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monitoring remains a large gap in modern-day health care. This thesis shall present

a ballistocardiogram-based approach to ubiquitous blood pressure monitoring. Two
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The signal-based approach validates the superiority of ballistocardiogram-based
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the model-based approach, both variants are shown to still be more reliable than

electrocardiogram-based pulse arrival time for blood pressure prediction. This work

provides the foundation for a truly ubiquitous blood pressure monitoring method
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health issues.
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Chapter 1: Introduction

1.1 Background and Motivation

Blood pressure (BP) monitoring is key to ascertaining a persons current and

long term health. A patient with high blood pressure (hypertension) is at increased

risk of heart attacks, strokes, and kidney failure, among others. Hypertension has

been called the “silent killer” since this condition does not cause discomfort and can

easliy go undetected all while causing significant damage over time. Despite this

fact, most patients receive only occasional, short-term blood pressure monitoring,

either at the doctors office or a clinic (such as a local pharmacy). This approach

does not elucidate real-time monitoring or identification of changes to the patients

overall cardiovascular health. In stark contrast to this lack of care, a large proportion

of deaths are due to cardiovascular issues. According to the CDC, there are over

600,000 deaths per year due to heart disease in the United States alone [2]. Of

these deaths, 40.6% are due to high blood pressure [3]. Thus there is a clear need

for ubiquitous (that is, non-invasive and continuous) blood pressure monitoring

techniques to enable the prevention of deaths due to high blood pressure.
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1.2 Current Blood Pressure Monitoring Techniques

A number of methods have been developed for BP monitoring which include

auscultation, oscillometry, volume clamping, tonometry, and catheterization. Each

method can be categorized as either invasive, manual, or cuff-based. A brief dis-

cussion of these techniques, and their shortcomings for ubiquitous BP monitoring is

provided throughout the remainder of this section.

At the pinnacle of BP measurement techniques is catheterization. This method

involves inserting a sensor, in the form of a small hollow tube, into the heart through

the ascending aorta. While highly accurate, the invasive level of this technique is

prohibitive to BP monitoring for the majority of applications and is typically left

for diagnosis and monitoring of abnormal heart conditions.

Cuff-based methods are widely used in clinical applications, however they do

not lend themselves to ubiquitous BP monitoring. This is due to the fact that

the cuff-based methods measure BP during deflation, thus prohibiting continuous

measurements. In addition, prolonged cuff inflation can lead to venous pooling and

patient discomfort [4]. Common cuff-based methods are auscultation, oscillometry

and volume clamping. Auscultation is a manual method which requires the clinician

to listen to the Korotkoff sounds during cuff inflation. Special training is required

for using this method and as a result is not favorable for at-home monitoring.

In oscillometry, the most commonly used clinical technique, a cuff is placed on

the patient, usually on the arm or leg, and inflated to a pressure higher than systolic.

Cuff pressure is deflated at a constant rate and oscillations in the cuff pressure are
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mapped to diastolic to systolic pressures. Since measurements can only be taken

during cuff deflation, continuous monitoring is not possible.

Volume clamping methods measure pulsatile unloading at zero transmural

pressure. To accomplish this, a cuff is dynamically inflated to ensure zero trans-

mural pressure thus enabling direct translation of arterial pressure to cuff pressure.

Physically this method requires both a cuff and a photoplethysmography (PPG)

sensor to operate. The PPG sensor optically obtains a blood volume measurement

through measuring changes in light-absorption of the skin. The requirement of two

devices for this method is undesirable for ubiquitous BP monitoring and as such

volume clamping techniques are primarily used in research applications.

A non-cuff-based method, tonometry, is yet another method for measuring

blood pressure. This technique requires a skilled clinician to manually compress an

artery with a probe. The probe must be perpendicular to the compressed artery and

the artery must be completely flattened so that pressure differences are clear. This

method tends to be uncomfortable for the patient and remains mainly a research

technique.

In sum, each technique currently has a shortcoming either by requiring a cuff,

a skilled clinician to perform manually, or is invasive. Current work towards BP

monitoring methods which address these issues is discussed in the next section.
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1.3 Pulse Transit Time and Blood Pressure

Due to the aforementioned difficulties in directly measuring BP, research to-

wards ubiquitous blood pressure monitoring is currently being pursued through mea-

surement of a BP surrogate. The characteristics of a reliable and patient-accessible

surrogate of blood pressure would include real-time changes to blood pressure and be

easily measured by a single sensor (i.e., an app on a smartphone). Currently, inter-

est is focused on pulse transit time (PTT), which is the measurement of time-delay

between two arterial waveforms (usually a proximal wave and a distal wave).

PTT is known to be inversely related to BP through arterial stiffness [5] and

has typically been measured by using the electrocardiogram (ECG) R-wave as a

proximal (i.e., close to the heart) timing reference [6], [7], [8], [9], [10]. A distal (i.e.,

father away from the heart) reference may either be diastolic blood pressure (DBP)

measured from one of the techniques mentioned above, or from the foot of a PPG

waveform. However, some studies have shown the ECG R-wave to be an inaccurate

marker of PTT [11], [12]. These studies have demonstrated the innacuracy of the

ECG-R wave since it occurs at the start of heart isovolumentric contraction rather

than left ventricular ejection. Thus this “PTT” includes the difference between

these heart events known as pre-ejection period (PEP) in addition to the true PTT.

While PTT is inversely correlated to blood pressure, PEP is not a true surrogate

of blood pressure and is affected by other physical characteristics (e.g., myocar-

dial contractility [13], [14]). Thus these previous methods of PTT estimation have

been classified as the measurement of pulse arrival time (PAT) which is defined as
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the sum of PEP and PTT. As a result, PAT is said to be inherently flawed as a

blood pressure surrogate due to the inclusion of PEP. Recently, alternative proximal

timing references for PTT measurement have been proposed, including use of the

Ballistocardiogram (BCG) [5], [15], [16]. The next section shall review the potential

for using the BCG as a proximal timing reference.

1.4 Ballistocardiogram: Use as a Proximal Timing Reference

1.4.1 Origins

The BCG, discovered in the 1800s by J.W. Gordon, is the measurement of the

body’s force response to the heart pumping blood [17]. At the time of discovery,

there was much interest in the applications of the BCG as a cardiovascular health

marker (see for example: [18], [19], [20], [21]). Measurement of the BCG was accom-

plished by suspending a patient on a platform and measuring the movement of the

platform [22]. Various suspension platforms were developed in the mid-1950s: either

on a direct bed, where the displacement of the patient is directly measured [23], [24],

or on high [20], [25], or low frequency beds [26], [27], [28], where the frequency refers

to the natural frequency of the measuring bed [29], [30], [31]. In each of these

measurement devices, either the acceleration, velocity, or displacement of the bed

may be measured. However the measurement of the BCG was cumbersome and

lack of understanding of this waveform lead to loss of interest when medical imag-

ing technologies emerged. It was not until recently, due to advancement in sensor

technology, that interest in understanding the BCG mechanism and its applications
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resumed. For clarity, the BCG waveform discussed henceforth shall be a force BCG

comparable to the low-frequency acceleration BCG or high-frequency displacement

BCG from previous works (See examples from [23], [24], [26], [27], [28]).

1.4.2 Relation to Cardiac Functions

Figure 1.1 illustrates the features of a BCG wave in a normal human. A

discussion of the cardiovascular origins of each wave is provided since it is a goal

of this thesis to validate these origins according to a model (discussed in a later

chapter) presented in [1]. In conjunction, this thesis also aims to justify the basis of

the BCG as a proximal timing reference for PTT and provide additional evidence

for its superiority over ECG-based PAT techniques. Thus an understanding of BCG

cardiac origins directs the development of a BCG-based PTT model.

Figure 1.1: A typical BCG waveform adapted from [1]

According to [32], the H wave occurs at, or prior to, left ventricular ejection.
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Thus the H wave is not a reasonable PTT proximal timing reference since it may

also include a portion of PEP. Conversely, the I wave is attributed to the change in

direction of blood movement from the headward direction to the footward direction

[18], [32]. Thus the I wave is believed to occur due to blood movement near the top

of the aortic arch, and is used as a proximal timing reference due to the adjacency

of the aortic arch to the aortic value (approximately 6 cm [33]).

The origins of the J wave have been more difficult to attribute to cardiac

features. However, it is generally agreed that the J wave is due to the deceleration

of blood in the ascending aorta and aortic arch and acceleration of blood in the

descending arteries [18], [32], [34].

The K wave origins have historically been even more puzzling than the J wave.

Some have thought the K wave could simply be the recoil of the measuring bed from

the J wave. Others have attributed the K wave to the slowing of blood in the main

descending arterial segments and acceleration of blood flow in the legs [35]. This

explanation is more likely since it was noted in [34] that many patients can have K

waves larger in amplitude than the J wave.

The L, M, and N waves are less interesting in terms of this thesis since they are

not related to early cardiac functions (i.e., they occur post-systole). Thus having

no immediate relevance to the proximal reference timing for PTT.
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1.5 Problem Definition and Goals

Addressing the lack of ubiquitous blood pressure monitoring techniques for

early hypertension detection and long term monitoring would provide a significant

improvement in patient health care. The development of a reliable and continuous

blood pressure monitoring method which does not require the use of a cuff would

provide a large contribution towards patient health care.

Pulse transit time has already been identified as a surrogate of blood pressure

and can be non-invasively and continuously measured through the ECG and a PPG

sensor. However the previously mentioned issues with this ECG-based method pre-

vent the development of this method into a reliable monitoring system. This thesis

seeks to explore an alternative, non-invasive method for PTT measurement. Since

the BCG is directly related to the occurrence of the heart pumping blood, it lends

itself as a proximal timing reference for PTT. The BCG-I wave occurs near the

aortic value and would ideally provide a better proximal timing reference for PTT

than conventional ECG-based methods. Thus this thesis seeks to explore this timing

reference and compare it to conventional methods.

However the BCG-I wave does not occur exactly at left ventricular ejection.

Thus a PTT measured with this reference is expected to be an improvement to

current methods but true PTT remains un-captured. Left ventricular ejection is

known to occur between the H wave and I wave. Thus if it was possible to identify

the occurrence of blood ejection in terms of the BCG, further improvement in the

use of BCG-based PTT would be seen.
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Thus this thesis aims to address the lack of ubiquitous blood pressure moni-

toring through PTT in the following manner:

• Directly compare BCG-based PTT, measured as the time-delay between the

BCG-I wave and distal PPG wave, to conventional ECG-based PAT by eval-

uating the correlation to BP of each time-delay. This is denoted as a Signal-

Based Approach.

• Evaluate the accuracy of BCG-based PTT by the Signal-Based Approach as

a blood pressure predictor.

• Develop a model for BCG-based PTT which would identify occurrence of left

ventricular ejection in the BCG wave. This is denoted as the Model-Based

Approach.

• Compare Model-based PTT to Signal-based PTT and Conventional PAT and

assess the accuracy of each predictor.

The main assumption of this thesis is in regard to the Model-Based Approach.

Namely, it is assumed that the main mechanism of the BCG generation is forces by

blood pressure. Any contribution by other forces by blood flow are assumed to be

negligible. This assumption was deemed reasonable since generation of BCG-like

waveforms was accomplished in [1] which found flow contribution to the waveform

to be negligible.
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Chapter 2: Data Sets

2.1 Collection

Data collected from human subjects were studied from an IRB-approved Geor-

gia Institute of Technology and Michigan State University study (reported in [36]).

Six physiologic waveforms were collected from 22 young, healthy subjects (age range:

25 ± 3.5 years; gender: 19 males; height: 177 ± 11 cm; weight: 75 ± 15 kg ). The

following were measure:Two PPG waveforms, one collected at the instep of the

foot (“Foot PPG”) and one collected from the left index finger (“Finger PPG”), a

three-lead ECG, a Finapres BP (measured at the left middle finger), a BCG (col-

lected from a weighing scale-like system first developed in [37]), and an eight-lead

impedance cardiography (ICG). Data were collected at a sampling rate of 2kHz.

Methods of data collection occurred were as follows: First a baseline recording

was taken while the subject was at rest (“R1”) for 60sec, next the subject was

required to complete mental arithmetic (“MA”) calculations for 60sec consisting

of consecutive arithmetic to raise their blood pressure (i.e., given the number 123,

the subject was asked to add the digits and increase the number by that sum: 123

+ 6 = 129. The new number was used as the input to the next iteration). This

intervention was followed by a second resting period of 60sec to allow the subjects
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BP to return to baseline (“R2”). A second intervention of a cold presser (“CP”) was

executed by submerging the subjects right hand into 4 ◦C water for 60sec. The third

resting period lasted for 120sec to allow a return to baseline (“R3”). The subject

proceeded to get off of the scale and perform a stair-climbing exercise for 60sec,

after which they returned to the scale and recording of the post-exercise (“PE”)

waveforms resumed.

Each intervention was chosen to induce an increase in BP, representative of

normal daily activities, but modify PEP in different ways [38], [39], [40], [41], [42].

That is, the MA intervention would increase BP while decreasing PTT and PEP.

However the CP intervention would increase BP while decreasing PTT and increas-

ing PEP. Finally the PE intervention would increase BP and decrease both PEP

and PTT. Since PAT is the sum of PEP and PTT, it was expected that ECG-based

PAT would become an unreliable predictor of BP across all interventions while PTT

would remain a reliable marker.

2.2 Processing

Processing of this data was accomplished by band-pass filtering the BCG wave-

form with first-order Butterworth filters of 0.5Hz and 10Hz cutoff frequencies. The

BCG waveform was smoothed by an exponential moving average. Outlier beats

were identified and removed. The method by which this was accomplished was to

compare time-delays of each beat with the mean and standard deviation of previous

beat time-delays. A beat was removed if any time delay occurred outside of the
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deviation band of the previous beats.

After outlier removal, representative beats were selected for each intervention

which accomplished the greatest BP change. That is, a total of five beats from

each intervention were selected which corresponded to the lowest average DBP in

the resting interventions and the highest average DBP in the MA, CP and PE

interventions. For the model-based approach, the waveforms from selected beats

were then high-pass filtered at 1kHz prior to use in the model. This was necessary

to ensure a zero-mean for the model, whereas such a requirement was not necessary

for the signal-based approach.

These representative beats were used for measurement of PTT, PAT, and PEP.

The following chapter shall discuss a signal-based approach (i.e., simple feature

extraction) for measurement of PTT. This BCG-based PTT shall be compared to

PAT as a marker of BP. After PAT is shown to be unreliable due to PEP, and that

PTT is a superior marker by the signal-based method, a model-based approach shall

be developed. The goal of this model-based approach is to determine if a truer PTT

can be extracted using known relationships between the BCG and cardiac events.

To conclude, each approach shall be compared and suggestions for future work in

this topic shall be made.

2.2.1 Limitations

A limitation of the collected data is that the BCG signal was collected from the

patients in the upright, standing posture. This measurement is highly susceptible
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to motion artifacts and filtering techniques where used to limit the impact of these

artifacts. However, it would have been ideal to collect the BCG while the subjects

were in the supine (i.e., laying down) position. This would have limited the impact

of motion artifacts, and in addition ensured no blood pressure changes within the

body due to elevation of the subject. That is, all blood pressure changes would be

due to physiological changes and not elevation gradients.

13



Chapter 3: Signal-Based Approach

3.1 Methods

The extraction of PTT, PAT, and PEP time-delays are summarized in Fig-

ure 3.1. Feature detection of each wave feature occured as follows: BCG I wave

identification was accomplished by first detecting the prominent J wave and then

identifing the first peak previous to that as the I wave. The popular Pan-Tompkins

method was used for ECG-R wave detection and an intersecting tangent method

was used to detect the foot of PPG waveforms.

PAT was measured as the time-delay between ECG R-peak and the Finger

PPG (“Conventional PAT”). Since it is the goal of this study to compare conven-

tional PAT with a BCG-based PTT, two PTT measurements were made. First,

the time-delay between the BCG-I wave and the Finger PPG (“Arm PTT”) for a

direct comparison to PAT. Second, since the BCG is related to descending artery

events, the time-delay between the BCG-I wave and the Foot PPG (“Scale PTT”)

was also measured. It was hypothesized that, since the BCG-I wave is attributed to

forces occurring at the aortic arch, the Scale PTT would be a more reliable marker

of BP than Arm PTT. PEP was defined as the time-delay between the ECG-R

wave and the peak of the BCG I wave. Diastolic (“DBP”) and systolic (“SBP”)
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Figure 3.1: Signal-Based Feature Extraction. Taken from [36]. An ex-
ample beat showing feature extraction techniques.

blood pressures were also extracted from the Finapres BP for each beat. Toe PAT

was not considered for this comparison since ECG-based PAT has historically been

measured from a finger PPG distal reference [5], [43].

Time-delays from the five identified beats were averaged to provide a robust

estimate for that intervention. The magnitude of these time-delays ranged from

approximately 50ms to 120ms. This resulted in 6 data points (one for each in-

tervention) for each PTT (Arm and Scale), PAT, PEP and BP for each subject.

Prediction of DBP and SBP then proceeded by computing a linear regression be-

tween the measured time-delays and BP for the subject and then predicting BP

from the regression.
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3.2 Results and Discussion

3.2.1 Correlation Results

Table 3.1 shows the correlation results of each subject for conventional PAT,

arm PTT, scale PTT and PEP. Correlations were computed using the Pearson

correlation coefficient between measured time-delays and BP.

Table 3.1: Signal-Based Approach Results

Conv. PAT Arm PTT Scale PTT PEP

Subject DBP SBP DBP SBP DBP SBP DBP SBP

1 -0.56 -0.62 -0.73 -0.77 -0.92 -0.92 -0.61 -0.67

2 -0.58 -0.80 -0.84 -0.85 -0.88 -0.93 -0.52 -0.81

3 -0.10 -0.27 -0.88 -0.82 -0.92 -0.80 0.30 0.13

4 -0.70 -0.60 -0.91 -0.86 -0.89 -0.85 -0.48 -0.38

5 -0.64 -0.74 -0.78 -0.84 -0.79 -0.74 -0.35 -0.46

6 -0.53 -0.49 -0.89 -0.82 -0.80 -0.85 0.04 -0.08

7 -0.53 -0.65 -0.95 -0.94 -0.84 -0.80 -0.05 -0.14

8 -0.72 -0.74 -0.65 -0.67 -0.74 -0.75 -0.44 -0.52

9 -0.71 -0.75 -0.90 -0.85 -0.78 -0.84 0.19 -0.13

10 -0.93 -0.89 -0.69 -0.61 -0.79 -0.62 -0.80 -0.81

11 -0.69 -0.90 -0.78 -0.84 -0.77 -0.94 -0.47 -0.70

Continued on next page
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Table 3.1 – Continued from previous page

Conv. PAT Arm PTT Scale PTT PEP

Subject DBP SBP DBP SBP DBP SBP DBP SBP

12 -0.52 -0.75 -0.36 -0.18 -0.76 -0.89 -0.43 -0.71

13 -0.74 -0.87 -0.67 -0.66 -0.62 -0.50 -0.78 -0.79

14 -0.75 -0.62 -0.49 -0.51 -0.84 -0.80 -0.67 -0.43

15 -0.71 -0.75 -0.66 -0.61 -0.91 -0.92 -0.52 -0.55

16 -0.54 -0.58 -0.87 -0.86 -0.60 -0.63 -0.34 -0.31

17 -0.39 -0.49 -0.77 -0.77 -0.92 -0.94 -0.03 -0.05

18 -0.20 -0.38 -0.34 -0.36 -0.63 -0.24 0.11 -0.32

19 -0.51 -0.70 -0.60 -0.77 -0.81 -0.92 -0.50 -0.69

20 -0.59 -0.62 -0.57 -0.56 -0.80 -0.84 -0.20 -0.29

21 -0.60 -0.49 -0.86 -0.87 -0.79 -0.92 -0.14 0.09

22 -0.96 -0.92 -0.96 -0.44 -0.87 -0.93 -0.77 -0.93

Mean -0.60 -0.66 -0.71 -0.70 -0.80 -0.80 -0.34 -0.43

SE 0.04 0.04 0.04 0.04 0.02 0.04 0.07 0.07

It is clear that overall, both arm PTT and scale PTT outperform conventional

PAT. These results show that PAT had varying performance in BP correlation from

subject to subject. In one-third of the subjects, PAT performed poorly due to poor

PEP correlation to BP. Another one-third of the subjects saw poor PAT perfor-

mance due to the arm PTT component. This is believed to occur due to smooth
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muscle contractions in the arm [44]. In the remaining one-third of the subjects PAT

performed well. Thus PAT is susceptible to both of its components and depends

heavily on their synchronous performance.

3.2.2 Verification of Time-Delay Response

A key component of performing this study was ensuring the variable change in

PEP with respect to BP across interventions. Figure 3.2 shows the average results

of all 22 subjects for each intervention versus DBP (results are similar for SBP). The

inverse relationship between PEP and DBP is maintained in the first 3 interventions.

However, as expected PEP changes proportionally to DBP in the CP intervention

thus causing a break-down of the relationship. In addition PEP exhibits a significant

over-response to the PE intervention in relation to DBP, thus causing the correlation

to degrade further.

Figure 3.2: Average PEP versus DBP.
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Figures 3.3(a) and 3.3(b) show the average response of scale PTT and conven-

tional PAT to DBP across the interventions. The influence of PEP on conventional

PAT is very clear in the CP and PE regions where PAT under-responds and over-

responds, respectively. In contrast, average scale PTT follows the changes in DBP

in both magnitude and direction.

(a) Average Conventional PAT vs. DBP

(b) Average Scale PTT vs. DBP

Figure 3.3: Average Intervention Response vs. DBP
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3.2.3 BP Prediction Errors

With each of the subjects, calibration of predicted BP with measured BP

was performed to yield a best-case prediction of BP in each time-delay. Figure 3.4

summarizes these results for scale PTT and conventional PAT in terms of base-case

predicted BP versus measured BP and a Bland-Altman plot of the prediction errors.

For each conventional PAT and scale PTT, one outlier subject was removed prior

to error determination for this best-case scenario.

Even with removal of one outlier subject for each scale PTT and conventional

PAT, scale PTT continued to be a superior marker. In terms of RMSE for DBP and

SBP, scale PTT was much smaller (7.6mmHg and 11.8 mmHg, respectively) than

RMSE for conventional PAT (14.6mmHg and 18.5mmHg, respectively). Indeed it

is easy to see the overall lower error in scale PTT according to the Bland-Altman

plots. The spread of errors in scale PTT for DBP is much smaller than conventional

PAT; while the difference of spread is less drastic in SBP, but overall scale PTT still

surpasses conventional PAT.
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Figure 3.4: Best-case BP prediction
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3.3 Conclusions

It can clearly be concluded from this signal-based method, that BCG-I PTT

is a more robust and accurate predictor of BP than conventional ECG-based PAT.

The reason for this superiority stems from the inclusion of PEP in conventional

PAT, which is not a reliable BP marker. In addition, arm PTT can further lower

the accuracy of PAT as a predictor.

The next chapter shall build on this demonstration of BCG-based PTT for

BP prediction by developing a model for PTT. This model aims to further elucidate

the physiological origins of the BCG wave and, therefore, strengthen the the use of

BCG-based PTT for ubiquitous BP monitoring.
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Chapter 4: Model-Based Approach

4.1 BCG Mechanism Model

4.1.1 Ballistocardiogram Relationship to Arterial Pressures

A model was provided in [1] which elucidated the origins of the BCG wave.

This model, which is the foundation for the model-based approach of this thesis,

related three pressures along the descending arteries to BCG wave features. In [1],

two of the pressures were measured directly from human catheterization near the

aortic arch and femoral arteries. The third pressure was generated by imposing a

time-delay on the measured aortic arch pressure to estimate the ascending aortic

pressure. These three pressures were divided into two tubes, one for ascending blood

flow and one for descending flow. Figure 4.1 illustrates the pressure locations.

Since the BCG is the measurement of the body’s reaction to blood forces,

the pressures were converted to arterial forces by multiplication of mean areas for

each tube. These areas were determined by averaging the inlet and outlet areas

for each tube derived from population mean values. The estimated BCG wave was

generated by subtracting the net force in the ascending tube from the net force in

the descending tube, yielding the overall force in the descending direction. Example
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Figure 4.1: Location of blood pressure forces from [1]. The ascending
aorta is represented by the shorter tube with a single cross-sectional area
AA. The descending aorta is represented by the longer tube with single
cross-sectional area AD

results of this model are shown in Figure 4.2.

It can be seen that the I wave occurs near the maximum difference in ascending

aortic pressures. This follows the previous discussion where the I wave was assumed

to occur near the aortic arch. In this model, the two most proximal pressures have

their diastolic occur before the I wave peak. This is important to note since the

BCG-I wave was used as the proximal timing reference for PTT, however the most

proximal waveform has its diastolic prior to the the I wave. This suggests that there

is room for improvement from the signal-based approach in terms of estimating true

aortic PTT from the BCG.

The J wave occurs near the systolic of the second pressure, P1, and during

the upstroke of the most distal pressure, P2. This agrees with the previous belief

that the J wave occurs due to the deceleration of blood in the ascending aorta and
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Figure 4.2: Generation of BCG-like waves from arterial pressures

acceleration of blood in the descending arteries. Finally, the K wave occurs near

the systolic of the most distal pressure, agreeing with the assertion that the K wave

occurs due to acceleration of blood in the lower arteries.

These BCG wave timings, in relation to occurrence of cardiac pressure features,

shall provide timing guidelines for the model proposed in this thesis. Details on how

these guidelines are used are provided in a later section. The next section shall briefly

deviate from BCG modeling to describe a technique for arterial pressure estimation.

Afterwards, this BCG mechanism model shall be combined with arterial pressure
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estimation techniques to present a BCG-based model for PTT estimation.

4.1.2 Transmission Line Theory for Arterial Hemodynamics

Transmission line theory has commonly been applied to arterial hemodynam-

ics to relate proximal and distal pressure and flow waveforms [45], [46], [47], [48],

[49], [50], [51], [52]. The theory states that pressure waves are 1) the sum of for-

ward and backward traveling pressure waves and 2) proximal and distal waves are

related to each other through a time offset and reflection coefficient. The forward

traveling distal wave (Pf1) is the time delay of the forward traveling proximal wave

(Pf0), where the time delay is the pulse transit time (PTT) of the wave. The back-

ward traveling distal wave (Pb1) is simply the reflection of the forward traveling

distal wave which is given by the reflection coefficient. This reflection coefficient is

determined by an approximation of the load to the tube from the remaining distal

arteries. Finally, the backward traveling proximal wave (Pb0) is the time delay of the

backward traveling distal wave. From these approximations, the following transfer

function between the proximal and distal wave, in the Laplace domain, is found (See

Appendix A for a full derivation):

Pp(s)

Pd(s)
=

eτs + e−τsΓ(s)

1 + Γ(s)
(4.1)

Where τ is the PTT between the proximal and distal pressures and Γ is the

tube-load reflection coefficient. For the purposes of this thesis, the tube-load model

shall be the well-known 3-element Windkessel model [50], [53], [54], [55]. This model
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Figure 4.3: Diagram of single tubeWindkessel Tube-Load model adapted
from [57]

expresses the distal load of the modeled artery in terms of the impedance, resistance

and capacitance of the distal arteries (See Figure 4.3) [56], [57]. These parameters

are expressed by the reflection coefficient Γ in the following equation:

Γ(s) =
ZL(s)− ZC

ZL(s) + ZC

(4.2)

Where ZC is the extimated tube characteristic impedance and the total Wind-

kessel impedance, ZL, is given by:

ZL(s) = ZC +
RT

RTCT s+ 1
(4.3)

Parameterization of the Windkessel tube-load model may be accomplished

through either “lossy” or “lossless” models (i.e., blood volume either decreases or

remains constant throughout transmission, respectively). In [47] it was shown that

“lossy” models provide improved accuracy, however these improvements were small

and increased only slightly as the blood pressure loss increased. The “lossy” model

also requires additional model parameters to be estimated, thus increasing the com-

putational cost of the model parameter optimization. Since the “lossless” tube load
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model has been shown to have reliable results for the prediction of central blood

pressure compared to a “lossy” model, this thesis shall use the “lossless” model.

The “lossless” parameterization of the tube-load model is accomplished by

two lumped parameters η1 and η2. Substituting Equation 4.3 into Equation 4.2, the

parameterization is:

Γ =
RT

2ZCRTCT s+ (2ZC +RT )
=

η2

s+ η1
(4.4)

where

η1 =
2ZC +RT

2ZCRTCT

(4.5)

and

η2 =
RT

2ZCRTCT

(4.6)

Substituting this parameterization into Equation 4.1, a proximal pressure may

be expressed in terms of a distal pressure by:

Pp(s) =
eτs(s+ η1) + e−τsη2

s+ η1 + η2
Pd(s) (4.7)

The next section shall expand upon the BCG mechanism model by incorporat-

ing transmission line theory to estimate the BCG from a single measured pressure

wave.
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4.1.3 BCG-Based PTT Model

The model from [1] generated the BCG wave by subtracting the net force in

the ascending tube from the net force in the descending tube, yielding the overall

force in the descending direction as shown in Equation 4.8.

BCG = −AA(P0 − P1) + AD(P1 − P2) (4.8)

Where AA represents the mean arterial area for the ascending tube and AD

represents the mean arterial area for the descending tube. Note the contribution to

arterial forces from blood flow was found to be dominated by the pressure forces

which resulted in flow-based forces being neglected in this model.

Incorporating the relationship between proximal and distal pressures devel-

oped earlier, P0 and P1 can be estimated from P2 as follows:

P1(s) =
eτ2s(s+ η1) + e−τ2sη2

s+ η1 + η2
P2(s) (4.9)

Where τ2 is the strictly positive time-delay from P1 to P2. Repeating for the esti-

mation of P0 from P2:

P0(s) =
e(τ1+τ2)s(s+ η1) + e−(τ1+τ2)sη2

s+ η1 + η2
P2(s) (4.10)

Where τ1 is defined as the strictly positive time-delay from P0 to P1 and the sum of

τ1 and τ2 is the time-delay from P0 to P2.
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Substituting these equations into 4.8 yields the following transfer function:

BCG(s) =

(

−AA

e(τ1+τ2)s(s+ η1) + e−(τ1+τ2)sη2

s+ η1 + η2

+ (AA + AD)
eτ2s(s+ η1) + e−τ2sη2

s+ η1 + η2
− AD

)

P2(s) (4.11)

At this point, it is important to note the exact physical location of each pres-

sure in the BCG model is unknown, most specifically the model-expected location of

P2. However, from the guidelines for pressure timings, the model requires P2 systole

to occur at or near the K wave and P2 diastole prior or at the I wave. In order for

this model to appropriately estimate the BCG, it is necessary to ensure the input

pressure has these characteristics. It very difficult to guarantee this exact timing

when collecting pressure data. To compensate for this measurement offset, the ad-

dition of a third pressure, denoted henceforth by P3, to the BCG model is required.

P3 shall be the measured pressure waveform which may occur either proximal, distal

or exactly at the BCG model-expected P2.

It is expected that any time delay between P3 and P2 would be small (i.e., less

than 30ms). A time-delay of 30ms represents a pulse displacement of approximately

15-20cm in distal arteries. Thus implementation of transmission line theory between

P3 and P2 would be unnecessary and generate additional parameters for the model

to estimate. Thus, any time delay between P3 and P2 shall be implemented through

a simple shift in pressure timing, maintaining all other features of the wave. This is
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explicitly expressed in the following equation.

P2 = eτ3sP3 (4.12)

Where τ3 may be either positive or negative. A positive τ3 value shall indicate

a proximal shift of P3 and a negative τ3 value shall indicate a distal shift. Figure 4.4

illustrates the location of each of the pressures.

Figure 4.4: Pressure Locations of Model-Based Approach. τ3 may be a
positive (i.e., proximal) or negative (i.e., distal) shift of P3 to P2. τ2 is a
strictly positive shift of P2 to P1 via transmission line theory, as is τ1 a
positive value for a transmission line shift from P1 to P0.

Incorporation of P3 into the Equation 4.11 yields the following:
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BCG(s) =

(

−AA

e(τ1+τ2+τ3)s(s+ η1) + e(τ3−τ1−τ2)sη2

s+ η1 + η2

+ (AA + AD)
e(τ2+τ3)s(s + η1) + e(τ3−τ2)sη2

s + η1 + η2
− ADe

τ3s

)

P3(s) (4.13)

The estimated PTT from this model may be a combination of τ1,τ2, or τ3

estimated by the model. Determination of which combination to be used shall be

elucidated in a later section.

4.1.3.1 Model Variants

This thesis shall propose two variants on the model developed above. The

first model shall assume τ3 is an unknown parameter and use system identification

methods to estimate its value. This would maintain the transfer function from

Equation 4.13 and have a total of 7 parameters which the system must identify

(τ1, τ2, τ3, η1, η2, AA, AD).

The second variant shall set τ3 to a value determined from patient specific

data. That is, since the mechanism model suggests that P2 systole occurs very near

the peak of the K wave, τ3 shall be estimated to equal the beat-to-beat difference

between the systole of the measured distal pressure and the measured K wave. This

results in the transfer function of Equation 4.11 with a total of 6 parameters for

system identification (τ1, τ2, η1, η2, AA, AD).

The two variants shall henceforth be distinguished by denoting the first variant
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by “Full Parameter Model” (FPM) in which τ3 is a system identified parameter and

second variant by the “Reduced Parameter Model”(RPM) where τ3 is a physiologi-

cally obtained value. Both models shall be explored and compared in the remaining

sections of this thesis.

4.1.3.2 Discretization of Model

Discretization of the FPM may be accomplished through the Z-transform and

approximating τis by equating to ni(z − 1). Full details on this discretization are

provided in Appendix A.

BCG[k + 1] =
(

1−
η1 + η2

Fs

)

BCG[k]−AAP3[k + n1 + n2 + n3 + 1]

+ AA

(

1−
η1

Fs

)

P3[k + n1 + n2 + n3]−AA(
( η2

Fs

)

P3[k − n1 − n2 + n3]

+ (AA +AD)P3[k + n2 + n3 + 1] + (AA +AD)
( η1

Fs
− 1
)

P3[k + n2 + n3]

+ (AA +AD)(
η2

Fs
)P3[k − n2 + n3]−ADP3[k + n3 + 1] (4.14)

+ AD

(

1−
η1 + η2

Fs

)

P3[k + n3]

Similarly, the discretization of the RPM yields the following equation (See

Appendix A):
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BCG[k + 1] =
(

1−
η1 + η2

Fs

)

BCG[k]−AAP2[k + n1 + n2 + 1]

+ AA

(

1−
η1

Fs

)

P2[k + n1 + n2]−AA(
( η2

Fs

)

P2[k − n1 − n2]

+ (AA +AD)P2[k + n2 + 1] + (AA +AD)
( η1

Fs
− 1
)

P2[k + n2]

+ (AA +AD)(
η2

Fs

)P2[k − n2]−ADP2[k + 1] (4.15)

+ AD

(

1−
η1 + η2

Fs

)

P2[k]

The following section shall explore each model to facilitate understanding of

the system parameters and the sensitivity of the model to each parameter.

4.2 System Identification

4.2.1 Identifiability

Prior to application of these models to data, it is vital to ensure all parameters

are uniquely identifiable. To facilitate this, a pseudo-linear regression is applied to

the discrete form of the FPM as follows:

BCG[k] = ΦΘ (4.16)
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(4.18)

From this form, it can be clearly seen that all parameters can be uniquely

estimated from the coefficient vector Θ, and in fact the system is overdetermined.

AA can be found from the coefficients of −P3(k + n1 + n2 + n3), AD can be found

from the coefficients of P3(k + n3), η1 can be found from the coefficients of P3(k +

n1 + n2 + n3 − 1) and −P3(k + n1 + n2 + n3), and finally η2 can be found from the

coefficients of −P3(k + n1 + n2 + n3) and −P3(k − n1 − n2 + n3 − 1).

An eigenvalue decomposition is performed on the FPM model for each sub-

ject and intervention. Table 4.1 shows the mean and standard deviation of the

eigenvalues and Figure 4.5 shows the mean associated eigenvectors. It can clearly

be seen from Figure 4.5 that all of the regressors are explored by one or more of

the eigenvectors (i.e., the last three regressors are excited by the first and second

eigenvectors). In addition, with the exception of the first regressor, the eigenvalues

are large in magnitude and thus we expect the second through ninth regressors to
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be estimated accurately.

Table 4.1: Eigenvalue Decomposition of FPM

Eigenvalues in Mean (SD)
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

2.13 1.43E5 6.84E5 1.98E6 1.46E8 4.99E8 2.55E9 5.08E9 8.86E9
(2.15) (3.69E5) (9.65E5) (1.97E6) (2.33E8) (6.92E8) (1.44E9) (2.65E9) (4.68E9)

Figure 4.5: Eigenvectors for FPM Variant

The coefficients of the pseudo-linear regression of the RPM are the same as

the LPM model and thus the identifiability is very similar. The regressor vector Φ

is the only change and is provided below.
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As before, the parameters are overdetermined in this system and are found

similar to the LPM form: AA can be found from the coefficients of P2(k+ n1 + n2),

AD can be found from the coefficients of P2(k), η1 can be found from the coefficients

of P2(k + n1 + n2 − 1) and P2(k + n1 + n2), and finally η2 can be found from the

coefficients of P2(k + n1 + n2) and −P2(k − n1 − n2 − 1).

An eigenvalue decomposition is also performed on the RPM model for each

subject and intervention. Table 4.2 shows the mean and standard deviation of the

eigenvalues and Figure 4.6 shows the mean associated eigenvectors. The exploration

by the eigenvectors remains the same as the FPM.

Table 4.2: Eigenvalue Decomposition of RPM

Eigenvalues in Mean (SD)
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

0.28 1.05E6 1.70E6 2.74E6 1.23E8 4.13E8 1.84E9 4.23E9 7.70E9
(0.44) (1.64E6) (2.14E6) (2.67E6) (1.83E8) (5.60E8) (1.29E9) (2.35E9) (4.09E9)
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Figure 4.6: Eigenvectors for RPM Variant

4.2.2 Sensitivity Analysis

4.2.2.1 Data Sets

A quantitative sensitivity analysis on the base mechanism model was con-

ducted. This analysis, since it was implemented on the original mechanism model,

applies to both the RPM and FPM varients. Invasive aortic waveforms were ob-

tained from 21 adult cardiac surgical patients under approval of the University of

Alberta Health Research Ethics Board. Two collection sites existed: one near the

aortic arch and the other at the femoral artery of each patient, providing the mech-
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anism model P1 and P2 pressures, respectively. The ascending aorta waveform, P0

was generated by implementing a 20ms time-offset from the aortic arch waveform

(see [1] for more details). The data sets were collected at a sampling rate of 100Hz.

Since this provided only a 10ms resolution, the data was upsampled to 1Kz for the

purposes of the sensitivity analysis.

The sensitivity of calculated BCG waveforms with respect to aortic areas and

time delays were determined for each patient. The following sections shall discuss

the methods by which the sensitivity analysis was conducted and provide tabulated

results for each model parameter.

4.2.2.2 I/J/K Sensitivity to Aortic Areas

The critical features of the BCG wave are captured in the timing and mag-

nitude of the I/J/K peaks. Thus the sensitivity of each of those peaks to the

parameters is of greatest interest to this study. The sensitivity demonstrated here

are normalized against nominal values unless otherwise stated.

Referring to the original equation (Eq. 4.8), the BCG I peak occurs at a

nominal time tI . That is:

Ī = −AA(P0(tI)− P1(tI)) + AD(P1(tI)− P2(tI)) (4.20)

Differentiating this equation with respect to AA and normalizing by Ī and ĀA, the
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sensitivity of the I peak to the ascending aortic area can be expressed as:

∂Ī

∂AA

ĀA

Ī
=

ĀA(P1(tI)− P0(tI))

AA(P1(tI)− P0(tI)) + AD(P1(tI)− P2(tI))
(4.21)

The same procedure may be repeated for the sensitivity of the I peak to AD

to yield the following equation:

∂Ī

∂AD

ĀD

Ī
=

ĀD(P1(tI)− P2(tI))

AA(P1(tI)− P0(tI)) + AD(P1(tI)− P2(tI))
(4.22)

Continuing the same method, the sensitivity of both the J and K peaks can

be formulated.

J̄ = −AA(P0(tJ)− P1(tJ)) + AD(P1(tJ)− P2(tJ)) (4.23)

∂J̄

∂AA

ĀA

J̄
=

ĀA(P1(tJ)− P0(tJ)

AA(P1(tJ )− P0(tJ)) + AD(P1(tJ)− P2(tJ))
(4.24)

∂J̄

∂AD

ĀD

J̄
=

ĀA(P1(tJ)− P2(tJ)

AA(P1(tJ )− P0(tJ)) + AD(P1(tJ)− P2(tJ))
(4.25)

K̄ = −AA(P0(tK)− P1(tK)) + AD(P1(tK)− P2(tK)) (4.26)

∂K̄

∂AA

ĀA

K̄
=

ĀA(P1(tK)− P0(tK)

AA(P1(tK)− P0(tK)) + AD(P1(tK)− P2(tK))
(4.27)

∂K̄

∂AD

ĀD

K̄
=

ĀD(P1(tK)− P2(tK)

AA(P1(tK)− P0(tK)) + AD(P1(tK)− P2(tK))
(4.28)

These relationships reveal that each of the I/J/K waves vary with respect to
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changes in AA through the change in the ascending tube pressures. That is, the

magnitude of the ascending tube pressure difference at each of the I/J/K wave will

determine the relative sensitivity of each to AA. Conversely, each wave is sensitive

to changes in AD through the descending tube pressures at each wave.

From examination of Figure 4.2, it is expected that the I wave will be more

sensitive to the changes in AA than AD since the magnitude of the pressure differ-

ences in the ascending tube is larger than the differences in the descending tube at

the time of the I wave. For the J wave, it is expected that the sensitivity to AA

will be nearly negligible as compared to AD. Again, this is a cause of the pressure

difference in the descending tube being significantly larger in magnitude than the

difference in the ascending tube at the time of the J wave. The case is the same for

the K wave as with the J wave.

At this point, the sensitivity may be directly calculated from the patient data

set to verify these expectations. The results of these calculations are shown in

Table 4.3. These results verify the expectation that the ascending aortic area has

the greatest impact on the amplitude of the I wave. If a 10% increase in the area

is applied, then a mean 15.8% increase in the I wave amplitude would occur (in

the negative, headward direction for the I wave). Whereas the same increase in

the ascending aortic area would only achieve a mean 4.5% and 0.1% decrease in

the J wave and K wave amplitudes respectively. In terms of the descending aortic

area, the I wave amplitude is approximately 2.5 times less sensitive to changes as

compared to the ascending area.

As expected the J and K wave amplitudes are approximately 3.2 and 100 times

41



Table 4.3: I/J/K Amplitude Sensitivity to Aortic Areas

BCG Wave Average Subject AA Sensitivity Average Subject AD Sensitivity
I Wave 1.58 ± 0.22 -0.58 ± 0.22
J Wave -0.45 ± 0.46 1.45 ± 0.46
K Wave -0.01 ± 0.31 1.01 ± 0.31

more sensitive to changes in the descending aortic area than the ascending area,

respectively. However relative to each other, the J and K wave are comparably

sensitive to changes in the descending aortic area, with the J wave slightly more

sensitive. Thus the model-estimated descending area will depend simultaneously on

the measured J and K waves.

It is assumed throughout this sensitivity analysis that the timing of the I/J/K

waves remains constant despite area perturbations. To validate this assumption,

timing changes in each of the I/J/K waves were measured after a large change (i.e.,

20%) in aortic areas was applied. Table 4.4 shows the timing change of each wave

was negligible despite these changes, thus validating the preceding analysis.

Table 4.4: I/J/K Timing Sensitivity to Aortic Areas

Absolute Time Change (ms)
BCG Wave AA + 20% AA - 20% AD + 20% AD - 20%
I Wave -1.20 ± 3.32 2.40 ± 4.36 2.00 ± 4.08 -1.60 ± 4.73
J Wave -1.20 ± 3.32 2.40 ± 2.40 2.40 ± 4.36 -1.60 ± 3.74
K Wave 0.40 ± 3.51 -1.20 ± 3.32 -0.80 ± 2.77 0.40 ± 3.51

With a large perturbation in the aortic areas, the change of the time occurrence

of each wave is very small. For example, if the ascending area is changed by twenty

percent, the time I wave has a mean change of 1.2 ms. The average time difference
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between the BCG-I wave and BCG-J wave is 66ms whereas the average time delay

between the BCG-I wave and BCG-K wave is 148ms. Thus a change in the I wave

of 1.2ms is 1.8% of the I-J difference and 0.8% of the I-K difference. It can therefore

be concluded that these absolute time changes are very small and each wave deemed

to have low variability with respect to the aortic areas.

4.2.2.3 I/J/K Sensitivity to τ1/τ2

Sensitivity of each BCG wave relative to time-delay terms τ1 and τ2 was also

studied. It is expected that a change in time-delay terms will result in larger vari-

ations in I/J/K wave timings. Thus a timing analysis was conducted prior to an

amplitude study. A nominal value was available for τ1 (i.e., 20ms), however no such

value was defined for τ2. To obtain this value, PTT was measured between P1 and

P2 for each patient and τ2 perturbations were based on this value (e.g., a time-delay

between P1 and P2 of 60ms would be shifted ± 12ms for a 20% change). This timing

analysis was conducted empirically as in the aortic area sensitivity analysis and the

results are shown in Table 4.5

Table 4.5: I/J/K Timing Sensitivity to Time-Delays

Absolute Time Change (ms)
BCG Wave τ1 + 20% τ1 - 20% τ2 + 20% τ2 - 20%
I Wave 0.05 ± 0.38 0.38 ± 0.59 11.33 ± 5.26 -0.24 ± 0.77
J Wave -0.57 ± 0.81 0.33 ± 0.58 3.90 ± 6.24 6.10 ± 3.66
K Wave 0.71 ± 0.90 0.14 ± 3.40 -2.33 ± 14.72 11.33 ± 9.33

The time-delay, τ2, appears to be a significant factor in the timing of the BCG

waves. The I and K wave appear to be the most sensitive to this aortic PTT.
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Since the timing of the I/J/K waves change significantly for a change in τ2, an

amplitude sensitivity study as done for the aortic areas is unreasonable. However,

the I/J/K wave have low variability with respect to τ1 and so an amplitude sensitivity

is conducted for this parameter.

The sensitivity equation for τ1 was based on the fact that P0(t) = P1(t + τ1).

The normalized sensitivity is shown for the I wave, though the procedure is the same

for the J and K waves.

Ī = −AA(P1(tI + τ1)− P1(tI)) + AD(P1(tI)− P2(tI)) (4.29)

∂Ī

∂τ1

τ̄1

Ī
=

−P ′

1(tI + τ1)AAτ̄1

AA(P1(tI)− P0(tI)) + AD(P1(tI)− P2(tI))

P ′

1 was evaluated numerically by a discrete forward difference method. Average

results for individual patients are shown in Table 4.6.

Table 4.6: I/J/K Amplitude Sensitivity to τ1

BCG Wave Average Subject τ1 Sensitivity
I Wave 1.77 ± 0.24
J Wave -0.36 ± 0.41
K Wave -0.08 ± 0.32

The BCG I wave is the most sensitive of the waves to the ascending aortic

PTT. This supports the theory that the time delay between P0 and P1 has the

greatest effect on the I wave (i.e., that the I wave occurs at the top of the aortic

arch where P1 is located). The results for the J wave amplitude show that it is

inversely related to τ1. This makes intuitive sense since, referring to Figure 4.2, the
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J wave includes a small pressure difference between P1 and P0. An increased time-

delay between these two parameters would result in a larger magnitude difference

at the J wave location, lowering the overall magnitude of the J wave. In addition,

this also follows previous assertions that the J wave occurs due to the movement of

blood from the upper arteries to the lower arteries.

It is also interesting to note the K wave amplitude appears to have little to no

dependence on the ascending aortic time delay. This also follows from Figure 4.2

since there is very little contribution from the ascending tube pressure difference.

This result also agrees with previous theories that the K wave occurs at some point

in descending arteries [35].

4.3 Methods

At this point, the model-based approach shall used to provide an estimation of

BP via PTT and compare to these results to the signal-based approach. Data from

the signal-based method provide a BP waveform as an input to the model (i.e., the

Finapres BP). At noted previously, the location of the Finapres BP measurement

was at the index finger of the subjects left hand. Thus the PTT estimated from

this model-based method shall be compared to the Arm PTT from the previous

study. This is inherently a limitation of the following analysis, since the mechanism

of the BCG is due to descending arterial forces. This limitation is acknowledged

and discussed in a later section.

Since there were beat exclusions conducted prior to selection of the five rep-
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resentative intervention beats, there were many selected beats which were not con-

tinuous. That is, a set of five beats may initially have been a set of 6 beats with

one removed due to a time-delay outlier. This model-based method requires the

use of continuous data and thus all beats starting from two prior to the first beat

of the originally identified five to two posterior to the last beat of the original five

where used as input for each subject. Note that the addition of two beats before

and after are required due to the SYSID technique (i.e., Equations 4.15 and 4.16

require some information prior to and after the current BCG estimation step). Only

the five original beats were included in the cost function of the optimization tech-

nique to ensure a comparable result to the signal-based method. Figure 4.7 shows

an example BP input with the corresponding measured BCG. The bolded BP beats

denote the original five beats used in the signal-based method.

An estimate of the measured BCG wave is generated using both the FPM and

the RPM techniques. The resulting estimated parameters from the model are cri-

tiqued for physiological reasonableness. Estimation of DBP and SBP is subsequently

conducted as in the signal-based approach and results are compared.

4.3.1 Data Exclusion

The signal-based approach relied on only the BCG-I wave detection and not

on the whole waveform. As such many of the beats used in the approach were not

of the I/J/K form. That is, some beats exhibited double peaks in either I, J, or K,

while other beats had a significant slope change in either the I/J upstroke or the
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Figure 4.7: An example of input BP and corresponding BCG. Bolded
beats show those used from the weighing-scale study. Un-bolded beats
are included for data continuity and adequate input data for transmission
line theory estimation.

J/K downstroke. Examples of these waveforms compared to a reasonable BCG are

shown in Figure 4.8.

It is unreasonable at this time to expect the BCGmodel to estimate these types

of waves since the model was originally developed to show key BCG characteristics.

Thus, for the purposes of first validating the model as it is currently intended, beats

were excluded from estimation of subject PTT. The model-based approach shall

examine 8 subjects (subject numbers 2, 3, 4, 5, 6, 10, 11, and 17 from Table 3.1)

which had 50% or more reasonable beats and no more than 1 excluded intervention

(an intervention is excluded due to no usable beats). Data that are excluded at this
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Figure 4.8: Examples of measured BCG waveforms taken from a single
subject within the same intervention. The leftmost figure exemplifies a
change in I/J upstroke slope. The middle figure shows both a double I
peak and a change in the J/K downstroke. The rightmost figure shows
the expected waveform of the mechanism model.

time should be examined when improving the model, however that is beyond the

scope of this thesis.

4.3.2 Data Limitations

There are certain limitations of the data set used for this thesis which must

be acknowledged. Firstly, the Finapres BP waveform is measured from a radial

artery and not a descending artery. Since the genesis of the BCG is attributed to

descending pressures, the original model was based off of this attribute. However,

it is not wholly unreasonable to apply the radial Finapres BP to this model due to

similarities in femoral (descending) and radial BP waveforms. Figure 4.9 shows an

example of a femoral and radial BP waveform measured from the same subject.

While the femoral waveform has a greater pulse pressure (PP) than the radial

48



Figure 4.9: An example of radial and femoral BP waveforms measured
invasively from [1]

waveform, the waveform features are very similar. The timing of the diastolic and

systolic pressures are similar. Thus arm PTT estimation is expected to be reasonable

with this model. Also, the overall morphology of each wave is similar, each exhibiting

the a “diacrotic notch” near the same time (note this is not the true diacrotic notch

known to occur at the ascending aortic pressure, but is the transmission of this

occurance through the arterial tree). Thus with similar morphology and timing, it

is reasonable to use a radial waveform instead of the femoral waveform for estimation

of arm PTT.

Another limitation of this data is there are no measured intermediate pressures,

resulting in blind identification of intermediate pressures for BCG estimation. This

may result in non-physiological intermediate pressures since there is no training data

for the intermediate pressures. Future studies should include the measurement of
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intermediate waveforms for full validation of estimated parameters.

4.3.3 Optimization Techniques

Both the RPM and FPM were optimized in the same way (i.e., only the cal-

culation of the estimated BCG wave differed, not the cost function formulation).

The cost function along with its constraints are provided below and discussed in the

remainder of this section.

Minimize f(AA, AD, η1, η2) =

√

1

n

∑

(BCGmeasured − BCGestimated)2

subject to g1 = −AA < 0

g2 = −AD < 0

g3 = −η1 + 0.01 < 0

g4 = −η2 + 0.01 < 0

g5 = −η1 + 1.02η2 < 0

g6 = −AA + AD < 0

g7 = η1 + η2 − 1.8Fs < 0

g8 = AA − 0.0007 < 0

This optimization is applied to each beat, providing a beat-specific set of

estimated parameters for each intervention. In addition, since PTT is the most im-
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portant parameter for estimation, this optimization is performed on all physiological

combinations of τ1, τ2, and τ3. That is, values for τ1, τ2, and τ3 were set prior to

the optimization according to physiological bounds and iterated through a range

of values, performing the optimization on each set. This procedure yielded many

hundreds of minimized cost function values and the final estimated parameters are

chosen by selecting the set which corresponded to the smallest cost function value.

Due to the large number of optimizations, the data was down-sampled to a 200Hz,

providing 2ms of PTT resolution.

The cost function, f , is simply the RMSE of the estimated BCG and the

measured BCG. The cost function only takes into account the time range which

includes the I/J/K waves of each beat of the measured BCG since these are the

major features of the wave. The estimated BCG is calculated for a single beat

from the discrete functions given in Equations 4.15 and 4.16 for the FPM and RPM

respectively.

The constraints applied to this function stem from physiological restrictions.

The need for g1 and g2 is clear since aortic areas cannot be negative. In addition, to

ensure appropriate reflection coefficients, constraints g3 - g5 are used to ensure η1/η2

take values sufficiently far away from zero (preventing both infinite and zero reflec-

tion coefficients) and that they are sufficiently distinct from each other (prohibiting

a reflection coefficient near one which would result in a simple time-delay between

waves). Also, g6 requires AA to be larger than AD since aortic areas decrease as

the artery is further away from the heart. g7 places an upper bound based on the

sampling frequency Fs on η1/η2 values to ensure sufficient distance from the Nyquist
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frequency. Finally, g8 is based from measured values of ascending aortic area [33].

This is to ensure AA does not become larger than physiologically reported values.

The optimization was performed with MATLAB’s fmincon function using the

default “interior-point” method. As previously noted, the optimization was run

for all physiologically reasonable combinations of τ1, τ2, and τ3. The ranges for

these parameters was determined from boundaries on pressure timings described

earlier. For the FPM, τ3 was assumed to be a small value between -30ms to 30ms,

including zero. This choice was justified by measuring the time difference between

the Finapres SBP and the measured BCG K peak for each beat. It was found that

89.5% of the used beats remained within this range. In the RPM case, τ3 was set

to equal the time difference between the Finapres SBP and the BCG K wave.

In regards to the physiological bounds on τ2 and τ1, the diastole of P1 occurs

at some point between the BCG I peak and the H peak. Thus the search range

of τ2 started from the difference between the time of measured Finapres DBP and

measured I wave (minus the current value of τ3) and ended at the time difference

between the measured Finapres DBP and measured H wave (minus the current value

of τ3). This was the case for both the FPM and the RPM. Similarly, P0 occurs at

some point after the BCG H wave. Thus the start of the search range for P0 was the

time difference between Finapres DBP and BCG I wave (minus both τ2 and τ3) and

the ended at the time difference between Finapres DBP and BCG H wave (minus

both τ2 and τ3).
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4.4 Results

4.4.1 PTT Selection

Through the application of the model-based approach, it was found that the

most accurate PTT estimation came through the sum of τ2 and τ3. This is due to the

range of acceptable values for the sum of all estimated PTT values (i.e., τ1, τ2, and

τ3). This range has a maximum value of the time difference between the measured

DBP and the measured BCG-H wave. As previously mentioned, the BCG-H wave

is known to occur sometime prior to left ventricular ejection, and so it is possible for

this PTT to include some portion of PEP. Examining Figure 4.2, the diastolic of P1

is at some point between the modeled I wave and H wave, near the occurrence of left

ventricular ejection. Thus, any inclusion of PEP in the model-based PTT would

be in time-delay between P1 and P0, τ1. Thus all model-based results discussed

henceforth shall refer to estimated PTT as the sum of τ2 and τ3 only.

4.4.2 FPM Results

Figure 4.10 shows a typical estimated BCG waveform from the FPM. This

varient was able to accurately estimate the I/J/K waves of the BCG, estimated

amplitude and time results are provided later. Table 4.7 summarizes the model-

estimated parameters for each subject and intervention. Interventions noted as

excluded are due to no usable BCG waveforms from the original study in [36]. In

addition, some interventions had only one usable beat out of the five provided,
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thus standard deviation is not applicable to that intervention. In each subject, the

Figure 4.10: An example of a typical FPM estimated BCG

following observations can be made regarding the results. First, the estimated PTT

has the desired trend in relation to DBP in most of the subjects. That is, each

intervention period results in a higher DBP relative to the previous resting period.

Since PTT is known to have an inverse relationship to changes in DBP, it would

be expected that each intervention has a lower PTT as compared to the previous

resting section. This is true for the estimated PTT.

In addition, the ascending aortic area is expected to be between 7.00e-4 m2

and 7.06e-5 m2 (population average left subclavian aortic area) [33]. In 9% of the

interventions, the mean area is slightly lower than the expected lower bound. These

ascending area results are still acceptable however since the reference areas are

population averaged and some deviation from these values is acceptable.
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Table 4.7: FPM Results

Mean Estimated Paramaters DBP

Subject Interv. PTT (ms) AA (m2) AD (m2) η1 η2 (mmHg)

R1 70±9 6.68E-05 5.89E-05 167.34 108.13 58.77

MA 58±4 5.21E-05 5.21E-05 43.10 33.62 99.15

2
R2 83±16 2.06E-04 6.04E-05 100.41 73.46 57.66

CP 73±13 1.24E-04 4.88E-05 88.21 63.19 86.67

R3 78±13 2.85E-04 5.83E-05 166.17 108.31 59.66

PE 65 (N/A) 5.14E-05 4.67E-05 198.91 157.82 91.64

R1 78±3 5.19E-04 7.19E-05 100.12 50.51 64.77

MA 71±6 6.17E-04 7.82E-05 93.39 77.62 81.84

3
R2 77±8 2.56E-04 6.15E-05 17.59 13.24 65.07

CP 63±11 1.37E-04 7.41E-05 188.09 129.47 76.37

R3 86±6 3.06E-04 9.24E-05 67.96 38.83 60.68

PE 74±12 5.02E-04 1.18E-04 76.07 41.72 61.53

R1 105±11 5.79E-04 8.32E-05 58.42 32.15 76.65

MA 93±9 2.56E-04 7.72E-05 156.03 91.29 103.27

4
R2 99±7 3.32E-04 9.20E-05 82.78 44.61 72.51

CP 103±11 2.23E-04 5.73E-05 155.11 84.24 87.21

R3 101±17 4.62E-04 8.24E-05 15.56 14.99 69.41

Continued on next page
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Table 4.7 – Continued from previous page

Subject Interv. PTT (ms) AA (m2) AD (m2) η1 η2 DBP

PE 83±10 2.04E-04 8.50E-05 220.02 111.15 92.05

R1 89±9 1.47E-04 7.98E-05 61.22 45.00 81.87

MA 88±6 3.27E-04 8.77E-05 47.59 28.51 96.15

5
R2 97±10 4.86E-04 1.07E-04 41.43 33.98 81.75

CP 80±4 5.49E-04 1.02E-04 81.75 57.60 112.34

R3 97±8 3.91E-04 7.98E-05 31.23 23.13 81.24

PE 73±12 1.19E-04 6.86E-05 142.65 128.84 104.93

R1 100±10 6.86E-05 1.32E-04 148.56 99.92 75.32

MA Intervention Excluded

6
R2 86±2 2.46E-04 2.21E-04 96.18 68.63 73.62

CP 95±14 5.19E-04 7.44E-05 100.07 58.07 83.35

R3 99±15 3.06E-04 1.55E-04 192.12 106.64 68.44

PE 73±10 2.46E-04 1.10E-04 23.82 13.50 90.84

R1 87±6 4.25E-04 1.61E-04 91.99 76.35 68.07

MA 75±14 4.33E-04 1.74E-04 100.07 97.92 79.23

10
R2 87±10 5.14E-04 1.58E-04 42.92 33.56 61.22

CP 78±11 4.49E-04 4.01E-04 59.16 57.72 66.16

R3 100±0 4.39E-04 1.26E-04 86.66 60.88 64.15

PE Intervention Excluded

Continued on next page
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Table 4.7 – Continued from previous page

Subject Interv. PTT (ms) AA (m2) AD (m2) η1 η2 DBP

R1 95±9 4.64E-04 6.97E-05 34.76 20.59 79.01

MA 75±21 3.37E-04 7.33E-05 60.32 40.73 89.70

11
R2 91±9 3.68E-04 7.34E-05 80.00 56.39 75.94

CP Intervention Excluded

R3 73±3 2.34E-04 8.82E-05 130.25 100.56 74.71

PE 60 (N/A) 7.58E-05 7.58E-05 256.02 102.56 86.59

R1 88±6 1.05E-04 9.00E-05 65.57 25.94 78.11

MA 70 (N/A) 9.35E-05 8.24E-05 96.60 79.27 109.59

17
R2 84±14 2.34E-04 9.07E-05 122.18 116.44 91.95

CP 78±15 4.39E-04 1.06E-04 80.13 65.07 97.70

R3 75±9 1.69E-04 9.57E-05 130.20 95.79 90.50

PE Intervention Excluded

A similar analysis of the descending area can be made. The upper bound

of the descending area is determined by the identified ascending area, however a

reasonable lower bound would be that of the population average left interosseous

artery (9.29e-6 m2 [33]). All of the mean estimated decending areas fall above this

lower bound and thus these estimated areas are deemed physiologically reasonable.

(Note: without comparison against patient-specific data, this is the only assertion

about the validity of the areas that can be made at this time).
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It is much more difficult to determine the validity of the reflection coefficient

parameters, η1 and η2. In fact, without an intermediate BP waveform to examine

these parameters against (i.e., comparing an intermediate pressure generated by

these parameters with a measured waveform) it is impossible to make any definitive

conclusions. Some reference values are provided in [47] where invasive measured

radial waveforms were transformed by a lossy tube load model with a 3-element

windkessel load to central aortic BP waveforms. The values reported from that

study are 33.4 ± 31.7 and 12.6 ± 11.4 for η1 and η2 respectively. Values identified in

this model are significantly larger than previously reported and further investigation

into this aspect of the model is required.

The next section shall present the results from the RPM model, followed by a

comparison of the two models to signal-based arm PTT.

4.4.3 RPM Results

Figure 4.11 shows a typical estimated BCG waveform from the RPM. The

model was able to estimate the magnitude of the I/J waves of the BCG with some

difficultly in estimating the K wave and the J wave timing. More discussion on this

shortcoming is provided below. Table 4.8 summarizes the model-estimated param-

eters for each subject and intervention. The results shown in Table 4.8 are similar

to those from the FPM. The inverse trend between PTT and BP is maintained in

most subjects in this model. However, in some interventions, the estimated change

in PTT is either in the wrong direction or zero thus causing overall correlations to
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Figure 4.11: An example of a typical RPM estimated BCG

be reduced (See the next section for a discussion on correlations). The majority

of estimated values of AA fall within the expected range with only 7% occurring

outside. Estimated AD values are also physiologically reasonable with all of the

predicted values larger than the popuation average left interosseous artery area. Es-

timated values for η1 and η2 appear to be significantly more reasonable than the

FPM. Comparing to the values reported in [47], 66% of the values determined for η1

fall within a single standard deviation of the reported values and 80% fall within two

standard deviations of the mean. However, only 50% of the values for η2 fall within

one standard deviation of the reported mean and 64% are within two standard de-

viations. Even though this analysis for η1 and η2 is not quantitatively thorough, the

RPM does appear to result in more reasonable parameters than the FPM.
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Table 4.8: RPM Results

Mean Estimated Paramaters DBP

Subject Interv. PTT (ms) AA (m2) AD (m2) η1 η2 (mmHg)

R1 68±12 7.00E-05 6.84E-05 10.75 7.61 58.77

MA 68±4 7.02E-05 5.67E-05 19.76 1.56 99.15

2
R2 71±17 1.00E-04 9.26E-05 7.84 7.68 57.66

CP 69±13 1.58E-04 7.64E-05 10.07 9.74 86.67

R3 69±13 1.00E-04 5.85E-05 12.24 9.12 59.87

PE 65 (N/A) 5.27E-05 4.86E-05 122.52 86.49 91.64

R1 78±3 4.30E-04 6.79E-05 124.27 74.07 64.77

MA 69±5 3.46E-04 7.09E-05 55.62 45.09 81.84

3
R2 80±10 8.23E-04 1.01E-04 85.28 74.52 65.13

CP 58±18 1.24E-04 7.26E-05 107.11 72.83 76.37

R3 86±11 3.33E-04 8.67E-05 112.45 73.92 60.68

PE 77±10 7.37E-04 1.17E-04 97.29 68.84 61.53

R1 104±11 5.38E-04 7.52E-05 30.5 21.36 76.6

MA 89±3 2.09E-04 6.90E-05 108.49 83.46 103.3

4
R2 97±4 2.93E-04 8.48E-05 15.97 10.81 72.5

CP 103±10 3.00E-04 5.26E-05 135.54 91.90 87.2

R3 100±18 4.40E-04 8.55E-05 10.90 10.68 69.4

Continued on next page
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Table 4.8 – Continued from previous page

Subject Interv. PTT (ms) AA (m2) AD (m2) η1 η2 DBP

PE 82±8 1.61E-04 8.28E-05 223.51 126.47 92.1

R1 90±9 1.59E-04 7.03E-05 79.28 46.83 81.9

MA 90±5 5.58E-04 8.96E-05 69.32 42.42 96.1

5
R2 95±9 2.80E-04 9.86E-05 26.91 23.20 81.7

CP 83±6 7.77E-04 9.31E-05 24.04 19.86 112.3

R3 101±13 3.44E-04 5.67E-05 32.29 27.52 81.2

PE 71±9 9.49E-05 5.81E-05 45.32 44.20 104.9

R1 96±8 2.42E-04 1.17E-04 14.06 12.05 75.3

MA Intervention Excluded

6
R2 91±7 2.66E-04 2.04E-04 85.14 50.06 73.5

CP 93±18 5.17E-04 7.06E-05 60.24 31.49 83.5

R3 103±16 2.64E-04 1.17E-04 66.44 37.23 68.4

PE 73±10 3.42E-04 1.14E-04 31.99 16.88 90.8

R1 88±13 8.23E-04 1.53E-04 17.11 15.07 65.25

MA 78±11 4.15E-04 2.48E-04 96.53 30.67 79.23

10
R2 87±16 4.62E-04 1.51E-04 25.28 20.69 61.22

CP 88±4 6.98E-04 6.27E-04 7.59 6.51 66.16

R3 95±7 5.99E-04 1.27E-04 18.24 13.47 64.15

PE Intervention Excluded

Continued on next page

61



Table 4.8 – Continued from previous page

Subject Interv. PTT (ms) AA (m2) AD (m2) η1 η2 DBP

R1 95±9 4.93E-04 7.31E-05 36.89 22.01 79.01

MA 73±22 3.09E-04 7.45E-05 11.53 11.06 89.70

11
R2 85±4 2.44E-04 7.60E-05 25.50 18.01 75.94

CP Intervention Excluded

R3 70±9 2.79E-04 7.50E-05 12.98 11.00 74.71

PE 65 (N/A) 9.15E-05 7.64E-05 278.28 80.71 86.59

R1 92±6 1.27E-04 8.50E-05 94.87 34.61 78.11

MA 70 (N/A) 8.57E-05 8.38E-05 46.26 31.86 109.59

17
R2 84±15 1.89E-04 7.95E-05 38.94 26.43 91.95

CP 72±10 2.28E-04 1.30E-04 15.57 11.12 97.70

R3 70±9 1.14E-04 8.23E-05 20.11 14.32 90.50

PE Intervention Excluded

4.4.4 Accuracy of FPM and RPM

The accuracy of each model is quantitatively evaluated in terms of both am-

plitude error and timing error of each wave. Both of these errors was evaluated for

the I/J/K waves in each of the FPM and RPM and reported in terms of mean and

standard error of RMSE in Table 4.9. RMSE was computed for each intervention

for each subject, resulting in 44 values. Overall prediction accuray of the I wave
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was very similar in terms of both amplitude and timing. However the FPM out-

performs the RPM in the J and K waves for both timing and amplitude. This is

expected since the RPM sets the value for τ3 which determines the position of the

distal pressure for the mechanism model. Since the distal pressure plays a large role

in determining the J and K waves (See figure 4.2), inaccuracy will be introduced by

this method.

Table 4.9: RMSE of FPM and RPM. Results shown in terms of mean and standard
error

Wave Amplitudes RMSE [N] Wave Timing RMSE [ms]
Model I Amp J Amp K Amp I Time J Time K Time

FPM
0.018 0.014 0.020 5.2 5.7 6.5
(0.002) (0.002) (0.004) (0.4) (0.4) (0.5)

RPM
0.021 0.023 0.31 6.4 8.7 10.9
(0.002) (0.002) (0.003) (0.8) (0.8) (1.7)

A paired T-test was used to assess the significance of the mean differences.

It was found that for all J and K amplitude and timing results, the means were

statistically different (p < 0.05) according to the two-tail test. However the results

for the I wave amplitude and timing were not statistically significant (p = 0.23 &

p = 0.18, respectively). Thus the FPM variant is indeed more accurate than the

RPM in J and K waves.

The following sections will compare the FPM and RPM results to those from

the signal-based method and discuss intermediate results of each model (i.e., pre-

dicted pressures).
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4.4.5 Comparison to Signal-Based Approach

Prediction of BP was calculated by taking the estimated PTT values and

measured BP and performing a linear regression. The linear regression was then

used to generate predicted BP values based on the estimated PTT. Figures 4.12

and 4.13 compare FPM and RPM predicted BP values respectively to measured BP.

Pearson’s linear correlation coefficients between model-based PTT and measured BP

are reported in Table 4.10 for both models.

Figure 4.12: FPM predicted BP vs. BCG-I wave predicted BP

Correlations to BP are comparable to those previously obtained by the signal-

based method. The FPM slightly outperforms the RPM in terms of mean and

standard deviation correlation to DBP. Both models have poorer performance in

SBP and the RPM slightly outperforms the FPM in this case. However a paired

T-test showed that results in the FPM and RPM for both DBP and SBP are not

significantly different from each other. The sensitivity of the FPM and RPM in BP
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Figure 4.13: RPM predicted BP vs. BCG-I wave predicted BP

prediction is higher than that of the signal-based method showing that improvement

in robustness against subject variations is needed. When compared to the signal-

based method in both DBP and SBP prediction, the FPM and RPM could not be

shown to be statistically different from the signal-based method by a paired T-test.

In sum, the FPM and RPM predicted PTTs can be deemed reasonable due to the

overall good BCG fitting and the comparable correlations to BP. Improvement is

needed if this model is to be used as a replacement of previous techniques, however

these first iteration results are promising for future applicability.

Both of the FPM and RPM variants outperform ECG-based PAT overall.

While these outperformed PAT in half of the subjects for DBP, the sensitivity of

this prediction is significantly less overall. In terms of SBP, the RPM continued

to outperform PAT in half of the subjects while the FPM performed better in

3/8 subjects. However, the consistency of each model continues to be drastically

improved in the FPM and RPM variants as compared to PAT. Thus the FPM and
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Table 4.10: Correlation to BP. S.B. PTT refers to signal-based PTT and is corrected
for the new DBP and SBP found after beat exclusion. Conventional PAT is also
given for corrected DBP and SBP values after beat exclusion.

Correlation to DBP Correlation to SBP
Subject FPM RPM S.B. PTT PAT FPM RPM S.B. PTT PAT

1 -0.81 -0.53 -0.84 -0.60 -0.78 -0.80 -0.83 -0.83
2 -0.72 -0.80 -0.88 -0.10 -0.84 -0.85 -0.87 -0.22
3 -0.61 -0.63 -0.93 -0.75 -0.50 -0.53 -0.89 -0.65
4 -0.86 -0.79 -0.78 -0.64 -0.90 -0.84 -0.83 -0.73
5 -0.72 -0.89 -0.87 -0.76 -0.50 -0.74 -0.88 -0.58
6 -0.63 -0.81 -0.62 -0.83 -0.36 -0.65 -0.50 -0.80
7 -0.53 -0.42 -0.77 -0.71 -0.65 -0.47 -0.84 -0.93
8 -0.87 -0.78 -0.65 0.14 -0.80 -0.70 -0.69 0.07

Mean -0.72 -0.71 -0.79 -0.53 -0.67 -0.70 -0.79 -0.58

SD 0.12 0.16 0.11 0.35 0.20 0.14 0.13 0.34

RPM variants are overall improvements to the current PAT methods with need for

improvement patient-specific results. Methods for these improvements are discussed

in the future work section at the end of this chapter.

4.4.6 Intermediate Results - FPM and RPM

It is critical to examine not only the end BCG fitting and resulting model

parameters, but the estimation of the intermediate pressures (i.e., P1 and P0) for

physiological reasonableness. Figure 4.14 shows two examples of these pressures for

each the FPM and RPM. Figures 4.14(c) & 4.14(d) show examples of reasonably

estimated pressures while Figures 4.14(a) & 4.14(b) show examples of unreasonable

pressures. It is physiologically unreasonable to have a “second systolic” pressure

which is higher than the first (As seen in Figure 4.14(a)). Since all of the subjects

in this study were healthy young adults with no history of cardiac illnesses, all
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resulting pressures should have a reasonable waveform morphology. In addition, it

is not reasonable to have a systolic peak larger in P0 than in P1 (Figures 4.14(a)

& 4.14(b)).

(a) FPM: Poor Pressure Estimation (b) RPM: Poor Pressure Estimation

(c) FPM: Good Pressure Estimation (d) RPM: Good Pressure Estimation

Figure 4.14: Examples of Intermediate Pressures from FPM and RPM

In both models, over half of the estimated waveforms for P1 and P0 were

physiologically unreasonable (i.e., exhibited a “second systolic” pressure or had a

larger PP in P0 than in P1). This is a large shortcoming of both of these models

and is due to large pulse transit times. The foundation of transmission line theory

is the segregation of pressure into the sum of forward and backward traveling waves.
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These forward and backward waves are estimated at the distal site and shifted apart

as the location of estimated pressure becomes more proximal (See Figure 4.15). If

the forward and backward waves are shifted beyond a certain point, the peak of each

of these waves will begin to be exhibited in the final estimated pressure. In addition,

transmission line theory assumes zero mean pressure, thus each of the forward and

backward waves will have a negative diastolic pressure. If shifting continues even

further, the backward wave can, in some cases, decrease the peak from the forward

wave resulting in a lower first peak.

4.4.7 Future Work

While the FPM and RPM variants have shown promise for model-based PTT

estimation, it is clear that improvements are necessary. The first improvement area

is the issue of intermediate pressure estimation. Addressing the assumptions of the

tube-load model would be the first approach. Specifically, tube-load models assume

non-interacting wave reflections. Typically this assumption is considered justifiable

due to the fact that arterial termination sites constitute the highest impedance

mismatch [45]. However in a blind-identification of pressures, such as is with this

model, estimation of the true impedance mismatch is extremely difficult to achieve.

Thus, a training pressure waveform may be necessary. That is, identification of

patient-specific reflection coefficients by first estimating a measured central pressure

(e.g., ascending aortic pressure) by a measured distal pressure followed by estimation

of the patients BCG with the identified parameters. This is highly undesirable in the
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case of ubiquitous monitoring since measurement of the central pressure is difficult

to obtain. However, without such validation, it may be nearly impossible to further

develop the BCG-based estimation of PTT.

Figure 4.15: Transmission line theory forward and backward waves. (a)
Forward and backward waves of the measured distal pressure. (b) An
estimated proximal pressure showing separation of forward and backward
waves. (c) A second proximal pressure with further separation exhibiting
“double systole” peaks. (d) The most proximal pressure with the largest
separation between forward and backward waves showing a “first systole”
peak smaller than the second.

A second approach would be examining the assumption of a lossless tube-load

model which may be too simplistic. Since tube lengths in this model are significant

(i.e., over 60 cm), BP losses may be too great. This adds another layer of complexity
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to the current model, in fact introduces two additional parameters which must be

estimated (one additional parameter for the wave propagation coefficient and one for

wave reflection coefficient). However it may be necessary to increase the complexity

in order to reflect true physiological conditions.

Yet another area for improvement is determining the cause for lower correla-

tions in certain subjects in both the FPM and RPM. Ways in which this may be

accomplished are examining the measured BCG features for abnormalities not an-

ticipated by the model. Specifically, the time difference between the I and J peaks

as well as the I to K peaks may illuminate unusual BCG waves. Should the time

delay between these peaks be abnormal within an intervention or certain number

of beats, the estimated PTT would be larger or smaller depending on the deviation

direction. If a relationship between certain abnormalities and lower BP prediction

correlations be found, then the model can be improved to provide robustness against

these abnormalities.

As previously discussed, a limitation of this model is the lack of verification

against descending aortic waveforms. Since the BCG originates from descending

aortic events, the use of radial waveforms is a limiting factor in this thesis. Future

work should examine the application of this model to waveforms consistent with the

mechanism of the BCG.
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Chapter 5: Conclusion

In conclusion, a BCG-based approach to PTT estimation has been described.

Two approaches were studied. The signal-based approach studied the efficacy of a

BCG-based PTT over current ECG-based PAT methods. It was found that BCG-

based PTT was more robust than ECG-based PAT due to the inclusion of PEP and

arm PTT in PAT.

Exploration of BCG-based PTT was further studied through the development

of a model-based approach. This approach consisted of two varients, one which

estimated all PTT parameters and the other which determined one of the PTT

parameters by physiological measurements, were presented. Both models showed

comparable results to signal-based PTT techniques and facilitated the identifica-

tion of intermediate parameters. Some of these parameters, (i.e., aortic areas) were

deemed to be physiologically reasonable, while others (i.e., reflection coefficient pa-

rameters) were shown to be reasonable in only the RPM model. Even in this case,

only 80% and 64% of the η1 and η2 parameters were comparable to previoulsy re-

ported values, respectively.

Estimation of the BCG wave features was the most accurate in the FPM with

an average RMSE error of 0.018N in the I wave amplitude and 0.014N in the J wave
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and 0.020N in the K wave. Results of the RPM showed RMSE values of 0.021N,

0.023N, and 0.031N for the I/J/K amplitudes. Timing of these waves was also the

most accurate in the FPM model. Average RMSE values for the I, J and K waves

times was 5.2ms, 5.7ms, and 6.5ms respectively. For the RPM, average RMSE values

were higher at 6.4ms, 8.7ms, and 10.9ms for the I/J/K wave times.

Shortcomings of these model-based variants were identified, namely the inac-

curacy of intermediate pressures and reflection coefficient parameters. Methods for

improving these estimations were proposed as future work beyond this thesis.

Overall these models were able to provide comparably accurate PTT esti-

mation by the BCG for the elucidation of ubiquitous BP monitoring. With this

improved estimation method of PTT, the development of a ubiquitous BP monitor-

ing device has been greatly facilitated. A previously presented mechanism model of

the BCG was validated through this work. Further development of this BCG-based

PTT model is expected to result in a greater understanding of patient-specific car-

diovascular parameters and make the dream of truly ubiquitous BP monitoring a

reality.
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Appendix A: Equation Derivations

A.1 Transmission Line Theory

Provided below is the derivation of Equation 4.1. Figure A.1 illustrates the

location of each pressure in the arterial tube. P0 denotes the proximal pressure,

whereas P1 denotes the distal pressure and τs = γL (γ is the wave propagation

coefficient).

Figure A.1: Transmission Line Theory Pressures

The forward wave at the distal location, Pf1 is simply the time-delay of the

forward wave from the proximal location Pf0. The distal backward wave, Pb1 is the

forward wave at that site times the reflection coefficient, Γ. Finally, the backward

wave at the proximal site Pb0, is the time-delay of the backward wave at the distal
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site.

Pf1 = e−τsPf0 (A.1)

Pb1 = Γ(s)Pf1 (A.2)

Pb0 = e−τsPb1 (A.3)

Since P0 is the sum of its forward and backward waves, it can be written in

the follow manner:

P0 = Pf0 + Pb0 (A.4)

= Pf0(1 + e−2τsΓ(s))

Repeating for P1:

P1 = Pf1 + Pb1 (A.5)

= Pf0e
−τs(1 + Γ(s))

Thus the relationship between the proximal and distal pressure is as follows:

P0

P1

=
Pf0(1 + e−2τsΓ(s))

Pf0e−τs(1 + Γ(s))
(A.6)

P0

P1
=

eτs + e−τsΓ(s)

1 + Γ(s)

P0 =
eτs + e−τsΓ(s)

1 + Γ(s)
P1
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A.2 Discretization of FPM and RPM Variants

The following chapter shall provide the explicit discretization of the RPM and

FPM models from Equations 4.11 and 4.13 respectively.

A.2.1 FPM

Starting with Equation 4.13, the transformation from the Laplace domain to

the time domain can be accomplished with the Z-transform where s ≈ Fs(z − 1).

We also approximate the time delays, τi, by setting equal to the discrete variable

ni

Fs

.

BCG(s) =

(

− AA

e(τ1+τ2+τ3)s(s+ η1) + e(τ3−τ1−τ2)sη2

s+ η1 + η2

+ (AA + AD)
e(τ2+τ3)s(s+ η1) + e(τ3−τ2)sη2

s+ η1 + η2
−ADe

τ3s

)

P3(s) (A.7)

⇒ BCG(k) =

(

− AA

e(n1+n2+n3)(z−1)(Fs(z − 1) + η1) + e(n3−n1−n2)(z−1)η2

Fs(z − 1) + η1 + η2

+ (AA + AD)
e(n2+n3)(z−1)(Fs(z − 1) + η1) + e(n3−n2)(z−1)η2

Fs(z − 1) + η1 + η2
(A.8)

− ADe
n3(z−1)

)

P3(k)
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Rearranging, the relationship between BCG and P3 becomes:

BCG(k)(z − 1 +
η1 + η2

Fs

) =

(

− AA(e
(n1+n2+n3)(z−1)(z − 1 +

η1

Fs

)

+
η2

Fs

e(n3−n1−n2)(z−1)

+ (AA + AD)(e
(n2+n3)(z−1)(z − 1 +

η1

Fs

)

+
η2

Fs

e(n3−n2)(z−1))

− AD(z − 1 +
η1 + η2

Fs

)en3(z−1)

)

P3(k) (A.9)

Completing the discretization, the last transformation by z-transform proper-

ties can be made.

BCG[k + 1] =
(

1−
η1 + η2

Fs

)

BCG[k]−AAP3[k + n1 + n2 + n3 + 1]

+ AA

(

1−
η1

Fs

)

P3[k + n1 + n2 + n3]−AA(
( η2

Fs

)

P3[k − n1 − n2 + n3]

+ (AA +AD)P3[k + n2 + n3 + 1] + (AA +AD)
( η1

Fs
− 1
)

P3[k + n2 + n3]

+ (AA +AD)(
η2

Fs

)P3[k − n2 + n3]−ADP3[k + n3 + 1] (A.10)

+ AD

(

1−
η1 + η2

Fs

)

P3[k + n3]
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A.2.2 RPM

Repeating the procedure from the FPM section, the z-transform is applied to Equa-

tion 4.11:

BCG(s) =

(

−AA
e(τ1+τ2)s(s + η1) + e−(τ1+τ2)sη2

s+ η1 + η2

+ (AA +AD)
eτ2s(s+ η1) + e−τ2sη2

s+ η1 + η2
−AD

)

P2(s)

⇒ BCG(k) =

(

−AA
e(n1+n2)(z−1)(Fs(z − 1) + η1) + e−(n1+n2)(z−1)η2

Fs(z − 1) + η1 + η2

+ (AA +AD)
en2(z−1)(Fs(z − 1) + η1) + e−n2(z−1)η2

Fs(z − 1) + η1 + η2

− AD

)

P2(k) (A.11)

Rearranging, the relationship between BCG and P2 becomes:

BCG(k)(z − 1 +
η1 + η2

Fs

) =

(

−AA(e
(n1+n2)(z−1)(z − 1 +

η1

Fs

) (A.12)

+
η2

Fs
e−(n1+n2)(z−1))

+ (AA +AD)(e
n2(z−1)(z − 1 +

η1

Fs
) (A.13)

+
η2

Fs

e−n2(z−1))

− AD(z − 1 +
η1 + η2

Fs
)

)

P2(k)
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Completing the discretization, the last transformation by z-transform properties can be

made.

BCG[k + 1] =
(

1−
η1 + η2

Fs

)

BCG[k]−AAP2[k + n1 + n2 + 1]

+ AA

(

1−
η1

Fs

)

P2[k + n1 + n2]−AA(
( η2

Fs

)

P2[k − n1 − n2]

+ (AA +AD)P2[k + n2 + 1] + (AA +AD)
( η1

Fs
− 1
)

P2[k + n2]

+ (AA +AD)(
η2

Fs

)P2[k − n2]−ADP2[k + 1] (A.14)

+ AD

(

1−
η1 + η2

Fs

)

P2[k]
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ous blood pressure measurement by using the pulse transit time: Comparison to
a cuff-based method. European Journal of Applied Physiology, 112(1):309–315,
2012.

[7] In cheol Jeong, Jeffrey Wood, and Joseph Finkelstein. Using individualized
pulse transit time calibration to monitor blood pressure during exercise. Infor-
matics, Management and Technology in Healthcare, 190:39, 2013.
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An examination of calibration intervals required for accurately tracking blood
pressure using pulse transit time algorithms. Journal of Human Hypertension,
27(12):744–750, 2013.

79

https://www.cdc.gov/heartdisease/facts.htm


[11] Guanqun Zhang, Mingwu Gao, Da Xu, N Bari Olivier, and Ramakrishna
Mukkamala. Pulse arrival time is not an adequate surrogate for pulse transit
time as a marker of blood pressure. Journal of Applied Physiology, 111(6):1681–
1686, 2011.

[12] Mingwu Gao, Hao-Min Cheng, Shih-Hsien Sung, et al. Estimation of pulse
transit time as a function of blood pressure using a nonlinear arterial tube-load
model. IEEE Transactions on Biomedical Engineering, 2016.

[13] Robert C Talley, Jerry F Meyer, and John L McNay. Evaluation of the pre-
ejection period as an estimate of myocardial contractility in dogs. The American
Journal of Cardiology, 27(4):384–391, 1971.

[14] Willard S Harris, Clyde D Schoenfeld, and Arnold M Weissler. Effects of
adrenergic receptor activation and blockade on the systolic preejection period,
heart rate, and arterial pressure in man. Journal of Clinical Investigation,
46(11):1704, 1967.

[15] Zhihao Chen, Xiufeng Yang, Ju Teng Teo, and Soon Huat Ng. Noninvasive
monitoring of blood pressure using optical ballistocardiography and photo-
plethysmograph approaches. In Engineering in Medicine and Biology Society
(EMBC), 2013 35th Annual International Conference of the IEEE, pages 2425–
2428. IEEE, 2013.

[16] Chang-Sei Kim, Andrew M Carek, Ramakrishna Mukkamala, Omer T Inan,
and Jin-Oh Hahn. Ballistocardiogram as proximal timing reference for pulse
transit time measurement: Potential for cuffless blood pressure monitoring.
IEEE Transactions on Biomedical Engineering, 62(11):2657–2664, 2015.

[17] JW Gordon. Certain molar movements of the human body produced by the
circulation of the blood. Journal of Anatomy and Physiology, 11(Pt 3):533,
1877.

[18] Isaac Starr. The relation of the bcg to cardiac function. Am J Cardiol, 2:737–
747, 1958.

[19] Oscar Tannenbaum, Jerome A Schack, and Harry Vesell. Relationship between
ballistocardiographic forces and certain events in the cardiac cycle. Circulation,
6(4):586–592, 1952.

[20] Isaac Starr, AJ Rawson, HA Schroeder, and NR Joseph. Studies on the estima-
tion of cardiac ouptut in man, and of abnormalities in cardiac function, from
the heart’s recoil and the blood’s impacts; the ballistocardiogram. American
Journal of Physiology–Legacy Content, 127(1):1–28, 1939.

[21] JL Nickerson, J Vr Warren, and ES Brannon. The cardiac output in man:
Studies with the low frequency, critically-damped ballistocardiograph, and the
method of right atrial catheterization. Journal of Clinical Investigation, 26(1):1,
1947.

80



[22] WR Scarborough. Current status of ballistocardiography. Progress in Cardio-
vascular Diseases, 2(3):263–291, 1959.

[23] Michael Tobin, John N Edson, Robert Dickes, Gerald H Flamm, and Lawrence
Deutsch. The elimination of body resonance distortion from the direct-body
ballistocardiogram. Circulation, 12(1):108–113, 1955.

[24] TJ Reeves, H Ellison, EE Eddleman, and Andrew F Spear. The application of
direct body ballistocardiography to force ballistocardiography. The Journal of
Laboratory and Clinical Medicine, 49(4):545–560, 1957.

[25] Isaac Starr and Abraham Noordergraaf. A comparison between ultralow-
frequency ballistocardiograms and those secured by an improved high-frequency
technique, with studies to explain remaining differences. American Heart Jour-
nal, 64(1):79–100, 1962.

[26] Maurice B Rappaport. Displacement, velocity, and acceleration ballistocardio-
grams as registered with an undamped bed of ultralow natural frequency: Ii.
instrumental considerations. American Heart Journal, 52(5):643–652, 1956.

[27] TJ Reeves, WB Jones, and LL Hefner. Design of an ultra low frequency force
ballistocardiograph on the principle of the horizontal pendulum. Circulation,
16(1):36–42, 1957.

[28] John L Nickerson and Howard J Curtis. The design of the ballistocardiograph.
American Journal of Physiology–Legacy Content, 142(1):1–11, 1944.

[29] Wm R Scarborough, jr FW Davis, BM Baker, RE Mason, and ML Singewald. A
review of ballistocardiography. American Heart Journal, 44(6):910–946, 1952.

[30] RS Guber, M Rodstein, and HE Ungerleider. Ballistocardiograph: An appraisal
of technic, physiological principles, and clinic value. Circulation, 7:268–286,
1953.

[31] Piney Pollock. Ballistocardiography: A clinical review. Canadian Medical
Association Journal, 76(9):778, 1957.

[32] William R Scarborough, Edgar F Folk, Patricia M Smith, and Joseph H Con-
don. The nature of records from ultra-low frequency ballistocardiographic sys-
tems and their relation to circulatory events. The American Journal of Cardi-
ology, 2(5):613–641, 1958.

[33] JJ Wang and KH Parker. Wave propagation in a model of the arterial circula-
tion. Journal of Biomechanics, 37(4):457–470, 2004.

[34] WF Hamilton, P Dow, and JW Remington. The relationship between the
cardiac ejection curve and the ballistocardiographic forces. American Journal
of Physiology, 144:557–570, 1945.

81



[35] Abraham Noordergraaf and Chris E Heynekamp. Genesis of displacement of the
human longitudinal ballistocardiogram from the changing blood distribution.
The American Journal of Cardiology, 2(6):748–756, 1958.

[36] Stephanie L-O Martin, Andrew M Carek, Chang-Sei Kim, et al. Weighing scale-
based pulse transit time is a superior marker of blood pressure than conventional
pulse arrival time. Scientific Reports, 6, 2016.

[37] Hazar Ashouri, Lara Orlandic, and Omer T Inan. Unobtrusive estimation
of cardiac contractility and stroke volume changes using ballistocardiogram
measurements on a high bandwidth force plate. Sensors, 16(6):787, 2016.
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