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 The objective of this study is to determine the feasibility of freeing a grounded ship 

by liquefying the surrounding soils. Ships either moored or traveling in near-shore waters 

and subjected to storm events, will experience waves energetic enough to direct the ship 

toward the shore. The ship can then become embedded in the soils (grounded) close to the 

shore. 

The study included two phases. Phase one was an experimental study where models 

of three ship sections representing standard classes of ships were constructed. These 

models were embedded in a saturated sand in an especially constructed tank. Pull tests were 

done initially to establish benchmark freeing forces and then air blasts were used to produce 

the dynamic force needed to liquefy the surrounding soils. The models subsequently 

regained buoyancy. The second phase of the study utilized the data obtained from the 

testing program to extrapolate those data to a response of an actual-size ship.  

 The conclusion showed that ships grounded can be freed by liquefaction of the 

surrounding soils. This novel technique of restoring a ship’s buoyancy and thus refloating 



 

it was demonstrated experimentally on model ships and analytically by determining the air 

pressure needed to free an actual ship in a grounding event. This new technique will have 

an economical value for the shipping industry and could provide an environmentally safe 

approach in dealing with grounded ships. 
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1. INTRODUCTION  

Grounded ships are sources of both environmental and navigational problems in the 

coastal zone. The severity of these problems depends on the time taken to re-float these 

ships. To reduce this time, a method to quantify the forces and reactions associated with 

the release of grounded ships could prevent adverse effects to the environment as well as 

to the naval community and the shipping industry. This dissertation presents the results of 

experimental studies of a novel technique designed to free grounded ships from pliable 

seabeds typically associated with near-shore locations. This technique referred to employs 

the use of blast–induced soil liquefaction. 

In many cases, a ship may have to be dismantled or “broken” down. This process 

often involves beach cleanup, spill containment and remediation, and hazmat disposal 

utilizing teams of workers and equipment over the ensuing months of an incident. Oil spills 

and washup can be devastating to wildlife and plant life with long-term effects. 

Results of the present study have several possible implications for the maritime 

industry as well as for Navy and Coast Guard ships. Salvage operations could be enhanced 

once a grounding situation was identified and assessed as to location, type of grounding 

(bow or broaching), soil type and soil condition (saturated and/or compacted). The present-

day standard salvage technique is to, first, remove the ship’s contents (of particular 

importance when carrying certain types of liquids) in order to increase the buoyancy as 

much as possible. Lines are then attached seaward of the grounded vessel, and the ship is 

pulled by one or more tugboats during high-tide. Unfortunately, this type of freeing 

operation could compromise the ship’s structure. Depending on the amount of fuel onboard 

and the nature of the cargo, a rupture of the hull would pose a bio-hazard. A grounded ship 
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is not fully buoyant, and remains partially embedded. This poses a hazard to the hull 

viability. It should be noted that the standard freeing operation must be performed within 

24 hours of the grounding event to be successful. 

Again, the premise of the present study is that it should be possible to aide in the 

regaining of the ship’s buoyancy by making use of blast-induced soil liquefaction (BIL) 

technique. The success of the operation would, naturally, depend on the nature and size of 

the cargo. When one hears the term “blast”, explosives such as dynamite come to mind. 

This type of BIL is normally unacceptable because of the inherent dangers to the ship, 

cargo and sea life. The BIL method proposed in the present study is a more acceptable 

method since only the sea bed materials are affected. That is, the soil surrounding an 

embedded vessel could be induced to liquefy using compressed air (blasts) administered 

from a buried pipe diaphragm within the sand. This would be during a high-tide event. The 

high-tide combined with the liquefaction could instantaneously result in the ship being 

brought back to a total-buoyant condition. It was hypothesized and, subsequently, 

demonstrated that several ship shapes were able to regain buoyancy once the compressed-

air blast-induced liquefaction occurred. This was successfully done on three ship-section 

models, including a flat-bottom section and two with dihedral angles. These are ship-

sectional shapes that bear naval similarities to typical sea-going vessels.  

The research undertaken investigates a release mechanism for a grounded ship. The 

research is primarily experimental in nature, where the model-scale naturally depends on 

the prototype dimensions. The model sectional geometries are apropos to cargo ships and 

tankers. The experimentation study is designed to examine the feasibility of introducing a 

concussive shock pressure into the soil surrounding a stranded vessel that induces 
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liquefaction. This methodology is a function of ship configuration and blast or concussion 

force determination needed to cause the soil to liquefy. Ship-shape models were built for 

these experiments to simulate standard-vessel sectional geometries. The goal of the study 

is to determine the potential release characteristics in a known bed material – for this study 

sand is used.  

The research involved in this study is organized such that there is a clear 

understanding of the process undertaken in a logical format. It starts from the problem-

definition following to the setup and implementation of the experiment to the mechanics 

of liquefaction induction in this marine environment. Sequentially, Section 2 discusses the 

mechanics of grounded ships and background on waves followed by present methods used 

free grounded ships. Section 3 is prior experimental studies in the area of grounded ships. 

Section 4 describes examples of ship groundings and pertinent Case studies to support the 

premises on which the experimentation and the data analyses are based. Section 5 is 

background on soil liquefaction and an introduction of Blast-Induced research and testing. 

A detailed discussion of the experimental approach is presented in Section 6, highlighting 

the constructs used along the way. Section 7 is a presentation of the experiment results and 

Section 8 is a discussion of those results which are collected and synthesized. Section 9 is 

a discussion of a proposed implementation method using dimensional analysis scaling with 

the experimental results and Section 10 is Conclusions and Recommendations.  

In general, this sequence of sections, augmented by appendices, follows the thought 

process leading to the design of the experiment to what results ensued and how to 

implement those results for future work on actual ship grounding release.  
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2. PROBLEM DEFINITION 

Ship groundings over the years are a source of continued nautical problems in both 

rivers and coastal waterways. Ships and their cargoes, which become lodged in channels 

and watercourses have navigational and spill-containment detrimental effects, pose issues 

to agencies charged with physical security like the U.S. Coast Guard. Ship groundings are 

due to extreme environmental effects, propulsion failures and human error. Normally, two 

of these are coupled to produce the grounding event which, in turn, affects all sectors of 

the maritime theater - industrial, military and private. When a ship drags anchor due to a 

storm event or loses power in a seaway, the ship migrates landward due to wave action. 

There are two waves that contribute to the problems associated with grounded ships. These 

are (a) linear or sinusoidal waves, which can rock a grounded ship, causing further 

embedment and (b) solitary-type (or long-period) waves, which cause the migration of the 

grounded ship towards shore. When a ship loses power, it becomes subject to the waves 

which normally cause the ship to broach. That is, the centerline of the ship becomes 

approximately parallel to the wave crest, and the ship is then in a beam-sea condition. The 

broached ship then becomes embedded in the seabed. Normally, once a ship is grounded, 

it stays grounded and the wave action will cause it to be more embedded into the seabed.   

2.1 Mechanics of Grounded Ship Motions 

Traditional freeing methods are often ineffective, and can cause structural damage 

to the ship in the process. The releasing method investigated in this work proposes a process 

of effectively changing the “state” of the seabed material in which the grounded vessel is 

embedded from granular to quasi-liquid. When this local seabed state-change is achieved 
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during a high-tide, the vessel’s buoyancy has a high probability of being regained. The 

vessel would, in turn, be safely dislodged and/or refloated in a more cost-effective way. 

One example of this type of costly ship grounding is that of the Maltese–flagged  

TK Bremen - a 2,000 DWT cargo ship with 220 tons of fuel oil traveling along the 

northwest coast of France. This ship ran aground in 2011 on Kerminihy Beach in a high-

wind, heavy-sea condition. A photograph of this grounded ship is presented in Fig. 1. 

 

Fig. 1 – The Cargo Ship TK Bremen stranded on a beach near Erdeven, France (from 

Marine Nationale: “T. K. Bremen Grounding”, On-Line, 2011) 

 

  The TK Bremen lost power and, subsequently, was brought parallel to the shoreline 

(broached) as waves slammed against her side. Once grounded, the wave-induced rocking 

of the ship caused the hull to further embed into the beach sand. There was an associated 

fuel-oil spill with extensive environmental consequences. The ship was damaged so 

severely as a result of the grounding that a decision was made to dismantle and remove it 

from the site. This effort was conducted over the next three weeks. Environmental cleanup 

had to be done on the beach at an estimated loss of over $13 million. If the blast-induced 
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soil liquefaction (BIL) method was available during the TK Bremen grounding, the ship 

could have been freed and refloated within 24 hours, resulting in far-less economic and 

environmental costs. 

A three-phase grounding scenario for this event was first described by McCormick 

(1999) and later by McCormick and Hudson (2001). According to these authors, the 

grounding process of a ship consists of (1) the bow coming into contact with the seabed 

usually from a loss of power or anchor slippage (2) wave action altering the ship’s 

orientation to a coast-parallel position of the ship’s centerplane and (3) the wave induced 

motions resulting in the migration of the vessel landward (see Fig. 3). These principal ship 

motions are sway (lateral, linear motion along the transverse axis) and roll (rotation about 

the longitudinal axis) as the hull becomes embedded in the soil, as sketched in Fig. 2. 

          

Fig. 2 – Principal Ship Motions (from Modern Ship Design ; Gillmer 1975) 

  

Once the ship hull is in contact with the soil, the nature of the vessel changes. That 

is, the soil now partially supports the ship as does the water by reduced buoyancy. Hence, 

the nature of remediation (ship freeing) changes from a hydromechanics problem to a 

hybrid soil-fluid problem. This complicates matters since the soil (solid) mechanics must 
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be simultaneously addressed with the hydromechanics. The goal of the present study is to 

use BIL as a means to return to the hydromechanics realm.  

2.2 Ocean Wave Mechanics – The Energy for Grounded-Ship Motions 

As previously stated, ocean waves collectively are the primary problem for a ship 

that has lost power or lost its anchorage. The waves in open water will rotate the ship until 

the centerline of the ship is parallel to the shoreline. Once grounded, the ship is either 

rocked by non-breaking linear waves, or driven shoreward by nonlinear waves of long-

period. Theoretically, the longest breaking wave is called the solitary wave. See Fig. 6b. 

These waves are briefly discussed in the following sub-sections. 

 

Fig. 3 – Three Phases of Ship Grounding  

 

2.2A Linear (Sinusoidal) Waves – Contributions to Ship Embedment 

 George B. Airy (1845) introduced the linear wave theory, sometimes referred to as 

the “Airy wave theory”. As noted by McCormick (2010, 2014), the theory is somewhat 

basic; however, the kinematic wave properties derived from the theory well-agree with 

those that are actually observed. The only proviso is that the wave steepness is small. The 
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wave steepness is defined as the ratio of the wave height (H) and the wavelength (λ). In 

what follows, the basic results of the theory that are applicable to the ship-grounding 

problem are reviewed. 

Basic Linear Wave Theory: 

 The linear wave is one with a sinusoidal profile which is shown in Fig. 4. This is 

based on a traveling sinusoidal wave which is linear in nature – therefore the term “linear” 

is used for purposes of general derivation.  The roots of this theory go back to the 19th 

century where wave mechanicist George B. Airy formulated the linear or Airy wave theory. 

Airy based the theory on two equations in fluid dynamics. The first is the equation of 

continuity: 

    V • 𝜵 V   =    ∇ (V 2/2) - 0     (2.1) 

Where ∇ is the del operator :  
𝜕

𝜕𝑥
 + 

𝜕

𝜕𝑦
 + 

𝜕

𝜕𝑧
               

To simply the general form of the continuity equation, Airy assumed the flow under water 

waves to be two-dimensional, inviscid, irrotational and incompressible resulting in the 

following equation, known as Laplace’s Equation as: 

   ∇ • V  = ∂ 2 φ/∂ y 2 + ∂ 2 φ/∂ z 2  = ∇ 2φ = 0  (2.2) 

Where, φ, is the velocity potential, a scalar quantity whose partial derivative with respect 

to y is the horizontal velocity component, v, and with respect to z is the vertical velocity 

component, w. 

The second equation is: 

   ρ 
𝜕𝜑

𝜕𝑡
 + 

1

2
 ρV 2 + ρgz + p  = f(t)    (2.3) 
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where, ρ, is the mass density, a function of neither time nor space; V is the fluid velocity; 

z is the vertical position and g is the acceleration of gravity. 

This is known as Bernoulli’s Equation which is an expression of the conservation of 

energy per unit mass. To apply this equation to water with a free surface, consider a 

simplification case to water on a calm surface or no motion bringing the time-function in 

that equation, f(t), equal to zero:  

   ρ 
𝜕𝜑

𝜕𝑡
 + 

1

2
 ρV 2 + ρgz + p  = 0    (2.4) 

which is non-linear due to the velocity-squared term. 

In order to obtain a method of analysis for the general solution to these two equations, Airy 

applied boundary conditions on both the sea floor and the free surface. 

a. Sea Floor Condition 

The seafloor condition assumes that there are usually impermeable layers of rock, silt and 

clay on the bottom. This condition states that there can be no flow across the seafloor (or 

bed). So the vertical velocity component at z = -h (from Fig. 4 notation) will be zero. 

Expressed mathematically, the condition is: 

          - 
𝜕𝜑

𝜕𝑧
 = 0      on z = -h      (2.5) 

b. Kinematic Free-Surface Condition 

A water wave will displace the free-surface as it passes, and this displacement can be 

described as a function η, of y and t. A statement of this condition is particles on the free 

surface always remain on the free surface. This physically means the particles are not 

allowed to jump up into the air. The kinematic free-surface boundary condition may be 

expressed as: 
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   w  = 
𝜕𝑦

𝜕𝑥
 + v 

𝜕𝑦

𝜕𝑥
  at z = η ( y ,t )  (2.6) 

or in terms of the velocity potential as: 

   - 
𝜕𝜑

𝜕𝑧
 = 

𝜕𝜂

𝜕𝑡
 - 

𝜕𝜑

𝜕𝑦

𝜕𝜂

𝜕𝑦
   at z = η (y ,t)  (2.7) 

c. Dynamic Free-Surface Condition 

The water surface freely responds to pressure distribution changes across it which is where 

the term free-surface comes from. The pressure everywhere on the free-surface is then 

uniform and equal to atmospheric pressure. A statement of this condition is the pressure 

on the free-surface is uniform, constant and equal to zero (gauge; p = 0). We apply this 

condition to Bernoulli’s equation (2.3) to the free-surface of a wave to linearize the 

equation by allowing the velocity-squared term to be of second-order. The assumption of 

this condition is that the kinetic energy (in the second term; i.e. the velocity-squared term 

in the Bernoulli equation) is an order of magnitude less that the other energies within the 

equation. Considering this assumption that the amplitude of the waves, η, is very small 

since maximum value is the wave amplitude, it follows that the velocities v and w are 

likewise small and can surmise that the square of these velocities can be taken as negligible. 

So with very small η, the pressure at z = η is approximately that at z = 0. Using this 

assumption, the following expression can be obtained from the simplified Bernoulli’s 

equation: 

   η  = 
1

𝑔
 
𝜕𝜑

𝜕𝑡
   at z = 0      (2.8) 
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d. Linearized Free-Surface Condition   

The third free-surface condition is obtained by making use of a combination of equations 

2.7 and 2.8, and is termed the linearized free-surface condition. This continues, as above, 

on the premise that the wave steepness (H/λ) is small. The free-surface conditions are now 

combined by eliminating η to ascertain the linearized free-surface condition which is now: 

  
1

𝑔

𝜕2𝜑

𝜕𝑡2  | z = η = 0  + 
𝜕𝜑

𝜕𝑧
 | z = η = 0  = 0     (2.9) 

 

 

  { 1

𝑔

𝜕2𝜑

𝜕𝑡2   + 
𝜕𝜑

𝜕𝑧
  } | z = η = 0  = 0  

Since the flow in the wave is assumed to be irrotational, the equation of continuity 

expressed as Laplace’s equation (2.1) can be solved using a product solution. This is of the 

form: 

  φ = X(x)Z(z)T(t)       (2.10) 

When this product solution is for a traveling wave, it will be in the form: 

  φ = X(x ± ct)Z(z) = X(ξ)Z(z)      (2.11) 

The coordinate system for (2.10) is fixed at a point, whereas that of (2.11) is transported 

with the wave. For a traveling wave the expression of (2.10) is substituted into that of (2.1) 

and separate terms of the same variables become: 

  
1

𝑋

𝑑2𝑋

𝑑𝜉2  = - 
1

𝑍

𝑑2𝑍

𝑑𝑧2 = - k2 ;  (k is a constant)    (2.12) 
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The negative sign comes about because the free-surface profile follows the shape of a sine-

wave in the ξ – direction. The general solutions of the differential equations in the ξ – and 

z – directions respectively are of the form: 

  X(𝜉) = Cξ sin ( k ξ + α )      (2.13) 

  Z(𝑧) = Cz cosh ( k z + β )      (2.13) 

where Cξ, Ct and β are constants that are determined by the boundary conditions. Because 

the origins of the horizontal coordinates ξ and x are arbitrary, the constant α can be assigned 

a value of zero without loss of generality. Equation (2.13) can therefore be reduced to: 

  X(𝜉) = Cξ sin ( k ξ  )       (2.14) 

To determine the constant β, apply the sea-floor condition of (2.5) to the velocity potential 

expression resulting from the combination of equations (2.11) and (2.13). Assuming the 

sea floor is flat and horizontal, only the z -term is affected by the boundary condition. That 

is, the sea-floor condition results in the equation: 

  
𝑑𝑍

𝑑𝑧
 | z = -h = k Cz sinh (-kh + β ) = 0     (2.15) 

From which β = kh. The expression in Eq. C1.13 is then: 

  Z(z) = Cz cosh [k(x + h)]      (2.16) 

The combination of the expressions of equations (2.14) and (2.16) with that of (2.10) results 

in: 

  φ  = Cφ cosh [k(z + h)] sin( kξ )     (2.17) 

where Cφ = Cξ Cz . If the nature of the horizontal coordinate, ξ, is now considered, we can 

surmise from (2.10) that its’ coordinate is defined as: 

  ξ = x ± ct        (2.18) 

The origin of the coordinate corresponds to: 
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  x = ± ct        (2.19) 

From this is can be seen that the value of x decreases as the time, t,  increases for the upper 

sign (-). As such, the wave must travel in the x – direction at a celerity or phase velocity, 

c. The waves corresponding to the upper signs in equation (2.18) and (2.19) are the called 

left-running waves. Following the same line of thinking, the lower signs in those equations 

correspond to right-running waves.  

 Returning to the expression for the velocity potential in (2.17), the arbitrariness of 

the coefficient Cφ in the equation can now be removed. In order for this to be accomplished, 

combine the expressions in (2.8) and (2.17) by eliminating the velocity potential, φ. This 

combination yields the following expression for the free-surface displacement of a 

sinusoidal wave: 

  η± = 
𝑐𝑘

𝑔
 Cφ ± cosh (kh) cos (kξ ±) = 

𝐻

2
 cos (kξ ±)   (2.20) 

where the last equality results from knowing that the wave is sinusoidal in both time and 

space. In the right term of (2.20), H is the wave height. Comparing the terms of the last 

equality of (2.20), we obtain the expression for the coefficient Cφ
±, which is: 

  Cφ
± = ±

𝐻

2 

𝑔

𝑘𝑐

1

cosh(𝑘ℎ)
      (2.21) 

Combining this expression and that of (2.18) with that of (2.17) to obtain the final 

expression for the velocity potential of a traveling wave as: 

  φ± = ± 
𝐻

2 

𝑔

𝑘𝑐

cosh [𝑘(𝑧+ℎ)]

cosh (𝑘ℎ)
 sin [k(x ± ct)]    (2.22) 

The velocity potential yields the velocity components of the particles in the irrotational 

flow beneath traveling waves. The velocity potential expression in (2.22) is the primary 
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result of the Airy wave theory. All the other properties mentioned earlier starting from (2.1) 

following to (2.7) follow from this methodology can now be derived. 

   

Results from the Linear Wave Theory:  

From the analysis above, applicable results are now presented.  

 At a point x in space and t is time, a passing linear wave will cause the free-surface 

to be displaced (raised or lowered) from equilibrium. See wave notation as shown in Fig. 

4. The free-displacement of a traveling wave, η, according to the linear theory, is given by 

η = H/2 cos [k(x - ct)]      (2.23) 

Where k is the wave number, defined as: 

   k = 2π / λ       (2.24) 

and c is the phase velocity (wave celerity) 

 

Fig. 4 – Notation for a Linear Right-Running Wave  

 In the figure, SWL is the acronym for still-water level. 



15 

 

As a linear wave comes in contact with a vertical wall, such as the hull of the ship, 

it reflects. It is more easily understood if one considers two traveling waves (one being a 

mirror image of the other) having the same heights, celerity (c + and c- respectively) and 

periods passing each other in the x-z plane. As they pass each other in opposite directions 

with equal magnitudes, they cancel each other out when superimposed. The resulting 

pattern, formed from a perfect reflection (as stated earlier from a seawall or wall-sided 

ship), that remains has zero celerity, or becomes a standing wave. When this happens, the 

incident wave height (H) doubles, resulting in the standing wave having twice the height 

of the incident wave. This can be seen in Fig. 5a. Mathematically, the free-surface 

displacement for a standing wave is: 

 η = H cos(kx) cos(t)     (2.25) 

Where ω is the circular wave frequency, defined as: 

   ω = 2π / T   (T = wave period in seconds)   (2.26) 

 

Figure 5a – Standing Wave Profile Using the Method of Images from a Perfect 

Reflection (from Ocean Engineering Mechanics; McCormick, 2014) 
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Note: The value of x at the hull can be equal to zero. So, on the seaward side of the hull, 

the free-surface displacement adjacent to the hull is: 

 η|x=0 = H cos(t)      (2.27) 

On the leeward side, the wave climate is much smaller. This causes a rocking (rolling) 

moment which, in turn, causes the ship to embed itself into the soil. See Fig. 5b.

 

Fig. 5b – Ship Embedment, (d), Rocking Motion – Bow View 

 

In terms of coastal engineering and further references contained in this work, it is common 

practice to partition the ranges of the wave steepness (h/λ) into three regions, which are: 

1. Deep Water:   h/λ ≥ 1/2   

2. Intermediate Water:  1/20 < h/λ < 1/2 

3. Shallow Water:  h/λ ≤ 1/20  

These regions correspond to different wave profiles. For example, the deep-water wave 

profile is sinusoidal. These profiles are sketched in Fig. 6a.  
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Figure 6a – Wave Profiles in Various Sea States 

 

In Fig. 6b, the profile of the solitary wave is presented. This wave is an ultra-

shallow-water wave. Breaking wave conditions occur at the seaward boundary of the surf 

zone, the region where ships become grounded in our study. The breaking condition is 

defined as that for which the horizontal particle velocity of the crest equals the celerity of 

the wave. Mathematically, the breaking condition is: 

   ucrest ≡ uc = c       (2.28) 

 

Breaking waves drive the grounded ship further ashore and compound the embedment 

process in Fig. 5b. They produce unintended forces on the vessel structure and complicate 
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rescue efforts. A progression follows from the previous sub-section where non-linear wave 

theory is generally discussed in light of a limiting case of a non-linear cnoidal wave, 

namely; the Solitary Wave. 

 

2.2B Solitary Waves – The Cause of Ship Migration 

Recent studies by Hudson (2001) and McCormick and Hudson (2001) show that 

the solitary-type wave is the greatest single contributory factor causing the shoreward 

migration in groundings. This type of wave is an extremely-long shallow-water wave that 

typically results because of a far-off storm.   

Fig. 6b – Solitary Wave Profile 

 

The geometry of the wave is unusual in that the high-energy water volume is principally 

above the still-water level as it travels. Historically, J. Scott Russell (circa 1832) first called 

attention to the existence of this wave form. According to Russell (1833), he observed a 

wave form that was wholly above the still-water level, and consisted of a “single 

intumescence” which propagates at a constant velocity and unaltered in form. 
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  According to the solitary wave theory, the free-displacement is predicted by 

 η = H sech2[(3H/4h3)1/2(x-ct)]    (2.29) 

where c is the phase velocity (celerity) of the traveling wave. The horizontal water particle 

on and beneath the crest is given by 

 u = (g/h)1/2(1 + H/h) η     (2.30) 

From this equation, one sees that the horizontal particle velocity is uniform from the seabed 

to the crest. Furthermore, comparing the free-surface equation of the solitary wave with 

that of the linear wave, we see that the solitary wave is not repetitive in time or space. This 

is characterized by an infinite period and wavelength. When the crest hits a vertical hull, 

the water in the wave acts as if it was in a flume, and the momentum of the wave is diverted 

vertically upward.  

The speed of the solitary wave is given by: 

    C =  [g (h + H) ]1/2      (2.31) 

It can be noted here that larger (higher) solitary waves travel faster. 

As stated earlier in linear wave theory, there is consideration needed as to the breaking 

conditions necessary for solitary waves which have been proven to be the primary wave 

type responsible for groundings of ships. When the breaking wave condition listed in (2.28) 

is applied to a solitary wave, the ratio of the breaking wave height (Hb)-to-water depth (at 

break; hb) value is somewhat different. At the wave crest (where η = Hb), the resulting 

wave height-to-water depth value is: 

   Hb / hb = 0.780776….≅ 0.781     (2.32) 

 



20 

 

From the momentum theory of fluid mechanics, a resulting large horizontal hydrodynamic 

load acts on the seaward side of the hull; while, little or no dynamic load is on the leeward 

side. As a result, there is a strong migratory force shoreward on the hull. See Fig. 7. A 

discussion and derivation of the solitary wave is found in the book by McCormick (2010, 

2014) and elsewhere. 

 

 

Fig. 7 – Migratory Shoreward Wave Force Acting on a Grounded Ship (from image by 

Paul J. Gallie: “M/V SeaLand Express Grounding”, On-Line, 2003 

  

2.3 Existing Methods Employed to Free a Grounded Ship: As stated earlier, if ships 

lose power in a seaway, they tend to broach (be moved parallel to the coast) and are subject 

to beam waves. Presently, there are three conventional methods of ship freeing. Those are 

(a) the brute-force pulling on the stranded vessel with lines attached to a series of tugboats 

positioned in deeper water, (b) sand – jetting of the areas near the grounded hull using 

pumped-water with both high volume and velocity to displace the sand and (c) to lighten 

the load by decreasing the draft. These methods are discussed in the following sub-sections. 

https://www.bing.com/images/search?q=m/v+sealand+express&view=detailv2&qpvt=m/v+sealand+express&id=ED45398425E9D3EC1745EF75FC953ED2EE507721&selectedIndex=0&ccid=SYlDsJpN&simid=608016397820037563&thid=OIP.M498943b09a4dc41a7b744e2350af6a31o0
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There are a number of problems with each of these methods, although only a few are 

identified and discussed. See, for example, the U. S. Navy “Ship Salvage Manual”, Vol. 4. 

Naval Sea Systems Command, 1 August 1993. 

2.3A Brute-Force Pulling: The first event in this method is to attach the anchor chain (or 

line) to a tugboat in an attempt to dislodge the hull. Unfortunately, this has a low probability 

of success, unless performed within several hours of grounding. The method is also rather 

dangerous in that it is susceptible to snap failure of the chain. Because of the high energy 

stored in the taut chain, when a snap failure occurs, the chain can actually slice through the 

ship, cargo and one or more crew members. If the leeward water is of sufficient depth to 

safely accommodate the tug, a tug can simultaneously be positioned to push the hull 

seaward.  

 As one can expect, hull damage can occur during the brute-force process, 

depending on the nature of the seabed material. For example, a cobble beach can rip the 

hull skin as the ship is towed and pushed. If the ship is single-walled, then a rip will cause 

in internal flooding or, depending on the type of ship, a loss in liquid cargo or fuel. 

2.3B Sand-Jetting: First, a drill-rig must be put in position. This is a time-consuming 

operation. As stated earlier, for a freeing process to be successful, it must be conducted 

within 24 hours of the grounding. Physically, the soil beneath the hull is displaced in the 

process. If enough soil is removed, then the hull can be momentarily buoyant. The problem 

is that the displaced bed will eventually migrate back under the hull due to wave action. 

Hence, the time-factor is critical.  

 Also resulting from the material displacement are unwanted moments caused by a 

loss of bed support on one side of the hull. To illustrate: A broached and grounded hull will 
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have a high rolling moment resulting from the loss of the bed material. This can cause a 

rolling motion which will result in a cargo shift that can overload different hull structural 

elements. If the loads become super-critical (structurally speaking), then failure is possible. 

2.3C Load Reduction: This is only feasible with containerized cargo, since helicopters 

and large cranes are required. In general, unloading of a grounded vessel is perilous and 

involves skilled coordination and planning, not to mention great expense. This is generally 

done by airlifting of cargo and containers or with land-based salvage operations parallel to 

the nearshore if the wave climate and the time allow. In order to position a large crane, two 

methods are used. First, the crane can be on a long, broad spud-barge of shallow draft. The 

large deck area is required for rolling stability. The shallow-draft is required to prevent the 

barge itself from grounding. The second method is to construct a causeway from the shore 

as a path for a ground-based crane and trucking operation. As one can expect, this is a time-

consuming method to be used in a time-critical situation. Certain types of ship grounding 

dislodgement and recovery operational typical methods and procedures are referenced in 

the U.S. Navy Salvage Engineer’s Handbook. 

 For bulk cargo, such as grain, coal or oil, this type of unloading is impractical. To 

illustrate: The M/V New Carissa (ref. in Appendix B) was grounded off the Oregon coast 

in 1993. This ship was carrying petroleum, and was unable to be unloaded by any means, 

since the Pacific wave climate at the site is rather hostile. What was done to prevent a fuel 

spill was environmentally unacceptable. That is, the fuel was actually ignited in the hope 

that all of the fuel would be burned off. During operation, the hull fractured and the fuel 

was lost to the ocean. As reported by Hudson (2001) and others, it took several years to 

reclaim the beach. 
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 In the following chapter, background analytical and experimental studies are 

described. Results of these studies are incorporated in whole or in part in the present study. 
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3. PRIOR EXPERIMENTAL STUDIES 

  Previous work devoted to the wave-induced motions affecting the grounded 

condition was focused on the midship section, where the geometric section was consistent 

and “box-like”. Rotational effects were neglected as they were of smaller order than the 

two principal motions previously mentioned. The results of the previous studies show that 

the vessel buoyancy diminishes with time due to the grounding on the nearshore bed and 

as the ship’s longitude becomes parallel to the shoreline. The works of McCormick (1999), 

Hudson (2001) and McCormick and Hudson (2001) provide a base from which a study of 

the relationships of the bed material properties and the aspects of the release methods can 

be launched. 

  The experimental work done by Hudson (2001) was the first of its kind. Up to that 

time, it was thought that breaking waves of any length contributed to the migration of a 

grounded ship towards the shore. Based on a ship having a beam of 40 feet (12.2 meters), 

the scale of the Hudson (2001) experiment was 1/40. The experiment was conducted in a 

wave-sediment tank specifically designed and constructed for the study. See Hudson, 

McCormick and Browne (2002) for the details of the wave-sediment tank. Although the 

experiment was of small-scale, the results showed that sinusoidal waves tend to rock 

grounded ships in place, but do not cause migration. The rocking motions cause the ship to 

be more embedded in the soil. Hudson (2001) found that the migration of a ship towards 

the shore is caused by the long waves that are near or at breaking. The long-wave (solitary 

wave) breaking condition is mathematically described in Eq. 2.10. This was the first 

experimental evidence of the wave-structure interaction for the migration process. The 
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Hudson (2001) studies were the inspiration for the present study of the freeing of grounded 

ships. 

Some of the past work was centered on laboratory experiments, where the soils 

were confined to cell-testing. That is, the sands, cell pressure and other parameters were 

varied in order to understand the mechanism characterization of Blast Induced 

Liquefaction. In a few full-scale studies, BIL was used as part of pile-release behavior 

investigations in an effort to determine ways to reinforce structural systems during seismic 

events. In these studies, efforts were made to the avoid soil liquefaction. Although some 

attention was directed to considering a mechanism for blast induced liquefaction, 

quantitative or empirical results concerning the effects of liquefaction on embedded ship 

shapes nor how liquefaction would play into releasing possibilities.  

Other studies done by Shannon and Wilson did testing of various soil types under 

cyclic loadings that show a buildup of pore water pressure and associated deformation. 

This cyclic loading over time culminated in liquefaction in both loose and dense sands 

which is shown later in Chapter 5 - Fig. 14a.  
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4. EXAMPLES of ACTUAL SHIP GROUNDINGS 

  Historically, a multitude of ships groundings along the Eastern U.S. coast have 

been documented for two centuries. Recorded ship grounding and sinkings go back to the 

1700’s and continue to the present day. Many types of vessels have been involved, which 

include sailing ships, passenger liners, trawlers, tugs, barges and military ships of varying 

types.   

Along the Delaware, Maryland and Southern New Jersey mid-Atlantic coastal area, 

there are over one thousand recorded locations of all types of grounded/sunken vessels. A 

great percentage of these groundings was never raised or salvaged because of the 

complexities involved with freeing operations associated with the coastal soil interactions. 

  In the following, two specific case studies of ship groundings are described. 

Because of these groundings, considerable financial losses were incurred, as well as delays 

in delivering and unloading the cargo that remained undamaged. The financial 

repercussions were substantial and amounted to many times the value of the vessels 

themselves. Fortunately, several of the referenced ships did not end up releasing any 

hazardous materials to the environment, although the risk was certainly present. Other ship 

grounding incidents have not been as environmentally fortunate and have been proven to 

be detrimental in terms of oil or hazmat spills. See Appendix B for other ship-grounding 

examples.  

 

4.1 Motor Vessel Sealand Express 

 

The first case study of a ship grounding is the M/V Sea-Land Express in Cape 

Town, South Africa in 2003. See Fig. 8 below. 
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Fig. 8 - M/V Sealand Express in Port in Table Mountain, Cape Town, South Africa (from 

image by Paul J. Gallie: “M/V SeaLand Express Grounding”, On-Line, 2003) 

 

The M/V Sea-Land Express was a 33,000 DWT cargo carrier with 1,037 sea 

containers, crude oil and other volatile substances including drums of propyl acetate and 

uranium oxide. The ship anchored offshore near Cape Town, South Africa, on a delivery 

voyage in order to weather high winds and heavy seas. During the night, the anchors 

slipped and the Sea-Land Express was driven landward by the intense wind and waves. By 

morning, she had her bow embedded in the near-shore sandy bottom and had been broached 

alongshore. The vessel was being pounded by heavy broad-side swell, and eventually 

rested parallel to the shore. Within hours after the bow came in contact with the beach, 

salvage tugs were dispatched, but were unable to pull the M/V Sea-Land Express free.  

The M/V Sea-Land Express was lodged on the beach of Cape Town for 25 days 

after the initial grounding event. Salvage efforts were carried out, that included continued 

efforts to pull her free with tugs and air-lifting the hundreds of sea containers off the ship 

utilizing heavy-lift helicopters. The latter eventually allowed sufficient weight reduction to 

re-establish buoyancy during a high-tide, enabling three oversize tugs to pull her free. The 
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M/V Sea-Land Express had to be dry-docked to be evaluated structurally following the near 

month-long salvage operation. See Fig. 9. 

                      

Fig. 9 - M/V Sealand Express Lies in Sturrock Drydock in Cape Town (from image by 

Paul J. Gallie: “M/V SeaLand Express Grounding”, On-Line, 2003) 

   

 

4.2 M/V APL Panama 

 

A second ship grounding event was the M/V APL Panama in Mexico in 2005, which 

was a 40,360 DWT container vessel with 1,100 sea containers stacked over ten stories high. 

A grounding occurred with circumstances similar to those of the M/V Sea-Land Express. 

A navigational piloting error was made when the ship was off the Ensalada Harbor of 

Mexico that caused the ship to ground, bow-first, in shallow water. The bulbous bow of 

the ship was then the pivot point for the rotation of the ship caused by the nearshore 

energetic wave action that subsequently caused her to broach. The vessel began to list due 

to the combined effects of its’ cargo burden and the pounding of the shoaling waves. 

Tugboats were dispatched in an attempt to pull the M/V Panama from the shoal. Freeing 
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efforts were once again ineffective and the ship remained grounded even though the tug’s 

response was quick and during a high tide.  

                   

Fig. 10 – APL Panama Shown here Grounded from a Navigational Error (from the San 

Diego Tribune: “APL Panama Grounding”, On-Line, 2008) 

 

The experience of the M/V APL Panama was somewhat different than that of the M/V 

Sealand Express. A jetty had to be constructed from the shore to access the ship, and track 

crawler-cranes were used to unload her cargo. These combined land and air-lift salvage 

measures left M/V APL Panama stranded on the Ensalada Harbor coast for three months 

from the time of the initial grounding. See Fig. 11. The vessel also had to undergo structural 

damage repair as a result of the incident. Other ship grounding cases are presented in 

Appendix B. 
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Fig. 11 - APL Panama Being Unloaded from a Constructed Landside Jetty (from the San 

Diego Tribune: “APL Panama Grounding”, On-Line, 2008) 

 

 

4.3 F/V Mar-Gun  

 

 Ship groundings are not limited to only larger type vessels such as have been 

described in the previous two examples. Smaller ships frequently experience similar 

grounding events as was the case for the diesel engine fishing vessel, Mar-Gun, based out 

of Seattle, WA. The Mar-Gun was a 112-foot-long (34-foot beam) fishing trawler that ran 

aground off of St. George Island, Alaska on March 7, 2009 due to heavy seas. 

 

 

 

 

 

Fig. 12 – Fishing Vessel Mar-Gun shown here being driven aground near beach off the 

Alaska coast from storm surge (photo credit N. Huddleston - ADEC: “F/V Mar-Gun”, 

On-Line, 2009) 

https://www.google.com/imgres?imgurl=http://www.cargolaw.com/images/disaster2006.APL.Panama31.GIF&imgrefurl=http://www.cargolaw.com/2006nightmare_apl_panama2.html&docid=IfFGbue5GmObRM&tbnid=5VCVtAT9rQPYGM:&w=650&h=433&bih=611&biw=1027&ved=0ahUKEwjL74ydlJ7OAhXH7yYKHUh1AP0QMwhIKCAwIA&iact=mrc&uact=8
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The U.S. Coast Guard was initially called in to safely evacuate the crew but there was 

19,000 gallons of diesel fuel aboard which posed a potential spill hazard to the waters of 

the Bering Sea. Salvers were then dispatched to free the ship and unload the cargo. The 

salvage effort took nearly two months and ended, with much difficulty and risk, with the 

Mar-Gun being dislodged and towed to nearby Dutch Harbor for extensive repairs. 
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5. SOIL LIQUEFACTION  

Most nearshore and beach soils in temperate climates are composed of granular 

sands with little significant cohesive properties. The reason for the lack of cohesiveness is 

that the sands are composed of quartz and feldspar. According to the Unified Soil 

Classification System (USCS), the sands are classified as SW (Well-graded Sands), SP 

(Poorly-graded Sands) or SM (Silty Sands, Sand-Silt mixtures). This information is 

paramount to the present study, since there is precedent for inducing soil liquefaction in 

this classification of soil. See Fig. 13. 

 

Fig. 13 – Table from Seed and Idriss (Analysis of Soil Liquefaction, 1967) 

 

Other sands subject to cyclic loadings have been studied by Casagrande and Seed resulting 

in liquefaction under these conditions as well as shock loads from explosions. Tests done 
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by Castro (1969) on the behavior of sands under cyclic loadings have shown that certain 

sands subjected to Tri-axial apparatus testing were susceptible to liquefaction in the ranges 

shown in Fig 13. Castro tested a Banding sand in this study (see Table 3 for properties of 

sand used in example case study by the USAF and in this dissertation) which liquefied 

during the cyclic tests loadings. 

 

5.1 Definition of Soil Liquefaction 

In general, liquefaction is defined as a phenomenon whereby a saturated soil 

substantially loses strength and stiffness in response to an applied stress or other sudden 

change in stress condition, causing it to behave like a liquid. The American Society of Civil 

Engineers defines liquefaction as “the act or process of transforming any substance into a 

liquid. In cohesionless soils, the transformation is from a solid state to a liquid state as a 

consequence of increased pore pressure and reduced effective stress.” Further, Terzaghi, 

Peck and Mesri (1996; third edition) in Soil Mechanics in Engineering Practice, define the 

general case of liquefaction as “The sudden drop of shear strength under undrained 

conditions from the yield strength…” 

          A                 B           C 

Fig. 14 – Soil Liquefaction Mechanism (from Univ. of Washington CE Dept., Webpost 

2010) 
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In terms of soil parameters, when the Excess Pore Pressure Ratio, defined as: 

 

   Ru  = Δu / σ’0       (5.1) 

 

is 100% or 1.0, the soil is indicated as being completely liquefied (where Δu is the excess 

pore pressure and σ’0 is the initial vertical effective stress). 

  

5.2 Soil Liquefaction as a Mode of Release 

The weight of overlaying soil particles (in fine-to-medium particles such as in 

beaches sands) produces constant forces between the particles that give soil its strength. 

When the contact pressure is high, the pore-water pressure is low. With a sudden force or 

shock, such as that produced by a blast, there is an uprush (buildup) of pore-water pressure. 

This, in turn, reduces the effective pore-solid pressure, and the water is “trapped” between 

particles. The inter-particle contact forces decrease and, subsequently, the soil strength is 

reduced. In other words, the soil is i.e. “liquefied”, and or behaves more like a liquid.  The 

process to induce liquefaction can have a time-dependent cyclic buildup component. This 

can be seen in the following two figures where cyclic tests were performed on loose and 

dense sands: 
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Fig. 14a – Laboratory Testing of Sands Under Cyclic Loading on Loose (upper part) and 

Dense (bottom part) Sands (research of Shannon and Wilson; 2011 ) 
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This type of induced soil liquefaction is advantageous in re-establishing a floatable 

substrate under an embedded body, i.e. such as a grounded ship – the focus of this study. 

 

5.3 Blast-Induced Liquefaction (BIL) 

One method of liquefying a soil is to create some type of pressure shock.  

This has been previously done by using explosives, which is a rather dangerous method 

with possible disastrous consequences. The method proposed here is to create the shocks 

using compressed air. These are discussed in this sub-section. 

 

5.3A Experiments at Treasure Island 

The explosion technique was documented in reports resulting from several full-

scale experiments done in 2004 and 2005 by Scott A. Ashford et al (2004). These 

experiments were conducted on the Yerba Buena Island outcrop in San Francisco Bay, at 

the Treasure Island National Geotechnical Experimentation Site (NGES), where piles were 

being used in lateral pull-trials under liquefied soil conditions. Charges were placed in the 

soil surrounding the subject Cast-in-steel-shell (pipe) pile(s) and detonated in a peripheral 

sequence to liquefy the sand.  
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Fig. 15 – Detonation Sequence used for BIL at NGES on Pile Load Tests 

 

This testing program, known as the Treasure Island Liquefaction Test (TILT), 

successfully used controlled blasting of buried explosive charges to liquefy a study area 

around full-scale pile and pile groups to evaluate pile-soil-pile interaction effects. In this 

series of trials using blast-induced liquefaction, the pore-water pressure was near-

instantaneously increased by compression waves generated from the explosions. 

 

5.3B USAF Office of Scientific Research  

In 1981, the Air Force Office of Scientific Research (at Bolling AFB, Washington 

DC) administered a grant to the Civil Engineering Department of the San Diego State 

University to determine a metric to quantify the mechanism for blast-induced soil 

liquefaction from explosives. See Fragaszy and Voss (1981). The Air Force’s interests 

were with understanding the effects of weapon detonations on geologic materials at or near 

the ground surface. Tests were carried out by the investigators on saturated samples of 

Eniwetok beach sand and Ottawa sands (Flintshot, Sawing and Banding) with quasi-static 
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isotropic loadings. See Fragaszy and Voss (1981).  Laboratory testing was done on the 

sample sands using a constant pressure pump. In that study, a high pressure steel tri-axial 

cell with varying cell and pore-water pressures was used. Results were graphically 

presented, and the pore-water pressure was found to be larger at the end of the cycle than 

at the beginning. There was liquefaction of the sands in varying sample pressures as well 

as residual increases in pore-water pressure throughout the induced stress cycles. 

In the present study, the soil surrounding an embedded vessel is induced to be 

liquefied with compressed air administered from a buried pipe diaphragm within the sand 

in order for it to be brought back to a buoyant condition. With the exception of the method 

of shock introduction, the method is similar to that of Ashford et al. In this way, it was 

hypothesized and subsequently proven that several types of ship-shapes were able to regain 

buoyancy once liquefaction occurred. This is performed with three types of model ship 

shapes that bear naval similarities to typical sea-going vessels.  
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6. EXPERIMENTAL APPROACH  

A model tank was constructed for the experimental part of the present research 

study. The tank weight with the required sand and water is approximately 3,000 pounds. 

The tank was used for each of the two phases of the experiment setup and repeat trials. 

Along with this newly created ship model tank, a moveable reaction frame and a leveling 

platform were also constructed as the base integral parts of the work system. There were 

ship models also constructed that are the interactive parts of the experiment along with data 

recording equipment and methodology. In this section, the design, assembly and testing 

procedure of the model tank and all associated parts are described. The physical details of 

the model tank, the ship models and other equipment pertinent to the performance of the 

experiment are found in Appendix C.       

            

6.1 Experimental Facilities 

The experimental facility had to be specifically designed and constructed for the 

study due to the uniqueness of the project. 

 

6.1A Model Tank  

The model tank was designed to ensure that the ship models to be used had adequate 

sidewall clearances and to satisfy sand-depth embedment requirements. The final working 

dimensions of the tank were set at 5’W x 5’L x 2’D (inside depth). The tank is composed 

of 1/2” thick clear acrylic Lexan as the primary material. The structural properties of the 

Lexan were evaluated for their selection as to hydrostatic pressure and concussion 

resistance effect. The structural properties of the acrylic lexan, per ASTM D 638 and  

D 695 were:  

1.  Fb  =  9.0 x 103 psi  Flexural Bending 
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2.       Fc  =  16.0 x 103 psi  Compressive Strength 

3.       E  =  0.55 x 106 psi  Modulus of Elasticity 

Based on ship model testing precedents, a clearance of 1.5 times the model body width 

(beam) in the short direction was maintained to mitigate the effects of reflection from the 

tank boundary walls. These were the criteria used in determining the dimensions of the 

tank. From a depth standpoint, enough sand was needed on the bottom to allow for a 

uniform clearance between the tank bottom and the bottom of the deepest model (SS3). 

This is calculated to be between 9” – 11”, depending on the various model geometries and 

embedment requirements shown later. A tank sidewall depth of 2’ allows sufficient sand 

and water to be placed to accurately conduct the ship model embedment experiment trials. 

The tank has enough volume to insure that the displaced water from the models does not 

have an impact on the overall water depth. 

              .  

Fig. 16 – Tank, Restraint Cable and Platform Assembly 

 

 



41 

 

6.1B Ancillary Equipment 

The tank rests on an 8’ x 7’-9” timber platform. The purpose of this platform is to 

provide a level, absorptive base on which the tank is supported. The model tank and 

platform were designed for transportability.  

 To facilitate water level control in the tank as each sequence of trials was 

performed, a tank sidewall valve that could be fitted with a hose for drainage was installed. 

A water spigot fixture was obtained that had a threaded turn-wheel valve handle with 

strainer and nylon filter. 

   

Fig. 17 - Drain Valve Installed in Tank Corner 

 

 An obstacle that needed to be addressed was how to bury the model in the saturated 

sand without the perimeter sand collapsing the excavated hole. In addition, water needed 

to be prevented from entering the hole and causing premature buoyancy of the model. After 

many trails and alternative methods of burying the model for a pull-trial, it was decided 

that a framed structure (or cofferdam) was needed so that sand could be evacuated while 

being held back.  
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Fig. 18 - Aluminum Cofferdam before and after use with burying Model 

 

The actual material for the cofferdam is weldable ¼” thick structural Grade 6061-T6 

aluminum (Fy = 35,000 psi; E = 10.1 x 10 6 psi). This was chosen to be durable and strong 

yet lightweight for lifting and positioning around the models within the tank. Each of the 

four sides of the cofferdam were welded at a fabrication shop to fit the plan size and depth 

required for the experiment per design drawings and lifting criteria (32” L x 20” W x 18” 

D). This included having to use the cofferdam in conjunction with a vibrator and side 

holsters that are further explained in Appendix C and as seen in Photo Record images  

P12-87, P12-94 and P12-95. 
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6.1C Reaction Frame 

 To facilitate the multiple lifting/hoisting operations of the various ship models, an 

overhead lifting frame was built. This reaction frame functions as the support structure to 

lift the models in and out of the model tank. In addition, it provides an access walkway for 

maneuvering equipment needed during the experimentation. A full description of the 

reaction frame and its components are contained in Appendix C. 

 

 Fig. 19 – Reaction Frame Assembly over Model Tank 

 

 

6.2 Ship Section Models 

The experiment requires the use of ship-section models. If one slices a ship hull 

across the widths at various longitudinal stations, the vertical cross-sections of the slices 

are called ship-sections. The sections of the model are uniform in the longitudinal (fore-to-

aft) direction. Their placement was in the center of the tank, with spaces between each 

model side and the opposite wall. Three models were created that represent standard classes 

of ships. These models are specifically made to be geometrically symmetric in both the 
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longitudinal and athwartships directions. The geometries are functionally simple so that 

any later computational fluid dynamics (CFD) analyses of the results can be readily 

performed. Each of the three models is referred to as Ship-Shapes (SS1, 2 or 3). The inside 

of the models is made hollow and accessible from the top for the ability to add weight 

ballast. Sectional drawings of the three sections are presented in Fig. 20. Photographs of 

the models are contained in Appendix C. The specifics of the three model sections are as 

follows:  
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Fig. 20 – Ship Sections Model Geometry 

 

Model SS1 – This model has a flat bottom and vertical wall sides similar to a barge.  

Model SS2 – The unit has a 15 degree dihedral shape and is indicative of a low-draft vessel 

or skiff. 

Model SS3 – This unit has a 30 degree dihedral shape, and is modeled after a deeper-draft 

vessel. 
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Fig. 21 - Ship Models in the process of being built (Note hollow interior for ballast 

additions) 

 

These models are also needed to hold up under many repeat trails in all phases of 

the experiment. This included the use of removable/adjustable bottom ballast as well as 

built-in ballast described later. These are shown in the lifting arrangements in Fig. 22. 
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Fig. 22 – Lifting Arrangements 

 

In order to make the models able to be floatable and watertight, the exterior 

insulation “skin” was covered with a multi-layer covering of fiberglass. This was done for 

each model and was composed of a marine fiberglass fabric glued to the insulation with an 

epoxy-resin topcoat mix done in 3 coats. Each coat was sanded, filled and filed such that a 

fully waterproof outer model surface resulted.  
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Fig. 23 - Model Fiberglass Covering/Coating Operation  

 

The final step in the model building was to paint each model with a marine paint. 

Several coats were applied and a waterline was painted and stripped to identify the center 

of buoyancy of each respective model after a flotation test was done (see Fig. 25). The 

flotation test included the addition of brick primary ballast into the hollow of the model 

frame.  
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Fig. 24 - Model Ballast with Wood Sub-Frame, Lifting Lanyard and Painted Exterior 

View 

 

 From a stability standpoint, the models were able to be floated to a suitable 

operational depth. Because of the dihedral angles at the keel, the SS2 and SS3 models 

needed additional low-keel weight to ensure overturning stability. A method of adding low-

keel weight was designed and implemented for these two units. For the SS2 model, a 

series of partial depth holes were drilled in the triangular Styrofoam hull and filled with 

copper buckshot. Once this procedure was done, the holes were capped with Styrofoam 

plugs and glued in place. The hydrostatic stability flotation test was, then, done to ensure 

the effects of the low ballast. 



50 

 

  

  Fig. 25 - SS2 Flotation Test being performed after Low-Keel Ballast Added 

 

For the SS3 (deeper 30-degree dihedral), the low-keel weight issue was more severe 

for stability. The addition of buckshot into drilled keel holes was not sufficient based on 

repeated flotation tests. A heavier low base weight was needed for this model and so lead 

was considered for a ballast because of greater density.  

        

Fig. 26 - Lead Sinkers being melted into Steel Pipe Fittings for Keel Ballast 
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Another flotation test was done (similar to that shown in Fig. 25) for SS3 which then 

resolved the stability / rotation issue making it ready for trials in the main tank. 

 

 
  

 

Fig. 27 – Low Keel Permanent (Buckshot) Ballast placed into SS2 Model 

 

 

6.3 Blast Simulation: Compressed Air Device 

As a preparation to this part of the experiment, the water level was pre-determined, 

and was visible through the Lexan window – one side of the tank. First, water was poured 

into the tank. Then, the sand is mixed with this water to prevent stratification. Following 

this, a time delay was needed to allow the sand level to become stable. The cofferdam was 

vibrated into position for the setting of the ship model. The sand-water level would, again, 

rise in response to the cofferdam installation. Following another time delay, the model was 

set by removing all sand from the cofferdam, and the remaining sand was packed around 

the model. Finally, the cofferdam was removed. 
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Following the method of the previously referenced work at the NGES at Treasure 

Island (see References Section), submerged explosive charges were placed at buried 

locations in a peripheral array around a study area in order to produce a shock wave in the 

saturated soil. This shock wave, or concussion force, produced from a series of sequenced 

detonations, induced the soil to locally liquefy. 

It was found during this study that a similar effect could be produced using 

compressed air instead of buried explosives. A device, which is referred to here as an “Air 

Cannon” was built and utilized for the same purpose and similar effects using compressed 

air. 

 

Fig. 28a – Air Cannon Schematic 
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Fig. 28b – Air Cannon with Pressure Gage and Quick Release Valve 

 

The Air Cannon was able to be charged to designated pressure, via an air 

compressor assembly. Following the charging, the compressed air could be released near-

instantly into the soil surrounding the buried SS models to cause liquefaction. So the 

technique in this experiment is using a controlled volume of relatively high pressure air, 

discharged through four peripheral nozzles at the end of a buried PVC diaphragm. This 

sets off a compression wave propagation surrounding the embedded model and causes the 

saturated sand to liquefy. 
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6.4 Detection of Shock Intensity by Hydrophones 

 

The means to record and synthesize information associated with the soil–water 

condition as affected by the compressed air concussive forces from the air cannon was done 

with a series of underwater microphones (hydrophones). It was decided for the 

arrangements in the tank and positioning of the models that four hydrophones would be 

used to record omni-directionally. This hydrophone arrangement matches the four-sided 

plan-orientation of each of the three models. 

                               

Fig. 29 – Assembling of Hydrophones from Parts 

 

The hydrophones were specifically constructed for these experiments based on 

instructions from construction by the University of Connecticut (COSEE TEK). See 

Appendix F for details. Parts were obtained locally and assembled into five hydrophones 

(4+ one spare). Each hydrophone has the capacity to transmit a full spectrum of sound to a 

recorder. This ties in well with how the blast force from each nozzle facilitates liquefaction. 
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These interaction phenomena were observed dozens of times during the experiment. (See 

Photo Record Images P13-26, 27, 28) 

 

Fig 30 – Assembled Hydrophone 

 

The hydrophones, blast nozzle ports and the air cannon all work in conjunction with each 

other around the model within the sand of the tank for each trial of the experiment. 

Reference Fig. 32. The buried PVC pipe blast diaphragm is situated near the outer walls of 

the tank. The air blast is administered to this pipe network to distribute the air to each of 

the four nozzles. One section of the diaphragm on the right-hand side of the tank is actually 

valved off to enable air flow to be optimized. Alongside each nozzle, four larger (three-

inch diameter; 90-degree elbow) PVC sleeves were built to be able to place and retract the 

hydrophones as each set of the experiment proceeded.  
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Fig. 31 – PVC Pipe Diaphragm, Blast Nozzles (left) and Hydrophone Port (right) 

 

The sleeves, or hydrophone ports, enabled the hydrophones to be slid down into them and 

positioned close to the nozzle blast outlet locations so that there could be an accurate 

recording from each of the four hydrophones to the DA-88 recorder. Each end of the 

hydrophone port being buried, was fitted with a fine nylon screen so that sand was not in 

direct contact with the recorder end of the hydrophone. The PVC pipe sleeve was flooded 
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with water into which the hydrophones were submerged. The placement of each of these 

three interactive parts, with respect to each other and the model locations, underwent 

several rounds of trials before a viable long term arrangement was arrived at. See images 

from Photo Record P13-41 through P13-46. 

  
 

Fig. 32 – Schematic of Tank with Buried Equipment 

 

6.5 Baseline and Blast Tests 

The model tank and reaction frame work together to allow the placing, embedding 

and raising of the various ship shape models for this experiment. The process involves 

multiple trials of each of the (three) ship models used in the study. The number of trials of 

each model must be sufficient to provide a statistically credible sample size.  The two tests 

are called the Baseline and Blast tests. The former is the pull-test, whereby the embedded 

model is freed from the soil by direct application of a vertical load. The latter test is the 



58 

 

reduction of the soil-induced vacuum force using the compressed-air blast. These are 

described in the following sub-sections. 

 

6.5A Baseline Tests 

The first part of the experiment is to run the model embedment tests using each of 

the three model types constructed. The sand layer, water depth and positioning of the 

models within the tank are standardized/normalized, so that in each repeat trial the results 

can be compared with accuracy. The initial trials are designed to determine the force 

required to dislodge the embedded model from the natural sand with no other factors at 

play. 

 Prior to the embedment, the waterline of each model was determined as a result of 

a buoyancy test as further explained below. This waterline was the same for both the free-

floating and the embedded models. 

In order to produce results that have statistical accuracy, the testing protocol was 

standardized with certain aspects constant with each trial. The sand height was set at a 

height of 11-1/2” (from the bottom of the tank) and the water level was controlled and 

adjusted to be at a free surface height of 8-1/2” within the sand. The arrangement is 

characteristic of the typical relationship of a grounded ship hull depth to the mudline or 

subaqueous water level on a beach. 

The depth of the embedment was chosen (via painted line on each ship model) 

based on tare weight plus ballast flotation level done previously and described as a 

“Buoyancy Test”. The waterline, then, was the same for both the free-floating and the 

embedded model. 
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To insure horizontal placement consistency, a series of guywires were used to align the 

models in the tank. These were strung from four wooden side brackets made to fit the tank 

walls during operation. Each guywire had a horizontal spring at the end to maintain tension 

during model placements. See photo record images P12-80, P12-89 as well as Fig. 33. 

 

Fig. 33 – Guywires for Consistent Model Positioning within the Tank 

 

The sand / water consistency was also adjusted at the start of each day’s trials through the 

addition/mixing of water and monitoring the sand and water level at the clear view end of 

the tank.  

The tensiometer used was tested / tuned periodically against a known benchmark 

weight. The brick and steel ballasts used during the trails were the same each time as well 

as the soil and water depth used throughout for each respective model. 

 

6.5B Blast Tests 

The second part of the experiment is to run the same model embedment tests on 

each of the three models with the soil being in a liquefied state. This is a blast-induced soil 

procedure involving air-blasting from an air cannon nozzle in the saturated soil around the 
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model embedment area. The air-blasts are designed to cause the soil to sequentially liquefy. 

As in the first series of trails, the experimentation determines the force required to dislodge 

the embedded model from the artificially liquefied sand. In each of the trails, the reaction 

frame makes use of an in-line scale that measures the force or tension in the rope assembly 

as it pulls the model free of the sand mass.  

There are hydrophones positioned in the soil to measure the full spectrum of the 

blast intensity as affected by both their relative location and the soil liquefaction. This is 

demonstrated in Fig. 34.  

 

Fig 34 – Positioning of Hydrophones into Ports adjacent to Blast Nozzles 

 

A sample record of the hydrophone results is presented in Fig. 35 through the use of 

Audacity audio multi-track recording and editing software. In the top figure, the blast signal 

is recorded for three sequential blasts of one hydrophone. The blasts are identified by A, B 

and C in that figure. It can be seen from these results that the initial A blast has the highest 

signal amplitude response corresponding to the lowest inlet pressure. The pressure is 

steadily increased with each successive blast as can be seen in Table 6. There is a time 

interval of 1 to 3 minutes between blasts as recorded in the log sheets represented in 
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Appendix G. This indicates that the sand surrounding the model is being modified with 

continuing blasts. Even though the air cannon pressure per blast is increasing, the recorded 

signal amplitudes are not as high, and in some instances such as this one, are lower. A 

further discussion of this trend subsequently undertaken and as also seen in many other 

trials and depicted in the table below: 

Blast ID Relative Maximum Amplitude Pressure (PSI) 

                   A +/- 0.4 90 

B +/- 0.2 92 

C +/- 0.1 95 

 

Table 1 - Signal Response Data Taken from Figure 35 

  

In the bottom of Figure 35, a Gaussian (linear) spectrum is presented from the same 

signal data containing blasts A, B and C. There is a majority clustering of frequency content 

in the range of 100-1000 Hz (200 -300 Hz highest recorded values) with a smaller 

secondary grouping at 10,000 Hz and another larger amount grouped at the 20,000 Hz 

range. An examination of all the recorded hydrophone and blast data reveals that this 

pattern of frequency content grouping is consistent throughout with individual or multiple 

blast records. Another example of these groupings can be seen in Fig. H18 showing a (log) 

Gaussian spectrum for all 4 hydrophones of an individual blast. It should be noted that 

there is line “noise” from the signal acquisition that potentially corresponds to the center 

10,000 Hz spike seen in the bottom of Figure 35 and elsewhere (namely the blast spectral 
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plots of the signal records in Appendix H). This was observed during an examination of 

records where no blasts were administered during experiment setup and initial testing.  
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Fig. 35 – Hydrophone(s) Signal Record and Sound Spectrum from DA-88 Recorder 

 

A B C 
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 These pressure signals allow for the determination of the wave celerity (phase 

velocity) and, thereby, the mass-density of the soil which is derived from the general form 

as based on the text by Kinsler and Frey (1982): 

                                     c = (∂Ҏ/∂ρ)1/2|adiabatic                                                                (6.1) 

The wave celerity in water, or the speed of sound in water, is no longer a function of the 

properties of an ideal gas and so a derivation using the Isothermal Bulk Modulus, βT, which 

can be empirically measured for liquids yields a convenient expression for the speed of 

sound in liquids which is: 

                                     c  = ( γ βT / ρ0 )
1/2                                                                       (6.2)  

where γ, βT, and ρ0  all vary with temperature and pressure of the liquid. These variations 

can be expressed as a numerical formula: 

              c(P,t) = 1402.7 + 488t2 + 135t3 + (15.9 +2.8t + 2.4t2)(PG/100)                       (6.3)  

where PG  is the gauge pressure and t is the temperature. Using standard temperature and 

pressure values, the wave celerity or speed of sound in water is 1,500 m/s. Full derivations 

of this value can be found in the above reference and other texts. 

 

6.6 Experimental Setup 

 As previously written, the models described in Section 6.2 are positioned in the 

tank to ensure proper water and soil depths, as well as plan location. The methodology in 

assuring exactness in each task is presented in the following sub-sections.   
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6.6A Model Positioning and Alignment 

 The first two considerations must be those involving soil depth and water depth. In 

combination, these must be determined for each model type based on net model buoyancy 

(buoyancy and ballast). The two depths must be such that the embedded resting model is 

negatively buoyant. This is the initial condition for the accompanying analysis. Following 

the blast, the soil-water combination must allow for the model to be positively buoyant. 

The embedment depths are presented in Table 2 for each of the models. 

The second category of the experimental setup is the horizontal alignment within 

the tank. That is, model sides must be equidistant between opposite walls of the tank. To 

accomplish this, wire guides were stretched between opposite walls. The wires were 

adjacent to the model sides. This alignment is important because of reverberation 

considerations described in Section 6.5. (See Fig. 33). 

 

Table 2 – Ship Model Embedment Depths in Tank 
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6.6B Sand – Sieve Analysis 

In section 5.3B, the Eniwetok and Ottawa soil types, normally found on beaches, 

are discussed. As stated, there are numerous data on these soil types. For the experiments 

described herein, it is important that the experimental sand has properties similar to the 

real-world beach sands. For later comparison, the properties of the Eniwetok and Ottawa 

sands are presented in Table 3. 

 

Sand Min. Dry 

Density 

(g/cm3) 

Mean Grain Size  

(mm) 

Cu* S.G. 

Eniwek 1.31 0.35 1.6 2.71 

Ottawa 

(Flintshot) 

1.57 0.60 1.4 2.66 

Ottawa (Sawing) 1.56 0.50 1.3 2.66 

Ottawa (Banding) 1.47 0.25 2.0 2.66 

* Coefficient of Uniformity – a comparative indication of the range of soil particle sizes 

Table 3 – Table of Sand Properties used in the USAF Study by Fragaszy, et al (1981) 

 

The experiment requires the use of a layer of sand (simulation of shoreline beach sand in 

which ships have historically grounded). This sand mass was placed in the model tank base 

with a sand depth designed for the ship-model embedment. The sand used was sifted into 

its relative particle sizes using the ASTM D422 Standard Test Method for Particle-Size 

Analysis of Soils (1963) grain sieve size analysis procedure in order to produce an accurate 

size distribution. The sand layer depth is maintained throughout the experiment at a depth 
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of 11-1/2”. Filtering of impurities was done on an ongoing basis when water was added to 

the tank by way of using a wet-dry vacuum and skimming the surface. The gradation results 

are presented in table 4. The soil used in this study (from Table 4) was classified according 

to the ASTM USCS as SP with a D50 = 0.34. Referring to the paper by Ashford, Rollins 

and Lane (2004) for pile experiments done at the NGES on blast-induced soil liquefaction, 

the soils at that location in San Francisco were also classified and indexed to have similar 

USCS designations. 

In order to derive the Index Properties of the sand, the following data was taken on 

the sampling used during the sieve analysis: 

            WT = 2.05 lbs, WS = 1.80 lbs.  

From standard index property relationships (by McCarthy and others), the following can 

be ascertained: 

WW = WT - WS  ⇒    2.05 – 1.80 = 0.25 lbs (6.4) 

WT = (VT)(GT)(γW) ⇒ VT = 2.05/(2.65)(62.4) = 0.012 cu. ft. (6.5) 

WS = (VS)(GS)(γW) ⇒ VS = 1.8/(2.65)(62.4) = 0.0108 cu. ft. (6.6) 

VV = VT - VS  = 0.012 – 0.108 = .0012 cu.ft. (6.7) 

e = VV / VS  = 0.0012/0.0108 = 0.11      (6.8) 

n = VV / VT = 0.0012/0.012 x 100% = 1 % or .001    (6.9)   
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Table 4 – Model Sand Gradation Curve 
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The Mean Grain Size of the experimental sand used was calculated to be 0.39 mm, in Table 

4, which is similar to those of the Ottawa sands in Table 2 (Mz = (φ16 +φ50 + φ84) / 3. See 

McHendrie (1988). The gradation curve of the sand used in this study, shown in Table 3, 

exhibits soil properties closely following those of Fig. 13 identified as soils susceptible to 

liquefaction. 

  

6.7 Measurement and Recordings 

In this section, the signal acquisition equipment is described. The major pieces of 

the test equipment include a Tascam DA-88 Eight-Channel Recorder, in-house 

manufactured hydrophones (5 hydrophones), the in-house manufactured Air Cannon and, 

lastly, a mechanical tensiometer. In the following paragraph, the function of each of these 

items is described.  

    

Fig. 36 – Tascam DA-88 Recorders (Left) and Input Soundboard (Right) 
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Four independent channels of the DA-88 were used to record the pressure signals and the 

corresponding spectra for each blast condition. The pre-blast pressure in the Air Cannon 

was both set and monitored by a pressure gauge attached between an air compressor and 

the Air Cannon. See the discussion of the Air Cannon in Section 6.3. Prior to a blast test, 

the weight of the dry, ballasted model was determined. This weight value was used to pre-

tense the overhead support line to achieve a neutrally buoyant condition. Again, before 

conducting a blast test, a brute-force pull-test was performed. That is, the tension in the 

overhead support line was increased until the soil released the model. It was noted that for 

all of the models, the release tension was much greater than the measure dry weight. See 

the results in Table 5.  
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Table 5 – Model Pull-Out Baseline Test Results 
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These results are plotted graphically in the following figure: 

 

Fig. 37 – Plotted Results of the Effects of Pull-Out Force on each of the Three Ship 

Models 

 

The difference in the measured line tension and the tare weight is actually the 

holding force of the soil on the model. See Appendix E for detailed information on the 

recording device. 

 

6.7A Blast Pressure and Spectra  

 As previously stated, the blast pressure wave was generated by the Air Cannon 

coupled to an air compressor. The pre-blast pressure was between 80 psi and 110 psi, and 

was controlled at the Air Cannon. Following the blast, pressure signatures were measured 
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at four points in the soil adjacent to the model. The scheme is sketched in Fig. 32. Again, 

an example of a blast is shown in Fig. 35. That figure is used in the following paragraphs 

to help explain the various phenomena dealt with in the study. The model used in this 

example was the SS1. 

 Blast Pressure: In Fig. 35, the passage of a concussive wave at hydrophone-1 is 

shown. That is, the pressure signal in the top line of the figure, as measured, is shown in 

the time-domain. The experimental scenario was to have at least three blasts, where the 

blast intensity was increased from the first to the last blast. The number of blasts depended 

on the ship section model under study. The first cannon blast is seen on the left-hand side 

of the trace. The second cannon blast, which was of higher intensity, is shown to the right 

of the first. Here, we note that the intensity of the pressure signal is reduced. The reason 

for this is that the soil was partially liquefied by the first blast. To further explain, consider 

the sequence of events in previously discussed for the Soil Liquefaction Mechanism. In 

Fig. 14A, one sees the sand particles touching with water-filled voids. The interparticle 

contact force directions are sketched vectorially in Fig. 14B. In Fig. 14C, the contact forces 

are diminished as the pore-water pressure increases. This occurs as the blast wave passes. 

When the second blast wave arrives, the initial condition of the soil is where  

Fig. 14C replaces Fig. 14A and the processes are repeated. Finally, the last trace in Fig. 

35C is for the highest blast intensity with the highest degree of liquefaction. This can be 

explained mathematically by taking the pressure-celerity expression from linear acoustics. 

From Kinsler and Frey (1982), that expression is as follows: 

p = K c2      (6.10) 
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Here, K is a proportionality constant that depends on the mass-density of the soil. We note 

that the celerity (c) decreases as the bulk-modulus of elasticity (soil strength) decreases, as 

is done in soil liquefaction. Similar signal analyses are applied to the remaining three 

hydrophone recordings. 

 Pressure Spectra: The pressure spectrum of the example in question is presented 

in Fig. 35 (Bottom). Referring to this figure, we see the period distribution from the signals 

in the above in that same figure. The spectra for the second and third blasts appear to be 

Gaussian. Hence, the probability densities are approximately Rayleigh in nature. When a 

typical spectra for the second and third blasts are normalized, the normalized spectra would 

appear as two truncated peaks having their half-period bandwidth, ω0, lower for the second 

signal than for the third. This means that the damping for the third blast is higher than that 

of the second. This results in the signal traveling at a reduced rate which, in turn, causes a 

lower pressure and frequency. The damping in the acoustic system can is inversely 

proportional to the Quality (or Q-) factor, which is defined as follows: 

Q =  ω0  / (ω2 – ω1)    (6.11) 

Were ω0 is the center-band frequency of the signal, and ω1 and ω2 are the respective upper 

and lower frequencies defining the half-power bandwidth. From Kinsler and Frey (1982), 

and others, the damping coefficient for the acoustic system is the following: 

R = C ω0 / Q     (6.12) 

Here C is a proportionality constant depending on the mass-density. 

 The behaviors shown in the example of this sub-section is similar to those from all 

of the blast tests. The signals for hydrophones-2, -3 and -4 for this example are presented 
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later and discussed. All of the pressure trace and some spectral plots are presented in 

Appendix H. The results of all of the studies are described further in chapters 8 and 9. 

 

6.7B Blast-Pressure Effects on Pull-Out Loads 

 During the blast tests described in the last sub-section, simultaneous loading 

measurements were conducted to determine the reduction in the soil loading corresponding 

to the blast intensities for the three models. A sketch of the test setup for the load 

measurements is presented in Fig. 38. For the pre-blast condition, the line-tension was 

equal to the tare value. Hence, any change in this load must be due to decreasing soil 

resistance. Recall as previously seen in Table 4 that the ship model tare weight equals the 

pre-tense for the blast trials subtracted at the outset of the trial as: SS1 = 45.3 lbs,  SS2 = 

70.4 lbs and SS3 = 65.0 lbs. When, a blast occurred, the line-tension was reduced. When 

the second and third blasts occurred, the line-tension was reduced until the model was 

approaching the state of being positively buoyant. When this occurred, the line-tension 

lessened considerably in all cases and zeroed in others. With the pressure signal in the 

example in the last section, the load-signal as determined by the tensiometer is shown in 

the results in Column 5 of Table 5. It can be seen that the load is dramatically reduced at 

the trial outset and sequentially along the way from field notes with each blast. Results for 

the three models are presented in Table 5. In that table, the load values at the outset of all 

the blast pressures to which each trial was subjected, are presented. 

 The values in Table 6 are extremely important as to the efficiency of the blast-

liquefaction mechanism and can be seen from the record data there. 
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Fig. 38– Setup and Arrangement for Blast Tests 
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Model 

No. 

Tape 

No. 

Blast 

No. 

Pressure from 

Air Cannon 

(psi) 

Reading at 

Tensiometer 

To Pullout (lb) 

Approx. 

Elapsed 

Time (min) 

Date of 

Test 

       

SS1 1 1 80 No Record 1.5 3/8/2014 

       

SS1 2 1 80  3 3/15/2104 

  2 90    

  3 92 ±5*   

       

SS1 3 1 90 ±16* 10 3/29/2014 

       

SS1 4 1 90   3/29/2014 

  2 92    

  3 95 ±15* 5  

       

SS1 5 1 90   4/6/2014 

  2 90    

  3 90 26 3  

       

SS2 6 1 90   4/12/2014 

  2 92    

  3 94    

  6 85 37 6  

       

SS2 7 1 90   4/26/2014 

  2 95    

  3 99    

  4 90    

  5 95 ± 5 16  

       

SS2 8 1 95   5/3/2014 

  2 95    

  3 95 ±15 6  

       

SS2 9 1 90   6/14/2014 

  2 95    

  3 100 No record 6  

       

SS2 10 1 90   6/21/2014 

  2 95    

  3 95 ±5 4  

*  Tare weights subtracted from the field recorded readings for comparative use in this 

table 

Table 6 – Blast Test Results from Written Logs for SS1 and SS2 (Partial) 
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Model 

No. 

Tape No. Blast 

No. 

Pressure 

from Air 

Cannon (psi) 

Reading at 

Tensiometer 

To Pullout 

(lb) 

Approx. 

Elapsed 

Time 

(min) 

Date of 

Test 

       

SS2 11 1 92   7/13/2014 

  2 95    

  3 100    

  4 100 ±5 4.5  

       

SS2 12 1 93   7/13/2014 

  2 95    

  3 105 53 5  

       

SS3 13 1 92   7/20/2014 

  2 95    

  3 100    

  4 105 < 40 5.5  

       

SS3 14 1 95   7/26/2014 

  2 100    

  3 105    

  4 NR < 70 5.2  

       

SS3 15 1 80   8/2/2014 

  2 95    

  3 97    

  4 100    

  5 100 40 20  

       

SS3 16 1 60   8/17/2014 

  2 90    

  3 100    

  4 100 40 8  

       

SS3 17 1 90   8/21/2016 

  2 100    

  3 100    

  4 80 43 15.5  

       

SS3 18 1 92   8/30/2014 

  2 100    

  3 100    

  4 NR 29 12  

       

Table 6 (Con’t) – Blast Test Results from Written Logs for SS2 (Balance) and SS3 
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7. RESULTS  

        

Fig. 39 – Baseline (Brute Force) Pull-Out Test 

  

In Table 5, the pre-test pull-out force is presented for the various models and trial 

numbers. For the lowest trial number, one can see that there is a small difference between 

each model results. As the trial number increases, the pull-out force changes little over the 

trial sequence for the flat-bottom model (SS1). For SS2, the model having a dihedral angle 

of 15-degree, the pull-out force increases dramatically for trials 1 through 6. For trials 7 

through 10, however, the values are approximately equal. For SS3 (30-degree dihedral 

angle), the force data are seen to gradually increase from trials 1 through 3, remain 

approximately constant from trials 4 through 8 and, then, drop and rise. Also presented in 

below the figure are the values of the ratios of the average pull-out force to the dry (or tare) 

weight. For models SS1, SS2 and SS3, the respective values of the ratio is seen to decrease. 

Those respective values are 2.38, 2.00 and 1.77. (from Table 4) and plotted in Fig. 37. 
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The results seen plotted in Figure  37 directly relate to the model geometries and 

their dihedral bottom angles. The flat bottom model (SS1 with 0-degree dihedral angle) has 

the greatest suction force potential when buried as indicated by its P.O. % = 2.38 while 

also having the lowest tare weight and associated tension forces needed to pull it from the 

sand mass during this brute force trial session of the experiment.  

The SS2 (with a 15-degree dihedral angle) is less influenced by surface tension type 

forces within the sand mass than SS1 because of the moderate slope of the bottom when 

buried. It has a P.O. % = 2.00 but exhibits the highest of the models pull out forces required. 

The larger ballast needed to insure positive buoyancy made this model have the heaviest 

tare weight in combination with the moderately sloping bottom. Although meniscus forces 

are somewhat mitigated by the dihedral angle of the model bottom, the results show that 

this still influences the resistance.  

The largest model, SS3 (with a 30-degree dihedral angle and a P.O. % = 1.77) is 

affected the least by capillary forces. Even though its weight is comparable to SS2 (65 lbs 

vs. 70.4 lbs.) and requires the deepest burial into the sand of the tank (see Fig. 20), it has 

less retraction force needed (as seen in the plot of Fig. 40) than SS2. This can be explained 

by the more “pointed” shape of the hull and its ability to be influenced by the granular 

nature of the sand which lacks cohesion and as indicated by its index properties shown in 

Section 6.6B. This is further discussed in Section 8.  Figures 40 is a plot of each of the 

three models as a function of their differences from the average pull-out values. 
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Fig. 40 – Pull-Out Differences from Average Variation  

 

Moving now to the liquefaction segment of the testing, it can be seen that the top 

time trace (in Fig. 35) is the pressure signature. Signature A is associated with the first 

blast, B with the second blast and C with the third blast. Comparing the signatures of the 

three models (SS1, SS2 and SS3), the reader can see that about the same time lapse 

occurred between signal-pairs. What is evident is that the intensity of the pressure wave 

(maximum peak-to-peak) decreases from A to C. We note that the actual blast pressure 

increase from A to C. The reason for this is presented in the next section, Section 8.  
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We are essentially producing a catalyst that results in a spread of pore water buildup 

from a point of application to the ambient field. This is actually the release mechanism that 

was observed during the experiments. The phenomenon can be seen in the following three 

plot figures showing the progressive effect of the Air-Cannon blasts averaged over all three 

models: 

 

Fig. 41a – Effect of Air Pressure Variations on the Pull-Out Ratio (SS1) during 

Liquefaction Segment 
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Fig. 41b – Effect of Air Pressure Variations on the Pull-Out Ratio (SS2) during 

Liquefaction Segment 
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Fig. 41c – Effect of Air Pressure Variations on the Pull-Out Ratio (SS3) during 

Liquefaction Segment 

 

Concerning the DA-88 multi-channel sound recorder: We saw the relationship 

between the release of the pressure-wave from the Air-Cannon and the recording of the 

event on the DA-88. From the standpoint of the observer, it was nearly instantaneous. After 

a time delay of approximately one minute between each blast, the tensiometer began a 

delayed response, as illustrated in the previous three figures.  In those figures, the reader 

can see the scenario of the event with each successive air blast.  
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8. DISCUSSION  

The study has several implications for naval ships and in the maritime industry. 

Naval vessel salvage operations could be enhanced once a grounding situation was 

assessed as to location and type. Depending on the nature and size of the cargo, it may be 

possible to aid in the regaining of the ship’s buoyancy by making use of blast – induced 

soil liquefaction techniques. Instead of exerting efforts directed at removing the ships 

contents (of particular importance when carrying certain types of liquids) in order to re-

float the ship or pulling on the hull during low – tide towing which could compromise the 

structure and jeopardize a bio – hazard incident as described in the events surrounding the 

TK Bremen previously mentioned (See Section 4.4 and Appendix B). 

As the depth of the sea bed increases, the hydrostatic pressure and the overburden 

pressure increase. The method of liquefaction becomes more difficult as the water depth 

increases since these pressures must be overcome in order to have the soil liquefy. In a 

grounded-ship situation, the embedment is relatively small, and the condition to be 

overcome is a near sea-bed surface condition.  

The results in Fig 37 are based on the value of the average pull-out force to the dry 

(or tare) weight. For models SS1, SS2 and SS3, the respective values of the ratio is seen to 

decrease. Those respective values are 2.38, 2.00 and 1.77 (From Table 4). This result is 

logical, since the flat surface has the highest suction force and relatively little side-wall 

friction. As the angles increase, the suction decreases and the side-wall friction increases. 

It must be noted that the side-wall friction is of second-order when compared to the suction 

force.  
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Another metric that can be ascertained from the baseline data is the relationship 

between the pull-out force and the soil contact surface areas for each of the models. This 

establishes the average pull-out pressures. Using the geometries and measurements from 

Table 1, Fig. 20 and the same P.O. % values from Table 4, the following are the pull-out 

pressures using the contact surface areas:  

 

Fig. 42 – Model Surface Contact Areas 
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Model A1  

[in2] 

A2 

[in2] 

A3 

[in2] 

A4 

[in2] 

Avg. 

Ten. 

[lb] 

SA 

[in2] 

Pull-Out 

Press.[psf] 

SS1 

00 Angle 

15 27 405 - 107.8 489 31.7 

SS2 

150 

Angle 

7.5 13.5 15 209+ 140.9 491 41.5 

SS3 

300 

Angle 

10.1 18.1 32.5 233.8 115.2 589 28.2 

 

Table 7 – Results for Model Surface Area Pull-Out Pressures 

 

There is a relationship among the pressure response signature, release mechanism 

and soil material. This is based on the fact that the soil particles move apart reducing the 

contact pressure, local liquefaction occurs and the model buoyancy is regained for the 

given section (cross-sectional) shape.  

There is a time limit to the altered liquefied state. That is, it returns to its’ pre-blast 

condition after a finite time.  The response to a blast differs as the time between blasts 

occurs. As described in Section 6, this is due to the successive separation of the sand. 

There is a threshold pressure of about 80 psi. That is, no substantial change was 

noticed if the pressure was below this value. The reader believes that this threshold value 

is a function of both the void ratio and the particle size. 
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 As the number of blasts increase, the sand itself became segregated. There was the 

phenomenon of dilatancy. This was demonstrated by the presence of fines on the water 

surface. These were either removed or mixed back into the sand.  

The experiment, although of small scale, is readily scalable to the prototype. The 

reason for this is that the grain size in the experiment is the same as that in full-scale. Hence, 

the liquefaction of the soil at the pressures-wave intensities studied herein are those that 

will liquefy the soil in full-scale.  
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9. PROJECTION FORWARD: CONCEPT-to-IMPLEMENTATION 

 With the findings of this study, a path forward to implementation of the BIL 

technique on full-scale ships can be conceptualized. In order go from model to prototype, 

a two-part process is follows. First, to “scale-up” the findings presented herein, a 

dimensional analysis of the phenomenon is performed. This is followed by a recommended 

practical implementation. 

 

9.1 Dimensional Analysis 

 In the areas of fluid mechanics, soil mechanics and acoustics, there are a number of 

dimensionless parameters that are available. In viscous fluid mechanics, the Reynolds 

number (the ratio of the inertial force to the viscous force) is used as an independent 

parameter. In this study, the viscous effects are extremely small. As a result, the Reynolds 

number is not considered to be to be relevant. When water waves are of consequence, the 

Froude number (from the ratio of the inertial force and the gravitational force) should be 

used. The surface waves produced by the blasting in this study are present, but extremely 

small. Hence, the Froude effects can be neglected. Since acoustics and vibrations are 

involved in the present study, a logical choice is the Strouhal number. Physically, this is a 

dimensionless frequency ratio (the ratio of unsteady inertial force to the convective inertial 

force). Here, the Strouhal number is defined as follows: 

   St = f D/c       (9.1) 

In this expression are the excitation frequency (f), the mean sand particle diameter (D) and 

the acoustic speed or celerity (c) in the soil. The Strouhal number represents a measure of 

the ratio of the inertial forces (due to the unsteadiness of the flow) to the inertial forces due 
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to the changes in velocity from one point to another in the flow field. We require that the 

Strouhal numbers for the model and prototype be equal. That is, we can write 

   Stm = Stp       (9.2) 

Following the normal process of dimensional analysis, divide eq. (9.2) by the prototype 

Strouhal number, and write the result in terms of scale factors. The result is as follows: 

  Stm/Stp = (fmDm/cm)/(fpDp/cp) = nf nL/nc = nL/ntnc=1   (9.3) 

Where nf = fm/fp = nt
-1 , nL=Lm/Lp etc. Next, consider the ratio of the mass-densities of the 

model and prototype soils. The ratio is as follows: 

  ρm  /ρp = nρ = np(nt /nc)
2= np(1/nt nc)

2     (9.4) 

In this equation, the scale factors (model/prototype) subscripts identify those of the 

pressures (p), Time (t) and acoustic wave speed (c). The length-scale factor (nL) is defined 

by the investigator, depending on the facilities available. Equations (9.3) and (9.4) provide 

the engineer with what is needed to scale-up the experimental results. In Equation (9.3), 

the frequency and time scale-factors are determined, since the length scale-factor is known 

and the phase-velocity scale-factor is determined by the soils in question. Finally, the 

pressure scale-factor in eq. (9.4) is determined. Physically, from our model-scale 

measurements, we can determine the required air-cannon pressure. In addition, any time-

lapse in the model experiments can be scaled to the prototype time-lapse since the time 

scale-factor is known. To converge on a more direct resolution of the dimensionless scaling 

parameters, the Buckingham Pi Theorem was used (see Appendix I for further explanation). 

To illustrate, consider the following example which is based on the model results in Fig. 

35. 
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Example: Scaling-Up to Prototype 

 In order to show how scaling is represented from model to prototype, the example 

selected and used is the recent ship grounding (2017) of the Panama flagged ARCA 1 

Bunkering Tanker which ran aground off Cape Breton in Nova Scotia which was on a 

course to sail from Mexico to Montreal. (www.cbc.ca/news/canada/nova-scotia/canadian-

coast-guard-tanker-arca-1-1.3928688). The ARCA 1 is 174 feet in length with a 36-foot 

beam and average draught of 12 feet with a DWT of 1,317 tons. 

 

Fig.43 – Bunkering Tanker ARCA 1 grounded off Cape Breton beach. Nova Scotia, 

Canada (from Fisheries and Oceans Canada: On-Line, 2017) 

 

Using the information from both the model geometry, testing records of the experiment 

and the ARCA 1 (example prototype) ship data we have: 

 

Lm = 2.25 ft; Lp = 174 ft → nL = 2.25 / 174 = 0.013 or a ± 1/75 length scale factor 
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Dm = Dp = 3.5 x 10-4 m = 1.1 x 10-4 ft (from sieve analysis; assumption that the particle 

diameters are nearly of same size between the soil modeling soil and those encountered at 

a grounding site) 

ρm = ρp = (100 lb/ft3) / g = 3.1 slugs (assumption, again, is that the soil mass density of 

the model sand and those encountered at the grounding site are nearly the same) 

fm = 200 Hz (predominant frequency from spectrums shown in Appendix H) 

 

cm = 762 m/sec = 2,500 ft/sec (acoustic soil celerity, text reference by Urick ) 

 

Stm = Stp = fm Dm / cm = (200)(1.1 x 10-4)/2,500 = 9.186 x 10-5  = Strouhal Number  

 

Pom = 100 psi = 0.7 psf (experiment average air cannon pressure for induced liquefaction) 

 

tom = 2 sec (air delivery average time from air cannon to buried diaphragm in the 

experiment) 

 

A second integral formula for use with the scaling from model to prototype is the  

 

Energy Flux Density of the soil which is again defined by Urick  as: 

 

 Eb = Po2 to / 2 ρ c        (9.5) 

 

Substituting for the celerity defined in Eq. 9.5 into Eq. 9.1 we now have: 

 

 St = [ f D Po
2 to / 2 ρ Eb ]m = [ f D Po

2 to / 2 ρ Eb ]p    (9.6) 

 

All of the variables listed in Eq. 9.6 on the left hand side (subscript: m) 

 

Re-writing Eq. 9.6 in terms of Eb from the left side yields : 

 

 Ebm = [ f D Po
2 to / 2 ρ St ]m        (9.7) 

 

Which is now a known value using the parameters defined above. 

 

Using the Strouhal relationship defined in Eq. 9.3 and Eq. 9.4 further defines: 

 

 1 = nL (np)
2 (Ebp/Ebm) (ρp/ρm) = nL (np)

2 (Ebp/Ebm)    (9.8) 
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Where (ρp/ρm)  = 1, again because of the assumption that the sand of the model and the 

sand found at the grounding site are nearly the same. 

Thus Eqs. 9.6 and 9.8 can now be written in terms of the prototype frequency that would 

be experienced at the grounding site and could be recorded as: 

 

 fp = 2 St ρ (Ebm / [nL Pm
2]) / Dp tp      (9.9) 

 

which resolves to fp = 15,979 Hz with all substitute values into Eq. 9.9 

 

Likewise using the other model parameters for other air cannon pressures and frequency: 

 

 fp90  = 14,896 Hz with fm = 200 Hz and Pm =   90 psi 

 

 fp110 = 18,351 Hz with fm = 200 Hz and Pm = 110 psi 

 

Another equality that can be used given Froude scaling for the dimensionless relationships 

is: 

 Pm / Pp = np = nL   → Pp = Pm / nL       (9.10) 

 

Which yields: 

 Pm = 90 psi   → Pp = 6,923 psi 

 Pm = 100 psi → Pp = 7,692 psi 

 Pm = 110 psi → Pp = 8,462 psi 

 

Using the values derived from Eq. 9.10 and plotting them graphically with similar 

values assumed for a smaller and a larger prototype gives: 
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Fig. 44 – Values for Field Scaled Pressures compared to the ARCA 1 Ship Example 

 

Another comparative metric for the scaling from model to prototype involves examining 

the vessel draft; T. The draft is reflective of the weight i.e. the amount of cargo, fuel, ballast 

etc. it is carrying since it is either floating shallower or deeper based on its’ weight. Fig. 45 

shows the midship sectional draft of a typical ship as described by Rawson and Tupper; 

Basic Ship Theory. 
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Fig. 45 – Draft Definition of Midship Section 

 

Embedment potential can then be compared between the model and the prototype in a 

similar manner to the length scaling procedure described previously. We will once again 

use the ARCA 1 example parameters as the prototype vessel. 

Tm = 2.5 in; Tp = (11.5)(12) in → nT = Tm / Tp =2.5 / 138 = 0.018  

or a ± 1/55.2 draft scale factor 

According to the naval geometric properties for the ARCA 1 (and with all actual ships), 

there are three given depths for draft defined as: Minimum Draft / Average Draft / 

Maximum Draft. These are (6.6 ft / 11.5 ft / 15.7 ft.). Once again, a dimensionless 

relationship can be scaled between the model and the prototype establishing blast air 

pressures required to induce liquefaction from the model data as follows in Fig. 46: 
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Fig. 46 – Ship Draft (depth) vs. Blast Pressure at the Site 

 

This draft metric is also in the same order as the length scaling derivation used earlier.  
 

 

9.2 Implementation  

 The technique makes use of a peripheral array of blast locations around a ship. This 

“planting” process of the blast/compression nozzles could be done by deploying a pre-

equipped vessel or vessel towing a pre-fitted barge (typical size) arrangement to the ship 

grounding location. The rescue vessel would have a shallow draft in order to be able to 

maneuver on the leeward side of the grounded ship between itself and the shoreline. Time 

response availability of these release measures is a key factor in the ship grounding 

scenario as stated previously in this study. “Time is of the essence …. you have to move 

fast. The longer that boat stays idle on the shoreline, the more precarious the situation 

becomes”- N.S. Municipal Regional District 8 Councilor – Amanda McDougall (Reference 

to the ARCA 1 grounding in Nova Scotia). The concept would be to have the required 

3227

5556

7692

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

6.6 11.5 15.7

P
ro

to
ty

p
e 

P
re

ss
u

re
 (

p
si

)

Ship Draft (feet)

Min. Avg. Max

.



97 

 

equipment onboard and be deployment-ready in order to be able to have a quick response 

to the ship grounding event. 

The vessel would have the following equipment in ready supply: 

1. Several high horsepower compressor(s); redundancy preferable. 

2. High pressure receiver tanks; minimum of three. 

3. Generator / independent power supply using onboard fuel supply. 

4. Reel or rack storage of flexible high-pressure hose or flexible/ductile pipe. 

5. Supply of submersible (rigid) nozzles that attach to the hose/pipe at various 

locations and frequencies. 

6. Several mounted air cannons that are connected to the compressor on the barge. 

7. A vibratory pile driving type hammer with an articulating head (such as a MoVax) 

to insert the nozzles several meters into the sand/soil matrix around the perimeter. 

8. Intermediate hose weights or tie-down (clump) anchors to keep the hose between 

the nozzles in position as the high pressure air blasts are administered from the air 

cannon to the planted nozzles around the perimeter of the grounded ship. 

9. General duty deck jib crane for various lifting and deployment activities. 

 

Fig. 47 shows a conceptualized representation of a grounded ship rescue operation with a 

Panamax class ISO container vessel. The distance between nozzles along the perimeter is 

shown as the beam (B) of the grounded ship at a distance of 1/3 to ½ the beam as the length 

away in order to induce the soil to liquefy in a suitable perimeter. Full scale tests performed 

at NGES (see Ashford, Rollins and Lane, 2004) indicate that a radius of influence for 

subsurface detonations (as indicated earlier) is site specific but corresponds to the range 
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around each blast nozzle conceptualized here. The magnitude of the blast does affect soil 

liquefaction which increases with multiple detonations as is viable with the technique used 

in this study. Further field tests would need to be carried out to verify these dimensions 

empirically. 

 

Fig. 47 - BIL Equipped Rescue Barge in Position Around a Grounded Ship 

 

 The barge itself would be well suited to have the capacity to be self-anchored, such 

as a spud-barge or jack-up barge, in order to resist the lateral air blast force administered 

by the air-cannon / compressors through the hose(s). A jack-up type barge may prove to be 

better suited considering that the wave climate on the seaward side of the stranded vessel 

could still be quite energetic following a storm event during the time attempted for the ship 

rescue. Multiple hose and compressors would be synchronized in at least two lines of the 

nozzles in order to better distribute the air pressure along the length. The air compressors 

and the air cannon(s) would have to be scaled up considerably because of the hose fill air 
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volume required and the related blast needed through each nozzle in order to induce 

liquefaction. The distance from the ship hull to the blast nozzles would have to be field-

determined based on the soil conditions and as guided from the positions used in the model 

tank relative to the ship models. Blast pressure and depth of the embedment could be scaled 

from ratios of those used in this experiment and from similarities in the soil properties of 

those surrounding the grounded ship. 

The cost to fit out and subsequently deploy a rapid-response vessel suited to 

administering the Blast Induced Liquefaction technique is far outweighed by the costs 

associated with grounded ship damages and environmental cleanup. The lack of a 

Grounded Ship response plan for marine cargo freight insurance is a costly part of doing 

business for vessels. On a marine cargo insurance company’s marquee page it states: 

  “Over the last couple of years, ocean cargo insurance has become more 

important because more ships are experiencing casualties …such as… 

•  Being stranded 

•  Some cargo has to be off loaded “ 

Information obtained during this research has shown that an average container ship pays 

as much as $1,000,000.00/yr/vessel for the lack of a grounded ship mitigation plan. The 

success of the method proposed by this work could seriously defray these costs throughout 

the marine industry and provide a great benefit. 

 The usefulness, as well as cost effectiveness, of this technique as applied to real 

world applications is considerable given that ship groundings present many negative 

impacts in the marine environment. It is the author’s belief that furthering this BIL research 
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work into an applicable means to more effectively aide in the release of grounded ships can 

be of true benefit in the future to the marine and nautical spheres. 
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10. CONCLUSIONS and RECOMMENDATIONS 

The purpose of the present study is to test the hypothesis that air-blasts can liquefy 

the sea-bed material beneath a grounded ship, thereby restoring the lost buoyancy of the 

ship. The lost buoyancy has been shown to be time-dependent – gradually disappearing 

over period of about 15 minutes. As discussed in Section 8, this time period would be the 

same on the prototype scale, since the grain size used in the present study is the same for 

the prototype. Furthermore, a method of introducing such an air blast is presented. 

The method of proving the hypothesis is experimental – the experiment being of 

relatively small-scale. In the experimental study, small-scale models of three ship sections 

are embedded and subsequently released by the air-blast method. The models are of flat-

bottom and two dihedral angles, 15-degrees and 30-degrees. The experiments are 

essentially two-dimensional and, therefore, simulate mid-ship sections of the ship. A 

method to scale experimental model results (which is performed on a prototype vessel of 

actual size) has been demonstrated within scaling limitations. 

In addition, the technique is somewhat “green” in that there are little or no 

environmental consequences and its’ use can prevent hazardous spills because of the 

relatively quick response availability. The effects of the air cannon blasts are localized 

around the grounded ship and their respective pressures are deterministic based on the 

scaling parameters demonstrated in this study. They are minimally invasive and the soil 

returns to its’ original condition after liquefaction in relatively short order. The blast 

technique prior to that introduced in this study was to use explosives. These do alter the 

ambient environment for a period of time and are much more detrimental to the vessel. 
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From the results presented previously, it has been shown that the blast technique is 

experimentally feasible for releasing grounded ships. This conclusion is made based on the 

typical force signal record presented and in the pressure trace plots in the Appendix. These 

results are then depicted graphically where it can be seen that the buoyancy increases 

corresponding to the pull-out force with each successive air blast. When the pull-out force 

is zeroed, liquefaction is achieved and the model in question is totally buoyant and free to 

sail. 

Additional future work related to this study should be a larger implementation of 

this BIL technique utilizing a larger tank and bigger models. This would further assist in 

defining the parameters used to scale the results in this experiment. 

It is further recommended to perform the proposed BIL release method on a full 

size grounded ship using the scaling parameters derived during this present study. 
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APPENDIX 

 

Appendix A: Experimental Photograph Record 

 The sequence of events in the construction and utilization of the experimental tank 

and ancillary equipment are presented in this appendix. The reason for doing so is that the 

reader can gain some idea of the processes and how these produced the experimental 

results. The photographs were taken over a two-year span: from 2012 through 2014. The 

photographs are presented in their chronological order. The P in the photographic number 

simply means “picture”. The photographic record follows: 
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2012 

         

P12-01      P12-02      P12-03 

         

P12-04        P12-05           P12-06 

        
P12-07        P12-08           P12-09 

 

         

P12-10        P12-11           P12-12
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P12-13       P12-14       P12-15 

                     

P12-16             P12-17      P12-18 

         

P12-19    P12-20        P12-21 

         

P12-22     P12-23     P12-24 
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P12-25      P12-26     P12-27 

         

P-12-28      P12-29      P12-30 

         

P12-31        P12-32      P12-33 

           

P12-34        P12-35      P12-36
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P12-37    P12-38    P12-39 

         

P12-40    P12-41    P12-42 

         

P12-43     P12-44   P12-45 

         

P12-46      P12-47     P12-48 
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P12-49      P12-50       P12-51 

         

P12-52        P12-53    P12-54 

         

P12-55     P12-56   P12-57 

         

P12-58        P12-59   P12-60 
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P12-61    P12-62            P12-63 

         

P12-64       P12-65     P12-66 

         

P12-67        P12-68       P12-69 

         

P12-70    P12-71     P12-72
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P12-73        P12-74      P12-75 

         

P12-76        P12-77       P12-78 

         

P12-79        P12-80        P12-81 

         

P12-82     P12-83      P12-84 
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P12-85     P12-86    P12-87 

         

P12-88     P12-89    P12-90 

         

P12-91        P12-92      P12-93 

         

P12-94     P12-95    P12-96 
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2013 

         

P13-01    P13-02      P13-03 

         

P13-04        P13-05     P13-06 

         

P13-07       P13-08     P13-09 

         

P13-10      P13-11      P13-12 
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P13-13      P13-14      P13-15 

         

P13-16       P13-17      P13-18 

         

P13-19     P13-20     P13-21 

         

P13-22    P13-23     P13-24 
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P13-25      P13-26      P13-27 

         

P13-28       P13-29       P13-30 

         

P13-31     P13-32      P13-33 

         

P13-34       P13-35     P13-36 
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P13-37      P13-38     P13-39 

         

P13-40        P13-41       P13-42 

         

 

P13-43    P13-44     P13-45 

 

         

P13-46        P13-47       P13-48 
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2014 

         

P14-01     P14-02      P14-03 

         

P14-04    P14-05     P14-06 

         

P14-07    P14-08      P14-09 
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P14-10        P14-11           P14-12 

         

P14-13        P14-14     P14-15 

         

P14-16     P14-17     P14-18  
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Appendix B: Sample Case Studies 

In the following case studies of ship groundings, considerable financial losses were 

incurred, as well as delays in delivering and unloading the cargo that remained undamaged. 

The financial repercussions were substantial and amounted to many times the value of the 

vessels themselves. Fortunately, several of the referenced ships did not end up releasing 

any hazardous materials to the environment, although the risk was certainly present. Other 

ship grounding incidents have not been as environmentally fortunate and have been proven 

to be detrimental in terms of oil or hazmat spills. See, for example, the discussion and 

analysis by Hudson (2001) in the case of the M/V New Carissa (see ref.) off the coast of 

Oregon and the previously mentioned case of the T.K. Bremen detailed below. 

 

Case 1 – M/V Pasha Bulker: Another similar case grounding is that of the M/V Pasha 

Bulker, a Panamax bulk carrier off the coal port of NewCastle Harbor, South Wales, 

Australia. The Pasha Bulker was a 738’ L, 76,741 DWT commodities carrier that was 

driven aground under power with anchorage complications in heavy seas of four meter 

storm waves. Within hours of the grounding, the outer shell of the ship’s double hull was 

breached and taking on water. Once fully aground and driven alongshore, the 23 man crew 

has to be rescued by Westpac Rescue Helicopter - seen here in Fig. B1 while air lifting a 

crew member from the deck in an emergency response rescue. 
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Fig. B1 - M/V Pasha Bulker Taking on Heavy Seas (from 1233 ABC Newcastle 

News, “M/V Pasha Bulker Grounding”, On-Line, 2012) 

 

The ship underwent three attempts to dislodge it from the shore over the next month 

after unloading and salvage operations. It was finally refloated during a seasonal high-tide 

event and had temporary repairs done off Australia in order to make it transportable.  

             

Fig. B2 - M/V Pasha Bulker Grounded off the coast of Nobbys Beach, Australia, 

(from 1233 ABC Newcastle News, “M/V Pasha Bulker Grounding”, On-Line, 2012) 

 

https://www.bing.com/images/search?q=pasha+bulker+grounding&view=detailv2&qpvt=pasha+bulker+grounding&id=AB1B3B5DE9B1DB72C3CDB99DD730036AAB5EA477&selectedIndex=2&ccid=VPU96Y6h&simid=607987170644004629&thid=OIP.M54f53de98ea1f85d5b7bd311442a2126o0
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It was eventually towed back to Japan where it had extensive structural repairs done at 

great cost and down time. The Pasha Bulker was sold by the former owners for undisclosed 

reasons the following year. 

 

Case 2 – TK Bremen: As previously referenced in Chapter 1, the bulk commodities and 

cargo carrier TK Bremen grounding in Lorient, France in 2011 caused French coastal 

authorities to enact offloading and salvaging procedures for the crew and subsequently for 

the cargo. Part of the cargo was liquid fuel oil that began immediately leaking with the 

grounding of the ship. 

 

Fig. B3 – TK Bremen is Stranded on Kerminihy beach. Rescue Measures begun. (from 

Marine Nationale: “T. K. Bremen Grounding”, On-Line, 2011) 

 

Breaking waves in the nearshore and at the beach drove the TK Bremen to a fully 

stranded alongshore position causing dune and backshore environmental contamination 

with the spilled fuel oil which triggered weeks of beach cleanup by workers and 

firefighters. The vessel was deemed impossible to refloat in its’ completely stranded final 

condition on the Kerminity beach and was broken apart for removal three weeks later. 
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Fig. B4 – TK Bremen is Broken Apart on January  7, 2012 at Erdeven, France (from 

Marine Nationale: “T. K. Bremen Grounding”, On-Line, 2011) 

 

The TK Bremen was a total loss for its’ owners and posed hazards in many ways to the 

French authorities. 

 

Case 3 – M/V Victoria: In July of 2016, the Liberian-flagged bulk carrier, the 46,000 

DWT M/V Victoria ran aground at Fladen, some 15 nautical miles from the Swedish coast 

at Varberg. The vessel was loaded with wheat and was on route from Rostock in Germany 

to Guinea. 
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Fig. B5 – Liberian Flagged M/V Victoria Grounded at Fladen (from World Maritime 

News: M/V Victoria Grounding,” On-Line, 2016) 

 

The Coast Guard suspected that there was a possibility of structural hull damage and so 

divers were dispatched to examine the vessel’s bottom and found a 19 foot tear. There were 

no oil spills recorded but prior to salvage maneuvers were to begin, it was decided to 

remove the fuel oil in order to stabilize the bulker. Two emergency vessels were standing 

by to help in case there was a need to respond to a potential oil or environmental 

emergency.   
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F 

Fig. B6 - Tug Towing / Fuel Unloading following to Night-Time Salvage Attempts (from 

World Maritime News: M/V Victoria Grounding,” On-Line, 2016) 

 

Attempts to pull the ship free prior to unloading were deemed hazardous. At last report the 

ship remained grounded for 5 days until weather allowed the fuel to be unloaded. 

 

  

http://i.imgur.com/1uvZblG.jpg
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Appendix C: Design and Construction of the Experimental Equipment 

Model Tank Construction: The support structure of the tank is a wood-base frame and 

top rail. The base of the tank is a frame with intermediate members in both the horizontal 

coordinate directions to distribute the water and sand loads on the impermeable Lexan 

bottom. The tank perimeter is composed of wood members (nominal 2” x 4” lumber) that 

are placed on the inside and outside of the tank wall to form the outer sides.  

             

Fig. C1 – Tank During Construction and Water Leak Testing

 

Each sidewall base frame member is through-bolted along the edges using ¼” diameter 

bolts with nuts/washers. This system forms a stiffened horizontal tank sidewall support at 

the base along the entire perimeter. The top rail is similar, but runs along the outside and 

is attached to the Lexan wall with wood screws. The corners of the tank are attached with 

square acrylic bar-stock members that are vertically bolted in opposing directions through 

the adjacent Lexan sidewalls along the tank height. All fasteners used are stainless steel. 
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Fig. C2 – Model Tank Schematic with Sidewall Stiffeners 

 

The assembly of the tank was done by, first, gluing all adjoining Lexan parts 

together and, then, caulking all the wetted perimeter corners. The glue used was Weld-On 

#16  Plexiglas Low VOC fabrication adhesive in tube form for acrylics. A 100% pure 
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silicone adhesive caulk was used at all locations where a watertight seal was required. This 

included all bolt hole and screw penetrations. 

 

 

Fig. C3 – Completed Model Tank with Lexan Sides, Stiffeners and Tension Cable 

 

There is a mid-height cable assembly attached around the perimeter of the tank 

walls. This is to provide an inward hoop confinement force on the tank, since the latter 

stages of the experiment involve the use of compressed air blasts within the soil mass. This 

(multi-strand) cable assembly has thimbles at each end with clamps joined by an adjustable 

tension turnbuckle. The tank has exterior sidewall Lexan block mounts for the cable, 

designed to place equal distributed inward pressure forces at the corners of the tank, as the 

turnbuckle is tightened. 

Four wooden vertical stiffener units were placed on the outside of the tank walls at 

the midpoints.  These stiffeners transfer internal water and sand induced pressures that are 

strongest at the middle of the long sides of the tank, back to the lower platform in order to 

relieve long-axis bending stress. The units account for the anticipated forces during 
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repeated model trials, and allow the cable assembly to pass through while supporting the 

sidewalls. Each of these stiffeners is mechanically fastened to the tank and the platform. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. C4 – Ship Models showing Geometry and Embedment Lines 

 

Ship Models: The models were each constructed with an inside wooden frame. This frame 

was the structural interior portion of the model onto which the outside rigid foam exterior 

and the various ballast were attached and set on. The size of the wooden frame in each case 
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was 12”H x 24”L x 12”D. The addition of the 1-1/2” rigid exterior skin (Owens-Corning 

Foamular rigid board insulation) to these frames made up the final sizes of the models as 

described earlier in Fig. 19. The frames were assembled from 1 x 2 top and bottom rails 

connected by ½” plywood ends and center panels. These plywood connector panels, glued 

with construction adhesive (Liquid Nails) and joined with wood screws, made the whole 

assembly rigid in all directions. 

 

Fig. C5 – Ship Model Wooden Subframe Construction 

 

Attachment of the rigid foam skin to the frame needed to be done without puncturing the 

surfaces in order to keep the models ultimately as watertight as possible. This was done by 

attaching the insulation to the wood frame using a glue that would not damage nor react 

chemically with the insulation. A glue specially made for this purpose was identified and 

used which was: Loctite PL 300 foam-friendly adhesive. This gluing/attachment process 

of the foam to the frame had to be done accurately and securely and so nylon strap-chains 
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were used to pull the foam tightly against the subframe while the glue set up. See Fig. C6 

(seen additionally in more detail in Photo Record images P12-22 through P12-39) 

 

Fig. C6 – Model Foam Gluing Procedure with Nylon Strap-Chains 

 

 In order to provide long-term lifting capabilities, each model was assembled with 

four lifting eyebolts at the corners. These eyebolts attach to threaded rods with couplers 

extending down through the top and bottom rails of the frame. These can be seen in Fig C4 

for each of the models as well as in Fig. 33. The bottom connections had to engage not 

only the frame but also the bottom layer of rigid insulation through more than just glue 

attachment. This was accomplished by placing flat aluminum straps into the foam which 

the threaded rods were connected through as seen in the diagram of Fig. C7. These (two) 

straps distribute the tensile loads transmitted through the eyebolt/threaded rod/coupler 

assemblies during lifting and pull-testing. The eyebolt/rod assembles were equidistant from 

the centers of gravity for achieving equal tension on the lanyard through each lift/pull 

exercise. 
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Fig. C7 – Section of Model Subframe with Aluminum Straps and Eyebolt Rod Assembly 

 

The bottom of the models needed to be planar with no irregularities caused by the 

installation of these pull straps. To account for this, fitted pieces of foam were glued over 

the sections where the grooves were cut for the aluminum straps. These were sanded and 

eventually covered over with fiberglassing mesh in the final stages of their construction. 

The end result was that there was no indication of the recesses for the strap pulls in any of 

the bottoms. 
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Cofferdam and Vibrator System: The force required to insert the bottom edges of the 

cofferdam into the sand during model burial and pull trials was significant and proved to 

be difficult as well as intrusive to the setup. A vibrator and PVC side-slide mount assembly 

was added for use in assisting with this effort. Seen below in Fig. C8 is the vibrator and 

PVC side mounts on either side of the cofferdam as an insertion operation is carried out: 

 

Fig. C8 – Vibrator Used with Sideslide Mounts for Insertion of Cofferdam into Tank 

Sand  

 

There were many model trials to done as the main body of work with a multitude 

of burials in the tank sand. To facilitate these many ongoing operations, a means to quickly 

and easily excavate the wet and saturated sand from the inside of the cofferdam was needed. 

A device was built for this purpose that incorporated a 2-1/2” diameter screw that was 

inserted into a 3” diameter PVC pipe and able to be operated with a drill from the top. The 

screw base was dropped deep into the cofferdam and the wet sand was drawn up the wide 

threads spaces to a side exit port. This enabled the sand to be mechanically evacuated 

during the many model burials that were done in both the Baseline and Blast Test phases 

of the experiment. 



132 

 

 

Fig. C9 – Screw Dredge for Sand Removal during Model Trials 

 

The screw was made of several garden variety earth bulb cutter screws that had to 

be cut and re-welded to accommodate the length and screw line for sand withdrawal needed 

to fit the cofferdam depth and model(s) draft requirements. 

Reaction Frame: The reaction frame was built as a roll-over assembly integral to 

the size of the tank and the maneuverability of the ship models. It was essential for this to 

be able to be retracted and re-situated over the tank and base for operational setup as well 

as access during the procedures. 

The design of the frame is such that it accommodates all the vertical space 

requirements of the deepest-draft ship model while being able to be placed over the tank. 

The entire reaction frame is constructed of timber members with the exception of some 

structural steel corner attachment angles. It is designed with locking casters for ease in 

positioning and to be stationary during operation. This makes the frame somewhat portable 

for use in rigging the models over the floor area when setting up each trial. The frame has 

a structural 6” overhead (double 2” x 6” with plywood flitch plate) beam attached to two 

side (4” x 4”) columns. Lumber used was Southern Pine No. 2. A pulley and locking rope 
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winch assembly were attached to the beam center and onto the left column respectively. 

The sides of the reaction frame were attached with spanning walk-planks from side to side. 

These planks bridge the tank when in position, and are designed to support a two-man load 

at any location. To provide an access over the water areas of the tank, there are two mobile 

crosswalk planks that are maneuverable between the primary walk-planks. The reaction 

frame also served as a staging and mount for the compressed air cannon during the model 

blast testing phase of the experiment. 

 

 

Fig. C10 – Reaction Frame in Mobile Position Over Model Tank 
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Appendix D: Additional Equipment Listing  

All the ancillary equipment listed in the table in this appendix was essential to the 

work needed to be done and were either built specifically in combination with other 

standard equipment or directly during the course of the experiment. Many other pieces 

were built along the way which proved to be less effective for specific needs and were 

abandoned and replaced by others that better fit the needs at that point. One such item was 

a sand scoop for use in the cofferdam to evacuate the sand during model embedment 

operations. It is seen in the photo record images P12-84, 85 and 86. Once this was 

completed and tested for use, it was found to not work as well as planned and another tool 

for the purpose of sand evacuation had to be devised. This lead to the design and building 

of the sand dredge shown in the following table which proved to be quicker and able to be 

used with greater ease. 

 In general, pieces of ancillary equipment were added along the course of the 

experiment out of necessity in order to carry out successive steps. Certain things like the 

rope winch and pulley were anticipated but the specific way they needed to be attached and 

placed for repeated operations was not known until the reaction frame was fully built and 

able to integrate with the model tank setup. Several versions of the compressor / tank were 

tried before the moveable station (gray painted) cart was built as seen in the table. In fact, 

this is actually the second compressor we used since the first one (shown in P12-94 image) 

was not powerful enough to supply the air pressure needed once the blast tests were 

underway.  

 Another example was the way of inserting the cofferdam into the sand of the tank 

which proved to be more difficult than expected. Even when standing on the top of the 
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edges with full body weight while the cofferdam was to be inserted, it was not able to be 

sunk into the wet sand to the required depth for use with the ship models. Additional 

striking with a sledge hammer on a wooden block was also not enough to get it into 

position. It was then researched and found out that a vibratory means of sinking it into 

position could work. A handheld flexible shaft mechanical concrete vibrator was acquired 

that fit the constraints of the tank and frame. We then added side PVC mounts to the 

cofferdam for use with the vibrator (see P13-10,11). This proved to work well once it was 

tested and was then used throughout.  

 A lanyard was made using ¼” nylon rope for use in hoisting all the models from 

the tank. It has woven rope ends that have a swivel eye and snap spring with cinch knots 

(www.fishinglakes.com/knots.htm) at each end. This was used on all the models (seen, for 

example, in P13-33) and had sufficient tensile strength to be used repeatedly over the 

duration of all testing. 

 In the 2012 timeframe, a series of trials were done using low capacity explosives in 

saturated sand. This involved waterproofing the charges and the fuses and a way to ignite 

them remotely. After several weeks of variations on this, the concept of using compressed 

air and the air cannon in-lieu of explosive charges (like the method employed in the papers 

by Fragaszy et al in the ref. section) was arrived at and ultimately used in this study. 

 In the setup of the model tests in the tank for both the baseline and the blast testing, 

the consistency of the sand/water mix had to be maintained. Several types of paddles were 

used in conjunction with an electric drill to facilitate this. The mixing process was 

necessary since the tank sand tended to dry out during the times between testing (normally 

a week) and water was added at the outset of each reset on the weekends during which 
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operations commenced. This was modulated by measuring and adjusting the tank water 

level with the hose and spigot in the corner viewport area (seen in P12-91, P13-08 and in 

Fig.32).    
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Item Description Photo 

Compressor/Tank For pressurizing the Air 

Cannon during the blast phase 

of the experiment.  

Tensiometer Placed at the base of the rope 

pull assembly for reading of 

weighs and tension on the 

models in the tank. 

 

Rope Winch/Crank Attached to the left side off the 

reaction frame for lifting and 

pulling. 

 

 

 

Pulley Placed at top of reaction frame 

for rope tension transfer from 

winch.  

Vibrator Used in embedding the 

cofferdam into the sand to 

place all models in tank. 
 

Sand Screw Dredge Used to excavate sand during 

model burial operations. 
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Appendix E: Sound Recording Equipment Diagrams 
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TASCAM DA-88 
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DA – 88 Front and Rear Panels 
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Front Panel Indicators 
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Front Panel Indicators 
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Front Panel Indicators 
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Front and Rear Panel Indicators 
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Rear Panel Indicators 
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Hookup Schematic 
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Appendix F: Hydrophone Construction Design 

The hydrophones for this study were assembled and built from the parts of the guidelines 

and instructions referenced in this appendix. They were built over several weeks’ time 

and as also seen in Fig. 30.  

Hydrophone Build Instructions 
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Parts List 
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Wiring Preparations 
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Wiring Preparations 
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COSEE TEK – University of Connecticut – Hydrophone Build Instructions (Con’t) 

 

Hydrophone Assembly 
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Hydrophone Assembly 
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Hydrophone Assembly 
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Battery Assembly 
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Battery Assembly (Con’t) 
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Battery Assembly (Con’t) 
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Final Hydrophone Assembly 
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Final Assembly (Con’t) 

 



159 

 

Appendix G: Model Testing Log Sheets (Baseline and Blast Test) 

The following two figures represent sample field logs for each of the two main parts 

of the experiment. One for the baseline (pull-out or brute force, designated as Part I) test 

in Fig. G1 and the other for the blast test (designated as Part II) in Fig. G2. These two are 

included only to show one example of each of the test results recorded at the times of each 

trail. There are many other sheets of similar data records that were taken each time any 

testing work was performed which were not included here. For the baseline tests, thirty 

trials were performed and for the blast tests, eighteen trails were carried out. The recaps of 

all these are shown for the baseline tests in Table 5. Similarly, for the blast tests, the data 

is recapped in Table 6. 

 Baseline tests were set up and carried out such that up to as many as three trials per 

working day could be successfully concluded. In the cases of the blast test phases, a 

maximum of one trail was set up and concluded in any working day. The timeframe for 

carrying out the baseline trails was between June 23, 2013 and November 3, 2013. The 

timeframe in which the blast tests were performed was between March 8, 2014 and August 

3, 2014. 
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Fig. G1 – Typical Baseline (Pullout) Test Field Record 
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Fig G2 – Typical Blast (Compressed Air) Test Field Record 
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Appendix H: Pressure Trace Plots and Spectrum Plots 

 The following images are the blast pressure traces recorded at each of the four  

 

hydrophones (microphones) within the tank at each blast. Their locations are labeled 

below: 

 

 
There were various (longer) time lengths between each blast as originally recorded on the 

DA-88 raw tapes. In order to provide more comparative visualization of these record blasts, 

the non-essential time lags between each were edited out and the blast signatures were 

digitally aligned as now can be seen in the MATHCAD Software generated graphs of Figs 

H1- H18. The Time (horizontal axes) and pressure record Amplitude (vertical axes) are 

scaled relative to each other and to each microphone but do not correspond to actual time-

length and pressure. These can be seen from the field notes recapped in Table 6. 
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 The spectrum plots at the latter part of the appendix are showing frequency content 

of the blast signatures on a per-hydrophone (microphone) basis. 

 



164 

 

 
 

Fig. H1 - Tape No.1, Blasts 1, 2 and 3 
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Fig. H2 -  Tape No.2, Blasts 1, 2 and 3 
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Fig. H3 - Tape No. 3, Blast 1 
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Fig. H4: Tape No. 4, Blasts 1, 2 and 3 
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Fig.  H5 - Tape No. 5, Blasts 1, 2 and 3 
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Fig. H6 - Tape No. 7, Blasts 1, 2, 3, 4 and 5 
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Fig. H7 - Tape No.8, Blasts 1, 2, and 3 



171 

 

 

 
 

Figure H8 - Tape No. 9, Blasts 1 and 2 
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Fig. H9 - Tape No. 10, Blasts 1, 2, and 3 
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Fig. H10 - Tape No. 11, Blasts 1, 2, and  3 
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Fig. H11 - Tape No. 12, Blasts 1, 2, and 3 
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Fig. H12 - Tape No. 13, Blasts 1, 2, 3 and 4 



176 

 

 

 
 

Fig. H13 - Tape No. 14, Blasts 1, 2, 3 and 4 
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Fig. H14 - Tape No. 15, Blasts 1, 2, 3 and 4 
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Fig. H15 - Tape No. 16, Blasts 1, 2, 3 and 4 
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Fig. H16 - Tape No. 17, Blasts 1, 2, 3, 4 and 5 
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Fig. H17 - Tape No. 18, Blasts 1, 2, 3 and 4 
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Spectrum Frequency Plots 
 

          

 
 

Tape 1 Blast 1 Mic. 1 (Ex1.1-01)       Tape 1 Blast 1 Mic. 2 (Ex1.1-02) 
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Tape 1 Blast 1 Mic. 3 (Ex1.1-03)        Tape 1 Blast 1 Mic. 4 (Ex1.1-04) 
 

Fig. H18 - Gaussian Spectrum Log Plots of Tape 1 Blast 1 on all 4 Hydrophones 

 

Corresponds to the pressure trace plot in Fig. H1 for the first of the three recorded blasts. 
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Appendix I: Results Description related to the Theorem of Buckingham Pi 

Dimensional analysis is a means of simplifying a physical problem by appealing to 

dimensional homogeneity to reduce the number of relevant variables.   

The theorem originates from the work of American engineer E. Buckingham who made use 

of the symbol, π, for the dimensionless variables in his original 1914 paper. The basic idea 

of the theorem is that relations between natural quantities can be expressed in an equivalent 

form that is comprised entirely of dimensionless quantities. It is particularly useful for: 

• presenting and interpreting experimental data  

• resolving problems not as manageable to a direct theoretical solution  

• checking equations  

• establishing the relative importance of particular physical phenomena 

•  physical modelling  

In engineering, particularly in the field of Fluid Mechanics, as well as applied mathematics 

and physics, the Buckingham π theorem is a key theorem in dimensional analysis. It is a 

formalization of Rayleigh's method of dimensional analysis.  

Loosely, the theorem states that if there is a physically meaningful equation involving a 

certain number, n, physical variables, it follows that the original equation can be reduced 

in terms of a set of p = n − k dimensionless parameters named as π1, π2, ..., πp constructed 

from these original variables, where k is the minimum number of reference dimensions 

needed to describe the variables. The dimensionless products are frequently referred to as 

“pi terms”. 

https://en.wikipedia.org/wiki/Theorem
https://en.wikipedia.org/wiki/Dimensional_analysis
https://en.wikipedia.org/wiki/Rayleigh%27s_method_of_dimensional_analysis
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The theorem can be seen as a scheme for non-dimensionalization because it provides a 

method for computing sets of dimensionless parameters from the given variables, even if 

the form of the equation is still unknown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Nondimensionalization
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