
ABSTRACT 

 

Title of Thesis:         MAGNETOSTRICTION AND MAGNETIC 

ANISOTROPY OF FE35CO65 

Tong Ren, Master of Science, 2011 

Thesis directed by:   Professor Manfred Wuttig 

Materials Science and Engineering Department 

 

A Fe35Co65 single crystal has been prepared by a long time anneal at 

temperature close to its fcc-bcc phase boundary. Its magnetostriction 

constant λ100 and magnetocrystalline anisotropy constant K1 was measured 

using a strain gauge rosette and magnetization and torque magnetometer 

curves. The magnetostriction constant λ100 is as high as 200 ppm. The value 

of the anisotropy constant K1 and the value of the susceptibility were small 

and influenced by the magnetoelastic energy. The symmetry of the torque 

curves changes from 2-fold to 4-fold with increasing external field which 

indicates the existence of a second uniaxial phase. This result can be 

interpreted by the alignment of the magnetization of an epitaxial fcc 

precipitate in the bcc host by external field.   
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Chapter 1 Introduction 

 

1.1 Iron-Cobalt (Permendur) 

 

Iron-cobalt alloys are known to have the highest saturation magnetization among all 

magnetic materials 
[1]

, high permeability
 [2]

, and low hysteresis 
[3]

. The high saturation 

magnetization enables them to induce large attractive forces to operate moving parts and 

be candidates for electro-mechanical applications as well 
[4]

. The coercivity of iron-cobalt 

is influenced strongly by its microstructures
 [5] [6]

, like in all other soft materials.  

Equiatomic iron-cobalt alloys were named “Permendur” by Elmen 
[2]

, 1927. The 

permendur alloy was found to have a slightly lower saturation magnetization, a much 

higher permeability and a lower coercivity than the Fe2Co alloy
 [7]

. The maximum 

saturation magnetization of iron-cobalt alloy system reaches almost 2.4T at around 35at.% 

of cobalt
 [4]

. The initial permeability reaches its maximum at 50at.% of cobalt (Permendur)
 

[8] 
and stays constant regardless of heat treatment temperature, while the maximum 

permeability was found to be highest in permendur after it has been annealed at 850  C 

and furnace cooled
 [1]

.  

The anisotropy of the magnetization curves has been studied using a pendulum 

magnetometer by J.W.Shih et al. 
[3]

 on iron-cobalt single crystal alloys and the results are 

shown in figure 1-1. The alloys show an easiest direction of magnetization along <100> 

axes, as is typical for bcc crystals, at 30 at.% and 40 at.% of cobalt and they show an easy 

direction of magnetization of <111> axes at 50at.% and 70at.% of cobalt. The maximum 

hysteresis was reported to be as low as 7×10
3
 ergs·cm

-3
 
[3]

.  
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In order to obtain a better understanding towards the complex relationship between 

different phases‟ structures and particularly the magnetostriction exhibited by them, the 

basic metallurgical aspects of the iron-cobalt system are important to know.  

Figure 1-2 shows the equilibrium phase diagram of Fe-Co system
 [9]

. At room 

temperature 
[3]

, the hcp structure forms in alloys containing less than 5 at.% Fe; the fcc 

structure forms at 5-22 at.% Fe; and the bcc structure at 22-100 at.% Fe. At 500  C, a two 

phase (fcc+bcc) region, α+ γ, containing of Co rich γ and Fe rich α forms. The bcc- α (A2) 

Figure 1-1 Magnetization curves with different crystalline orientation of iron-

cobalt single crystal at different cobalt concentration, i.e., (a)30at.% , (b)40at.%, 

(c)50at.%, (d) 70at.%, respectively. 
[3]

 

(a) (b) 

(c) (d) 
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mono-phase forms beyond 23at.% of Fe except for the region of 28-75at.% Fe, where 

ordered bcc- α' (B2) phase forms. At higher temperature above 985  C, δ (bcc) and γ (A1) 

phases exists. At temperature lower than 500  C, ε phase exists within 0-6 at% Fe and the 

γ+ ε and α + ε two phases regions exist with 6-8 at% Fe and 8-23at% Fe respectively. 

The lattice parameter decreases with increasing Co concentration. 

 

 

The Curie temperature of Fe1-xCox alloys coincides with the α to γ phase transition 

temperature 
[4]

 and depends on the cobalt concentration. The maximum Curie temperature 

is 985ºC at 46 at.% of Co
[4]

.  

Figure 1-2 Phase diagram of Fe-Co system 
[9]
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Evidence for ordering was presented by several researchers since 1939
[10] [11] [12]

. The 

maximum order-disorder transformation temperature was reported as 732 ˚C by Ellis and 

Greiner 
[13]

. The ordering reaction in equiatomic FeCo is very rapid above 500  C[8]
, but 

could be totally avoided by quenching above 800 ˚C with quenching rates greater 

than~4000 ˚C/s 
[14]

 (700µm as thickness). The lattice parameter expands with the 

decreasing of Co concentration because of ordering in the B2 phase. 
[15][16]

 

 

Fe-Co alloys have low magnetocrystalline anisotropy 
[17]

. Figure 1-3 shows the magnetic 

anisotropy of BCC Fe-Co alloys 
[18][19] 

measured by a torque magnetometer. It can be 

seen that the magnetic anisotropy constant K1 decreases as the Co concentration increases 

and changes its sign at ~42at% of cobalt for the disordered phase. Furthermore, the value 

of K1 approaches zero for ordered Fe-Co (50:50) alloys 
[19]

. The magnetic anisotropy of 

permendur is relatively low, K1= -1×10
5
J/M

3
 (disordered) and K1=0 (ordered) 

[20]
. 

Additional uniaxial anisotropy energy has been observed by Chamberod et al. 
[21]

 in 1972, 

when the heat treatment was carried out under an applied magnetic field.  
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The magnetostriction of slow cooled polycrystalline Co-Fe alloys was reported by 

Williams 
[22]

 and Masiyama 
[23]

 in 1932. According to these reports a maximum strain of 

60 to 90×10
-6

 was found. The highest value at that time was observed by Nesbitt 
[24]

 in 

order of 130×10
-6

 on hard rolled Fe30Co70 alloys. A more detailed research of the 

magnetostriction constant of FeCo single crystals was conducted by Helen M. A. 

Urquhart et al. in 1953
[25]

. Alloys in the concentration range of 0 to 70 at.% cobalt were 

measured and calculated using the Bates and Lee's method 
[26]

 from polycrystalline 

samples for the composition range, in which single crystals were not available. However, 

the heat treatment procedure of these samples was not mentioned. The magnetostriction 

constant of Fe1-xCox as a function of Co concentration obtained from polycrystalline 

samples and single crystal samples are reproduced in figure 1-4.  

 

α 

α 

α or α‟ 

α+γ 

γ 

Figure 1-3 Magnetic anisotropy 

constant K1 of the Fe-Co system; 

dot line is the anisotropy constant 

for the ordered B2 phase. Dash 

lines show the regions of different 

phases at 500 C.  (reprinted from 

ref. 7) 
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More recently, higher saturation magnetostriction up to 147×10
-6

 for Fe1-xCox alloys on 

the cobalt rich side (Fe30Co70) were reported by Dai and Wuttig, 2007
[27]

. According to 

this article, the highest value of λ100, observed when quenching from temperature near the 

bcc// bcc/(hcp+bcc) phase boundary, is believed to be similar in origin to the large 

saturation magnetostriction observed from FeGa alloys 
[28]

.  Figure 1-5 is the saturation 

magnetostriction as a function of the annealing temperature according to Dai and Wuttig. 

 

Figure 1-4 Magnetostriction constant as a function of at.% Co (reprinted from ref. 

[22][23][24][25]) 
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A summary of permendur is given in Table 1.1
[7]

, showing some important magnetic 

properties of FeCo (50:50) alloy. 

Property Value 

Curie temperature (  C)  980 

Saturation magnetisation (T) 2.4 

Coercivity (A m
-1

) 150 

Initial permeability 800 

Maximum permeability 5000–8000 

Saturation magnetostriction (ordered condition)λ100 150×10
-6

 

λ111 25×10
-6

 

λ polycrystal 60×10
-6

 

Magnetocrystalline anisotropy constant (J m-
3
) 0 

 

 

1.2 Related Work on Iron-Gallium 

 

For a more detailed summary of the past research work done on iron-gallium, Datta‟s 

dissertation 
[29]

 or Mudivarthi's dissertation
 [30] 

can be consulted. Only the research work 

related to this thesis will be discussed here. 

Figure 1-5 Saturation magnetostriction as a function of annealing temperature 
[27]

 

Table 1.1 Magnetic properties of FeCo (50:50) alloy 
[7]

 



8 
 

Figure 1-6 is the phase diagram of FexGa1-x. From the phase diagram, we can see that at 

room temperature, the alloy forms disordered bcc (A2) phase between 0at.% and 12 at. % 

Ga. A mixture of the Fe3Ga (L12) phase and the A2 phase exists between 12at.% and 25 

at% of Ga. Only at high temperature (above 588˚C), phases as D03, B2, B2' and Fe3Ga 

(D019) exist.  

 

 

The non-magnetic addition of Gallium into the pure iron increases the value of 

magnetostriction of iron more than tenfold similar to the addition of aluminum 
[32]

. In 

addition to their large magnetostriction, the Fe1-xGax alloys exhibit ductile-like behavior 

[31]
, high tensile strengths (∼ 400 MPa) 

[32,33]
, low saturation fields (∼ 10 mT) 

[31,34]
 and 

low hysteresis 
[31][30]

. Figure 1-8 shows the change of magnetostriction constant as a 

function of the atomic percentage of gallium. The influence of different ways of heat 

Figure 1-6 Phase diagram 

of FeGa 
[30]
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treatments is shown in figure 1-7 as well. The two peaks of magnetostriction occur at 

20at.% Ga and 28at.% Ga respectively for the quenched alloys.  

 

 

The magnetocrystalline anisotropy changing with Ga concentration was measured by 

Rafique et al. 
[36]

. As shown in figure 1-8, the anisotropy constant K1 decreases to almost 

zero at 20at.% of Ga, where the magnetostriction reached the first maximum. Table 1.2 

shows the experimentally determined value of K1 at different Ga concentration.  

  

Figure 1-8 Magnetocrystalline 

anisotropy constant K1 as a function 

of concentration of Ga 
[36]

 

Figure 1-7 Magnetostrictive constants, (a) λ100 and (b) λ111, for Fe1-xGax single crystal alloys 

as a function of at.% Ga
[35]

.  λ100 exhibits two peaks, where the first one is highly dependent 

to the thermal history. 
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Composition Saturation 

Magnetization 

K1 From {110} 

Disk 

K1 From {100} 

Disk 

at.% Ga in Fe emu/cc J/m
3
 J/m

3
 

0 1745* 4.8×10
4
  

5 1745 6.56×10
4
 6.26×10

4
 

12.5 1590 4.88×10
4
 4.63×10

4
 

14 1575 4.56×10
4
 4.38×10

4
 

18 1406 NA 3.49×10
4
 

20 1343 -2×10
3
 3.23×10

2
 

 

Recently, the 'real' domain structures of FexGa1-x alloys, shown in figure 1-9, were 

revealed using Kerr Optical Microscopy by Mudivarthi et al. 
[30]

 after careful mechanical 

polishing. The domains oriented along [100], [ī00], [010] and [0ī0] show 90˚ and 180˚ 

domain walls. From these results, the magnetic domain structures exhibit no unusual 

behavior and their evolution are closely tracked the samples' magnetostriction properties. 

 

 

 

 

 

Figure 1-9 Magnetic domain structure revealed by Kerr Optical Microscopy 
(reprinted from ref. [30])

. 

(a) and (b) both have 17at.% of Ga while (c) has 19at.% of Ga. (a), (b) and (c) were all annealed 

at 1000˚C for 4 hrs and quenched except that (a) was cooled at 10˚C/s. 

(a) (b) (c) 

Table 1.2 Value of anisotropy constant by Rafique et al.
[36]
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1.3 Motivation 

 

 The technically interesting high values of the magnetostriction and the good elastic 

properties of iron-gallium alloy system make FeGa attractive materials for sensor 

applications. Magnetostriction of FeGa alloys has been found to be as high as 400µε 
[37]

, 

twice as much of that for FeAl alloys 
[32]

. FeGa alloys were reported to be magnetically 

soft, the value of the magnetocrystalline anisotropy constant K1 decrease dramatically 

beyond certain level of substituting Fe by Ga. It has also been found that the 

magnetization curves of iron-gallium 
[38]

 alloys at certain compositions are very different 

from the well-known magnetization curves of soft magnetic materials such as iron 
[39]

. 

The FeGa20 
[38]

 alloy shows <110> easy axes of magnetisation on the (001) plane instead 

of the <100> easy axes of pure iron. Moreover, the experimentally determined 

magnetocrystalline anisotropy constant K1 of FeGa20 alloy 
[36]

 is almost zero. As is shown 

in Figure 1-10(a), the slopes of the magnetization curves for FeGa alloys are relatively 

small when comparing them with pure iron.  

 

Our original motivation is to find a higher magnetostriction on the Fe35Co65 single crystal 

by annealing at temperature close to the α+γ/α phase boundary and quench it to obtain the 

twin structures. During experiments, a similar trend of the magnetization curves similar 

to FeGa has been found in the high magnetostrictive iron-cobalt system as is shown in 

Figure 1-10(b). It appeared desirable to investigate FeCo single crystal alloys in both 

magnetic and structural aspects to gain a better understanding of the physical origin of 

this phenomenon. 
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Figure 1.10 The comparison of the magnetization curves at different crystalline 

directions of pure iron, FeGa14 and FeGa20 (a) 
[reprinted from ref. 38]

, FeCo65 and pure iron 

(b) 
[reprinted from ref. 39]

 

(a) 

(b) 
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Chapter 2 Sample Preparation and Measurement Technique 

 

2.1 Sample Preparation 

 

The Fe35Co65 single crystal specimen was prepared by T.A. Lograsso and D.L. Schlagel 

in Materials & Engineering Physics Program of the Ames Laboratory, using the 

Bridgemann technique. Grain growth was achieved by annealing the sample at 1050°C 

for 0.5 hr, followed by a one week annealing at 860°C.  The sample was then slow cooled 

at a rate of 10°C/min. The orientation of the cylinder specimen was determined by back 

reflection Laue measurements and is shown in Figure 2-1. One set of four circular disks 

with <100> normal were cut from this original sample by Electrical Discharging 

Machining (EDM). 

                                    

 

The four Co65Fe35 single crystal disks were annealed at different temperatures with 

different annealing times in a „Carbolite‟ furnace under argon flowing (as protection) and 

then quenched in to cold water(<10˚C). Figure 2-2 is the phase diagram of iron-cobalt, in 

which the annealing temperatures of sample disks 1-2, 1-3 and 1-4 are marked. As 

reported by Dai and Wuttig (2007)
[27]

, the magnitude of the magnetostriction depends on 

the state of the alloy and reaches a maximum for Fe30Co70 polycrystalline samples, when 

annealed close to the bcc/ (fcc+bcc) phase boundary. The annealing temperatures of 

Figure 2-1 The sample 

directions of the [001] 

disc. (Only be kept on 

the sample 1-1) 
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875˚C and 790˚C, which are close to the bcc/(fcc+bcc) phase boundary, were chosen for 

single crystal sample disks 1-2 and 1-3, respectively. 300˚C for sample disk 1-1and an 

intermediate temperature of 690˚C for sample disk 1-4, were chosen as reference. Table 

2.1 gives the annealing conditions and also dimensions of the four single crystal sample 

disks. 

 

Sample 

Annealing 

Temperature 

(˚C) 

Annealing 

Time 

(minutes) 

Diameter 

(mm) 

Thickness 

(mm) 

Thickness(mm) 

(*) 

1-1 300 3800 5.93 0.53 0.445 

1-2 875 20 5.95 0.51 0.439 

1-3 790 50 5.94 0.53 0.300 

1-4 690 60 5.95 0.50 0.371 

 

 

 

Table 2.1 Composition, heat treatment and dimensions of single crystal samples 

* Thickness of samples after polishing for Kerr Microscopy measurements. Data of magnetization and 

magnetostriction measurements were obtained after polishing. 

Figure 2-2 Partial phase diagram
[9]

 of Iron-Cobalt alloys. refers to sample 1-2;  

refers to sample 1-3; and  refers as sample 1-4.  
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2.2 Measurement Technique 

 

2.2.1 Vibrational Sample Magnetometer (VSM) 

 

A VSM is designed to measure the magnetization. The sample is magnetized inside a 

uniform magnetic field and then physically vibrated as a function of time. The vibration 

will cause a change in the magnetic field caused by the sample, which causes an induced 

voltage in the pick-up coils. Thus, the induced voltage of the pick-up coils will be 

proportional to the sample's magnetic moment. The signals is amplified by a differential 

amplifier and a lock-in amplifier and then be transferred to the computer. The whole 

system is controlled by a Lab-VIEW program. One can set up the steps of the time-

related magnetization progress and also the angle between the direction of the sample and 

the external magnetic field by simply changing the parameters in the operation recipe. 

Figure 2-3 shows the block diagram of the VSM. 

 

 Figure 2-3 The vibrating sample magnetometer block diagram 
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2.2.2 Torque Magnetometer (TMM) 

 

A torque magnetometer was used to make torque measurements to determine the 

anisotropy more accurately than the conventional magnetometer.  The principle of this 

measurement is based on a torque balance. On one hand, when the magnetic field applied, 

the magnetic moments inside of the sample will tend to align themselves along the same 

direction as the external field. The anisotropy of the sample, on the other hand, will try to 

pull the magnetization along the direction of the easy axis of the sample, which causes a 

torque (force) on the sample. When the directions of external field and easy axis coincide, 

the value of the torque is zero. But when the two directions do not coincide, the torque is 

not zero and its value can be measured by the torque magnetometer. The scheme of 

torque measurement is shown in figure 2-4. 

Figure 2-5 is the block diagram of the torque magnetometer 
[40]

. A sample holder with 

sample is hanging on a thin wire in a magnetic field, which causes the sample 

experiences a torque. At the top end of the sample holder, a coil is mounted between a 

permanent magnet of a known strength. The torque on the sample can now be 

compensated by a torque on the coil when a current flows through this compensation coil. 

Using a small mirror, a lamp and two photo diodes to detect the rotation of the sample, 

the current through the compensation coil is controlled. The current through the 

compensation coil is proportional to the torque exerted on the sample. The ADE-TMM 
[40]

 

that was utilized in this study is using a virtually frictionless air bearing instead of the 

torsion wire as in Figure 2-5. The shape of the sample should be a cylindrical disk or a 

round ball, so that the sample's shape anisotropy does not influence the measurements. 
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The sample was mounted by double sided tape at the end of a rod shaped sample holder 

with a round disk shaped end and be placed between the N-S poles of the electro-magnets. 

The rotation angle of the magnetic field is externally controlled. The whole system is 

controlled by a Lab-VIEW computer program.  

   

    

N S

Electron magnets

Sample 

holder

N S

Permanent  magnet

Light source

Photo detectors

Compensation Coil

Mirror

 

Figure 2-4 Scheme of torque 

measurements 

Figure 2-5 The block diagram of torque magnetometer 
[40]
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The dependence of torque versus θM (see Figure 2-4) will give a torque curve 
M

aE
T






 

(2-1), where θ is the angle between the direction of applied field and a reference direction 

(i.e. a crystallographic axis).  

As we know, for the cubic crystal,  

2

3

2

2

2

12

2

1

2

3

2

3

2

2

2

2

2

11 )(  KKEa 
,    

where  cossin1  ;  sinsin2  ;  cos3  . 
For a (001) disk,

2


 

, so that, if 

 cos1  ;  sin2  ; 03  . φ=θM, if the easy axis is the reference direction. 

therefore, 

)2(sin
4

1 2

1 Ma KE                                                  (2-2) 

and, combined with eq. (2-1), 

)4sin(
2

1
1 MKT                                                     (2-3) 

2.2.3 Strain Gauge Measurements of Magnetostriction 

 

The axes [100], [010], and [001] of the sample were aligned with respect to the x-, y-, 

and z- axes of a coordinate system respectively. A bidirectional resistive strain gage 

rosette was applied onto the surface of the sample disks to measure strain along x- and y- 

directions. An electromagnet was used to apply magnetic field up to 4000 G. The field 

was ramped up from ∼ 0 G (remanent field) to 4000G, then down to ∼ 0 G at a rate of ∼ 
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±100 G/s and then ramped to the negative direction from ∼ 0 G to -4000G, then back to 

∼ 0 G at a rate of ∼ ±100 G/s. Data was acquired using National Instruments DAQ board 

and an automated Lab-VIEW data acquisition program.  

2.2.4 Kerr-effect Optical Microscopy 

 

As one of several magneto-optical effects, Kerr-effect 
[41]

, named after Joule Kerr, is the 

rotation of linearly polarized light when reflected from the magnetized sample surface. 

The plane-polarized electromagnetic light wave will interact with a magnetized material 

because of the Lorenz force. For the Kerr effect, there are two important amplitudes, the 

Kerr amplitude K and the normally reflected amplitude N, which can cause the rotation 

of the light. K is generated from the magnetic contribution. The contrast of the domains 

for a Kerr-Microscopy is caused by the ratio of K versus N. 

There are several types of Kerr microscopy for different directions of magnetization.  The 

longitudinal Kerr effect (Figure 2-6 (a) and (b)) occurs, when the Kerr rotation is 

proportion to the magnetization which is either parallel or perpendicular to the incident 

beam and the Kerr amplitude is polarized orthogonal to N and 0 . In this case, K is 

proportional to the angle of incident beam with the z axis as )sin(K . When 0 , the 

effect is known as polar Kerr-effect, which is used to image the out-of-plane domains that 

are perpendicular to the surface.  
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The transverse Kerr-effect (Figure 2-7) happens when the magnetization is perpendicular 

to the plane of incidence. Only light with parallel polarization will generate a Kerr 

amplitude. It is also proportional to )sin( , but K is parallel to N.  

 
 

 

Figure 2-6 The scheme of 

longitudinal Kerr-effect, where 

(a) shows the Kerr rotation 

parallel to the incident beam 

and (b) shows the Kerr rotation 

perpendicular to the incident 

beam. Take from ref. [42] 

 

Figure 2-7 The scheme of 

transverse Kerr-effect, where 

magnetization is perpendicular 

to the plane of incident beam. 

Take from ref. [42] 
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The Kerr Microscopy used in this thesis is the wide-field Kerr Microscopy which has 

been assembled by evico magnetics GmbH (Figure 2-8). Optical illumination is applied. 

The microscope has a range of imaging field from several mm down to hundreds of μm 

with different objective lenses from 5× to 100×. The electromagnet is capable to apply an 

inplane magnetic field up to 1 T. Both the sample stage and the electromagnet are 

rotatable. The whole system is controlled by a Lab-VIEW program. A CCD camera is 

used to obtain digital images. A background image processing is carried out to obtain 

better contrast.  

To obtain a stress free sample surface for the imaging, the single crystal disks have been 

polished using increasingly finer SiC sheets down to 1200 grit size and followed by the 

alumina suspension down to 0.3 μm
[42][44][45]

. An additional more than 4 hours polishing 

was applied using colloidal amorphous silica 
[28] [45]

 suspension. The polishing process is 

 Figure 2-8 The wide field microscopy set ups. Taken from [30] 
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similar to that described by Mudivarthi et al. 
[45]

. It was found that to reveal the real 

domain structures, the polishing time for the iron-cobalt sample single crystal disks 

should be larger than for FeGa alloys, i.e., where 1-3 hours additional polishing with 

silica suspension could be enough to reveal the real domain structures, but at least 4 hours 

is essential. Due to the small sample size (~0.51×5.93
2
mm

3
), larger polishing time was 

needed here. 
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Chapter 3 Results 

 

VSM, Torque and domain images have been measured for four Iron-cobalt single crystal 

sample disks. Figure 3-1 to 3-13 show the measured results for one sample of the 

determination of the magnetic properties. The experimental results for the rest of samples 

are listed in Appendix 2. The results calculated from experiment data are summarized in 

table 3-1 to 3-4. The magneto-optical Kerr Microscopy images and discussion are 

displayed in Appendix 3. 

The remarkable features of the data are: 

1, easy magnetization direction is <110>, agreeing with K1<0; 

2, the anisotropy is changing from 2-fold (uniaxial) to 4-fold (cubic) as the measuring 

field is increased; 

3, the magnetostriction is large; 

4, the saturation magnetization is small compared to Permendur; 

5, the saturation field is 2500 Oe (Oersted) for magnetization curves and 1500 Oe for 

magnetostriction;  

3.1 Vibrating Sample Magnetometer Data 

 

The VSM data was plotted by Origin 8.0 software. The magnetization and field units 

provided by the VSM (emu and Oe) were converted to emu/cc and G. Every set of data 

for the four sample disks were normalized to eliminate environmental influences.  
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Figures 3-1 show the VSM plot for sample disk 1-1 respectively. From the magnetization 

curves, we observed: 

1, the <110> direction is the easy direction of magnetization of disks with (100) normal. 

2, the <100> curve and <010> curve almost superimpose with each other. 

3, the samples are quite saturated with the magnitude of the applied field (2500Oe)  

4, no hysteresis is found in all of three directions.  

5, the saturation magnetization (1.8T) is relatively small when comparing it with 

Permendur (2.4T).  

Figure 3-1 The magnetization curves of [n-001] single crystal sample 

1-1 (refer to table 2-1) with magnetic field applied in different 

directions (  is point where the anisotropy field has been estimated) 
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6, Close observation of the figures reveals that when applied field is along a hard 

direction, magnetization tends to go along easy direction up to a certain point and then 

breaks away from that and eventually going to saturation. 

7, the observable area between the magnetization curves along <100> and 

<110> is very small. 

8, the coercivity is very small (close to zero), as is shown in figure 3-2. 

 

 

Without applied field H, the direction of magnetization lies on the easy axes, which 

equivalent to an applied field and the value of which is called    , the anisotropy field. In 

magnetization curves,    can generally be determined by the saturation field along hard 

axis. In the case of Fe35Co65 single crystal disks,    is estimated by extrapolated the 

linear part of magnetization curve to intersect with the line of saturation magnetization 

(as is shown in Figure 3-1).  The results are listed in table 3-2. 

As mentioned in Chapter 2, the magnetocrystalline anisotropy can be measured from the 

difference of area between the magnetization curves along different crystallographic 

directions.  Table 3-3 listed all the calculated value of the anisotropy constant K1 from 

magnetization curves of sample 1-1 to 1-4.  

Figure 3-2 The coercivity of sample 1-1 
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3.2 Torque Magnetometer  

 

The Torque data was plotted by Origin 8.0 software. The field data provided by the 

Torque magnetometer (dyne centimeter and Oe) was converted to Joule and G. To obtain 

the torque density (J/M
3
), the measured torque data was divided by the volume of the 

sample.  

tD

Torque
DensityTorque




2)2/(
                                                                              (3-1)  

where D is the diameter and t is the thickness of each specimen. The torque values were 

obtained at every 5˚ of the rotation of the applied field. Every set of data for the four 

sample disks was normalized to eliminate environment influences.  

Figures 3-3 to 3-6 display the torque curves of sample disks 1-1, obtained at different 

external magnetic field. The 0˚ point was aligned to be the [110] easy axis. The bottom 

curve is rotated clockwise from 0˚-360˚, while the top curve is rotated counterclockwise 

from 360˚-0˚.  

Figure 3-7 is the polar plot of sample disks 1-1, which shows the revolution of the 

anisotropy with the change of magnetization. It is very clear that as the magnetization 

increases from the lowest field to the highest field applied here, the symmetry of 

anisotropy changes from uniaxial anisotropy (2 fold) to cubic anisotropy (4 fold). 



27 
 

 

  

Figure 3-4 Torque curves of sample 1-1 at 800G 

Figure 3-3 Torque curves of sample 1-1 at 600G 
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Figure 3-5 Torque curves of sample 1-1 at 1000G 

Figure 3-6 Torque curves of sample 1-1 at 1500G 
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In Torque curves, when H=Hk , no rotational hysteresis should be found on the x axis. By 

integrating the y-axis normalized torque curves from low field to high field, the 

anisotropy field can be estimated at the field that the difference of area between the 

clockwise and counterclockwise rotated torque curves at the same field reaching its 

minimal (≈0). The integration was done with the help of Origin 8.0 software. The 

experimentally obtained rotational hysteresis data is listed in table 3.1 and the estimated 

values of Hk are listed in table 3.2.   

Sample  

Name 

Field(G) 

Difference of Area (G) 

1-1 1-2 1-3 1-4 

600 44.6888 20.16235 20.91296 -- 

800 21.8409 1.488585 4.632037 17.50299 

Figure 3-7 Polar Plot of sample 1-1, at different 

magnetic field (a) 600G, (b)800G, (c)1000G and 

(d)1500G 
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1000 1.5331 0.876306 -- 1.419749 

1200 -- -- 7.778456 -13.6797 

1500 0.0724 0.217806 -- -- 

1600 -- 4.505146 -- -- 

1700 -- -- 0.44014 0.331475 

 

Sample name Hk
*
(G) Hk

**
(G) Hs(G)

***
 Hs

*
(G) 

1-1 1490 1500 1500 2500 

1-2 1400 1500 1500 2500 

1-3 1700 1700 1400 2500 

1-4 1600 1700 1500 2500 

FeGa20 1083
[36]

  1000
[30]

  

 

 

From observation, the symmetry of torque curves changes from     to    . Thus, we 

can assume that two types of anisotropy exist: one is uniaxial (   ), and the other is 

cubic (   .).  

                                                                                                                (3-1) 

               
                                                                                      (3-2) 

           (  
   

    
   

    
   

 )      
   

   
                            

For the (001) sample disk: 

Table 3.1 Rotational hysteresis presented by the difference of area of sample 1-1 to 1-4 

Table 3.2 Anisotropy field and saturation field of magnetostriction for sample 1-1 to 1-4 

*obtained from Magnetization curves; ** obtained from Torque curves; *** saturation 

field of magnetostriction obtained from magnetostriction curves 
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 cos1  ;  sin2  ; 03  . (φ=θM, as the easy axis is the reference direction.) 

     
 

 
     

 (   )  

The torque    
 (         )

   
   

 

 
       (   )  

 

 
      (   )                    (3-3) 

The cubic anisotropy constant K1 and the uniaxial anisotropy constant Ku1 were 

calculated by a sum of sine fitting analysis of the torque curves obtained at field H=Hk, 

using Matlab 7.9.0 program with following model: 

T(x) =T2*sin (2*x+c1) +T4*sin (4*x+c2) 

The confidence limit of the fit is larger than 0.98 for all samples (close to one), which 

indicates most of data points were counted in this model. 
 

 
        and  

 

 
      . 

The values of K1 and Ku1 are shown in table 3.3. 

Sample 

name 

Saturation 

Magnetization(emu/

cc)
***

 

K1
*
 

(J/M
3
) 

Ku1
**

 

(J/M
3
) 

K1
**

 

(J/M
3
) 

1-1 1437 -2.16×10
4
 -1.22×10

3 -1.64×10
4 

1-2 1256 -2.38×10
4
 -1.98×10

3
 -1.82×10

4
 

1-3 1341 -1.69×10
4
 -1.29×10

3 -1.57×10
4 

1-4 1647 -6.06×10
3 -1.88×10

3 -1.29×10
4 

FeGa20  3.23×10
2[36]

   

 

 

 

Table 3.3 Anisotropy field and constants of single crystal Fe35Co65 samples 

*obtained from Magnetization curves; ** obtained from Torque curves 

*** error exist in measurement of polished sample volume (some of them may be unflatten) 
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3.3 Magnetostriction 

 

Figures 3-8 shows the magnetostriction data for sample1-1 obtained using an automated 

Lab-VIEW data acquisition program. Throughout this thesis,   
  means the 

magnetostrictive strain along  ̂ direction, when field applied along  ̂ direction.  

a, b and c represent the fraction of magnetic moments oriented along  ̂  ̂      ̂ 

respectively. In a perfectly demagnetized sample and in the absence of any residual stress, 

  
  and   

 
 are always 2/3λ, meaning the remanent states a = b = c = 1/3. However, this is 

not the case in all the samples. Since the hysteresis in the magnetostriction data is almost 

negligible, the deviation can be attributed to some anisotropy, may possibly due to the 

presence of a residual stress. It is notable that more hysteresis of magnetostriction 

observed along [110] direction (Figure 3-9) than that along [100] direction. 

  

 

Figure 3-8 Magnetostriction of sample 1-1 under H field applied along 𝑥̂ (left) and 𝑦̂ (right) 

Solid line in the left plot indicates the saturation field of the magnetostriction curves 
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The values for  
 ,   

 
,   

 ,   
 
 and λ100 are given in table 3.1. The measured λ100 is 23% 

larger than λ100 data of Permendur listed in table 1.1
[8]

. From table 3.1, λ100 is almost 34% 

larger than λ110. The magnetostriction along [110] direction is the projection of 

magnetostriction of [100] and [111]. In FeCo alloys, λ100>>λ111
[35]

, leading to the lower 

value of λ110. 

Sample   
    

 
   

    
 
  100 

1-1(300 ºC) 137±1 -46±1 -51±1 155±1 194.5±2 

1-2(875 ºC) 105±1 -63±1 -67±1 121±1 178±2 

1-3(790 ºC) 128±1 -60±1 -59±1 130±1 188.5±2 

1-3(<110>) -- -- -- -- λ110:125±2 

1-4(690 ºC) 98±1 -61±1 -67±1 124±1 175±2 

 
Table 3.4 Magnetostriction at H=4000G 

Figure 3-9 Magnetostriction of <110> direction of sample 1-3 under H field applied along 

<110> direction 
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Chapter 4 Discussion 

 

The high value of λ100 can be explained by the existence of a second phase. The value of 

λ100 is high and agrees with the results reported Dai and Wuttig 
[27]

. Four sample disks (1-

1 to 1-4) are annealed at different temperature, 300˚C, 875˚C, 790˚C and 690˚C 

respectively. From the partial phase diagram (Figure 2-2), the bcc// (bcc+fcc) phase 

boundary of Fe35Co65 alloy is located at 915˚C. According to this expectation, the 

magnetostriction will increase with increased annealing temperature of the four sample 

disks and will reach to its maximum in sample 1-2 (highest annealing temperature near 

the phase boundary). However, experimental data (Table 3.4) show that similarly high 

values of λ100 exist in all four samples and do not depend strongly on their annealing 

temperature. Since the single crystal had been annealed at 860˚C for one week and slow 

cooled thereafter, the microstructure was likely little affected by the subsequent anneals. 

A second phase may have already been formed during the first long anneal. The 

additional annealing performed in this study (63hrs, 0.3 hrs, 0.8hrs and 1hrs for sample 1-

1 to 1-4 respectively), did not alter the initial microstructure substantially.  

The contribution of the magnetostriction to the anisotropy is significant. Two kinds of 

anisotropy energies exist in a ferromagnetic crystal: the magnetocrystalline anisotropy, 

K1 
[43]

 and the magnetoelastic anisotropy, Kme 
[43]

. If the axis of stress, ζ, is fixed, the 

energy changes as the magnetization rotates. Thus, the magnetoelastic anisotropy 

(    (      
          

 ) is produced. It is known that for Ni 
[42]

 (λ100≈45.9ppm, 

λ111≈24.3ppm), Kme≈0.02K1, i.e., KMe << K1. However, in FeCo alloys λ100>>λ111
[35]

, 

    
 

 
      

 
, meaning that for the presented alloys, λ100≈200 ppm, the magnetoelastic 
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contribution, Kme≈0.1K1, is significant. Thus, the value of anisotropy constant will be 

influenced by their magnetoelastic energy.  

Comparison between magnetostriction curves and torque density curves shows that the 

second phase contributed to the increase of the magnetostriction. At very low field, the 

anisotropy is very small and uniaxial (T2). With increasing magnetic field, a second peak 

becomes more prominent and changes the torque curves to four-fold symmetry (T4). The 

evolution of the torque amplitude should be compared with the evolution of 

magnetostriction curves as a function of applied field. This comparison is shown in figure 

4-1. It can be seen that the magnetostrictive elongation begins at low fields and saturation 

is reached around the estimated anisotropy field. Torque density curves at different 

magnetic field have been fitted with the help of Matlab 7.9.0 software to quantify the 

evolution of the torque symmetry changing with field. The torque T(θ) = T2*sin (2*θ+c1) 

+T4*sin (4*θ+c2) has been used to determine the amplitude of the two and four fold 

symmetry T2 and T4. The confidence limit of the fit is larger than 0.90 except for the 

curves obtained at 500 Oe (0.8025).  
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When comparing the slope of T2, T4 with the magnetostriction in Figure 4-1, it becomes 

clear that T2 evolves as a function of the external field as the magnetostriction does.  

At high fields, the torque displays four-fold symmetry, with an easy axis (defined here as 

the direction along which the minimal of energy can be observed) of [110], which agrees 

with the magnetization curves. At low fields, the torque displays two-fold symmetry, 

with the torque curves at 600 Oe showing that the easy axis is [100]. From the 

magnetostriction measurements, the [100] direction has almost 30% higher 

magnetostriction than the [110] direction (refer to table 3.4). However, in a cubic crystal, 

there are four equivalent directions of [100] on the [001] plane. Thus, without another 

four-fold symmetry showing in the torque curves, it is reasonable to assume that the [100] 

Figure 4-1 Comparison between the amplitude of T2 and T4 vs field and the 

magnetostriction vs field 
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easy uniaxial second phase contributed to the larger magnetostriction along [100] 

direction. Figure 4-2 shows this change of the easy axis from <100>(red arrow) to 

<110>(blue arrow) the revolution of torque curves corresponds to magnetic field, with 

the two red triangles at 90˚ and 135˚, showing the easy axis for the two fold and four fold 

symmetry of torque curves respectively. 

 

The symmetry change of torque curves with increasing magnetic fields indicates that the 

second phase is symmetry related to the host.  

As mentioned before, the easy axis can be determined by closely observing the torque 

curves obtained at different fields (figure 4-2). Initially T2 is shifted by 45 degrees with 

respected to T4 ([100] easy axis). At large fields it aligns with the easy direction ([110] 

easy axis). 

According to the phase diagram, the second phase is most likely a FCC phase. 

Considering both the changes of torque symmetry and the crystallographic properties of 

FCC and BCC structures, it is likely that the second phase consist of an epitaxial-fcc 

 

 

[110] [ī10] [ī00] 

Figure 4-2, Normalized torque 

curves T(θ) of sample 1-2 

obtained at four increasing 

magnetic fields 
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precipitate, sharing a (110) common plane with the bcc host structure. As the external 

field increases, the magnetization of the FCC second phase aligns as with respect to the 

[110] easy direction (easy axis of four-fold symmetry) of the host. This is illustrated in 

figure 4-3 which shows how the symmetry of the magnetization changes as the 

magnetization of the uniaxial (tetragonal) fcc precipitate rotates into the [110] easy 

direction of the host. 

 

 

The saturation magnetization of the Fe35Co65 alloy investigated in this study is 

significantly lower than the values in the literature 
[8]

 indicate. As mentioned in chapter 3, 

the saturation magnetization of the presented samples equals approximately 1.9 T 

(sample 1-1).  According to the saturation magnetization data available from the literature
 

[8]
, it should be nearly 2.2 T for Fe35Co65 alloys, i.e., 17% higher than the measured data. 

The existence of a second phase may explain this apparent discrepancy; the Fe-Co phase 

with a FCC structure processes a low spontaneous magnetization. Assuming that the 

concentration of cobalt in the precipitate is 0.95, i.e., one iron atom takes the face center 

  

 

 

 

 

 

 

 

 

 

 

   

Magnetic Field (H) Increased 

Figure 4-3 Symmetry of the presented crystal, where the red balls form the host 

with a bcc structure and the blue balls form the coherent fcc second phase. The 

easy directions of the precipitates and the host displays in blue and orange arrows 

respectively. 
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position and cobalt atoms take the rest positions in one unit cell, and assuming that 

Fe50Co50 composition exists in the host, the percentage   of precipitates can be calculated 

as follows: 

         (   )      ;  

thus,       . 

Using the saturation magnetization of Fe5Co95 alloys 
[8]

, 1.7T, and the saturation 

magnetization of Permendur 
[8]

, 2.3T, the percentage   of precipitates can be calculated 

as follows: 

        (   )       ; 

thus,       . It can be seen that the calculated values percentage   from 

crystallographic symmetry and the saturation magnetization agree with each other. 

The low susceptibility is unusual for FeCo alloys. For rotational magnetization the 

susceptibility is depending on the following relationship 
[43]

: 

    
  

√ 
                                                                            (4-7) 

where,               ;   
             ; 

            
 

 
    

         (                 )(    )       

   (    ) ; 

     
     

    
  

 

 
    

           (          )(    )       

   (    )  
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χ0 is a constant;       

* refers to the values of Permendur 
[8]

; 

The values of    and     were taken from reference [46]. 

Thus, the susceptibility of the presented FeCo alloy can be calculated by using that: 

     
  

√ 
 
√  

  
         

The susceptibility   is in more than 5 fold smaller comparing to Permendur. Thus, it is 

very reasonable for us to expect a second phase existing in the presented FeCo alloy.  
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Chapter 5 Conclusion and future work 

In conclusion, the Fe35Co65 single crystal sample has been annealed by a long time at 

temperature (860ºC) close to its fcc-bcc phase boundary to obtain the single crystal. Its 

magnetostriction constant λ100 is as high as 200ppm which is 23% higher than the 

measured value 
[8]

 of permendur (150ppm). The magnetocrystalline anisotropy constant 

K1 is in 5 fold smaller than that of permendur. The symmetry of torque curves changed 

from 2-fold to 4-fold as the external magnetic field increased, which indicates the 

existence of a second phase. It is proposed that the second phase is an epitaxial fct 

precipitate. Its lower saturation magnetization and the crystalline structures agree with 

each other semi-quantitatively. The torque data are interpreted by the alignment of the 

magnetization of the epitaxial fct precipitate in the bcc host by external field. The 

susceptibility,  ≈1.63, is more than 5 fold smaller comparing to Permendur. The high 

magnetostriction is caused by the rotation of magnetization in the second phase. 

Following features, if investigated in future, will be able to establish more explicit by the 

nature of the presented alloy and lead to other groups of high magnetostrictive alloys: 

The crystal and domain structures of these Fe35Co65 single crystals should be investigated 

further using Lorentz- and high resolution- Transmission Electronic Microscopy 

(LTEM+HRTEM) to identify the nanoscopic process leading to the high 

magnetostriction. 

The domain structures should be investigated further using Magneto Optical Kerr Effect 

Microscopy with larger Fe35Co65 single crystal samples (both in diameter and thickness). 
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Large samples will facilitate the polishing process to reveal the true domains helping to 

explain the magnetic anisotropic properties of the alloy. 

The M-H curves can be investigated further as a function of the temperature (above 

Currie temperature of this material) using Vibration Sample Magnetometer. This will 

help to explain the low saturation magnetisation of these samples. If small amounts of fcc 

phases exist, a break in the M(T) curve will occur.   
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Appendix 1: Result Figures (sample1-2 to 1-4) 

 

Appendix 1.1 Magnetization Curves 

 

 

Figure a1-1 The magnetization curves of [n-001] single crystal sample 1-2 (refer 

to table 2-1) with magnetic field applied in different directions 

Figure a1-2 The magnetization curves of [n-001] single crystal sample 1-3 (refer 

to table 2-1) with magnetic field applied in different directions 
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Figure a1-3 The magnetization curves of [n-001] single crystal sample 1-4 (refer 

to table 2-1) with magnetic field applied in different directions 

Figure a1-4 Coercivity of sample 1-2 

to 1-4 ((a) to (c) respectively)  

(a) (b) 

(c) 
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Appendix 1.2 Results from Torque Measurements 

 

 
Figure a1-5 Torque curve of sample 1-2 obtained at 600G 
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Figure a1-7 Torque curve of sample 1-2 at 1000G 

Figure a1-6 Torque curve obtained of sample 1-2 at 800G 
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Figure a1-8 Torque curve of sample 1-2 obtained at 1600G 

Figure a1-9 Torque curve of sample 1-3 obtained at 600G 
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Figure a1-10 Torque curve of sample 1-3obtained at 800G 

Figure a1-11 Torque curve of sample 1-3 obtained at 1200G 
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Figure a1-12 Torque curve of sample 1-3 obtained at 1700G 

Figure a1-13 Torque curve of sample 1-4 obtained at 800G 
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Figure a1-14 Torque curve of sample 1-4 obtained at 1000G 

Figure a1-15 Torque curve of sample 1-4 obtained at 1200G 
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Figure a1-16 Torque curve of sample 1-4 obtained at 1700G 

Figure a1-17 Polar plot of sample 1-2, at different 

magnetic field (a) 600G, (b)800G, (c)1000G and 

(d)1600G 
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Figure a1-19 Polar plot of sample 1-4, at different 

magnetic field (a) 800G, (b)1000G, (c)1200G and 

(d)1700G 

Figure a1-18 Polar plot of sample 1-3, at different 

magnetic field (a) 600G, (b)800G, (c)1200G and 

(d)1700G 
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Appendix 1.3 Magnetostriction Curves 

 

 

 

 

Figure a1-20 Magnetostriction of sample 1-2 under H field applied along 𝑥̂ (left) and 𝑦̂ (right) 

Figure a1-21 Magnetostriction of sample 1-3 under H field applied along 𝑥̂ (left) and 𝑦̂ (right) 
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Figure a1-22 Magnetostriction of sample 1-4 under H field applied along 𝑥̂ (left) and 𝑦̂ (right) 
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Appendix 2: Magnetic Domain Structures 

 

Figure a2-1 and a2-2 are images of Fe30Co70 polycrystalline alloy and Fe35Co65 (sample 

1-3) single crystal taken from magnetic optical Kerr microscopy (MOKE) at the 

remanence state. Comparing the images a2-1 and the domain images of Fe-Ga single 

crystals 
[30]

 (figure 1-9), large block domain pattern should be expected (180º domain 

wall) for the Fe-Co single crystal sample disks. However, the polishing of single crystal 

was restricted to the sample size (a2-2). 

 

 Figure a3-1 Fe30Co70 polycrystalline alloy 

100µm 
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Figure a3-2 Fe35Co65 single crystal sample 1-3 

100µm 
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