24-60 months in the case samples. In the 

case samples, Enterobacteriales has one of the highest proportions orders at 0-6 months, decreases for 

both 12-18 months and 18-24 months, but is then the highest proportion order in the 24-60 month 

interval. Appendix A Figure 7 shows the heatmap and stacked plot Metaviz workspace for The Gambia. 

Using metagenomeSeq, we find the following taxa to have significant difference in abundance: 

Actinomycetales (1.13, 1.49E-02), Enterobacteriales (1.85, 5.20E-03), Pasteurellales (2.02, 2.00E-07), 

Bacteroidales (-1.36, 5.73E-03), Actinomycetaceae (1.14, 1.96E-02), Carnobacteriaceae (2.13, 2.04E-

07), Enterobacteriaceae (1.83, 7.33E-03), Pasteurellaceae (2.01, 2.04E-07), Actinomyces (1.14, 3.00E-

02), Granulicatella (2.13, 6.64E-07), Escherichia (1.88, 9.40E-03), Haemophilus (1.95, 9.74E-07), 

Granulicatella adiacens (1.88, 1.67E-04), Granulicatella elegans (1.70, 4.33E-03), Granulicatella  sp. 

Oral  clone ASCG05 (2.64, 4.46E-07), Streptococcus mitis (1.64, 4.33E-03), Streptococcus sanguinis 

(1.15, 4.03E-02), Streptococcus sp. C101 (1.24, 2.19E-02), Streptococcus sp. Oral clone ASCC01 (2.12, 

7.15E-08), Streptococcus sp. Oral clone ASCE09 (1.49, 4.33E-03), Escherichia coli (1.88, 9.54E-03), 
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Haemophilus haemolyticus (1.73, 3.71E-03), and Haemophilus parainfluenzae (2.03, 4.50E-06). We 

present the metagenomeSeq differential abundance calculations for The Gambia in Appendix A Table 2. 

Inspecting the Kenya samples with Metaviz we noticed there are far fewer samples with 

dysentery than non-dysentery samples. From the heatmap and boxplots, we observed the following taxa 

as more abundant in the case samples than across the control samples: Actinomycetales, 

Selenomonadales, Campylobacterales, Enterobacteriales, Pasteurellales, Veillonellaceae, 

Campylobacteraceae, Enterobacteriaceae, Pasteurellaceae, Megasphaera, Veillonella, Campylobacter, 

Citrobacter, Enterobacter, Escherichia, Klebsiella, Shigella, Haemophilus, Veillonella parvula, 

Veillonella sp. HF9, Veillonella sp. oral clone VeillC8, Veillonella sp. oral clone VeillD5, Enterobacter 

cancerogenus, Enterobacter cloacae, Escherichia coli, Escherichia sp. oral clone 3RH-30, Klebsiella 

pneumoniae, Haemophilus haemolyticus, and Haemophilus parainfluenzae. Correspondingly, we find the 

following more abundant in control over case: Bacteroidales, Prevotellaceae, Prevotella, Prevotella 

copri, Prevotella histicola, Prevotella sp. BI-42, Prevotella sp. DJF_B112, Prevotella sp. DJF_B116, 

and Prevotella sp. DJF_RP53. As for changes across age ranges and case/control status, 

Campylobacterales is more prevalent in 0-6, 6-12, and 12-18 month age ranges in the case group than the 

control group. Appendix A Figure 8 shows the visual analysis of the Kenya samples. 

Using metagenomeSeq, we find the following taxa to have significant difference in abundance: 

Pasteurellales (1.29, 7.36E-03), Pasteurellaceae (1.29, 1.25E-02), Enterobacter (1.05, 5.54E-02), 

Haemophilus (1.29, 1.99E-02), Veillonella sp. Oral clone VeillD5 (1.15, 8.20E-02), Enterobacter 

cancerogenus (1.45, 4.12E-02), Escherichia sp. Oral clone 3RH-30 (1.07, 5.76E-02), and Haemophilus 

haemolyticus (1.63, 4.12E-02). 

From the Metaviz plots for Mali samples, we note that the number of case samples is far smaller 

than the number of control samples and no case samples are from the 0-6 month age range. Examining 
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the heatmap and boxplots, the following taxa show greater abundance in the case samples compared to 

control: Actinomycetales, Neisseriales, Fusobacteriales, Enterobacteriales, Pasteurellales, 

Pseudomonadales, Actinomycetaceae, Micrococcaceae, Neisseriaceae, Fusobacteriaceae, 

Enterobacteriaceae, Pasteurellaceae, Moraxellaceae, Actinomyces, Rothia, Neisseria, Citrobacter, 

Dickeya, Enterobacter, Escherichia, Klebsiella, Shigella, Haemophilus, Acinetobacter, Rothia 

mucilaginosa, Citrobacter freundii, Erwinia chrysanthemi, Enterobacter cancerogenus, Enterobacter 

cloacae, Escherichia albertii, Escherichia coli, Escherichia sp. oral clone 3RH-30, Klebsiella 

pneumoniae, Shigella boydii, Shigella sonnei, Haemophilus parainfluenzae, Haemophilus sp. oral clone 

BP2-46, and Acinetobacter sp. SF6. In contrast, these taxa exhibit higher abundance in control samples 

compared to the case samples: Bifidobacteriales, Bacteroidales, Clostridiales, Bifidobacteriaceae, 

Bacteroidaceae, Prevotellaceae, Bifidobacterium, Bacteroides, Prevotella, Bifidobacterium longum, 

Bacteroides fragilis, Prevotella copri, Prevotella histicola, Prevotella sp. BI-42, Prevotella sp. 

DJF_B112, and Prevotella sp. DJF_RP53. From the stacked plots, the proportion of Enterobacteriales 

among case samples in age range 6-12 and 12-18 months is much higher than that in the same age ranges 

for control samples. For dysentery samples, Pasteurellales shows a much higher proportion in the 18-24 

month age range than for normal samples. Also, across all age ranges Bacteroidales is more prevalent in 

the control samples. Appendix A Figure 9 shows the visual analysis of samples from Mali. 

Using metagenomeSeq, we find the following taxa to have significant difference in abundance: 

Neisseriales (1.58, 7.33E-02), Pasteurellales (2.97, 5.51E-05), Neisseriaceae (1.58, 8.33E-02), 

Pasteurellaceae (2.96, 9.63E-05), Neisseria (1.69, 9.78E-02), Escherichia (1.62, 9.78E-02), Haemophilus 

(2.94, 2.03E-04), Haemophilus parainfluenzae (2.87, 1.54E-04), Haemophilus sp. Oral clone BP2-46 

(2.39, 3.65E-03), and Prevotella sp. DJF_RP53 (-2.91, 5.58E-02). 
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Appendix A Figure 1: Sunburst Plot 
The heatmap shows 52 samples from the msd16s dataset. The sunburst diagram next to the FacetZoom is a circular 
taxonomy that enables viewing the lineage and hierarchy of the dataset during exploration. The sunburst is linked 
to all other charts in the workspace, so the lineage of a taxonomic feature is highlighted when hovering on that 
feature in any other chart.   
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Appendix A Figure 2: metavizr benchmark 
HMP dataset with 1539 samples, 45336 features, and a 7-level hierarchy. The Rprof library was used for profiling. 
The benchmark consisted of an aggregation query to the 3rd level of the hierarchy. The top panels show tests for 
keeping the number of samples at 100 and increasing the number of features over which the aggregation query is 
operating. The top left panel shows the aggregation query completion time in seconds and the top right panel 
shows the highest memory footprint in MBs during the query execution. The next two rows of show the 
performance on 1000 samples then all samples in the dataset, respectively. The bottom row shows keeping the 
number of features fixed at 20000 and increasing the number of samples. From this benchmark, datasets above 
1000 samples, 25000 features, and a 7-level hierarchy are recommended to use the graph database backend for 
interactive query processing.  
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Appendix A Figure 3: Bangladesh msd16s visual analysis 
From the heatmap, Actinomycetales, Enterobacteriales, Lactobacillales, Pasteurellales, and Pseudomonadales 
appear more abundant in the case group than the control group. Correspondingly, Coriobacteriales, Bacteroidales, 
and Clostridiales display higher abundance in the control samples as compared to the case samples. Using 
metagenomeSeq, Enterobacteriales (1.38, 1.46E-04), Pasteurellales (2.47, 4.16E-12), Coriobacteriales (-1.38, 
9.88E-04), Bacteroidales (-1.19, 7.56E-04), and Clostridiales (-1.09, 6.45E-04) are differentially abundant while 
Actinomycetales (9.73E-01, 2.40E-03), Lactobacillales(1.15, 7.00E-01), and Pseudomonadales (5.36E-01, 1.05E-
01) are not. Looking at the stacked bar plots, Bacteroidales shows a higher proportion in control than case samples 
at all intervals after 0-6 months. Finally, Clostridiales has lower proportion in case than control samples for the 
intervals of 0-6, 6-12, and 12-18 months then similar proportion for the last two timepoints. This workspace is 
available at http://metaviz.cbcb.umd.edu/?ws=iGPCfth9nQn.  
  

http://metaviz.cbcb.umd.edu/?ws=iGPCfth9nQn
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Appendix A Figure 4: Dynamic Boxplot 
The order Lactobacillales in the heatmap with the family Streptococcaceae shown in the dynamic boxplot. The 
boxplot is generated by clicking the column name in the heatmap. The boxplot is separated into case and control 
samples as in the heatmap. The FacetZoom provides aggregation and filtering to a part of the taxonomy, the 
heatmap provides an overview of the aggregated counts for that region, and the boxplot provides details-on-
demand for the specific feature of interest. Now statistical testing can be performed to find significance of the 
difference in abundance observed. Another round of aggregation at the genus level then inspection of each feature 
in species with a boxplot can be performed to inspect each level of hierarchy and observe trends in the dataset. 
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Appendix A Figure 5: PCoA Plot 
The Metaviz workspace shows 52 samples from the msd16s dataset. The PCoA plot is computed over counts 
aggregated to the level selected in the FacetZoom control. The points are labeled based on a specified sample 
metadata field, in this instance dysentery case or control status.  
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Appendix A Figure 6: Alpha Diversity Boxplot 
The heatmap and boxplot displays 52 samples from the msd16s dataset. The alpha diversity boxplot is computed 
using Shannon Index. Samples in the boxplot can be separated on a metadata attribute with case and control 
dysentery status used in this example. 
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Appendix A Figure 7: The Gambia msd16s visual analysis 
From the heatmap, it appears that Actinomycetales, Lactobacillales, Campylobacterales, Enterobacteriales, 
Pasteurellales, and Pseudomonadales are more abundant in the case samples than control samples. Bacteroidales 
and Clostridiales are more abundant in the control samples than case.  From metagenomeSeq, we computed the 
following log-fold change and adjusted p-values: Actinomycetales (1.13, 1.49E-02), Enterobacteriales (1.85, 
5.20E-03), Pasteurellales (2.02, 2.00E-07), Lactobacillales (9.21E-01, 1.42E-01), Campylobacterales (1.28E+00, 
1.01E-01), Pseudomonadales (4.43E-01, 4.61E-01), Clostridiales (-4.54E-01, 4.61E-01), and Bacteroidales (-1.36, 
5.73E-03). Examining the stacked bar plots, Bacteroidales shows higher proportion in control samples than case 
samples for 12-18, 18-24, and 24-60 month age ranges. Lactobacillales decreases in proportion as age increases for 
both the case and control samples, with a much large decrease from 18-24 to 24-60 months in the case samples. In 
the case samples, Enterobacteriales has among the highest proportion at 6-12 months, decreases in these samples at 
12-18 and 18-24 months, then has the highest proportion in the 24-60 month interval. In control samples, 
Enterobacteriales has the highest proportion in 0-6 months and then decreases in proportion for each other age 
range. This workspace is available at http://metaviz.cbcb.umd.edu/?ws=Kd8O4u3zOEi. 
  

http://metaviz.cbcb.umd.edu/?ws=Kd8O4u3zOEi
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Appendix A Figure 8: Kenya msd16s visual analysis 
Examining the heatmap, Actinomycetales, Selenomonadales, Campylobacterales, Enterobacteriales, and 
Pasteurellales appear to be more abundant in the case samples than across the control samples. Bacteroidales 
appears more abundant in control over case. Using metagenomeSeq, Pasteurellales has a log fold-change of 1.29 
and adjusted p-value of 7.36E-03 while Actinomycetales (4.29E-01, 4.04E-01), Selenomonadales (5.89E-01, 
2.69E-01), Campylobacterales (1.39E+00, 2.69E-01), Bacteroidales (-8.32E-01, 2.69E-01), Enterobacteriales 
(8.54E-01, 2.69E-01), and are not differentially abundant. As for changes across age ranges and case/control status, 
it appears that Campylobacterales is more prevalent in 0-6, 6-12, and 12-18 in the case group than the control 
group. This is available at http://metaviz.cbcb.umd.edu/?ws=asrAc9DmK2p. 
  

http://metaviz.cbcb.umd.edu/?ws=asrAc9DmK2p
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Appendix A Figure 9: Mali msd16s visual analysis 
Actinomycetales, Neisseriales, Fusobacteriales, Enterobacteriales, Pasteurellales, and Pseudomonadales display 
increased abundance in the case samples as compared to the distribution in the control samples. Bifidobacteriales, 
Bacteroidales, and Clostridiales show greater abundance in control samples as compared to the case samples. With 
metagenomeSeq, we find support for these conclusions with Pasteurellales (2.97E+00, 5.51E-05) and Neisseriales 
(1.58E+00, 7.33E-02) but not with Actinomycetales (3.32E-01, 8.89E-01), Bifidobacteriales (-1.71E+00, 2.91E-
01), Enterobacteriales (1.38E+00, 8.89E-01), Fusobacteriales (3.23E-01, 8.89E-01), Pseudomonadales (7.19E-01, 
2.99E-01), Bacteroidales (-1.35E+00, 2.55E-01), or Clostridiales (-6.41E-02, 9.74E-01). From the stacked plots, 
the proportion of Enterobacteriales among case samples in age range 6-12 and 12-18 months is much higher than 
that in the similar age ranges in the control samples. In case samples, Pasteurellales shows higher proportion in the 
case samples as compared to the controls in the 18-24 age range. For all age ranges, Bacteroidales displays greater 
proportion in the control compared to case samples. This workspace is available at 
http://metaviz.cbcb.umd.edu/?ws=EUARocVProf. 
 

 

 

 

http://metaviz.cbcb.umd.edu/?ws=EUARocVProf
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Appendix A Table 1 
 logFC Se pvalues adjPvalues 
Actinomycetales 0.973422 0.289342 0.000767 0.002398 
Enterobacteriales 1.381503 0.321685 1.75E-05 0.000146 
Lactobacillales 1.151269 1.976018 0.560149 0.700186 
Pasteurellales 2.470368 0.335049 1.67E-13 4.16E-12 
Pseudomonadales 0.536238 0.271541 0.048291 0.104703 
Coriobacteriales -1.38084 0.379751 0.000277 0.000988 
Bacteroidales -1.18771 0.314453 0.000159 0.000756 
Clostridiales -1.08786 0.280175 0.000103 0.000645 
Micrococcaceae 0.905534 0.372999 0.015194 0.046596 
Enterobacteriaceae 1.373348 0.325538 2.46E-05 0.000226 
Carnobacteriaceae 1.517591 0.319974 2.11E-06 3.23E-05 
Streptococcaceae 1.414031 0.307811 4.35E-06 5.00E-05 
Pasteurellaceae 2.455909 0.336898 3.10E-13 1.43E-11 
Moraxellaceae 0.535115 0.265456 0.043818 0.100781 
Coriobacteriaceae -1.37333 0.383064 0.000337 0.001953 
Bacteroidaceae -1.08748 0.363474 0.002772 0.011594 
Porphyromonadaceae -0.6266 0.355293 0.077797 0.155595 
Clostridiaceae -0.60554 0.291877 0.038021 0.092051 
Eubacteriaceae -0.81641 0.328938 0.013066 0.042931 
Lachnospiraceae -0.57019 0.351512 0.104782 0.200833 
Ruminococcaceae -1.08603 0.317347 0.000621 0.003175 
Rothia 0.904951 0.372078 0.015009 0.057426 
Escherichia 1.334016 0.32666 4.43E-05 0.00065 
Shigella 0.442032 0.346428 0.201967 0.37815 
Granulicatella 1.514026 0.319386 2.13E-06 8.29E-05 
Streptococcus 1.326435 0.304474 1.32E-05 0.000291 
Haemophilus 2.422441 0.337368 6.95E-13 6.12E-11 
Acinetobacter 0.534236 0.264971 0.043778 0.118356 
Collinsella -1.47617 0.413236 0.000354 0.003894 
Bacteroides -1.08328 0.363182 0.002857 0.022669 
Clostridium -0.60009 0.289702 0.03832 0.116281 
Eubacterium -0.81469 0.328538 0.013147 0.055094 
Dorea -0.19768 0.398491 0.619836 0.70581 
Faecalibacterium -0.76861 0.333235 0.021082 0.076744 
Ruminococcus -1.18038 0.329733 0.000344 0.003894 
Escherichia coli 1.334934 0.326753 4.40E-05 0.001713 
Escherichia sp. oral clone 3RH-30 0.524181 0.284599 0.065501 0.278378 
Granulicatella adiacens 1.511455 0.376421 5.94E-05 0.001917 
Streptococcus equinus 0.803239 0.397057 0.043075 0.228084 
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Streptococcus mitis 1.15711 0.335784 0.000569 0.014951 
Streptococcus parasanguinis 1.068448 0.262749 4.77E-05 0.001713 
Streptococcus salivarius 1.016659 0.311742 0.001109 0.021077 
Haemophilus parainfluenzae 2.261274 0.369539 9.41E-10 3.04E-07 
Acinetobacter sp. SF6 0.469302 0.299197 0.116755 0.369725 
Collinsella sp. CB20 -1.26032 0.415063 0.002394 0.036819 
Bacteroides fragilis -1.01919 0.419931 0.015223 0.119304 
Faecalibacterium prausnitzii -0.73858 0.330304 0.025347 0.174196 
Faecalibacterium sp. DJF_VR20 -0.25484 0.342751 0.457174 0.695307 
Ruminococcus gnavus -1.18437 0.384095 0.002046 0.034775 

Results from metagenomeSeq analysis of samples from Bangladesh. 
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Appendix A Table 2 
 logFC Se pvalues adjPvalues 
Actinomycetales 1.127055 0.388687 0.003736 0.014943 
Lactobacillales 0.921211 0.483368 0.056674 0.141684 
Campylobacterales 1.282964 0.609792 0.035384 0.101097 
Enterobacteriales 1.847701 0.53244 0.00052 0.0052 
Pasteurellales 2.017464 0.35206 1.00E-08 2.00E-07 
Pseudomonadales 0.443129 0.387984 0.253399 0.460725 
Bacteroidales -1.36212 0.41888 0.001147 0.005733 
Clostridiales -0.45426 0.384712 0.237695 0.460725 
Actinomycetaceae 1.141895 0.383052 0.002873 0.019596 
Micrococcaceae 0.907872 0.422592 0.031687 0.106582 
Carnobacteriaceae 2.126 0.371553 1.05E-08 2.04E-07 
Streptococcaceae 1.022295 0.468884 0.029237 0.106582 
Campylobacteraceae 1.162876 0.64227 0.070207 0.17601 
Enterobacteriaceae 1.831947 0.533449 0.000594 0.007331 
Pasteurellaceae 2.005482 0.350952 1.10E-08 2.04E-07 
Moraxellaceae 0.444719 0.384217 0.247081 0.481158 
Porphyromonadaceae 0.130004 0.514442 0.800494 0.897523 
Prevotellaceae -1.11173 0.490627 0.023456 0.104141 
Eubacteriaceae -0.46394 0.42391 0.273762 0.506459 
Actinomyces 1.142019 0.381409 0.002752 0.030019 
Rothia 0.956314 0.407915 0.019058 0.120862 
Granulicatella 2.126617 0.370051 9.09E-09 6.64E-07 
Streptococcus 1.027824 0.468024 0.028086 0.12814 
Campylobacter 1.121751 0.642578 0.080863 0.25804 
Citrobacter 0.939767 0.466863 0.044121 0.18946 
Dickeya 0.662075 0.48808 0.174944 0.375615 
Escherichia 1.875443 0.540051 0.000515 0.009403 
Klebsiella 1.111832 0.600685 0.064178 0.223096 
Shigella 0.789729 0.476304 0.097311 0.284147 
Haemophilus 1.94596 0.349872 2.67E-08 9.74E-07 
Acinetobacter 0.458888 0.398732 0.249786 0.506511 
Parabacteroides 0.10201 0.51194 0.842058 0.931368 
Prevotella -1.11195 0.48951 0.023113 0.120862 
Eubacterium -0.46404 0.422827 0.272441 0.520677 
Rothia mucilaginosa 1.00853 0.423751 0.017312 0.109572 
Granulicatella adiacens 1.880536 0.408159 4.08E-06 0.000167 
Granulicatella elegans 1.700984 0.455292 0.000187 0.004334 
Granulicatella sp. oral clone ASCG05 2.639383 0.447373 3.64E-09 4.46E-07 
Streptococcus mitis 1.641897 0.440664 0.000195 0.004334 
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Streptococcus oralis 0.455029 0.453757 0.315955 0.629342 
Streptococcus parasanguinis 0.710634 0.467002 0.128086 0.364896 
Streptococcus sanguinis 1.153643 0.403807 0.004278 0.04031 
Streptococcus sp. C101 1.242499 0.389737 0.001432 0.021922 
Streptococcus sp. oral clone ASCC01 2.121353 0.336561 2.92E-10 7.15E-08 
Streptococcus sp. oral clone ASCE09 1.488325 0.398508 0.000188 0.004334 
Citrobacter freundii 0.952065 0.466131 0.041103 0.19092 
Erwinia chrysanthemi 0.661991 0.484841 0.172135 0.443926 
Escherichia coli 1.881366 0.541014 0.000506 0.009539 
Klebsiella pneumoniae 1.024196 0.603204 0.089522 0.321673 
Haemophilus haemolyticus 1.732626 0.450748 0.000121 0.003709 
Haemophilus parainfluenzae 2.027288 0.376656 7.35E-08 4.50E-06 
Haemophilus sp. oral clone BP2-46 2.074593 0.382352 5.77E-08 4.50E-06 
Prevotella copri -1.35683 0.457946 0.003048 0.036989 
Prevotella histicola -0.34526 0.45305 0.446016 0.753614 
Prevotella sp. BI-42 -0.98653 0.468622 0.035276 0.187884 
Prevotella sp. DJF_B112 -1.069 0.458181 0.01964 0.117364 
Prevotella sp. DJF_B116 -0.49327 0.603958 0.414085 0.740516 
Prevotella sp. DJF_LS16 -0.32501 0.695436 0.640255 0.859195 
Prevotella sp. DJF_RP53 -1.54135 0.466753 0.000959 0.016783 
Prevotella sp. oral clone BP1-28 -1.24241 0.474949 0.0089 0.077872 

Results from metagenomeSeq analysis of samples from The Gambia. 
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Appendix A Table 3 
 logFC Se pvalues adjPvalues 
Actinomycetales 0.429283 0.394515 0.276539 0.404172 
Selenomonadales 0.589476 0.357504 0.099175 0.26919 
Campylobacterales 1.387138 0.653813 0.03387 0.26919 
Enterobacteriales 0.853636 0.482489 0.076855 0.26919 
Pasteurellales 1.293111 0.364409 0.000387 0.007361 
Bacteroidales -0.83172 0.463252 0.072591 0.26919 
Veillonellaceae 0.714247 0.382336 0.061746 0.29109 
Campylobacteraceae 1.38232 0.660732 0.036429 0.234922 
Enterobacteriaceae 0.853549 0.482831 0.077094 0.318014 
Pasteurellaceae 1.293107 0.363709 0.000377 0.012457 
Prevotellaceae -1.05105 0.516351 0.041798 0.234922 
Megasphaera -0.85944 0.593322 0.147473 0.494034 
Veillonella 1.057554 0.421157 0.012037 0.201614 
Campylobacter 1.415512 0.680653 0.037559 0.27977 
Citrobacter 0.433077 0.363606 0.23363 0.55881 
Enterobacter 1.05059 0.333941 0.001655 0.055443 
Escherichia 0.824776 0.478025 0.084459 0.404195 
Klebsiella 1.133929 0.597325 0.057651 0.32778 
Shigella 0.303726 0.364486 0.404676 0.595773 
Haemophilus 1.288696 0.356194 0.000297 0.019895 
Prevotella -1.05483 0.518104 0.041757 0.27977 
Veillonella parvula 0.954861 0.416985 0.022026 0.272035 
Veillonella sp. HF9 0.378892 0.474818 0.424886 0.702802 
Veillonella sp. oral clone VeillC8 1.041036 0.435346 0.01679 0.255467 
Veillonella sp. oral clone VeillD5 1.152829 0.389945 0.003113 0.081982 
Enterobacter cancerogenus 1.447597 0.415658 0.000496 0.041151 
Enterobacter cloacae 0.763304 0.35742 0.032713 0.300472 
Escherichia coli 0.82289 0.478524 0.085498 0.40776 
Escherichia sp. oral clone 3RH-30 1.07018 0.329466 0.001161 0.057598 
Klebsiella pneumoniae 1.096162 0.592399 0.064259 0.375394 
Haemophilus haemolyticus 1.633442 0.469118 0.000498 0.041151 
Haemophilus parainfluenzae 0.939895 0.37624 0.012485 0.221165 
Prevotella copri -0.61366 0.515333 0.233731 0.538174 
Prevotella histicola -0.67036 0.480563 0.163032 0.481331 
Prevotella sp. BI-42 -0.90581 0.481406 0.059892 0.375394 
Prevotella sp. DJF_B112 -0.86796 0.490138 0.076585 0.38661 
Prevotella sp. DJF_B116 -0.56652 0.757451 0.454501 0.741555 
Prevotella sp. DJF_RP53 -0.78627 0.501169 0.116677 0.444046 

Results from metagenomeSeq analysis of samples from Kenya.  
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Appendix A Table 4 
 logFC Se pvalues adjPvalues 
Actinomycetales 3.32E-01 4.64E-01 4.75E-01 8.89E-01 
Neisseriales 1.58E+00 5.97E-01 8.15E-03 7.33E-02 
Fusobacteriales 3.23E-01 6.47E-01 6.17E-01 8.89E-01 
Enterobacteriales 1.38E+00 2.32E+00 5.51E-01 8.89E-01 
Pasteurellales 2.97E+00 6.36E-01 3.06E-06 5.51E-05 
Pseudomonadales 7.19E-01 4.74E-01 1.29E-01 2.99E-01 
Bifidobacteriales -1.71E+00 9.78E-01 8.09E-02 2.91E-01 
Bacteroidales -1.35E+00 6.65E-01 4.25E-02 2.55E-01 
Clostridiales -6.41E-02 6.36E-01 9.20E-01 9.74E-01 
Actinomycetaceae -0.20839 0.612033 0.733488 0.817872 
Micrococcaceae 0.348041 0.456234 0.445549 0.726948 
Neisseriaceae 1.577237 0.595253 0.008057 0.083251 
Fusobacteriaceae 0.322954 0.646044 0.61715 0.817872 
Enterobacteriaceae 1.381966 2.31667 0.55082 0.817872 
Pasteurellaceae 2.961241 0.634965 3.11E-06 9.63E-05 
Moraxellaceae 0.718601 0.473749 0.129307 0.317369 
Bifidobacteriaceae -1.70397 0.976725 0.081059 0.279202 
Bacteroidaceae -0.76922 0.794018 0.332659 0.572913 
Prevotellaceae -1.37776 0.762314 0.07071 0.274001 
Actinomyces -0.20772 0.608259 0.732725 0.823689 
Rothia 0.380333 0.453588 0.401751 0.631323 
Neisseria 1.686129 0.621543 0.006671 0.097834 
Citrobacter 1.140113 0.482824 0.018209 0.100148 
Dickeya 0.808741 0.402896 0.044716 0.20192 
Enterobacter 0.295004 0.492357 0.549061 0.779403 
Escherichia 1.620312 0.670697 0.015698 0.097834 
Klebsiella 0.834308 0.705359 0.236883 0.479266 
Shigella 0.990638 0.386787 0.010431 0.097834 
Haemophilus 2.939186 0.635039 3.69E-06 0.000203 
Acinetobacter 0.717963 0.471069 0.12748 0.304843 
Bifidobacterium -1.7011 0.976616 0.081538 0.256408 
Bacteroides -0.76787 0.794308 0.333684 0.55614 
Prevotella -1.37496 0.762848 0.071481 0.256408 
Rothia mucilaginosa 0.380586 0.451422 0.399182 0.64165 
Citrobacter freundii 0.782749 0.481665 0.104143 0.302511 
Erwinia chrysanthemi 0.808736 0.398462 0.042393 0.209672 
Enterobacter cancerogenus -0.11498 0.518506 0.824509 0.914903 
Enterobacter cloacae 0.58855 0.499883 0.239045 0.486204 
Escherichia albertii 1.084531 0.651329 0.095892 0.286921 
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Escherichia coli 1.591776 0.662108 0.016212 0.134856 
Escherichia sp. oral clone 3RH-30 0.765796 0.392548 0.051077 0.216247 
Klebsiella pneumoniae 0.837909 0.715816 0.241774 0.486204 
Shigella boydii 0.748402 0.48444 0.122375 0.329333 
Shigella sonnei 0.92589 0.480757 0.054117 0.216247 
Haemophilus parainfluenzae 2.871926 0.583115 8.43E-07 0.000154 
Haemophilus sp. oral clone BP2-46 2.386879 0.583451 4.30E-05 0.003653 
Acinetobacter sp. SF6 0.80256 0.470499 0.088052 0.282693 
Bifidobacterium longum -1.15348 1.280063 0.36753 0.628579 
Bacteroides fragilis -2.58961 1.238748 0.036572 0.196844 
Prevotella copri -1.64117 1.110493 0.139441 0.354414 
Prevotella histicola 0.075014 0.634699 0.905918 0.950938 
Prevotella sp. BI-42 -1.60745 0.882271 0.068463 0.255689 
Prevotella sp. DJF_B112 -2.1359 0.862172 0.013236 0.115343 
Prevotella sp. DJF_RP53 -2.91211 0.93435 0.001829 0.055776 

Results from metagenomeSeq analysis of samples from Kenya. 
  



98 

 

 

Appendix B. 

Appendix B Table 1: Features Identified During Visual Analysis of IBD Stool 16S Pilot Dataset  
Class Order Family Genus Species 

c__Betaproteobacteria o__Burkholderiales f__Ruminococcaceae g__Lachnospira s__:589277 

   g__[Ruminococcus] s__:333166 

   g__Faecalibacterium s__:564806 

    s__:369227 

    s__:358104 

    s__:369486 

    s__gnavus:360015 

    s__prausnitzii:851865 

Using Metaviz to aggregate counts to each level these features appeared to have a difference in mean abundance 
when comparing UC to CD samples. Specifically, s__:369227 was found to be statistically significant when testing 
for differential abundance using metagenomeSeq. 
 
Appendix B Table 2: Visual Analysis of UC, CD, nonIBD  

Phylum Class Order Family Genus 

Proteobacteria Erysipelotrichia Bifidobacteriales Rikenellaceae Bifidobacterium 
Fusobacteria Fusobacteriia Bacillales Bifidobacteriaceae Eggerthella 
Bacteroidetes Betaproteobacteria Erysipelotrichales Clostridiaceae_1 Alistipes 
 Deltaproteobacteria Fusobacteriales Peptostreptococcaceae Christensenellaceae_R_7_group 

 Gammaproteobacteria Burkholderiales Acidaminococcaceae Family_XIII_AD3011_group 

 Actinobacteria Desulfovibrionales Fusobacteriaceae Coprococcus_1 

 Erysipelotrichia Enterobacteriales Alcaligenaceae Fusicatenibacter 

   Desulfovibrionaceae Lachnoclostridium 

   Enterobacteriaceae  

   Christensenellaceae  

Features that showed a difference in abundance between the three subjects phenotypes – Ulcerative Colitis, 
Crohn’s Disease, and those without IBD.  
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Appendix B Table 3: F-statistic calculation 

 UC.nonIBD CD.nonIBD UC.CD AveExpr F P.Value adj.P.Val 

Phylum        
__Firmicutes -3.37E-02 1.01E+01 -1.02E+01 1.27E+01 4.47E+02 1.83E-64 2.20E-63 

__Bacteroidetes 4.35E-02 9.69E+00 -9.65E+00 1.20E+01 1.69E+02 2.39E-39 1.43E-38 

__Proteobacteria 2.00E-01 9.75E+00 -9.55E+00 9.59E+00 1.53E+02 3.73E-37 1.49E-36 

__Fusobacteria -1.64E-01 6.68E+00 -6.84E+00 3.57E+00 2.88E+01 4.44E-11 1.33E-10 

__Actinobacteria 2.79E-01 3.25E+00 -2.97E+00 4.97E+00 1.35E+01 3.99E-06 8.49E-06 

__Tenericutes -1.17E+00 -2.07E+00 9.04E-01 2.02E-01 1.46E+01 4.25E-06 8.49E-06 

__Verrucomicrobia -2.60E+00 -2.32E+00 -2.82E-01 2.41E+00 6.56E+00 2.03E-03 3.47E-03 

        
Class        
__Clostridia 1.24E-03 9.54E+00 -9.54E+00 1.25E+01 3.21E+02 2.68E-55 6.42E-54 

__Bacteroidia 4.98E-02 9.58E+00 -9.53E+00 1.20E+01 1.58E+02 9.10E-38 1.09E-36 

__Gammaproteobacteria 2.47E-01 1.00E+01 -9.80E+00 7.66E+00 7.96E+01 2.25E-24 1.80E-23 

__Negativicutes -4.03E-01 5.39E+00 -5.79E+00 7.60E+00 5.32E+01 3.15E-18 1.89E-17 

__Erysipelotrichia 6.95E-01 5.45E+00 -4.76E+00 6.07E+00 3.68E+01 1.00E-13 4.82E-13 

__Bacilli -1.13E-01 5.42E+00 -5.54E+00 5.64E+00 3.62E+01 1.56E-13 6.24E-13 

__Fusobacteriia -1.64E-01 6.68E+00 -6.84E+00 3.57E+00 2.87E+01 4.67E-11 1.60E-10 

__Betaproteobacteria -4.10E-01 4.26E+00 -4.67E+00 6.53E+00 1.41E+01 2.55E-06 7.66E-06 

__Mollicutes -1.17E+00 -2.07E+00 9.04E-01 2.02E-01 1.46E+01 4.15E-06 1.11E-05 

__Deltaproteobacteria -1.29E+00 2.08E+00 -3.36E+00 4.78E+00 8.57E+00 3.16E-04 7.60E-04 

        
Order        
__Clostridiales 1.25E-03 9.54E+00 -9.54E+00 1.25E+01 3.22E+02 2.55E-55 9.93E-54 

__Bacteroidales 4.98E-02 9.58E+00 -9.53E+00 1.20E+01 1.58E+02 9.17E-38 1.79E-36 

__Selenomonadales -4.03E-01 5.39E+00 -5.79E+00 7.60E+00 5.32E+01 3.13E-18 4.07E-17 

__Enterobacteriales 5.27E-01 9.70E+00 -9.18E+00 6.47E+00 5.12E+01 1.14E-17 1.11E-16 

__Erysipelotrichales 6.95E-01 5.45E+00 -4.76E+00 6.07E+00 3.68E+01 1.00E-13 7.84E-13 

__Fusobacteriales -1.64E-01 6.68E+00 -6.84E+00 3.57E+00 2.87E+01 4.72E-11 3.07E-10 

__Lactobacillales -2.20E-01 4.54E+00 -4.76E+00 5.27E+00 2.37E+01 1.22E-09 6.78E-09 

__Bacillales 1.46E-01 3.68E+00 -3.53E+00 2.66E+00 2.34E+01 1.71E-09 8.32E-09 

__Pasteurellales 4.76E-01 5.48E+00 -5.01E+00 4.46E+00 1.70E+01 2.41E-07 1.05E-06 

__Mollicutes_RF9 -1.17E+00 -2.07E+00 9.04E-01 2.02E-01 1.47E+01 3.90E-06 1.52E-05 

        
Family        
__Lachnospiraceae 1.21E-01 8.70E+00 -8.58E+00 1.14E+01 2.19E+02 1.80E-45 1.19E-43 

__Bacteroidaceae -6.23E-02 9.74E+00 -9.80E+00 1.16E+01 1.18E+02 1.26E-31 4.14E-30 

__Ruminococcaceae 9.21E-02 7.30E+00 -7.21E+00 1.10E+01 9.74E+01 6.03E-28 1.33E-26 

__Enterobacteriaceae 5.27E-01 9.70E+00 -9.18E+00 6.47E+00 5.12E+01 1.14E-17 1.88E-16 

__Erysipelotrichaceae 6.95E-01 5.45E+00 -4.76E+00 6.07E+00 3.68E+01 1.00E-13 1.33E-12 

__Veillonellaceae -5.21E-01 6.39E+00 -6.91E+00 6.49E+00 3.31E+01 1.27E-12 1.40E-11 
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__Fusobacteriaceae -9.55E-02 6.68E+00 -6.78E+00 3.52E+00 2.83E+01 6.53E-11 6.16E-10 

__Streptococcaceae -3.92E-01 4.41E+00 -4.80E+00 5.06E+00 2.39E+01 1.01E-09 8.34E-09 

__Pasteurellaceae 4.76E-01 5.48E+00 -5.01E+00 4.46E+00 1.70E+01 2.41E-07 1.77E-06 

__Family_XI 2.27E-01 3.67E+00 -3.44E+00 2.60E+00 1.56E+01 7.95E-07 5.25E-06 

        
Genus        
__Bacteroides -6.23E-02 9.74E+00 -9.80E+00 1.16E+01 1.18E+02 1.15E-31 2.11E-29 

___Eubacterium_rectale_group 3.68E-01 6.83E+00 -6.46E+00 9.00E+00 6.28E+01 1.46E-20 1.35E-18 

__Escherichia_Shigella -1.35E-01 9.06E+00 -9.20E+00 6.05E+00 4.73E+01 1.20E-16 7.34E-15 

___Ruminococcus_gnavus_group 2.24E-01 6.55E+00 -6.33E+00 7.45E+00 4.41E+01 9.04E-16 4.16E-14 

__Lachnoclostridium 5.09E-01 6.19E+00 -5.68E+00 6.41E+00 3.12E+01 5.01E-12 1.84E-10 

__Veillonella -1.13E-01 5.62E+00 -5.74E+00 4.36E+00 2.79E+01 5.65E-11 1.65E-09 

__Fusobacterium -9.55E-02 6.68E+00 -6.78E+00 3.52E+00 2.83E+01 6.29E-11 1.65E-09 

__Streptococcus -4.31E-01 4.34E+00 -4.77E+00 5.04E+00 2.34E+01 1.55E-09 3.57E-08 

__Flavonifractor -1.79E-01 4.43E+00 -4.61E+00 4.17E+00 2.00E+01 2.30E-08 4.48E-07 

__Faecalibacterium -8.17E-02 5.61E+00 -5.69E+00 9.80E+00 1.97E+01 2.44E-08 4.48E-07 

        
Species        
Unc054vi -4.99E-01 8.14E+00 -8.64E+00 9.24E+00 5.65E+01 4.81E-19 1.85E-16 

UncG3786 -1.35E-01 9.06E+00 -9.20E+00 6.05E+00 4.73E+01 1.20E-16 2.31E-14 

UncO8895 2.24E-01 6.55E+00 -6.33E+00 7.45E+00 4.41E+01 8.98E-16 1.15E-13 

Unc91005 4.57E-01 7.05E+00 -6.60E+00 7.88E+00 3.90E+01 2.62E-14 2.52E-12 

UncO6361 4.74E-01 7.02E+00 -6.54E+00 3.85E+00 3.61E+01 2.85E-13 2.20E-11 

Unc00a9i -4.15E-01 5.53E+00 -5.95E+00 4.26E+00 2.99E+01 1.37E-11 8.79E-10 

Unc05bd1 -6.71E-02 6.80E+00 -6.87E+00 9.88E+00 2.80E+01 4.44E-11 2.32E-09 

Unc01ie9 -6.18E-01 6.42E+00 -7.04E+00 3.30E+00 2.88E+01 4.82E-11 2.32E-09 

Unc64172 4.57E-02 5.77E+00 -5.72E+00 9.74E+00 2.01E+01 1.78E-08 7.60E-07 

Unc054m4 -1.79E-01 4.43E+00 -4.61E+00 4.17E+00 2.00E+01 2.29E-08 8.82E-07 
Calculated using fitZig function in metagenomeSeq. Results of F statistic comparing between Ulcerative Colitis, 
Crohn’s Disease, and those without IBD groups. Aggregated counts to each level of the taxonomic hierarchy and 
used topTableF function to output 10 results from each taxonomic level.  
 
 
Appendix B Table 4: Differential Abundance Testing Results for Pair-Wise comparison of CD, UC, nonIBD 

  logFC se pvalues adjPvalues 

CD and UC         
__Veillonellaceae -1.0915 0.3387 0.0013 0.0838 
CD and nonIBD    
  logFC se pvalues adjPvalues 
Gt8Me241 3.4353 0.8723 0.0001 0.0147 
Unc21180 2.5074 0.8225 0.0023 0.0735 
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GX7Fr128 1.6064 0.5351 0.0027 0.0735 
UncO6361 1.5206 0.3942 0.0001 0.0147 
Unc01ie9 1.4418 0.4554 0.0015 0.0659 
Unc03y4v -1.3629 0.3429 0.0001 0.0147 
Unc02ruj -1.2452 0.3615 0.0006 0.0368 
Unc85953 1.0372 0.3404 0.0023 0.0735 
Unc36622 -1.0354 0.3198 0.0012 0.0579 
__Coprobacter 3.3815 0.8827 0.0001 0.0117 
__Ruminococcus_1 -1.7493 0.5188 0.0007 0.0277 
__Citrobacter 1.5917 0.5354 0.0030 0.0776 
__Fusobacterium 1.5102 0.4480 0.0007 0.0277 
__Lachnospiraceae_ND3007_group -1.3585 0.3455 0.0001 0.0117 
__Fusobacteriaceae 1.4750 0.4479 0.0010 0.0644 
__Fusobacteriales 1.4173 0.4458 0.0015 0.0577 
__Fusobacteriia 1.4237 0.4471 0.0014 0.0319 
__Fusobacteria 1.4240 0.4491 0.0015 0.0167 
UC_nonIBD    
  logFC se pvalues adjPvalues 
Unc04zvf 4.8441 1.4941 0.0012 0.0761 
UncO1674 -4.4696 1.3109 0.0007 0.0760 
GX7Fr128 3.0544 0.7973 0.0001 0.0491 
Unc92642 2.5790 0.7736 0.0009 0.0760 
Unc05mrd -2.3813 0.7505 0.0015 0.0830 
Unc02mpn 2.0865 0.6710 0.0019 0.0901 
Unc91427 -1.8536 0.5457 0.0007 0.0760 
Unc36622 -1.2034 0.3653 0.0010 0.0760 
__Citrobacter 3.0057 0.7792 0.0001 0.0211 
__Megasphaera -2.5959 0.7651 0.0007 0.0525 
__Dielma 2.5267 0.7923 0.0014 0.0525 
__Akkermansia -2.3501 0.7362 0.0014 0.0525 
__Erysipelatoclostridium 1.6105 0.4943 0.0011 0.0525 
__Verrucomicrobiales -2.3441 0.6989 0.0008 0.0311 
__Verrucomicrobiae -2.3291 0.7176 0.0012 0.0281 
__Verrucomicrobia -2.3751 0.7534 0.0016 0.0194 

Pair-wise comparison results for UC-CD, UC-nonIBD, CD-nonIBD using fitFeatureModel function of 
metagenomeSeq.  
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Appendix B Table 5: Visual Analysis UC vs CD 
Phylum Class Order Family 
__Actinobacteria __Actinobacteria __Actinomycetales __Actinomycetaceae 
__Fusobacteria __Fusobacteriia __Bifidobacteriales __Bifidobacteriaceae 
__Proteobacteria __Betaproteobacteria __Clostridiales __Corynebacteriaceae 
 __Deltaproteobacteria __Fusobacteriales __Coriobacteriaceae 
 __Gammaproteobacteria __Desulfovibrionales __Prevotellaceae 
   __Carnobacteriaceae 
   __Lachnospiraceae 
   __Ruminococcaceae 
   __Veillonellaceae 
   __Alcaligenaceae 
   __Desulfovibrionaceae 
   __Enterobacteriaceae 
   __Moraxellaceae 
   __Actinomycetaceae 

Results from IBD HMP2 using Metaviz to inspect each level of taxonomy. 
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Appendix B Table 6: Visual Analysis UC vs nonIBD 
Phylum Class Order Family Genus Species 
__Actinobacter
ia 

 __Actinobacteria __Bacteroidales __Rikenellaceae __Odoribacter Unide14
6 

 
__Bacteroidete
s 

__Bacteroidia __Erysipelotricha
les 

__Christensenellac
eae 

 __Alistipes UncG37
86 

__Verrucomicr
obia 

__Betaproteobact
eria 

 
__Burkholderiale
s 

 
__Erysipelotrichac
eae 

 
__Christensenellaceae_R_7_g
roup 

Unc01ie
9 

 __Erysipelotrichia __Desulfovibrion
ales 

__Acidaminococca
ceae 

 __Fusicatenibacter FNWNL2
94 

 __Betaproteobact
eria 

__Desulfovibrion
ales 

 __Alcaligenaceae  
__Lachnospiraceae_ND3007_
group 

Od8Spla
3 

 __Deltaproteobac
teria 

 
__Enterobacteria
les 

 
__Desulfovibriona
ceae 

 
___Eubacterium_eligens_grou
p 

Unc053a
w 

 __Verrucomicrobi
ae 

__Verrucomicrob
iales 

__Verrucomicrobi
aceae 

 __Ruminiclostridium_9 Unc9475
5 

     
__Ruminococcaceae_NK4A21
4_group 

Od8Spla
3 

    __Ruminococcaceae_UCG_00
2 

UncO61
06 

    __Ruminococcus_1 Unc01w
0v 

     __Erysipelatoclostridium Unc6534
3 

     
___Clostridium_innocuum_gr
oup 

Unc0576
8 

    __Phascolarctobacterium Unc02f9
r 

     __Bilophila Unc03y4
v 

    __Escherichia_Shigella Unc02q6
j 

    __Akkermansia Unc057b
2 

     Unc3662
2 

Results from IBD HMP2 comparing samples from UC to nonIBD subjects using Metaviz to inspect each level of 
taxonomy. 
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Appendix B Table 7: Visual Analysis CD vs nonIBD. 
Phylum Class Order Family Genus Species 

Fusobacteria Erysipelotrichia Bifidobacteriales Bifidobacteriaceae Bifidobacterium UncG3786 

Proteobacteri
a 

Fusobacteriia Erysipelotrichale
s 

Rikenellaceae Alistipes Unc01ie9 

 Gammaproteobacte
ria 

Fusobacteriales Christensenellacea
e 

Christensenellaceae_R_
7_group 

FNWNL294 

  Enterobacteriale
s 

Family_XIII Blautia GWMAdo11 

   Erysipelotrichacea
e 

Anaerostipes Unc94755 

   Fusobacteriaceae Coprococcus_1 UncC1868 

   Enterobacteriacea
e 

Lachnoclostridium Unc02f9r 

    Lachnospira Unc94574 

    Eubacterium_eligens_gr
oup 

Unc02ruj 

    Butyricicoccus Unc91094 

    Ruminococcaceae_UCG_
002 

UncO6361 

    Subdoligranulum UncO6479 

    Fusobacterium Unc02ee9 

    Escherichia_Shigella Unc03y4v 

     Unc00z5u 

     Unc057b2 

     Unc00y95 

     Unc04x9p 

     Unc01iri 

     Unc36622 

     Unc02hhf 

     Unc01t8m 
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     Unc65343 

     Unc05o9h 

     Unc01qt1 

     Unc01w0v 

Results from IBD HMP2 using Metaviz to inspect each level of taxonomy. 
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Appendix C. 

 

 
Appendix C Figure 1: Similar Function Features 
A user can first select a feature of interest by clicking on a FacetZoom node. Then a user can find functions for that 
feature. A user can add these to the functional filter and finally apply the filter to identify all bacteria that perform 
functions like those of the features of interest. 
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Appendix C Figure 2: Sparklines details-on-demand 
In this case we show two subject groups, those that developed diarrhea at any point during the 
experiment and those that did not. The user has an option to show a filled contour for each group as 
shown or can choose lines showing the minimum, maximum, and average values for each time point 
across all subjects in each group. 
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Appendix D. 

 

Section I. Microbiome Preliminaries 

In this section, we provide a background on microbiome sequencing and detail the statistics used in 

standard metagenomic association analyses. 

 
Microbiome Sequencing 
 

Human microbiome sequencing is carried out in the following steps: 1) A microbial community 

sample is collected from a body site such as the mouth, skin, or gut. 2) DNA is extracted from the 

sample.  3) The 16s rRNA gene is isolated and sequenced. All bacterial cells which are the same will 

contain an exact copy of the 16s RNA gene. 4) Sequences that are similar above a threshold (95, 97, or 

99 percent similarity) are clustered into an Operational Taxonomic Unit (OTU) 5) OTUs are annotated 

through comparison to an existing microbial annotation database, 6) the number of times a given OTU is 

observed for each sample is computed into a count table that serves as the main object of subsequent 

downstream analysis. Appendix D Figure 1 shows the microbiome sequencing pipeline in more detail. 

The basic measurement features for metagenomics are OTUs, which are annotated corresponding to 

specific microbial species or strains. 
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Appendix D Figure 1: Microbiome Sequencing and Metagenomic Analysis Pipeline 
 

To determine the association between microbiota and certain phenotypes, multiple statistics are 

computed from these OTUs: for instance, the presence or absence of a specific OTU across samples with a 

given phenotype; the abundance or quantity of an OTU across samples with a given phenotype96; the 

diversity or the number of distinct OTUs in a sample; and the distribution of OTU abundances in a 

sample. Each of these statistics reveal a distinct view of the role microbial communities play in healthy 

and disease individuals. In addition, all these association statistics can be computed at any level of the 

OTU taxonomy. In this sense, the data used in microbiome association studies are much richer than the sets 

of genotypes used to describe an individual in human DNA analysis. 

Metagenomic Statistics 

In this section, we define precisely the statistical measures mentioned in Section 3.3. These are 

standard statistics in the metagenomic field and we detail them here for completeness. Morgan et al. 
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provide a more thorough review of microbiome analysis procedures97. In this paper, we denote a 

metagenomic dataset M where Mij contains the OTU read counts for feature i in sample j. For each 

sample j, an entry in a separate database D contains information regarding its physical characteristics and 

disease status. Each statistic provides a mechanism to identify associations between groups in D and 

trends in M. 

Presence or Absence of an OTU  

Identifying the role of an OTU first requires a comparison of presence or absence of that OTU in 

disease and non-disease groups. A χ2 test is performed to determine the significance of an observed 

difference in the presence or absence of an OTU between groups. The odds ratio is another measure of 

association between presence or absence of an OTU and a specific phenotype. 

A 2x2 contingency table is populated to compute the χ2 test on exposure to an OTU. The contingency 

table counts will be calculated from Mij by first creating a new matrix, Present, as follows:  Presentij = 

Mij > 0? 1: 0. OTUi Present is the sum of 1s for OTUi and OTUi Absent is the sum of 0s. 

 

The χ2 statistic is calculated as: 

 

with one degree of freedom. The odds ratio describing the association between OTU exposure and case 

or control membership, is defined as: 
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Differential Abundance  

An OTU may be present in both disease and non-disease groups, but its abundance level may 

differ between the two groups. Computing differential abundance requires calculating the mean and 

variance over the counts of a given OTU for each of the two groups to compare98. 

Mean Abundance: 

 

Variance: 

 

A two-sample t-statistic is used to test difference between case and control groups. 

 

Alpha Diversity  

While the presence or abundance of specific OTUs may not be associated with disease, 

differences in microbial community structure as a whole may be associated with disease. Alpha Diversity 

is commonly used as a statistic to measure the evenness and richness of microbial communities. It is 

usually computed based on the entropy of the OTU distribution for a single sample (as Shannon’s Index: 

𝐻𝐻{𝑗𝑗} = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑆𝑆
𝑖𝑖 ∗ ln (𝑝𝑝𝑖𝑖𝑖𝑖) where pij is the fraction of total OTU counts comprised by OTU i in sample j.  

Another Alpha Diversity measure is Simpson’s index which is of the form 𝐷𝐷 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖2𝑆𝑆
𝑖𝑖 .  A two-sample t-

statistic is computed to test the significance of differences in statistics H or D between groups. 
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Beta Diversity    

The distance of an entire microbiome community structure to that of another sample   is the last 

metagenomic statistic that we will discuss. Beta Diversity is commonly supplied as a check of intra-

individual community distance is less than that of inter-individual distance for a specific body site. It is 

commonly computed as Bray-Curtis dissimilarity BCij = 1 − (2Cij / (Si − Sj)) where Cij denotes the sum 

of the counts of species observed at both sites i and j while Si and Sj are the total number of species 

observed at sites i and j. Another metric for Beta Diversity is UniFrac which builds a phylogenetic tree 

across samples under study and then computes a pair-wise distance between two samples to determine if 

two samples are from the same source. Unweighted UniFrac uses presence/absence of an OTU while 

weighted UniFrac takes in account the abundance of an OTU and weights branch lengths accordingly99. 

 

Section II. Problem Overview 

In this section we describe the privacy threats of microbiome data and annotate them according to an 

existing categorization of genome privacy risks. We provide a comprehensive review of microbiome 

sequencing and metagenomics in the Appendix D, Section 1. 

Forensic Identification 

One prominent study proved that a person’s hand bacteria can identify objects that individual 

touched67. The authors first show the bacteria left after touching a keyboard are separate and unique 

between individuals. To measure the stability of the bacterial community left behind on the keyboards, 

the authors compared sequencing results for keyboard samples from the same person stored for 3 to 14 

days at - 20 degrees C and room temperature. The community makeup for each sample was not 

significantly different between any sample storage method. Next the authors calculated the UniFrac 
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distance in community membership between keyboard samples from nine people and a database of 

microbiome samples from 270 individual’s hands. The closest match for each sample was the individual 

who touched the keyboard. This study was the first to show the identification power of an individual’s 

microbiome signature. 

Identification with Metagenomic Codes 

A recent analysis showed that metagenomic data alone can uniquely identify individuals in the 

Human Microbiome Project dataset23. The authors build minimal hitting sets to find a collection of 

microbiome features that are unique to each individual compared to all others in a dataset. The minimal 

hitting set algorithm was built using four types of features - OTUs, species, genetic markers, and 

thousand base windows matching reference genomes. The authors use a greedy algorithm and prioritize 

features by abundance gap, the difference in abundance between a feature in one sample compared to all 

other samples. The authors called these sets of features “metagenomic codes” and used the codes built at 

the first time point in the Human Microbiome Project dataset to match individuals at a second time point. 

The genetic marker and base window codes were the best identifiers between the two time points. The 

OTU and species level codes also identified individuals but had a higher false-positive rate. As the 

authors note, the discovery of an identifiable microbiome fingerprint substantially changes the 

considerations for publicly releasing human microbiome data. 

Genetic Re-identification Attacks 

Through detailing attacks on genetic datasets, a recent article provided a categorization of 

techniques to breach participant privacy100. The attacks fall into several areas: Identity Tracing defined as 

determining the identity of an anonymized DNA sample using non-private attributes, Attribute 

Disclosure which uses a piece of identified DNA to discover phenotypes or activities in other protected 

databases, and Completion Attacks that use genotype imputation to uncover data that has been removed 
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upon publication of a DNA sequence. To provide a complete overview of microbiome privacy risks, we 

detail each attack and then expand the categorization to include microbiome specific attacks 2. 

Identity Tracing With Metadata reveals the identity of an anonymized DNA sample by using 

metadata such as age, pedigree information, geography, sex, ethnicity, and health condition. This attack is 

a concern with metagenomic comparative analysis as case and control group membership is determined by 

considering metadata. 

Genealogical Triangulation uses genetic genealogy databases which link genealogical information, 

such as surname, with genetic material to allow an individual to recover ancestral information from 

his/her own DNA. This attack should not be a concern with microbiome data as microbiome inheritance 

has not been fully determined. 

The microbiome presents three different methods for triangulation of a sample’s identity which we 

term Location Triangulation, Behavior Tracing, and Rare Disease OTU. As evidence of the first, a recent 

study detailed the similarity between individuals that occupy the same dwelling101. Therefore, an attacker 

may be able to reveal the identity of an individual microbiome sample by computing similarity with a 

sample taken from a specific location. 

Further, Behavior Tracing could be used to identify a microbiome. The oral microbiota of 

romantic partners is more similar than other individuals and it is possible to measure how long the 

similarity between kissing partners is maintained102. An attack could be mounted using the phylogenetic 

or feature-level distance between a known person and the sample from a suspected romantic partner. 

Rare Disease Feature Tracing takes advantage of attributes of public health disease tracking and 

microbial disease infections. Some infections, such as antibiotic-resistant cases, are recorded by state 

health departments and a single microbiome feature could correspond to those infections. If an attacker is 
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able to observe the known microbiome feature of individual in a public health database and use it to link 

between another dataset, this will reveal any corresponding sensitive attribute. 

Identity Tracing by Phenotypic Prediction involves predicting phenotypic information from 

genotypic information and then using that to match to an individual. Phenotypic prediction with human 

DNA is quite difficult given that predictions are not currently robust for unique identifiers in the 

population. For identifiers such as height, weight, and age, the effectiveness of this attack is likely to be 

low with microbiome data. 

Identity Tracing by Side Channel Leaks is possible when an identifier is apparent from the dataset 

entries either by data preparation techniques or data-id assignment. One example is that Personal Genome 

Project sequencing files which by default were named with patient first and last name included. This 

attack is a concern with microbiome sequencing as well given that file uploading of the Personal Genome 

Project is similar for microbiome results. 

Attribute Disclosure With N=1 entails an attacker associating an individual’s identity to a piece of 

DNA and that piece of DNA to a sensitive attribute, such as an element in a database of drug users. For 

microbiome data, the forensic identification and the metagenomic codes techniques could be used by an 

attacker to successfully query a dataset with a sensitive attribute. 

Attribute Disclosure from Summary Statistics uses genetic information of one victim and published 

summary statistics from a case/control study to determine if the victim’s DNA is biased towards the 

distribution of either the case or control group. If group membership can be determined, then the criteria to 

split groups (such as disease status) is revealed to the attacker. Linkage disequilibrium, or the probability 

that portions of DNA are more likely to be inherited together than others, provides a mechanism to 

increase the power of the attack. Further, genealogical information can be used to accomplish attribute 

disclosure. 
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While the authors cite Attribute Disclosure from Summary Statistics as an attack possible with all ‘-

omic’ data, linkage disequilibrium and genealogical triangulation are not applicable to microbiome 

sequencing. The release of summary statistics may be used to determine if a metagenomic code for an 

individual is present in a case/control group, but the probability of this attack needs be determined. 

Completion Attacks reveal portions of a DNA sample that are not released publicly by using 

linkage disequilibrium to uncover the hidden SNPs. Genealogical information, such as a pedigree and the 

SNPs of relatives, can also be used in genotype imputation. For metagenomic data, a cohabitation 

mapping of individuals from the same household to distinct features could be used to mount a 

completion attack. 

Section III. Oblivious Transfer 

Oblivious Transfer is a subroutine that allows one party known as the sender (P1) to offer two 

messages and for the other party, referred to as the receiver (P2), to input a bit selecting one of the 

messages. Oblivious Transfer guarantees that the sender learns nothing about the receiver’s selection and 

the receiver learns nothing about the other inputs beyond the one selected. In the semi-honest setting, one 

approach to Oblivious Transfer is for the receiver to generate two public-private key-pairs but with one of 

the public keys to not have a valid private key. The receiver then sends both keys to the sender, who 

encrypts its inputs with the public keys and sends them to the receiver. The receiver will only be able to 

properly decrypt one of the ciphertexts 103. 

Section IV. Implementation 

In this section we provide details on each implementation approach. In the pre-computation 

approach, we compute over values that are locally computed by each party. In the sparse matrix approach, 

we operate on the non-zero elements from each party directly. 

Pre-computation approach 
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This method is a straightforward approach to reduce the amount of operations and data in the 

circuit. Appendix D Figure 2 shows the process for calculating a χ2-test and odds ratio on pre-computed 

contingency table counts. 

Sparse matrix approaches 

The main idea of the technique from Nikolaenko et al.  is to create a counting circuit using 

Bitonic Sort, a sorting algorithm that can be implemented as an oblivious circuit with O(n log2(n)) 

running time, to operate over tuples consisting of (row, column, matrix element)74. Appendix D Figure 3 

shows the scheme in greater depth. We use the counting mechanism to implement each statistic. 

Surprisingly, the sorting operation for this approach outweighed the naive approach for chi-square and odds 

ratio. For completeness, we provide a description of this approach for implementing each statistical test. 

Presence/Absence 

Sparse Computation. We assume that parties first locally split their datasets on case and control 

criteria. For the scheme described in Appendix D Figure 3, each party will then only input the non-zero 

elements of the respective case and control matrices as tuples. For the χ2 test and odds ratio, the counter 

can be used to find contingency table counts. The oblivious counter will be used to calculate OTUi 

Present for each group. The number of samples for each party’s case and control groups is shared 

obliviously and OTUi Absent can be calculated. With a, b, c, d, χ2 can be calculated as in Equation (1) 

and odds ratio as Equation (2). 
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Appendix D Figure 2: Diagram of Pre-computation for Presence/Absence 
The inputs to the garbled circuit are locally generated row sums from each party. Presence/Absence χ2-test statistic 
and Odds Ratio are calculated in the circuit. 
 

Differential Abundance 

For calculating differential abundance, the sequencing counts need to be normalized and that can 

be accomplished per sample in the pre-computation phase. We examine Equations (3) and (4) to 

determine what optimizations can be accomplished for computing in secure computation. To avoid 

processing all samples within the computation framework, we observe transformations that reduce the 

total number of operations. With k for party 1 and party 2 the following can be computed: 
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 Mean Abundance 

 

 Variance 

 

Sparse Computation. With Nikolaenko et al. sparse matrix approach, the oblivious counter is used 

to calculate the total sum and augmented to compute the sum of squares for each feature. Then a two-

sample t-test can be performed using those values as described in Equations (6) and (7). 

 

Appendix D Figure 3: Sparse Matrix Counter 
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Alpha Diversity 

We compute Alpha Diversity for each sample, then use a two-sample t-test to determine the 

significance of a difference between case and control groups. Given that ObliVM does not currently 

compute logarithm, we measure Alpha Diversity as Simpson’s index: 

𝐷𝐷 = (∑𝑛𝑛(𝑛𝑛 − 1))  ÷𝑁𝑁(𝑁𝑁 − 1) where n is the number of OTU counts for OTUi and N is the total 

number of counts observed in a sample. 

Sparse Computation The two values for Simpson’s index, ∑𝑛𝑛(𝑛𝑛 − 1)) and 𝑁𝑁(𝑁𝑁 − 1) are 

generated over each sample using the sparse matrix counter technique. Then a pass over the array using 

division yields Simpson’s index from which the total sum and sum of squares can be computed for case 

and control groups. 

Asymptotic Complexity 

Since secure computation is orders of magnitude slower than cleartext computation, we carefully 

designed our protocols so that we either operate only on a sparse representation of matrix elements or can 

put as much computation as possible outside of the secure computation. In fact, for our pre-computation 

approach, as shown in Appendix D Table 1 for all test cases we evaluated, we achieved asymptotic 

improvement compared with a generic solution that performs all operations in secure computation 

directly. 
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Appendix D Table 1: Running Time Complexity. Speedup of our approaches using local computation and 
sparse matrix computation compared with generic solution. For the analysis of the sparse approach, the 
running time is proportional to a constant k, which is the proportion of samples (n) which have a non-zero 
element for a given feature. For a given dataset, the total number of non-zero elements will be (k n)m. In 
our experiments, k took a value of ≤ . 2 for all datasets used as shown in Appendix D Table 2. While the 
asymptotic complexity is the same, our sparse approach ran faster than the naive approach for each dataset 
considered. 

Section V. Evaluation 

Datasets 

Appendix D Table 2 summarizes the number of features, samples, file size, and sparsity. The 

datasets provide a good array of input sizes and sparsity to evaluate our implementations. 

 

Appendix D Table 2: Dataset Sizes. Dimensions and sparsity of each dataset used for evaluation. 
P1 is Party 1 and P2 is Party 2 for secure computation. Sparsity is defined as 1-(Percent of Non-
Zero entries). 
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Running Times 

Appendix D Table 3 lists the running times for each statistic and dataset. 

Circuit Sizes 

Appendix D Table 4 lists the circuit size per feature for each statistic and dataset. 

 
Appendix D Table 3: Running Times. Running time for each statistic and each dataset in seconds (PC 
stands for Pre-Compute). In each statistic, the number of arithmetic operations determined the running 
time. The size of the dataset along with sparsity contributed to running time for the sparse implementations. 
Alpha Diversity MSD Naive did not run to completion on the EC2 instance size due to insufficient 
memory. Based on the circuit size and the number of gates processed per second for other statistics, we 
estimate the running time to be 378 minutes. 
 

 

Appendix D Table 4: Circuit Size Per Feature.  Circuit size for each implementation and dataset  (PC 
stands for Pre-Compute). The number of samples is considered as feature count for calculating Alpha 
Diversity circuit size. The differences in Alpha Diversity between datasets is explained by the number of 
samples for PGP (168) being much lower than that of HMP (694) and MSD (992). 
 

Network Traffic 

Appendix D Table 5 lists the traffic from each computation party. The pre-computation approach 

requires the least amount of traffic with the sparse implementation requiring several more orders of 
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magnitude. The most costly approach is the naive approach. The increase in network traffic between the 

sparse and pre-computation implementations is significant as compared to the differences in running 

times of those approaches. 

 
Appendix D Table 5: Network Traffic. Left column details traffic in MB sent from evaluator (PC stands 
for Pre-compute). Right column is MB sent from garbler. 
 
 



 

 

124 
 

 

 

Bibliography 

1. Human, T. & Project, M. Structure, function and diversity of the healthy 

human microbiome. Nature 486, 207–14 (2012). 

2. Sunagawa, S. et al. Structure and function of the global ocean microbiome. 

Science (80-. ). 348, 1261359 (2015). 

3. Pop, M. et al. Diarrhea in young children from low-income countries leads to 

large-scale alterations in intestinal microbiota composition. Genome Biol. 15, 1 

(2014). 

4. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 

457, 480–484 (2009). 

5. Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and 

young children in developing countries (the Global Enteric Multicenter Study, 

GEMS): A prospective, case-control study. Lancet 382, 209–222 (2013). 

6. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s 

disease. Cell Host Microbe 15, 382–392 (2014). 

7. Wood, D. E. & Salzberg, S. L. Kraken: Ultrafast metagenomic sequence 

classification using exact alignments. Genome Biol. 15, (2014). 

8. Segata, N. et al. Metagenomic microbial community profiling using unique 

clade-specific marker genes. Nat Meth 9, 811–814 (2012). 

9. Hoaglin, D., Mosteller, F. & Wilder Tukey, J. Understanding robust and 

exploratory data analysis / edited by David C. Hoaglin, Frederick Mosteller, 



 

 

125 
 

John W. Tukey. Wiley 

10. Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic 

visualization in a Web browser. BMC Bioinformatics 12, (2011). 

11. Flygare, S. et al. Taxonomer: an interactive metagenomics analysis portal for 

universal pathogen detection and host mRNA expression profiling. Genome 

Biol. 17, 111 (2016). 

12. Breitwieser, F. P. & Salzberg, S. L. Pavian: Interactive analysis of 

metagenomics data for microbiomics and pathogen identification. bioRxiv 

(2016). doi:10.1101/084715 

13. Huse, S. M. et al. VAMPS: a website for visualization and analysis of 

microbial population structures. BMC Bioinformatics 15, 1 (2014). 

14. Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for 

‘omics data. PeerJ 3, e1319 (2015). 

15. Oliveira, F. S. et al. MicrobiomeDB: a systems biology platform for 

integrating, mining and analyzing microbiome experiments. Nucleic Acids Res. 

gkx1027-gkx1027 (2017). 

16. Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance 

analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202 

(2013). 

17. McMurdie, P. J. & Holmes, S. Phyloseq: An R Package for Reproducible 

Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8, 

(2013). 

18. Davis, C. A. et al. The Encyclopedia of DNA elements (ENCODE): data portal 



 

 

126 
 

update. Nucleic Acids Res. 46, D794–D801 (2018). 

19. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference 

human epigenomes. Nature 518, 317–329 (2015). 

20. Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-

Cancer analysis project. Nat. Genet. 45, 1113–20 (2013). 

21. Groce, A. D. New notions and mechanisms for statistical privacy. (2014). 

22. Jagadeesh, K. A., Wu, D. J., Birgmeier, J. A., Boneh, D. & Bejerano, G. 

Deriving genomic diagnoses without revealing patient genomes. Science (80-. 

). 357, 692–695 (2017). 

23. Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic 

codes. Proc. Natl. Acad. Sci. 112, E2930–E2938 (2015). 

24. Oh, J. et al. Biogeography and individuality shape function in the human skin 

metagenome. Nature 514, 59–64 (2014). 

25. Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 

(2016). 

26. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–

1006 (2002). 

27. Chelaru, F., Smith, L., Goldstein, N. & Bravo, H. C. Epiviz: interactive visual 

analytics for functional genomics data. Nat. Methods 11, 938–940 (2014). 

28. Pedersen, T. L., Nookaew, I., Wayne Ussery, D. & Månsson, M. PanViz: 

interactive visualization of the structure of functionally annotated pangenomes. 

Bioinformatics 33, 1081–1082 (2017). 

29. Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic 



 

 

127 
 

visualization in a Web browser. BMC Bioinformatics 12, 1 (2011). 

30. Chelaru, F. & Bravo, H. C. Epiviz: a view inside the design of an integrated 

visual analysis software for genomics. BMC Bioinformatics 16, 1 (2015). 

31. Dachselt, R., Frisch, M. & Weiland, M. FacetZoom: A Continuous Multi-scale 

Widget for Navigating Hierarchical Metadata. in Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems 1353–1356 (ACM, 

2008). doi:10.1145/1357054.1357265 

32. Pop, M. et al. Individual-specific changes in the human gut microbiota after 

challenge with enterotoxigenic Escherichia coli and subsequent ciprofloxacin 

treatment. BMC Genomics 17, 440 (2016). 

33. Pasolli, E. et al. Accessible, curated metagenomic data through 

ExperimentHub. Nat. Methods 14, 1023–1024 (2017). 

34. Mondot, S. et al. Structural robustness of the gut mucosal microbiota is 

associated with Crohn’s disease remission after surgery. Gut 65, 954–962 

(2016). 

35. Sohn, S.-H. et al. Analysis of Gastric Body Microbiota by Pyrosequencing: 

Possible Role of Bacteria Other Than Helicobacter pylori in the Gastric 

Carcinogenesis. J. Cancer Prev. 22, 115–125 (2017). 

36. Fenollar, F. et al. Tropheryma whipplei associated with diarrhoea in young 

children. Clin. Microbiol. Infect. 22, 869–874 (2016). 

37. Keller, P. M. et al. Recognition of Potentially Novel Human Disease-

Associated Pathogens by Implementation of Systematic 16S rRNA Gene 

Sequencing in the Diagnostic Laboratory  . J. Clin. Microbiol. 48, 3397–3402 



 

 

128 
 

(2010). 

38. Miller, R. R., Montoya, V., Gardy, J. L., Patrick, D. M. & Tang, P. 

Metagenomics for pathogen detection in public health. Genome Med. 5, 

(2013). 

39. Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted 

by microbiota from malnourished children. Science (80-. ). 351, (2016). 

40. The integrative human microbiome project: Dynamic analysis of microbiome-

host omics profiles during periods of human health and disease corresponding 

author. Cell Host and Microbe 16, 276–289 (2014). 

41. Leiserson, M. D. M. et al. MAGI: Visualization and collaborative annotation 

of genomic aberrations. Nature Methods 12, 483–484 (2015). 

42. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale 

microbial diversity. Nature 551, 457–463 (2017). 

43. Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool 

for visualizing high-throughput microbial community data. Gigascience 2, 16 

(2013). 

44. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community 

sequencing data. Nature Methods 7, 335–336 (2010). 

45. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic 

profiling. Nature Methods 12, 902–903 (2015). 

46. Olson, N. D. et al. metagenomeFeatures: An R package for working with 16S 

rRNA reference databases and marker-gene survey feature data. bioRxiv 

(2018). 



 

 

129 
 

47. Chelaru, F. Epiviz: Integrative Visual Analysis Software for Genomics. (2015). 

doi:10.13016/M2ZS7X 

48. Plaisant, C., Fekete, J. D. & Grinstein, G. Promoting insight-based evaluation 

of visualizations: From contest to benchmark repository. IEEE Trans. Vis. 

Comput. Graph. 14, 120–134 (2008). 

49. Meehan, C. J. & Beiko, R. G. A phylogenomic view of ecological 

specialization in the lachnospiraceae, a family of digestive tract-associated 

bacteria. Genome Biol. Evol. 6, 703–713 (2014). 

50. Kameyama, K. & Itoh, K. Intestinal Colonization by a Lachnospiraceae 

Bacterium Contributes to the Development of Diabetes in Obese Mice. 

Microbes Environ. 29, 427–430 (2014). 

51. Maharshak, N. et al. Fecal and Mucosa-Associated Intestinal Microbiota in 

Patients with Diarrhea-Predominant Irritable Bowel Syndrome. Dig. Dis. Sci. 

(2018). doi:10.1007/s10620-018-5086-4 

52. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal 

epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. 110, 9066–

9071 (2013). 

53. Isabel Ordiz, M. et al. Environmental enteric dysfunction and the fecal 

microbiota in malawian children. Am. J. Trop. Med. Hyg. 96, 473–476 (2017). 

54. Vázquez-Castellanos, J. F. et al. Altered metabolism of gut microbiota 

contributes to chronic immune activation in HIV-infected individuals. Mucosal 

Immunol. 8, 760–772 (2015). 

55. Nishino, K. et al. Analysis of endoscopic brush samples identified mucosa-



 

 

130 
 

associated dysbiosis in inflammatory bowel disease. J. Gastroenterol. 53, 95–

106 (2018). 

56. Shaw, K. A. et al. Dysbiosis, inflammation, and response to treatment: A 

longitudinal study of pediatric subjects with newly diagnosed inflammatory 

bowel disease. Genome Med. 8, (2016). 

57. Perkel, J. M. Data visualization tools drive interactivity and reproducibility in 

online publishing. Nature 554, 133–134 (2018). 

58. Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of 

metagenomic data. Genome Res. 17, 377–386 (2007). 

59. Bik, H. M. & Inc., P. I. Phinch: An interactive, exploratory data visualization 

framework for -Omic datasets. bioRxiv 9944 (2014). doi:10.1101/009944 

60. McNally, C. P., Eng, A., Noecker, C., Gagne-Maynard, W. C. & Borenstein, E. 

BURRITO: An interactive multi-omic tool for visualizing taxa-function 

relationships in microbiome data. Front. Microbiol. 9, (2018). 

61. Langille, M. et al. Predictive functional profiling of microbial communities 

using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–21 (2013). 

62. Tufte, E. R. Beautiful Evidence. (Graphics Press, 2006). 

63. Kancherla, J., Zhang, A., Gottfried, B. & Bravo, H. C. Epiviz Web 

Components: reusable and extensible component library to visualize functional 

genomic datasets. F1000Research 7, (2018). 

64. Turnbaugh, P. J. et al. The human microbiome project: exploring the microbial 

part of ourselves in a changing world. Nature 449, 804–810 (2007). 

65. Church, G. M. The Personal Genome Project. Mol. Syst. Biol. 1, E1–E3 (2005). 



 

 

131 
 

66. Blaser, M., Bork, P., Fraser, C., Knight, R. & Wang, J. The microbiome 

explored: Recent insights and future challenges. Nature Reviews Microbiology 

11, 213–217 (2013). 

67. Fierer, N. et al. Forensic identification using skin bacterial communities. Proc. 

Natl. Acad. Sci. U. S. A. 107, 6477–81 (2010). 

68. Malkhi, D., Nisan, N., Pinkas, B. & Sella, Y. Fairplay—a secure two-party 

computation system. in SSYM’04 Proceedings of USENIX 2004 20 (2004). 

69. Mailman, M. D. et al. The NCBI dbGaP database of genotypes and 

phenotypes. Nature Genetics 39, 1181–1186 (2007). 

70. Fredrikson, M. et al. Privacy in Pharmacogenetics: An End-to-End Case Study 

of Personalized Warfarin Dosing. in Proceedings of the 23rd USENIX Security 

Symposium 17–32 (2014). 

71. Kamm, L., Bogdanov, D., Laur, S. & Vilo, J. A new way to protect privacy in 

large-scale genome-wide association studies. Bioinformatics 29, 886–893 

(2013). 

72. Liu, C., Wang, X. S., Nayak, K., Huang, Y. & Shi, E. ObliVM: A 

programming framework for secure computation. in Proceedings - IEEE 

Symposium on Security and Privacy 2015–July, 359–376 (2015). 

73. Ghodsi, M., Liu, B. & Pop, M. DNACLUST: Accurate and efficient clustering 

of phylogenetic marker genes. BMC Bioinformatics 12, (2011). 

74. Nikolaenko, V. et al. Privacy-preserving matrix factorization. in Proceedings 

of the 2013 ACM SIGSAC conference on Computer & communications security 

- CCS ’13 801–812 (2013). doi:10.1145/2508859.2516751 



 

 

132 
 

75. Kolesnikov, V. & Schneider, T. Improved garbled circuit: Free XOR gates and 

applications. in Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 

5126 LNCS, 486–498 (2008). 

76. Troncoso-Pastoriza, J. R., Katzenbeisser, S. & Celik, M. Privacy preserving 

error resilient dna searching through oblivious automata. in Proceedings of the 

14th ACM conference on Computer and communications security  - CCS ’07 

519 (2007). doi:10.1145/1315245.1315309 

77. Huang, Y., Evans, D., Katz, J. & Malka, L. Faster Secure Two-party 

Computation Using Garbled Circuits. in Proceedings of the 20th USENIX 

Conference on Security 35 (USENIX Association, 2011). 

78. Wang, X. S. et al. Efficient Genome-Wide, Privacy-Preserving Similar Patient 

Query based on Private Edit Distance. in Proceedings of the 22nd ACM 

SIGSAC Conference on Computer and Communications Security - CCS ’15 

492–503 (2015). doi:10.1145/2810103.2813725 

79. Naveed, M. et al. Controlled Functional Encryption. in Proceedings of the 

2014 ACM SIGSAC Conference on Computer and Communications Security - 

CCS ’14 1280–1291 (2014). doi:10.1145/2660267.2660291 

80. Dachman-Soled, D., Malkin, T., Raykova, M. & Yung, M. Secure efficient 

multiparty computing of multivariate polynomials and applications. in Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics) 6715 LNCS, 130–146 

(2011). 



 

 

133 
 

81. Lauter, K., López-Alt, A. & Naehrig, M. Private computation on encrypted 

genomic data. in Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 

8895, 3–27 (2015). 

82. Zahur, S., Rosulek, M. & Evans, D. Two halves make a whole reducing data 

transfer in garbled circuits using half gates. in Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics) 9057, 220–250 (2015). 

83. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P. & Tsudik, G. Countering 

GATTACA: Efficient and Secure Testing of Fully-sequenced Human 

Genomes. in Proceedings of the 18th ACM Conference on Computer and 

Communications Security 691–702 (ACM, 2011). 

doi:10.1145/2046707.2046785 

84. Ayday, E., Raisaro, J. L., Mclaren, P. J., Fellay, J. & Hubaux, J. Privacy-

Preserving Computation of Disease Risk by Using Genomic , Clinical , and 

Environmental Data. Proc. USENIX Secur. Work. Heal. Inf. Technol. 

(HealthTech" 13) (2013). 

85. Bourgon, R., Gentleman, R. & Huber, W. Independent filtering increases 

detection power for high-throughput experiments. Proc. Natl. Acad. Sci. 107, 

9546–9551 (2010). 

86. Zgraggen, E., Zhao, Z., Zeleznik, R. & Kraska, T. Investigating the Effect of 

the Multiple Comparisons Problem in Visual Analysis. in Proceedings of the 

2018 CHI Conference on Human Factors in Computing Systems - CHI ’18 1–



 

 

134 
 

12 (2018). doi:10.1145/3173574.3174053 

87. Dwork, C. et al. The reusable holdout: Preserving validity in adaptive data 

analysis. Science (80-. ). 349, 636–638 (2015). 

88. Wickham, H., Cook, D., Hofmann, H. & Buja, A. Graphical inference for 

infovis. IEEE Trans. Vis. Comput. Graph. 16, 973–979 (2010). 

89. Buja, A. et al. Statistical inference for exploratory data analysis and model 

diagnostics. Philos. Trans. A. Math. Phys. Eng. Sci. 367, 4361–83 (2009). 

90. Majumder, M., Hofmann, H. & Cook, D. Validation of visual statistical 

inference, applied to linear models. J. Am. Stat. Assoc. 108, 942–956 (2013). 

91. Fisher, A., Anderson, G. B., Peng, R. & Leek, J. A randomized trial in a 

massive online open course shows people don’t know what a statistically 

significant relationship looks like, but they can learn. PeerJ 2, e589 (2014). 

92. Su, X. & Khoshgoftaar, T. M. A Survey of Collaborative Filtering Techniques. 

Adv. Artif. Intell. 2009, 1–19 (2009). 

93. Wongsuphasawat, K. et al. Voyager: Exploratory Analysis via Faceted 

Browsing of Visualization Recommendations. IEEE Trans. Vis. Comput. 

Graph. 22, 649–658 (2016). 

94. Shneiderman, B. The eyes have it: A task by data type taxonomy for 

information visualizations. in IN IEEE SYMPOSIUM ON VISUAL 

LANGUAGES 336–343 (1996). 

95. Sneath, P. H. A. The application of computers to taxonomy. Microbiology 17, 

201–226 (1957). 

96. Paulson, J. N., Colin Stine, O., Bravo, H. C. & Pop, M. Differential abundance 



 

 

135 
 

analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202 

(2013). 

97. Morgan, X. C. & Huttenhower, C. Chapter 12: Human Microbiome Analysis. 

PLoS Comput. Biol. 8, (2012). 

98. White, J. R., Nagarajan, N. & Pop, M. Statistical Methods for Detecting 

Differentially Abundant Features in Clinical Metagenomic Samples. PLoS 

Comput. Biol. 5, (2009). 

99. Lozupone, C. & Knight, R. UniFrac : a New Phylogenetic Method for 

Comparing Microbial Communities UniFrac : a New Phylogenetic Method for 

Comparing Microbial Communities. Appl. Environ. Microbiol. 71, 8228–8235 

(2005). 

100. Erlich, Y. & Narayanan, A. Routes for breaching and protecting genetic 

privacy. Nature Reviews Genetics 15, 409–421 (2014). 

101. Lax, S. et al. Longitudinal analysis of microbial interaction between humans 

and the indoor environment. Science (80-. ). 345, 1048–1052 (2014). 

102. Kort, R. et al. Shaping the oral microbiota through intimate kissing. 

Microbiome 2, (2014). 

103. Snyder, P. Yao’s garbled circuits: Recent directions and implementations. 

(2014). Available at: 

https://www.cs.uic.edu/pub/Bits/PeterSnyder/Peter_Snyder_-

_Garbled_Circuits_WCP_2_column.pdf.  

 

 


	Justin Max Wagner, Doctor of Philosophy, and 2018
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1 Microbiome sequencing
	1.2 Microbiome Data Analysis
	1.3 Genomic Sequencing Project Data Access and Coordination
	Prominent Projects
	Data Security and Privacy

	1.4 Contributions

	Chapter 2: Metaviz: interactive statistical and visual analysis of metagenomic data
	2.1 Introduction
	Motivation
	Related Work

	2.2 Materials and Methods
	Visualization layer
	Navigation Mechanism - FacetZoom
	Data layer
	Materials

	2.3 Results and Discussion
	Whole Metagenome Shotgun Sequencing Data
	metavizr
	UMD Metagenome Browser
	Deployment
	Use Case 1: Exploration of MSD childhood diarrhea study in developing countries
	Use Case 2: Analysis of longitudinal metagenomic studies

	2.4 Conclusion

	Chapter 3: Interactive Exploratory Data Analysis of Human Microbiome Project Phase II Data Using Metaviz
	3.1 Introduction
	Human Microbiome Project Phase II
	Metaviz
	Related Work

	3.2 Metaviz integration with HMP infrastructure
	Data loaded into UMD Metagenome Browser
	HMP Data Portal linking to Metaviz
	Metaviz import of Data Portal Manifest
	metavizr analysis of WGS vs 16S data from same samples
	Metaviz Usability Testing

	3.3 Methods and Results
	Inflammatory Bowel Disease Dataset
	IBD Stool Pilot
	IBD HMP2

	3.4 Discussion
	IBD Stool Pilot
	IBD HMP2
	Exploratory and Confirmatory Analysis

	3.5 Conclusion

	Chapter 4: Visualization of Longitudinal and Microbial Community Functional Profiling Data with Metaviz
	4.1 Introduction
	Related Work
	Metaviz

	4.2 Visualizations and User Interactions
	Functional Profiling Data
	Longitudinal Visualization with Spark Lines
	Taxa of Interest, Export and Import
	External Data Source Links
	Operation Stack

	4.3 Architecture
	Backend
	Components library

	4.4 Discussion and Conclusions

	Chapter 5:  Privacy-preserving microbiome analysis using secure computation
	5.1 Introduction
	5.2 System and methods
	Garbled circuits
	System participants
	Threat model
	Solution design approaches
	Access control plus trusted third party
	Differential privacy
	Secure multiparty computation

	5.3 Implementation
	Metagenomics using garbled circuits
	FlexSC
	Metagenomic analysis assumptions
	Design approaches
	Precomputation
	Sparse matrix
	Presence/absence
	Differential abundance
	Alpha diversity
	Evaluation
	Datasets
	Efficiency of secure computation
	Circuit size
	Running time
	Network traffic
	Accuracy
	Significant features discovered through data-sharing
	Metagenomic codes

	5.4 Discussion
	Related work
	Secure DNA sequence matching and searching
	Privacy-preserving Genome-wide association studies
	Secure genetic testing
	Patient pool

	5.5 Conclusions

	Chapter 6:  Conclusion
	Specific Contributions
	Future Work

	Appendix
	Appendix A.
	Section I: Using Information Visualization Techniques for Microbiome Data
	Section II. Data Plots and Charts
	Section III: Exploration of MSD childhood diarrhea study in developing countries

	Appendix B.
	Appendix C.
	Appendix D.
	Section I. Microbiome Preliminaries
	Section II. Problem Overview
	Section III. Oblivious Transfer
	Section V. Evaluation


	Bibliography

