
A Convex Optimization Approach for AddressingStorage-Communication Tradeo�s in Multicast EncryptionRadha PoovendranCS TR # 4082fradhag@isr.umd.eduDept. of Electrical and Computer EngineeringUniversity of Maryland, College Park, MD 20742, USAAbstractIn Eurocrypt'99, Canetti, Malkin, and Nissim [1] presented a new tree based key distribution algorithmthat required O(log n) (n is the group size) key update communications and key storage of O( nlog n ).The results in [1] are known to be the �rst results presenting the sub-linear storage among the familyof tree based key distribution schemes. The question of whether this storage was the possible optimalvalue while keeping the communication as O(log n) was posed as a problem.We show that the storage-communication tradeo� can be formulated as a convex optimization prob-lem in terms of the size of the minimal storage parameter de�ned in [1]. In particular, we show that theoptimal solution is parameterizable by the ratio of the communication and storage costs denoted �, thedegree of the tree denoted a, and the group size n. Using this design triplet (a; n; �), we show that notonly the results in [1] but also the results of the basic scheme of Wallner, Harder, and Agee [2] can bederived as speci�c Pareto optimal points for speci�c choice of the triplet (a; n; �). We also present anexact design procedure for feasibility testing and constructing optimal key distribution tree of the typein [1].We also show that if the communication and the storage are equally weighted, then the optimal valuefor storage and communication is O(pn), a value noted in [1].Key Words: Multicast Security, Key Distribution, Trees, Convex Optimization1 IntroductionIn order to reduce the sender and the network resources, secure multicast encryption requires all the groupmembers to share a single data encryption key called the group key [2, 1, 18, 12, 13, 17, 11]. In order toprotect the access to group communication, the group key needs to be updated whenever a member leavesor joins the group. Most of the recent literature assumes that there is a single group controller that isresponsible for key distribution [2, 1, 3]. We make the same assumption in this paper. Whenever there ismembership change, the group controller needs to perform re-keying to protect the integrity of the groupcommunication. The focus of recent e�orts has been to provide e�cient schemes for re-keying.1.1 Re-keying ProblemThe re-keying problem is to distribute the new group keys such that only the valid members of the groupreceive the updated group keys. Since the new group key needs to be encrypted using a key encrypting1



key and then transmitted, the problem of group key updating is related to the problem of distributing thekey encrypting keys [2, 1, 3]. We now illustrate the re-keying problem by a set of well known examplesthat illustrate the extremes in [2, 1, 3].If the group is such that no member leaves the group during session lifetime, but new members may jointhe group, re-keying is solved by two key updates with the storage requirement of two keys at the controllerand at the user side. The group center assigns a key K as the group key, and K 0 as the updated group key.The group center encrypts the updated group key K 0 with the public key of the new member, and withthe group key K. These two encryptions will allow the key update for the entire group. Here, the numberof keys to be stored by the sender and the receivers is two. The number of encryption and the updates isalso two.If the group has members that also leave in the middle of the session, this approach will not providecommunication integrity for the valid members. Since all the valid members have access to the groupkey, if a member leaves the group, the group center has to use a key that is not accessible to the leavingmember. In the absence of any other shared key, the group center can use individual public keys of thevalid members. For a group size of n, this requires (n-1) encryptions each time a member leaves the group.Instead of using public keys, the group center may also establish unique individual key encrypting key witheach member. At the time of a single member leave, the group center has to encrypt the new group withthe shared key of the individual members. This approach requires two keys to be stored at the user end,(n +1) keys to be stored at the group center, and requires (n-1) encryptions when a member leaves.If the number of encryption at the group center and the use of network resources have to be reduced ateach member leave, the group center can construct all possible subsets of users. There are 2n such subsets.Once these sets have been formed, each set is assigned a unique key encrypting key. When a memberleaves the group, the group center identi�es the subset that doesn't contain the leaving member and usesthe corresponding key encrypting key to update the group keys to the rest of the members. This schemerequires a single encryption. However,it requires at least 2n keys to be stored by the group center and 2n�1keys to be stored by every user. Finding intermediate solutions that provide e�cient tradeo�s betweenthe storage and communication1(related to the number of update encryptions) has been the most activelyresearched area in the literature [2, 1, 3].The re-keying problem is thus reduced in [2, 1, 3] to the problem of �nding e�cient key encrypting keydistributions.1.2 Our ResultsOur approach is based on the observation that the amount of communication (encryption) and the keystorage requirements can be expressed as functions of the parameters de�ning a key distribution scheme.For any key distribution scheme, the cost for the total storage and the update communication also areknown and need to be kept as low as possible. We use �1 to denote the unit cost of storage, and �2 todenote the unit cost of communication. We then de�ne a triplet denoted (a; n; �), where a is the degree ofthe tree, n is the group size, and � is the ratio of the communication and the key storage cost. We thenconstruct a weighted cost function that contains the costs of key storage and the update communicationmessages. We then show that this cost function is a convex function in terms of the parameters used in [1].1Network Related E�ciency Parameters: We note that the storage and the communication are not the only parametersfor measuring e�ciency. Since the communication is over a network that possibly has multiple services, network parameterssuch as (1) bandwidth, (2) amount of the input queuing, and (3) queue priorities also play a major role in time e�ciency of are-keying scheme. 2



Since a convex function has unique minima with respect to the parameter of interest, we show that theproposed sub-linear storage approach in [1] corresponds to a unique optimal solution with respect thevariable that optimizes the cost function. We then analytically solve for the parameter of interest explicitlyinter-Ms of the triplet (a; n; �). Hence, given the triplet, the design of the optimal tree is completely speci�edif there is no additional relationship between the parameters. This formulation helps not only in designingan optimal tree, but also in deciding the explicit costs of storage and the update communication of theoptimal tree! Hence, given a tree design, one can identify if it is an optimal one and further improve thedesign. We illustrate the generality of our approach by showing how to design the currently known optimalschemes. We show that each of these schemes correspond to a speci�c cost choice on the Pareto curveparameterized by the triplet (a; n; �). Interestingly, it is the relative ratio of the costs that plays a role inthe optimal design and not the speci�c numerical value.Using our results, we show how to derive the results in [2] as a special case. We then show how to constructa variety of sub-linear solutions. We note that if the storage and communication are equally weighted, theoptimal solution for communication and storage is of the order of O(pn). We also note that our approachwill allow for systematic parameter selection for the tradeo�s. We then generalize the results and derive acondition under which it is possible to develop a unique optimal solution.The paper is organized as follows: Section two presents related work excluding [1]. Section three presentthe modi�ed tree based scheme proposed by [1]. Section four presents our formulation of the problem andthe derivation of the optimal solution. Section �ve then shows how to derive the basic tree based schemein [2] and square root storage-communication schemes. Section six shows how to construct optimal treeswith sub-linear storage [1] and also how to test if a given sub-linear storage tree is really optimal withrespect to the Pareto triplet (a; n; �).2 Prior WorkIn [6, 7], communication and storage tradeo�s were studied with information rate as a de�ning quantity.In particular, these schemes use unconditional or information theoretic security and characterize the lowerand upper bounds of the key distribution requirements. In [14], bounds on the broadcast encryption weredeveloped using combinatorial methods. In particular, authors showed that there is a tradeo� between thecommunication and the storage with no simultaneous minimization of both these quantities being feasible.In [9], Fiat and Naor presented a variety of techniques that captures several possible variations of broadcastkey distribution. They also presented a broadcast encryption model that can be collusion free up to a pre-speci�ed number of group members. Under their model, joining and leaving of members didn't involvecomputations for the rest of the members. The threshold number of members who can break the schemewas however tied to the model.In [15], an extension to the approach in [9] was given using the theory of error correcting codes as the basis.The scheme requiredO(log n) communications with polynomials and O(k2) with Algebraic geometric codeswhere k being the number of excluded users. Due to the use of error correcting codes, the method in [15]can also correct errors in transmission under noise.In [2, 17] a binary tree based scheme that provides key distribution was proposed. In this scheme, for agiven set of n users, a logical tree of depth log n was constructed. Each member of the group was assignedto a unique leaf of the tree. All the nodes including the leafs and the root were treated as place holdersof intermediate keys. The key assignment then proceeded as follows: for a member assigned to a leaf, theset of keys assigned to all the nodes along the path from that leaf to the root were assigned to a member.3



Each of the members was assigned a unique set of keys so that the removal of every individual memberwas feasible. At the time of member removal, the keys assigned to the removed member were invalidated.Since these key are placed on the nodes along the path from the leaf to the root, all the node keys thatare along the path from the leaf to the root are invalidated. The valid members whose path from the leafto the root shared common nodes had to be updated with the new keys. This process involved O(logn)to be stored by each user and involved O(log n) update communications. An e�cient key update schemebased on pseudo-random functions was proposed in [12] to improve the message update e�ciency of thescheme in [2] by a factor of two under member deletion.In [13], one-way function trees were used for constructing dynamic groups. In [16], an approach basedon member deletion probabilities was proposed. Authors proposed to assign probabilities to each memberdeletion, and showed that on average, the optimal number of keys to be assigned to a member is equal tothe entropy of the member deletion event. Results relating coding to the key assignment was also notedin [16]. They did not however provide any relationship between the group center storage and the keyupdated communication.3 Review of the Model for Sub-Linear SolutionIn what follows, since the �rst optimal sub-linear solution was pointed out by Canetti, Malkin and Nissimin [1], we will call such trees CMN trees. We will review them in section three. However, we note that theCMN trees have two positive parameters we call them the CMN pair, denoted as (
; �). The value of 
 isthe scale constant in 
nlog n appearing in the storage term, and the value of � is the scale constant appearingin the communication as � log n. We now describe the CMN tree construction. The CMN tree [1] is ahybrid scheme that combines minimal storage model and the basic tree scheme [2] described above.3.1 Minimal Storage SchemeIn the minimal storage scheme of [1], each user holds the common group key Ks that is shared by all themembers, and a unique key Ku that it shares only with the group center. The center uses a random seed ras an index into pseudo-random function [8] fr to generate the key Ku for member u as Ku = fr(u). Underthis model, when a member leaves, the center generates the new common group key, encrypts it with theindividual shared keys of the valid members and transmits. Under member deletion, this approach requires(n � 1) encryptions, but requires each user to store only two keys. The minimal storage scheme can bethought of as a m-ary tree with depth one.3.2 The CMN TreesThe CMN trees are constructed using a hybrid approach. The construction of the CMN tree is based onthe observations that for n members, the basic tree of Wallner, Harder, and Agee [2], requires O(logn)communication updates, but has O(n) key storage at the center, whereas the minimal storage scheme needsonly two keys to be stored but has (n � 1) communication updates. The CMN trees try to construct ahybrid tree in which the given group of members is partitioned into subset sets of size m, and then a basictree of degree a is constructed with n=m leafs. Each of the leaf node of the a-ary basic tree is then assigneda unique subset. Hence, this construct is similar to building an a-ary tree of depth loga(n=m) and then ateach leaf construct an m-ary tree of depth one. 4



Systematic construction of the CMN trees is presented in by the following steps:� The users are partitioned into subsets of size m, denoted as Ui; i = 1; � � � nm .� An a-ary tree of depth loga nm is constructed.� Each subset Ui of size m is assigned to a unique leaf in the a-ary tree.� Each user subset Ui of size m uses a minimal storage scheme for key assignment.� Additional keys are assigned to each node of the a-ary tree of depth loga nm .As noted in [1] setting m = 1, this combined scheme is an a-ary generalization of the binary tree schemein [2]. When m > 1, the resulting CMN tree is a non-trivial extension of the basic scheme in [2]. Thegroup center has to have a unique index into the pseudo-random for each subset in the combined scheme.Since there are nm subsets, the group center has to store nm additional keys. Total number of keys that thegroup center needs to store for an a-ary CMN tree with minimal subset size m, and group size n is givenby an(a�1)m .Since the depth of the a-ary basic tree is loga nm , and each leaf has minimal storage subset of size m, eachmember is assigned 1+ loga nm number of keys. We note that the leaf key is shared by m members. Hence,when a member from subset Ui is revoked, the group center has to update the loga nm keys for all therelevant members not in the subset Ui using the update techniques of the basic tree scheme, and the themembers of the subset Ui receive the updated keys by (m�1) individual key updates. The total number ofcommunication updates is (m� 1) + (a� 1) loga nm as shown in [1]. The proof can be done using inductionbut we omit it since this result is already available in [1]. The table below summarizes some interestingparameter selections presented in [1]. general m;a case 1 case 2user storage loga( nm ) O(log n) 2GC storage nm a(a�1) O( nlog n) n1=2 + 1Communication (m� 1) + (a� 1) loga( nm) O(log n) 2n1=2 � 23.2.1 The CMN ConjuctureIn [1], Canetti, Malkin, and Nissim noted that the value of m = loga n leads to the key storage of thecenter as f an(a�1) loga ng while the update communication yields floga�1 + (a � 1) log nloga ng. This can bederived using the following argument based on [1].Consider the product denoted by S, of the key storage at the center and the communication overhead:S = ( an(a� 1)m)(m� 1 + (a� 1) log nm) (1)an(m� 1)m + an log nmm� an+ an log nmmFor large values of n, if m � loga n, the product S = �(n). However, in order to keep the communicationas low as possible, the value ofm in fm�1+(a�1) loga( nm )g should satisfy m � loga n. Hence, the optimal5



value of m that keeps the communication as O(loga n) while minimizing the product S of the storage andcommunication, is m = loga n.Authors did not use this argument for the proof that the value of m = loga n is the best possible for whichthe storage is sub-linear in n while the communication is logarithmic in n. Since the choice of the productfunction was not shown to be derived from a natural cost selection process, �nding an optimal value of mwas left as an open problem in [1].We now show that the optimality of a given CMN tree is driven by the system parameters such as thedegree of the tree, ratio of the costs of communication and storage, and the group size. We do this byconstructing a convex cost function inm and show that the optimal value of the cost function is the suitablevalue for m. We also show under what conditions the CMN trees with sub-linear storage and logarithmiccommunications can be constructed.4 Convex Optimization Based Storage-Communication MinimizationWe note that indeed it is possible to solve the storage-communication problem as an optimization problemand then solve for the values of the minimal storage subset size m analytically. Our solutions are exactand not asymptotic.In order to construct the appropriate cost function for the CMN tree, we �st denote by fs(m) the numberof keys that need to be stored by the group center. We also denote by fc(m), the number of updatecommunications under a member deletion. From the previous computations, we know that the centerstorage is fs(m) = an(a�1)m . If we set m = 1, the storage size is of the order of n, which is the result for thebasic a-ary tree [1, 2, 17]. The function fs(m) decreases at the rate of 1m .The communication update function for the combined scheme is( [1]) fc(m) = (m� 1) + (a� 1) loga( nm ).For large values of m, it behaves as a linear function in m. Figure 1 shows the graph of these two functionsfor 1 � n � 3000.
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Figure 1: The graph of the group center storage and communication update functionsFrom the graph we note that these two functions intersect at a unique point. If we consider the sum of thecommunication function fc(m) and the storage function fs(m) as the total cost, then the optimal valueof the total cost is the point of intersection of the functions fc(m) and fs(m). However, this simplistic6



interpretation assumes that the communication and the storage have equal weightage in the total cost.Since the storage is one time cost, and the communication is dynamic, one would expect the communicationcost to weigh more in the construction of a total cost function.Figure two shows the graph of fc(m) vs fs(m) as a function of m. This curve clearly shows the tradeo�between the storage and communication. This is the Pareto curve that de�nes the points of m.
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Figure 2: The Pareto curve of Communication vs Storage Tradeo� for binary treeThe cost function to be constructed needs to yield a unique minimal point. The convex functions have theproperty that the optimal point is also a unique minimal point. Hence, if we can construct the cost functionsuch that it is convex in m regardless of the values of the parameters a; n, then we will be guaranteed aglobal minimum point for this cost function. The value of m that yields the global minimum will bethe value that leads to the optimal total cost for the storage-communication tradeo�. We show that itis possible to �nd a cost function that considers the storage and communication, and is convex in m byconstructive procedure.We denote the weight of the storage function by �1 � 0 and the weight of the communication by �2 � 0.Then the weighted total cost function is given byT = �1fs(m) + �2fc(m) (2)= �1 an(a� 1)m + �2f(m� 1) + (a� 1) loga( nm)g (3)In this formulation, we have not added any constraints on the values of �1 and �2. It is possible to set therelationship between these values by normalizing their sum and setting �1 = 1��2. We will however leavethe values unconstrained except for claiming that they are non-negative in our formulation.We �rst show that the total cost function constructed above is a convex function of the parameter m. Inorder to do so, we will use the following theorem [4] (pp. 27) without proof in a modi�ed version for ourproblem:Theorem: Let f be a twice continuously di�erentiable real-valued function of m 2 [1; n]. Then f is convexi� its second derivative is non-negative for m 2 [1; n].We now show the convexity of the total cost function by computing the derivatives with respect to m.7



Computing the �rst and the second derivatives with respect to the variable m leads todTdm = ��1 an(a� 1)m2 + �2(1� (a� 1)m log a) (4)d2Tdm2 = �1 2an(a� 1)m3 + �2 (a� 1)m2 log a (5)Since �1; �2 > 0, m � 1, and a � 2, we have the second derivative term d2Tdm2 = �1 2an(a�1)m3 + �2 (a�1)m2 > 0.Hence, the weighted cost function �1fs(m) + �2fc(m) is a convex function of m, and has a unique valueof m that yields the minimum value for the weighted total cost. The minimum point is computed as thesolution to the equation dTdm = ��1 an(a� 1)m2 + �2(1� (a� 1)m log a) = 0; (6)leading to the quadratic equation in m�2(a� 1)m2 � �2(a� 1)2 mlog a � �1an = 0 (7)The optimal value of m, which is also the minimum is given bym = (a� 1)2 log a f1 +s1 + 4N �1�2 a(a� 1)g (8)Setting � = �2�1 leads to the optimal value of the minimal storage subset size m for the weighted total costfunction as: m = (a� 1)2 log a f1 +s1 + 4N� a(a� 1)g: (9)Hence, we have shown how to compute the exact optimal value of m as a function of the group size n,degree a of the tree, and the ratio of the costs of storage and communication. We note that the optimalvalue of the minimal storage subset size is parameterized by the triplet (a; �; n). We can also interpretthis by considering the Pareto curve of fs(m) vs fc(m), for di�erent values of m. Every point on thissmooth curve is an optimal point for a given set of triplet (a; �; n). For reasonably large values of n (notasymptotically large but say n > 1000), we can compute the optimal value of m by the approximationm � 1log arn�a(a� 1) (10)without losing the accuracy of the computed parameter m. We note that the computed solution for m, canbe used for systematic design of several \optimal" schemes that are parameterized by the triplet (a; �; n).We present some of the interesting schemes in the next few sections.5 Systematic Design of Parameterized Optimal SchemesSince the minimal storage subset size m � 1log arn�a(a� 1) (11)8



is a reasonable approximation for large values of n, it is of interest to relate this parameterized functionto the known \optimal solutions" such as the one in [2]. We show that the parameterized model can beused to derive the basic scheme, and also to interpret the results with respect to the weighing functions ofthe communication and storage. We �rst interpret the basic tree scheme in [2].5.1 Generating Basic Tree SchemeThe basic binary scheme in [2] has a = 2. We also know that the basic scheme has every memberassigned to a unique leaf node. Hence, the minimal storage subset size is m = 1. From the equationm � 1log apn�a(a� 1), we have m = 1 � 1log aq2n� . Hence, � = �2�1 = 2n(log 2)2 . If we compute the fractionalweights of �1 and �2, we obtain �2�1+�2 = 2n2n+(log 2)2 and �1�1+�2 = 12n+(log 2)2 . For su�ciently large values ofn, we have �2�1+�2 � 2n2n = 1, and hence �1�1+�2 � 0. From [2], we also note that the basic scheme did notconsider the center storage as a parameter for minimization. The basic tree scheme tried to minimize onlythe overall communication. This is equivalent to setting the relative value of �1 � 0 (storage unit cost),and �2 � 1 in the total cost function. From the formulation above for the basic scheme, we note that aslong as �2 = 2n(log 2)2 �1 > 0, regardless of the total cost, the optimal size of the minimal storage subset ism = 1. The following lemma summarizes the characterization of the basic scheme:Lemma 1. For a given binary tree with n members, if the ratio of the communication cost �2 and thestorage cost �1 is chosen to be 2n(log 2)2 , regardless of the explicit value of �1; �2, the optimal minimal storagesubset size m = 1 for the convex total cost function �1 2nm + �2 log2( nm). The depth of the tree is d = log2 nand the communication updates is log2 n.5.2 Generating Square Root Storage-Communication SchemesThere are a variety of ways to generate key schemes that will provide minimal subsets with m = pn. Welist a few interesting cases here.1. The �rst choice is obtained by noting that from m � 1log aqa(a�1)n� , if we choose � = a(a�1)(log a)2 , we havem � pn. For this value of m, the depth of the a-ary tree is 0:5 loga n, and the communication overhead is(pn�1+0:5 loga n). Hence, though the storage is reduced by a factor of pn, the communication overheadgrows as pn for large values of n.2. The second choice of a square root scheme is obtained when the key storage and the communicationmessage updates have equal weights. Then, � = �2�1 = 1. The size of the subset forming the minimalstorage scheme is given by m = pa(a�1)nlog a . When a = 2, optimal size of the minimal storage subset ism = p2nlog 2 . For this value, the depth of the binary tree is d = 0:5(log2(n)� 1). The center storage is p2n,and the communication update required is (p2nlog 2 � 1 + 0:5(log2(n)� 1)).3. The third set of square root schemes can also be generated if we set the value of � = a(a�1) , and leta << pn. Under this condition, the subset size m = (a�1)log a pn is a linear function of the degree of the tree.The following lemma summarizes these three cases:Lemma 2. The following cases provide a pn growth in the storage and communication updates as theoptimal choices for total cost function: 9



� � = a(a�1)(log a)2 , m = pn.� � = 1, m = p2n(log a)2 .� � = a(a�1) , a << pn, m = (a�1)log a pnIf the value of the � > a(a�1)n(loga n)2 , the derived solutions belong to a more interesting sub-linear storage familyof key distribution schemes that preserve the logarithmic nature of key update communication. This is theCMN tree family introduced in [1] using asymptotic arguments. We will show how to construct such treesexactly using the triplet (a; n; �).6 The CMN Tree Family of Sub-linear Storage SchemesIn [1], asymptotic arguments were used for constructing a sub-linear storage scheme with logarithmic com-munication updates. In [1], value ofm = O(loga n) was proposed for key storage minimization while keepingthe communication as O(loga n). In proposing this value for m, CMN trees, authors posed the question ifthe sub-linear storage was the optimal scheme among all possible schemes that keep the communicationoverhead as O(loga n).In terms of our model, the equivalent question is whether there is a triplet (a; �; n) such that it is possibleto design a sub-linear storage CMN tree scheme with the optimal value of the minimal subset m =1log aqa(a�1)n� , providing logarithmic communication overhead. Since this value of m is an exact (notasymptotic but computable) optimal solution for every Pareto triplet (a; n; �), we compute the value of mthat yields the optimal weighted cost. We then check if this value of m yields the storage function fs(m)that is sub-linear in n while keeping the communication overhead of the form k1 loga n. This is su�cientfor the constructive proof for the optimality of CMN scheme for a given triplet (a; n; �). In particular, sincewe parameterized the minimal storage subset size m by the ratios of the computation and storage costs,there will be a family of CMN tree solutions, all of which have exact sub-linear storage and logarithmiccommunication bounds. We illustrate this below.Existence of a sub-linear storage scheme with logarithmic update is equivalent to having positive coe�cients(
; �) such that the key storage is fs(m) � 
nloga n , and the communication updates fc(m) � � loga n. Thesetwo conditions will relate the optimal value of m to the sub-linear storage scheme of CMN.The constraints on the key storage at the center can be expressed asfs(m) = an(a� 1)m = log a(a� 1)s an�(a� 1) � 
 nloga n; (12)where 
(> 0) is called the CMN storage constant. From equation (13), we derive the feasible value of 
 as
 � log a loga n(a� 1) s a�(a� 1)n: (13)Hence, given a triplet (a; n; �), 
 can not be a sub-linear storage scheme of CMN type if 
 < log a loga n(a�1) q a�(a�1)n .Similarly, the constraint on the communication updates is given byfc(m) = 1log(a)rna(a� 1)� � 1 + (a� 1)loga log(a) + 0:5 � loga(�n)� 0:5 � loga a(a� 1) � � loga n: (14)10



where �(> 0) is called the CMN communication constant. This can be rewritten as a constraint on (
; �)pair as � � a(a�1) loga n
 � 1 + (a� 1) loga a(a�1) + (a� 1) loga 
 + (a� 1) loga nloga nloga n (15)Using our approach of convex optimization, given a desirable pair (
; �) for a candidate CMN tree, werelate the necessary conditions in terms of the triplet (a; n; �). In doing so, we ask the following questions:1. For a given triplet (a; n; �), Will the chosen pair of (
; �) satisfy the inequalities (14) and (16)?2. If the CMN pair (
; �) satis�es (14), and (16) is that the minimum possible pair that satis�es theequalities for (14) and (16)?The �rst question tries to determine if a speci�c pair of positive constants (
; �) is indeed a CMN pair. Thesecond question tries to �nd if the CMN pair is indeed the optimal one for a given Pareto triplet (a; n; �).i.e., given a Pareto triplet (a; n; �), are the values fs(m) = 
nloga n , and � loga n the smallest possible storageand communication updates feasible for the CMN tree.We posed the question in two steps so that an explicit design procedure can be given for a given triplet(a; n; �). The answer reduces to simple inequality checkings. Before deriving the inequality for testing, wepresent a procedure that allows explicit construction of CMN trees. Lets denote the candidate pair of theCMN pair as (
0; �0). We note that the design of the optimal CMN tree for a given Pareto triplet (a; n; �)is easier if we follow the procedure of the following type.1. Choose the value of the Pareto triplet (n; a; �).2. Compute the minimum value of 
 denoted as 
̂, from equation (14) as 
 = log a loga n(a�1) q a�(a�1)n .3. If 
̂ > 
0, it is not feasible to construct a CMN tree for a given triplet (a; n; �) with candidate CMNpair (
0; �0).4. If 
̂ < 
0, use 
̂ in (16) to �nd the lowest value of � denoted as �̂.5. If 
̂ < 
0, use 
0 in (16) to �nd the lowest value on � denoted as �̂0.6. If �̂ > �0, then it is not feasible to construct a CMN tree for a given triplet (a; n; �) for a candidateCMN pair (
0; �0).From the procedure, we can answer if a given pair of values (
0; �0) is a CMN pair and if it is a CMN pair,if it is the optimal CMN pair for a given Pareto triplet (a; n; �). The optimal CMN pair is the one thatsatis�es 
̂ = 
0, and �̂ = �0.This completes the design feasibility analysis and speci�c design procedure of a sub-linear storage schemewith logarithmic communication overheads with candidate CMN parameters (
; �).7 ConclusionIn this paper, we showed that the design of key distribution trees can be formulated as a convex optimizationproblem with respect to the minimal storage subset size m. We then showed that the optimal value of theminimal storage subset can be analytically computed.11



We showed that given the degree of the tree, group size and the ratios of the communication and thestorage costs, the cost of optimal tree can be systematically designed.We also showed how to design an important class of recently reported trees that have key storage as 
nloga nand the communication updates as � loga n, where the optimal values of (
; �) is constraint by the triplet(a; n; �). In doing so, we also provided an approach that will allow �nding the minimum values for theparameters (
; �). Our approach also allows the user to test if for a given triplet (a; n; �) the candidatepair (
; �) will form a sub-linear storage scheme with logarithmic updates. It further answers the questionif this pair of (
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