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There have been several efforts to bring static type inference to object-oriented

dynamic languages such as Ruby, Python, and Perl. In our experience, however,

such type inference systems are extremely difficult to develop, because dynamic lan-

guages are typically complex, poorly specified, and include features, such as eval

and reflection, that are hard to analyze. In this thesis, we introduce constraint-based

dynamic type inference, a technique that infers static types based on dynamic pro-

gram executions. In our approach, we wrap each run-time value to associate it with

a type variable, and the wrapper generates constraints on this type variable when

the wrapped value is used. This technique avoids many of the often overly conserva-

tive approximations of static tools, as constraints are generated based on how values

are used during actual program runs. Using wrappers is also easy to implement,

since we need only write a constraint resolution algorithm and a transformation to

introduce the wrappers. We have developed Rubydust, an implementation of our

algorithm for Ruby. Rubydust takes advantage of Ruby’s dynamic features to im-

plement wrappers as a language library. We applied Rubydust to a number of small



programs. We found it to be lightweight and useful: Rubydust discovered 1 real

type error, and all other inferred types were correct, and readable.
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Chapter 1

Introduction

1.1 Static Type Inference

Over the years, there have been several efforts to bring static type inference to

object-oriented dynamic languages such as Ruby, Python, and Perl [12, 11, 3, 2, 17,

19, 8, 23, 5, 6, 26]. Static type inference has the potential to provide the benefits

of static typing—well-typed programs don’t go wrong [18]—without the annotation

burden of pure type checking.

However, based on our own experience, developing a static type inference

system for a dynamic language is extremely difficult. Most dynamic languages have

poorly documented, complex syntax and semantics that must be carefully reverse-

engineered before any static analysis is possible. Dynamic languages are usually

“specified” only with a canonical implementation, and tend to have many obscure

corner cases that make this reverse engineering process tedious and error-prone.

Moreover, dynamic languages are so-named because of features such as reflection and

eval, which, while making some programming idioms convenient, impede precise
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yet sound static analysis. Combined, these challenges make developing static type

inference for a dynamic language a major undertaking, and maintaining a static type

inference system as a dynamic language evolves over time is a daunting prospect.

1.2 Dynamic Inference of Static Types

In this thesis, we introduce constraint-based dynamic type inference, a tech-

nique that uses information gathered from dynamic runs to infer static types. More

precisely, at run-time we introduce type variables for each position, e.g., fields,

method arguments, and return values, whose type we want to infer. As values are

passed to those positions, we wrap them in a proxy object that records the associ-

ated type variable. The user may also supply trusted type annotations for methods.

When wrapped values are used as receivers or passed to type-annotated methods,

we generate appropriate subtyping constraints on those variables. At the end of the

run, we solve the constraints to find a valid typing, if one exists.

1.3 Rubydust

We have implemented this technique for Ruby, as a tool called Rubydust

(where “dust” stands for dynamic unraveling of static types). A key advantage

of Rubydust’s dynamic type inference is that, unlike standard static type systems,

Rubydust only conflates type information at method boundaries (where type vari-

ables accumulate constraints from different calls), and not within a method. Thus,
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it is more precise than a standard static type system. For example, Rubydust sup-

ports flow-sensitive treatment of local variables, allowing them to be assigned values

having different types. Rubydust is also path-sensitive since it only sees actual runs

of the program, and thus correlated branches pose no special difficulty. In essence,

by observing only actual executions, Rubydust avoids much of the conservatism of

standard static type inference.

Even better, although Rubydust is based purely on dynamic runs, we still

proved a soundness theorem in [4]. We formalized our algorithm on a core subset

of Ruby (shown in this thesis), and we previously proved that if the training runs

cover every path in the control-flow graph (CFG) of every method of a class, then the

inferred types for that class’s fields and methods are sound for all possible runs. In

our formalism, all looping occurs through recursion, and so the number of required

paths is at most exponential in the size of the largest method body in a program.

Notice that this can be dramatically smaller than the number of paths through the

program as whole.

Clearly, in practice it is potentially an issue that we need test cases that cover

all method paths for fully sound types. However, there are several factors that

mitigate this potential drawback.

• Almost all software projects include test cases, and those test cases can be used

for training. In fact, the Ruby community encourages test-driven development,

which prescribes that tests be written before writing program code—thus tests

will likely be available for Rubydust training right from the start.

3



• Ruby effectively includes direct looping constructs, and hence method bodies

could potentially contain an unbounded number of paths. However, based

on our experimental benchmarks, we have found that most loop bodies use

objects in a type-consistent manner within each path within the loop body.

Hence, typically, observing all paths within a loop body (rather that observing

all possible iterations of a loop) suffices to find correct types.

• Even incomplete tests may produce useful types. In particular, the inferred

types will be sound for any execution that takes (within a method) paths that

were covered in training. We could potentially add instrumentation to identify

when the program executes a path not covered by training, and then blame

the lack of coverage if an error arises as a result [11]. Types are also useful

as documentation. Currently, the Ruby documentation includes informal type

signatures for standard library methods, but those types could become out

of sync with the code (we have found cases of this previously [12]). Using

Rubydust, we could generate type annotations automatically from code using

its test suite, and thus keep the type documentation in-sync with the tested

program behaviors.

Our implementation of Rubydust is a Ruby library that takes advantage of

Ruby’s rich introspection features; no special tools or compilers are needed. Ruby-

dust wraps each object o at run-time with a proxy object that associates o with a

type variable α that corresponds to o’s position in the program (a field, argument,

or return-value). Method calls on o precipitate the generation of constraints; e.g.,
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if the program invokes o.m(x) then we generate a constraint indicating that α must

have a method m whose argument type is a supertype of the type of x. Rubydust

also consumes trusted type annotations on methods; this is important for giving

types to Ruby’s built-in standard library, which is written in C rather than Ruby

and hence is not subject to our type inference algorithm.

We evaluated Rubydust by applying it to 5 small programs, the largest of

which was roughly 750 LOC, and used their accompanying test suites to infer types.

We found one real type error. This fact is interesting because the type error was

uncovered by solving constraints from a passing test run! All other programs were

found to be type correct, with readable and correct types. The overhead of running

Rubydust is currently quite high, but we believe it can be reduced with various

optimizations that we intend to implement in the future. In general we found the

performance acceptable and the tool itself quite easy to use.

1.4 Thesis

We believe that Rubydust is a practical, effective method for inferring useful

static types in Ruby. In support of this thesis, our contributions are as follows:

• We introduce a novel algorithm to infer types at run-time by dynamically

associating fields and method arguments and results with type variables, and

generating subtyping constraints as those entities are used. (Chapter 2)

• We formalize our algorithm and explain how type constraints are obtained

throughout the test run. (Chapter 3)
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• We describe Rubydust, a practical implementation of our algorithm that uses

Ruby’s rich introspection features. Since Rubydust piggybacks on the standard

Ruby interpreter, we can naturally handle all of Ruby’s rather complex syntax

and semantics without undue effort. (Chapter 4)

• We evaluate Rubydust on a small set of benchmarks and find it to be useful.

(Chapter 5)

6



Chapter 2

Overview

Before presenting our constraint-based dynamic type inference algorithm for-

mally, we describe the algorithm by example and illustrate some of its key features.

Our examples below are written in Ruby, which is a dynamically typed, object-

oriented language inspired by Smalltalk and Perl. In our discussion, we will try to

point out any unusual syntax or language features we use; more complete informa-

tion about Ruby can be found elsewhere [27].

2.1 Method Call and Return

In our algorithm, there are two kinds of classes: annotated classes, which have

trusted type signatures, and unannotated classes, whose types we wish to infer. We

assign a type variable to each field, method argument, and method return value

in every unannotated class. At run time, values that occupy these positions are

associated with the corresponding type variable. We call this association wrapping

since we literally implement it by wrapping the value with some metadata. When
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caller o.m(v)
 where @g = u

callee
   def m(x) e end
 where @f = w

(5) wrap
(h) v' : αm_ret
(i) u' : α@g
 where @g = u'

(1) constrain 
(a) type(v) ≤ αx
(b) type(o) ≤ [m:αx → αm_ret ] 

(c) type(u) ≤ α@g

(3) run e ⤳ v'(2) wrap
(d) v : αx 

(e) w : α@f 

(4) constrain
(f) type(v') ≤ αm_ret 

(g) type(w') ≤ α@f 

  where @f = w'

Figure 2.1: Dynamic instrumentation for a call o.m(v)

a wrapped value is used, e.g., as a receiver of a method call, or as an argument

to a method with a trusted type signature, we generate a subtyping constraint on

the associated variable. At the end of the training runs, we solve the generated

constraints to find solutions for those type variables (which yield field and method

types for unannotated classes), or we report an error if no solution exists. Note

that since all instances of a class share the same type variables, use of any instance

contributes to inferring a single type for its class.

Before working through a full example, we consider the operation of our algo-

rithm on a single call to an unannotated method. Figure 2.1 summarizes the five

steps in analyzing a call o.m(v) to a method defined as def m(x) e end, where x is

the formal argument and e is the method body. In this case, we create two type

variables: αx, to represent x’s type, and αm ret , to represent m’s return type.

In step (1), the caller looks up the (dynamic) class of the receiver to find the

type of the called method. In this case, method m has type αx → αm ret . The
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caller then generates two constraints. The constraint labeled (a) ensures the type

of the actual argument is a subtype of the formal argument type. Here, type(x)

is the type of an object, either its actual type, for an unwrapped object, or the

type variable stored in the wrapper. In the constraint (b), the type [m : . . .] is the

type of an object with a method m with the given type. Hence by width-subtyping,

constraint (b) specifies that o has at least an m method with the appropriate type.

We generate this constraint to ensure o’s static type type(o) is consistent with the

type for m we found via dynamic lookup. For now, ignore the constraint (c) and the

other constraints (e), (g), and (i) involving fields @f and @g; we will discuss these in

Section 2.3.

In step (2) of analyzing the call, the callee wraps its arguments with the

appropriate type variables immediately upon entry. In this case, we set x to be

v : αx, which is our notation for the value v wrapped with type αx.

Then in step (3), we execute the body of the method. Doing so will result in

calls to other methods, which will undergo the same process. Moreover, as v : αx

may be used in some of these calls, we will generate constraints on type(v : αx),

i.e., αx, that we saw in step (1). In particular, if v : αx is used as a receiver, we will

constrain αx to have the called method; if v : αx is used as an argument, we will

constrain it to be a subtype of the target method’s formal argument type.

At a high-level, steps (1) and (2) maintain two critical invariants:

• Prior to leaving method n to enter another method m, we generate constraints

to capture the flow of values from n to m (Constraints (a) and (b)).
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• Prior to entering a method m, all values that could affect the type of m are

wrapped (Indicated by (d)).

Roughly speaking, constraining something with a type records how it was used in

the past, and wrapping something with a type observes how it is used in the future.

Returning from methods should maintain the same invariants as above, except

we are going in the reverse direction, from callee to caller. Thus, in step (4), we

generate constraint (f) in the callee that the type of the returned value is a subtype

of the return type, and in step (5), when we return to the caller we immediately

wrap the returned value with the called method’s return type variable.1

2.2 Complete Example

Now that we have seen the core algorithm, we can work through a complete

example. Consider the code in Figure 2.2, which defines a class A with two methods

foo and bar, and then calls foo on a fresh instance of A on line 21.

This code uses Ruby’s Numeric class, which is one of the built-in classes for

integers. Because Numeric is built-in, we make it an annotated class, and supply

trusted type signatures for all of its methods. A portion of the signature is shown

as the argument to typesig method on line 3, which indicates Numeric has a method

+ of type Numeric→ Numeric.2

1Although in the figure and in our formalism we perform some operations in the caller, in

Rubydust all operations are performed in the callee because it makes the implementation easier.

See Chapter 4.
2In Ruby, the syntax e1 + e2 is shorthand for e1. + (e2), i.e., calling the + method on e1 with
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1 class Numeric
2 ...
3 typesig (”’+’ : Numeric→ Numeric”)
4 ...
5 end
6

7 class A
8 # foo : αw × αu → αfoo ret

9 def foo(w,u) # w = (b : αw), u = (1 : αu)
10 w.baz() # αw ≤ [baz : ()→ ()]
11 y = 3 + u # y = (4 : Numeric) αu ≤ Numeric
12 return bar(w) # ret = (7 : αbar ret) αw ≤ αx

13 end # αbar ret ≤ αfoo ret

14 # bar : αx → αbar ret

15 def bar(x) # x = (b : αx)
16 x.qux() # αx ≤ [qux : ()→ ()]
17 return 7 # Numeric ≤ αbar ret

18 end
19 end
20

21 A.new.foo(B.new,1) # B.new returns a new object b
22 # B ≤ αw

23 # Numeric ≤ αu

24 # ret = (7 : αfoo ret)

Figure 2.2: Basic method call and return example

As in the previous section, we introduce type variables for method arguments

and returns, in this case αw, αu, and αfoo ret for foo, and αx and αbar ret for bar.

Then we begin stepping through the calls. At the call on line 21, we pass in actual

arguments b (the object created by the call to B.new on the same line) and 1. Thus

we constrain the formal argument types in the caller (lines 22 and 23) and wrap the

actuals in the callee (line 9).

Next, on line 10, we use of a wrapped object, so we generate a constraint;

here we require the associated type variable αw contains a no-argument method baz.

(For simplicity we show the return type as (), though as it is unused it could be

argument e2.
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arbitrary.)

On line 11, we call 3 + u. The receiver object is 3, which has actual class is

Numeric, an annotated class. Thus, we do the normal handling in the caller (the

shaded box in Figure 2.1), but omit the steps in the callee, since the annotation

is trusted. Here, we generate a constraint αu ≤ Numeric between the actual and

formal argument types. We also generate a constraint (not shown in the figure)

type(3) ≤ [+ : . . .], but as type(3) = Numeric, this constraint is immediately

satisfiable; in general, we need to generate such constraints to correctly handle cases

where the receiver is not a constant. Finally, we wrap the return value from the

caller with its annotated type Numeric.

Next, we call method bar. As expected, we constrain the actuals and formals

(line 12), wrap the argument inside the callee (line 15), and generate constraints

during execution of the body (line 16). At the return from bar, we constrain the

return type (line 17) and wrap in the caller (yielding the wrapped value 7 : αbar ret

on line 12). As that value is immediately returned by foo, we constrain the return

type of foo with it (line 13) and wrap in the caller (line 24).

After this run, we can solve the generated constraints to infer types. Drawing

the constraints from the example as a directed graph, where an edge from x to y

corresponds to the constraint x ≤ y, we have:

αw
αx

αfoo_retαbar_ret
B

[baz : () → ()]

[qux : () → ()] Numeric

αuNumeric Numeric

(Here we duplicated Numeric for clarity; in practice, it is typically represented

12



by a single node in the graph.) As is standard, we wish to find the least solution

(equivalent to a most general type) for each method. Since arguments are contravari-

ant and returns are covariant, this corresponds to finding upper bounds (transitive

successors in the constraint graph) for arguments and lower bounds (transitive pre-

decessors) for returns. Intuitively, this is equivalent to inferring argument types

based on how arguments are used within a method, and computing return types

based on what types flow to return positions. For our example, the final solution is

αw = [baz : ()→ (), qux : ()→ ()] αx = [qux : ()→ ()]

αu = Numeric αbar ret = αfoo ret = Numeric

Notice that w must have bar and qux methods, but x only needs a qux method. For

return types, both bar and foo return Numeric in all cases.

2.3 Local Variables and Fields

In the previous example, our algorithm generated roughly the same constraints

that a static type inference system might generate. However, because our algorithm

observes only dynamic runs, in many cases it can be more precise than static type

inference.

Consider class C in Figure 2.3. On entry to foo, we wrap the actual argument

v as v : αx, where αx is foo’s formal argument type. At the assignment on line 27, we

do nothing special—we allow the language interpreter to copy a reference to v : αx

into z. At the call to baz, we generate the expected constraint αx ≤ [baz : ()→ ()].
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25 class C
26 def foo(x)
27 z = x; z.baz();
28 z = 3; return z + 5;
29 end
30 end
31 class D
32 def bar(x)
33 @f = x
34 end
35 def baz()
36 y = 3 + @f
37 end
38 def qux()
39 @f = ”foo”
40 end
41 def f ()
42 bar(”foo”)
43 end
44 end

Figure 2.3: Example with local variables and fields

More interestingly, on line 28, we reassign z to contain 3, and so at the call to z’s

+ method, we do not generate any constraints on αx. Thus, our analysis is flow-

sensitive with respect to local variables, meaning it respects the order of operations

within a method.

To see why this treatment of local variable assignment is safe, it helps to think

in terms of compiler optimization. We are essentially performing inference over

a series of execution traces. Each trace we can view as a straight-line program.

Consider the execution trace of foo (which is the same as the body of the func-

tion, in this case). If we apply copy propagation (of x and 3) to the trace we get

z=x; x.baz(); z=3; return 3 + 5; Since z is a local variable inaccessible outside of the

scope of foo, it is dead at the end of the method, too, so we can apply dead code

elimination to reduce the trace to “x.baz(); return 3+5;”. But the constraints we
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would generate from this trace are equivalent to those we would generate with our

approach.

Instance fields in Ruby are not visible outside an object, but they are shared

across all methods of an object. Thus, we need to treat them differently than locals.

To see why, consider the class D in Figure 2.3, which uses the instance variable @f

(all instance variables begin with @ in Ruby). Suppose that we treated fields the

same way as local variables, i.e., we did nothing special at assignments to them.

Now consider inferring types for D with the run bar (1); baz(); qux(). During the

call bar(1), we would generate the constraint Numeric ≤ αx (the type variable for

x) and store 1 : αx in @f. Then during baz(), we would generate the constraint

αx ≤ Numeric, and the call to qux() would generate no constraints. Thus, we could

solve the constraints to get αx = Numeric, and we would think this class has type

[bar : Numeric→ (), baz : ()→ (), qux : ()→ ()]. But this result is clearly wrong, as

the sequence qux(); baz(), which is “well-typed,” produces a type error.

To solve this problem, we need to introduce a type variable α@f for the field,

and then generate constraints and wrap values accordingly. It would be natural to

do this at writes to fields, but that turns out to be impossible with a Ruby-only,

dynamic solution, as there is no dynamic mechanism for intercepting field writes.3

Fortunately, we can still handle fields safely by applying the same principles we saw

in Figure 2.1 for method arguments and returns. There, we needed two invariants:

3Recall we wish to avoid using static techniques, including program rewriting, because they

require complex front-ends that understand program semantics. For example, even ordering of

assignment operations in Ruby can be non-obvious in some cases [13].
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(1) when we switch from method m to method n, we need to capture the flow of

values from m to n, and (2) when we enter a method n, we need to wrap all values

that could affect the type of n. Translating this idea to fields, we need to ensure:

• When we switch from m to n, we record all field writes performed by m,

since they might be read by n. This is captured by constraints (c) and (g) in

Figure 2.1.

• When we enter n, we need to wrap all fields n may use, so that subsequent

field reads will see the wrapped values. This is captured by constraints (e)

and (i) in Figure 2.1.

Adding these extra constraints and wrapping operations solves the problem we

saw above, in training the example in Figure 2.3 with the run bar (1); baz(); qux().

At the call bar(1), we generate the constraint Numeric ≤ αx, as before. However,

at the end of bar, we now generate a constraint αx ≤ α@f to capture the write.

At the beginning of baz, we wrap @f so that the body of baz will now generate the

constraints α@f ≤ Numeric. Then qux generates the constraint String ≤ α@f . We

can immediately see the constraints String ≤ α@f ≤ Numeric are unsatisfiable, and

hence we would correctly report a type error.

Our implementation handles class variables similarly to instance variables.
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45 class E
46 def foo(x, p)
47 if p then x.qux() else x.baz() end
48 end
49 def bar(p)
50 if p then y = 3 else y = ”hello” end
51 if p then y + 6 else y. length end
52 end
53 end

(a) Paths and path-sensitivity

54 class F
55 def foo(x)
56 return ( if x then 0 else ” hello ” end)
57 end
58 def bar(y,z)
59 return ( if y then foo(z) else foo(!z) end)
60 end
61 end
62 f = F.new

(b) Per-method path coverage

Figure 2.4: Additional examples

2.4 Path Observation, Path-Sensitivity, and Path

Coverage

As we discussed earlier, our algorithm observes dynamic runs. Hence for code

with branches, we need to observe all possible paths through the code to infer sound

types. For example, we can infer types for the foo method in Figure 2.4(a) if we

see an execution such as foo(a, true); foo(b, false ); . In this case, we will generate

αx ≤ [qux : ...] from the first call, and αx ≤ [baz : ...] from the second.

One benefit of observing actual dynamic runs is that we never model unreal-

izable program executions. For example, consider the bar method in Figure 2.4(a).
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In a call bar(true), line 50 assigns a Numeric to y, and in a call bar( false ), it assigns

a String to y. Typical path-insensitive static type inference would conflate these

possibilities and determine that y could be either a Numeric or String on line 51,

and hence would signal a potential error for both the calls to + and to length. In

contrast, in our approach we do not assign any type to local y, and we observe each

path separately. Thus, we do not report a type error for this code. (Note that our

system supports union types, so the type we would infer for bar’s argument p would

be String ∪ Numeric.)

Our soundness theorem in our technical report [4] holds if we observe all pos-

sible paths within each method body. To see why this is sufficient, rather than

needing to observe all possible program paths, consider the code in Figure 2.4(b).

Assuming bar is the entry point, there are four paths through this class, given by all

possible truth value combinations for y and z. However, to observe all possible types,

we only need to explore two paths. If we call f .bar(true,true) and f .bar( false ,true),
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we will generate the following constraints:4

f.bar(true, true) f.bar(false, true)

Boolean ≤ αy Boolean ≤ αy

Boolean ≤ αz Boolean ≤ αz

αz ≤ αx αz ≤ Boolean ≤ αx

Numeric ≤ αfoo ret String ≤ αfoo ret

αfoo ret ≤ αbar ret αfoo ret ≤ αbar ret

Thus, we can deduce that bar may return a Numeric or a String.

The reason we only needed two paths is that type variables on method ar-

guments and returns act as join points, summarizing the possible types of all

paths within a method. In our example, both branches of the conditional in bar

have the same type, αfoo ret . Thus, the other possible calls, f .bar(true, false ) and

f .bar( false , false ), do not affect what types bar could return.

2.5 Dynamic Features

Another benefit of our dynamic type inference algorithm is that we can easily

handle dynamic features that are very challenging for static type inference. For

example, consider the following code:

63 def initialize (args)

4Note that using x and y in an if generates no constraints, as any object can be used in

such a position (false and nil are false, and any other object is true). Also, here and in our

implementation, we treat true and false as having type Boolean, though in Ruby they are actually

instances of TrueClass and FalseClass , respectively.
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64 args .keys .each do | attrib |
65 self .send(”#{attrib}=”, args[ attrib ])
66 end end

This constructor takes a hash args as an argument, and then for each key-value pair

(k, v) uses reflective method invocation via send to call a method named after k with

the argument v. Or, consider the following code:

67 ATTRIBUTES = [”bold”, ”underscore”, ... ]
68 ATTRIBUTES.each do |attr|
69 code = ”def #{attr}(&blk) ... end”
70 eval code
71 end

For each element of the string array ATTRIBUTES, this code uses eval to define a

new method named after the element.

We encountered both of these code snippets in earlier work, in which we pro-

posed using run-time profiling to gather concrete uses of send, eval, and other highly

dynamic constructs, and then analyzing the profile data statically [11]. In the dy-

namic analysis we propose in this thesis, there is no need for a separate profiling

pass, as we simply let the language interpreter execute this code and observe the

results during type inference. Method invocation via send is no harder than normal

dynamic dispatch; we just do the usual constraint generation and wrapping, which,

as mentioned earlier, is actually performed inside the callee in our implementation.

Method creation via eval is also easy, since we add wrapping instrumentation by

dynamically iterating through the defined methods of unannotated classes; it makes

no difference how those methods were created, as long as it happens before instru-

mentation.
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Chapter 3

Formalism

In this section, we formally describe our dynamic type inference technique

using a core Ruby-like source language. This is a variation of our formalism in [4],

which was originally developed by the authors of the technical report to prove the

soundness theorem. Here, we describe only the semantics to explain how Rubydust

wraps values and generate type constraints at runtime.

3.1 Syntax

The syntax is shown in Figure 3.1. Expressions include nil, self, variables x,

fields @f , variable assignments x = e, field assignments @f = e, object creations

A.new, method calls e.m(e′), sequences e; e′, and conditionals if e then e′ else e′′.

The form def m(x) = e defines a method m with formal argument x and body

e. Classes c are named collections of methods. A program consists of a set of classes

and a single expression that serves as a test. Typically, we run a test on a collection

of classes to “train” the system—i.e., infer types. In our formal proof [4], we run
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expressions e ::= nil | self | x | @f | x = e

| @f = e | A.new | e.m(e′) | e; e′

| if e then e′ else e′′

methods d ::= def m(x) = e

classes c ::= class A = d?

programs P ::= c? � e

types τ ::= A.@f | A.m | A.m | ⊥ | >

| A | [m : A.m→ A.m] | τ ∪ τ ′ | τ ∩ τ ′

x ∈ local variables

@f ∈ field names

A ∈ class names

m ∈ method names

Figure 3.1: Syntax of source language
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other tests to “monitor” the system—i.e., show that the inferred types are sound.

In this formalism, we use only a single test e to train the system, but we can always

represent a set of tests by sequencing them together into a single expression.

The syntax of types requires some explanation. Type variables are “tagged” to

avoid generating and accounting for fresh variables. Thus, A.@f is a type variable

that denotes the type of the field @f of objects of class A; similarly, A.m and A.m

are type variables that denote the argument and result types of the method m of

class A. In addition, we have nominal types A for objects of class A, and structural

types [m : A.m → A.m] for objects with method m whose argument and result

types can be viewed as A.m and A.m.

Finally, we have the bottom type ⊥, the top type >, union types τ ∪ τ ′, and

intersection types τ ∩ τ ′. The bottom type ⊥ represents the empty type or NilClass

in Ruby. The top type > is the universal type–i.e. any type is a subtype of >. Note

that Object is still a subtype of > because an object is requried to have a minimum

set of methods in order to be an Object in Ruby. A union type τ ∪ τ ′ can either be

a τ or τ ′, and an intersection type τ ∩ τ ′ must be both τ and τ ′.

3.2 Training Semantics

In this section, we define a semantics for training. The semantics extends a

standard semantics with some instrumentation. The instrumentation does not affect

the run-time behavior of programs; it merely records run-time information that later

allows us to infer types.
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values v ::= l | nil

wrapped values ω ::= v : τ

field maps F ::= (@f 7→ ω)?

method maps M ::= (m 7→ λ(x)e)?

class maps C ::= (A 7→ M)?

heaps H ::= (l 7→ A〈F〉)?

environments E ::= (x 7→ ω)?, (self 7→ l : A)?

constraints Π ::= (τ ≤ τ ′)?

Figure 3.2: Auxiliary syntax

To define the semantics, we need some auxiliary syntax to describe internal

data structures, shown in Figure 3.2. Let l denote heap locations. Values include

locations and nil. Such values are wrapped with types for training. A field map

associates field names with wrapped values. A method map associates method

names with abstractions. A class map associates class names with method maps.

A heap maps locations to objects A〈F〉, which denote objects of class A with field

map F . An environment maps variables to wrapped values and, optionally, self to

a location wrapped with its run-time type. Finally, constraints Π include standard

subtyping constraints τ ≤ τ ′.

The rules shown in Figure 3.3 derive big-step reduction judgments of the form

H; E ; e −→C H′; E ′;ω | Π, meaning that given C, expression e under heap H and

environment E reduces to wrapped value ω, generating constraints Π, and return-

ing heap H′ and environment E ′. We define the following operations on wrapped
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values—if ω = v : τ then val(ω) = v, type(ω) = τ , and ω • τ ′ = v : τ ′. In the rules,

we use an underscore in any position where an arbitrary quantity is allowed, and

we write empty set as {}.

By (TNil), the type assigned to nil is ⊥, which means that nil may have any

type. (TSelf) is straightforward. In (TNew), the notation A〈 7→ nil : ⊥〉 indicates

an instance of A with all possible fields mapped to nil. (As in Ruby, fields need not

be explicitly initialized before use, and are nil by default.) (TVar) and (TVar=)

are standard, and generate no constraint nor perform any wrapping, as discussed in

Section 2.3.

As explained in Chapter 2, we permit some flow-sensitivity for field types.

Thus, (Field) and (Field=) are much like (Var) and (Var=), in that they generate

no constraint nor perform any wrapping. In general having flow-sensitive types for

fields would be unsound; we recover soundness by restricting such flow-sensitivity

across method calls (shown later), and relying on the fact that fields of objects of

a particular class cannot be accessed by methods of other classes. (This device is

not new—similar ideas appear in implementations of object invariants and STM.)

Fortunately, our approach also slightly improves the precision of field types.

(TSeq) is straightforward. For the conditional expression, we have two rules—

(TCond-True) for the true branch and (TCond-False) for the false branch. Note

that we assume looping in the formal language occurs only via recursive calls.

There are two rules (TCaller) and (TCallee) to capture the behavior of

method calls. We split method call handling into two rules to closely reflect the

dynamic instrumentation introduced in Chapter 2. (TCaller) performs the actions
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(TNil)

H; E ; nil −→C H; E ; nil : ⊥ | {}

(TSelf)

E(self) = l : A

H; E ; self −→C H; E ; l : A | {}

(TNew)

l fresh H′ = H{l 7→ A〈 7→ nil : ⊥〉}

H; E ;A.new −→C H′; E ; l : A | {}

(TVar)

E(x) = ω

H; E ;x −→C H; E ;ω | {}

(TVar =)

H; E ; e −→C H′; E ′;ω | Π E ′′ = E ′{x 7→ ω}

H; E ;x = e −→C H′; E ′′;ω | Π

(TField)

E(self) = ω l = val(ω) H(l) = 〈F〉 F(@f) = ω

H; E ; @f −→C H; E ;ω | {}

(TField =)

H; E ; e −→C H′; E ′;ω | Π E ′(self) = ω′

l = val(ω′) H′(l) = A〈F〉 H′′ = H′{l 7→ A〈F{@f 7→ ω}〉}

H; E ; @f = e −→C H′′; E ′;ω | Π
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(TSeq)

H; E ; e −→C H′; E ′; | Π H′; E ′; e′ −→C H′′; E ′′;ω | Π′

H; E ; (e; e′) −→C H′′; E ′′;ω | Π,Π′

(TCond-True)

H; E ; e −→C H′; E ′; true : Boolean | Π H′; E ′; e′ −→C H′′; E ′′;ω′ | Π′

H; E ; if e then e′ else e′′ −→C H′′; E ′′;ω′ | Π,Π′

(TCond-False)

H; E ; e −→C H′; E ′; false : Boolean | Π H′; E ′; e′′ −→C H′′; E ′′;ω′ | Π′

H; E ; if e then e′ else e′′ −→C H′′; E ′′;ω′ | Π,Π′

(TCaller)

H; E ; e −→C H′; E ′;ω | Π τ = type(ω)

H′; E ′; e′ −→C H′′; E ′′;ω′ | Π′ τ ′ = type(ω′)

l = E ′′(self) l = val(ω′) E ′′′ = {self 7→ ω′ • A} H′′(val(ω′)) = A〈 〉

C(A)(m) = λ(x)e Π′′ = τ ≤ [m : A.m→ A.m], τ ≤ A.m, constrainl(H′′)

H′′; E ′′′;λ(x)e −→C H; ;ω | Π H′
= wrapl(H) ω′ = ω • A.m

H; E ; e′.m(e) −→C H
′
; E ′′;ω′ | Π,Π′,Π′′,Π

(TCallee)

l = E(self) H′ = wrapl(H) E ′ = {x 7→ ω • A.m}

H′; E ′; e −→C H′′; E ′′;ω | Π τ = type(ω) Π
′
= τ ≤ A.m, constrainl(H)

H; E ;λ(x)e −→C H′′; E ′′;ω | Π,Π
′

Figure 3.3: Training semantics
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introduced in the caller part of Figure 2.1. First, the type of the receiver ω′ is

constrained to be a subtype of [m : A.m → A.m], and the type of the argument ω

is constrained to be a subtype of A.m, the argument type of the callee. (TCallee)

is then applied to evaluate the method body.

(TCallee) evaluates the body e′′ with argument x mapped to ω •A.m, which

is the argument wrapped with method argument’s type variable. The type of the

result ω′′ is constrained to be a subtype of the result type A.m and returned as it

is. Now (TCaller) finishes the job by wrapping the return value from the callee.

In addition, (TCaller) and (TCallee) involve wrapping and generation of

subtyping constraints for fields of the caller and the callee objects. LetH(l) = A〈F〉.

We define

• wrapl(H) = H{l 7→ A〈{@f 7→ ω • A.@f | @f 7→ ω ∈ F}〉}

• constrainl(H) = {type(ω) ≤ A.@f | @f 7→ ω ∈ F}

As discussed in Chapter 2, we constrain the fields of the caller object and wrap

the fields of the callee object before the method call, and symmetrically, constrain

the fields of the callee object and wrap the fields of the caller object after the method

call.

Finally, the following rule describes training with programs.

(Train)

C = classmap(c?) {}, {}, e −→C ; ; | Π

c? � e ↑ solve(subtyping(Π))
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We define:

classmap(c?) = {A 7→ methodmap(d?) | class A = d? ∈ c?}

methodmap(d?) = {m 7→ λ(x)e | def m(x) = e ∈ d?}

We assume that solve(subtyping(Π)) externally solves the subtyping constraints

in Π to obtain a mapping T from type variables to concrete types (possibly involving

> and ⊥, and unions and intersections of nominal types and structural types). We

discuss the solving algorithm we use in our implementation in Chapter 4; however,

our technique is agnostic to the choice of algorithm or even to the language of solved

types.

Finally, as mentioned earlier, the formal proof for the soundness theorem can

found in [4].
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Chapter 4

Implementation

In this section we describe Rubydust, an implementation of our dynamic type

inference algorithm for Ruby. Figure 4.1 shows the basic architecture of Rubydust,

which comprises roughly 4,300 lines of code, and is written purely in Ruby. The

shaded boxes indicate the different modules in Rubydust. We used Rex and Racc to

generate the lexer and the parser, respectively, that scan and parse the type anno-

tations. We exploit Ruby’s powerful dynamic introspection features to implement

Rubydust as a library, rather than requiring modifications to the interpreter. Since

this does not require installations of many other modules than Rubydust itself and

the Ruby Graph Library (RGL), we believe this tool is easy to setup and use for

most Ruby programmers.

4.1 Rubydust Architecture

In this section, we discuss details of the instrumentation process, constraint

resolution, and some limitations of our implementation.
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Annotated Code Unannotated Code

Instrumentation

Ruby Interpreter

Program Output

Rubydust Output

Solver

Type Constraints

Annotation Parser

Figure 4.1: Rubydust architecture
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As shown in Figure 4.1, Rubydust loads annotated code and unannotated

code into memory. Because the Ruby core library is mostly written in C, we pro-

vide stubs for libary classes in a file named base types . rb, which contains type an-

notations for the classes. This is a variation of the same file released with Dia-

mondback Ruby (DRuby) and DRails [12, 13, 11, 3]. The original base types . rb was

converted to Rubydust format to support dynamic parsing of annotations. Cur-

rently, base types . rb consists of about 800 lines of Ruby code and includes most

of the classes in the core library, though not low-level such as IO, Thread, Exception,

Proc, and Class to avoid passing wrapped values into their methods which may cause

serious problems at runtime.

In addition to base types . rb file, the user can always add more annotations as

necessary. Rubydust’s output includes annotations describing the inferred types, so

one could use Rubydust to create annotations for one module and then use them

when analyzing another module. As the annotated files are loaded, Rubydust parses

individual annotations and stores the type information in class objects so that they

can be retrieved later for inferring types.

Once the files are loaded, Rubydust dynamically patches them, so they gen-

erate constraints as according to the rules in Chapter 3. The instrumented code

then is run via a set of test cases, which are not modified by Rubydust. Ruby

executes the program and produces the typical output of the program as well as

type constraints gathered during the run. The type constraints are then fed into the

constraint solver, from which Rubydust generates type signatures or error messages.
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4.1.1 Type Annotations

Here we describe our type annotation language as well as how annotations are

parsed and stored in more detail. As introduced in [12], we support basic types

such as nominal types and method types as well as several Ruby type idioms, which

include intersection types, optional argument and variable length types, union types,

the self type, structural types, and parametric polymorphism. We do not currently

support first class methods and tuple types but plan to add these features in a

future version of Rubydust. Furthermore, we support only types for method type

signatures and class type parameter declarations in the current implementation.

Future versions of Rubydust will support type annotations for fields, constants, and

global variables.

Figure 4.2 shows the examples of types supported by Rubydust, taken from

base types . rb file. Each typesig method call has a single annotation entry in a string,

which is parsed dynamically by Rubydust’s type annotation parser when the method

is invoked. The parser then stores the type information in the class object which is

self at the call site. Note that in Ruby, class definitions are executed to create the

class, and hence methods such as typesig can be invoked as classes are defined. In

Ruby, everything is an object, and all objects are class instances. For example, line

73 declares a type for the method +, which concatenates a String argument with

the receiver and returns a new String .

Rubydust supports union types, which allow programmers to mix different

classes that share common methods. For example, String ’s include? method deter-
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72 class String

73 typesig (”’+’ : ( String ) → String”)

74 typesig (”include? : Numeric or String → Boolean”)

75 typesig (” ’[]’ : Numeric → Numeric”)

76 typesig (” ’[]’ : Range or Regexp or String → String”)

77 typesig (” ’[]’ : (Numeric or Regexp, Numeric) → String”)

78 typesig (”chomp: (?String) → String”)

79 typesig (”delete : ( String ,∗String ) → String”)

80 ...

81 end
82

83 class Regexp

84 typesig (”’=∼’ : [to str : () → String] → Numeric”)

85 ...

86 end
87

88 typesig (” class Array<t>”)

89 class Array

90 typesig (” ’[]’ : Range → Array<t>”)

91 typesig (” ’[]’ : (Fixnum, Fixnum) → Array<t> ”)

92 typesig (” ’[]’ : Fixnum → t ”)

93 ...

94 typesig (”assoc<self ,u> ; self ≤ Array<Array<u>> : u → Array<u>”)

95 end

Figure 4.2: Selected type annotations from base types . rb

34



mines whether or not the given String or character (Numeric) is contained in the

receiver, and the result is a Boolean. This type is shown in line 74.

Dually to union types, Rubydust also supports intersection types, which are

used to describe overloaded methods, i.e., methods that have different behaviors

depending on the number and types of their arguments. String ’s [] method, which

is the index reader, has three possible cases. First, one can look up a character at

a position n, in which case, the method takes a Numeric (the index n) and returns a

Numeric (a corresponding character at the position n), as shown in line 75. Second,

one can find a substring (String) within a range of indices (Range), a regular expres-

sion (Regexp), or another String (line 76). There are two other cases: 1) String ’s []

method takes a Regexp and a group number (Numeric) and returns the substring of

the matched group. 2) Or, String ’s [] method takes takes two Numerics to indicate

the beginning and the end of a range and returns a new String . Both of these cases

can be represented in one type, as shown in line 77.

Rubydust also supports optional argument types and variable length argument

types, which are actually shorthands for intersection types with different number of

arguments. Line 78 gives a type for the chomp method, which removes the substring

from the end of the string to the separator. The separator, by default, is set to a

newline, but can be specified by the user. Thus, we use optional argument type for

the separator type. Similarly, line 79 shows that delete method takes an indefinite

number (≥ 1) of arguments, whose matches are deleted from the receiver.

Structural types [m0 : t0, ...,mn : tn] describe an object having at least the

methods mi with types ti. As shown in line 84, Regexp’s to str method takes an
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object that has at least one method named to str , which returns a String . Structural

types are important in Ruby because they essentially depict objects’ requirements

in a method more precisely than nominal types.

Lastly, Rubydust type system includes parametric polymorphism and the self

type We support both class level and method level parametric polymorphism. The

former can be declared by using a declaration style similar to Java, as shown in line

88. Here, the type parameter t is bound at the top of the class and can be used

anywhere inside that class. For instance, index reader method [] of Array, as shown

in lines 90-91, uses the type parameter t in the possible return types.

Methods may also be parametrically polymorphic in which the type variable

is bound at the method level. The self type is actually an instance of method

polymorphism. It is bound at the method level and can be used anywhere in that

method’s type. Furthermore, we support adding constraints on the type parameters

using the standard subyping relation. For example, Array’s rassoc method, which

searches for subarrays using the key u in an Array of Arrays of type u, i.e. self should

be of that type (line 94).

4.1.2 Parsing Type Annotations

As discussed earlier, Rubydust parses type annotations as typesig methods are

invoked at runtime. The actual method annotations for classes are stored in the class

object, and can thus be retrieved from the patched class by inspecting self . class.

Rubydust includes support for polymorphic class and method types. If a class
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96 class BlankSlate

97 # this removes all methods

98 instance methods.each {|m| undef method m }
99 end

100

101 module Proxyness

102 attr accessor : obj

103 attr reader : tvar

104 attr reader : owner

105 def is proxy ?(); return true end
106 def object (); @ obj . respond to ?(: is proxy ?) ? @ obj . object : @ obj end
107 ...

108 end
109

110 class ProxyObject < BlankSlate

111 include Proxyness # extends the above module

112 def method missing(mname, ∗args, &blk)

113 @ obj. instance variable set (: @ dispatcher , self ) # sets the dispatcher field of @ obj to self

114 retval = @ obj.send(:”#{mname}”, ∗args, &blk)

115 return retval

116 end
117 def self . create (obj , tvar , owner)

118 ...

119 end
120 end

Figure 4.3: ProxyObject class
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has a polymorphic type signature, e.g., Array<t>, we instantiate its type parameters

with fresh type variables whenever a method is invoked on an instance for the first

time. We cannot instantiate the type parameters at the object instantiation site

because 1) we cannot capture the creation of an array or hash literal (discussed

next), and 2) we do not currently patch Object’s new class method because almost

every object in Ruby is created via this class method. To illustrate how we handle

array or hash literals, consider the following code:

121 a = [1, 2]

122 a.each {|e | puts e}
123 a << 3

The array literal at line 121 involves no method calls, and therefore, cannot

be captured at runtime. Instead, we generate type constraints for the elements by

iterating all the elements at each method call since it is the first method call on

the array object. Then, Rubydust sets a flag that indicates the elements have been

inspected so that subsequent method calls will generate constraints only for the

elements directly affected by the calls. For instance, � method cosntrain the newly

added element 3 to be a subtype of Numeric.

We store the instantiated parameters in the instance, so that we can substitute

them in when we look up a method signature. If there are constraints on the type

parameters in the annotation, they are also instantiated at this time and stored in the

instance. For methods that are polymorphic, we instantiate their type parameters

with fresh type variables at the call.
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4.1.3 Instrumenting Unannotated Classes

This section describes in more detail how we dynamically instrument unan-

notated classes and how type constraints are generated by the instrumented code.

Figure 4.3 shows a code snippet of the proxy class. The ProxyObject class is defined

as a subclass of the BlankSlate class, an empty class where all methods are completely

removed.1 (Notice that it is not an Object in Ruby’s stardard sense because it no

longer has the minimum set of methods required as an Object.) Some internal oper-

ations for proxy are defined in Proxyness module which is included (or extended) by

ProxyObject class. Proxyness is a separate module to make potential future extensions

easier. These operations include a means to recognize itself as a ProxyObject (line

105) and to retrieve the actual object that is wrapped by the current proxy (line

106).

As shown in lines 102, 103, and 104, wrapped objects v : τ are implemented as

instances of a class ProxyObject with three fields: the object that is being wrapped, its

type, and the owner of the ProxyObject, which is the instance that was active when

the ProxyObject was created. When a method is invoked on a Proxy, the object’s

method missing method will be called (shown in line 112); in Ruby, if such a method

is defined, it receives calls to any undefined methods. Here method missing does a

little work to memoize the current proxy as the dispatcher for the object (explained

more below) and then redirects the call to the wrapped object. The former is

explained further later.

1http://snippets.dzone.com/posts/show/1873
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124 def self .add method missing(klass) # self .x means x is a class method

125 ...

126 klass . class eval (:define method, ” method missing”) do |mname, blk, ∗args|
127 proxy = self . instance variable get (: @ dispatcher )

128 # constrain caller ’ s fields ( i .e ., fields of proxy.owner)

129 # constrain and wrap callee ’ s arguments

130 # wrap callee ’ s fields

131 ret = send(:” orig #{mname}”, ∗proxy args, &blk) # dispatches the orig. method

132 # constrain caller ’ s fields

133 # constrain and wrap callee ’ s return

134 # wrap caller ’ s fields

135 return ret # returning the wrapped return value

136 end
137 end
138

139 def self . patch class ( klass )

140 ...

141 add method missing(klass)

142 ...

143 klass .methods.each { |mname|
144 klass .send(: class eval , <<−EOS

145 alias :” orig #{mname}” :”#{mname}”
146 def #{mname}(∗args, &blk)

147 ret = method missing(:”#{mname}”, blk, ∗args)

148 return ret

149 end
150 EOS

151 ) }
152 end

Figure 4.4: Code snippet of uannotated class instrumentation
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To implement the wrapping (with ProxyObject) and constraint generation op-

erations, we use Ruby introspection to patch the unannotated class. In particular,

we rename the current methods of each unannotated class and then add a custom

method missing (named method missing to avoid name clashes) to perform work be-

fore and after delegating to the now-renamed method. We need to patch classes to

bootstrap our algorithm, as the program code we’re tracking creates ordinary Ruby

objects whose method invocations we need to intercept.

Figure 4.4 shows part of the code for patching a class. At line 141, we patch

the class klass by calling add method missing method, which is defined in line 124. We

used define method to dynamically define methods, as shown in line 126. Note that it

is possible to use a eval or one of its variants for defining the method method missing.

However, it is tricky to obtain the current method name and to write code that is

“debuggable.” (Ruby does not provide a useful debugging information when such

dynamic features are involved.) Fortunately, Ruby includes a feature for defining a

method dynamically without losing debugging information via define method. Since

it is a private method, we had to use send, which allows one to bypass the access

control set by the programmer. Notice that, because Ruby prohibits passing another

block to a block, we converted any block argument into an explicit argument and

passed it as the second argument blk to method missing method, as shown in line

126 and 147. (The first argument mname is a string and contains the name of the

original method being called.)

During the invocation of method missing, we perform all of the constraint

generation and wrapping on entry to and exit from a original method, according to
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Figure 2.1. This is shown lines 128-134. Note that we perform both the caller and

the callee’s actions in the callee’s method missing. This is convenient, because it

allows us rely on Ruby’s built-in dynamic dispatch to find the right callee method,

whereas if we did work in the caller, we would need to reimplement Ruby’s dynamic

dispatch algorithm. Moreover, it means we can naturally handle dispatches via send,

which performs reflective method invocation.

Since we are working in the callee, we need to do a little extra work to access

the caller object. Inside of each patched class, we add an extra field dispatcher that

points to the ProxyObject that most recently dispatched a call to this object; we

set the field whenever a ProxyObject is used to invoke a wrapped-object method, as

previously shown in line 113 of Figure 4.3. Also recall that each ProxyObject has an

owner field, which was set to self at the time the proxy was created (line 117 of

Figure 4.3). Since we wrap arguments and fields whenever we enter a method, this

means all ProxyObjects accessible from the current method are always owned by self .

Thus, on entry to a callee, we can find the caller object by immediately getting its

dispatching ProxyObject, and then finding the owner of that ProxyObject (line 127).

Finally, notice that the above discussion suggests we sometimes need to access

the fields of an object from a different object. This is disallowed when trying to

read and write fields normally, but there is an escape hatch: we can access field

@f of o from anywhere by calling o. instance variable get (:@f). In our formalism, we

assumed fields were only accessible from within the enclosing object; thus, we may

be unsound for Ruby code that uses similar features to break the normal access

rules for fields (as we do!).
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4.1.4 Instrumenting Annotated Classes

Similarly to unannotated classes, we patch annotated classes to intercept calls

to them, and we perform constraint generation and wrapping for the caller side only,

as in Figure 2.1.

We had to specially patch Array and Hash. For example, Array’s map! replaces

its contents with results of a mapping function that is passed to the method as a

block argument. This means that the existing type variables no longer correspond

to the values in that Array. Therefore, we replace the existing type variable with

a fresh variable. In fact, it is typical that any method whose name ends with !

has a potential to change its type since it is Ruby’s convention to name destructive

methods with !. Currently, we manually inserted the code that replaces the type

variable for such methods, but it is possible to detect such methods automatically,

which we may implement in future.

We support intersection types for methods, as we introduced in Section 4.1.1.

If we invoke o.m(x), and o.m has signature (A→ B)∩(C → D), we use the run-time

type of x to determine which branch of the intersection applies. (Recall we trust type

annotations, so if the branches overlap, then either branch is valid if both apply.)

Choosing the right “arm” for an intersection type is quite interesting. We

basically look up the concrete types of the actual arguments and compare them

to the formal argument types using Ruby’s standard subclassing relation. In the

case of polymorphic types, we compare the types after temporarily instantiating

the type parameters with bound variables. Notice that we do not make use of the
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instantiated types for generating type constraints until we are sure that it is the

chosen type. Structural types are the most interesting because they may involve

nested types which seem to complicate resolving interesction types at first glance.

However, we have found that, in every case we looked at, no two structural types

should overlap and it is very unnatural to write a Ruby program that has a com-

plicated intersection type in which structural types have same method names but

with different types. Thus, we just rely on respond to? check on the arguments to

see if they have corresonding method names.

4.1.5 Runtime

At runtime, both annotated and unannotated code are instrumented and ex-

ecuted by Rubydust. This patched code perform operations that are annotated (in

base types . rb) which may lead to cycles in the process. To eliminate the infinite

recursion, we inserted switches in the instrumentation so that operations from the

patched code never come back into itself. To avoid too much overhead, we unpatch

all instrumented code prior to constraint solving so it uses native Ruby code for

basic operations which are much faster than their patched versions.

4.1.6 Constraint Solving and Type Reconstruction

We train a program by running it under a test suite and generating subtyping

constraints, which are stored in globals at run time. At the end, we check the

consistency of the subtyping constraints and solve them to reconstruct types for
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unannotated methods. The type language for reconstruction is simple, as outlined

in Chapter 3; we do not try to reconstruct polymorphic or intersection types for

methods. Consequently, the algorithms we use are fairly standard.

We begin by computing the transitive closure of the subtyping constraints

to put them in a solved form. Then, we can essentially read off the solution for

each type variable. First, we set method return type variables to be the union of

their (immediate) lower bounds. Then, we set method argument type variables to

be the intersection of their (immediate) upper bounds. These steps correspond to

finding the least type for each method. Then we set the remaining type variables

to be either the union of their lower-bounds or intersection of their upper-bounds,

depending on which is available. Finally, we check that our solved constraints, which

type variables replaced by their solutions, are consistent.

For example, let us consider the bar method in Figure 2.2. First, Rubydust

finds a solution for the return type from the constraint, Numeric ≤ αbar ret, from

which we obtain Numeric. Next, Rubydust solves the argument type x. Although

there are two constraints involving αx, only the constraint, αx ≤ [qux: () → ()], has

the upper bound, from which we find the solution for the arugment x. Assuming that

all constraints are satisfiable, the solution for the method bar is ([qux: () → ()]) → Numeric.

Current Rubydust uses the Ruby Graph Library (RGL)2 for computing the

transitive closure. However, we realize that this is not the best solution for im-

plementing a constraint solver because we lose contextual information as types are

merged. Consequently, our error messages, in the presence of type inconsistencies,

2http://rgl.rubyforge.org
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contain almost no debugging information. Improving this issue remains future work.

4.1.7 Limitations

There are several limitations of our current implementation, beyond what has

been mentioned so far. First, for practicality, we allow calls to methods whose classes

are neither marked as annotated or unannotated; we do nothing special to support

this case, and it is up to the programmer to ensure the resulting program behavior

will be reasonable. Second, we do not wrap false and nil , because those two values

are treated as false by conditionals, whereas wrapped versions of them would be

true. Thus we may miss some typing constraints. However, this is unlikely to be a

problem, because the methods of false and nil are rarely invoked. For consistency,

we also do not wrap true as its methods are rarely invoked. Third, for soundness,

we would need to treat global variables similarly to instance and class fields, we but

do not currently support type annotations for them.

Fourth, Ruby includes looping constructs, and hence there are potentially

an infinite number of paths through a method body with a loop. However, we

manually inspected the code in our benchmarks (Chapter 5) and found that types

are in fact invariant across loops. Thus, we can find sound types by exploring all

paths through the loops just once. Note that looping constructs in Ruby actually

take a code block—essentially a first-class method—as the loop body. If we could

assign types to such blocks, we could eliminate the potential unsoundness at loops.

However, Ruby does not currently provide any mechanism to intercept code block
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creation or to patch the behavior of a code block.

Finally, as we mentioned earlier, we do not support annotations on some low-

level classes. Also, if methods are defined during the execution of a test case,

Rubydust will not currently instrument them. We expect to add handling of these

cases in the future.

4.2 Rubydust Framework

To run Rubydust, the user executes the command “rubydust test,” where test is

a file that includes a suite of tests for the program of interest. Currently, Rubydust

only supports the standard Ruby unit test framework in a limited fashion because

it involes a complicated code base which tends to cause conflicts with our runtime

instrumentation of essential components in the core library. To avoid this problem,

we provide our own testing framework which includes a minimum set of testing

capabilities without introducing conflicts with the runtime instrumentation. Full

support for the standard Ruby unit test framework remains as future work.

4.2.1 Inputs

Using the built-in testing framework is straightforward, as illustrated with the

example in Figure 4.5. For classes with annotated types, the programmer adds a

call to Rubydust’s use types method (shown in line 154). For each class whose types

should be inferred, the programmer adds a call to Rubydust’s infer types method

during the class definition (line 160).
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153 class A

154 use types () # A is an annotated class

155 typesig (”’+’ : (Numeric) → Numeric”)

156 def +(x); x ∗ 2 end
157 end
158

159 class B

160 infer types () # B is an unannotated class

161 def foo(x) x. to s end
162 def bar(y) y + 3 end
163 end
164

165 class TC

166 include Rubydust::RuntimeSystem::TestCase

167 def test 1 ()

168 b = B.new; b.foo(”S”); b.bar(A.new)

169 end
170 ...

171 end

Figure 4.5: Using Rubydust

172 class B

173 typesig (”foo : [ to s : () → String] → String”)

174 typesig (”bar : [+ : (Numeric) → Numeric] → Numeric”)

175 end

Figure 4.6: Type signatures generated by Rubydust

Rubydust’s testing framework uses reflection to keep a record of test cases

and run them without manual patching of the test code. The only requirement is to

include Rubydust::RuntimeSystem::TestCase into the test classes instead of inheriting

Ruby’s Test :: Unit :: TestCase, as shown in line 166.
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176 class TC

177 include Rubydust::RuntimeSystem::TestCase

178 def test 1

179 d = D.new

180 d.bar (1); d.baz(); d.qux(); d. f ()

181 end
182 end

Figure 4.7: Test case for class D

4.2.2 Output

The output for Figure 4.5 is shown in Figure 4.6. The types Rubydust gener-

ates may include both structural types and nominal types. For example, foo takes

an object with a to s method, which itself returns a String , and returns a String .

Similarly, bar takes an object with a + method, which takes and returns a Numeric,

and returns a Numeric.

In case of inconsistent type constraints, Rubydust generates an error message.

For example, Figure 4.7 shows a possible test case for the class D from Figure 2.3.

Notice that the given order makes the test case to go through; yet the code is not

type safe if d. f is called before d.baz. Although the test case will finish without

any runtime error, Rubydust complains that there is a type inconsistency as shown

below.

183 [ERROR] subtyping failed: String !<: Numeric

This is because, by calling d.qux first, a String can be flown into the field @f

which is determined to be a Numeric from the training run. Our future work includes

improving the error messages to be more user friendly by remembering the context

in which the error has occured.
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Chapter 5

Experiments

We ran Rubydust on five small programs obtained from RubyForge. We used a

2.5Ghz dual core processor with 4GB of memory running Mac OS X (Snow Leopard).

Figure 5 tabulates our results. The column headers are defined at the bottom of

the figure. The table lists the programs and shows the program size in lines of code

(via SLOCcount), the number of test cases distributed with the benchmark, the

method coverage and line coverage from the test cases (line coverage computed by

rcov1), the number of manual changes made, and performance measures for each

benchmark program. The only manual changes were inserting calls to infer types .

Testing code was excluded when calculating the lines of code, number of methods,

and manual changes made. Rubydust found one type error, which we discuss below.

As none of the test suites ensures complete coverage, we manually inspected the

program code and confirmed that, for the methods that were covered, the inferred

type annotations are correct.

1http://eigenclass.org/hiki/rcov
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LOC TC MCov LCov(%) P(#) OT(s) RT(s) ST(s)

ministat-1.0.0 96 10 11 / 15 74.7 1 0.04 13.99 75.30
finitefield-0.1.0 103 9 12 / 12 98.0 1 0.00 2.48 0.87

Ascii85-1.0.0 105 7 2 / 2 95.2 1† 0.04 47.76 0.14
hebruby-2.0.2 178 19 20 / 26 80.8 1 0.04 27.20 29.59

StreetAddress-1.0.1 767 1 33 / 44 78.9 2 0.54 5.36 47.55

TC - test cases MCov - method coverage / total # of methods
LCov - line coverage P - manual edits

OT - original running time RT - Rubydust running time ST - constraint solving time

† Because the test suite was originally written in Spec, another Ruby testing framework
that we do not support at this time, we manually translated it to a typical Ruby test.

Figure 5.1: Results

5.1 Performance

We split Rubydust’s running time into the time to instrument and run the

instrumented program, and the time to solve the generated constraints. As we can

see, the overhead of running under Rubydust, even excluding solving time, is quite

high compared to running the original, uninstrumented program. Part of the reason

is that we have not optimized our implementation, and our heavy use of wrappers

likely impedes fast paths in the Ruby interpreter. For example, values of primitive

types, like numbers are not really implemented as objects, but we wrap them with

objects.

Another reason is that Rubydust currently wrap values and generate type

constraints during invocations of annotated methods. Notice that, since the methods

are annotated, there is no need for type inference within the calls except the blocks

which may contain code from their callers. Unforunately, this is unavoidable at this

point because we do not capture blocks, and therefore, cannot tell the tool to bypass
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the patched code and directly call the original code except for the block argument

whose bindings are at the caller. Our initial investigation tells us that this is a major

performance bottleneck.

Lastly, our handling of Array and Hash may slow down the performance dra-

matically. For example, every element in any newly created Array or Hash has to

be iterated at some point in its lifetime in order for their types to be considered.

Operations such as map or select introduces a new object out of the existing object;

and therefore, they may cause the slowdown the most. This can be improved using

dynamic lookup of type annotations and/or concrete types of the elements as these

operations take place. Nevertheless, we believe that some overhead is acceptable

because inference need not be performed every time the program is run.

The solving time is high, but that is likely because our solver is written in Ruby,

which is known to be slow. We expect this solving time would decrease dramatically

if we exported the constraints to a solver written in a different language.

5.2 Inferred Types

We now describe the benchmark programs and show some example inferred

type output by Rubydust. Basic notations are as follows. The bottom type ⊥ is

denoted by .! whereas the top type > is denoted by .? in our annotation language.

It is understood that, if a return type has the bottom type .! , it is always the case

that the corresponding method is not seen during the training run. (In fact, it

would not make sense to return a bottom type unless it never returns to the caller.)
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The top type .? usually indicates that we were unable to find any constraints on

the type. If an argument has the top type, it may indicate that the method is not

observed during the test run or anything is valid.

Some container classes such as Array may contain .? as the actual type argu-

ment. This occurs when Rubydust fails to find any constraints on the elements.

This happens frequently when an Array literal is used to create an instance and no

method is invoked on it. In future versions of Rubydust, we will enforce type con-

straint generation for such objects at method entries and exits which will eliminate

.? types unless the container is empty.

It is typical to obtain structural types for argument types and nominal types for

return types, at least in our experience with running Rubydust on the benchmark

programs as well as on small Ruby scripts. Since it is natural that methods are

invoked on the arguments, structural types are likely. However, return types depend

on the concrete type of the objects being returned. Even if the return value is one of

the arguments, because we generate a constraint for the argument (usually) involving

a concrete type, we end up with that type. We believe this is still viable for most

Ruby programmers who enjoy dynamic typing because structural types depict this

dynamic behavior precisely.

Ministat

Ministat generates simple statistical information on numerical data sets. The

complete types inferred by Rubydust are shown below:

53



1 class MiniStat :: Data;

2 typesig (”mode :() → Numeric”)

3 typesig (”mean : ([each : () → .?;size : () → Numeric;inject : (.?) → .?]) → Numeric”)

4 typesig (”harmonic mean :() → .!”) # no test case for this method

5 typesig (”variance :() → Numeric”)

6 typesig (” outliers :() → Array<.?>”)

7 typesig (”std dev :() → Numeric”)

8 typesig (” partition :(Numeric, [each : () → Array<Numeric>]) → Hash<.?,.?>”)

9 typesig (”median :

10 ([ sort ! : () → Array<Numeric>; size : () → Numeric;

11 ’[]’ : (Numeric) → Numeric; ’==’ : (Object) → Boolean]) → Numeric ”)

12 typesig (”q1 :() → Numeric”)

13 typesig (”iqr :() → Numeric”)

14 typesig (”geometric mean :() → .!”) # no test case for this method

15 typesig (”to s :() → .!”) # no test case for this method

16 typesig (” initialize :([ collect : () → Array<.?>]) → Boolean”)

17 typesig (”q3 :() → Numeric”)

18 typesig (”data :() → .!”) # no test case for this method

19 end

Out of 15 total methods, four methods were not given a type because there

were no test cases that covered them. Two of the 11 methods that are given types

have structural types for the arguments. For example, the median method takes an

object that has sort !, size , ==, and [] methods, and returns a Numeric. Thus, one

possible argument would be an Array of Numeric. However, this method could be

used with other arguments that have those four methods—indeed, because Ruby is

dynamically typed, programmers are rarely required to pass in objects of exactly

a particular type, as long as the passed-in objects have the right methods (this is

referred to as “duck typing” in the Ruby community).
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Finitefield

Finitefield, another mathematical library, provides basic operations on ele-

ments in a finite field. Rubydust successfully inferred types for all the methods,

thanks to the test suite of the program which trained all methods. The complete

result is given below.

1 class FiniteField ;

2 typesig (”reduce :(Numeric) → Numeric”)

3 typesig (”binary mul : ([’&’ : (Numeric) → Numeric; ’�’ : (Numeric) → Numeric;

4 ’==’ : (Object) → Boolean], Numeric) → Numeric ”)

5 typesig (”multiply :(Numeric, Numeric) → Numeric”)

6 typesig (”polynomial :() → Numeric”)

7 typesig (”multiplyWithoutReducing :(Numeric, Numeric) → Numeric”)

8 typesig (”divide : (Numeric,

9 [’>’ : (Numeric) → Boolean; ’�’ : (Numeric) → Numeric;

10 ’&’ : (Numeric) → Numeric; ’�’ : (Numeric) → Numeric;

11 ’==’ : (Object) → Boolean; ’ˆ’ : (Numeric) → Numeric]) →
12 Numeric ”)

13 typesig (” binary div :

14 ([’&’ : (Numeric) → Numeric; ’�’ : (Numeric) → Numeric;

15 ’==’ : (Object) → Boolean; ’ˆ’ : (Numeric) → Numeric],

16 [’�’ : (Numeric) → Numeric; ’�’ : (Numeric) → Numeric;

17 ’==’ : (Object) → Boolean]) → Array<.?> ”)

18 typesig (”subtract :([’ˆ’ : (Numeric) → Numeric], Numeric) → Numeric”)

19 typesig (” inverse :

20 ([’>’ : (Numeric) → Boolean; ’�’ : (Numeric) → Numeric;

21 ’&’ : (Numeric) → Numeric; ’�’ : (Numeric) → Numeric;

22 ’==’ : (Object) → Boolean; ’ˆ’ : (Numeric) → Numeric]) →
23 Numeric ”)

24 typesig (” initialize :

25 (Numeric,

26 [’>’ : (Numeric) → Boolean] and [’�’ : (Numeric) → Numeric] and

27 [’�’ : (Numeric) → Numeric] and [’&’ : (Numeric) → Numeric] and

28 Object and [’ˆ’ : (Numeric) → Numeric]) → Numeric ”)

29 typesig (”degree :

30 ([’�’ : (Numeric) → Numeric;’==’ : (Object) → Boolean]) →
31 Numeric ”)

32 typesig (”add :([’ˆ’ : (Numeric) → Numeric], Numeric) → Numeric”)

33 end

55



In this benchmark program, all methods are covered by the test cases. Several

methods have structural types for the arguments, all of which resemble Numeric. For

example, the inverse method requires an object that has &, >,�,�, ==, and ˆ. As

above, we can see exactly which methods are required of the argument.

Notice that one drawback of retaining structural types, as opposed to simpli-

fying them all to nominal types, may arise if Rubydust cannot simplify two types in

a user-friendly way. For example, the initialize method takes a Numeric argument

and another argument that resembles a Numeric and a Object. Of course, this type

may be thought of as Numeric, but we cannot definitely decide so because it is not

required to be a Numeric. It is, however, required to be an Object and have the

five methods. It is possible to ignore Object since most objects in Ruby are Object

although it is not always the case (as with BlankSlate).

Although many structural types are similar, most arguments’ types are not

precisely identical. This is interesting because all have slightly different requirements

as the arguments.

Ascii85

Ascii85 encodes and decodes data following Adobe’s binary-to-text Ascii85

format. There are only two methods in this program, both of which are covered by

the three test cases. Rubydust issues an error during the constraint solving, com-

plaining that Boolean is not a subtype of [ to i : () → Numeric]. The offending parts

of the code are shown below.
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1 module Ascii85

2 def self .encode(str , wrap lines =80)

3 ... if (! wrap lines ) then ... return end
4 ... wrap lines . to i

5 end ...

6 end

The author of the library uses wrap lines as an optional argument, with a

default value of 80. In one test case, the author passes in false , hence wrap lines may

be a Boolean. But as Boolean does not have a to i method, invoking wrap lines . to i

is a type error. For example, passing true as the second argument will cause the

program to crash. It is unclear whether the author intends to allow true as a second

argument, but clearly wrap lines can potentially take an arbitrary non-integer, since

its to i method is invoked (which would not be necessary for an integer).

Hebruby

Hebruby is program that converts Hebrew dates to Julian dates and vice versa.

The complete type annotations obtained by Rubydust are shown below.

1 class Hebruby::HebrewDate;

2 typesig (”hy :() → .!”)

3 typesig (”day :() → Numeric”)

4 typesig (”heb month name :() → String”)

5 typesig (” convert from julian :() → Numeric”)

6 typesig (”month :() → Numeric”)

7 typesig (”convert from hebrew :() → Numeric”)

8 typesig (”hd= :(.?) → .!”)

9 typesig (”year :() → Numeric”)

10 typesig (”jd :() → Numeric”)

11 typesig (”month name :() → String”)

12 typesig (”hm= :(.?) → .!”)

13 typesig (”hd :() → .!”)
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14 typesig (” initialize :(.?) → Numeric”)

15 typesig (”hy= :(.?) → .!”)

16 typesig (”hm :() → .!”)

17 typesig (”heb date :() → String”)

18 typesig (”heb year name :() → String”)

19 typesig (”heb day name :() → String”)

20 end
21

22 class << Hebruby::HebrewDate; # meta class of Hebruby::HebrewDate

23 typesig (”month days :

24 ([’+’ : (Numeric) → Numeric; ’−’ : (Numeric) → Numeric;

25 ’∗’ : (Numeric) → Numeric], [’==’ : (Object) → Boolean]) → Numeric ”)

26 typesig (”heb number :

27 ([’/’ : (Numeric) → Numeric; ’>’ : (Numeric) → Boolean;

28 ’%’ : (Numeric) → Numeric; ’<’ : (Numeric) → Boolean;

29 ’==’ : (Object) → Boolean]) → String ”)

30 typesig (” days in prior years :([’−’ : (Numeric) → Numeric]) → Numeric”)

31 typesig (”year months :([’∗’ : (Numeric) → Numeric]) → Numeric”)

32 typesig (”to jd :

33 ([’+’ : (Numeric) → Numeric; ’−’ : (Numeric) → Numeric;

34 ’∗’ : (Numeric) → Numeric], Numeric,

35 [’+’ : (Numeric) → Numeric; coerce : (Numeric) → Array<Numeric>]) →
36 Numeric ”)

37 typesig (”year days :

38 ([’+’ : (Numeric) → Numeric; ’−’ : (Numeric) → Numeric;

39 ’∗’ : (Numeric) → Numeric]) → Numeric ”)

40 typesig (”jd to hebrew :

41 ([’+’ : (Numeric) → Numeric; ’>’ : (Numeric) → Boolean;

42 coerce : (Numeric) → Array<Numeric>; ’−’ : (Numeric) → Numeric;

43 ’>=’ : (Numeric) → Boolean]) → Array<.?> ”)

44 typesig (”leap? :([’∗’ : (Numeric) → Numeric]) → Boolean”)

45 end

Hebruby::HebrewDate class has 12 out of 18 methods that are typed (covered

by test cases), all of which have concrete types only. This is reasonable because

the class represents a Hebrew date and most of the methods are access readers or

writers for the subcomponents.

Its metaclass has eight methods (the former’s class methods), all of which

have arguments of structural types. For example, the leap method only requires an
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a single method, ∗, which returns a Numeric. This is the only requirement because

subsequent operations are on the return value of ∗, rather than on the original

method argument.

StreetAddress

Finally, StreetAddress is a tool that normalizes U.S. street address into dif-

ferent subcomponents. The complete type annotations generated by Rubydust are

listed below.

1 class << StreetAddress::US; # meta class of StreetAddress :: US

2 typesig (”parse address :( String ) → StreetAddress::US::Address”)

3 typesig (”parse :( String ) → StreetAddress::US::Address”)

4 typesig (” fips state :() → .!”)

5 typesig (” normalize state : ([ length : () → Numeric;upcase : () → String]) → String”)

6 typesig (”normalize address : (StreetAddress :: US::Address)

7 → StreetAddress::US::Address ”)

8 typesig (” normalize street type :

9 ([ capitalize : () → String; eql? : (Object) → Boolean;

10 downcase! : () → String; hash : () → Numeric]) → String ”)

11 typesig (” normalize directional :

12 ([ length : () → Numeric;upcase : () → String]) → String ”)

13 typesig (” parse intersection :( String ) → StreetAddress::US::Address”)

14 typesig (”state name :() → .!”)

15 end
16

17 class StreetAddress :: US::Address;

18 typesig (” state fips :() → .!”)

19 typesig (” prefix = :(String ) → String”)

20 typesig (” prefix2 = :(.?) → .!”)

21 typesig (” city :() → String”)

22 typesig (” street type2 :() → String”)

23 typesig (” street = :(String ) → String”)

24 typesig (”postal code :() → String”)

25 typesig (” suffix2 = :(.?) → .!”)

26 typesig (” prefix2 :() → .!”)

27 typesig (” prefix :() → String”)

28 typesig (” postal code ext = :(.?) → .!”)
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29 typesig (” street type = :(String ) → String”)

30 typesig (” street :() → String”)

31 typesig (” suffix2 :() → .!”)

32 typesig (” street2 = :(String ) → String”)

33 typesig (”state= :(String ) → String”)

34 typesig (” postal code ext :() → .!”)

35 typesig (”unit= :(String ) → String”)

36 typesig (” street type :() → String”)

37 typesig (” suffix = :(String ) → String”)

38 typesig (” street2 :() → String”)

39 typesig (”state name :() → .!”)

40 typesig (”state :() → String”)

41 typesig (” intersection ? :() → Boolean”)

42 typesig (” unit prefix = :(String ) → String”)

43 typesig (”unit :() → String”)

44 typesig (” suffix :() → String”)

45 typesig (”number= :(String) → String”)

46 typesig (” unit prefix :() → String”)

47 typesig (”to s :() → .!”)

48 typesig (” initialize :

49 ([ keys : () → Array<Symbol>;

50 ’[]’ : (.?) →
51 Object and [ capitalize : () → String; length : () → Numeric;

52 downcase! : () → String; eql? : (Object) → Boolean;

53 capitalize ! : () → String; hash : () → Numeric;

54 upcase : () → String; ’==’ : (Object) → Boolean;

55 gsub! : (Regexp or String ) → String]

56 ]) → Array<Symbol>

57 ”)

58 typesig (” city = :(String ) → String”)

59 typesig (” street type2 = :(String ) → String”)

60 typesig (”postal code= :(String ) → String”)

61 typesig (”number :() → String”)

62 end

Out of 44 methods, 33 methods are covered by the test suite and are given the

type annotations. It is interesting that many class methods in StreetAddress :: US

return an instance of StreetAddress :: US::Address class. This is one advantage of

return types resolving into nominal types because, otherwise, it would list struc-

tural types that we are currently trying to infer. Notice that most methods in
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StreetAddress :: US::Address have concrete types (mostly String) in their types because,

as with the Hebruby::HebrewDate class in Hebruby, this class represents a US address

and most of the methods access readers and writers for the address’ subelements.

It is, therefore, reasonable that they take or return Strings.
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Chapter 6

Future Work

In this section we discuss other features that are currently not supported by

Rubydust, but could improve the precision and performance of the tool. We also dis-

cuss additional experiments that could be carried out to measure the tool’s precision

and performance.

6.1 Other Features

We believe that there are other features that are useful (but not essential to

our results) and reasonable to implement and incorporate into Rubydust.

6.1.1 Handling Blocks

As discussed earlier, we do not infer types for blocks because Ruby does not

provide a straightforward mechanism to capture their arguments or return values.

Our experience showed, however, that the types inferred are sound for the bench-

mark programs even though not handling blocks correctly may potentially be un-
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sound. Regardless, it is desirable to infer types for blocks for subsequent analysis

such as type checking and for documentation purposes, as well. Here we describe

two possible solutions to handling blocks in Rubydust.

In Ruby, a block is passed in as an additional argument that can be either

implicitly or explicitly declared in a method definition. A block can be invoked by

a yield construct inside the callee’s body or by invoking the call method of a Block

object, to which Ruby converts the explicitly declared block argument. Unfortu-

nately, we cannot intercept yield calls because it is not a method call, but rather

is a language construct. One way to solve this issue is to syntactically replace all

occurrences of yield with a method call. For example,

1 def foo(∗args , &blk)

2 ...

3 yield
4 ...

5 end

would be transformed into the following:

1 def foo(∗args , &blk)

2 ...

3 yield (∗args) # it is invoking blk with the arguments, args .

4 ...

5 end

Note that yield does not need explicit arguments for itself, in which case it

takes the arguments from the callee (which is foo). Therefore, this must be taken

into account when transforming the code, as shown above. Once the transformation

is made, we can treat yield as a typical method call and collect type information
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for the arguments and the return as usual. The drawback of this solution is that the

transformed code must be written to disk or memory and loaded back to memory

for an execution.

Another solution for the yield construct is to capture blocks at the callee’s

entry and exit. That is, instead of capturing the arguments and returns for the

block, we would provide an instrumented block at the callee’s entry. For example,

at line 1, blk is wrapped with an instrumented block that would generate constraints

for the arguments and the return and wrap them at the entry and exit, respectively.

Finally, we need to extend Rubydust to treat invocations of call specially for

capturing the actual call to the high-order function, which we believe we could do

by patching the Block, Proc, and Method classes.

6.1.2 Polymorphic Type Inference

Rubydust currently does not infer polymorphic or intersection types. Poly-

morphic type inference generally requires a more sophisticated algorithm and may

decrease the performance of the tool. However, polymorphic types are essential

part of Ruby types because they represent any container-like classes such as Set

that many Ruby programmers write. Therefore, this feature may be supported in

future.

Intersection types are similar to polymorphic types except that they are in-

duced by type case expressions. We believe that type case expressions can be cap-

tured in a limited fashion although not perfectly. By doing so, we may precisely
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observe different type cases and infer intersection types accordingly. Alternatively,

we can also introduce a construct that would indicate methods whose types are to be

inferred as intersection types. Then, we can treat each method call as a separate set

of constraints to solve, from which we gather different solutions into an intersection

type for that method.

6.1.3 Dynamic Type Checker

Currently, Rubydust does not provide type checking for annotated code. Ruby-

dust can find type errors after solving the type constraints, but as we saw earlier,

constraint generation and solving has significant overhead. In a future version of

Rubydust, we plan to include a type checker that compares the actual types of actual

arguments and return against those of the annotation at each method; therefore, we

may catch type errors as early as possible.

6.1.4 Capturing Dynamic Method Creation

In Ruby, it is quite useful to define methods at runtime using eval or define method,

as we did in our own code. Although Rubydust handles the top level evals, which

execute at class definition time, it does not handle methods that are created after

instrumentation. (Recall that Rubydust has a single point, prior to an entry point

to a test run, where it patches all methods at once.) Fortunately, in Ruby, it is

possible to establish a callback method for method creations and capture the newly

created methods. In a future version of Rubydust, we plan to exploit this feature
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and instrument freshly introduced methods as well.

6.2 Array and Hash

There are several potential candidates for optimizations. Foremost, Array and

Hash create overhead because, in order to generate type constraints for the type

variables, all the elements must be inspected. This is especially a problem when a

method call introduces another Array or Hash object from an existing one. This is

because all the elements in the new object have to be iterated over. Consider the

following code:

1 a = [...]

2 b = a. select {|e | e % 2 == 0}
3 ...

4 c = b.to ary

Because the result of the select method is a new Array, the elements of b must

be iterated through at some point in the program. Likewise, c is a newly introduced

Array whose elements will be iterated through at a future point. This obviously

causes unwanted overhead because now we have to scan three Arrays of the same

type. The overhead can be partially eliminated by utilizing the type annotations

for the select and to ary methods—i.e., they both return an Array of same type; and

thus, we need not iterate over their contents to find out their types. Notice that

this is a conservative approach because the elements in the new object are a subset

of elements in the existing object.
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6.3 Other Experiments

There are other experiments that we can perform in order to measure how

Rubydust can be used in practice or for other purposes aside from static typing.

6.3.1 Ruby on Rails

Ruby on Rails is a popular web application framework written in Ruby. We

have previously shown that Rails applications also suffer from typical Ruby type

errors in addition to the errors specific to Rails. We also showed that many of the

type errors can also be automatically detected if we transform the Rails code into

pure Ruby code and apply DRuby on that code [3]. Using Rubydust, we believe we

can do the same without parsing and transforming the code.

One of the difficulties with typing Rails programs is to not analyze the Rails

framework because it is too big and uses highly dynamic features that cannot be

analyzed easily. Rubydust already has this advantage because it will run, but bypass

the analysis of classes that are not of our interest. Unlike Ruby programs, however,

Rails frequently uses Hash to store structured information such as the sessions and

database table rows. Thus, Rubydust needs to be extended to support more fine-

grained typing for Hash, and possibly Tuple as well, to provide useful types to the

user.
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6.3.2 Fewer Test Cases

Although we used all supplied test cases in the benchmark programs, it is

possible to write fewer test cases that would cover the same or more paths in the

program. By doing this, we may show that Rubydust, in practice, often does not

need an exaustive number of paths in order to infer correct types.

6.3.3 Beyond Types

Lastly, we believe that Rubydust’s framework is not limited to the traditioanl

type systems. It is possible, for example, to allow values to be observed instead of

their types, to gather more precise information as in dependent type systems. We

imagine this could be a interesting future direction.
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Chapter 7

Related Work

There has been significant interest in the research community in bringing static

type systems to dynamic languages. One recent focus area has been developing ways

to mix typed and untyped code, e.g., quasi-static typing [25], contracts applied to

types [28], gradual typing [24], and hybrid types [14]. In these systems, types are

supplied by the user. In contrast, our work focuses on type inference, which is

complementary: we could potentially use our dynamic type inference algorithm to

infer type annotations for future checking.

Several researchers have explored type inference for object-oriented dynamic

languages, including Ruby [12, 11, 3, 2, 17, 19], Python [8, 23, 5], and JavaScript

[6, 26], among others. As discussed in the introduction, these languages are complex

and have subtle semantics typically only defined by the language implementation.

This makes it a major challenge to implement and maintain a static type inference

system for these languages. We experienced this firsthand in our development of

DRuby, a static type inference system for Ruby [12, 11, 3].

There has also been work on type inference for Scheme [29], a dynamic lan-
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guage with a very compact syntax and semantics; however, these inference systems

do not support objects.

Dynamic type inference has been explored previously in several contexts. Rapi-

cault et al. describe a dynamic type inference algorithm for Smalltalk that takes

advantage of introspection features of that language [21]. However, their algorithm

is not very clearly explained, and seems to infer types for variables based on what

types are stored in that variable. In contrast, we infer more general types based

on usage constraints. For example, back in Figure 2.2, we discovered argument x

must have a qux method, whereas we believe the approach of Rapicault et al would

instead infer x has type B, which is correct, but less general.

Guo et al. dynamically infer abstract types in x86 binaries and Java byte-

code [15]. Artzi et al. propose a combined static and dynamic mutability inference

algorithm [7]. In both of these systems, the inferred types have no structure—in

the former system, abstract types are essentially tags that group together values

that are related by the program, and in the latter system, parameters and fields are

either mutable or not. In contrast, our goal is to infer more standard structural or

nominal types.

In addition to inferring types, dynamic analysis has been proposed to dis-

cover many other program properties. To cite three examples, Daikon discovers

likely program invariants from dynamic runs [10]; DySy uses symbolic execution to

infer Daikon-like invariants [9]; and Perracotta discovers temporal properties of pro-

grams [30]. In these systems, there is no notion of sufficient coverage to guarantee

sound results. In contrast, we showed we can soundly infer types by covering all
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paths through each method.

There are several dynamic inference systems that, while they have no theorems

about sufficient coverage, do use a subsequent checking phase to test whether the in-

ferred information is sound. Rose et al. [22] and Agarwal and Stoller [1] dynamically

infer types that protect against races. After inference the program is annotated and

passed to a type checker to verify that the types are sound. Similarly, Nimmer and

Ernst use Daikon to infer invariants that are then checked by ESC/Java [20]. We

could follow a similar approach to these systems and apply DRuby to our inferred

types (when coverage is known to be incomplete); we leave this as future work.

Finally, our soundness theorem [4] resembles soundness for Mix, a static anal-

ysis system that mixes type checking and symbolic execution [16]. In Mix, blocks

are introduced to designate which code should be analyzed with symbolic execution,

and which should be analyzed with type checking. At a high-level, we could model

our dynamic inference algorithm in Mix by analyzing method bodies with symbolic

execution, and method calls and field reads and writes with type checking. However,

there are several important differences: We use concrete test runs, where Mix uses

symbolic execution; we operate on an object-oriented language, where Mix applies

to a conventional imperative language; and we can model the heap more precisely

than Mix, because in our formal language, fields are only accessible from within

their containing objects.
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Chapter 8

Conclusion

In this thesis we presented a new technique, constraint-based dynamic type

inference, that infers types based on dynamic executions of the program. We have

developed Rubydust, an implementation of our technique for Ruby, and have applied

it to a number of small Ruby programs to find a real error and accurately infer

types in other cases. We expect that further engineering of our tool will improve

its performance. We also leave the inference of more advanced types, including

polymorphic and intersection types, to future work.
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