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Abstract

We consider the dynamics of some representative adaptively-controlled sys-
tems and focus on situations where the desired operating point is locally, but
not globally, stable. Perturbations which drive the system from the set point are
quantified by computing the boundaries separating the basin of attraction of the
set point from the basins of attraction of the other, undesirable attractors. The
basins are found to sometimes consist of complicated, disconnected structures in
phase space. This results from the nonunique reverse-time dynamics often ex-
hibited by these systems and can be studied by considering the behavior of the
reverse-time map along the basin boundaries. The effect of noninvertibility on
the forward-time dynamical behavior is also explored.

)

Introduction

Adaptive control schemes can be used when the form of a model describing
the open-loop dynamics of the plant is known but some or all of the parameters are
unknown or vary slowly in time. Global stability of the desired operating point can
be assured in some cases of no plant/reference-model mismatch (e.g., Goodwin
et. al., 1980), but complicated dynamics can result in cases of sufficient mismatch
(Golden and Ydstie, 1988; Mareels and Bitmead, 1986, 1988; Frouzakis et. al.,
1991). One type of behavior we will discuss in detail is multistability: situations
where the locally-stable set point coexists with another, undesirable attractor. In
cases of multistability, it becomes important to know which perturbations drive
the controlled system from the desired operating point. The set of perturbations
from which the system returns to the desired operating point constitutes the basin
of attraction of the set point. Methods for computing the boundaries separating
different basins of attraction will be used rather than the brute-force method of
approximating the entire basin region.

Analysis of the global dynamical features of the systems to be discussed
proceeds in two steps: 1) the fixed points, periodic points, and other equilibrium
solutions are found and their local stability is determined; 2) approximations of
the local stable manifolds of the saddle-type periodic points! are made and then
followed backward in time. It is the second step which gives the basin boundaries.
In some cases, we find that the boundaries exhibit unusual, disconnected and
distorted shapes. This results from the noninvertible nature of these discrete-
time systems. The mappings discussed all have uniquely-determined forward-
time trajectories, but may have branching trajectories in reverse-time with the

! The local saddle-stable manifold W3  is defined by all the points in the neighborhood of the saddle point which

asympiotically approach the saddle in forward time.



branching behavior being a function of phase-space location. This behavior is
fundamentally different from that displayed by invertible systems, systems which
have a unique preimage (the set of initial conditions that give a particular point)
for every point in phase space. We will see that the complicated basin structures
sometimes found for noninvertible systems are due to the exponential growth of
preimages of a basin region followed in reverse-time.

A Representative Adaptive System

Consider controlling the open-loop plant:

Yntl = QYn + bUp (1)

where y is the state and v is the manipulated variable when the eigenvalue a is
known approximately and b is unknown. The control action that would achieve
dead-beat control if the system could be modeled exactly is derived by inverting
a model which has the same form as (1) but with « as the estimate of a. Using
an on-line estimator to determine the value of b (see Adomaitis and Kevrekidis,
1991), we find that the dynamics of the controlled system are described by:

F: R? — R?
Yn+4+1 = QYn + z,,

(yn+1 - ayn)(ayn +1—ynp1 — ayn-H) (2)
¢+ (yn+l - O‘yn)2

Zpgl = 25 |1+

where z = bu, the set point is y = 1, and ¢ is a small, positive constant
introduced to prevent division by zero in the control law. With no mismatch
(a = a), all initial conditions save z = 0 are mapped to the desired operating
point (y = 1,z = 1 — a) in two iterations. To assess the effects of mismatch, we
will fix ¢ = 0.005 and a = 0.5, and vary «; the difference between o and « is the
plant/model mismatch. A portion of the bifurcation behavior is presented in Fig. 1.
We see that the set-point attractor is destabilized by a subcritical period-doubling
bifurcation at « = 0.635 that gives rise to a branch of saddle-type period-2
solutions. This branch collides with a branch of stable period-2 solutions during a
saddle-node bifurcation at « = 0.616; the stable period-2 branch then undergoes
a series of period double bifurcations (the first takes place at o« = 0.622) and
ultimately we find a complicated, possibly chaotic attractor. A similar bifurcation
scenario is found when « is fixed at 0.621 and c is allowed to vary, except that the
complicated attractor resulting from the period-doubling cascade is destroyed as
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Figure 1 The bifurcation diagram of the map F' illustrating the fixed and periodic
solutions found as a function of mismatch (o — a) when a = 0.5 and ¢ = 0.005.

a consequence of a homoclinic bifurcation at approximately ¢ = 0.00424. More
will be said on the implications of this global bifurcation in the next section.

We now see that there exists a range of plant/reference-model mismatch (« €
[0.616,0.635]) where a stable periodic attractor coexists with the locally-stable set
point. This range lies between the saddle-node bifurcation of period-2 solutions
and the period-1 period-doubling point of Fig. 1. Choosing a representative value
of « in the range of multistability, the location of the fixed and periodic points
can be plotted along with a portion of the preimages of the local saddle-stable
manifold (W} ) to find the boundaries separating the basin of attraction of the
undesirable attractor from the desired operating point. When this is done with
the F' map (see Fig. 2 for & = 0.621), we find that the basin of attraction of the
period-2 solution is the union of an infinite number of disconnected and distorted
patches of phase space. The disconnectedness is apparent in the shaded “island”
that surrounds the lower stable period-2 point and the distortion is a reference to
the way some of the shaded regions are pulled to positive and negative infinity.
It should be noted that the level of complexity (there are an infinite number of
disconnected shaded regions) of the period-2 basin structure cannot be discerned
at the resolution level of Fig. 2.
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Figure 2 The basin of attraction of the period-2 point is shown as the shaded region. A
portion of the stablemanifold of the saddle period-2 is also shown along with the preimage
equation bifurcation loci. Parameter values are o« = 0.621, ¢ = 0.005, and a = 0.5.

Before proceeding, we note that the origin is also a fixed point of F. It is
marginally stable (the eigenvalues are 1 and a) and its local stable manifold is
the line z = 0. For the parameter ranges considered in this work, the basin of
attraction of this point was found to lie mostly outside the phase-space region
shown in Fig. 2. This attractor will not be discussed further in this paper.

The reason for the complicated basin structure of Fig. 2 can be understood
by first inverting the map describing the forward-time dynamics; we obtain a
quadratic equation with coefficients that depend on the present location of the
point (Y41, 2n4+1). The reverse-time map consists of the solution of

$1(Yn+15 Znt1)V2 + G2(Yn+15 Znt1)¥n + 63(Yn+1, Zng1) =0 (3a)
where
1(Ynt1, Zn41) = 0122n+1 —aa + aa2yn+1,
$2(Ynt1, Zn1) = —20Ynt1Zn41 + OYni1 — QY24 + ac + ayy1 — aqy

¢3(yn+1, Zn+1) = CZp4+1 + y§+1zn+l — CYp41 — y121,+1 + ayg-{-l ( )
3b
for y, and the subsequent evaluation of

Zpn = Yn41 — QYn (4)



for z,. This means there will be 0 to 2 preimages of every phase-space point,
the number being O or 2 over regions of phase space separated by turning-
point bifurcations of the roots of the reverse-time map (TPB curves occur when
¢% — 4¢1¢03 = 0). The phase space is also crossed by BFI (bifurcations from
infinity) loci. These curves mark points in phase space which give one bounded
root for (3) and one unbounded root (a preimage at infinity). As discussed in
detail in Adomaitis and Kevrekidis (1991), the disconnected basin portions are
due to basin regions crossing the TPB loci and the stretching to infinity is due
to crossing the BFI curves.

The TPB curves are defined by the points in phase space which give a double
real root of the reverse-time map. In the quadratic-inverse system discussed,
the TPB curves will then possess a unique preimage. These period-1 preimages
correspond points in phase space where the determinant of the Jacobian matrix of
the forward-time map (F') vanishes. Gumowski and Mira (1980) call this curve
Jo, its nth-period image J,, and its nth-period preimage J_,,, e.g., the TPB curve
is Ji. Jp and all of its images and preimages define the set of critical curves. We
will use this notation during the remainder of this paper.

While it has been established that the boundary of the basin of attraction of
the period-2 point (and attractors resulting from period-doubling bifurcations of
this point at other parameter values) is determined by the points in phase space
which asymptotically approach the period-2 saddle points, we see that these points
do not lic on a manifold because they do not form a continuous curve. We will
refer to these structures as “stablemanifolds,” the single-word term coined by R.
P. McGehee to distinguish them from the invariant stable manifolds of invertible
systems. We also note that while the boundaries separating different basins of
attraction have been discussed, a means of differentiating points “inside” from
those “outside” a particular stablemanifold segment is not immediately apparent.
A brute-force method is to pick a single point inside each closed region and follow
it forward in time, shading the regions corresponding to the period-2 solution
basin of attraction.

Changes in Complexity Levels

In the previous Section, we saw that the inverse map of F was a function of
both phase space location and the fixed system parameters. This means the shape
and location of the critical curves will change with the parameters values. This
can lead to qualitative changes in basin structure as system parameters are varied.
A dramatic example of the different basin structures found for other parameter
values is displayed in Fig. 4, where two holes are found in the basin of attraction
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Figure 3 The image of the shaded region under f (f = F o F'). J is the Jacobian matrix of f. We see that
the saddle point (+) and the additional preimage X map to the saddle, and the fixed point (e) and Y map to
the fixed point. Sets of points for which the determinant of J is positive preserve their orientation under f.

“island” surrounding the lower half of a stable higher-period point (this attractor
results from a sequence of period-doubling bifurcations of the stable period-2 point
of Fig. 2; the basin boundary still consists of the stablemanifold of the period-2
saddle point). These holes allow points to escape from the island-shaped region.
This island is qualitatively different from the analogous period-2 basin region of
Fig. 2 since all points inside the latter remain in the period-2 basin of attraction.
The finite number of holes is observed to develop into an infinite number (and
the undesirable attractor appears to have been destroyed) for ¢ < 0.00424.

The means by which holes develop can be explained by first considering
the hole-free case of the lower island basin portion of Fig. 2. A schematic of the
island is shown in Fig. 3; it is important to note that the critical curves correspond
to those of the period-2 map f (F2) in this diagram. This simplifies the following
discussion since references to the “upper” period-2 features are avoided. The
attractor of Fig. 3 is marked by the larger e and the shaded region is its basin
of attraction. The stablemanifold is denoted as W* and the unstable manifold?
by W*. The closed outer boundary of the island is formed by preimages (f~1)
of the W* segment immediately adjacent to the saddle point, extending in each
direction to f(A) and f(B). Because these two points lie on Jy, their unique
preimages lie on Jy (points A and B of the left-hand-side of Fig. 3). The portion
of W* in between f(A) and f(B) has two real preimages’ that join smoothly

2 The points in phase space which asymptotically approach the saddle point in reverse time. A more extensive

discussion of the behaviors exhibited by W* is found in the “Forward-Time Dynamics” section of this paper.

3 Strictly speaking, the upper portion of W* 4 preimages. However, one of the first 2 preimages is premapped outside
this local region of phase space and so plays no role in the basin boundary structures discussed. The other is premapped
up to the upper period-2 saddle point and has the two preimages relevant to this analysis.
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Figure 4 Holes inside the “island” portion of the basin of attraction of the undesirable attractor. The
high-period, undersirable attractor is not shown, but it lies inside the island. The holes are the
smaller white regions inside the shaded region. The image of the portion of Jy inside the island is
the short-dash, wedge-shaped curve. Parameter values are o = 0.621, ¢ = 0.00425, and ¢ = 0.5.

at the gluing points A and B. This means the island structure is composed of
two regions, each of which is mapped to the wedge-shaped shaded region of the
right-hand-figure of Fig. 3. We call the region inside W? the “apparent” basin
of attraction of the period-2 point since, with no other information, one might
conclude that all points in the region up to W* surrounding the attractor are in
its basin of attraction. This conclusion is valid in the case of Fig. 3 since the
image of the island lies completely within the island, and so no points can escape
from the apparent basin of attraction. This is not always the case, however, and
Fig. 4 (and the enlarged view in Fig. 5) shows an example. We see that the tip
of wedge-shaped image of the island extends just beyond W*°. This means that
the portion of phase space inside the wedge but outside the island (see Fig. 5)
has two preimages inside the island. Both preimages glue smoothly at Jy (since
the outer boundary of the wedge is J1). The points inside this hole leave the

island in one iteration of f and never return—this is how points in the “apparent”
basin of attraction escape.
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Figure 5 A more detailed look at the previous Figure showing the image of Jy (labeled
J1) does indeed fall partially outside the “apparent” basin boundary (defined by W*°).

This explains the first (and smaller) hole. In this case of two holes, the first
hole lies partly inside the wedge-shaped image of the apparent basin of attraction.
The portion of the first hole lying inside the wedge will also have two preimages
within the apparent basin that connect at J, forming the second hole. The
second hole lies completely outside of the wedge and so has no preimages inside
the island. Thus, we find a finite number of holes (finite complexity) for this set
of parameter values. However, when a segment of W* is plotted for the case of
c = 0.00424, (see Fig. 6) we see that it intersects the first hole, allowing it to have
at least one infinitely-preiterable path (in reverse-time), and so an infinite number
of holes results. This is, in fact, a homoclinic bifurcation and we observe that the
attractor is destroyed as a consequence of this global bifurcation. The onset of
infinite complexity for a map which actually gives a computable criterion marking
this transition has been been discussed in detail in Adomaitis et. al. (1991).

A Cubic-Root System

In the F" map, it was assumed we had a good estimate of the open-loop
eigenvalue and on-line estimation of the gain of the manipulated variable b was
performed. In the case of on-line estimation of a and a fixed estimate of b, we
obtain the G map (Golden and Ydstie, 1988; Adomaitis and Kevrekidis, 1990):
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Figure 6 Infinite basin complexity displayed by the F' map for o = 0.621, ¢ = 0.00424,
and ¢ = 0.5. Only the first two of an infinite number of hole boundaries are shown.

G : R? —» R?
Yn+l = ZnlYn + k,
kyn (5)
Zp4+l = Zp — Ty%(znyn +k—1)

where k is the ratio of the actual value of b to its assumed value and c again
prevents division by zero. In addition to a subcritical period-doubling bifurcation
of the set-point branch (as in the F' map), the G map also exhibits isolated periodic
solution branches (see Fig. 7). This map differs fundamentally from F with respect
to its preimage behavior in that G has from 1 to 3 preimages (as opposed to the
0 to 2 preimages of F'). The inverse map G~! is found by the solution of

62;3 - czn+1212z + Ynt1(Ynt1 — k)1 — k)2 — Zn41(Yn+1 — ]‘3)2 =0 (6)
for z, with subsequent evaluation of

—k
= P (7

Zn

n
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Figure 7 A portion of the G map bifurcation diagram for
¢ = 0.005. Dashed curves indicate branches of unstable solutions.

for y,. This system has regions of phase space whose points have a unique
preimage and regions of points with three real preimages. This can give rise to
“normal-looking” basin boundaries when W* does not interact with the 3-real-
preimage (3RP) region.

Another situation that leads to “normal-looking” basin boundaries is depicted
in Fig. 8, a schematic illustrating end-to-end gluing of stablemanifold segments.
In this diagram, we see a period-2 saddle point (marked by the + symbols) and
segments of its W*. The right-hand saddle point (point c¢) lies inside the 3RP
region as does its W} . This means the saddle point and W} (up to the points
“a” and “b”) have three preimages. One of the preimages of the saddle “c”
is the other period-2 saddle point and the other two mark points of alternance
(in the terminology of Gumowski and Mira, 1980). Because W?* enters through
different sides of the 3RP region, the gluing of W* segments gives one curve
and does not result in islands, as would be the case if both sides of W* entered
through the same 3RP boundary (similar roots appear/disappear on similar “sides”
of the 3RP region; the boundaries of the sides are the cusps). So we see that
while the direction of evolution changes along the stablemanifold at the points of
alternance, the overall boundary remains smooth and continuous. The break up
into a fishbone-shaped basin of attraction is caused by the saddle-stablemanifold

10



Figure 8 End-to-end gluing and the distortion due to a preimage BFI curve at z = 0.

S

Set point

Figure 9 The basin of attraction of the period-2 point is shown as
the shaded region. Parameter values are £k = 0.25 and ¢ = 0.005.

crossing the BFI line defined by 2 = 0. It is easy to show that preimages of
points in the region (y < 0, z > 0) remain there and so the disconnected patches
of period-2 basin of attraction in this region are all preimages of the small hump
of the “main” portion of the basin of attraction that extends above z = 0 (Fig. 9).

11



Forward-Time Dynamics

As we saw in the discussion of complexity, phase space folding in forward-
time is associated with changes in the number of preimages as a function of
phase-space location. This means if a portion of a local saddle-unstable manifold
(W}%,) is computed and then followed forward in time to find W*, images of
Wi, may fold in such a way as to form kinks, loops, and more complicated
structures. While the images will always lie on a continuous curve, we will refer
to it as the unstablemanifold when it is not differentiable or self-intersects. If a
portion of W* falls into a region where the map has more than one preimage,
that segment of W* will have preimages which do not asymptotically approach
the saddle point in reverse-time. With this in mind, consider the dynamics of
an adaptively-controlled system where there is additional mismatch due to an
unmodeled, constant disturbance (Frouzakis, 1991):

H: R +— R?
Yntl = —YnZn + 0,
Zn4l = —2Zn + %n;g(_znyn + v - 1)- (8)

The constant v is composed of & (c.f. the G map) and the unmodeled disturbance,
and p is a function of £ and an indentifier gain. Notice how the form of H is
basically the same as G and so we expect 3RP and 1RP regions.

We illustrate several different forward-time behaviors exhibited by this system
with a sequence of phase portraits, beginning with a period-30 attractor coexisting
with a period-30 saddle point shown in Fig. 10. The series of bifurcations that
takes place after the set point (not shown in Fig. 10) becomes unstable and gives
rise to this phase portrait is discussed in Frouzakis (1991). A closer look at one
of the saddle points is shown in Fig. 11 along with the saddle-unstable manifold
segments we calculate, each side asymptotically approaching a stable period-
30 point. Because the periodic points and the saddle-unstable manifolds all lie
completely within the 1RP region, the behavior is the same as what is displayed
by diffeomorphisms (hence the use of the two-word term “unstable manifold”).
However, as we increase the magnitude of the unmodeled error (decreasing the
negative v), we see that a portion of W* dips into the 3RP region (Fig. 12). This
segment (denoted I') has one preimage on the main part of W* and since it enters
and leaves through the same boundary of the 3RP region, it has two additional
preimages that glue to each other. The first is the closed curve H~!(T") of Fig. 13.
This curve lies in the 1RP region and has an infinite number of preimages (H ~%(T")
and so on) that asymptotically approach the set point in reverse-time.

12
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Figure 10 The H map for v = —0.135, p = 0.8, and ¢ = 1.2. The +
symbols denote the period-30 saddle point and the e symbols the period-30 node.

As we continue to increase the magnitude of the unmodeled error, we observe
W™ change from a diffeomorphism-like unstable manifold to the more compli-
cated, self-intersecting curve shown in Fig. 14 (recall that it is the images of
W being discussed and not the excess preimages of portions of W*). This is a
consequence of the unstablemanifold crossing Jy, and the sequence of transitions
which ultimately gives this behavior is shown in Fig. 15. Several of the behaviors
have been observed previously (see Fig. 13 of Lorenz, 1989).

The image of a curve segment passing through J, generically will be another
curve tangent to J; at the image of the two intersection points. The segment image
will not cross Jj in the neighborhood of the intersection images, but instead will
bend away in a quadratic manner. In Fig. 15A, we see that when W first crosses
Jo, the image of this segment of W* will tangentially touch J; twice. The two
intersections of W* and J; are unrelated to the interactions of the preimage of
the W* segment and Jy, unless W* passes through the cusp (see Fig. 15B). After
passing though the cusp, the preimage of the cusp on .J; lies between the two
intersections of W* and Jj (see Fig. 15C). Note that the transitions to this point
have done nothing to change the status of W* from a manifold.

The transition to an unstablemanifold is depicted in Fig. 15D. For this value
of v, the left intersection of W* and J° occurs such that W* is tangent to

13
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Figure 11 A closer look at the previous Figure showing the
saddle-unstable manifolds completely outside the 3RP region.

the eigenvector E° associated with the zero eigenvalue of the linearization of
the map along the Jy curve. Under these conditions, the image of W* in the
neighborhood of the intersection develops kink. For a slightly greater amount
of unmodeled disturbance (a more-negative value of v), the kink opens into a
self-intersecting loop of W* (Fig. 15E). The remaining transitions (F and G)
consist of a preimage of the self-intersection point moving from a point on W*
between the two intersections with J, (behavior E), to coincidence with one of
the intersection points (behavior F and Fig. 14), and finally to outside the two
intersection points (behavior G).

We see how the kink of behavior D forms by considering a locally 0/2
preimage-behavior map of the plane I = (y,z) — (f(y,z),9(y,2)) in the
neighborhood of a point (yg,z9) on a Jy curve. This means the two eigenvalues
of the linearization about (yg, zg) are 0 and some real a. We put the system into
its normal form* and define a line L passing through the origin and parameterized
by t:

Lz{(y,z)ERZ:y:at,zzt V teR}. (9)

4 We shift (yo, 20) to the origin, and the system is rotated so that the eigenvector associated with the zero eigenvalue
is parallel to the ordinate of the new coordinate system and the other eigenvector is parallel to the abscissa.
P Y 8 P

14
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Figure 12 The H map for v = —0.14 with a portion of the
saddle-unstable manifold (denoted T') just dipping into the 3RP region.

The image of L under a map consisting of the Taylor’s series of I about (yg, z0)
gives
Yy — f(yOa ZO) = aat + (fyya‘2 + 2fyza + fzz) t2/2 + O(t3), (10)
z — g(yo, 20) = (gyyaz + 2gy:a + g22) t2/2 + O(t%)
so it is easy to see that when o = 0 (when I corresponds to the zero-eigenvector),
the right-hand-side of (10) is a function of ¢? and higher-order terms (provided
both f,, and g,, do not vanish together), thus images of curves passing through
(v, z0) that are tangent to the zero-eigenvector at that point fold onto themselves
as t — 0.

Looking at the image (right-hand) side of Fig. 15A, we see W* crossing Jq
in a manner reminiscent of the I' segment of Fig. 12. This implies an additional
loop of preimage on J; that maps to the W* segment inside the 3RP region.
This loop has its origins in the mechanism responsible for the H~!(T") loop of
Fig. 13, but then proceeds through a sequence of transitions analogous to those
of Figs. 15A through G, giving the figure-8 shaped loop of Fig. 16. Figure 16
corresponds to behavior 15F, the case where the self-intersection point touches
J1 and so has only two preimages. This is the reason for the coincidence of the
figure-8 loop twist-point (one of the two preimages of the self-intersection point)
and one intersection of W* and J; in Fig. 16.

15
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Figure 13 An expanded view of the previous Figure. The 30 “excess” preimages of I' are the
closed loops that asymptotically approach the set point (y = 1,z = —1.14) in reverse-time.
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Figure 14 The H map for v = —0.16 demonstrating a self-intersecting saddle-unstablemanifold.
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Figure 15 The transitions corresponding to decreasing v leading to the self-intersecting
saddle-unstable manifold of the previous Figure. The “X” on Jo marks the preimage of the cusp.

Concluding Remarks

This paper gives a sample of the global dynamical behavior displayed by non-
invertible, discrete-time systems. These systems are characterized by nonunique
preimage behavior that changes qualitatively with phase-space location. The sys-
tems discussed all arise from the adaptive control of linear, scalar plants with
one unknown parameter that is estimated online. Thus, this work concentrates on
dynamical phenomena displayed by noninvertible maps of the plane.

The importance of understanding the reverse-time dynamics of the closed loop
systems becomes apparent in cases of multistability—situations where the locally-
stable set-point coexists with another, undesirable attractor. Perturbations which
drive the system from the set-point are quantified by computing the boundary of its
basin of attraction. For the systems studied, these structures consist of the set of all
preimages of local stable manifold segments associated with saddle-type periodic
points. Called “stablemanifolds,” they differ from the global stable manifolds
of invertible systems (diffeomorphisms) in that they may not be manifolds:
when basin boundary segments cross the critical curves separating regions of
qualitatively-different preimage behavior, the preimages become disconnected and
distorted, leading to complicated structures in phase space.

17
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Figure 16 Preimages of the self-intersecting portion of the saddle-unstablemanifold
showing the interaction with Jy leading to self-intersection and the two additional
preimages that glue to one another at Jo giving a closed loop of preimages.

The complexity of basin structures is not always infinite, as one might first
suspect from the geometrically-increasing reverse-time branching behavior of
these systems. For example, a basin “island” (a disconnected portion of a basin
of attraction) can be followed backward in time to find that all of its preimages
originate in a region of phase space where the inverse-map has no real roots.
However, if this basin island lies on a saddle-unstablemanifold, it will have at
least one infinitely preiterable path in reverse-time. We thus see how complexity-
level changes are associated with global (homo- and heteroclinic) bifurcations.

Having shown that basin structure complexity levels can change when basin
boundaries cross unstablemanifolds, we see the incentive for studying the forward-
time dynamics of noninvertible systems. As with stablemanifolds, the union of
all images of local saddle-unstable manifolds can give rise to structures which are
not manifolds: the global unstablemanifolds for noninvertible maps of the plane
can develop kinks and self-crossings, behaviors not displayed by 2-dimensional
invertible maps. We also find “excess” preimages of saddle-unstablemanifold
segments due to preimage behavior changes in phase space, contributing additional
features to the intricate and interesting global dynamical picture of these systems.
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