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Detection of neuronal activity noninvasively and in vivo is a desideratum in 

medicine and in neuroscience. Unfortunately, the widely used method of functional 

magnetic resonance imaging (fMRI) only indirectly assesses neuronal activity via its 

hemodynamic response; limiting its temporal and spatial accuracy. Recently, several 

new fMRI methods have been proposed to measure neuronal activity claiming to be 

more direct and accurate. However, these approaches have proved difficult to 

reproduce and are not widely applied mainly because of a dearth of  “ground truth” 

experiments that convincingly establish the correlation between the magnetic 

resonance (MR) signals and the underlying neuronal activity. In addition, limited 

knowledge of water dynamics in living tissue restricts our understanding of the 

underlying biophysical sources of these candidate fMRI signals.   



  

To address the first problem, we developed a novel test system to assess and 

validate fMRI methods, in which real-time fluorescent intracellular calcium images 

and MR recording were simultaneously acquired on organotypic rat-cortex cultures 

without hemodynamic confounds. This experimental design enables direct correlation 

of the candidate functional MR signals with optical indicia of the underlying neuronal 

activity. Within this test bed, MR signals with contrasts from water relaxation times, 

diffusion, and proton density were tested. Diffusion MR was the only one shown to 

be sensitive to the pathological condition of hyperexcitability, e.g., such as those seen 

in epilepsy. However, these MR signals do not appear to be sensitive or specific 

enough to detect and follow normal neuronal activity.  

Efforts were made toward improving our understanding of the water dynamics 

in living tissue. First, water diffusivities and relaxation times in a biomimetic model 

were measured and quantitatively studied using different biophysical-based 

mathematical models. Second, we developed and applied a rapid 2D 

diffusion/relaxation spectral MR method, to better characterize the heterogeneous 

nature of tissue water.  While the present study is still far from providing a complete 

picture of water dynamics in living tissues, it provides novel tools for advancing our 

understanding of the possibilities and limits of detecting neuronal activity via MR in 

the future, as well as providing a reproducible and reliable way to assess and validate 

fMRI methods.  

 
  



  

 
 
QUANTATITIVE STUDY OF WATER DYNAMICS IN BIOMIMETIC MODELS 

AND LIVING TISSUE BY NMR AND MRI: PERSPECTIVES ON DIRECT 
DETECTION OF NEURONAL ACTIVITY  

 
 
 

By 
 
 

Ruiliang Bai 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2015 
 
 
 

 
 
 
 
 
 
 
Advisory Committee: 
Professor Robert M. Briber, Chair 
Dr. Peter J. Basser 
Dr. Ferenc Horkay 
Professor David Fushman 
Professor Marco Colombini 
Professor Srinivasa R. Raghavan 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by © Copyright by 
Ruiliang Bai [Your Full Name as it appears in University records] 

2015 [year of your degree] 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ii 

Dedication 

The author dedicates this dissertation to his parents 

Shengkuan Bai and Aixian Liu 

for their unconditional love and support 



 iii 

Acknowledgements 

I am grateful to my advisors, teachers, colleagues, family, and friends, who 

gave me immeasurable support and help in the many years I have spent working on 

my Ph.D. Without them, I cannot image how I could have succeeded in completing 

my dissertation.  

 I have always felt fortunate to have met and worked with my two advisors, 

Professor Robert M. Briber and Dr. Peter J. Basser, who together made this thesis 

happen by training me to develop my own scientific interests and helping me learn 

how to function in the academic world. There are so many things that I would like to 

thank Professor Briber for: leading me from background in physics to the wonderful 

world of biophysics, providing me with countless suggestions and endless help, and 

encouraging me to find my own interests and become an independent researcher.  I 

admire and hope to emulate one day his broad knowledge in a variety of disciplines. 

 I am also deeply grateful to Dr. Basser for all his support in both academic 

and nonacademic spheres. I still remember our first conversation in the summer of 

2011, when I had just completed my three research rotations and was still confused 

about what to do for my thesis. His academic insights into the fields of biomedical 

imaging and biophysics immediately attracted my interest and helped me make 

decisions about my dissertation and my academic career. Over the last four years, he 

has given me the freedom to explore different projects, inspired me to find and solve 

problems, and helped me find courage when I was facing difficulties and doubts 

about my own abilities.  



 iv 

 I would also like to thank Dr. Ferenc Horkay. With him, I completed my first 

project and wrote my first published paper. I appreciate his patience in helping me—

with my very limited background in chemistry—to perform polymer and gel 

experiments and thereby giving me the opportunity to learn this field. In that first 

project, I learned a lot from him, including how to design experiments, explain 

findings in a publication and value scientific rigor.  

 Many thanks to my colleagues at NIH (Beth, Alexandru, Miki, Evren, Okan, 

Dan, Jian, and Yuan) for the many interesting conversations about science and other 

topics and for their generous help whenever I encountered difficulties.  I would also 

like to thank Professors Peter Kofinas and Isabel Lloyd and my fellow students in 

Professor Briber’s group (Xin, Mert, Adam, and Omar). I am still profiting from 

many of their useful suggestions and comments now.   

 I am also grateful to my collaborators, Dr. Dietmar Plenz and his group 

(Craig, Andreas, and Tim) in NIMH, who helped me set up and test the fluorescence 

imaging system, kept providing us with high-quality organotypic cultures, and 

expanded my knowledge in neuroscience. I also acknowledge our collaborative 

activities with Professor Wojciech Czaja and Dr. Alex Cloninger in the Department 

of Mathematics at the University of Maryland.  

 I am also grateful to the faculty members and staff in our biophysics program. 

Special thanks to Professor David Fushman for serving as an advisor on my thesis 

committee, particularly for many interesting discussions on NMR theories and 

techniques, and to Professor Garegin Papoian for guiding me in one of my research 

rotations. I am also grateful to our previous and current program coordinators (Caricia 



 v 

and Star) for helping me comply with many departmental requirements and 

reminding me about all the important academic deadlines. 

Last, but not least, I thank my parents (Shengkuan Bai and Aixian Liu), my 

two sisters (Jing Bai and Jinglan Bai) and my brother-in-law (Weizhu Wang) for their 

concern, encouragement, and emotional support.  You cannot imagine how hard it is 

for two farmers with very low incomes in my hometown to send their three children 

away from the poor village and to get the best education, but my parents did it. They 

did their best to give me the no better environments they can offer to grow up and 

passed their diligent and honest personality to me. It’s their unconditional love and 

support that keep me moving forward and never stopped pursuing my dreams.           



 vi 

Table of Contents 
 
 
Dedication ..................................................................................................................... ii	
  

Acknowledgements ...................................................................................................... iii	
  

Table of Contents ......................................................................................................... vi	
  

List of Tables ................................................................................................................ ix	
  

List of Figures ............................................................................................................... x	
  

Chapter 1: Emergence of new functional magnetic resonance imaging (fMRI) 

methods in the study of neuronal activity ..................................................................... 1	
  

1.1 Noninvasive neuroimaging of neuronal activity ................................................. 2	
  
1.1.1 Importance of large-scale noninvasive imaging of neuronal activity .......... 2	
  
1.1.2 Electroencephalography (EEG) and magnetoencephalography (MEG) ...... 4	
  
1.1.3 Functional near-infrared spectroscopy (fNIR) ............................................. 6	
  
1.1.4 Positron emission tomography (PET) .......................................................... 8	
  

1.2 Functional magnetic resonance imaging ........................................................... 10	
  
1.2.1 Basics of magnetic resonance .................................................................... 10	
  
1.2.2 Water rotational motion and NMR relaxation times .................................. 13	
  
1.2.3 Water translational motion and self-diffusion ............................................ 15	
  
1.2.4 Functional MRI contrast–hemodynamics .................................................. 18	
  
1.2.5 Functional MRI limitations ........................................................................ 20	
  

1.3 Newly proposed functional MRI methods for direct detection of neuronal 
activity ..................................................................................................................... 21	
  

1.3.1 Detection of the neuronal electromagnetic field ........................................ 22	
  
1.3.2 Functional diffusion MRI ........................................................................... 24	
  
1.3.3 Proton-density MRI .................................................................................... 25	
  

1.4 Toward direct detection of neuronal activity with MR ..................................... 26	
  
1.4.1 Needs and plans for  “ground truth” experiments ...................................... 28	
  
1.4.2 Prerequisites to studying neuronal activity via MR—water dynamics in 
living tissue ......................................................................................................... 30	
  
1.4.3 Method 1: The study of water dynamics in biomimetic models ................ 32	
  
1.4.4 Method 2: The development of 2D MR diffusion/relaxation spectra to 
characterize various microenvironments of water in tissue ................................ 33	
  

Chapter 2: Initial effort: NMR water self-diffusion and relaxation studies on a 

biomimetic model of neuronal activity in physiologic ionic solutions ....................... 37	
  

2.1 Sodium polyacrylate (NaPA) hydrogel as a biomimetic model of nerve 
excitation ................................................................................................................. 37	
  



 vii 

2.2 NaPA solution and hydrogel synthesis and NMR setups .................................. 39	
  
2.3 Self-diffusion measurements in NaPA solution and gel as a function of polymer 
concentration ........................................................................................................... 42	
  
2.4 Spin-lattice relaxation time, T1, in NaPA solution and gel as a function of 
polymer concentration ............................................................................................. 48	
  
2.5 Effect of ions on the dynamic properties of water in NaPA solution and gels . 51	
  
2.6 Discussions and conclusions ............................................................................. 53	
  

Chapter 3: Combining MR diffusion/relaxation spectra with imaging:  a framework 

for accurate determination of the relaxation spectra from magnitude MRI images .... 55	
  

3.1 Artifacts caused by the low-SNR magnitude MRI data in the estimation of T2 
relaxation spectra ..................................................................................................... 56	
  
3.2 A signal transformation framework to map noisy Rician-distributed magnitude 
MRI signals into Gaussian-distribution signals ...................................................... 59	
  
3.3 Validation of the framework ............................................................................. 66	
  
3.4 Numerical simulation of T2 spectra MRI experiments ...................................... 71	
  
3.5 T2 spectra MRI experiments on gel phantom and fixed porcine spinal cord .... 74	
  
3.6 Discussions and conclusions ............................................................................. 80	
  
3.7 Supporting information: A fixed-point formula for the estimation of underlying 
signal intensity ......................................................................................................... 82	
  

Chapter 4: Accelerate 2D MR diffusion/relaxation spectra using compressed sensing

 ..................................................................................................................................... 85	
  

4.1 Obstacles in 2D MR diffusion/relaxation spectra: slow acquisition ................. 85	
  
4.2 2D MR relaxation spectra sequence and data acquisition ................................. 88	
  
4.3 A MR pipeline to accelerate 2D MR diffusion/relaxation spectra via 
compressed sensing (CS) ........................................................................................ 91	
  
4.4 Numerical demonstration of the efficiency of compressed sensing in 
accelerating 2D relaxation spectra .......................................................................... 97	
  
4.5 Accelerate urea/water MR T1−T2 and T2−T2 spectra experiments via CS ...... 102	
  
4.6 Apply CS on the MR T1−T2 spectra with imaging of porcine spinal cord ...... 106	
  
4.7 Discussions and conclusions ........................................................................... 109	
  
4.8 Algorithm detail: recover 𝑴 from incomplete measurements with compressed 
sensing ................................................................................................................... 114	
  

Chapter 5:  A novel test bed for testing and developing direct fMRI methods using 

simultaneous calcium fluorescence imaging and MR of ex vivo organotypic brain 

cortical cultures ......................................................................................................... 117	
  

5.1 Need of a reliable and robust test system for direct fMRI .............................. 118	
  
5.2 Simultaneous calcium fluorescence imaging and MR recording on the 
organotypic cortical cultures—setups ................................................................... 121	
  
5.3 Experimental protocol and data analysis methods .......................................... 127	
  



 viii 

5.4 MR signal of the organotypic cortical culture ................................................. 132	
  
5.5 Spontaneous neuronal activity on organotypic cortical culture ...................... 134	
  
5.6 Stability of MR and calcium recording ........................................................... 136	
  
5.7 Effects of neuronal activity on MR signal (proton density and effective 
transverse relaxation time) .................................................................................... 138	
  
5.8 Immunohistochemistry to clarify cell types and densities in the organotypic 
cortical cultures ..................................................................................................... 140	
  
5.9 Advantages and limitations of this direct fMRI test bed ................................. 142	
  

Chapter 6:  Can neuronal activity be detected with diffusion MRI? An in vitro 

assessment with simultaneous calcium fluorescence imaging and diffusion MR 

recording .................................................................................................................... 149	
  

6.1 Does diffusion MRI really detect neuronal activity directly? ......................... 150	
  
6.2 Setups for simultaneous calcium fluorescence imaging and diffusion MR 
recording on the organotypic cortex culture ......................................................... 152	
  
6.3 Experiment and data analysis protocol for pharmacological manipulation .... 155	
  
6.4 Reduction of water diffusivity in depolarization block with 100 µM kainate 156	
  
6.5 Kainate concentration dependence of diffusion MR ....................................... 159	
  
6.6 Reduction of water diffusivity in depolarization block via 30 mM extracellular 
K+ .......................................................................................................................... 161	
  
6.7 Response of diffusion MR signal to inhibition modulation with picrotoxin 
(PTX) ..................................................................................................................... 162	
  
6.8 Suppression of normal spontaneous neuronal activity with tetrodotoxin (TTX) 
does not affect diffusion MR signal ...................................................................... 163	
  
6.9 Time-series statistical analysis indicates diffusion MR unaffected by normal 
spontaneous neuronal activity ............................................................................... 165	
  
6.10 Cell swelling? Effects of osmotic pressure during depolarization block ...... 167	
  
6.11 Discussion: is current diffusion MR method sensitive enough to capture 
normal neuronal activity? ...................................................................................... 171	
  
6.12 Supporting information: ”stroke” model to test the performance of the test bed
 ............................................................................................................................... 176	
  

Chapter 7:  Discussion and future work .................................................................... 179	
  

7.1 Vetted non-BOLD fMRI methods: diffusion, proton density, and relaxation 
time ........................................................................................................................ 179	
  
7.2 Cell swelling or other physiological processes: more knowledge needed ...... 180	
  
7.3 Promoting multidimensional MR diffusion/relaxation spectra to characterize 
the complex water dynamics in living tissue ........................................................ 183	
  
7.4 Potential applications in other fields ............................................................... 185	
  

Appendix A: list of publications ............................................................................... 187	
  

Bibliography .............................................................................................................. 188	
  

 



 ix 

List of Tables 
 
Table 2.1. Parameters used and obtained in free volume model. ................................ 47	
  
Table 2.2. Self-diffusion and spin-lattice measurements on NaPA solutions and gels 

in pure water and in NaCl solutions .................................................................... 51	
  

 

Table 3.1. Statistic results of the gmT2 values and relative fractions for the agar gel 
phantom. .............................................................................................................. 76	
  

 

Table 5.1. Diffusion parameter estimation with bi-exponential models for the 
organotypic cultures and with the single-exponential model for the ACSF. .... 133	
  

Table 5.2. Correlation coefficient table for the calcium signals from each ROI on the 
two cultures (Fig. 5.3) and the entire tissue inside the RF coil. ........................ 136	
  



 x 

List of Figures 

Figure 1.1. MR T2−T2 exchange spectra in a urea/water phantom with exchange time 
= 50ms (left) and 500ms (right), in which the on-diagonal pixels represent 
nonexchanging protons, while the off-diagonal pixels represent urea and water 
protons exchanged at the given exchange time. .................................................. 34	
  

Figure 1.2. MR T2−T2 exchange spectra of the white matter (bundles of myelinated 
axons) from fixed porcine spinal cord with exchange time = 10 ms (left) and 250 
ms (right), in which the on-diagonal pixels represent nonexchanging water 
molecules, while the off-diagonal pixels represent water molecules exchanged 
among different microenvironments. .................................................................. 35	
  

 

Figure 2.1. Self-diffusion coefficient D of NaPA solutions and gels with various 
cross-link densities normalized by the self-diffusion coefficient of the pure water 
D0.  The curves are fits of solution data and gel data with crosslink density 1:200 
by different models (see text). ............................................................................. 43	
  

Figure 2.2. Variation of the spin-lattice relaxation rate 1/T1 as a function of the NaPA 
weight fraction in solutions and gels with various cross-link densities. 
Continuous lines are fits of Eq. 2.8 to the experimental data. ............................. 49	
  

Figure 2.3. (a) Self-diffusion coefficient and (b) spin-lattice relaxation rate as a 
function of CaCl2 concentration in both NaPA solutions and gels (crosslink 
density 2:200).   All the data are normalized by the initial values. ..................... 52	
  

 

Figure 3.1. Framework to determine the T2 distribution for each voxel. .................... 60	
  
Figure 3.2. The estimated Gaussian SD via PIESNO from the synthetic signals with 

various noise levels (A) and from the spinal cord multi-echo MRI experiments 
with various averaging steps (B), where the red curve is the nonlinear fit of the 
data via Eq. 3.10. ................................................................................................. 67	
  

Figure 3.3. The black box and the error bar at each TE are the sample mean and the 
sample standard deviation of the noisy magnitude signals (A), the transformed 
signals via our previous framework (B), and the proposed modified framework 
here (C). The red continuous curves in (A-C) are the ground truth. The sample 
SD of the three sets of signals at each TE (D). .................................................... 68	
  

Figure 3.4. Histograms of the noisy magnitude signals (A, C) and their transformed 
values (B, D) of the simulation data at TE = 200 ms (A, B) and short-T2 gel MRI 
data at TE = 140 ms (C, D). The red curves are the fittings to Rician distributions 
(A, C) and Gaussian distributions (B, D). ........................................................... 70	
  

Figure 3.5.  An example of the simulations with a single T2 component at iSNR = 25. 
(A) The noisy magnitude signals (green dots) and the transformed signals (blue 
dots). The green and blue continuous curves are the fitting results obtained with 
the NNLS algorithm. (B) The T2 distribution using the original Rician signals 
(green) and the transformed signals (blue). The continuous red curve in both (A) 
and (B) is the ground truth. ................................................................................. 71	
  



 xi 

Figure 3.6. T2 distributions using the Rician signals (A) and the transformed signals 
(C) at various iSNR. The gmT2 values of the tissue-associated water (B) and the 
relative fractions of both the tissue-associated water and the CSF-like water (D) 
were plotted as a function of iSNR. .................................................................... 72	
  

Figure 3.7. (A) The T2 distributions of the simulations of two T2 components with 
various iSNR and their corresponding gmT2 values (B) and relative fractions (C) 
of different regimes. The red curves in (A−C) are the underlying ground truth. 73	
  

Figure 3.8. (A) Maps of the relative fractions of the CSF-like water with various 
iSNR. (B-C) T2 distribution of the shorter-T2 gel (B) and the longer-T2 gel (C) 
with various iSNR. .............................................................................................. 75	
  

Figure 3.9. (A) The map of the gmT2 from 3.5 ms – 700 ms of the spinal cord.  (B) 
The T2 distributions of the four ROIs (ventral WM, lateral WM, dorsal WM, and 
GM) with 1, 2, 4, 8, 16, 32 and 64 averages of the complex data using the 
original magnitude signals and the transformed signals. (C) The gmT2 and 
relative water fractions of different water components in the ventral WM as a 
function of the number of averages. .................................................................... 77	
  

Figure 3.10. The maps of the relative water fraction of MW (top), IEW (middle), and 
CSF (bottom) in the spinal cord with the number of averages of the complex data 
equal to 1, 4, 16 and 64. ...................................................................................... 79	
  

 

Figure 4.1. Pulse sequences diagrams for the three pulse sequences used in this work: 
(a) IR-CPMG, (b) REXSY, and (c) IR-ME with imaging. τ1 is the inversion 
delay, τ is the echo time in the CPMG, τm is the mixing time in the REXSY, n1 
and n2 are the number of loops in the first and second dimensions. .................... 91	
  

Figure 4.2. Flowchart of the pipeline used in this work. ............................................. 92	
  
Figure 4.3. 2D T1−T2 relaxometry of (a) the simulated ground truth, (b) full data with 

Gaussian noise at SNR = 2000, (c) full data with magnitude signal, (d) full data 
with transformed (Rician noise corrected) signal, (e) CS reconstruction from the 
transformed data at R = 5 and (f) the corresponding control.  (g) The results of 
the correlation coefficients of (b−d).  (h) The normalized T2 projections of (a−f).  
(i) The results of the correlation coefficients of the CS reconstruction from the 
data with Gaussian noise (black), the transformed signals from magnitude data 
(red) and its corresponding control (blue) at various acceleration factors, R. .... 99	
  

Figure 4.4. (a-i) T1−T2 relaxometry from the stimulated data with Gaussian noise at 
three SNR levels (SNR = 2000, 800 and 200) and three acceleration factors: R = 
1, 3 and 5. (j) The normalized T2 projections of (a−c) and the ground truth.  (k) 
The boxplots of the correlation coefficients of the CS reconstruction (red) and 
the control (blue) from the simulated data with Gaussian noise at SNR = 800 at 
various acceleration factors, R, and the broader lines and dots are the median of 
the data at each R. (l) The boxplots of the correlation coefficients of the full data 
(red), CS reconstruction at R = 3 (blue) and R = 5 (green) at various SNR. For 
the display purpose, the outliers were not shown. ............................................. 101	
  

Figure 4.5. T1−T2 spectra of the urea/water phantom from (a) the full data and (b) the 
CS reconstruction at R = 8, in which the curves along the axes are the 1D 
projections onto each dimension. (c−f) are the Tukey box plots of the results 



 xii 

from the 1000 realizations in each acceleration factor R, which includes (c) the 
correlation coefficients, the percentage of the biases of the urea’s (d) relative 
volume fraction, (e) gmT2, and (f) the water’s gmT2. ........................................ 103	
  

Figure 4.6. T2−T2 spectra of the urea/water phantom at mixing time τm = 1000 ms from 
(a) the full data and (c) the CS reconstruction at R = 9.  (b, d) are the results of 
(b) the correlation coefficients and (d) the biases of the relative volume fractions 
of the off-diagonal peaks as a function of the acceleration factor R, for which the 
red is the CS reconstruction and the blue is the corresponding control. ........... 105	
  

Figure 4.7. T2−T2 spectra of the urea/water phantom at mixing time τm = 50 ms from 
(a) the full data and (d) the CS reconstruction at R = 12.  (c) Correlation 
coefficients as a function of the acceleration factor R, where the red is the CS 
reconstruction and the blue is the corresponding control. ................................. 106	
  

Figure 4.8. The T1−T2 spectra of (d) the original magnitude data in the dorsal porcine 
white matter, (a) full data with transformed signal, (b) CS reconstruction from 
the transformed data at R = 2.5 and (c) at R = 4.0, (e) and (f) the corresponding 
control. (g) The normalized 1D T2 projections of (a−f).  (h−g) The results of (h) 
the correlation coefficients and (i) the MW fraction as a function of the 
acceleration factor R, where the red are the CS reconstructions and the blue are 
the corresponding controls. The map of the gmT2 from 10 ms to 400 ms of the 
spinal cord and the ROI in the dorsal white matter (red curve) are shown at the 
upper left corner of  (a). .................................................................................... 108	
  

 

Figure 5.1. Setup for simultaneous functional MR and calcium imaging. (a) 
Schematic diagram of the simultaneous MR and fluorescence imaging test bed 
(left) and an enlargement of the components near the organotypic cultured tissue  
(right), which is immerged in artificial cerebral spinal fluid (ACSF). (b) Top and 
bottom layers of the two-layer RF surface coil. (c) A real image of the coil with 
the cortical culture mounted under 0.63× magnification.  (d) A simulated 2D B1 
field distribution at y = 0.2 mm in the x-z plane. .............................................. 123	
  

Figure 5.2. MR pulse sequences and signals. Diagrams of the two pulse sequences: 
(a) CPMG and (b) diffusion editing SE with CPMG detection.  (c) MR spatial 
localization of the culture. (d) The diffusion-weighted MR signal of ACSF 
(green) and the culture (blue), in which the continuous curves are the fitting 
results with models. (e) One example of the CPMG signal of the culture, in 
which the continuous red curves are the fitting result with a single-exponential 
function. The subplot in the middle is the enlargement of the dashed red box. 127	
  

Figure 5.3. Spontaneous neuronal activity in the organotypic culture. (a) Fluorescence 
image of the organotypic cortical culture (2 coronal slices co-cultured) and the 
position of seven different ROIs. (b) The raw calcium traces of each ROI in a 
100-second time window. (c) The zoomed version of the dashed box in (b). (d) 
The decay curves after each event and their fittings with single- and bi-
exponential functions. (e) Example of the deconvolution algorithm on the 
calcium signals. ................................................................................................. 135	
  

Figure 5.4. Stability of the MR and fluorescence signal. Simultaneous MR (bottom, 
three MR parameters) and calcium fluorescence (top) recording from one culture 



 xiii 

for ~1.5 hr. The first and last 100 s were expanded and are shown on the left and 
right sides of the central panel. Visual inspection does not reveal any 
correlations between the two. ............................................................................ 137	
  

Figure 5.5. Two types of statistical methods for analysis of the potential effects of 
neuronal activity on the MR signal. Schematic diagram of the analysis methods: 
Type 1 (a) and Type 2 (b). For Type 1, bar plots of the deconvoluted 
fluorescence signal and boxplots of statistical results of the paired-comparison 
MR in the active and resting state at time window T = 1.0 s, 0.6 s, and 0.2 s are 
shown in (c) and (e). For Type 2, bar plots of the deconvoluted fluorescence 
signal and boxplots of statistical results of the paired-comparison MR in the 
entire active (4-second time window) and resting states are shown in (d). The 
time profiles of the group results for Type 2 analysis are shown in (f), where the 
narrow gray curves are the averaged result from each culture, and the broad 
black line is the average of the 14 cultures. ...................................................... 139	
  

Figure 5.6. Fluorescence staining of rat brain slices with three antibodies labeled 
astrocytes, neurons, and microglial cells.  (a) Acute brain slice from 8-day-old 
rat. (b-d) Organotypic cortical culture at different imaging depths (b, top layer; c, 
10 µm deep; d, 20 µm deep). ............................................................................. 142	
  

 

Figure 6.1. (a) The intracellular calcium fluorescence signal integrated over the entire 
neuronal population (top) and the slow diffusion component derived from the 
modeling diffusion MR signal (bottom).  Red solid line: sliding data average (6 
data points each). The two black arrows indicate the start of the 100-µM kainate 
perfusion (left) and the washout with ACSF (right). (b) Top: Large-field image 
of an organotypic cortex culture (two cortex slices positioned close to each 
other) stained with Oregon-Green BAPTA-1 (OGB-1) under fluorescence 
illumination with indicated position of the RF coil; Bottom: image of 
fluorescence changes with respect to the baseline under normal neuronal activity 
and kainate–induced prolonged depolarization. (c) The averaged diffusion MR 
signals in (a) during three phases: pre-kainate normal neuronal activity, kainate 
perfusion, and washout. Continuous curves are obtained from model fits. (d, e) 
The statistical results (n = 6) of the normalized diffusion MR signals (d) and the 
normalized slow diffusion component fraction (e) during three phases: normal 
activity, kainate perfusion, and washout.   In both (d) and (e), the results were 
normalized with the results from the pre-kainate normal activity.    * p < 0.05 
with Student’s t-Test for MR results. ................................................................ 158	
  

Figure 6.2. (a) The population of the intracellular calcium fluorescence signal in 
response to 10 min of kainate perfusion at three concentrations: 100 µM (top), 
10 µM (middle) and 1 µM (bottom). The two black arrows are the start of the 
kainate perfusion (left) and washout with ACSF (right), respectively. (b) The 
changes in the fluorescence baseline (left) and the normalized changes in the 
diffusion MR signals (the average of MR signals at b = 1800 and 2400 s/mm2, 
middle) and the slow diffusion component fraction (right) under kainate 
perfusion with various kainate concentrations.  * p < 0.05 with Student’s t-Test 
for MR signals. .................................................................................................. 160	
  



 xiv 

Figure 6.3. (a) An example of the population of the intracellular calcium fluorescence 
signal (top) and the slow diffusion component derived from modeling the 
diffusion MR signal (bottom) in response to a 10-min perfusion of 30 mM KCl 
in ACSF. Red continuous curve: sliding data average (6 data points each).  The 
two black arrows indicate the start of drug perfusion (left) and washout with 
normal ACSF (right), respectively. (b) The changes in the fluorescence baseline 
(left) and the normalized changes in the diffusion MR signals (the average of 
MR signals at b =1800 and 2400 s/mm2, middle) and the slow diffusion 
component fraction (right) under perfusion of the ACSF with 30 mM KCl and 
washout with normal ACSF. * p < 0.05 with Student’s t-Test for MR signals. 161	
  

Figure 6.4. (a) Calcium fluorescence signal in response to 10-min PTX perfusion 
studies with two different concentrations: 5 µM (top) and 50 µM (bottom). The 
two black arrows are the starting times of the PTX perfusion (left) and washout 
with ACSF (right). (b) The changes in the fluorescence baseline (left), the 
normalized changes in the diffusion MR signals (the average of MR signals at b 
=1800 and 2400 s/mm2, middle), and the slow diffusion component fraction 
(right) during PTX perfusion with various PTX concentrations. * p< 0.05 with 
Student’s t-Test for MR signals. ....................................................................... 163	
  

Figure 6.5. (a) An example of the population of the intracellular calcium fluorescence 
signal (top) and the slow diffusion component derived from modeling the 
diffusion MR signal (bottom) in response to a 10-min perfusion of 0.2 µM TTX 
in ACSF. Red continuous curve: sliding data average (6 data points each).  The 
two black arrows indicate the start of the drug perfusion (left) and washout with 
normal ACSF (right), respectively. (b,c) The change in the number of neuronal 
firing events per minute (b), the slow diffusion component fraction and the 
diffusion MR signals (the average of MR signals at b=1800 and 2400 s/mm2) (c) 
under perfusion of ACSF with 0.2 µM TTX and washout with normal ACSF. 164	
  

Figure 6.6. Two statistical methods were used to analyze the potential effects of 
neuronal activity on the MR signals.  (a, b) Schematic diagram of the analysis 
methods: (a) Type 1 and (b) Type 2. (c) The Boxplots of statistical results of the 
changes in the active state with respect to the resting diffusion MR signals at 
time windows 0.1 s, 0.5 s, and 1.0 s. For display purposes some outliers were not 
plotted. (d) The time profiles of the potential effects of neuronal activity on 
diffusion MR signals and their corresponding p-values with student’s t-Test. The 
black line is the mean, and the light shadow is the mean standard error in (d), 
top. ..................................................................................................................... 167	
  

Figure 6.7. (a) The normalized changes in the diffusion-weighted MR signals (the 
average of the MR signals at b =1800 and 2400 s/mm2, left) and the slow 
diffusion coefficients (right) in the +80 mOsm  and -80 mOsm. (b) The 
normalized changes in the diffusion-weighted MR signals (the average of the 
MR signals at b =1800 and 2400 s/mm2, left) and the slow diffusion coefficients 
(right) in the 100 µM kainate application with normal normal ACSF and +80 
mOsm.  * p < 0.05 with Student’s t-Test. .......................................................... 169	
  

Figure 6.8. (a) The calcium fluorescence signal and  (b) the normalized changes in the 
diffusion-weighted MR signals (the average of the MR signals at b =1800 and 
2400 s/mm2, left) and the slow diffusion coefficients (right) in the response of 



 xv 

the osmotic pressure modulation. * p < 0.05 with Student’s t-Test for MR results.
 ........................................................................................................................... 170	
  

Figure 6.9. (a) The calcium fluorescence signal and  (b) the normalized changes in the 
diffusion-weighted MR signals (the average of the MR signals at b =1800 and 
2400 s/mm2, left) and the slow diffusion coefficients (right) in the response to 
the perfusion of kainate 100 µM under +80 mOsm and normal ACSF. * p < 0.05 
with Student’s t-Test for MR results. ................................................................ 171	
  

Figure 6.10. (a,b) The calcium fluorescence signal (top) and the diffusion MR signal 
at b = 1800 s/mm2 in the response of OGD (a) and the normal ACSF (b, control).  
In the lower section of panels (a) and (b), the red continuous curves are the 
average of the data with a step of 6 data points. The three black arrows in (a) 
indicate for the starting time of the faster OGD perfusion, normal OGD 
perfusion and washout with normal ACSF, respectly. (c) The changes in the 
diffusion MR signals at various b values and various time points in the OGD 
model. (d) The changes in ADC at various time points in the OGD model. * p < 
0.05 with Student’s t-Test for MR results. ........................................................ 178	
  



 
 

1 
 

Chapter 1: Emergence of new functional magnetic resonance 

imaging (fMRI) methods in the study of neuronal activity 

This chapter provides a brief review of the pros and cons of the currently 

available noninvasive functional neuroimaging methods for the study of neuronal 

activity and introduces the motivation for this thesis project—to promote the use of 

magnetic resonance imaging (MRI) techniques for a more direct and accurate 

detection of neuronal activity. Some information on the physical background of MRI 

and its relation to water dynamics in tissue is also included to help readers understand 

MRI signal sources.  The chapter is organized as follows: first, the importance of 

noninvasive neuroimaging of neuronal activity is introduced and the available 

methods, including electromagnetic-based electroencephalography (EEG) and 

magnetoencephalography (MEG), and hemodynamic-based optical imaging, positron 

emission tomography (PET) and functional MRI (fMRI), are briefly reviewed. Next, 

the basis of the signal sources for MRI and fMRI and the limitations of the current 

fMRI methods are briefly discussed. Then, the newly proposed fMRI methods for 

detecting neuronal activity more directly are reviewed and the strengths and 

limitations discussed.  Finally, the motivations of this project—the need for “ground 

truth” experiments for testing and validating direct fMRI and the prerequisites 

necessary for future fMRI contrast design—are discussed.  
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1.1 Noninvasive neuroimaging of neuronal activity  

1.1.1 Importance of large-scale noninvasive imaging of neuronal activity  

With nearly 100 billion neurons, tenfold more glial cells, and an estimated 100 

trillion connections, the workings of the human brain remains one of the greatest 

challenges in science and medicine [1].   Brain disorders, including Alzheimer’s 

disease, Parkinson’s disease, stroke, autism, depression, schizophrenia, traumatic 

brain injury, etc., are major causes of death and disability worldwide, placing a 

tremendous load on those suffering from these diseases and their families [2–4]. 

However, the cellular and pathological causes of these diseases are still poorly 

understood because of the complexity of the brain and our incomplete knowledge of 

its structure and function as well as the limited experimental tools and theoretical 

basis currently available to study the brain. Thus, developing new and efficient tools 

and techniques is essential for improving our understanding of the brain.  

Neuronal excitation and transmission are the basis of information processing in 

the brain [5,6]. The study of neuronal activity can be traced back to 1780, when Luigi 

Galvani discovered that an electrical spark applied to an exposed nerve in a dead frog 

could cause its leg to twitch [7]. After more than two centuries of development of 

both the technology used to study the neural system and our understanding of the 

neural system, modern tools are now available to record or image  neuronal activity in 

multiple spatial and temporal scales. At the cellular and subcellular levels, 

electrophysiology, whose tools include intracellular electrodes, extracellular single or 

multiple electrodes, and whole-cell patch recording, is a well-established discipline 

for studying the electrical properties of neuronal activity [1,6,8]. Since the discovery 
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of the green fluorescent protein (GFP) in the 1960s [9], a large number of new 

fluorescence proteins and related optical microscopy techniques have been developed 

to enable neuroscientists to study neuronal activity at multiple scales, e.g., ion 

channels, neurotransmitters, action potential generation and propagation, circuits and 

networks, etc. [10]. 

To study brain function at the level of large groups of neurons and networks, 

there are also several methods available for large-scale, noninvasive functional 

neuroimaging, which include electroencephalography (EEG), 

magnetoencephalography (MEG), optical imaging, positron emission tomography 

(PET), and functional MRI (fMRI) [11,12]. These techniques allow us to determine 

which brain regions are active during some stimuli or tasks, such as visual 

stimulation, electrical shock, finger movement, memory, etc.; this information is used 

widely in studies in the behavioral and cognitive neurosciences. However, all the 

methods mentioned above either have a spatial resolution of several millimeters or a 

temporal resolution of several seconds, and their representation of neuronal activity is 

indirect. Clearly, the methods for large-scale functional neuroimaging currently 

available cannot directly detect fine-scale neuronal activity or the precise time and the 

exact location of this activity within the brain [6,13–15].   

Understanding the acute need to improve the understanding of brain function in 

time and space, the Brain Research through Advancing Innovative Neurotechnologies 

(BRAIN) Initiative (http://braininitiative.nih.gov/) was launched with the goal of 

advancing neuroimaging techniques that enable the measurement of brain function at 

multiple spatial and temporal scales. One important goal of this project is to promote 
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the invention of the next generation of large-scale brain imaging tools to detect 

neuronal activity more directly and accurately at both higher spatial scales and higher 

temporal resolution.  

In this and the following sections, the currently available methods for large-

scale, noninvasive functional brain imaging will be reviewed and their pros and cons 

discussed. Next, we will focus on fMRI, new developments in contrast design, and 

areas in which work is still required.  

1.1.2 Electroencephalography (EEG) and magnetoencephalography (MEG) 

EEG and MEG are two methods to record electrical and magnetic field 

fluctuations in the brain from the scalp; the sources of these fluctuations can be 

tracked back to electrical currents related to neuronal activity. There were two 

landmarks for the development of EEG: in 1875 the first animal EEG experiment was 

reported by an English physiologist Richard Caton [16], and in 1924, a German 

physiologist and psychiatrist, Hans Berger, performed the first EEG experiment on a 

human [17].  MEG was developed almost 100 years after EEG: in 1968, the first 

MEG experiments were reported by an American physicist, David Cohen [18]. Now 

both EEG and MEG have important clinical uses, such as detecting and localizing 

epileptic focal regions in the brain [14]. 

Electrical activity is an important part of neuronal activity and signal processing 

in the brain. After the neurotransmitter release and uptake in the synapse, 

postsynaptic action potentials and currents are generated and pass along dendrites and 

axons. When cells are activated in unison and the currents created are parallel, the 

combined current can be viewed as a single current dipole, which generates a 
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magnetic field detectable by the MEG outside the scalp [13,19]. The MEG signal 

mainly comes from the dendritic currents because the synaptic and terminal currents 

are randomly orientated to each other and their related magnetic fields cancel each 

other out [13,14,18,19]. As for the axonal currents, they generally move quickly, and 

it would, therefore, be very unlikely to have a sufficient number of synchronized 

axons to generate a detectable magnetic field [13,14,18,19].    

Along with the intracellular currents mentioned above, extracellular currents 

flow in the opposite direction of the intracellular currents [14].  Together with 

transmembrane ionic and displacement electrical currents, they form a complete 

current pathway [14]. The extracellular currents spread out from their source, and 

some large-amplitude, synchronized currents might propagate to the scalp with 

enough amplitude to be picked up by the electrodes on the surface, which are the 

main signal sources of EEG [14,20,21]. It has been reported that glial cells may also 

contribute to the EEG signal as a secondary effect of neuronal activity, i.e., the 

increased extracellular potassium concentration caused by neuronal activity will 

increase intracellular and extracellular current by depolarization local cell membrane 

and creating local potential gradient across the membrane [14,20]. 

Although their spatial resolution is low, the main advantage of both EEG and 

MEG is their high temporal resolution, which can be faster than 1 millisecond. This 

makes them valuable for the study of fast neuronal events, which other available 

functional neuroimaging methods cannot capture [13,14,19,20]. Another advantage of 

both EEG and MEG is their ability to measure directly the electric output of neuronal 

activity rather than an indirect effect, such as the hemodynamic effects detected by 
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fMRI and PET [13–15,22]. The main disadvantage of both EEG and MEG is their 

poor spatial resolution, which is caused by the small amplitude of the neural current 

source, sensitivity of the detectors, and more importantly, the tendency for electric 

and magnetic fields to spread from their sources. These result in an ill-posed inverse 

problem for accurately localizing the signal sources [13,14,19,20,22,23]. Another 

limitation of both methods is the requirement of the signal sources to be highly 

synchronized and at a location close to the scalp (the signal decays as the distance 

from the source increases because of tissue conduction and the Biot-Savart law), 

which restricts their application in studying other types (nonsynchronized) of 

neuronal activity and brain function in deep brain regions [19,20,22,24]. 

1.1.3 Functional near-infrared spectroscopy (fNIR) 

Functional near-infrared spectroscopy (fNIR) is a noninvasive brain imaging 

method based on the changes in the light–tissue interactions along the hemodynamic 

responses associated with neuronal activity [25]. The first in vivo near-infrared 

spectroscopy dates back to 1977 when Jöbsis proposed using it to monitor tissue 

oxygenation. The potential for use in detecting neuronal activity and brain function 

was first realized in the early 1990s when it was observed that the change in the 

oxygen level in blood flow caused by neuronal activity could be captured by near-

infrared spectroscopy [26–29]. 

Neuronal activity involves many physiological processes, such as opening and 

closing of channels, diffusion and pumping of ions, sending of electrical signals, etc.; 

most of these activities consume energy and increase the metabolism’s consumption 

and use of oxygen from the local capillary bed [15,30]. As consequences of the 
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neurovascular coupling, both the local cerebral blood flow and volume will increase 

as the amount of oxygenated hemoglobin increases to replace the deoxygenated 

hemoglobin [15,30]. The changes in the concentrations of the deoxygenated and 

oxygenated hemoglobin are the main signal sources for fNIR [25,30], which will be 

discussed below. 

The interaction between light and biological tissue is complex and a popular 

research topic at present; current research involves light absorption, light scattering, 

fluorescence, etc. [31,32]. fNIR mainly makes use of the light absorption properties in 

tissue: light intensity attenuates as it is absorbed by molecules (water, lipid, protein, 

etc.) as it propagates inside the tissue [32,33]. The attenuation A of a light before (I0) 

and after (I) it passes a volume of tissue is given by the Lambert–Beer law:  

𝐴 = ln !!
!
=   𝜇! ∙ 𝐿 =    𝜀! ∙ 𝑐! ∙ 𝐿!      (1.1) 

where 𝜇!  is the bulk absorption coefficient, which is the product of the molar 

attenuation coefficient (𝜀!) and the molar concentration (𝑐!) of all the absorbers, and L 

is the optical path length, which is a function of the geometric length, scattering 

coefficient and absorption coefficient [34,35]. 𝜀! for each molecule in the tissue is a 

function of the light wavelength [31,32].  In the near-infrared spectrum (700−1000 

nm), water has a rather small molar attenuation coefficient while the hemoglobin 

absorbs a lot of light in this spectrum [27,34,35]. Inside the narrow spectral window 

of NIR, the oxygenated hemoglobin has a higher molar attenuation coefficient > ~810 

nm, but a smaller value < ~810 nm, than deoxygenated hemoglobin [32,33]. 

According to Eq. 1.1, the relative concentration of the oxygenated and deoxygenated 
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hemoglobin can be estimated quantitatively with several absorption measurements at 

different wavelengths [27,29,30,33]. 

Compared with other methods for noninvasive functional brain imaging, fNIR 

has not shown many advantages in either temporal or spatial resolution [30]. The 

signal source of fNIR—the increased concentration of the oxygenated hemoglobin—

has a delay of several seconds with respect to the neuronal activity and limits the 

temporal resolution of fNIR [22,30]. The spatial resolution of fNIR (in most cases no 

better than 5–10 mm) is limited by light scattering inside the tissue along the long 

pathway from the light source inside the brain to the detectors on the scalp [22,30,35]. 

Additionally, penetration is a problem for fNIR, as for most optical imaging methods, 

as the maximum detectable depth in the cortex is only 2−4 mm [22,30,35]. The main 

advantages of fNIR are its portability, low demand in terms of equipment, relative 

simplicity, and low cost [22,25,30,35]. 

1.1.4 Positron emission tomography (PET)  

Positron emission tomography (PET) detects pairs of gamma rays emitted 

indirectly by the injected positron-emitting radionuclides (tracers), which are 

typically isotopes of an unstable nucleus, such as 11C, 13N, 15O, 18F, etc. [36]. Because 

there are not enough natural radionuclides in animals and humans to perform PET, 

radionuclides have to be produced in the cyclotron and then incorporated into 

molecules normally found in the body, such as water, glucose, ammonia, etc., or a 

specific molecule designed with biocompatibility [22,37,38].  The radioactive nuclide 

starts decaying and emitting positrons as soon as it is created; then the positron 

rapidly diffuses and collides with the electrons in the tissue until it is annihilated by 
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one of them [36,39,40]. This annihilation generates two 511-keV gamma rays in 

almost completely opposite directions; they are captured by an array of scintillation 

photoelectric detectors and provide the signal sources for reconstructing the 3D PET 

tomography [36,39,40]. 

PET was first used as a method for noninvasive functional brain imaging in the 

early 1980s by an 18F tracer incorporated into glucose. This metabolic tracer, 2-[18F] 

fluoro-2-deoxy-D-glucose ([18F]FDG), accumulates in the brain region in which the 

most neuronal activity is occurring (see more discussion on this topic in Section 

1.1.3) [41–43]. PET can also be used to detect neuronal activity indirectly by 

monitoring increased blood flow; this method involves the use of a short half-life 

tracer [15O]water [44]. [15O]water is freely diffusible in tissue, can pass the blood 

barrier, and has a half-life time of ~2 min. By estimation with tracer kinetic models, 

the blood flow can be mapped quantitatively in the brain [22].  In addition, PET can 

be used to study a neuroreceptor with a radiotracer that is designed to be the ligand to 

a specific subtype of this neuroreceptor [45,46].   

The main advantage of using PET is the flexibility this method allows in 

designing the radiotracers, As a result PET is quite useful in mapping the 

neurotransmitter system and some brain diseases, such as epilepsy, dementia, stroke, 

tumors, etc. [36,38,39]. As for the real-time mapping of neuronal activity, PET is 

limited in both spatial and temporal resolution. In terms of spatial resolution, before 

annihilation, the positron must diffuse away from the source to collide with electrons 

in the tissue. Because this displacement is random and can be up to a millimeter or 

more, there is a natural limitation on the spatial resolution that can be achieved with 
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PET [22,40]. As for the temporal resolution, both the two methods currently used—

glucose and blood flow mapping—are both indirectly related to neuronal activity. As 

discussed in Section 1.1.3, the delay of the hemodynamic response limits any further 

improvement of this method in terms of temporal resolution [22,40]. In addition, the 

long half-life time of the current radiotracer (the minimum is approximately several 

tens of seconds) also makes it difficult to track a single event of neuronal activity, 

which occurs on the sub-second scale, with this technique [47]. 

1.2 Functional magnetic resonance imaging 

Functional MRI (fMRI) is another type of large-scale, noninvasive brain 

mapping methods that is currently the most widely used functional neuroimaging 

method in cognitive neuroscience [12]. In this section, first, the physical basics of 

nuclear magnetic resonance (NMR) are introduced. Following this, magnetic 

resonance (MR) contrast in tissue and its relation to water dynamics are briefly 

discussed. Finally, the biophysical signal sources of fMRI and its advantages and 

limits are discussed.  

1.2.1 Basics of magnetic resonance 

MR is a quantum phenomenon that occurs when a nucleus with net spin is left 

in the magnetic field. All nuclei with an odd number of either protons or neutrons, 

such as 1H, 13C, 15N, etc., have a net spin, which is characterized by the nonzero spin 

quantum number I. Spin is also a form of angular momentum 𝑆, which is an intrinsic 

property of the particle itself. The total angular momentum of a nuclear spin is 

𝑆 = ℎ 𝐼  (𝐼 + 1)/2𝜋, where h is the Planck constant. The projection of the angular 
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momentum in the z direction has two possible states Iz: +ℎ/4𝜋 and −ℎ/4𝜋 for the 

nuclei in 1H with spin number I = ½. In this study, only the 1H on the water molecules 

is used and studied, and the spin will stand for the nucleus of 1H if no specific 

notation is provided. Each spin can be treated as a magnetic dipole, and its magnetic 

moment 𝜇 is proportional to its spin angular moment, ℎ𝐼/2𝜋, by the gyromagnetic 

ratio, γ: 

𝜇 =   𝛾ℎ𝐼/2𝜋      (1.2) 

If an external magnetic field 𝐵! is applied, the magnetic energy of the magnetic 

dipole at each quantum state Iz will be: 

𝐸 =   −𝜇    ∙ 𝐵! =   −
!!!  ∙  !!
!!

 = - 𝛾𝐼!𝐵!   (1.3) 

The energy difference between the two quantum states is: 

∆𝐸 =   - 𝛾∆𝐼!𝐵! =   𝛾ℎ𝐵!/2𝜋    (1.4) 

In nuclear magnetic resonance (NMR), a group of spins rather than a single 

spin is studied. To move from a single spin to a group of spins, quantum statistics are 

required [48].  The half-spin protons in 1H are ferminos, and the number of spins in 

the each quantum state follows the Boltzmann distribution. The number of spins in 

+ℎ/4𝜋 and −ℎ/4𝜋  are: 

𝑁! = 𝑁 !

!!!!
∆!
!"

𝑁! = 𝑁 !!
∆!
!"

!!!!
∆!
!"

     (1.5) 

where N is the total number of spins, k is the Boltzmann constant and T is 

temperature. Thus the total magnetic momentum 𝑀 (parallel to 𝐵! direction) is: 
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𝑀 = 𝑁! − 𝑁! 𝜇 = 𝑁 !!!!
∆!
!"

!!!!
∆!
!"
∙ !!
!!
    (1.6) 

In current magnetic field strength of NMR (<= 21.1 T) and near room temperature, 

Eq. 1.6 can be simplified to: 

 𝑀 = 𝑁 ∆!
!!"

∙ !!
!!
= 𝑁 !!

!!

! !!
!"

   (1.7) 

with the approximation 𝑒!
∆!
!" ≈ 1− ∆!

!"
. 

At a macroscopic level, according to Eq. 1.7, a bulk magnetization parallel to 

the applied magnetic field is generated at equilibrium whose magnitude is linearly 

proportional to the magnetic field strength and the number of spins. This bulk 

magnetization is the signal source of all magnetic resonance systems. To detect this 

magnetization, an electromagnetic wave of the same energy as the energy difference 

between the two quantum states must be applied to perturb the equilibrium state. The 

frequency of this excitation electromagnetic wave (𝐵!) is characterized by the Larmor 

frequency or resonant frequency based on Eq. 1.4: 

𝜔! =   𝛾𝐵!     (1.8)  

In classical description, the evolution of the bulk magnetization can be 

described by the Bloch equations [49]: 

!!!
!"

=   𝛾 𝑀×𝐵
!
− !!

!!
!!!
!"

=   𝛾 𝑀×𝐵 ! −
!!
!!

!!!
!"

=   𝛾 𝑀×𝐵
!
− !!!!!

!!

   (1.9) 

where 𝐵 is the total applied magnetic field applied equal to 𝐵! + 𝐵! when excitation 

is on and 𝐵! when excitation is off, T1 and T2 are the spin–lattice (longitudinal) and 

the spin–spin (transverse) relaxation times, and M0 is the equilibrium magnetization 
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under the main magnetic field 𝐵!.  In general, after excitation, the magnetization 

parallel to the main magnetic field 𝐵! will recover to M0, while the magnetization 

perpendicular to 𝐵! will decay to 0. These relaxation processes are determined by the 

two relaxation times, T1 and T2; their mechanisms and relation to water dynamics are 

discussed in the next section. 

1.2.2 Water rotational motion and NMR relaxation times 

Nuclear spin relaxation is caused by the fluctuations of the local magnetic field 

due to molecular rotation. The proton on the water molecules experiences an 

intramolecular dipole−dipole interaction with the proton on the same water molecule 

and an intermolecular dipole−dipole interaction with the proton on the neighboring 

water molecules or other types of molecules; these interactions induce the local 

magnetic field to fluctuate as the water molecule rotates.  The intensity of the local 

magnetic field fluctuations can be described as a spectrum of frequency (w) as J(w): 

𝐽 𝑤 =    !!
!!!!!!!

     (1.10) 

where 𝜏! is the water molecule’s rotational correction time, which is the average time 

for a water molecule to rotate 1 radian and is approximately around 10-12 seconds for 

the free water at room temperature [48].  

The relation between the relaxation times and the water rotational correlation 

time was given by the Bloembergen-Purcell-Pound (BPP) theory, which was 

developed in 1948 to explain the relaxation phenomenon in a pure substance [50]. 

According to the BPP theory, the spin–lattice relaxation time (T1) and spin–spin 

relaxation time (T2) are described as: 
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!
!!
= 𝐾 𝐽 𝑤! + 4𝐽 2𝑤!

!
!!
= !

!
3𝐽 0 + 5𝐽 𝑤! + 2𝐽 2𝑤!

   (1.11) 

where w0 is the resonance frequency of the main magnetic field B0, and K is a constant 

determined by the distance between the two interacting nuclei. In general, T1 

characterizes the dipole−dipole interaction between the excited spins with its 

neighboring nuclei or other entities, in which excited spins lose their energy and 

recover back to their equilibrium state by stimulation of single- and double-quantum 

transitions. T2 characterizes the dipole−dipole interaction between excited spins, 

which causes the excited spins to lose their coherence and involves all the three types 

of transitions: zero-, single- and double-quantum transitions.  From Eq. 1.10 and Eq. 

1.11, the two relaxation times are mainly determined by the molecule’s rotational 

correlation time, and a decrease of the two relaxation times is expected as the 

molecule’s rotational correlation time increases in the tissue [48]. 

T1 and T2 are very large values (~ seconds) for pure water [48]. However, these 

relaxation times measured in the tissue are much shorter than those measured in pure 

water [51]. This phenomenon is mainly caused by the interaction between water and 

other macromolecules, such as proteins, lipids, etc., which have a larger molecular 

mass and rotate at a much slower rate. The tumbling rate of the water located close to 

these macromolecules is reduced due to the water’s interaction with the 

macromolecules. This “slow” water is called “bound water”; bound water relaxation 

times can be several milliseconds or less [48,52]. These bound water molecules can 

further affect the other water molecules by chemical exchange or translational 

exchange. 
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Biological tissue is highly heterogeneous, containing different types of cells, 

extracellular matrices, vasculature, etc.  At the molecular level, there are a lot of 

macromolecules with a slow tumbling rate that are surrounded by water molecules, 

such as proteins, carbohydrates, RNA, lipids, etc. Thus, different chemical 

environments exist for water molecules, and these molecules may have different 

relaxation times. Indeed, different water relaxation compartments have been found in 

biological tissue. For example, the water trapped between the lipid membranes in the 

myelin sheath of the axons in the brain is shown to have much shorter relaxation 

times than intracellular and extracellular water. As a result it has been possible to use 

these shorter relaxation times to quantitatively map the myelin water content inside 

the brain [53]. Additionally, the water in different environments/compartments can 

undergo chemical exchange, diffusion, active motion, etc. [54,55]. Water relaxation 

as it relates to compartments and exchange is an area of MRI research that is 

currently receiving a great deal of attention [56–58] and which will be further 

discussed in the following sections.  

1.2.3 Water translational motion and self-diffusion  

At a microscopic view, particles in the liquid or gas state at above-zero 

temperatures are always moving randomly as a result of their rapid collisions with 

neighboring particles or molecules; this phenomenon is known as Brownian motion. 

Brownian motion was first discovered by a Scottish botanist, Robert Brown, in 1828 

as he observed the motion of pollen grains in water under a microscope. Later in 

1905, Albert Einstein provided a mathematical formulation to describe Brownian 

motion based on the statistical interpretation of microscopic motion [59]. There are 
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two parts to his theory. In the first part, Einstein described the displacement of the 

particles under Brownian motion by a parameter known as diffusion coefficient D 

with the following equation: 

𝑥! = 2𝐷𝑡     (1.12) 

where 𝑥!  is the mean square displacement of the particle in one dimension during 

the diffusion time t. In the second part of his theory, he related the diffusion 

coefficient D to the physical properties of the particle. In combination with Strokes’ 

law, the diffusion coefficient D can be described using the Stokes–Einstein equation 

[60]:  

𝐷 =    !"
!!"#

     (1.13) 

where η is the dynamic viscosity, and R is the radius of the particle (assuming it is a 

sphere). From the Stokes−Einstein equation, it can be determined that, in a pure liquid 

or gas, the diffusivity of the particle is determined mainly by the size of the particle 

and the local viscosity.   

Within the MR, it is possible to quantitatively measure the water diffusion 

coefficient based on the loss of coherence of the spins during the diffusion process in 

the presence of an applied external magnetic field gradient. Generally, a pair of 

identical magnetic field gradients with opposing directions is applied to measure the 

water’s self-diffusion quantitatively. In the period of the first gradient, the spins in 

different locations experience different Larmor frequencies (Δf) and have different 

phases (Δϕ = Δf  * gradient duration) because the main magnetic field, B0, is 
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modulated by the presence of a magnetic field gradient. If the spins stayed at the same 

position without diffusion, the application of the second gradient with the opposite 

direction would cancel out the phase shift of each spin caused by the first gradient, 

and this gradient pair would have no effect on the MR magnetization. In reality, the 

particles are constantly diffusing; this movement causes a loss of phase coherence of 

the spins and attenuates the amplitude of the MR signal further. The MR signal 

attenuation caused by the gradient pair is commonly described by diffusion 

weighting, known as b-values: 

𝑆 𝑏 =   𝑆!exp  (−𝑏𝐷)    (1.14) 

where S0 and S(b) are the signals without and with the presence of the paired 

gradients and b is the diffusion weighting caused by the paired gradients. The b-

values are determined by the strength and timing of the gradients and other 

characteristics of the MR pulse sequences (for more information see [61]).  

The apparent diffusion coefficient (ADC) of water measured in tissue is two to 

ten times smaller than that measured in an aqueous water solution [62]. This “slowed-

down” diffusion might be caused by several phenomena. First, the hydrodynamic 

interaction between water and other macromolecules (e.g., proteins, lipids, 

carbohydrate, etc.) with a much slower diffusivity reduces the diffusivity of the water 

in proximity to them [63]. Second, the presence of some diffusion obstructions (e.g., 

cell membranes, large macromolecules) can also produce a tortuosity effect on the 

water diffusion pathway, i.e., water has to diffuse along a longer diffusion pathway to 

move around the obstructions [64]. In addition, the lipid membrane might restrict the 
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water diffusion inside the cells, by a process known as the restriction effect [65].   

For biological tissue, it has been found that Eq. 1.14 is not valid when b is 

acquired in multiple directions or in higher values. For multidirectional b, anisotropic 

properties of water diffusion, D, have been found in tissue, especially in white matter 

where water is more restricted perpendicular to the axon than parallel to it [65]. This 

phenomenon has been widely used for in vivo fiber tractography, an application of 

diffusion tensor imaging (DTI), although the underlying biophysical mechanisms 

between tissue microstructure and the diffusion signal are not entirely clear [65,66].   

At higher b values, the diffusion attenuation cannot be described by a single 

exponential function such as Eq. 1.14. Rather, it was found that expanding Eq. 1.14 

from a single-component to a multicomponent diffusion model fit the diffusion 

attenuation signals tissue very well, both in vitro and in vivo [62,67–70]. However, 

the underlying biophysical explanation of this multicomponent diffusion is poorly 

understood and under study; this type of diffusion might be the result of physical 

compartments (e.g., intracellular and extracellular) inside the tissue, of bound water 

close to macromolecules and cell membranes, of the heterogeneity of the tissue, or of 

some other unknown reason. It has also been reported that the water exchange among 

different water environments can play a role in the water diffusion signal [71–73]. 

1.2.4 Functional MRI contrast–hemodynamics  

The discovery of an MRI application for detecting brain function can be tracked 

back to Ogawa and colleagues in 1990 [74–76]. In their studies, anesthetized rodents 

were scanned in a high-field MRI scanner (7T) with a gradient echo sequence. The 

gradient echo MRI is a relaxation-time-weighted image that is based on T2
*, which is 
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a combination of the transverse relaxation time, T2, and the local magnetic field 

inhomogeneity, ΔB0: 

!
!!∗
=    !

!!
+   𝛼𝛥𝐵!   (1.15) 

where α is positive constant. An interesting finding in their studies is that some brain 

regions containing blood vessels became darker in the T2
*-weighted MRI images as 

the blood oxygen level was reduced. After a series of in vivo and in vitro studies, they 

concluded that the main cause of this change is the change in the relative 

concentration of the oxygenated and deoxygenated hemoglobin. The authors 

hypothesized that this blood-oxygen-dependent (BOLD) MRI could be used to detect 

brain activity through neurovascular coupling (as discussed in Sections 1.1.3 and 

1.1.4). 

Oxygenation changes the magnetic properties of hemoglobin: oxygenated 

hemoglobin is diamagnetic as is water, but deoxygenated hemoglobin is 

paramagnetic. Paramagnetic deoxygenated hemoglobin creates a local magnetic field 

gradient in blood vessels and their surrounding tissue, which reduces the local T2
*  

(Eq. 1.15) and T2
*-weighted signals at the region of high-concentration of 

deoxygenated hemoglobin. During neuronal activity, more oxygenated hemoglobin 

replaces the deoxygenated hemoglobin; this change reduces the local magnetic field 

inhomogeneity and increases the local T2
* and T2

*-weighted signals in the active 

regions in the brain. As a result of this mechanism, BOLD fMRI was successfully 

used in human brain function studies in 1992 [77–79], thus further establishing the 

reliability of this functional brain imaging method. Now fMRI is a widely used brain 

imaging tool for the study of brain functions in cognitive neuroscience [15]. 
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1.2.5 Functional MRI limitations 

The major limitation of the current functional MRI comes from the origin of its 

signal: changes in oxygen levels in the blood vessels. The hemodynamic origin of this 

method makes interpretation of the detected fMRI signals and the underlying 

neuronal activity problematic [80]. The relationship between the hemodynamic 

response and the underlying neuronal activity is complex. Experiments suggest that 

there is a nonlinear relationship between the fMRI signal changes and the level of 

neuronal activity [81–83].  For example, a saturation effect was observed in fMRI 

[82–84] indicating that fMRI, as currently used, cannot distinguish between the 

medium and maximum levels of neuronal activity if the fMRI response has saturated 

at the medium level.  Further, the hemodynamic response cannot determine whether 

the underlying neuronal activity is from excitation or inhibition [80,85]. Recent 

studies found that glial activity can also contribute to the BOLD fMRI signal [86]. 

Clearly, this indirect-effect basis makes it challenging to correlate the observed fMRI 

signals to the underlying neuronal activity.  

Moreover, the hemodynamic origin creates a natural limit to the temporal and 

spatial resolution of BOLD fMRI. There is normally a 1−2 second delay between the 

response of the oxygen level change and the start of the neuronal activity and another 

5−10 seconds for the BOLD fMRI signal to reach its maximum level [87,88].  This 

slow hemodynamic response restricts any further improvement of this fMRI method 

(~ seconds) in temporal resolution, though fast MRI methods of several tens of 

milliseconds are already available. For spatial specificity, the vascular supply is 

regulated by a large group of neurons rather than a single neuron, which means that 
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the point spread function of BOLD fMRI is scaled in millimeters rather than 

micrometers [87,89,90]. Thus the maximum spatial resolution of the current BOLD 

fMRI is inferior to that of structural MRI, which at present can achieve a 

submillimeter voxel size.   

1.3 Newly proposed functional MRI methods for direct detection of neuronal activity  

Noninvasive, direct in vivo detection of neuronal activity by imaging with 

high temporal and spatial resolution is one of the major challenges in the 

neurosciences. Progress in this area is required to improve our understanding of brain 

function and, in the clinic, to develop new tools for diagnosing disease states and 

disorders of the brain. As the current fMRI method only indirectly reflects neuronal 

activity, and its hemodynamic origin limits its spatial and temporal resolution, 

physicists have begun looking for other MRI contrast mechanisms to detect intrinsic 

signals directly from neurons. Subsequently, several MRI methods have been 

proposed to provide more direct measures of neuronal activity; they include, but are 

not limited to: (a) functional diffusion MRI to detect water displacement [91–94]; (b) 

phase MRI to detect the changes in the local magnetic field caused by neuronal 

currents [95–97]; (c) Lorenz-force-effect MRI to detect displacements caused by 

neuronal currents [98,99]; (d) proton–density-weighted MRI to detect changes in 

proton pools [100,101]; and (e) spin-lock MR methods to detect oscillating neuronal 

current  [102,103]. In this section, the biophysical signal sources and current stages of 

each method will be briefly reviewed.  
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1.3.1 Detection of the neuronal electromagnetic field  

As discussed in Section 1.1.2 with respect to the EEG and MEG methods, 

electrical signaling is an important part of neuronal activity. Neuronal current occurs 

in most of the processes involved in a complete neuronal communication. After 

receiving the neurotransmitter from the synapses, dendrites generate neuronal current 

and potential and pass this electrical information to the soma. After getting enough 

current from the dendrites, the soma generates an action potential that propagates 

along the axons until they reach the axon terminal where the next synapse process 

starts.  Typically, the neuronal current on a single neuron is on the order of a 

picoampere, and the local magnetic field generated by this current is on the order of 

10-15 T [104], which is too small for any of the noninvasive brain imaging methods to 

detect. In the MEG study, the magnetic field detected on the scalp (2−4 cm from the 

neurons) is on the order of 10-13 to 10-12 T; the signal comes from a large group of 

highly synchronized neurons. In the MRI studies, the voxel size is approximately 2−4 

mm, and an estimation of the magnetic field of the highly synchronized neuronal 

currents is on the order of 10-10 to 10-9 T [96].   

One proposed MRI method for detecting the neuronal current is based on the 

Larmor frequency changes caused by the resulting local magnetic field changes. 

These frequency changes can be measured by the phase of the complex MR signal at 

a given imaging time, known as phase MRI. The first attempt to demonstrate the 

possibility of using MRI techniques to detect electrical current was made by 

Henkelman and his colleagues [105,106]. In their studies, a phase shift caused by the 

injection of two mA electrical current pulses into the forearm of a human subject was 
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picked up by phase MRI [88,105,106]. Later work further demonstrated that the 

current MRI system is capable of detecting the phase shifts on the order of 0.8 ± 0.1 

degrees (1.7 ± 0.3 nT magnetic field changes) [107]. So far, several research groups 

have reported successful experiments using phase MRI to detect neuronal activity in 

vivo [96,108–110]. However, the debate about whether there are sufficient magnetic 

field changes detectable by phase MRI in a voxel containing a population of neurons 

has been ongoing since the method was first proposed. Recently, instances in which 

phase MRI failed to detect the expected neuronal activity in vivo [88,111] have been 

reported, casting further doubts on the reliability of this method. 

In addition to detecting phase shifts, there are other MRI methods designed to 

detect neuronal current indirectly, e.g., using the Lorentz-force. The idea is that 

neurons carrying an electrical current would be displaced in a strong external 

magnetic field experiences by the Lorentz force [88,112]. Several phantom studies 

were performed by Song et al. designed to detect these proposed neural tissue 

displacements [88,112]. They also conducted one in vivo experiment in which 

responses to the electrical stimulation were detected in the median nerve of the 

forearm [98,113]. However, other research groups have cast doubts on the theoretical 

basis of this method and the detectable range of the Lorentz-force effect [99,114]. 

Recently, a new MRI method was developed to detect oscillating neuronal currents 

by matching the frequency of the applied spin lock magnetic field to the specific 

frequency of the oscillating neuronal currents [102,103,115]. In principle, this method 

should overcome the cancelation of the magnetic field that occurs when the currents 

are in opposite directions. However, this method is still in an early stage of 
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development and, to date, only a few demonstrations of the principles in artificial 

systems have been reported [102,103,115].    

1.3.2 Functional diffusion MRI 

Diffusion MRI is a method for measuring the apparent diffusivity of water 

within tissues [116–118]. As water undergoes diffusion in tissue, it samples many 

different local environments (e.g., barriers, macromolecules, cell membranes, etc.); 

this behavior makes diffusion measurement very sensitive to microenvironment 

changes [65]. Diffusion MRI is currently a gold-standard clinical neuroimaging 

method for diagnosing stroke clinically with an increase in diffusion-weighted image 

and a reduction in the ADC map [119,120] 

Recently, diffusion MRI was suggested as a direct functional imaging method 

for detecting neuronal activity [91,121–123]. Early in vivo experiments in both 

humans and animals reported small but significant increases in diffusion-weighted 

MRI signals (in other words, decreases in the ADC of water), which were ascribed to 

changes induced by underlying neuronal activity directly rather than to blood-oxygen-

level changes [91,121–123]. Similar reductions in water diffusivity under the 

conditions of extreme hyperexcitability achieved with strong biochemical stimulants 

were reported from in vitro experiments on brain slices [93,124] and spinal cord [92].  

However, functional diffusion MRI (fDMRI) has not been widely adopted since 

its introduction approximately fifteen years ago mainly because of the dearth of 

convincing experiments establishing a biophysical basis for reported fDMRI changes. 

Recently, negative results have been reported with fDMRI: either the predicted 

changes were undetectable or there were strong hemodynamic contributions believed 
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to explain the observed changes [94,125–127]. Another obstacle in promoting 

diffusion MRI to detect brain function is that the underlying biophysical mechanism 

linking the potential diffusion MR signal changes to neuronal activity is still unclear. 

It was recently proposed that cell swelling during neuronal activity could be one 

cause of the reduction in water diffusivity [62]; however, the experimental evidence 

and biophysical explanation for this hypothesis are lacking. In addition to neuronal 

cell swelling, other physiological processes, such as cell membrane permeability 

changes, active pumping of water, microstreaming, etc., could all contribute to 

changes in the diffusion MRI signals, [71,92,128].  In conclusion, at least two 

problems must be solved before this potentially important direct functional brain 

imaging method can be shown to be viable: (1) conducting convincing experiments 

that directly correlate the diffusion MRI signal changes to the underlying neuronal 

activity and (2) understanding the biophysical mechanisms to connect the water 

diffusion to neuronal activity.  

1.3.3 Proton-density MRI 

Recently, several fMRI research groups realized there might be a proton-

density contribution to the changes in the common BOLD fMRI measurements [129].  

In BOLD fMRI, given the echo time (TE), the image is either T2- or T2
*-weighted: 

𝑆 𝑇𝐸 =   𝑆!exp  (−𝑇𝐸/𝑇!) 

where 𝑆! is the signal intensity, known as proton density, when the relaxation process 

has not started. In BOLD fMRI, one uses a TE of several tens of milliseconds to make 

the observed signal either T2- or T2
*-weighted. In principle, there should be no signal 

changes as TE approaches zero as the T2 or T2
* contribution to observed signal 
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reduces to zero.  However, starting from human spinal cord studies, Stroman and his 

colleagues found that there is also a signal change as TE approaches zero, which they 

defined as signal enhancement by extracellular protons (SEEP) [130].  The use of 

proton-density based MRI to detect neuronal activity has only been recognized by a 

small group of researchers in the functional MRI field [100,101,129–132]. Possible 

reasons for this lack of interest are: (1) this phenomenon is, at least partly, induced by 

the intravascular pressure increase during neuronal activity, which is also a 

hemodynamic process and thus, also an indirect assessment of neuronal activity 

[129,130]; (2) no other research groups have succeeded in reproducing this method in 

the detection of neuronal activity in vivo; and (3) the unexpected signal changes can 

be explained by some other mechanisms except for proton-density change [101,133].  

All in all, the signal sources and biophysical mechanisms of this proposed fMRI 

method are still far from clear.   

1.4 Toward direct detection of neuronal activity with MR   

The noninvasive, in vivo, direct detection and imaging of neuronal activity is 

the essence in the neurosciences in terms of improving our understanding of brain 

function and, in the clinic, of diagnosing diseases and disorders of the brain. fMRI 

has been widely used in the cognitive neuroscience community since its invention in 

the 1990s [74–76]. The most widely used fMRI method, BOLD MRI, detects 

hemodynamic changes in the brain, which only indirectly reflect neuronal activity. 

The hemodynamic origin of the fMRI signal limits its spatial and temporal resolution 

and confounds its interpretation as a direct proxy for neuronal activity [80,85]. 
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Recently, several MRI methods (described in Section 1.3) have been proposed 

to provide more direct measurement of neuronal excitation. On the other hand, during 

the past several decades, hardware used for MRI acquisition as well as image 

reconstruction and analysis has advanced.  Now MRI images can be acquired rapidly 

(~ tens milliseconds) and with a high spatial resolution (sub millimeter). If a new 

MRI mechanism directly sensitive to neuronal activity with no time delay or location 

dispersion could be developed, it would become possible to detect neuronal activity 

via MRI more directly and accurately and with a much higher temporal and spatial 

resolution than is possible with the current fMRI. This breakthrough would provide 

scientists and doctors a much more powerful tool to explore and understand brain 

function. 

Although proponents of these newly proposed fMRI methods have reported 

positive findings, most of these approaches are either still in development or have not 

yet been reproduced by a larger cohort of researchers. At least two problems must be 

solved before direct detection of neuronal activity via non-BOLD fMRI research can 

progress. Firstly, “ground truth” experiments potentially establishing a connection 

between the changes in these newly proposed fMRI methods and underlying neuronal 

activity are required to convincingly demonstrate one or more of these newly 

proposed mechanisms.  Secondly, because the biophysical mechanisms between the 

observed MR signals and the underlying tissue microstructure and functions are still 

poorly understood, fundamental research to understand these connections is also 

critical. In this dissertation, the main goal is finding solutions for these two problems. 

Detailed plans are described in the following sections.  
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1.4.1 Needs and plans for  “ground truth” experiments 

A reliable and robust test system is needed to convincingly and conclusively vet 

and validate the proposed fMRI methods discussed in Section 1.3 and other new 

methods we or others may propose in future. At a minimum, such an fMRI test bed 

should include (a) a well-characterized biological model exhibiting neuronal activity 

free of hemodynamic, respiratory, and related physiological confounds and artifacts 

and (b) an independent, well-established neurophysiological method to detect 

neuronal activity directly and simultaneously with fMR/fMRI.  To achieve the first 

goal, in vitro perfused brain slices are a good candidate system; these have been 

widely used in the neuroscience community as a biological model to study neural 

functions since the 1950s [134–136]. Indeed, successful MR spectroscopy and 

imaging experiments on perfused brain slices have already been reported in the study 

of metabolism, neurotransmitters, ions, tissue microstructure, tissue injury, and even 

neuronal excitation [69,70,93,124,131,137–143]. 

To achieve the second requirement, neuronal activity should be measured inside 

the NMR/MRI system during MR acquisitions with one or more standard 

neurophysiological method, which includes intracellular and extracellular electrical 

recording, calcium imaging, membrane surface voltage imaging, etc. [1,10]. Though 

the close configuration and potential electromagnetic interface in MR systems make it 

difficult to perform these recordings together with MR acquisition, there have been a 

few hybrid setups in which BOLD fMRI was recorded together with electrodes 

[144,145] or optical fibers [86]. In other fields, one group studied single cells or cell 
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cultures by a technically challenging setup with a combination of confocal and 

magnetic resonance microscopy [146–149]. However, to our knowledge, direct (non-

BOLD) fMRI experiments satisfying the two requirements listed above have not yet 

been reported. 

In this work we propose and demonstrate the use of such a test bed in which 

MR acquisition and calcium fluorescence imaging are performed simultaneously on 

organotypic cortical cultures obtained from rat brain.  In this system, a single-sided 

MR system with permanent magnets was used [150]. Such systems, developed in the 

last two decades, are portable and have been used extensively to measure proton 

density, relaxation times, and diffusion coefficients in polymers and gels, foods, 

porous medium, and to a much more limited extent, biological materials [151–155]. 

One attribute of single-sided MR systems is the open access to the sample they 

provide, a feature we exploit in our design. This setup allows us to mount a 

fluorescence optical microscope with a long working distance above the biological 

specimen to simultaneously image intracellular Ca2+ transients.  Fluorometric 

Ca2+ imaging detects caged or bound Ca2+ ions released during neuronal activity and 

represents a direct method for detecting neuronal activity [156,157]. 

In this study, our specimen were organotypic brain cultures of the rat cortex, 

which have been widely used in the neurosciences as a biological model of neuronal 

activity [158–162] and also in MRI studies [95,140,163]. Organotypic cortical 

cultures largely maintain their in vivo cortical cytoarchitecture including cortical 

layers and cortical cell types. They are stable and can be grown for several weeks in 

an incubator [159,160]. More importantly, organotypic cultures in vitro display bursts 



 
 

30 
 

of spontaneous neuronal activity, so-called up- and down-states that are similar to 

neural behavior observed in vivo [161,164,165]. No pharmacological manipulation is 

required to initiate neuronal activity; the culture remains in a long-term homeostatic 

state while exhibiting large transients of neuronal activity [162]. Organotypic cultures 

do not contain a cerebrovascular system and thus are free of artifacts of hemodynamic 

origin, such as pulsation and flow artifacts, effects caused by changes in blood 

pressure, or artifacts associated with respiration and variable oxygenation that are 

known confounds in fMRI studies in vivo. 

In Chapter 2, we demonstrate the reliability and sensitivity of the single-sided 

NMR system by studying the water dynamics in a biomimetic model, a sodium 

polyacrylate solution and gel system, which is chemically well characterized. In 

Chapter 5, we provide a proof of principle of this novel instrument, demonstrating the 

reliability and performance of the proposed test bed by acquiring conventional MR 

data simultaneously with calcium fluorescence imaging, as a proxy for neuronal 

activity. In Chapter 6 and Chapter 7, use of this non-BOLD fMRI test bed to vet some 

candidate fMRI contrasts, which include water diffusion, relaxation times, and proton 

density, is described.  

1.4.2 Prerequisites to studying neuronal activity via MR—water dynamics in living 

tissue  

Water dynamics and the MR signal in biological tissue are complicated. At the 

molecular level, the dynamics of water molecules is highly correlated to that of other 

molecules (e.g., proteins, lipids, sugars, etc.) via the hydration effect or other 

interactions. The water molecules close to some macromolecules have been shown to 
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have reduced relaxation times and diffusivity, in other words, less rotational and 

translational freedom [48,52,62]. At the cellular level, there are different 

microenvironments for water, e.g., intracellular plasma, extracellular matrix, etc., 

which might cause water to have multiple components in both the relaxation and 

diffusion processes. More importantly, water in living tissue is not static, but rather is 

in continuous exchange with its neighboring water molecules via chemical exchange, 

diffusion, or active exchange.    

In neuronal activity, numerous physiological processes might have an effect on 

the water dynamics and MR signals.  In addition to the electrical signaling mentioned 

above, there is active exchange of ions (e.g., Na+, Cl-, K+, Ca2+, etc.), ion channels 

opening and closing, and ion pumps functioning [1]. More active water exchange 

might happen along with the ion exchange. Early morphological experiments showed 

that the neuron cell membrane might become “leaky” under intense excitation 

[166,167]; this leakiness might also modulate the water exchange between 

compartments. Cell volume changes have also been reported to occur during neuronal 

activity [166,168–172]. In addition, local temperature increases were also reported to 

be a simultaneous process of neuronal excitation [171].   

However, there is very little information and knowledge about how these 

physiological processes affect the water dynamics and the resultant MR signals. 

Fundamental research on the underlying biophysical mechanisms between water 

dynamics and tissue microstructure and physiological processes is highly relevant and 

necessary to further promote the direct detection of neuronal activity via MR. The 

two aspects of our efforts to assist in achieving this goal are described below.  
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1.4.3 Method 1: The study of water dynamics in biomimetic models 

One way to study the complicated water dynamics in tissue is by using 

biomimetic models to simplify the problem and isolate each part’s contribution. In 

biological tissue the intracellular cytoplasm is more gel-like and the extracellular 

matrix is more solution-like [173]. Thus, a hydrogel or polymer solution with 

properties similar to those of living tissue is a good starting point for the study of 

water dynamics.  

In particular, cross-linked sodium polyacrylate (NaPA) hydrogel has been 

proposed as a biomimetic model of living nerve fibers [174].  This anionic gel 

exhibits abrupt conformational changes by exchanging divalent counter-ions with 

monovalent cations, a behavior similar to that of the cortical gel layer of nerve fibers, 

which has been proposed to underlie the “all or none” nerve excitation and 

conduction [171,175]. The temporal variations of the swelling, heat production and 

absorbance, electric impedance, and potential associated with these changes in NaPA 

gels show a striking resemblance to those encountered during repetitive excitation of 

living nerve fibers [175,176].  Thus, the study of an NaPA model system by MR 

techniques may help further the understanding of the water dynamics inside tissue. 

Additionally, this model system might also provide insight into the ion exchange 

process underlying nerve excitation and its implication in water dynamics and MR 

signals. In Chapter 2, a systematic study of water’s rotational and translational 

motions in this biomimetic model under physiological ionic solutions is presented. 
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1.4.4 Method 2: The development of 2D MR diffusion/relaxation spectra to 

characterize various microenvironments of water in tissue  

Because of the heterogeneous nature of biological tissue, water in tissue is 

present in multiple microenvironments, in which it experiences various rotational and 

translational environments. Greater understanding of water dynamics in living tissue 

will be possible if there are MR methods capable of identifying these 

microenvironments and track water movement among them.   However, conventional 

quantitative MRI (qMRI) methods represent the relaxation/diffusion properties inside 

each imaging voxel (~1 mm3) as a single relaxation/diffusion value, which may 

produce incorrect and misleading results.  For decades, 1D relaxation/diffusion 

spectra, a plot of component weightings as a function of relaxation/diffusion values, 

were used to attempt to identify water relaxation/diffusion compartments [177–181]. 

However, this method has limited resolution for distinguishing multiple water 

dynamic compartments, is inaccurate in the estimation of the compartment 

size/fraction, and is unable to track water exchange among compartments 

[55,182,183]. 

In molecular NMR, the power of NMR spectroscopy was significantly 

increased by the inclusion of a second dimension in the Fourier domain, expanding 

the ability to determine molecular structure, dynamics, and kinetics [184]. Based on 

the same principles, in recent years, there have also been several important 

developments in expanding the 1D MR diffusion/relaxation spectra to 

multidimensional MR diffusion/relaxation spectra to better characterize water 

dynamics [185]. Early studies in the porous medium and material sciences 

communities show the great advantages of this method in identifying water 
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compartments, monitoring water exchange between compartments, and studying the 

correlation of these diffusion/relaxation properties [186–192]. For instance, in our 

studies, we obtained 2D MR relaxation spectra (T2–T2) in a solution of urea and 

water. This method clearly distinguished the protons on the water molecules and urea 

molecules (Fig. 1.1) on the basis of their different transverse relaxation times. More 

importantly, the proton exchange process between these two chemical environments 

can be quantitatively monitored and characterized by changing the exchange time (a 

period designed in the MR sequence to allow for proton exchange with a minimal 

relaxation process) in the 2D T2–T2 experiments.  

 

Figure 1.1. MR T2−T2 exchange spectra in a urea/water phantom with exchange time = 50ms (left) and 

500ms (right), in which the on-diagonal pixels represent nonexchanging protons, while the off-

diagonal pixels represent urea and water protons exchanged at the given exchange time. 

Our preliminary results also show the great potential advantages of this type of 

method in characterizing the complex water dynamics in biological tissue. For 

instance, in Fig. 1.2, the T2−T2 exchange spectra obtained from fixed porcine spinal 

cord white matter clearly demonstrate a broad distribution of the T2 relaxation times; 

this finding suggests there is microstructure heterogeneity inside the tissue and that 

the representation of the relaxation phenomenon with a single T2 value is not correct 
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in conventional MRI relaxometry. Additionally, the increased intensity of the off-

diagonal pixels as the exchange time increases shows that there is water exchange 

occurring among different water compartments and the exchange speed is in a 

detectable range (10 ms−1 s) when this type of MR method is used.  The quantitative 

measurements of the microstructure heterogeneity and motion among different water 

microenvironments will be important in identifying some key biological information, 

such as cell size, extracellular matrix volume, cell membrane permeability, active 

water motion, etc. These characteristics are important to the understanding of water 

dynamics in living neural tissue and during the neuronal activity process. 

 

Figure 1.2. MR T2−T2 exchange spectra of the white matter (bundles of myelinated axons) from fixed 

porcine spinal cord with exchange time = 10 ms (left) and 250 ms (right), in which the on-diagonal 

pixels represent nonexchanging water molecules, while the off-diagonal pixels represent water 

molecules exchanged among different microenvironments. 

While we recognize its potential for biological applications in living tissue, 

current 2D MR diffusion/relaxation spectra methods have two significant drawbacks, 

which limit its further application for in vivo studies. First, 2D MR 

diffusion/relaxation spectra have never been combined with MRI; this combination is 
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important for localizing and isolating different types of tissue and for further 

preclinical and clinical studies. Second, this type of method requires the acquisition of 

much more MR data than is currently feasible in preclinical or clinical time frames.  

To address the first problem, in Chapter 3, efforts were made to develop 

mathematical frameworks to overcome one of the problems in transferring the NMR 

spectroscopy method to MRI: correcting the artifacts caused by signal noise type 

changes that occur when NMR spectroscopy data (complex) are transferred to MRI 

magnitude data (magnitude). To address the second problem, in Chapter 4, we 

explored one way to dramatically reduce the data required to measure these 2D MR 

relaxation spectra, culminating our recent use of compressed sensing (CS), where we 

showed a 10-fold reduction in data to reconstruct a 2D MR relaxation spectra, 

reducing a 10-hour experiment to a one-hour experiment. Other problems and our 

planned solutions for further advancing the use of this type of important technique are 

discussed in Chapter 7. 
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Chapter 2: Initial effort: NMR water self-diffusion and 

relaxation studies on a biomimetic model of neuronal activity in 

physiologic ionic solutions 

As discussed in Section 1.4.2, one way to study the complicated water 

dynamics in tissue is by using biomimetic models to simplify the problem and isolate 

each part’s contribution. In this Chapter, sodium polyacrylate (NaPA) hydrogel in the 

physiological ionic solution was chosen as a biomimetic model of nerve excitation, 

which exhibits an abrupt volumetric phase transition in the presence of multivalent 

cations in the physiological concentration range.  In this work, water self-diffusion 

coefficients and longitudinal relaxation rates in NaPA solutions and gels were 

measured by NMR, as a function of polymer content and structure in a physiological 

concentration range of monovalent and divalent cations, Ca2+ and Na+. Several 

physical models describing the self-diffusion of the solvent were applied and 

compared. This work was adapted from our manuscript 1 published on Journal of 

Applied Polymer Science [155] (Appendix A).  

2.1 Sodium polyacrylate (NaPA) hydrogel as a biomimetic model of nerve excitation 

  Knowledge of the dynamics of small molecules in polymeric materials is 

important to advance polymer-based technologies such as membrane separations, 

barrier materials, controlled drug release, ion-exchangers, packaging, biosensors, and 

chemical sensors [193–195].  Polyelectrolyte hydrogels are environmentally sensitive 

(pH and counterions), and can be used for site-specific drug delivery [196,197].  
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Many anionic polyelectrolyte gels exhibit an abrupt volumetric phase transition in the 

presence of multivalent cations in the physiological concentration range [198,199].  

This phenomenon is believed to be related to important physiological processes such 

as nerve excitation and muscle contraction [174,175,198–201] where first-order phase 

transitions have been observed. Investigating the physical properties of synthetic 

polyelectrolyte gel model systems may lead to a better understanding of these 

phenomena.  For these reasons, substantial work has been done to characterize the 

thermodynamic properties and structure of polyelectrolyte gels and the dynamics of 

small molecules in polymer matrices (e.g., concentrated solutions and gels).   

 It has been demonstrated that water plays an essential role in determining the 

physical properties of polyelectrolyte systems (e.g., solutions of RNA, carbohydrate, 

and proteins) [202,203]. Experimental studies as well as simulations demonstrated a 

strong coupling between the dynamics of polymer and solvent molecules [204,205]. It 

has been reported that the dynamics of biomolecules is strongly coupled to the onset 

of translational motions of hydration water [206,207], and the rotational dynamics of 

water molecules is changed by the polymer [208,209].  However, the mechanism of 

this coupling is poorly understood.   

 Previous studies have raised several important questions: Does the presence of 

the polyelectrolyte chain affect only the translational mobility of the water or does it 

also influence the orientational mobility? What is the molecular mechanism 

underlying these processes?  Is the dynamics of water different in gels and in 

solutions of the same uncrosslinked polymer at the same polymer concentration?  

How does monovalent-divalent ion exchange affect the dynamics of water in 
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polyelectrolyte systems?  To address these questions, we determined the mobility of 

the solvent (water) in model sodium polyacrylate (NaPA) solutions and gels by NMR 

spectroscopy.  The self–diffusion coefficient and longitudinal relaxation rate of water 

were measured as a function of the polymer concentration.  Water self-diffusion is 

governed by its local translational mobility while its longitudinal relaxation rate is 

sensitive to the local orientational mobility.  The water density and order, and the 

interaction between polymer and solvent molecules affect both quantities.  The results 

were analyzed in terms of different physical models of self-diffusion and longitudinal 

relaxation of solvent.  The mobility of water was further investigated in the presence 

of mono- and divalent counterions (Na+ and Ca2+) in a physiological range of 

concentrations. 

 The paper is organized as follows. After describing our experimental 

methodology, we briefly review various physical models of solvent self-diffusion and 

evaluate their applicability to describe the experimental data.  In the next section we 

focus on the analysis of the spin-lattice relaxation of water in salt free polyelectrolyte 

solutions and gels.  This is followed by the discussion of the effect of added salts on 

the self-diffusion coefficient and spin-lattice relaxation rate of water.    

2.2 NaPA solution and hydrogel synthesis and NMR setups 

2.2.1 NaPA solution preparation 

Aqueous solution of sodium polyacrylate (NaPA, Mw = 15 kDa, concentration: 

35% w/w) was purchased from Sigma–Aldrich.  No further purification steps were 

performed. The NaPA solution was diluted by deionized water to the designated 

concentrations.  Salts (NaCl or CaCl2) were added to the solutions during dilution.  
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2.2.2 NaPA hydrogel preparation 

NaPA gels were made in aqueous solution by free–radical copolymerization of 

acrylic acid monomer and N, N’-methylenebis(acrylamide) cross-linker according to 

a procedure described previously [198]. The initial monomer concentration was 37% 

(w/w), and 31% of the monomers were neutralized by sodium hydroxide before 

polymerization.  Dissolved oxygen was removed by bubbling nitrogen through the 

solution. Then, the monomer solution was diluted to the designated concentration and 

appropriate amounts of salts (NaCl or CaCl2) were added. Finally, potassium 

persulfate (0.5 g/L) was added to initiate the polymerization reaction, and the solution 

was placed in an oven at 70oC.  

2.2.3 NMR-MOUSE 

The NMR measurements were made by a single–sided NMR system (Profile 

NMR–MOUSE, ACT GmbH, Germany).  Single-sided NMR systems developed in 

the last two decades possess the advantages that they are portable and reliable to 

study relaxation times and diffusion coefficients of various samples [150].  They are 

widely used in diverse fields such as in the rubber and polymer industries, food and 

materials processing applications [150,154,210–213]. 

  A surface RF coil is placed on top of the magnet to excite and detect the NMR 

signal. The magnetic field strength at the selective volume is 0.32 T (corresponding to 

1H Larmor frequency of 13.79 MHz), with a strong and highly uniform magnetic field 

gradient of 15.3 T/m across the selective volume. The Kea spectrometer and Prospa 

acquisition software are provided by Magritek, New Zealand. All NMR 

measurements were made at ambient temperature (23 0C ± 1 0C).  
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2.2.4 Self-diffusion measurement 

Self-diffusion coefficients were measured by Hahn spin echoes (90o-τ-180o-τ-

echo) in the presence of a static and uniform magnetic field gradient [214]. To 

improve the sensitivity of these experiments, a Carr–Purcell–Meiboom–Gill (CPMG) 

pulse sequence was applied after the main diffusion-encoding period. The normalized 

signal attenuation for the Hahn echoes is [48], 

      (2.1) 

with 

                (2.2) 

where γ is the gyromagnetic ratio of protons, G is the strength of the static magnetic 

field gradient, D is the self-diffusion coefficient, and τ is the encoding period or echo 

time. Eight b–values (< 1200 s/mm2) were used to produce a diffusion decay curve 

with 1024 echoes being added and 8 scans being performed for each b-value.  This 

method was validated by measuring the self-diffusion coefficient, D, of various 

solvents, such as water, methanol, ethanol [214].  All the diffusion decay curves were 

well fit by a single exponential function. 

2.2.5 Longitudinal relaxation time measurement 

Longitudinal relaxation times (T1) were measured by using a saturation 

recovery sequence (saturation – recovery time Δ - detection), followed by a CPMG 

train to improve the sensitivity, similar to the methods described above.  Eight 

recovery times, Δ, were used to obtain a recovery curve, and 8 scans for each 

I / I0 = exp(−bD)

b = 2
3
(γG)2τ3
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recovery time, with 1024 echoes were added for each scan.  The data were fitted to a 

mono-exponential function with a minor baseline [150]. The accuracy of our method 

was tested using a series of manganese chloride (MnCl2) solutions and we found 

reasonable agreement to literature values [215,216].  

2.3 Self-diffusion measurements in NaPA solution and gel as a function of polymer 

concentration 

Various physical models have been proposed to describe self-diffusion of 

solvent molecules in polymer gels and solutions.  These models fall into three general 

categories: 1) obstruction, 2) hydrodynamic, and 3) free volume [217].   

  First we analyze the experimental data using two obstruction models: the 

Maxwell [217],  and the Mackie-Meares model [218].  Then, the validity of the cell 

model, a combination of obstruction and hydration models, is tested [219].  Finally, 

we apply the Vrentas-Duda free-volume model [220].  

  Fig. 2.1 shows the results obtained for NaPA solutions and gels in the absence 

of added salt.  It can be seen that D is significantly greater in the gel than in the 

corresponding solution, and is practically independent of the cross-link density.   
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Figure 2.1. Self-diffusion coefficient D of NaPA solutions and gels with various cross-link densities 

normalized by the self-diffusion coefficient of the pure water D0.  The curves are fits of solution data 

and gel data with crosslink density 1:200 by different models (see text). 

2.3.1 Obstruction model 

In the obstruction models, the polymer chains are considered to be impenetrable 

and motionless relative to the small diffusing solvent molecules.  The polymer 

hinders the diffusion of water molecules, increasing the path length required by a 

geometric tortuosity factor.  Consequently, the apparent self–diffusion coefficient of 

small molecules decreases.  In these models no interaction between the polymer and 

solvent molecules is taken into account.  The obstruction effect is closely related to 

the shape of the obstructers; rod-like shapes obstruct more than spheres [221]. There 

are two main diffusion models based exclusively on the obstruction effect, 1) the 

Maxwell model, which assumes that the obstructers are spheres, and 2) the Mackie-

Meares model [218], where the polymer chains are assumed to be impenetrable, 

motionless, infinitely long rods.  

  In the Maxwell model the self-diffusion coefficient D of the solvent is 
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expressed as [215], 

    (2.3) 

where Do is the self-diffusion coefficient of the pure solvent and Φ is the volume 

fraction of the polymer 

    (2.4) 

  In Eq. 2.4, mpoly is the mass and vpoly (= 0.82 cm3/g) is the specific volume of 

NaPA, and mwater and vwater are the mass of water and its specific volume, respectively. 

  The Mackie-Meares model yields the expression [218]: 

    (2.5) 

  Fig. 2.1 clearly shows that the obstruction models do not adequately describe 

the concentration dependence of the self-diffusion coefficient. The Maxwell model 

seriously underestimates the obstruction effect of the NaPA.  By contrast, the Mackie-

Meares model reproduces the self-diffusion of water at low polymer concentration (c 

< 10% w/w) relatively well. The failure of these two obstruction models at high 

polymer concentrations may be due to either the complex geometry of the polymer 

chain or hydration effect that slows down water self-diffusion [217,222]. The gel data 

fall between the Maxwell and Mackie–Meares models.  The reduced obstruction 

effect for the gel suggests that crosslinking may alter the effective geometry of the 

polymer chains with respect to water diffusion.   

2.3.2 Combined obstruction and hydration model 
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A possible reason for the failure of obstruction models is that the interaction 

between water and polymer slows down the water self-diffusion close to the polymer.  

The cell-diffusion model of Jönsson, et al. takes into account both obstruction and 

hydration effects [219].  The model successfully predicts the self-diffusion of water in 

casein dispersions [223], in various surfactant-water systems [224], and also in whey 

protein solutions [225]. The macroscopic system is divided into identical cells 

containing one polymer molecule surrounded by water.  In each cell, a distinction is 

made between hydration water and bulk water that may have different densities and 

mobilities.  The macroscopic self-diffusion constant is represented by an apparent 

diffusion coefficient obtained by solving the diffusion equations for the cell with 

appropriate boundary conditions [219,225]. The cell model yields for a solution of 

spherical particles 

   (2.6) 

where k is a fitting parameter.   

  Eq. 2.6 was used to fit the NaPA solution and gel (with cross-link density 

1:200) data with different values of k.   Fig. 2.1 shows that this model fails to estimate 

the experimental diffusion coefficients over the entire concentration range.  The 

observed discrepancy may be related to the deviation of the geometry of the NaPA 

chains from the assumed spherical shape. 

2.3.3 Free volume model 

The free volume model is based on the concept that molecular transport is 
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mainly governed by the occurrence of two events: 1) a hole of sufficient size (free 

volume) should appear adjacent to the small molecule, and 2) the molecule should 

have enough energy to jump into it [226]. The polymer reduces the free volume of the 

solution, which explains the observed decrease in the solvent self-diffusion 

coefficient with increasing polymer concentration [227]. This model satisfactorily 

describes self-diffusion of small molecules in numerous polymer solutions such as 

(polyvinyl acetate)–toluene [228], polystyrene-benzene systems [229,230], water–

gelatin [231], water–PEG [232] and water-Poly(N,N-dimethylacrylamide) (PDMAA) 

gels [233].  

The Vrentas-Duda theory [220,234] predicts that the self-diffusion coefficient 

of small molecule (solvent) in a binary system is 

  

 (2.7) 

where w1 and w2 are the weight fractions of the solvent and the polymer, T is the 

absolute temperature, and K11, K12, K21, K22, Tg1, Tg2, ,  , ξ, γ are constants (free 

volume parameters of polymer and solvent).  For water the free volume parameters 

known from the literature [231] are listed in Table 2.1.  The two independent 

parameters for the polymer, and , were obtained by fitting Eq. 

2.7 to the experimental data.   
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Parameters Value  Note 
 (cm3g-1K-1) 2.33×10-3 From ref [231] 

 (K) -156.9  From ref [231] 

 (cm3g-1) 1.071  From ref [231] 

 (cm3g-1) 0.95 (±0.10) By fitting Eq. 2.7 (in solution) 

 (cm3g-1) 1.37 (±0.10) By fitting Eq. 2.7 (in gel) 
 (cm3g-1) -0.01 (±0.02) By fitting Eq. 2.7 (in solution) 
 (cm3g-1) 0.16 (±0.02) By fitting Eq. 2.7 (in gel) 

Table 2.1. Parameters used and obtained in free volume model. 

  Fig. 2.1 also shows the fits of Eq. 2.7 (solid line) to the NaPA solution and gel 

(with cross-link density 1:200) data.  In Table 2.1 are listed the fitting parameters of 

Eq. 2.7. In both systems the agreement between the prediction of Eq. 2.7 and the 

experimental data is reasonable.  The difference in the fitting parameters may reflect 

the presence of cross-links. Cross-linking causes the redistribution of the polymer 

chains and modifies the thermodynamics of the polymer/solvent system [235,236]. 

However, further experiments and theories are needed to understand the underlying 

physical difference between the polymer solution and gel and the influence on water 

self-diffusion.  

  It might be that obstruction effects dominate water self-diffusion in NaPA 

solutions and gels at low polymer concentrations, while at high polymer 

concentrations, the interaction between polymer and solvent molecules becomes 

nonnegligible. D is observed to be greater in gels than in polymer solutions at the 

same concentration, and although the free-volume models satisfactorily describe the 

water self-diffusion data, the underlying physical mechanisms for the difference 

remain unclear.   

  In what follows we investigate the effect of polymer concentration and ions on 

γ/11K

121 gTK −

*
1̂V
*
2V̂ξ
*
2V̂ξ

γ/)( 22212 TTKK g +−

γ/)( 22212 TTKK g +−



 
 

48 
 

the spin-lattice relaxation of water in NaPA solutions and gels.  

2.4 Spin-lattice relaxation time, T1, in NaPA solution and gel as a function of polymer 

concentration 

In water–polymer systems two types of water are present: 1) polymer-

associated water; and 2) “free” water that is not influenced by the presence of the 

polymer.   The spin–lattice relaxation rate of water is sensitive to both the structure of 

the polymer and the interaction between the polymer and water.  Neutron and X-ray 

scattering measurements indicate that the density of water is greater near the polymer 

than in the bulk [237].  It was also reported that the translational and orientational 

mobility of polymer-associated water was slower than that of the free water, and 

orientation became anisotropic due to interaction with macromolecules [238].  

In polymer systems, the relaxation behaviour of water nuclei has been 

described in terms of a fast-exchange two-site model [239–241]. The effective spin–

lattice relaxation rate is given by [181,242] 

    (2.8) 

where fb and T1,b are the fraction and average longitudinal relaxation time of polymer-

associated water, and 1-fb and T1,f are the fraction and longitudinal relaxation time of 

the free water. 

  In Fig. 2.2 we plot the spin-lattice relaxation rate 1/T1 as a function of the 

polymer concentration.  The data indicate that at low polymer concentration, the 

dependence of spin-lattice relaxation rate on polymer concentration can be 

1
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approximated as linear.  This finding implies that T1,b is constant and fb is 

proportional to the fraction of the polymer.  At higher concentrations (above 0.12 g/g 

in the solution and gel), however, 1/T1 increases faster than linear.  Similar behavior 

was reported for other polyelectrolyte solutions such as low molecular weight PAA-

water [238], protein–water [225], and β-lactoglobulin-water solutions [243]. Based on 

the two-site model, the deviation from linearity may be caused either by the increased 

number of polymer-associated water molecules or the faster relaxation rate 1/T1,b of 

this water.   

 

Figure 2.2. Variation of the spin-lattice relaxation rate 1/T1 as a function of the NaPA weight fraction 

in solutions and gels with various cross-link densities. Continuous lines are fits of Eq. 2.8 to the 

experimental data.   

  In summary, the results show that D is greater and the relaxation time T1 is 

longer in the gel than in the polymer solution at the same concentration.  These 

findings imply that the crosslinked polymer has a smaller effect on water mobility 
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than its uncrosslinked counterpart.  The variation of the cross-link density of the gel 

does not have significant effect on either D or 1/T1.  

  There are two possible explanations for the difference of solvent mobility 

between the uncrosslinked polymer and the crosslinked state: (1) the solvent mobility 

is dependent on polymer molecular weight, which changes from limited value in 

solution (15 kDa) to infinite in the gel. However, in concentrated polymer solutions 

(above 0.12 g/g), the effect of polymer molecular weight should be minimal due to 

the strongly overlapped chains. Previous experiments on small molecule’ self-

diffusion in polymer solutions as a function of polymer molecular weight showed 

solvent mobility is independent of, or only weekly dependent on polymer molecular 

weight especially when the chains are high molecular weight [232,244]. In the present 

study, NaPA with 15 kDa was chosen to avoid this effect.  (2) The cross-linking 

process modifies the chemical properties of polymer chains and the polymer-solvent 

interaction. Our present observation is consistent with evidence from previous 

macroscopic experiments and theory: there are important thermodynamic differences 

between the two states, and these changes are not simply proportional to the number 

of cross-linking points [235,245,246]. Osmotic pressure measurements on poly(vinyl 

acetate) gel were found to be almost independent of the cross-linking density of the 

gel [235]. A similar change in the self-diffusion coefficient from the uncrosslinked 

state to the crosslinked state was also reported for polydimethylsiloxane (PDMS)–

toluene systems [245]. The difference was attributed to structural inhomogeneities 

created by the crosslinking process.  During crosslinking polymer rich regions are 

formed, which coexist with regions of diminished polymer concentration.  The NaPA 
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gels have been observed to contain large inhomogeneities (greater than 1000 Å) as 

detected by small-angle neutron scattering measurements [247]. More experiments 

are needed to validate these hypotheses and elucidate the underlying chemical and 

physical mechanisms. 

2.5 Effect of ions on the dynamic properties of water in NaPA solution and gels 

We determined the self–diffusion coefficient and the longitudinal relaxation 

rate of water in polymer-free salt solutions [248] and in NaPA solutions and gels.  

The data listed in Table 2.2 show that monovalent salt (NaCl) has no significant 

effect on D and 1/T1.   

Polymer 
Concentration (w/w) 

NaCl 
Concentration (M) 

D  
(10-9 m2/s) 

1/T1   
(s-1) 

0% (solution) 0 2.12 (0.02) 0.56 (0.02) 
0% (solution) 1.0 2.06 (0.02) 0.55 (0.02) 

16% (solution) 0 1.16(0.01) 0.89(0.02) 
16% (solution) 0.6 1.11(0.01) 0.92(0.02) 

26% (gel) 0 0.99(0.01) 0.85(0.02) 
26% (gel) 0.6 0.91(0.01) 0.89(0.02) 

Table 2.2. Self-diffusion and spin-lattice measurements on NaPA solutions and gels in pure water and 

in NaCl solutions 

  Addition of divalent salt (CaCl2) slightly modifies the self–diffusion 

coefficient (Fig. 2.3a) and significantly enhances the longitudinal relaxation rate (Fig. 

2.3b).   The latter increases by more than 70% as the CaCl2 concentration varies from 

0 to 0.4 M.   The curves in Fig. 2.3b can be satisfactorily described by a 2nd-order 

polynomial. The results also indicate that the enhancement of 1/T1 is more 

pronounced at higher polymer concentration (at constant CaCl2 concentration). 
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Figure 2.3. (a) Self-diffusion coefficient and (b) spin-lattice relaxation rate as a function of CaCl2 

concentration in both NaPA solutions and gels (crosslink density 2:200).   All the data are normalized 

by the initial values. 

  The data shown in Fig. 2.3a and b reveal important differences between the 

effects of Na+ and Ca2+ ions on the mobility of water.  The weak influence of NaCl 

suggests that the diffuse monovalent ion cloud does not affect the conformation of the 

polymer and the interaction between the polymer and solvent.   In the case of Ca2+ 

ions the increased spin-lattice relaxation rate reflects the more effective charge 

compensation when calcium ions replace sodium ions.   

  Previous studies indicate that ions in polyelectrolyte systems affect the 

thickness and degree of order of the polymer-associated hydration shell [249–252].  

Increasing salt concentration may decrease the hydration strength due to increased 

screening of charges on the polymer backbone [249]. Reduction of the hydration 

stress increases both the self-diffusion coefficient and relaxation time. However, the 

observed reduction of the relaxation time shows that in the present system the 

interaction between Ca2+ and NaPA has no significant effect on the hydration strength 

between charged polymer and water.   

(a)$ (b)$
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  Recent molecular dynamics simulation and anomalous small-angle X-ray 

scattering (SANS) measurements show that divalent cations are preferentially 

condensed onto oppositely charged polyelectrolyte chains while monovalent cations 

move more freely [201,253].  In calcium ion containing systems the orientational 

mobility of the polyelectrolyte molecule may be slowed due to electrostatic attraction 

between the calcium ion and two negative charges on the polymer backbone, which 

may further slow the tumbling rate of polymer-associated water molecules and result 

in a shorter relaxation time.   

2.6 Discussions and conclusions 

The self–diffusion coefficient and longitudinal relaxation rate of water in NaPA 

solutions and gels were determined by NMR.  The self-diffusion measurements were 

analyzed in terms of different physical models of solvent self-diffusion in polymer 

systems.  It was found that the free volume model provides a satisfactory fit of both 

solution and gel results.   

  To describe the relaxation response of water a linear two–site fast exchange 

model was adopted.  In gels the self–diffusion coefficient is greater and the relaxation 

time of water is longer than in the corresponding (uncrosslinked) polymer solutions.  

The observed difference can be attributed to chemical and structural changes caused 

by cross-linking, however their influence on solvent mobility is almost independent 

of the number of cross-linking points.  Na+ only slightly affects the relaxation rate and 

self-diffusion coefficient of water.  Addition of Ca2+ enhances the relaxation rate but 

only weakly modifies the self-diffusion coefficient.  Further studies are required to 

understand the differences between the dynamic behaviour of polyelectrolyte gels and 
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solutions and to clarify the effect of monovalent and divalent cations on the NMR 

relaxation properties of charged polymer systems. 
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Chapter 3: Combining MR diffusion/relaxation spectra with 

imaging:  a framework for accurate determination of the 

relaxation spectra from magnitude MRI images 

 
The multidimensional MR diffusion/relaxation spectra shows great potential in 

the quantitative characterization of the microstructure heterogeneity and motions 

among different water microenvironments. This type of information will be very 

helpful in detecting some key biological information, such as cell size, extracellular 

matrix volume, cell membrane permeability, active water motion, etc., which is very 

important to understanding the water dynamics in living neural tissue and during the 

neuronal activity process. To further promote this type of technique for the study of 

living tissue, the first step would be to combine it with imaging to isolate different 

types of tissues and localize the regions of interest to us. A typical problem for 

transferring the NMR spectroscopy methods to MRI methods is the change in the data 

format and properties. The data from NMR spectroscopy is normally in complex 

format and the noise is Gaussian distributed, while the data from MRI only contains 

the magnitude of the data with low SNR and its noise is in Rician distribution. In this 

chapter, I will discuss a mathematical framework we developed to accurately 

determine the transverse relaxation (T2) spectra from multiple echo magnitude MRI 

images. Though only one-dimensional T2 spectra were tested and validated here in 

this study, this method is general and can be applied to other one-dimensional or 

multi-dimensional diffusion/relaxation spectra with proper adaption. This chapter was 
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adapted from our manuscript 2 published in the Journal of Magnetic Resonance [254] 

(Appendix A). 

 

3.1 Artifacts caused by the low-SNR magnitude MRI data in the estimation of T2 

relaxation spectra  

NMR relaxation measurements have been widely applied to study molecular 

dynamics in porous media [255,256], polymers and gels [155,211,225], food sciences 

[257], material sciences [258], plant tissue [259], and animal and human tissue 

studies [181,260]. NMR relaxometry, combined with MR imaging, is a powerful tool 

for characterizing the detailed microstructure of animal and human tissue ex vivo and 

in vivo, revealing complex microstructure in the brain [53,178,261], a layered 

structure in the cartilage [262], distinct domains in bone [263], etc.  

Magnitude, rather than complex MRI signals, is widely used in quantitative 

MRI studies. This choice is primarily due to the fact that the phase of MRI signals is 

sensitive to many experimental factors, such as scanner type, field inhomogeneity, 

temperature, coil type, pulse sequence design, motion, etc. [264–267]. While 

magnitude MRI is preferred in relaxation experiments, the signal-to-noise ratio (SNR) 

in MRI is usually much lower than in its NMR counterpart. Ideally, the distribution of 

the NMR and MRI signal is Rician rather than Gaussian [264,268,269]; this 

distribution can cause problems in estimating relaxation parameters accurately, such 

as the T1 and T2 in MRI [270,271], particularly as the MRI signal approaches the 

background noise levels.  
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Quantitative T2 (qT2) MRI spectroscopy has attracted more attention in recent 

years due to its ability to identify microstructure-dependent T2 components 

empirically without invoking prior modeling assumptions [177–181]. Specifically, the 

T2 distribution—a plot of component weightings as a function of T2—can provide 

information about the relative fraction of different distinct components in a material, 

such as the myelin water fraction within nerve samples. Calculated maps can yield 

potentially important biomarkers of pathology in demyelination diseases such as 

multiple sclerosis [53,177,272,273]. 

Typically, to obtain the T2 distribution, a multi-echo MRI acquisition is 

performed on a single slice or multiple slices, and then the magnitude MRI data is 

directly fitted to an inverse Laplace transform (ILT) algorithm. This transformation is 

achieved by decomposing the signal into a sum of discrete exponential components, 

each with a unique relaxation time and amplitude. Estimates derived through ILT are 

generally sensitive to the presence of noise [58,182,185,271]. Furthermore, 

conventional ILT algorithms are based on least-squares methods that assume the 

signals are Gaussian distributed with a constant variance.  Since the ideal magnitude 

MR signal is Rician distributed it is biased more toward a higher value than the noise-

free signal intensity, while the signal variance is artificially decreased as the SNR 

approaches zero [268,269,271,274,275]. 

Specifically, noise in qT2 MRI acquisitions can produce spurious cerebrospinal 

fluid (CSF)-like long T2 components, bias of the true geometric mean T2 (gmT2) 

values and relative fractions of various components, and blurring of nearby T2 peaks 

[275], all of which limit the accuracy of qT2 MRI.  Recently, a temporal phase 
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correction algorithm was developed to separate the relevant decay information from 

the noisy complex signal into the real channel, leaving only noise in the imaginary 

channel [275]. Although this strategy may improve some aspects of qT2 MRI, the 

phase of the complex MRI signal may differ on the basis of the equipment used 

(scanners, coils, etc. [264–267]). The magnitude of the complex MR signal remains 

the most commonly used data in quantitative measures in MRI. Ideally, we would 

like to develop a scheme that maps the noisy magnitude MRI data to a Gaussian-

distributed signal. 

In our previous work, a signal transformation framework was proposed to map 

noisy Rician-distributed magnitude diffusion weighted MRI (DWI) signals into 

Gaussian-distributed DWI signals without using the phase information [274]. This 

framework has been applied successfully in quantitative diffusion MRI studies 

[274,276]. Generally, the first step includes estimation of noise variance and 

underlying signal, followed by transformation of the signal distribution to a Gaussian.   

Here we adapt and extend this framework from DWI applications, most of 

which are model-based, to multi-echo qT2 MRI spectral data that invokes no prior 

modeling assumptions. The artifacts in the T2 distribution caused by the Rician MRI 

signals were systematically studied in simulations and real multi-echo MRI 

experiments within different SNR. The effectiveness of the modified signal 

transformational framework was investigated in this new application and our 

proposed framework was found to yield more accurate estimates of the T2 distribution 

over a large range of SNR than direct use of magnitude MRI.  
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3.2 A signal transformation framework to map noisy Rician-distributed magnitude 

MRI signals into Gaussian-distribution signals 

 
3.2.1. Distribution of the magnitude MR signals 

It is well known that that using the magnitude of the Gaussian-distributed 

complex MRI data follows a Rician distribution, which is characterized by the 

following probability density function (PDF) [264,277]:  

,     (3.1) 

where m is the noisy magnitude data, η is the underlying signal intensity, σg  is the 

Gaussian noise standard deviation, and I0 is the 0th-order modified Bessel function of 

the first kind. The corresponding cumulative distribution function (CDF) can be 

expressed as [274]: 

     (3.2) 

where Q is the generalized Marcum-Q function.  

An important special limiting case of the Rician distribution is when the SNR 

(SNR = ) is high enough that the PDF of Eq. 3.1 approaches the Gaussian 

distribution with a sample mean η and standard deviation σg [269]. Another important 

special case is when the underlying signal is zero, so that the Rician distribution in Eq. 

3.1 reduces to a Rayleigh distribution [269]: 

.         (3.3)  
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3.2.2 The framework for accurate determination of the T2 distribution from multi-

echo magnitude MRI images 

 

 

 

Figure 3.1. Framework to determine the T2 distribution for each voxel. 

The framework we proposed to accurately estimate T2 distribution from multi-

echo magnitude MRI images is described in Fig. 3.1. There are four essential steps: 1) 

the variance of the noise is estimated taking advantage of the multidimensional data 

structure (3.2.2.1), 2) the underlying signal intensity is estimated using an adapted 
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fixed point formula (3.2.2.2), 3) the estimated variance and underlying signal 

intensity are then used to transform the noisy magnitude signal to a noisy Gaussian-

form signal by using the probability integral transform to match the cumulative 

distribution functions (3.2.2.3), and 4) an ILT algorithm is then performed on the 

transformed data to estimate the T2 distribution for each voxel (3.2.2.4).  

3.2.2.1 Estimation of the noise standard deviation (SD) 

The accuracy of the noise variance estimation affects the accuracy of the 

estimate of the underlying signal intensity and of the transformed signal.  Most 

current methods to estimate noise variance are based on applying the Rayleigh 

distribution Eq. 3.3 to fit the noise within a selected region of interest (ROI) on the 

magnitude MR image [264,277–280]. However, the additional information contained 

in the multi-dimensional data structures, such as the additional T2 dimension in multi-

echo MRI, provides an opportunity to use more advanced noise estimation 

approaches. Recently, we proposed a coherent framework for the probabilistic 

identification and estimation of noise (also known as PIESNO [281]). This approach 

was developed for the simultaneous identification of the noise-only pixels and 

estimation of the noise variance by taking advantage of the special data structure 

similar to multi-echo MRI for qT2. The method can be briefly described as follows. 

For a measurement mi,j,k, where i,j are the x-y spatial coordinates and k is the 

added experimental dimension, for example, different echo times with K 

measurements.  Assuming that the Gaussian noise SD, σg, across the added dimension 

is uniform, we may write the sample mean si,j  as: 

  .    (3.4) si, j =
1
K

ti, j,k =
1

K

∑ 1
2σ g

2K
m2

i, j,k
1

K

∑
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If si,j  is in the acceptable range of the corresponding CDF of Eq. 3.3, the 

corresponding pixels along k will be designated noise only. This is a self-consistent 

method, where the collection of identified noise-only pixels will be used to determine 

the underlying Gaussian SD; then a new iteration begins in which the new estimate of 

the Gaussian SD is used in Eq. 3.4. The iteration continues until the Gaussian SD 

converges or the iteration reaches the maximum threshold.  

3.2.2.2. A fixed point formula for the estimation of the underlying signal intensity 

The estimation of the underlying signal intensity η follows the fixed point 

formula developed in our previous work [268,274] by finding the solution of the 

following equation: 

    (3.5) 

where <m> is the first moment of m, which is estimated by smoothing the decay 

curve, and ζ is an analytical function of signal intensity η and noise SD σg. More 

details about Eq. 3.5 are summarized in Section 3.7.  This formula has been modified 

for qT2 MRI application by assigning the underlying signal intensity η to be 0 rather 

than a negative value as in our previous framework when the estimated <m> is 

occasionally below the noise floor  when the SNR is close to 0 (for details see 

Section 3.7). 

3.2.2.3 Mapping the noisy magnitude signal to Gaussian distribution 

Using the Gaussian SD σg and the underlying signal η estimated in Section 

3.2.2.1 and 3.2.2.2, respectively, the corresponding CDF for measurement m can be 

calculated from Eq. 3.2. The inverse cumulative probability function of a Gaussian 

random variable and the cumulative probability function of noisy Rician magnitude 

η = g η | m ,σ g( ) = m 2
+ ζ η |σ g( )− 2"# $%σ

2
g

π / 2σ g
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signals using the probability integral transform [282,283] are then used to map from 

the noisy magnitude signal to a Gaussian form. The final transformed noisy Gaussian 

signal χ would be: 

     (3.6) 

where  is the inverse cumulative distribution function of a Gaussian distribution. 

More details can be found in [274]. 

3.2.2.4. ILT algorithm 

A nonnegative least squares (NNLS) algorithm with Tikhonov regularization 

was then applied on the transformed relaxation decay signals [284,285]. In the 

absence of noise, the ideal T2 relaxation decay curve can be described as a multi-

exponential function: 

    (3.7) 

where η0 is the proton density, F is the probability function at each T2 value and is 

assumed to be non-negative, tk are the K echo times, and T2,n are the N logarithmically 

spaced T2  time spacing.  A robust and relatively stable solution of F(T2,n) in the 

presence of noise can be obtained by minimizing Ξ 

      (3.8) 

where  is the transformed signal χ at echo time tk, and µ is the parameter controlling 

the Tikhonov regularization. A Butler-Reeds-Dawson (BRD) method [286] based on 

the Morozov discrepancy principle [287], which compares d(log10Ξ)/d(log10µ) against 

a user-defined tolerance, TOL [288],  was used to robustly determine the value of µ.  

3.2.3. Simulations of multi-echo MRI magnitude data 

χ = PG
−1 Pr m η,σ g( )η,σ g( )
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The decay curves of the multi-echo MRI magnitude data at different SNRs 

were simulated by Monte Carlo methods to explore their artifacts on qT2 MR and the 

efficacy of our proposed framework in correcting them. The noisy multi-echo MRI 

magnitude signal m at echo time tk was generated by the following function: 

      (3.9) 

where η(tk) is the ground truth calculated by Eq. 3.7 with targeted T2 distribution and 

ε1 and ε2 are the Gaussian random variables with mean zero and targeted standard 

deviation. Two different T2 distributions were explored to simulate different tissue 

properties: one contains only a single component with gmT2 equal to 51.6 ms; the 

other contains two components whose gmT2 and weightings are (15.7 ms, 50%) and 

(51.6 ms, 50%). In both cases, the underlying T2 distributions have a narrow Gaussian 

shape in the logarithmic T2 space. The initial SNR (iSNR ≡ η0/σg) ranges from 10 to 

400 for single-component cases and from 30 to 410 for the double-component 

simulations.   

In each simulation, 50 echo times TE were uniformly sampled from 5 ms to 

250 ms with a gap of 5 ms. The noisy magnitude data and their transformed signals 

were then analyzed to get the T2 distributions using the ILT algorithm in Section 

3.2.2.4. The T2 distribution consisted of 50 T2 bins logarithmically spaced between 

half of the shortest TE (2.5 ms) and two times the longest TE (500 ms). TOL in the 

BRD method was set to 0.003. To achieve stability in statistics, 1000 realizations 

were performed at each SNR level and each targeted T2 distribution.  

3.2.4 Multi-echo MRI experiments of a gel phantom and fixed spinal cord tissue 

mk = η(tk )+ε1( )2 +ε22



 
 

65 
 

Two samples were prepared for MRI experiments: a composite agarose and 

CuSO4 phantom and an excised porcine spinal cord. The phantom was made using a 

filled spherical insert in a 10mm NMR tube.  Each sample was filled with a different 

CuSO4 doped agar gel.  The spherical insert was filled with 1% agar gel doped with 

100mM CuSO4 and the NMR tube was filled with 0.5% agar gel doped with 50mM 

CuSO4.  The porcine spinal cord was excised and immediately immersion fixed in a 4% 

formalin solution. The spinal cord was fully rehydrated with phosphate buffered 

saline (PBS) prior to the MRI experiments and then contained within a 10mm 

susceptibility-matching Shigemi tube (Shigemi Inc., Japan) with Fluorinert (3M, St. 

Paul, MN) filling the unoccupied space during the MRI experiments. 

Multi-echo acquisitions were performed on a 7T Bruker Avance III vertical 

bore MRI scanner equipped with a micro2.5 gradient system (Bruker BioSpin, 

Billerica, MA).  For both the gel phantom and the porcine spinal cord, a single slice 

was selected with 50 echoes starting at 7 ms and continuing to 350 ms in 7 ms 

increments. The other acquisition parameters for the gel phantom were: TR = 2000 

ms, matrix size = 128x128, slice thickness = 0.2 mm, FOV = 12 mm × 12 mm, and 

repetitions = 50, and for the spinal cord were: TR = 3000 ms, matrix size = 128x128, 

slice thickness = 1.00 mm, FOV = 12 mm × 12 mm, and repetitions = 64. In both 

experiments, Hermite pulse shapes were applied for both excitation and refocusing 

pulses with bandwidth (5400 Hz) matching.  

To achieve different SNR levels, the complex data were averaged using 

different numbers of repetitions from the whole set initially. The magnitude images 

were then processed according to the framework detailed in Section 2.2. The T2 
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distribution also consisted of 50 T2 bins logarithmically spaced between half of the 

shortest TE (3.5 ms) and twice of the longest TE (700 ms) with TOL= 0.003. 

 

3.2.5 Analysis of the T2 distributions 

In the simulations, the T2 distribution at each SNR level was determined by 

averaging the T2 distributions of 1000 identical simulations with random noise.  In the 

MRI experiments, ROIs were selected at first; then a T2 distribution was calculated 

for each ROI by averaging the T2 distributions for all of the voxels inside each ROI. 

In the phantom experiments, two ROIs were selected: one containing all of the 

shorter-T2 gel and the second containing all of the longer-T2 gel. In the spinal cord 

experiments, three ROIs (dorsal, lateral and ventral) in white matter (WM) and one 

ROI in gray matter (GM) with relative homogenous gmT2 were selected for further 

analysis. 

In both simulations and experiments, the T2 distributions with a single 

component were divided into two regimes: 1) tissue-associated water, from the 

shortest T2  bin to 200 ms and 2) CSF-like water, from 200 ms to the longest T2  bin. 

As for the T2 distributions with multiple components, the tissue-associated water was 

further divided into myelin water (MW, from the shortest T2 bin to 27 ms) and 

intracellular/extracellular water (IEW, from 27 ms to 200 ms).   

3.3 Validation of the framework 

3.3.1 Estimation of the underlying Gaussian noise SD 

To determine the accuracy of PIESNO in estimating the Gaussian noise SD 

from the multi-echo MRI data, both synthetic signals and the data from the 
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experiments with porcine spinal cord were investigated.  The synthetic signals 

contained the same data structure (128x128x50) as the signals in the single-slice 

multi-echo experiment on the spinal cord.  The T2 relaxation decay curve in each 

voxel was generated following Eq. 3.9 with the single-component T2 distribution with 

gmT2 equal to 51.6 ms. The proton density η0 was set to be 1 for the centered 64x64 

square matrix and 0 for the other regions.    

 

Figure 3.2. The estimated Gaussian SD via PIESNO from the synthetic signals with various noise 

levels (A) and from the spinal cord multi-echo MRI experiments with various averaging steps (B), 

where the red curve is the nonlinear fit of the data via Eq. 3.10. 

The values of estimated Gaussian noise SD were plotted against the known 

SD σg from 0.01 to 0.2 (arbitrary units) in Fig. 3.2A, and it was found that the 

estimated values deviated less than 0.3% from the known values.  In the spinal cord 

experiments, the underlying Gaussian noise SD in different SNRs was also estimated 

via PIESNO. The different SNRs were achieved by averaging the complex data with 

a step of two.  The estimated Gaussian SD (Fig. 3.2B) was well fitted with the 

expected function: 
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      (3.10) 

via the nonlinear least squares method with R2 = 0.9999.    

3.3.2 Signal transformation from Rician distribution to Gaussian distribution 

The efficacy of the proposed framework in correcting the multi-echo MRI 

magnitude data was validated by performing Monte Carlo simulations similar to those 

in Section 3.2 of [274]. 50,000 sets of the simulations described in Section 3.2.3 with 

a single T2 (gmT2 = 51.6 ms) were performed with the following parameters: proton 

density η0 = 1000, TE ranges from 5 ms to 250 ms with a gap of 5 ms, and Gaussian 

noises with mean zero and SD = 100 in real and imaginary channels.  

 
Figure 3.3. The black box and the error bar at each TE are the sample mean and the sample standard 

deviation of the noisy magnitude signals (A), the transformed signals via our previous framework (B), 

and the proposed modified framework here (C). The red continuous curves in (A-C) are the ground 

truth. The sample SD of the three sets of signals at each TE (D). 
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In Fig. 3.3A, the sample mean and sample SD of the 50,000 measurements at 

each TE are shown, where the maximum offset caused by the nature of the Rician 

distribution can be 117 from the ground truth as the SNR approaches 0.  The 

underestimation problem of our original framework becomes apparent when the TEs 

are longer than 100 ms, with a corresponding SNR of 1.5 (Fig. 3.3B). In our current 

framework (Fig. 3.3C), the maximum distance and the mean distance between the 

sample mean of the transformed signals and the ground truth of all the TEs were 

reduced from 30 to 19 and from 14 to 5 (arbitrary units) compared with our previous 

framework. The SD of the Rician signals is far from the ground truth (100); it can be 

up to 35% lower than the ground truth as SNR approaches 0 (Fig. 3.3D). As for the 

transformed signals, the maximum and mean biasing of the variances’ SD from the 

ground truth were 56% and 14% higher in our previous framework and only 16% and 

5% higher in our current framework.   
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Figure 3.4. Histograms of the noisy magnitude signals (A, C) and their transformed values (B, D) of 

the simulation data at TE = 200 ms (A, B) and short-T2 gel MRI data at TE = 140 ms (C, D). The red 

curves are the fittings to Rician distributions (A, C) and Gaussian distributions (B, D).    

The histograms of the noisy magnitude signals and their transformed values 

via the scheme proposed here at TE = 200 ms are shown in Fig. 3.4A and Fig. 3.4B.  

The noisy magnitude data have a sample mean of 126 and a sample SD of 66, while 

the transformed signal was successfully corrected back to a Gaussian distribution (p > 

0.1 for any random 2000 samples) with a sample mean of 15 and a sample SD of 108, 

where the ground truth is 22 and the SD 100.  Similar histograms of the shorter T2 gel 

at TE = 140 ms are also shown in Fig. 3.4C and Fig. 3.4D. The noisy magnitude 

intensity was well fit with a Rician distribution (red curve) with sample mean and SD 

equal to 2.5 x 104 and 1.3 x 104, while the transformed signal was successfully 

described by a Gaussian distribution (p = 0.96) with sample mean and SD equal to 
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(7.3 x 103 and 2.0 x 104), where the ground truth is 5.8 x 103 with an SD of 1.9 x 104 

(the results from the data with 50 averages).  

3.4 Numerical simulation of T2 spectra MRI experiments 

3.4.1 Simulations of the T2 distribution with a single T2 component 

 

Figure 3.5.  An example of the simulations with a single T2 component at iSNR = 25. (A) The noisy 

magnitude signals (green dots) and the transformed signals (blue dots). The green and blue continuous 

curves are the fitting results obtained with the NNLS algorithm. (B) The T2 distribution using the 

original Rician signals (green) and the transformed signals (blue). The continuous red curve in both (A) 

and (B) is the ground truth. 

A demonstration of the effects of signal transformation on the T2 distribution 

with an initial SNR (iSNR) equal to 25 is shown in Fig. 3.5. There is a clear offset in 

the magnitude signal when the underlying signal is approaching zero, which is 

reflected in the T2 distribution as a tail in the CSF-like regime (relative fraction 2.5%). 

This offset in the magnitude signal also causes the tissue-associated peak (51.6 ms) to 

occur at a shorter relaxation time (46.6 ms).  When the transformed signal is used in 

the NNLS algorithm, the spurious CSF-like tail disappears and the tissue-associated 

peak is corrected back to 50.9 ms.  
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Figure 3.6. T2 distributions using the Rician signals (A) and the transformed signals (C) at various 

iSNR. The gmT2 values of the tissue-associated water (B) and the relative fractions of both the tissue-

associated water and the CSF-like water (D) were plotted as a function of iSNR. 

The statistical results of estimating T2 distributions with various iSNR are 

shown in Fig. 3.6.  Apparently, the bias of the tissue-associated water peak worsens 

as SNR goes down (Fig. 3.6A), while the proposed signal transformation makes the 

T2 distributions more consistent over the entire range of SNR (Fig. 3.6C). Even at the 

lowest iSNR (iSNR=10), the gmT2 and relative fraction of the tissue-associated water 

are successfully corrected from (32.8 ms, 91.4%) to (40.3 ms, 99.1%), where the 

ground truth is (51.6 ms, 100%). To achieve the relative fraction of the spurious CSF-

like water less than 1% of the total water, an iSNR higher than 50 is necessary using 
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the Rician signal directly; however, iSNR>=10 is sufficient with our proposed 

framework. 

3.4.2 Simulations of the T2 distributions with two T2 components 

 

Figure 3.7. (A) The T2 distributions of the simulations of two T2 components with various iSNR and 

their corresponding gmT2 values (B) and relative fractions (C) of different regimes. The red curves in 

(A−C) are the underlying ground truth. 

In Fig. 3.7A, the averaged T2 distribution of each 1000 realizations with the 

original Rician signals (green) and transformed signals (blue) are shown against the 

ground truth with different iSNRs. Except for the generation of the spurious CSF-like 

water, the gmT2 of both MW and IEW and the relative fraction of MW are 

underestimated, and the relative fraction of IEW is overestimated, especially when 

iSNR goes down (Fig. 3.7B and Fig. 3.7C). At iSNR=30, the estimated gmT2 of the 
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MW and IEW via directly fitting the Rician signals are 40.5% and 35.8 less than the 

ground truth, respectively, their relative fractions are 33.1% less and 38.5% higher 

than the ground truth. By implementing the proposed framework, the accuracy of 

both the gmT2 and relative fraction estimations are improved.  For example, to 

achieve 90% accuracy of the estimation of the MW fraction, iSNR>=110 is required 

when the Rician signals are used directly, while only iSNR>=50 is required when our 

proposed framework is implemented.  

In Fig. 3.7A, at iSNR=30, the T2 distribution calculated from the Rician 

signals only has one component in the tissue-associated water regime with 

gmT2=20.8 ms and the relative fraction equal to 97.0%.  In the T2 distribution derived 

from the transformed signals, although the MW and IEW are still not clearly 

separable, the amplitude of F(T2) at the MW peak (T2 =15.7 ms) position is 96% 

higher than that derived from the Rician signals.  At iSNR=50, the peaks of MW and 

IEW are still blurred in the T2 distribution calculated from the Rician signals, but they 

become visible in the T2 distribution derived from the transformed signals, where the 

minimum amplitude between the two peaks is already 43% less than the amplitude of 

the smaller peak. At higher iSNRs (>50), the MW and IEW are separable in both T2 

distributions. However, the position and the relative fraction of each component 

approach the ground truth faster via the transformed signals as the iSNR increases.      

3.5 T2 spectra MRI experiments on gel phantom and fixed porcine spinal cord 

3.5.1 Agar gel phantom 
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Figure 3.8. (A) Maps of the relative fractions of the CSF-like water with various iSNR. (B-C) T2 

distribution of the shorter-T2 gel (B) and the longer-T2 gel (C) with various iSNR. 

The images of the CSF-like water fraction from the data with 1, 4, 16 and 50 

averages (corresponding iSNR=18,35,70,125) are shown in Fig. 3.8A. Our proposed 

framework decreases the spurious CSF-like water fraction from 3.5% to 0.6% for the 

shorter-T2 gel and from 4.3% to 0.6% for the longer-T2 gel when iSNR=18. Similar to 

the simulations with a single T2 component, an iSNR of no less than 70 is required to 

achieve 99% accuracy of the tissue-associated water fraction if the magnitude data are 

used with the NNLS algorithms directly, while the requirement of iSNR can be 

decreased to 18 by implementing our proposed framework. 

The gmT2 values of both gels were also corrected to more accurately reflect 

the ground truth: the gmT2 of the shorter-T2 gel was corrected from 24.8 ms to 27.5 

ms at iSNR=18 where the ground truth is 28.7 ms, and for the longer-T2 gel from 57.5 
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ms to 63.1 ms where the ground truth is 63.9 ms. More results with various iSNR are 

reported in Table 3.1.  

 

Number of Averages 1 4 16 50 

shorter-T2 gel 

 

Rician 

signals 

Tissue-

associated  

24.8 ms 

(96.5%) 

27.1 ms 

(98.2%) 

28.2 ms 

(99.1%) 

28.5 ms 

(99.5%) 

CSF-like 3.5% 1.8% 0.9% 0.5% 

 

Transformed 

signals 

Tissue-

associated  

27.5 ms 

(99.4%) 

28.2 ms 

(99.7%) 

28.5 ms 

(99.8%) 

28.7 ms 

(99.9%) 

CSF-like  0.6% 0.3%  0.2% 0.1% 

longer-T2 gel 

 

Rician 

signals 

Tissue-

associated  

57.5 ms 

(95.6%) 

61.5 ms 

(98.5%) 

63.3 ms 

(99.6%) 

63.8 ms 

(99.8%) 

CSF-like  4.4%  1.5%  0.4%  0.2% 

 

Transformed 

signals 

Tissue-

associated  

63.1 ms 

(99.4%) 

63.3ms 

(99.8%) 

63.7 ms 

(99.9%) 

63.9 ms 

(99.9%) 

CSF-like  0.6%  0.2%  0.1% 0.1% 

Table 3.1. Statistic results of the gmT2 values and relative fractions for the agar gel phantom. 

3.5.2 Spinal cord 
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Figure 3.9. (A) The map of the gmT2 from 3.5 ms – 700 ms of the spinal cord.  (B) The T2 distributions 

of the four ROIs (ventral WM, lateral WM, dorsal WM, and GM) with 1, 2, 4, 8, 16, 32 and 64 

averages of the complex data using the original magnitude signals and the transformed signals. (C) The 

gmT2 and relative water fractions of different water components in the ventral WM as a function of the 

number of averages. 

Maps of the gmT2 of the entire T2 distribution from 3.5 ms to 700 ms with the 

highest SNR are shown in Fig. 3.9A. Not surprisingly, the GM shows a longer gmT2 

than the WM.  Anatomy-related inhomogeneity of the gmT2 is shown in both GM and 

WM, which agrees with other studies on spinal cords [56,289]. In Fig. 3.9B, the WM 

ROIs show two clear relaxation components with the gmT2 and relative fraction (20.1 
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ms 62.3%, 59.1 ms 37.6%) for ventral WM, (17.8 ms 67.0%, 49.4 ms 33.0%) for 

lateral WM, and (17.8 ms 65.0%, 46.6 ms 35.0%) for dorsal WM, while the GM ROI 

shows a single T2 component with a broad shape, whose gmT2 and relative fraction 

were (40.7 ms 100.0%). 

The development of the pattern of T2 distributions under various SNR levels 

in each WM ROI match the simulations of the two T2 components in Section 3.2.2, 

where the blurring of the MW and IEW peaks worsens as the SNR diminishes.  For 

example, at the lowest SNR (iSNR=30), the MW peak and IEW peak of the ventral 

WM merge into a single peak with the averaged gmT2 values (28.1 ms) of the two 

components, while the two components were clearly visible when the transformed 

signals were used (smallest amplitude between the two components is 64% of the 

smaller component’s amplitude) with (17.4 ms, 45.3%) for the MW and (46.5 ms, 

54.4%) for the IEW.  More detailed SNR dependence for ventral WM are shown in 

Fig. 3.9C.  

Consequently, the gmT2 values and relative fractions of each regime are 

misestimated when the SNR is low; our framework makes these estimations more 

accurately. For example, our framework corrects the underestimation of the gmT2 

value and the overestimation of the relative fraction of the IEW in the ventral WM 

from 33.8% to 18.1% and from 63.8% to 44.7% at iSNR=30. To achieve 90% 

accuracy for the MW fraction estimation, our framework decreases the requirement of 

iSNR from 104 to 73.   
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Figure 3.10. The maps of the relative water fraction of MW (top), IEW (middle), and CSF (bottom) in 

the spinal cord with the number of averages of the complex data equal to 1, 4, 16 and 64. 

Fig. 3.10 shows the relative fraction of the MW, IEW, and CSF in the spinal 

cord with 1, 4, 16, and 64 averages of the complex data.  The overestimation of the 

IEW fraction and underestimation of the WM fraction are more serious in the ventral 

WM, which has a longer gmT2 for the MW. Clearly the CSF fraction is overestimated 

and the contrast between GM and WM is not accurate. The latter is due both to the 

overestimation of the CSF, which is SNR dependent as illustrated in Fig. 3.6, Fig. 3.7, 

and Table 3.1, and to the fact that GM has a higher SNR than does WM. Our 
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framework reduces not only the overestimation of the CSF fraction in both WM and 

GM but also the spurious contrast between the two.  

3.6 Discussions and conclusions 

In this work, our main objective is to adapt and extend our original signal 

transformational framework for qT2 MRI spectral data and to determine its efficacy in 

transforming the Rician magnitude signals from multi-echo MRI experiments to 

Gaussian-distributed signals with the hope of improving the accuracy of the 

estimation of the T2 distribution. 

The additional dimension (T2 dimension) of the multi-echo MRI data provides 

a much larger sample to estimate the Gaussian standard deviation; this larger sample 

improves the precision of the Gaussian noise SD estimation within PIESNO. As a 

consequence, the precision of the underlying signal intensity estimate also improves. 

Both the multi-echo MRI simulations and agar gel phantom experiments 

clearly illustrate the efficacy of our proposed framework in mapping the noisy Rician 

signals to noisy Gaussian signals, with nearly constant SDs.  The underestimation of 

the signal intensity in the very low SNR regime in our original framework has been 

ameliorated by adding a non-negative boundary in the fixed-point formula to estimate 

the underlying signal intensity, where the variance of the transformed signals are 

more stable. However, we believe further studies are still needed to investigate the 

best scheme to address a sample mean of the magnitude signals that is below the 

noise floor.  

Our results confirm that the artifacts in the T2 distribution arise from the 

magnitude data mentioned in the literature [271,275] and illustrate their dependence 
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on SNR. These artifacts include the generation of spurious CSF-like long T2 tails, bias 

of the tissue-associated water peaks, blurring of nearby but distinct T2 components, 

underestimation of the gmT2 and relative fraction of myelin water, underestimation of 

the gmT2 and overestimation of the relative fraction of intracellular/extracellular 

water. By implementing our proposed framework, the magnitude signals are 

transformed to meet the requirements of most ILT algorithms: that they be Gaussian 

distributed and have a constant standard deviation. As a consequence of this 

transformation, the associated artifacts of Rician signals are eliminated and the 

accuracy of the T2 distribution is significantly improved.   

It should be mentioned that the MW fraction of the porcine spinal cord used in 

this work (50%−70%) is higher than that found in other literature on rat spinal cord 

(10%−40%) [56,273,290]. To the best of our knowledge, no other quantitative study 

on the MW fraction of porcine spinal cord has been undertaken thus far. The larger 

MW fraction here may be the result of the differences between the two species or the 

different sample preparation procedures. As for GM, except for the correction of the 

biasing of the tissue-associated water and the generation of the spurious CSF 

components (see Fig. 3.9B), even the shape of T2 distribution after implementation of 

our framework is more consistent over the entire range of SNR, though the 

underlying biophysical basis of this broad peak is still not clear.  

Although SNR is still required to produce an accurate T2 distribution, our 

framework decreases the SNR needed and improves the T2 distribution over the entire 

range of SNR. Another advantage of our framework is its robustness; it does not 

require phase information and can be applied to the multi-echo MRI magnitude data 
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from all preclinical and clinical scanners (although other sources of noise, such as 

motion and physiological noise for in vivo applications, should be handled before 

using this framework).  

The framework outlined in this work only illustrates the applications on multi-

echo MRI data from a single transmit-receive RF coil. A similar framework can be 

adapted for a multi-receiver MRI system based on our original work on a multi-

receiver MRI system with parallel imaging [274,281].   

3.7 Supporting information: A fixed-point formula for the estimation of underlying 

signal intensity 

The first step of the estimation is writing the first and the second moments of 

magnitude MRI signal m [268,270,291,292]:  

    (3.11) 

      (3.12) 

Then the variance of the noisy magnitude data is expressed as a product of a scaling 

factor and the squares of the Gaussian SD: 

     (3.13) 

where the scaling factor ζ is an analytical function of SNR, i.e.,  [268]: 

   (3.14) 

By substituting Eq. 3.13 for Eq. 3.14, the underlying signal intensity can be estimated 

by finding the solution of this fixed-point equation: 
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    (3.15) 

where the Gaussian SD, σg, is estimated by PIESNO, the method discussed in Section 

3.2.2.1. 

Specifically, the underlying signal intensity η is estimated as follows: 

First, the decay data are smoothed using a penalized spline model, whose 

degree of freedom was chosen based on the method of generalized cross-validation 

(GCV) (see Appendices A and C of [274]). Next, the smoothed estimate  is 

substituted for <m> in Eq. 3.15, and the unique solution  is determined for 

, where  is the level of the noise floor, for which the underlying 

signal intensity is 0 but the first moment of the Rician distribution, <m>, is non-zero. 

When the estimated  is below the noise floor, the underlying signal intensity is 

assigned to be 0. 

In our original framework [274], the estimate  was made to be  when the 

estimated  is below the noise floor, where  is the signal intensity estimate 

obtained by solving a new equation, , to ensure the symmetry of the 

resultant distribution of  at zero SNR. However, the negative assignment of  

biases the mean of the transformed noisy Gaussian signal by underestimating the 

ground truth signal when the SNR is close to 0 but not at 0 (around 0.15−2.0, see 

Section 3.3.2 in [274] and Fig. 3.3 in this paper). Unfortunately, the last several 

echoes of multi-echo MRI usually occur in this very low SNR regime rather than 

reaching zero. To improve the estimation of the underlying signal intensity in this 

very low SNR regime, rather than ensuring the symmetry at zero SNR,  was 

η = g η | m ,σ g( ) = m 2
+ ζ η |σ g( )− 2"# $%σ
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assigned to be 0 whenever . We adopt this assignment of  based on the 

physical requirement that the variable  be non-negative for typical multi-echo MRI 

experiments. The effect of this modification is shown in Fig 3.3.   

 

 

 

 

m < π / 2σ g η
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Chapter 4: Accelerate 2D MR diffusion/relaxation spectra using 

compressed sensing  

Potential applications of 2D diffusion/relaxation NMR and MRI to 

characterize complex water dynamics (e.g., compartmental exchange) in biological 

tissue have been realized in recent years. However, the large amount of data and long 

MR acquisition times required for conventional 2D MR diffusion/relaxation spectra 

limits its applicability for in vivo preclinical and clinical MRI. In this chapter, we 

present a new MR pipeline for 2D diffusion/relaxation spectra that incorporates 

compressed sensing (CS) as a means to vastly reduce the amount of 2D MR 

diffusion/relaxation spectra data needed for tissue characterization without 

compromising data quality. Here only two types of 2D MR diffusion/relaxation 

spectra, i.e., T1−T2 and T2−T2, were systematically tested and validated, but this MR 

pipeline can be generally applied to all other types of 2D MR diffusion/relaxation 

spectra, such as D−T2, T1−D, T2
*−T2

*, etc. This chapter was adapted from our 

manuscript 4 published in the Journal of Magnetic Resonance [293] (Appendix A). 

4.1 Obstacles in 2D MR diffusion/relaxation spectra: slow acquisition  

The power of NMR spectroscopy was significantly increased by the inclusion 

of a second dimension in the Fourier domain, expanding the ability to determine 

molecular structure, dynamics, and kinetics [184]. In recent years, there have also 

been increasing numbers of important developments and novel applications of multi-

dimensional MR relaxometry to characterize the microstructure-related water 

dynamics (multiple components, exchange, correlations, etc.) in biological tissue 
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[54,294–301], food sciences [302,303], material sciences [186–189], porous media 

physics [190–192], and geophysics [304,305].  

NMR relaxometry has been further advanced by the development of novel 

multi-dimensional diffusion/relaxation pulse sequences [185,186,192,299,306–309] 

and robust and accurate two-dimensional (2D) inverse Laplace transform (ILT) 

algorithms and data analysis methods [310–314]. However, the large amount of MR 

relaxation data and long scan times required for 2D relaxometry render this method 

infeasible and impractical for most preclinical and clinical applications. Faster data 

acquisition, improved experimental designs, more efficient data reconstruction 

methods requiring a reduced amount of data are highly desired to make 2D 

relaxometry practicable.   

Recently, compressed sensing (CS) was introduced and successfully applied 

in the MRI field to accelerate data acquisition [315–320].  The conventional CS is 

mainly performed on the reconstruction in the Fourier space (k-space), which relies 

on the sparsity of the MRI images.  However, to our best knowledge, no attention has 

been paid to the possibility of direct CS reconstruction from undersampled 2D 

relaxation signal, denoted as Laplace space.  

One widely used 2D ILT algorithm used in 2D relaxometry was developed by 

Venkataramanan, et al. about a decade ago [310,311].  In their algorithm, it was 

shown that the 2D relaxometry signal could be compressed into a small matrix 

without losing useful information, which demonstrates the sparsity of the 2D 

relaxometry signal in some basis representations [315,321,322].  Noticing that, a 

natural question it raises is whether CS could be adopted to reduce the amount of data 
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required for 2D relaxometry.  Unfortunately, the authors in [310,311] only focused on 

compressing data to reduce the computation memory required and accelerate the 

calculation of 2D relaxation spectra.   

Recently, inspired by these findings, we proved the feasibility of the CS for 

the 2D relaxometry in theory and developed an efficient CS algorithm to reconstruct 

the 2D relaxometry from undersampled 2D relaxometry signals directly [322]. Using 

numerical simulations, the efficiency of the CS algorithm was used to recover 2D 

relaxometry using a vastly reduced number of MR measurements [322].   

In this work, we develop and systematically demonstrate an MR experimental 

data analysis pipeline to apply this newly proposed CS algorithm to real experimental 

2D relaxation spectra with a vastly reduced data set, suitable for material and tissue 

characterization without compromising data quality. This is an important step to find 

out the potential systematic artifacts in experiments and to determine the best 

acceleration factor that can be achieved for each 2D relaxation spectra from various 

samples.   

We illustrate this new approach using MR data obtained on a 7T vertical 

wide-bore Bruker MRI scanner similar to those used in preclinical imaging 

applications.  Both T1-T2 and T2-T2 relaxometry NMR data were acquired on a well-

characterized urea/water phantom, which shows two exchanging components.  T1-T2 

MRI relaxometry was also performed on a fixed porcine spinal cord. In addition, 

numerical simulations of the 2D relaxation spectra were used to assess the effects of 

noise on the CS-based reconstruction of the 2D ILT.  
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4.2 2D MR relaxation spectra sequence and data acquisition 

4.2.1 Urea/water phantom 

The aqueous urea model system has been chosen for this study since it has 

two distinguishable types of protons in the transverse relaxation time (urea proton has 

a shorter T2 than water proton) and urea is highly soluble in water [306,323].  A 7M-

urea solution was made by dissolving urea powder (Sigma-Aldrich, Inc., USA) into 

phosphate buffered saline (PBS, pH = 7.4), resulting in a urea/water proton ratio of 

20%/80%. Then, 0.2 mM Gd-DTPA (Magnevist®; Berlex, Inc.) and 0.025 mM MnCl2 

were added to the urea solution to reduce relaxation times. The pH of the urea 

solution was titrated to 8.1 with NaOH.  An 80 µL solution was then transferred to a 5 

mm susceptibility-matched Shigemi NMR tube (Shigemi Inc., Japan). All NMR 

experiments were completed within 24 hours after the solution was prepared to ensure 

stability of the phantom [306,323].  

4.2.2  Porcine spinal cord  

Porcine spinal cord was excised after necropsy and immediately immersion 

fixed in a 4% formalin solution. All animal handling protocols were approved by the 

NIH Heart, Lung and Blood Institute (NHLBI) Animal Care and Use Committee.  

Prior to the MRI experiments, the spinal cord was washed and fully rehydrated with 

PBS and then placed in a 10 mm susceptibility-matched Shigemi NMR tube (Shigemi 

Inc., Japan) with Fluorinert (3M, St. Paul, MN) filling the open spaces during the 

MRI experiments.   

4.2.3 NMR and MRI measurements 
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Both the NMR measurements of the urea/water phantom and the MRI 

experiments on the fixed spinal cord were performed on a 7T Bruker vertical-bore 

microimaging µMRI scanner equipped with an Avance III console, and a micro2.5 

microimaging gradient system (Bruker BioSpin, Billerica, MA). All specimens were 

kept at a bore temperature (≈17 oC) during scanning. 

4.2.4 2D NMR of urea/water phantom 

Two different 2D NMR relaxometry pulse sequences were performed on the 

urea/water phantom: (a) T1−T2 correlation relaxometry was performed using an 

inversion−recovery (IR) preparation “filter,” followed by Carr–Purcell–Meiboom–

Gill (CPMG) pulse trains (IR-CPMG) (Fig. 4.1a);  (b) T2−T2 exchange relaxometry 

was performed using relaxation exchange spectroscopy (REXSY) (Fig. 4.1b), which 

consists of two CPMG pulse trains separated by a mixing time, τm, during which the 

magnetization is stored back along the longitudinal axis. A gradient spoiler was 

placed after the IR pulse in the IR-CPMG sequence and during the mixing period in 

the REXSY sequence to “crush” any remaining magnetization in the transverse plane. 

In the IR-CPMG pulse sequence, 50 IR points were sampled logarithmically from 50 

ms to 5 s; 250 echoes were acquired in the CPMG pulse trains with a temporal 

spacing of τ = 2 ms. The pre-scan delay was set to 15 s to ensure full inversion 

recovery. A two-step phase cycling scheme was used (Fig. 4.1a), and only one 

repetition was acquired. An equilibrium CPMG echo train was also acquired with an 

inversion−delay of 15 s and four repetitions.  In the REXSY experiments, the same 

parameters were used as in the IR-CPMG experiments, with the mixing time, τm, 
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starting from 50ms, and then 100ms and then in 100ms steps until reaching 1000ms. 

The repetition time (TR) was 8 s.  

4.2.5 T1−T2 MRI of porcine spinal cord 

T1−T2 correlation relaxometry was performed by an IR-prepared multiple spin 

echo (ME) sequence (Fig. 4.1c) with 36 inversion delays logarithmically distributed 

from 260 ms to 5000 ms and 50 spin echoes starting at 5 ms and continuing to 250 ms 

in 5 ms increments. The other acquisition parameters were: TR = inversion-delays + 

12 s, matrix size = 64 × 64, slice thickness = 1 mm, field of view (FOV) = 10 mm × 

10 mm and two-step phase cycling. Hermite pulse shapes were applied for both 

excitation and refocusing pulses with bandwidth (5400 Hz) matching and proper 

gradient crasher, and a 5 ms hyperbolic secant inversion pulse was used for uniform 

inversion of the sample.  A magnetization equilibrium scan was also acquired with an 

inversion−delay equal to 12 s with four repetitions.  
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Figure 4.1. Pulse sequences diagrams for the three pulse sequences used in this work: (a) IR-CPMG, 

(b) REXSY, and (c) IR-ME with imaging. τ1 is the inversion delay, τ is the echo time in the CPMG, τm 

is the mixing time in the REXSY, n1 and n2 are the number of loops in the first and second dimensions. 

4.3 A MR pipeline to accelerate 2D MR diffusion/relaxation spectra via compressed 

sensing (CS) 

The following data analysis flowchart (Fig. 4.2) was developed and used in 

this work to validate and test the efficiency of the CS framework. Experiments with 

dense sampling points were first performed to approximate the ground truth. After the 

raw data were preprocessed, 2D relaxation spectra were calculated from the full data 

set via 2D ILT.  Random samples were then obtained from the preprocessed full data 
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with different acceleration factors, R (where 1/R is the fraction of the full data). The 

subsamples were then processed using two pipelines: CS reconstruction and 

conventional 2D ILT reconstruction.  2D relaxation spectra from each subsample 

were then compared to the result obtained from the full data, in the experiments, or to 

the ground truth, in the simulations. 

 

Figure 4.2. Flowchart of the pipeline used in this work. 

4.3.1 Preprocessing 

To remove the bias caused by Rician noise in the IR-ME MRI data, the noisy 

ME MRI magnitude data were first processed by a methodology we proposed and 

validated previously to transform 1D Rician magnitude data to Gaussian-distributed 

data [254,274,281]. Furthermore, ROI analysis was performed to satisfy the signal-to-

noise ratio (SNR) requirements of the 2D ILT, which generally needs a high SNR to 
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obtain stable and accurate solutions. Here ROIs in white matter with a relatively 

homogenous geometric mean T2 (gmT2) were selected.  

In the IR-CPMG and IR-ME experiments, the CPMG and ME data were 

subtracted from the corresponding equilibrium data to cancel the potential artifacts 

caused by imperfect 180o inversion pulses.  Then, the experimental data from all the 

three pulse sequences can be written as: 

𝑀 𝜏!, 𝜏! =    𝐹 𝑇!,𝑇! exp − !!
!!

exp  (− !!
!!
)  !!

!!!
!!
!!! + 𝜖(𝜏!, 𝜏!)    (4.1) 

where τ1 is the inversion delay in the T1-T2 sequences and the accumulated echo time 

n1τ of the first CPMG in the T2-T2 sequences; τ2 is the accumulated echo time n2τ of 

the second CPMG or ME, F(Tm, Tn) is the 2D probability density function (pdf) of the 

two corresponding relaxation parameters; Nm  and Nn are the number of sampling 

points in each dimension of F; and 𝜖(𝜏!, 𝜏!) is the noise, which is assumed to be 

Gaussian in most 2D ILT algorithms.  Here Nm = 100  and Nn = 100 were set for all of 

the following analysis. 

4.3.2 2D ILT  

Inversion of the 2D LT is generally ill–conditioned; a small change in M may 

result in large variations in F(Tm, Tn). One practical technique to obtain a stable 

solution is minimizing Ξ: 

𝛯 ≡ 𝑀 𝜏! , 𝜏! − 𝐹 𝑇m,𝑇n exp − 𝜏𝑖
𝑇m

exp  (−
𝜏𝑗
𝑇n
)  

𝑁n
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(4.2) 

with a data-quality term with nonnegative constraints on F, and a second term for 

Tikhonov regularization. Above, N1 and N2 are the number of measurements in the 
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first and second dimension, and α is the regularization parameter. Eq. 4.2 can be 

rewritten in the form of a kernel matrix for the full data: 

𝛯 ≡ 𝑀 − 𝐾!𝐹𝐾!! ! + 𝛼 𝐹 !    (4.3) 

where || . || is the Frobenius norm of a matrix, and K1 and K2 are the kernels of the first 

and second dimension with the matrix size N1 × Nm and N2 × Nn.  

Here, a fast and widely used algorithm proposed by Venkataramanan, Song, 

and Hürlimann [311] to solve the minimization problem was applied. In this 

algorithm, the data are partially compressed by using the singular value 

decomposition (SVD) of Ki 

𝐾! =   𝑈!𝑆!𝑉!!      𝑖 ∈    1,2      (4.4) 

By truncating the small singular values with a threshold (1 × 10-3 of the largest single 

value), Si can be reduced to a much smaller matrix with dimensions Ni × si.  Then, the 

data matrix M can be projected onto the column space of K1 and the row space of K2 

with a much smaller dimension: 𝑀 = 𝑈!!𝑀𝑈!  with the new matrix size s1 × s2 

[310,311]. Now Eq. 4.3 can be rewritten in an identical structure, but with the 

compressed data 𝑀 and kernels of a much lower dimension [310,311,322].  

For a given value of the regularization parameter, α, a unique solution can be 

obtained from Eq. 4.2 or Eq. 4.3 by solving the constrained optimization problem. An 

S-curve based method, which calculates the fitting error to the measurements χ(α) 

with a series of α, was used to robustly determine the optimal value of α 

[286,310,314]. The best α is chosen within a user-defined tolerance, TOL :  

 𝑑(𝑙𝑜𝑔!"𝜒(𝛼))/𝑑(𝑙𝑜𝑔!"𝛼) = TOL   (4.5) 

Here TOL = 0.1 was used for both the simulated data and the experimental data.  
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4.3.3 Subsampling 

After preprocessing the raw data, 1000 random subsamples were obtained 

from the full data at each different acceleration factor, R, by randomly sampling in the 

2D relaxometry data matrix. The subsamples were then reconstructed using CS, and 

2D relaxation spectra were then calculated from the reconstructed data via 2D ILT 

with data compression. As a control, conventional 2D ILT without data compression 

was directly performed on the subsamples as in Eq. 4.2.  

4.3.4 Brief review of the CS algorithm for 2D-ILT reconstruction  

The key concept behind CS reconstruction lies in the relationship between the 

full data matrix M and the compressed data 𝑀. Because 𝑀 = 𝑈!𝑀𝑈!! , and because U1 

and U2 are left orthogonal and have energy spread out across M, these measurements 

form an incoherent, tight frame [322]. It means each element of M is an observation 

of a dense linear combination of every element of 𝑀 simultaneously. 𝑀 also has 

rapidly decaying singular values. For these reasons, and the fact that 𝑀 has much 

smaller dimensions than M, one can capture all the information in 𝑀 with a fraction 

of the number of measurements in M. 

The reconstruction algorithm to recover 𝑀 is also based on the fact that 𝑀 has 

rapidly decaying singular values.  The algorithm is a modification of the singular 

value thresholding algorithm from Cai et al. [324]. This optimization problem 

searches for the matrix X that minimizes the sum of the singular values, while 

matching the measurements  𝑀 = 𝑈!𝑋𝑈!! .  The solution to this optimization problem, 

then, has a high probability, close to 𝑀, of being up to a constant factor of the noise 
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[322]. Some brief steps of the proposed CS reconstruction were summarized in 

Section 4.8 and more information can be found in [322]. 

4.3.5 Comparison  

Global similarities were obtained for the pdf, F, from the full data or the 

ground truth and one from each subsample by calculating a correlation coefficient (C) 

between all of the vectorized versions. In addition, the geometric mean (gm) 

relaxation parameters and the relative volume fraction (f) of each peak in each 2D 

relaxation spectra were also calculated and compared to the results from the full data 

or ground truth. The results of each 1000 realizations were displayed as Tukey box 

plots, in which the notch is the median, the edges of the box are the 25th and 75th 

percentiles, the whisker length is 1.5, and the outliers are plotted separately. Further, 

the paired Student’s t-test was performed on the correlation coefficients from the 

results of the CS reconstruction and the control with the null hypothesis that C are 

equal in the results via the two methods and the alternative hypothesis that C is higher 

in the CS reconstruction than the control. Fisher z-transformation was applied on the 

correlation coefficients before the hypothesis test.  

The median of the 1000 2D relaxation spectra data from all subsamples at 

each R is displayed and the variance of the results is characterized by interquartile 

range (IQR). The contrast between the two peaks is defined by the ratio of the 

smallest amplitude between the two components over the smaller component’s 

amplitude in the T2 projection of the displayed 2D relaxometry. 
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4.4 Numerical demonstration of the efficiency of compressed sensing in accelerating 

2D relaxation spectra 

4.4.1 Numerical simulation setups 

T1−T2 relaxometry experiments were simulated by a Monte Carlo method to 

further test and validate the efficiency of the proposed CS reconstruction. The data 

acquisition protocol used in the T1−T2 MRI of spinal cord was applied here.  Two 

broad peaks without exchange in the 2D T1−T2 relaxogram with positions and patterns 

similar to those obtained from spinal cord white matter were used as the joint pdf, F, 

to generate the data following Eq. 4.1 with Gaussian noise at various SNRs. Stable 

estimates were obtained by performing 1000 realizations for the full data with one 

random sample taken for each acceleration factor in each realization.  

Furthermore, the potential artifacts caused by Rician noise were also 

simulated. An ROI consisting of 100 voxels with an IR-ME sequence was 

synthesized. Within each voxel, the data MR were generated by changing the 

distribution of the signal in Eq. 4.1 from Gaussian to Rician at SNR = 200: 

𝑀! 𝜏!, 𝜏!

=    𝐹 𝑇!,𝑇! exp −
𝜏!
𝑇!

exp  (−
𝜏!
𝑇!
)  

!!

!!!

!!

!!!

+ 𝜖!(𝜏!, 𝜏!)

!

+ 𝜖!(𝜏!, 𝜏!)!  

     (4.6) 

where 𝜖!and 𝜖! are Gaussian noise. The averaged data in the ROI were taken as the 

complete data set (SNR = 2000) with 1000 repetitions. The following subsampling 

and data analysis was the same as described in Section 4.3.2 and the simulations with 

Gaussian noise.  
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4.4.2 Noise type 

For the full data with Gaussian noise at SNR = 2000, the 2D ILT algorithm 

yields a close estimate  (Fig. 4.3b) of the ground truth (Fig. 4.3a) with a correlation 

coefficient C = 0.92 (Fig. 4.3g). Uncorrected Rician noise introduces spurious peaks 

in the long-T2 regime, which are visible in both the T1−T2 relaxometry (red arrow in 

Fig. 4.3c) and its 1D projection onto the T2 axis (red arrow in Fig. 4.3h).  In addition, 

the two peaks are merged indistinguishably into one in both the T1 and T2 dimensions. 

The application of the signal transformation correction successfully removes the 

spurious peaks and makes the ground-truth peaks distinguishable (Fig. 4.3d and Fig. 

4.3h) concomitant with the recovery of the correlation coefficient from 0.85 to 0.90 

(Fig. 4.3g).  

Subsampling was performed both on the data with Gaussian noise and on the 

data with the transformed signal. The results are shown in Fig. 4.3i, in which only the 

median was plotted for the data with Gaussian noise for display. Within the 

transformed data, the CS reconstruction successfully achieves a high correlation 

coefficient C ~ 0.90 with a small variance until R reaches 5, which is significantly 

higher than the results of the control (p < 1×10-9). Except for the higher correlation 

coefficients, better contrast is also observed with CS reconstruction. For example, at 

R = 5, the contrast between the two peaks is 69% with the CS reconstruction, but 89% 

in the control, where the ground truth is 34%.  
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Figure 4.3. 2D T1−T2 relaxometry of (a) the simulated ground truth, (b) full data with Gaussian noise at 

SNR = 2000, (c) full data with magnitude signal, (d) full data with transformed (Rician noise corrected) 

signal, (e) CS reconstruction from the transformed data at R = 5 and (f) the corresponding control.  (g) 

The results of the correlation coefficients of (b−d).  (h) The normalized T2 projections of (a−f).  (i) The 

results of the correlation coefficients of the CS reconstruction from the data with Gaussian noise 

(black), the transformed signals from magnitude data (red) and its corresponding control (blue) at 

various acceleration factors, R.  

4.4.3 Noise amplitude 
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correlation coefficients drop from 0.94 to 0.84 when the SNR decreases from 10000 

to 200 (Fig. 4.4l).  Except for the decrease in the correlation coefficient, the contrast 

between the two peaks is also artificially reduced owing to the larger noise amplitude, 

which can be seen by comparing the T1−T2 spectrum with different noise amplitudes 

(Fig. 4.4a-c).  The contrast in the 1D T2 projection is changed from 60% to 85% when 

the SNR drops from 2000 to 800, where the two peaks are indistinguishable at SNR = 

200.  

The CS reconstruction from subsamples successfully maintains the quality of 

T1−T2 spectra at similar levels as the results form the full data when the SNR 

decreases.  At R =3, the correlation coefficients from the subsample with CS 

reconstruction shows almost identical distributions as the results from the full data 

with slightly larger variance (≤1.5 times higher IQR) until the SNR drops below 800.  

At R =5, the correlation coefficients drops a little with larger variance, especially at 

lower SNR (<2000). Comparing to the control, the results from CS reconstruction 

shows much better quality at certain acceleration factors. For example, at SNR = 800, 

the correlation coefficients from the CS reconstruction results are significantly higher 

than the control (p < 5×10-9) until R ≥ 5.5 (Fig. 4.4k). At higher R, the sample size is 

not large enough to generate good-quality T1−T2 spectra via either the CS 

reconstruction or the conventional 2D ILT.  
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Figure 4.4. (a-i) T1−T2 relaxometry from the stimulated data with Gaussian noise at three SNR levels 

(SNR = 2000, 800 and 200) and three acceleration factors: R = 1, 3 and 5. (j) The normalized T2 

projections of (a−c) and the ground truth.  (k) The boxplots of the correlation coefficients of the CS 

reconstruction (red) and the control (blue) from the simulated data with Gaussian noise at SNR = 800 

at various acceleration factors, R, and the broader lines and dots are the median of the data at each R. 

(l) The boxplots of the correlation coefficients of the full data (red), CS reconstruction at R = 3 (blue) 

and R = 5 (green) at various SNR. For the display purpose, the outliers were not shown.   
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4.5 Accelerate urea/water MR T1−T2 and T2−T2 spectra experiments via CS 

4.5.1 Urea/water T1−T2 spectra 

Here, only the fourth echoes of the 250 CPMG echo trains were used; as a 

result the matrix size of the full data acquisition is 50 × 62 with SNR ≥ 5000.  The T1-

T2 spectrum from the full data is shown in Fig. 4.5a, in which two peaks are clearly 

observed: urea with gmT2 = 30.9 ms, gmT1 = 618 ms, and f = 18.9%; and the water 

with gmT2 = 156 ms, gmT1 = 614 ms, and f = 81.1%.  The small bias of the relative 

volume fractions from 20%/80% is the result of exchange between the protons on the 

urea molecules and those on the water molecules.  The projections of the T1-T2 

distribution onto the T1 and T2 axes are shown along the axes in Fig. 4.5a and b.  A 

single peak is observed in the projected 1D T1 spectrum with gmT1 = 614 ms for both 

the full data and CS reconstruction at R = 8.  Two peaks are observed in the projected 

1D T2 spectra for which the full data set is used with f = 18.9% and gmT2 = 30.9ms 

for the urea and f = 81.1% and gmT2 = 156 ms for the water. The corresponding 

values at R = 8 with CS reconstruction are f = 18.6% and gmT2 = 30.9 ms for the urea 

and f = 81.4% and gmT2 = 156 ms for the water. 

In Fig. 4.5b, the T1−T2 spectrum at acceleration factor R = 8 is presented; this 

spectrum has a very high correlation coefficient, C > 0.999. In contrast, the 

corresponding value of 1000 simulations in the control at R = 8 drops to 0.895 as 

shown in Fig. 4.5c, which is significantly smaller than the CS reconstruction (p < 

1×10-9).  With CS reconstruction at R ≤ 8, the biases of the urea parameters are: ≤ 

0.1% for the f, ≤ 0.1% for the gmT1, and ≤1% for the gmT2.  The corresponding 

values for the water are: ≤0.02%, ≤0.02%, and ≤0.01%, respectively. In contrast, the 
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corresponding biases in the control at R = 8 are -3.1%, -0.2%, and -3.2% for the urea 

and 0.73%, 0.09%, and 0.80% for the water. In addition, the variance of the results 

obtained with 1000 random samples is much smaller than that of the control at R ≤ 6 

and comparable to the control at R = 7 and 8.  At higher acceleration factor (R ≥ 9), 

very large variance and growing bias are observed.  

 

Figure 4.5. T1−T2 spectra of the urea/water phantom from (a) the full data and (b) the CS reconstruction 

at R = 8, in which the curves along the axes are the 1D projections onto each dimension. (c−f) are the 

Tukey box plots of the results from the 1000 realizations in each acceleration factor R, which includes 

(c) the correlation coefficients, the percentage of the biases of the urea’s (d) relative volume fraction, 

(e) gmT2, and (f) the water’s gmT2. 

4.5.2 Urea/water T2−T2 spectra  

T2−T2 spectra of the urea/water phantom at different mixing times are shown 

in Fig. 4.6a and Fig. 4.7a.  As the mixing time becomes longer, the total signal 
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intensity decreases while the relative fraction of the off-diagonal peaks increases. A 

two-site exchange model was used to fit the amplitudes of the peaks following a 

similar protocol as proposed by Dortch et al. [306] with the estimate of the urea 

proton fraction being 19.6% and the exchange rate 0.35 s-1. Two peaks at τm = 50 ms 

and τm = 1000 ms, with SNRs of ~ 5000 and 1000 respectively, were chosen to test 

the performance of the CS reconstruction.  

At τm = 1000 ms, the off-diagonal peaks (Pab and Pba) appear with the total 

relative volume fraction 15.1%, for which the relative volume fractions of the 

unchanged urea (Paa) and the water (Pbb) are 11.3% and 73.6% respectively. At R ≤ 9, 

the correlation coefficients between the CS reconstructed T2−T2 spectra and the one 

from full data can be maintained as high as ≥ 0.989, which are significantly higher 

than the control (p < 1×10-9); this coefficient begins to fall quickly with larger 

variance at R ≥ 10. In the control, there is a strong underestimation of the relative 

fraction of the off-diagonal peaks, Pab + Pba, and an overestimation of the water peaks 

Pbb, which can be as large as 14.5% and 1.8% at R = 9. CS reconstruction 

successfully corrects the biases back (e.g., 1.1% (overestimation) and 0.36% 

(overestimation) at R  = 9), with almost the same variance at low R and a slightly 

larger variance at high R (e.g., ~ 1.8 times higher in IQR than the control at R = 9). 

Except for the precise reconstruction of each peak’s relative fraction, the other 

relaxation parameters are also more accurate. For example, the gmT2 of the peak Pab 

is underestimated by 8.2% and 3.1% at the first and second dimension (gmT2,1 and 

gmT2,2) in the control case at R = 9, while the overestimations of peaks in the CS 

reconstruction are only 1.6% and 0.24%.  
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Figure 4.6. T2−T2 spectra of the urea/water phantom at mixing time τm = 1000 ms from (a) the full data 

and (c) the CS reconstruction at R = 9.  (b, d) are the results of (b) the correlation coefficients and (d) 

the biases of the relative volume fractions of the off-diagonal peaks as a function of the acceleration 

factor R, for which the red is the CS reconstruction and the blue is the corresponding control. 

At mixing time, τm = 50 ms, good CS reconstruction can be obtained until R = 

12. Here the 125 × 125 data matrix was first evenly subsampled into a 62 × 62 matrix 

(R = 4); then additional subsampling was performed randomly on the 62 × 62 data 

matrix.  In Fig. 4.7b, the statistical median of the 1000 T2−T2 spectra at R = 12 is 

shown; the correlation coefficient, C = 0.962, is very close to the corresponding value 

(0.964) at R = 4. At R ≤ 12, the statistical estimations of the other relaxation and 
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the f, gmT2,1 and gmT2,2 of the urea peak are only ≤0.87%, ≤0.74%, and ≤ 0.45%, 

respectively, compared with the corresponding results from the full data.  

 

Figure 4.7. T2−T2 spectra of the urea/water phantom at mixing time τm = 50 ms from (a) the full data 

and (d) the CS reconstruction at R = 12.  (c) Correlation coefficients as a function of the acceleration 

factor R, where the red is the CS reconstruction and the blue is the corresponding control. 

4.6 Apply CS on the MR T1−T2 spectra with imaging of porcine spinal cord 

The results of the ROI analysis on the dorsal white matter are detailed here 

(Fig. 4.8). The SNR in the white matter is approximately 200. Two broad peaks are 

observed in the T1−T2 spectra from the full data (preprocessed) with the myelin water 

(MW): f = 46.1%, gmT2 = 23.8 ms, and gmT1 = 837 ms and the 

intracellular/extracellular water (IEW): f = 53.9%, gmT2 = 62.3 ms, and gmT1 = 993 

ms. Here, T2 = 35 ms was used as the separation line between MW and IEW.   

As with our simulations, the noisy Rician signals also introduces spurious 

peaks in the long-T2 regime (red arrow in Fig. 4.8d and g), but our signal 

transformation scheme successfully corrects this artifact. CS performs adequately at R 

= 2.5, for which the correlation coefficient is 0.97 (significantly higher than the 

control, p < 1×10-4) and the contrast between the two peaks is preserved (93% for the 
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are still visible although the correlation coefficient (0.91) is lower than the control 

(0.93) now. Interestingly, the CS reconstruction does well at preserving the MW 

relative fraction (biases ≤0.41%), though with larger variance, for which the 

underestimation can be as large as 1.8% in the control at R = 4.0. Student’s t-test was 

performed on the results of MW relative fraction from both the CS reconstruction and 

the control with the null hypothesis that their means are equal to the result from full 

data.  The hypothesis is accepted by the results from CS reconstruction (p ≥ 0.15) 

expect for R = 4.0 (p = 0.02), while it is rejected by all the results from the control (p 

< 1×10-7). 
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Figure 4.8. The T1−T2 spectra of (d) the original magnitude data in the dorsal porcine white matter, (a) 

full data with transformed signal, (b) CS reconstruction from the transformed data at R = 2.5 and (c) at 

R = 4.0, (e) and (f) the corresponding control. (g) The normalized 1D T2 projections of (a−f).  (h−g) 

The results of (h) the correlation coefficients and (i) the MW fraction as a function of the acceleration 

factor R, where the red are the CS reconstructions and the blue are the corresponding controls. The 

map of the gmT2 from 10 ms to 400 ms of the spinal cord and the ROI in the dorsal white matter (red 

curve) are shown at the upper left corner of  (a).   
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4.7 Discussions and conclusions 

In this work, our main objective was to design a pipeline to accelerate the 

acquisition of 2D relaxation spectra using compressed sensing and then to test and 

validate its efficiency in maintaining the quality of the 2D distributions with both 

simulations and acquired NMR and MRI experimental data.  

Clearly, compared with 1D relaxation spectra, more information can be 

obtained from the 2D relaxation spectra, even in simple well-defined systems like the 

urea/water mixture studied here.  The 2D spectra can uncover and distinguish 

different relaxation components that may be hidden in the 1D spectra. For example, 

only one peak can be observed in the T1 spectra of the urea/water phantom, whereas 

two peaks are well defined in the T1−T2 relaxation spectra. Furthermore, exchange 

information between different components can also be extracted from 2D relaxation 

spectra whereas this is not possible in the 1D case.  In T2−T2 relaxometry of the 

urea/water phantom, the off-diagonal peaks provide direct evidence of exchange 

between the protons on the urea and water molecules; these rates of exchange can be 

then be quantitatively characterized by modeling and fitting the intensities of the 

peaks. This information cannot be obtained from 1D T2 spectra alone.  

The 2D-ILT algorithm proposed by Venkataramanan et al. is very sensitive to 

the SNR and the type of noise. For example, in the simulations, either the change in 

noise type from Gaussian to Rician or the decreasing of SNR from 10000 to 200 will 

significantly affect the quality of the 2D relaxometry. In T2−T2 relaxometry of the 

urea/water phantom, the off-diagonal peaks showed a little smaller T2 values than the 

on-diagonal peaks in the x-axis, which might caused by some systematical 
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noise/artifacts we don’t know yet. Normally, a high SNR with Gaussian noise is 

required for good performance.  These conditions can be easily achieved for most 

NMR experiments with large sample sizes at high fields. However, for MRI 

applications, the SNR is typically lower and the noisy amplitude signal should be 

transformed from a Rician to a Gaussian distribution. Higher SNR in MRI can be 

achieved by performing ROI analysis in homogeneous regions. 

In both simulations and the MRI experiments on the spinal cord, the presence 

of Rician noise introduces spurious peaks in the long T2 regime because the 

rectification of the complex MR signal produces a “noise floor” which, uncorrected, 

is fit by the 2D-ILT routine in both dimensions. This baseline signal biases the signal 

decay, leading to the appearance of artifactually long-T2 components and decreasing 

the contrast between existing peaks. This phenomenon is quite similar to the one we 

observed previously in the 1D T2 spectra from noisy MRI magnitude data.  A signal 

transformation framework we proposed previously for 1D T2 spectra in multi-echo 

MRI is successfully applied here to the 2D relaxation spectra obtained from MRI data 

to remedy biases caused by Rician noise. While the method is not perfect, these 

biases are significantly reduced. 

CS reconstruction was successfully carried out on the simulated 2D relaxation 

spectra data, experimental NMR data on a well-characterized urea/water phantom, 

and the IR-ME MRI data from the porcine spinal cord.  With the CS reconstruction, 

the size of the data matrix can be reduced significantly without compromising the 

quality of the final 2D relaxation spectra. Compared with the controls, 2D relaxation 

spectra obtained from subsamples using CS reconstruction shows a better 
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approximation to the ground truth or to the results from full data, as demonstrated by 

the higher global correlation coefficient; better contrast between local peaks; and 

more accurate relative volume fraction and relaxation parameters. A disadvantage of 

the CS reconstruction is that it admits more outliers at higher R, where the noise in 

some subsamples causes the CS reconstruction to fail. However, the number of these 

problematic subsamples becomes negligibly small as a function of the number of data 

points collected [322]. Additionally, the CS-reconstruction algorithm proposed here is 

very fast with processing time around several seconds for each reconstruction on an 

Apple Desktop computer with 4 cores.  

The maximum acceleration factor, R that can be achieved using CS 

reconstruction depends on the noise amplitude, noise type, the experimental design of 

the MR data acquisition protocol, and the underlying ground truth. In the simulation, 

better T1−T2 spectra are obtained at a high SNR (2000) than at a low SNR (800) at the 

same acceleration factor. In the T2−T2 spectra of the urea/water phantom, R = 12 can 

be achieved at a mixing time, τm = 50 ms, but the maximum R at a mixing time τm = 

1000 ms is 9, for which the SNR is around 5 times lower and the relaxometry spectra 

appear more complex. As for the simulations of the 2D relaxation spectra with MRI, 

the maximum R is around 5 even after the noise correction, since CS is performed 

with an already small data matrix. 

Two distinguishable peaks were observed in the T1−T2 spectra of the white 

matter from the porcine spinal cord, which were assigned to be myelin water (shorter 

relaxation times) and intracellular/extracellular water (longer relaxation times). These 

results were consistent with previous 1D T2 spectra measures in the white matter in 
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vivo or ex vivo [178,254,260,325].  Here the maximum R that can be achieved is 

equal to or less than 4.0, which is smaller than in the simulations. Several reasons 

may contribute to this reduction: (1) the SNR is lower in the experiments since the 

number of voxels in the ROI is less than 100; (2) the noise is still not Gaussian even 

after preprocessing since there might be some systematic artifacts; (3) heterogeneities 

may exist among voxels and ROI-type analysis might not be the best way; (4) the 

underlying ground truth of the T1−T2 relaxation spectra of the biological tissue is still 

poorly known, thus there might be biases in the T1−T2 relaxation spectra when the 

complete data set is used. Interestingly, even with a decreased correlation coefficient, 

CS reconstruction corrects the bias in estimating the MW and IEW fraction with the 

conventional 2D ILT method, though with larger variance.   

The biggest obstacle to migrating 2D relaxation spectra measurement to in 

vivo preclinical and clinical MRI scanning applications is the long acquisition time. 

For example, the total acquisition time for the IR-ME experiments in this experiment 

was ~21 hours.  With CS, the time can be reduced to ~6 hours by an acceleration 

factor R = 3.5, but these times are still too long for in vivo applications. However, the 

parameters chosen in our time-consuming IR pulse sequences were conservative, 

leading to a long pre-scan delay.  There are other MRI pulse sequences with shorter 

acquisition time, such as the saturation-recovery prepared multi-echo (SR-ME) with 

echo-planer (EPI) acquisition pulse sequences, proposed by Does and Gore [294], 

whose total acquisition time is about 1 hour. If the same acceleration factor R = 3.5 

can be achieved there, the total acquisition time could be reduced to 17 minutes. In 
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addition, even higher acceleration factors will be possible as SNR increases with 

improvements in scanner hardware.   

One practical concern of the CS reconstruction is the random sampling, which 

might be limited by the natural structure of the CPMG or multi-echo pulse trains, i.e., 

the reduction of the scan time is only achievable in the first dimension of the three 

pulse sequences (Fig. 4.1) used in this study.  However, in high-field MRI scanners, 

safety concerns, primarily power deposition in tissue owing to a high specific 

absorption rate (SAR), limits the total number of 180° pulses that can be applied per 

unit time. Therefore, a practical alternative would be to use a single echo or a few 

echoes with a fast MRI acquisition, such as EPI; parallel imaging; multi-band 

excitation, etc. In these cases, acceleration provided by CS reconstruction could play 

an important role in reducing the acquisition time further, making 2D relaxation 

spectrum MRI measurements clinically feasible. Though the three pulse sequences in 

this study can’t be directly applied to in vivo preclinical and clinical studies, but the 

data from these sequences represents the general 2D relaxometry data structure and 

the findings in “compressing” the 2D data will be helpful for future pulse sequence 

designs and data analysis.   

In this work, the CS reconstruction was carefully validated in simulations and 

a limited number of biological samples. For in vivo MRI applications, much work is 

still required, such as reaching a deeper understanding of the ground truth of the 2D 

relaxation spectra in different biological tissues, better modeling and correction of the 

noise within MRI acquisitions, and hardware improvements that will increase the 

SNR.  Only 2D T1-T2 and T2-T2 MR relaxometry were validated here, but this pipeline 
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can be easily adapted to other 2D spectra, such as D-T2, D-D, T1-T1, etc., provided 

that the application of the successive “filters” results in a relationship between the 

measured magnetization and the relaxation parameters that is given by a 2D Fredholm 

equation. Moreover, higher dimensional (nD) relaxometry studies can also be used 

because compression efficiency can increase in CS with increased dimensionality 

particularly when spectral data are sparse and compactly supported, as appears to be 

the case with many experimental relaxation spectra.  In addition, further data 

compression can be achieved if CS is used both in the Laplace domain, as is done 

here, and in the Fourier domain to reduce the number of MRI acquisitions required 

for spatial localization. 

 

4.8 Algorithm detail: recover 𝑴 from incomplete measurements with compressed 

sensing 

Let us start with the minimization problem in Eq. 4.3. With the SVD in Eq. 

4.4, Eq. 4.3 can be rewritten as [311,322] 

𝐹 = arg    min
!!!

𝑀 − 𝐾!𝐹𝐾!! ! + 𝛼 𝐹 !                                                                                                                                                          

= arg    min
!!!

𝑈!𝑀𝑈!! − 𝑈!𝑈!!𝐾!𝐹𝐾!!𝑈!𝑈!!
! + 𝑀 ! − 𝑈!𝑀𝑈!!

! + 𝛼 𝐹 !

          = arg    min
!!!

𝑀 − (𝑆!𝑉!!)𝐹(𝑆!𝑉!!)!
! + 𝛼 𝐹 !                                                                                                                      

    

(4.7) 

where the third line comes from U1 and U2 having orthogonal columns, and the 

second and the third items in the second line being independent of F. The target of the 

CS reconstruction is to search for a matrix X to well approximates the ground truth 
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𝑀𝟎 ≡ (𝑆!𝑉!!)𝐹(𝑆!𝑉!!)! ∈ ℝ𝒔𝟏×𝒔𝟐 with the given subsamples y, which was chosen from 

the full data M on random entries 

𝑦 = ℛ! 𝑀𝟎 + 𝜖      (4.8) 

where  Ω ⊂ {1,… ,𝑁!}× 1,… ,𝑁!  is the set of random indices where we observe M 

with Ω = 𝑚 and the indices ordered as Ω = { 𝑖! , 𝑗! }!!!!  , and ℛ! is the sampling 

operator 

ℛ! ∶   ℝ𝒔𝟏×𝒔𝟐 → ℝ𝒎  
ℛ! 𝑋 = 𝒜!(𝑈!𝑋𝑈!!)

     (4.9) 

Here 𝒜! is a linear operator with random sampling 

𝒜! ∶   ℝ𝑵𝟏×𝑵𝟐 → ℝ𝒎  
𝒜! 𝑋

!
= 𝑋!!,!!

     (4.10) 

Our CS reconstruction is based on low-rank matrix completion and the 

reconstruction step takes the form 

                    min                       𝑋 ∗   ∶= 𝜎!(𝑋)!
!!!                 

such that                   ℛ! 𝑋 − 𝑦   ! ≤ 𝜖      (4.11) 

where 𝜎!(𝑋) is the ith singular value of a rank r matrix X and the operator ℛ! 

satisfies the restricted isometry property (RIP) as demonstrated in [322]. In the 

algorithm, instead of solving Eq. 4.11, we solved the relaxed Lagrangian form 

 min 𝜇 𝑋 ∗ +
!
!
ℛ! 𝑋 − 𝑦 !

!    (4.12) 

Eq. 4.12 is solved using the singular value thresholding algorithm from [324,326] 

with a two-step iterative process. Let the matrix derivative of the L2 norm term in Eq. 

4.12 be written as 

𝑔 𝑋 = ℛ!
∗ ℛ! 𝑋 − 𝑦

                                                                        = 𝑈!! 𝒜!
∗ 𝒜! 𝑈!𝑋𝑈!! − 𝑦 𝑈!

  (4.13) 
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Another notation is the singular value thresholding operator Sv that reduces 

each singular value of some matrix X by v. Let us say the SVD of X is 𝑋 = 𝑈Σ𝑉!, 

then Sv is defined as 

𝑆! 𝑋 = 𝑈Σ𝑉!,    with  Σ!,! =
max Σ!,! − 𝑣, 0 , 𝑖 = 𝑗
0,                                   otherwise

  (4.14) 

The two-step iterative process is then 

𝑌! = 𝑋! − 𝜏𝑔(𝑋!)
𝑋!!! = 𝑆!" 𝑌!           

      (4.15) 

With proper choices of τ and µ, for any initial condition, this method converges with a 

high probability to a matrix 𝑀, which is guaranteed in theorem [322] to be close to 

𝑀𝟎 up to a constant factor of the noise.  The recovered 𝑀 is then substituted into Eq. 

4.7 to solve for F. More details about this CS reconstruction process can be found in 

[322]. 
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Chapter 5:  A novel test bed for testing and developing direct 

fMRI methods using simultaneous calcium fluorescence 

imaging and MR of ex vivo organotypic brain cortical cultures  

Recently, several new functional magnetic resonance imaging (fMRI) contrast 

mechanisms including diffusion, phase imaging, proton density, etc. have been 

proposed to measure neuronal activity more directly and accurately than blood-

oxygen-level dependent (BOLD) fMRI. However, these approaches have proven 

difficult to reproduce, mainly because of the dearth of reliable and robust test systems 

to vet and validate them. In this chapter, we described the development and testing of 

such a test bed for non-BOLD fMRI. Organotypic cortical cultures were used as a 

stable and reproducible biological model of neuronal activity that show spontaneous 

activity similar to that of in vivo brain cortex without any hemodynamic or respiratory 

confounds. An open-access single-sided MR “profiler” consisting of four permanent 

magnets with a magnetic field of 0.32 T was used in this study to perform MR 

acquisition. A fluorescence microscope with long working distance objective was 

mounted on the top of a custom-designed chamber that keeps the organotypic culture 

vital, while the MR system was mounted on the bottom of the chamber to achieve 

real-time simultaneous calcium fluorescence optical imaging and MR acquisition on 

the same specimen. In this study, the reliability and performance of the proposed test 

bed was demonstrated by a conventional CPMG MR sequence acquired 

simultaneously with calcium imaging, which is a well-characterized measurement of 

neuronal activity. This experimental design will make it possible to directly correlate 
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the other candidate functional MR signals to the optical indicia of neuronal activity. 

This chapter was adapted from manuscript 5, which is under review by NMR in 

Biomedicine (Appendix A).   

5.1 Need of a reliable and robust test system for direct fMRI 

Detection of neuronal activity noninvasively and in vivo is a desideratum in 

medicine and in the neurosciences. As an example, the BRAIN Initiative 

(http://braininitiative.nih.gov/) was launched with the goal of advancing 

neuroimaging techniques that enable the measurement of brain function at multiple 

spatial and temporal scales. Owing to the many forms of MRI contrast, and MRI’s 

exquisite sensitivity to water dynamics in soft tissue, functional magnetic resonance 

imaging (fMRI) remains a promising method for the assessment of neuronal activity. 

The most commonly used contrast mechanism in fMRI is based on the blood 

oxygenation level dependent (BOLD) effect, which measures local hemodynamic 

changes, a secondary effect of neuronal activity [78,79,327].  This indirect 

relationship between the BOLD fMRI signal and local neuronal activity confounds its 

interpretation and limits both its temporal and spatial resolution [80,85,86].  

Over the past decade, several non-BOLD fMRI mechanisms have been 

proposed to detect neuronal activity directly.  These methods include, but are not 

limited to: (a) functional diffusion MRI to detect water displacements [91–94]; (b) 

phase MRI of changes in local magnetic field caused by neuronal currents [95–97]; 

(c) Lorenz-Force-effect MRI of neuronal currents to detect displacements of neural 

tissue [98,99]; (d) proton–density–weighted MRI [100,101]; and (e) spin-lock MR 

methods [102,103].  Although proponents of these methods have reported positive 
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findings, most of these approaches are either still in development or have not been 

reproduced by a larger cohort of researchers.  One obstacle in advancing this 

important research, e.g., convincingly demonstrating one or more of these proposed 

mechanisms, is the dearth of “ground truth” experiments—specifically, a means to 

generate reproducible neuronal activity while providing a robust and reliable MR 

means to detect them.  

At a minimum, such an fMRI test bed should include (a) a well-characterized 

biological model of neuronal activity free of hemodynamic, respiratory and related 

confounds, and (b) an independent well-established neurophysiological method to 

detect neuronal activity directly and simultaneously with fMR/fMRI.  In vitro 

perfused brain slices are a good choice for achieving the first goal as they have been 

widely used in neuroscience community as a biological model to study neural 

functions since 1950s [134–136] and have no hemodynamic or respiratory artifacts.   

Indeed, perfused brain slices have already been used in successful MR spectroscopy 

and imaging experiments designed to study metabolism, neurotransmitter, ions, tissue 

microstructure, tissue injury and even the neuronal excitation [69,70,93,124,131,137–

143] 

To meet the second requirement, one of the standard neurophysiological 

methods—which include intracellular and extracellular electro recording, intracellular 

calcium imaging, membrane voltage imaging, etc. [1,10]—should be used to measure 

neuronal activity inside the NMR/MRI system during MR acquisition. Though the 

close configuration and potential electromagnetic interface in MR systems make it 

difficult to perform these recordings together with MR acquisition, few hybrid setups 
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have been reported in which BOLD fMRI was recorded together with electrodes 

[144,145] or optical fibers [86]. In other fields, one group did perform successful 

experiments to study single cell or cell cultures with a very technically challenging 

setup involving a combination of confocal and magnetic resonance microscopy [146–

149]. However, to our knowledge, a direct (non-BOLD) fMRI experiment that 

satisfies the two requirements discussed above has not yet been reported. 

Here we propose and demonstrate the use of such a test bed in which MR 

experiments and calcium fluorescence imaging are performed simultaneously on 

organotypic cortical cultures from rat.  In this system, a single-sided MR system with 

permanent magnets was used [150]. Such systems, developed in the last two decades, 

are portable and have been used primarily to study the proton density, relaxation 

times, and diffusion coefficients in biological samples, polymers and gels, foods, and 

materials [151–155]. One key attribute of single-sided MR systems is the open access 

to the sample they provide, a feature we exploit in our design, in which a fluorescence 

optical microscope with a long working distance was installed above the biological 

specimen to simultaneously image intracellular Ca2+ transients. Fluorometric 

Ca2+ imaging detects caged or bound Ca2+ ions released during neuronal activity and 

represents a direct method for detecting neuronal activity [156,157].  

In this study, we performed experiments on the organotypic cultures of rat 

cortex, which has been widely used in neuroscience as a biological model of neuronal 

activity [158–162] and also has been used in MRI studies [95,140,163]. Organotypic 

cortical cultures largely maintain the in vivo cortical cytoarchitecture including 

cortical layers and cortical cell types, which can be grown and recorded from for 
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several weeks in the incubator [159,160]. More importantly, organotypic cultures in 

vitro display bursts of spontaneous neuronal activity, so-called up- and down-states, 

that is similar to in vivo nervous tissue [161,164,165]. Thus, no pharmacological 

manipulation is required to initiate neuronal activity and the culture remains in a 

long-term homeostatic state while exhibiting large transients of neuronal activity 

[162]. Organotypic cultures do not contain a cerebrovascular system and thus are free 

of artifacts of hemodynamic origin, such as pulsation and flow artifacts or artifacts 

associated with respiration and variable oxygenation, which are known confounds in 

fMRI studies in vivo. 

In this work, we focus on the description and demonstration of this test bed to 

assess the direct fMRI measurement of neuronal activity. This article is organized as 

follows: A systematic description of each essential component of the test bed, which 

consists of the organotypic cortical culture, the MR system, the fluorescence calcium 

imaging, etc., is provided. Following that, the performance of the system, in 

particular, the properties and stability of the MR and fluorescence calcium signals is 

described. Then, the results of the experiments with simultaneous calcium fluoresce 

imaging and a conventional MR multi-echo pulse sequence without imaging are 

analyzed and discussed. Finally, the benefits of such a testing system and its potential 

applications for future work are discussed.   

5.2 Simultaneous calcium fluorescence imaging and MR recording on the 

organotypic cortical cultures—setups   

5.2.1. Organotypic rat-cortical culture 
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For the preparation of organotypic tissue cultures, somatosensory cortex was 

taken from acute coronal slices of newborn rats (postnatal day 0–2, Sprague Dawley). 

Organotypic cultures made from coronal slices maintain the layered organization of 

the cortex and the parallel orientation of pyramidal neurons with respect to each 

other. The acute slices (350 µm thickness) were attached to the #1 coverslips by using 

a plasma-thrombin mixture and submerged in 800 µL of culture medium and 

incubated at 35.0 ± 0.5 °C. The medium was replaced every 3–4 days. The tissue was 

cultured for up to 3 weeks, when the tissue thickness was approximately 100 – 200 

µm. More details about growing this type of organotypic culture can be found in 

[162,328]. We commonly mounted two cortical slices close together on each 

coverslip to increase tissue volume within the RF coil. This approach allowed for 

neuronal cultures to preserve most of the architectural specificity of a cortical 

network.  

5.2.2. Setup for simultaneous functional MR and calcium imaging 

Fig. 5.1 is a schematic diagram, showing the placement of the MR and 

fluorescence imaging systems with respect to the in vitro specimen. Organotypic 

cultures from rat cortex were grown on a coverslip [160,328] and kept in a custom-

machined environmental chamber to maintain the cultures’ vitality during the 

experiment and to allow for perturbation of environmental conditions. The chamber 

was mounted on top of a single-sided MR system with permanent magnets; this setup 

provided open access to the tissue culture. An RF surface coil was attached directly 

below the coverslips to transmit and receive MR signals. An optical fluorescence 

microscope was mounted above the MR stage, thus enabling calcium imaging down 
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onto the organotypic culture.  One advantage of this optical system is its long 

working distance objective (87 mm with the 0.63× lens), which separates the 

permanent magnets and the fluorescence microscope.  Another advantage is its large 

field of view (FOV) (8.8 mm × 6.6 mm at 1× magnification), which can capture the 

entire tissue specimen (~ 2 mm × 4 mm for each cortex). The details of each part of 

this test bed are described in the following sections.  

 

Figure 5.1. Setup for simultaneous functional MR and calcium imaging. (a) Schematic diagram of the 

simultaneous MR and fluorescence imaging test bed (left) and an enlargement of the components near 

the organotypic cultured tissue  (right), which is immerged in artificial cerebral spinal fluid (ACSF). 

(b) Top and bottom layers of the two-layer RF surface coil. (c) A real image of the coil with the 

cortical culture mounted under 0.63× magnification.  (d) A simulated 2D B1 field distribution at y = 0.2 

mm in the x-z plane.   

5.2.2.1.  Fluorescence microscope 

A macro-zoom fluorescence microscope (MVX10 MacroView, Olympus Inc., 

USA) was modified and mounted on an optical table using a custom designed  

machined stainless-steel stand and a boom. A 0.63× MVX Plan Apochromat lens 
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(Olympus Inc., USA) with a 0.15 numerical aperture (NA) was used with total 

magnification ranges from 0.63× to 12.6×. A 100W Mercury Apo lamp housing and 

transformer were used as a light source.  A color CCD camera (ProgRes® CF scan, 

Jenoptik, Inc., Germany) with high frame rates (51 fps for 680 × 512 pixel) was 

mounted on the microscope for fast fluorescence imaging. 

5.2.2.2. Calcium staining and imaging 

Vital calcium imaging was achieved using 50 µM Oregon Green 488 BAPTA-

1 (OGB; Life Technologies, NY, USA). OGB was dissolved in 10 µL pluronic F-127 

(20% in DMSO; Life Technologies, NY, USA) and 790 µL freshly prepared artificial 

cerebrospinal fluid (ACSF).  Cultures were incubated for 45–90 minutes in a roller 

tube incubator and washed in ACSF for 20–60 minutes before imaging. Calcium 

images were acquired with GFP fluorescence filter units from Olympus (Olympus 

America Inc., USA), whose activity, dichroic, and emission lengths are 450−490 nm, 

reflection < 495 nm, and 500−550 nm, respectively.  The real-time calcium imaging 

was acquired using ProgRes® CapturePro v2.8.8 software (Jenoptik, Germany).  

5.2.2.3. Single-sided MR system 

The permanent magnets of the single-sided MR system (NMR-MOUSE) were 

purchased from Magritek European, Aachen, Germany. A Kea spectrometer and 

Prospa acquisition software (Magritek, New Zealand) were used to generate and 

collect the MR signals.  The single-sided MR system with four permanent magnets 

mounted in an iron yoke (Fig. 5.1, see reference [152] for details) generates a 

relatively uniform magnetic field (0.32 T, 15 mm × 15 mm) in the x-z plane at ~ 15 

mm from the surface of the magnets. This selective volume, with thickness ∆𝑦, is 
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achieved by a slice-selective acquisition by controlling the acquisition time Tacq 

[150,151]:  

∆𝑦 = 2𝜋/𝐺!𝑇!"#       (5.1) 

where G0 = 650 kHz/mm is the strength of the strong and highly uniform magnetic 

field gradient across the selective volume in the y-direction. Both the MR system and 

the optical microscope were mounted on an anti-vibration optical table to eliminate 

spurious mechanical vibrations. 

To reduce the MR FOV in the x-z plane so that it matched the tissue’s 

dimensions, a homemade two-layer multi-turn micro RF surface coil (Fig. 5.1) was 

used with an inner dimension (5 mm) approximately the size of two cortical slices. 

The two-layered multi-turn RF surface coils (Fig. 5.1) were fabricated by SF Circuits 

Inc., San Mateo, CA, USA. On each side of the 225-µm thick polyimide board, there 

were 4 turns of copper conductors with 18-µm height, 200-µm width and a lateral 

spacing of 50 µm. The top layer and the bottom layer (Fig. 5.1b) were connected by a 

copper hole. A calculation based on the Biot-Savart law was performed to simulate 

the B1 field distribution produced by the RF coil; this simulation can provide a good 

estimate of the ground truth at these low frequencies.  

5.2.2.4. MR pulse sequences 

The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence (Fig. 5.2a) is widely 

used in single-sided MR applications to measure the effective transverse relaxation 

time, 𝑇!"##, which is affected by both the transverse relaxation time, 𝑇!, and the self-

diffusion coefficient, D, in the presence of a static field gradient, G0 [150]: 

!
!!"##

= !
!!
+ !

!
𝛾𝐺!𝜏 !𝐷𝛼     (5.2) 
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where γ is the gyromagnetic ratio of protons, τ is half the echo time, and α = 1.32 

[329]. The sensitivity of the 𝑇!"##  to 𝑇!  and D was examined with a series of 

manganese chloride (MnCl2) solutions while τ was adjusted [329]. 

A well-known feature of diffusion MRI in the cortex is the multi-exponential 

behavior of the diffusion signal, which is often modeled by a three-parameter 

biexponential function [62,69,91,93,124,330]: 

𝑆(𝑏) = 𝑆![ 1− 𝑓!"#$ exp −𝑏𝐷!"#$ + 𝑓!"#$exp −𝑏𝐷!"#$ ]  (5.3) 

where S is the diffusion signal; b is the diffusion weighting; Dfast and Dslow are the fast 

and slow diffusion coefficients, respectively; and fslow is the slow diffusion 

compartment fraction.  To measure the water diffusion, we used a spin echo (SE) in 

the presence of a static magnetic gradient (Fig. 5.2b).  CPMG echo trains were 

acquired and summed after the main diffusion-weighting period to improve 

sensitivity.  In this pulse sequence, the b value is defined as [152]: 

𝑏 = !
!
𝛾𝐺!𝜏! !𝜏!      (4) 

where τ1 is the half echo time of the first spin echo for diffusion encoding.  
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Figure 5.2. MR pulse sequences and signals. Diagrams of the two pulse sequences: (a) CPMG and (b) 

diffusion editing SE with CPMG detection.  (c) MR spatial localization of the culture. (d) The 

diffusion-weighted MR signal of ACSF (green) and the culture (blue), in which the continuous curves 

are the fitting results with models. (e) One example of the CPMG signal of the culture, in which the 

continuous red curves are the fitting result with a single-exponential function. The subplot in the 

middle is the enlargement of the dashed red box.   

5.3 Experimental protocol and data analysis methods   

5.3.1 Experimental protocol 

Before experiments were performed, the organotypic culture was moved from 

the roller incubator to the custom chamber (Fig. 5.1) after the calcium dyes were 

loaded.  During experiments, the culture was continuously perfused with oxygenated 

ACSF (95% O2 , 5% CO2) and the temperature of the perfusate was kept constant 

with an inline temperature controller. A water bath, attached to the bottom of the 

chamber, was used to precisely control the temperature inside the chamber. Water 

from a large water bath outside the experimental stage circulated through this bath 
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and kept it at a constant temperature. A fiber-optic temperature sensor (OpSens 

TempSens, OpSens Inc., Quebec, Canada) was mounted near the tissues to monitor 

their temperature during the experiments. The temperature was kept at 34.2 ± 1.0 °C 

during experiments and the temperature gradient inside the RF coil was less than 0.5 

°C. Of the 17 cultures scanned, 14 cultures were statistically analyzed, and three were 

rejected because of failure in temperature maintenance or MR acquisition software 

instability. 

5.3.1.1 MR spatial localization 

After the organotypic culture was mounted in the chamber, a 1D profile with 

40-µm resolution was obtained to determine the position of the tissue. A 1D spatial 

profile in the y direction was achieved by mechanically raising and lowering the 

magnet with a precision lift (best resolution ~ 10 µm) and the CPMG pulse sequence 

with matching slice-selective acquisition. The parameters for the CPMG sequence 

were: TR = 2 s, 500 echoes with τ = 40 µs, and 8 repetitions. The signal intensity was 

defined as the average of the 500 echoes to improve the SNR. In this process, the 

positions of the RF coil, the chamber, and the culture were fixed while only the 

selective volume was raised and lowered as the magnet was moved up and down. 

First, the coverslip was found (Fig. 5.2c), and then the magnet was moved up 80 

µm−120 µm to locate the middle of the tissue.   

5.3.1.2 Diffusion MR measurements  

After a central slice covering the middle portion of the tissue was identified, 

the SE pulse sequence was performed with 32 b values ranging from 0 to 5700 s/mm2 

with a step of 184 s/mm2. The other parameters were:  repetition time (TR) 4 s, 4000 
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echoes in the CPMG with τ = 20 µs, and 8 repetitions with a two-step phase cycling 

(Fig. 5.2b). The acquisition time in each echo was 16 µs with 32 sampling points, 

resulting in a thickness of the selective volume of  ~100 µm.  

5.3.1.3 Simultaneous calcium fluorescence imaging and MR recording 

In the MR, the CPMG pulse sequence was used for fast recording: TR = 1 s, 

1200 echoes with τ = 30 µs.  The acquisition time and the corresponding thickness of 

the selective volume were 16 µs (32 sampling points) and 100 µm, respectively. At 

the beginning of each experimental session, the phase of the CPMG signal was 

automatically adjusted to put the entire signal into the real channel. Calcium imaging 

was acquired with 1× magnification, 8.8 mm × 6.6 mm FOV, 680 × 512 pixels, 

exposure 100 ms, and 10 frames per second. The focal plane and light intensity were 

adjusted at the beginning of each experiment and kept constant during the entire 

experiment session. The light intensity was adjusted to the minimal level that still 

enables distinguish neuronal activity from background noise to avoid strong photo 

bleaching and phototoxicity.   During the experiments, both the camera frame time 

and the time of MR pulses (first 90° in the CPMG) were recorded with a precision of 

1 ms accuracy. The total recording time ranges from 1 hr to 3 hr, which were mainly 

restricted by the health of the culture with calcium staining and under light shining.  

5.3.2. Signal processing and data analysis 

All signal processing and analysis routines were implemented in MATLAB. 

5.3.2.1 Calcium signal processing 

Regions of interest (ROIs) were manually selected on the two cortical slices 

(Fig. 5.3a) to show the spontaneous activity within and between the cultures. A 
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background ROI was also manually selected close to the tissue but with no tissue 

inside.  Comparison and correlation of the calcium signal with the MR signal were 

also performed by manually choosing a large ROI containing all the tissues inside the 

RF coil. Background subtraction was further performed on the fluorescence signal 

from the large ROI by automatically subtracting the background. The fluorescence 

values were then expressed as relative percentage changes from the baseline, %ΔF/F. 

Formally, ΔF/F is defined as the change in fluorescence over the baseline: ΔF/F = 

(FROI - FROI,0)/FROI,0, where FROI and FROI,0 denote the background-corrected 

fluorescence intensities in the ROI and its baseline calculated from a 30-second 

sliding window to overcome photo bleaching artifacts.  To detect calcium transients 

in an automated manner, a deconvolution algorithm, based on the 1D-deconvolution 

algorithm in MATLAB, was developed and applied to the fluorescence signal, 

%ΔF/F.  The convolution kernel consisted of two parts: a delta function for the fast 

rising phase and a slow decay curve back down to the noise floor. Fluorescence decay 

curves were carefully fitted after neuronal activity events.  A threshold was set in the 

deconvolved data to enable robust detection of neuronal activity events.  

5.3.2.2 MR CPMG and SE signal 

The first four echoes that have systematic artifacts in each CPMG echo train 

were automatically eliminated. The zero-order phase correction was automatically 

applied to all the CPMG echo trains in each experiment.  As for the spontaneous MR 

and calcium recording, the first 10 CPMG echo trains at each long recording were 

automatically removed to eliminate the instability present before the steady state was 

reached.   Three MR parameters were extracted from each CPMG echo train: I0, the 
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average of the first 5th to 100th echoes (real channel, mean TE (mTE) = 3.2 ms), 

denoted as the initial signal intensity and a representation of proton density; R, the 

weighting ratio between the average of the echoes from the 301rd to the 1200th (real 

channel, mTE = 45.0 ms) and from the 5th to the 300th (real channel, mTE = 9.2 ms), 

denoted as the decay rate; φ, the phase of the average of all the echoes, denoted as the 

phase of the MR signal. 

In the case of the MR SE signal, the average of the entire CPMG echo train 

was used as the signal intensity at each b value.  A trust-region-reflective nonlinear 

least square algorithm in the MATLAB was used for the model fitting.  

5.3.2.3 Effects of neuronal activity on MR signal 

The potential effects of neuronal activity on the MR signal were tested by 

binning the MR signal itself into two categories: active and resting states. Then, 

paired comparisons were performed on each active MR waveform with its 

corresponding resting MR waveform by subtracting each active MR signal from its 

corresponding resting signal.  

Two types of time-series analysis were performed.  Type 1, we hypothesized 

that each neuronal event only affects the MR signal recorded after each neuronal 

event in a time window T, with ranges from 0.1 s to 1.0 s with a step of 0.1 s. The 

corresponding resting MR for each active MR was the MR recording the closest in 

time to the moment before the neuronal event (Fig. 5.5a). The fluorescence signal for 

each MR signal was the average of the entire fluorescence signal within T prior to 

each MR recording. Type 2, we hypothesized that each neuronal event only affects 

the MR signal recorded within 2 s before and following each neuronal event. All MR 



 
 

132 
 

signals outside this 4 s time window were denoted as resting state (Fig. 5.5b). The 

fluorescence signal for each MR signal was the average of the entire fluorescence 

signal within 2 s before and following each MR recording. To scale the difference 

across cultures and perform statistics, the fluorescence signals for all MR recordings 

in each culture were normalized by their maximum value in the active state. Each 

active MR was further binned into different groups on the basis of how distant it was 

in time (Δ) from the neuronal event with a time step 0.2 s. For each active MR, the 

four resting MRs closest to it in time, both before and after, were chosen and 

averaged as the corresponding resting MR. 

5.4 MR signal of the organotypic cortical culture 

5.4.1 Micro RF coils 

Tuning and matching the coil with an external circuit was achieved with a 

quality factor (Q) of 14 [331]. The B1 field distribution in the selective plane (middle 

of the tissue, y ~ 200 µm) shows a plateau inside the RF coil with maximal sensitivity 

combined with a slight rise near the inner edge of the coil and a rapid decay starting 

at the inner edge of the coil in the lateral directions (Fig. 5.1d).  

5.4.2. MR spatial localization 

In the 1D profile (Fig. 5.2c), the signal intensity increased as the selective 

volume was lowered towards the surface of the RF coil, but the signal dropped 

quickly to zero as the selective volume moved onto the coverslips (thickness ~ 0.13 

mm to 0.16 mm).  Then, the magnet was moved up by 80 µm to 120 µm to locate the 

center of the culture tissues.   

5.4.3. MR diffusion measurements 
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To confirm that the selective volume (selective thickness ~100 µm) contained 

the tissue, diffusion MR was performed prior to the simultaneous fluorescence and 

MR recording (Fig. 5.2d). The diffusion decay signals were fit well by a 

biexponential function with the tissue in place.  In contrast, the diffusion MR signal 

of the ACSF itself showed a clear single-exponential decay.  Statistics for the 14 

cultures and the 5 ACSF samples are shown in Table 5.1.   

Organotypic cortical cultures (n =14) 
Dfast (10-3 mm2/s) 2.56 ± 0.05 Dslow(10-3 mm2/s) 0.16 ± 0.03 fslow 10.3 ± 3.1% 

ACSF (n =5) 
D (10-3 mm2/s)   2.66 ± 0.01 

Table 5.1. Diffusion parameter estimation with bi-exponential models for the organotypic cultures and 

with the single-exponential model for the ACSF. 

One sample MR CPMG signal (3000 averages) from one culture is shown in 

Fig. 5.2e. Most of the signal intensity is in the real channel after the phase has been 

automatically adjusted (imaginary/real ratio is less than 0.1%). The decay curves in 

all the culture slices (n =14) were fit well by a single-exponential function with T2eff = 

59.0±2.7 ms, except for the faster decaying part at echo time (TE) < 5 ms with a 

fraction 2.5%±0.8% and relaxation time < 10 ms. As for the control with ACSF alone 

(n = 6), the decay curves were fit well by the single-exponential function over the 

entire TE range with T2eff = 56.1±0.3 ms, which is slightly (but significantly, p < 

0.001) smaller than the results of the cultures. The small, faster decaying parts in the 

culture slices might arise from some highly ordered water molecules (such as 

macromolecule-bound water) and some macromolecules (such as metabolites and 

proteins).  
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5.5 Spontaneous neuronal activity on organotypic cortical culture  

In the calcium images, three ROIs were selected in each cortex region (ROI 

1–6), and one ROI (ROI 7) close to the RF coil inner edge but not containing tissue 

was selected as background. Highly spontaneous activity was observed in all six 

ROIs, 1−6, (Fig. 5.3b and Fig. 5.3c), while the background ROI 7 showed low 

fluorescence intensity without neuronal activity information. The correlation 

coefficients of the fluorescence signals (30-minute recording) between all ROI’s, 1−6, 

were no less than 0.78.   The fluorescence from the large ROI containing the entire 

tissue inside the RF coil also showed high correlation coefficients (>= 0.88, Table 

5.2) with all ROIs in the two cortexes region, which makes it as a good representative 

of the calcium signal of the two cortexes and was used for further correlation tests 

with the MR signals.  

Fig. 5.3d shows 30 decay curves after neuronal activity from one experiment 

(solid gray lines). A biexponential function can fit the averaged decay curve very well 

with a fast decay component (69% ± 11%, n=13) and a slow decay component, with 

time constants (the time required for the signal to decay to 1/e) 0.21 ± 0.07 s and 1.67 

± 0.37 s, respectively. The failure of the single-exponential fit might be due to the 

large-scale imaging in which the calcium kinetics depends on local calcium 

concentration, neuron types, and the location of the neurons [332,333].  By 

implementing the biexponential decay function into the convolution kernel, our 

deconvolution algorithm can precisely and successfully detect the time and amplitude 

of each neuronal activity (Fig. 5.3e).   
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Figure 5.3. Spontaneous neuronal activity in the organotypic culture. (a) Fluorescence image of the 

organotypic cortical culture (2 coronal slices co-cultured) and the position of seven different ROIs. (b) 

The raw calcium traces of each ROI in a 100-second time window. (c) The zoomed version of the 

dashed box in (b). (d) The decay curves after each event and their fittings with single- and bi-

exponential functions. (e) Example of the deconvolution algorithm on the calcium signals. 
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ROI 1 2 3 4 5 6 Entire 
tissue 

1 1.00 0.85 0.89 0.85 0.83 0.85 0.92 

2 0.85 1.00 0.82 0.81 0.80 0.81 0.88 

3 0.89 0.82 1.00 0.80 0.78 0.81 0.88 

4 0.85 0.81 0.80 1.00 0.93 0.93 0.96 

5 0.83 0.80 0.78 0.93 1.00 0.93 0.95 

6 0.85 0.81 0.81 0.93 0.93 1.00 0.96 

Entire 
tissue 

0.92 0.88 0.88 0.96 0.95 0.96 1.00 

Table 5.2. Correlation coefficient table for the calcium signals from each ROI on the two cultures (Fig. 

5.3) and the entire tissue inside the RF coil. 

5.6 Stability of MR and calcium recording  

An example of a 1.5-hour simultaneous calcium and MR recording is 

displayed in Fig. 5.4. For a healthy culture, good neuronal activity can last from one 

to several hours under continuous optical and MR recording. In this example, the 

neuronal activity was quite stable during the entire 1.5-hour recording.  At the same 

time, the MR signal, which includes all three parameters (I0, R, φ) extracted from 

each CPMG echo train, was also very stable.  
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Figure 5.4. Stability of the MR and fluorescence signal. Simultaneous MR (bottom, three MR 

parameters) and calcium fluorescence (top) recording from one culture for ~1.5 hr. The first and last 

100 s were expanded and are shown on the left and right sides of the central panel. Visual inspection 

does not reveal any correlations between the two. 

In the above example, the signal-to-noise ratio (SNR) for I0 and R are 12.9 and 

15.0, respectively, and the standard deviation of φ is 0.04 rad (~ 6 × 10-3 parts per 

million (ppm) in frequency); similar noise levels were found in all admissible 

experiments and in two control experiments where only ACSF was present. In some 

experiments, there was slow-frequency (< 0.005 Hz) drift, which might be caused by 

small-trapped air bubbles in the ACSF line, slow motion caused by bending of the 

coverslips through heating, etc. The drift of I0, R, and φ in the 1.5-hour recording 

session was less than 2.6%, 0.7%, and 0.02 rad (~ 3 × 10-3 ppm), respectively, for the 

example in Fig. 5.4 and 5.8%, 3.2%, and 0.09 rad, respectively, for all the cultures 

used in our statistical analysis. However, this type of drift is small and can be 
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neglected when active- and resting-state MR are compared in the data analysis 

procedure, since that time window is less than 12 s. 

5.7 Effects of neuronal activity on MR signal (proton density and effective transverse 

relaxation time)  

The potential effects of neuronal activity on the two MR parameters, I0 and R, 

were further analyzed.   In the Type 1 analysis, Students’ t-tests were performed on 

the results from all the admissible cultures with the null hypothesis that the mean of 

the difference between active and resting MR was equal to 0. No significant changes 

were observed for any of the two MR parameters (I0 and R) for the time window T 

from 0.1 s to 1.0 s (p ≥ 0.14 for all of the tests, Fig. 5.5e), while the calcium signal 

showed much higher intensity in the active state (Fig. 5.5c).  For the Type 2 analysis, 

similar Student’s t-tests were performed on the paired comparison between the active 

(the entire 4 s time window without further binning) and resting MR signals, and no 

significant changes were observed for the two parameters either (p ≥ 0.37, Fig. 5.5d). 

The time profiles of the changes in the MR parameters are shown in Fig. 5.5f. All of 

the averaged changes in the two MR parameters (I0 and R) from all of the admitted 

cultures were less than 0.5% and 0.4%, respectively. One-way ANOVA performed on 

the time-profile MR results and the null hypothesis that the mean of the difference 

between active and resting MR in each bin were equal was also accepted (p = 0.85 

and 0.97 for I0 and R, respectively). 
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Figure 5.5. Two types of statistical methods for analysis of the potential effects of neuronal activity on 

the MR signal. Schematic diagram of the analysis methods: Type 1 (a) and Type 2 (b). For Type 1, bar 

plots of the deconvoluted fluorescence signal and boxplots of statistical results of the paired-

comparison MR in the active and resting state at time window T = 1.0 s, 0.6 s, and 0.2 s are shown in 

(c) and (e). For Type 2, bar plots of the deconvoluted fluorescence signal and boxplots of statistical 

results of the paired-comparison MR in the entire active (4-second time window) and resting states are 

shown in (d). The time profiles of the group results for Type 2 analysis are shown in (f), where the 

narrow gray curves are the averaged result from each culture, and the broad black line is the average of 

the 14 cultures. 
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5.8 Immunohistochemistry to clarify cell types and densities in the organotypic 

cortical cultures 

A subset of cultures was used for immunological identification of cell types. 

Cultures were rinsed in phosphate buffered saline (PBS), fixed in 4% 

paraformaldehyde for 40–60 minutes, and incubated for 2 hours at room temperature 

in blocking solution (10% normal donkey serum, 0.5% bovine serum albumin, and 

1% Triton X-100 in PBS). The cultures were incubated in three primary antibodies 

simultaneously at 4°C overnight in a carrier solution consisting of 1% normal donkey 

serum, 0.5% bovine serum albumin, and 0.3% Triton X-100 in PBS: 1) mouse anti-

NeuN (EMD Millipore, Temecula, CA, 1:1000); 2) rabbit anti-s100b/anti-GFAP 

combined (Dako, Carpinteria, CA, 1:2000 and 1:1000, respectively); 3) goat anti-Iba1 

(Abcam, Cambridge, MA, 1:500). After the cultures were washed for 5 min, 15 min, 

and 5 min in PBS containing 1% normal donkey serum and 0.3% Triton X-100, they 

were incubated for 1 hour at room temperature in secondary antibodies, diluted in 

carrier solution: Alexa 555 donkey anti-mouse; Alexa 488 donkey anti-rabbit; Alexa 

633 donkey anti-goat (1:1000, Invitrogen, NY) The cultures were then washed two 

more times with the wash solution for 5 min and 15 min at room temperature. Before 

imaging, cultures were rinsed in PBS for 5 min and mounted on coverslips with a 

fluorescence-preserving mounting medium (MOWIOL 4-88, EMD Millipore, 

Temecula, CA). Control images of cortical cell distribution were obtained with an 8-

day-old rat brain fixed by transcardial perfusion.  Brain slices (200 µm thick) from the 

same cortical region as the organotypic cultures were immunostained following the 
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same procedure as described above. Confocal images were obtained on an inverted 

Zeiss LSM 510 with a 20x Zeiss plan-apochromat dry objective (0.75NA) at the 

Microscopy and Imaging Core Facility, NICHD, NIH. 

The confocal microscopy images of the organotypic cortical culture were 

shown in Fig. 5.6.  In the control (acute rat-brain slices, Fig. 5.6a), all three types of 

cells were spatially homogenously distributed with the neuron as the dominant cell 

type. In the organotypic culture, a layer of astrocytes formed at the surface (Fig. 5.6b) 

and border of the culture (Fig. 5.6c,d) while the more susceptible neurons were 

predominantly found in the core of the culture at deeper imaging depths (> 10 µm, 

Fig. 5.6c,d). Visual inspection indicates even higher cell density of neurons at these 

steps than the one in the control.  
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Figure 5.6. Fluorescence staining of rat brain slices with three antibodies labeled astrocytes, neurons, 

and microglial cells.  (a) Acute brain slice from 8-day-old rat. (b-d) Organotypic cortical culture at 

different imaging depths (b, top layer; c, 10 µm deep; d, 20 µm deep). 

5.9 Advantages and limitations of this direct fMRI test bed 

Here we provide a novel, versatile and stable test bed for non-BOLD fMRI 

assessment consisting of 1) a well-established biological model of neuronal activity, 

2) a well-controlled environmental chamber to maintain stable neuronal activity, and 

3) a multimodal optical and MR means of recording neuronal activity. In our design, 

real-time calcium images can be acquired simultaneously with the MR signal. 

Calcium imaging is a well-established method for quantitatively measuring neuronal 
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activity [332,333]. This method allows for direct comparison of the MR signals and 

the calcium-based indictors of neuronal activity, and precise temporal localization of 

the effects of neuronal activity on MR signals.  

The use of organotypic cortical cultures as a biological model of neuronal 

activity eliminates any possible hemodynamic contributions to the MR signal. The 

organotypic cultures possess healthy neurons similar to those in the in vivo cortex 

with high cell densities and extracellular matrix [159]. Moreover, spontaneous 

activity in organotypic cortex cultures organizes as neuronal avalanches [161], a 

common dynamical mode of ongoing activity also observed in vivo in humans and 

nonhuman primates [164,165]. Together, the high neuronal density and synchronized 

neuronal activity provide the best chance to observe changes in the MR signal due to 

neuronal activity, if such relationships actually exist.  

Performing electrophysiology experiments inside the MRI magnet could be 

very technically challenging due to the electromagnetic interface [144,145]. The 

closed configuration and the size of the magnetic core also make it difficult to move 

the modern optical microscope into inside a conventional MRI scanner [146–149]. 

Several hybrid setups with simultaneous optical recording and fMRI were reported, 

but they were limited to hemodynamic based optical imaging [334,335] or a single 

fiber recording [86].  Here we offer an alternate solution by using the single-sided 

NMR system [150], which is open-access, low-cost, portable, reliable  and 

compatible with high-resolution optical fluorescence imaging systems. Although in 

the MR spectroscopy experiment performed in this study an MR signal from the 

entire selective volume was used because MR imaging with single-sided NMR 
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system is currently two slow [150,336], the ultimate goal is to achieve simultaneous 

calcium and MR imaging within the cortical slices. Fast-imaging techniques are under 

development for this system [337] so that the simultaneous MR and fluorescence 

imaging should be feasible in future.  

An obvious question is whether the results from this experimental setup can 

be translated to conventional pre-clinical and clinical MRI systems, which normally 

have much higher magnetic fields.  Some MR contrasts, such as proton density, water 

self-diffusion, etc., are independent of the magnetic field strength, while others, such 

as T1 and T2 relaxation times, phase, Lorenz-force, etc., are strongly dependent on the 

magnetic field strength [50,99,338–340]. In principle, the changes in the non-field-

dependent MR contrasts caused by neuronal activity observed here can be directly 

migrated to a high magnetic field, while the other field-dependent changes require a 

more careful discussion.  For instance, the Lorenz-force effect can be several orders 

higher in the high magnetic field; therefore the expected changes here should be 

several orders smaller. In addition, the inhomogeneous magnetic field also makes 

some pulse sequences used here different from the conventional MR system and 

limits the application of some pulse sequences. For example, the gradient echo, which 

is the common MRI sequence for phase imaging [95,107], is unachievable in this 

system since the apparent relaxation time T2
* is too short to detect [150].  Moreover, 

the presence of the static gradient also put limitations on experiments that are 

sensitive to diffusion direction. In addition, the baseline noise should also be 

considered in comparing the results from high-field MRI. For instance, the phase 

noise level (ppm) in our unshielded magnet is around 10 times higher than that 
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observed in the high-field shielded MRI system [105,107]. More detailed discussion 

will be provided for each specific MR contrast/sequence in our future work.  

While the SNR for a single MR echo train is not high (SNR ~ 10−20 in this 

study) due to the low magnetic field and field inhomogeneity, here its sensitivity to 

the potential changes can be improved by multiple repetitions while prolonging our 

data recording.  For example, in a 1-hour experiment, there are approximately 180 

active MR waveforms within T = 0.5 s time window after each neuronal activity if we 

assume the spontaneous neuronal activity occurs every 10 s. Taking the noise level in 

Fig. 5.5 and a statistical power of 0.80, the sensitivity of the detectable changes in this 

study will be 0.53% for I0 and 0.45% for R. Simultaneous recording on each sample 

can normally last no shorter than 1 hr until some epileptic activity shows or normal 

activity disappears in the calcium imaging due to the phototoxicity. In future, use of 

more neuronal-activity-sensitive and healthy fluorescence dyes and low light intensity 

could result in longer recording time.  

Because no imaging is performed in MR, partial volume is still a problem for 

MR detection in the current setup as the cultured tissue cannot occupy the entire MR 

selective volume, even the selective volume was significantly reduced by the small 

custom RF coil (tissue occupies ~60% of the inner area of the coil). The non-single-

exponential diffusion MR signal clearly demonstrated that the MR selective volume 

covers, at least partly, the two cultures.   From the results of the bi-exponential fitting, 

Dslow (0.16 × 10-9 m2/s) values obtained here are similar to those from in vivo rat brain 

and in vitro rat acute brain slices with imaging [69,70,93,341], while the Dfast (2.56 × 

10-9 m2/s) values are larger and fslow (10.3%) values are smaller than the 
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corresponding values in the literatures. The differences are probably caused by that 

the fast-diffusing ACSF in the selective volume was taken as the fast diffusion 

component in the bi-exponential fitting.  

In this study, only a conventional CPMG MR pulse sequence was applied 

together with calcium imaging. The two parameters extracted from each CPMG echo 

train correspond to different and distinct contrast mechanisms. I0 is sensitive to the 

proton density and the longitudinal relaxation time T1 (~ 1.5 s for the cultures). The 

weighting ratio, R, is sensitive to T2eff, which depends both on the diffusion constant, 

D, and the transverse relaxation time, T2. In the culture, two diffusion components 

(fast and slow) were observed using the SE sequence. However, the associated T2 of 

each diffusion component and the exchange dynamics between these spin populations 

are still unknown and currently are beyond the scope of this article.  

Statistical analysis of our results does not show statistically significant 

changes in the MR signals (I0 and R) associated with neuronal activity when the 

active and the resting MR are compared, either by comparison of the MR signals 

before and after neuronal activity or inside and outside of the 4-second time window 

centered at the neuronal activity spike.  However, it would be premature to conclude 

that this is a negative result for the newly proposed contrast mechanisms described in 

the Introduction [91,93,100], particularly as there are differences in the pulse 

sequences, the MR system, and the analysis methods used. As for the I0 effect, 

changes in proton density might be canceled out or masked by changes in T1. In the 

case of R, a similar cancelation might occur between the contributions from D and T2. 

Moreover, the diffusion time in this CPMG sequence is τ = 30 µs, which is much 
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shorter than that in the conventional functional diffusion MRI experiments (~80 ms 

for clinical scanners and ~10−30 ms for preclinical scanners) [91–93,121,124]. It has 

been reported that diffusion MR signals from the cortex are strongly dependent on 

diffusion time at short diffusion time region (<=10 ms) [341,342]. 

More importantly, the biophysical basis of many aspects of neuronal activity 

is still poorly understood. MR visible effects may result from long-timescale changes, 

like the BOLD fMRI signal (>=10 s).  In the organotypic cortical culture, 

spontaneous neuronal bursts occur approximately every 5 to 20 seconds.  If the effect 

of the neuronal activity on the MR contrast lasted longer than that, the definition of 

the active and resting MR would need to be changed, as no resting state would exist 

in the entire recording. And if the effect of the neuronal activity on the MR contrast is 

the milliseconds scale [171], our current setup might not have enough temporal 

resolution to capture this effect. More experiments are still needed to address these 

questions. 

It is often presumed that it is sufficient to understand brain function by 

studying the distribution and pattern of neuronal activity, while the role of astrocytes 

and other glial cells is often overlooked [343]. This test bed, which uses healthy 

organotypic brain tissue, has the potential to be used not only to study neuronal 

excitatory behavior, but also to assess possible changes in glial structure (with proper 

glial-specific calcium indicators [344]) in response to it, particularly over a longer 

timescale than that used in these experiments. We view these applications as 

important future uses of this novel test system. 
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Although important information can be extracted from the CPMG echo trains, the 

main purpose of this paper is to describe and demonstrate the successful operation of 

this novel test bed.  The clear biexponential diffusion signal in the SE pulse sequence 

shows that the MR selective volume covers the tissue on the coverslip.  Fig. 5.4 

demonstrates the stability of both the calcium and MR signals during a long recording 

period. Two types of analysis methods were also provided to look for the potential 

effects of neuronal activity. It is important to note that because the pulse sequence 

design and experimental protocol are flexible to modify, it is possible to validate or 

test existing or newly proposed MR sequences and address open biophysical 

questions with this method.    
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Chapter 6:  Can neuronal activity be detected with diffusion 

MRI? An in vitro assessment with simultaneous calcium 

fluorescence imaging and diffusion MR recording 

 
Diffusion MRI was proposed recently to detect neuronal activity more 

directly, yet, initial findings have proven difficult to interpret and reproduce. Given 

that the underlying relation between water diffusion changes and neuronal activity 

remains unclear, the rationale for using diffusion MRI to monitor neuronal activity 

has yet to be clearly established. Here, we attempt to study the correlation between 

water diffusion and underlying neuronal activity by simultaneous calcium 

fluorescence imaging and diffusion magnetic resonance (MR) recording in vitro 

(details in Chapter 5). We used organotypic cortex cultures from rat brains, in which 

spontaneous neuronal activity free of hemodynamic and respiratory artifacts robustly 

emerges, as the biological model of neuronal activity. Fluorescent calcium images of 

spontaneous neuronal activity were then tested for a possible correlation with 

diffusion MR signals devoid of confounds typically encountered in vivo. A 

simultaneous increase of diffusion-weighted MR signals was observed together with 

the depolarization block caused by pharmacological manipulations, in which cell 

swelling turned out to play an important role. However, no evidence was found that 

diffusion MR signals were directly correlated to normal spontaneous neuronal 

activity. These results suggest that while current diffusion MR methods may be able 

monitor pathological conditions of hyperexcitability, e.g., seen in epilepsy, they do 
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not appear to be sensitive or specific enough to detect or follow normal neuronal 

activity. This chapter was adapted from our manuscript 6, which is in preparation and 

will be submitted for publication soon (Appendix A).  

 

6.1 Does diffusion MRI really detect neuronal activity directly? 

Noninvasive, direct in vivo detection of neuronal activity by imaging is one of 

the major challenges in the neurosciences. Progress in this area is required to improve 

our understanding of normal brain function, and in the clinic, to develop new tools for 

diagnosing disease states and disorders of the brain. fMRI has been widely used in the 

cognitive neuroscience community since its invention in the 1990s [78,79,105]. The 

most widely used fMRI method, BOLD MRI, detects hemodynamic changes in the 

brain. However, BOLD MRI only indirectly reflects neuronal activity, and its 

hemodynamic origin limits its spatial and temporal resolution, and its interpretation as 

a direct proxy for neuronal activity [80,85]. 

Recently, several MRI methods have been proposed to provide more direct 

measures of neuronal excitation [345].  In particular, diffusion MRI, a method to 

measure the apparent diffusivity of water within tissues [116–118], has been 

suggested as a direct functional imaging method to detect neuronal activity [91,121–

123]. Early in vivo experiments in both humans and animals reported small but 

significant increases in diffusion-weighted MRI signals, which were ascribed to 

changes induced by underlying neuronal activity directly rather than to blood-oxygen-

level changes [91,121–123].  In vitro experiments on brain slices [93,124] and spinal 
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cord [92] reported similar reductions in water diffusivity under conditions of extreme 

hyperexcitability achieved using strong biochemical stimulants. 

However, functional diffusion MRI (fDMRI) has not been widely adopted 

since its introduction almost two decades ago. One reason for this may be a dearth of 

experiments convincingly establishing a neurophysiological basis for observed 

changes in diffusion MRI signals. The inability to detect predicted changes using 

fDMRI as well as the confounding hemodynamic contributions in fDMRI 

measurements in vivo do not argue for a robust connection between changes in 

diffusion MRI and underlying neuronal activity [94,125–127]. Thus, “ground truth” 

experiments potentially establishing a connection between the changes in diffusion 

MRI and underlying neuronal activity are highly relevant, particularly as they can 

shed light on the underlying biophysical basis of the fDMRI signal. 

Recently, we developed a nonhemodynamic-based functional MRI novel test 

bed, in which intracellular calcium fluorescence imaging to monitor neuronal activity 

and MR signal acquisition can be performed simultaneously on organotypic cortex 

cultures from rat brains (Chapter 5). The organotypic cortex culture represents a well-

characterized biological model of neuronal activity free of hemodynamic, respiratory 

and other physiological confounds. Not only is the in vivo cortical cytoarchitecture 

preserved including cortical layers and cortical cell types, but neuronal activity in the 

culture also displays bursts of spontaneous neuronal avalanches grouped into so-

called up-states and separated by periods of low activity, resembling normal neuronal 

activity in in vivo [159–161,164,165].  In this experiment, Fluorometric Ca2+ imaging 
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is used to detect intracellular Ca2+ changes that closely follow action potential 

discharge in a neuron under normal conditions and thus present a direct method for 

detecting neuronal spiking activity in a neuronal network [156,157]. In this test bed, it 

becomes possible to study direct correlations between the candidate functional MR 

signals, which are free of in vivo confounds, and the underlying neuronal spiking 

activity by using independent calcium optical images. 

In this study, diffusion MR signals were obtained simultaneously with 

intracellular calcium fluorescence imaging of the organotypic cortex culture. The 

direct effects of neuronal activity on the diffusion MR signals were studied by time-

series analysis of the simultaneous calcium and MR signals during normal neuronal 

activity and in different pathological states, which includes hyperexcitability by 

kainic acid and potassium, disinhibition by picrotoxin (PTX), suppression of 

excitability by tetrodotoxin (TTX), and osmotic pressure modulation.   On the basis 

of these findings, it is possible to assess the prospect of detecting normal neuronal 

activity with fDMRI and to better understand the relationship between fDMRI 

changes and biophysical mechanisms associated with neuronal activity. 

6.2 Setups for simultaneous calcium fluorescence imaging and diffusion MR 

recording on the organotypic cortex culture  

6.2.1. Preparation of organotypic rat-cortical culture 

The organotypic tissue cultures were made from somatosensory cortex taken 

from acute coronal slices of newborn rats (postnatal day 0–2, Sprague Dawley). Two 

acute slices (350 µm thickness) were attached to the #1 coverslip by using a plasma-
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thrombin mixture and submerged in 800 µL of culture medium and incubated at 35.0 

± 0.5 °C. The medium was replaced every 3–4 days. Cultures were grown for 2–3 

weeks before being used in experiments (for details see [162,328]). 

6.2.2. Simultaneous calcium optical imaging and diffusion MR 

The detailed setups of this hybrid system, which enables simultaneous 

fluorescence imaging and MR measurements, are available in Chapter 5. Briefly, a 

single-sided MR “profiler” with open access was mated under a fluorescence 

microscope with a long working distance, in which the interface between the optical 

imaging and MR is small and negligible. The cultures were stained with 50 µM 

Oregon Green 488 BAPTA-1 (OGB; Life Technologies, NY, USA) for 1–2 hrs 

before the experiments were performed. A GFP fluorescence filter units from 

Olympus (Olympus America Inc., USA) and a color CCD camera (ProgRes® CF 

scan, Jenoptik, Inc., Germany) were used for the fluorescence imaging.  

The single-sided MR system is made of four permanent magnets, which 

generate a relatively uniform magnetic field (0.32 T, 15 mm × 15 mm) in a plane at 

~15 mm from the top surface of the magnets. A home-made multi-turn RF surface 

coil with an inner diameter of 5 mm was mounted directly under the tissue slide to 

match the size of the cortical cultures and improve the sensitivity. The diffusion 

weighting was achieved using a spin echo (SE) in the presence of a static magnetic 

gradient, in which CPMG echo trains were acquired and summed after the main 

diffusion-weighting module to improve sensitivity [152,155].  

6.2.3. Experimental Protocol 
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In the experiments, the organotypic culture was kept in a custom chamber 

with constant and slow perfusion (30 mL/hr) of oxygenated (95% O2 + 5% CO2) 

ACSF (124 mM NaCl, 3.5 mM KCl, 10 mM glucose, 26.2 mM NaHCO3, 0.3 mM 

NaH2PO4, 1.2 mM CaCl2 and 1mM MgSO4). The temperature was kept at 34.0 ± 1.0 

°C during experiments. During the kainate, PTX and TTX experiments, the chemical 

drugs were added directly into the ACSF at the given concentrations. As for the 

extracellular K+ experiments, the concentration of the NaCl was reduced to maintain 

a constant osmotic pressure (292–296 mOsm). A 10-min drug perfusion was added in 

the middle of normal ACSF perfusion for each drug. 

During the experiments, calcium imaging was acquired with 1× 

magnification, 8.8 mm × 6.6 mm FOV, 680 × 512 pixels, exposure 100 ms, and 10 

frames per second. As for the diffusion MR, 5 b-values ranging from 0 to 2400 s/mm2 

with a step of 600 s/mm2 were measured with a two-step phase cycling, TR = 2s, 

2000 echoes with echo time 40 µs, and a selective thickness of 100 µm. As for the 

time profile experiments without pathological drug application, diffusion MR was 

acquired at a single b value (b = 1800 s/mm2) with all the other settings as described 

above. 

6.2.4.  Signal processing 

All the signal post processing and analyses were implemented in MATLAB. 

The calcium signal (F) was defined as the average fluorescence signal inside a 

customer defined ROI, which contained the entire cortical tissues inside the RF coil. 

A background subtraction was performed on the F by automatically subtracting the 

signal from a manually defined background ROI. The baseline F0 of F was calculated 
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from a 30-second sliding window.  In the time profile experiments, the fluorescence 

values were then expressed as relative percentage changes from the baseline, %ΔF/F0, 

and a 1D deconvolution algorithm was implemented to detect the time of the neuronal 

activity. Details and examples are available in Chapter 5.  

As for the diffusion MR signals, the first four echoes in each CPMG echo 

trains, which had systematic artifacts, were removed [150]. Then the average of the 

entire CPMG echo train was used as the signal intensity at each b-value.  

6.3 Experiment and data analysis protocol for pharmacological manipulation  

We induced hyperexcitability in the cortex cultures by bath perfusion with a 

high concentration of kainite (100 µM) or extracellular potassium chloride (30 mM) 

(for details see [139]). Kainate induces hyperexcitability by activating receptors 

for glutamate, an excitatory neurotransmitter in the central nervous system, while an 

increase in extracellular K+ excites neurons directly by depolarizing their intracellular 

resting membrane potential. Concentration dependence on kainate was studied 

simultaneously with both the calcium imaging and diffusion MR. We also studied 

spontaneous neuronal activity under conditions of disinhibition, i.e., when fast 

synaptic inhibition was reduced with the noncompetitive GABAA receptor antagonist 

picrotoxin (PTX, 5 µM and 50 µM).  For controls, we suppressed neuronal spiking by 

blocking sodium channel permeability using tetrodotoxin (TTX, 0.2 µM).  Two 

statistical time-series analysis methods were employed to identify a time window of 

potential effects of normal neuronal activity on the diffusion MR signal. At the end, 

osmotic pressure experiments were performed to look for the contribution of the cell 

swelling to the changes in diffusion MR signals during the depolarization block.  
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In these experiments, diffusion MR measurements were performed with the 

static gradient spin echo NMR sequence with a single-sided NMR profiling system 

[152]. For the diffusion MR acquisition, 5 b-values (b = 0, 600, 1200, 1800, and 2400 

s/mm2) with TR = 2 s and a two-step phase cycling were used. The diffusion MR 

signal S can be well fitted by a four-parameter bicomponent model 

[62,67,69,91,93,124,330]: 

𝑆(𝑏) = 𝑆![ 1− 𝑓 exp −𝑏𝐷!"#$ + 𝑓exp −𝑏𝐷!"#$ ]  (6.1) 

where Dfast and Dslow are the self-diffusion coefficients of the slow and fast diffusion 

components, respectively; f is the slow diffusion component fraction and S0 is the MR 

signal without diffusion weighting. More details about this methodology can be found 

in [152] and in Section 6.2. 

6.4 Reduction of water diffusivity in depolarization block with 100 µM kainate 

A normal artificial cerebrospinal fluid (ACSF) perfusion (~ 30 mL/hr) was 

followed by a 10 min of perfusion with 100 µM kainate added, and then followed by 

a washout (Fig. 6.1).  Care was taken to maintain constant perfusion speed and 

oxygenation of the ACSF to prevent perfusion artifacts. As shown in Fig. 6.1a, during 

normal activity the population intracellular calcium signal (F) was characterized by 

brief (1–2 s) and irregular periods of neuronal excitation.  Within 2–3 minutes of 

kainate perfusion, however, a strong increase in F and then a change to a prolonged 

plateau was found, followed by a recovery close to the pre-drug baseline (F0) levels 

during washout. The plateau in F indicates strong excitation of the neuronal 

population including potentially depolarization block throughout the spatial extent of 

the culture  (Fig. 6.1b). 
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As for diffusion MR, three of the four fitting parameters in Eq. 6.1 from all of 

the cultures (n = 6) in this experiment during normal activity, i.e. before kainate 

perfusion are: f = 8.01 ± 1.68%, Dfast = 2.65 ± 0.04 µm2/ms, and Dslow = 0.20 ± 0.05 

µm2/ms. The diffusion MR signals were observed to have simultaneous and similar 

changes as compared with F, the intracellular calcium signal. In the example shown 

in Fig. 6.1a, the slow diffusion fraction f increased from 8.47% pre-drug application 

to 10.38% during the kainate application. In all of the cultures scanned, increases of 

the diffusion MR signal at higher b values were observed during kainate perfusion, 

and they increased with higher b values: -0.86 ± 0.68% (p = 0.87) at b = 0 s/mm2, 

3.29 ± 1.06% (p < 0.01) at b = 600 s/mm2, 11.2 ± 1.6% (p < 0.0005) at b = 1200 

s/mm2, 17.5 ± 2.0% (p < 0.0005) at b = 1800 s/mm2, and 11.9 ± 5.7% (p < 0.05) at b 

= 2400 s/mm2 (Fig. 6.1b). Similarly, the slow diffusion component fraction f 

increased significantly by 20.1 ± 3.4% (p < 0.001) with respect to the pre-drug levels 

(Fig. 6.1e). All of the p-values here and in the following sections were obtained by 

paired Student’s t-Test with the drug and pre-drug data. During the wash, the 

diffusion MR changes returned to be close to the pre-drug levels.   
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Figure 6.1. (a) The intracellular calcium fluorescence signal integrated over the entire neuronal 

population (top) and the slow diffusion component derived from the modeling diffusion MR signal 

(bottom).  Red solid line: sliding data average (6 data points each). The two black arrows indicate the 

start of the 100-µM kainate perfusion (left) and the washout with ACSF (right). (b) Top: Large-field 

image of an organotypic cortex culture (two cortex slices positioned close to each other) stained with 

Oregon-Green BAPTA-1 (OGB-1) under fluorescence illumination with indicated position of the RF 

coil; Bottom: image of fluorescence changes with respect to the baseline under normal neuronal 

activity and kainate–induced prolonged depolarization. (c) The averaged diffusion MR signals in (a) 

during three phases: pre-kainate normal neuronal activity, kainate perfusion, and washout. Continuous 

curves are obtained from model fits. (d, e) The statistical results (n = 6) of the normalized diffusion 

MR signals (d) and the normalized slow diffusion component fraction (e) during three phases: normal 

activity, kainate perfusion, and washout.   In both (d) and (e), the results were normalized with the 

results from the pre-kainate normal activity.    * p < 0.05 with Student’s t-Test for MR results.   
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6.5 Kainate concentration dependence of diffusion MR 

The observed depolarization when using 100 µM of kainite was directly 

related to the level of neuronal excitation in the cultures as shown by its concentration 

dependency. As shown in Fig. 6.2a, when kainate was used at lower concentrations 

than 100 µM, signal levels dropped accordingly. At 10 µM, the depolarization was 

still obvious but smaller than at 100 µM kainite with an increase in spontaneous 

population events. At 1 µM, average depolarization level was smaller than that at 10 

µM kainite; however an increase in population events was clearly visible.  We 

quantified the change in the calcium fluorescence baseline as a function of kainate as 

41.7 ± 10.9% at 100 µM kainate, to 26.3 ± 5.9% (n = 6) at 10 µM kainate and 4.9 ± 

11.6% (n = 6) at 1 µM kainate (Fig. 6.2b). Importantly, changes in diffusion MR 

signal similarly depended on the kainate concentration. For instance, the increase of 

the diffusion MR signals (average of the MR signals at b =1800 and 2400 s/mm2) 

dropped from 14.7 ± 3.3% (p < 0.005) at 100 µM kainate to 4.50 ± 2.19% (p <0.05) at 

10 µM kainate and 2.88 ± 1.26% (p = 0.036) at 1 µM kainate. The changes in the 

slow diffusion component fraction Δf /f0, decreased from 20.1 ± 3.4% (p < 0.001) at 

100 µM kainate to 6.34 ± 1.30% (p < 0.005) at 10 µM kainate and 2.47 ± 1.44% (p = 

0.07) at 1 µM kainate.  
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Figure 6.2. (a) The population of the intracellular calcium fluorescence signal in response to 10 min of 

kainate perfusion at three concentrations: 100 µM (top), 10 µM (middle) and 1 µM (bottom). The two 

black arrows are the start of the kainate perfusion (left) and washout with ACSF (right), respectively. 

(b) The changes in the fluorescence baseline (left) and the normalized changes in the diffusion MR 

signals (the average of MR signals at b = 1800 and 2400 s/mm2, middle) and the slow diffusion 

component fraction (right) under kainate perfusion with various kainate concentrations.  * p < 0.05 with 

Student’s t-Test for MR signals. 
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6.6 Reduction of water diffusivity in depolarization block via 30 mM extracellular K+ 

A strong depolarization effect similar to that for kainite was observed during 

10 min of perfusion with 30 mM potassium chloride (KCl) containing ACSF (Fig. 

6.3a). The calcium baseline (F0) increased by 72.0 ± 6.0% compared with the pre-

drug baseline in all cultures (n = 4, Fig. 6.3b). The changes in diffusion MR signals 

were found to be similar to the calcium signal changes during high-concentration K+ 

perfusion. For example, the diffusion MR signal (the average of MR signals at b = 

1800 s/mm2 and 2400 s/mm2 increased by 9.71 ± 2.19% (p < 0.05) and the slow 

diffusion component fraction f also increased by 11.4 ± 2.4%  (p < 0.005) compared 

with the pre-drug values. During the washout, both calcium signals and diffusion MR 

signals recovered back up toward pre-drug levels.  

 

Figure 6.3. (a) An example of the population of the intracellular calcium fluorescence signal (top) and 

the slow diffusion component derived from modeling the diffusion MR signal (bottom) in response to 

a 10-min perfusion of 30 mM KCl in ACSF. Red continuous curve: sliding data average (6 data points 
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each).  The two black arrows indicate the start of drug perfusion (left) and washout with normal ACSF 

(right), respectively. (b) The changes in the fluorescence baseline (left) and the normalized changes in 

the diffusion MR signals (the average of MR signals at b =1800 and 2400 s/mm2, middle) and the slow 

diffusion component fraction (right) under perfusion of the ACSF with 30 mM KCl and washout with 

normal ACSF. * p < 0.05 with Student’s t-Test for MR signals. 

6.7 Response of diffusion MR signal to inhibition modulation with picrotoxin (PTX) 

Unlike the direct depolarization induced by kainate or an increase in 

extracellular potassium concentration, the GABAA-receptor antagonist PTX enhances 

neuronal activity by reducing inhibitory synaptic transmission in neuronal networks 

leading to prolonged periods of synchronized population activity.  Similar to what 

was found for the concentration dependency of kainate-induced neuronal activity, we 

found a dose-dependency for PTX. At 5 µM PTX, synchronized neuronal activity was 

increased as indicated by a decrease in spontaneous population events and a higher 

population event amplitude in the calcium imaging (Fig. 6.4a) [346,347]. There were 

no significant changes in either the diffusion MR signals or the slow diffusion 

component fraction during the 5 µM PTX application (n = 5, Fig. 6.4b).  At a higher 

concentration (50 µM), a slight increase (32.0 ± 17.6%) in the calcium baseline signal 

following the PTX perfusion was observed within 2–5 mins. Importantly, at this high 

concentration, both the highly diffusion weighted MR signals (the average of MR 

signals at b=1800 and 2400 s/mm2) and the slow diffusion component fraction f 

showed significant increases (n = 4): 5.95 ± 0.29% (p < 0.0005) and 7.07 ± 0.16% (p 

< 0.0001), respectively.  
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Figure 6.4. (a) Calcium fluorescence signal in response to 10-min PTX perfusion studies with two 

different concentrations: 5 µM (top) and 50 µM (bottom). The two black arrows are the starting times 

of the PTX perfusion (left) and washout with ACSF (right). (b) The changes in the fluorescence 

baseline (left), the normalized changes in the diffusion MR signals (the average of MR signals at b 

=1800 and 2400 s/mm2, middle), and the slow diffusion component fraction (right) during PTX 

perfusion with various PTX concentrations. * p< 0.05 with Student’s t-Test for MR signals. 

6.8 Suppression of normal spontaneous neuronal activity with tetrodotoxin (TTX) 

does not affect diffusion MR signal   

We suppressed the spiking activity of the organotypic culture using a bath 

application of 0.2 µM TTX to demonstrate that the MRI diffusion signal does not 

contain residuals from normal spontaneous neuronal activity.  Within 1–3 min of 

TTX-application, neuronal activity was almost completely suppressed with the 
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number of neuronal activity per minute dropping from 12.0 ± 1.7 to 0.22 ± 0.12(Fig. 

6.5a). Some neuronal activity was recovered during washout in line as expected for 

this drug (n = 6, Fig. 6.5b). In line with our expectation that the MRI signal would not 

carry residual information on normal spontaneous activity, no significant changes 

were found in either the diffusion MR signals or the slow diffusion component 

fraction during the 0.2 µM TTX application (Fig. 6.5b), in which the changes were 

1.06 ± 2.09% (p = 0.68) for the diffusion weighted MR signal (the average of MR 

signals at b=1800 and 2400 s/mm2) and 1.33 ± 2.07% (p = 0.73) for the slow 

diffusion component fraction.  

 

 

 

Figure 6.5. (a) An example of the population of the intracellular calcium fluorescence signal (top) and 

the slow diffusion component derived from modeling the diffusion MR signal (bottom) in response to 

a 10-min perfusion of 0.2 µM TTX in ACSF. Red continuous curve: sliding data average (6 data points 

each).  The two black arrows indicate the start of the drug perfusion (left) and washout with normal 

ACSF (right), respectively. (b,c) The change in the number of neuronal firing events per minute (b), 

the slow diffusion component fraction and the diffusion MR signals (the average of MR signals at 
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b=1800 and 2400 s/mm2) (c) under perfusion of ACSF with 0.2 µM TTX and washout with normal 

ACSF. 

6.9 Time-series statistical analysis indicates diffusion MR unaffected by normal 

spontaneous neuronal activity  

To identify a time window for a correlation between normal neuronal activity 

and the highly diffusion-weighted MR signal, 16 cultures were scanned at a single b-

value (b =1800 s/mm2) under normal ACSF conditions without application of drugs. 

Periods of high (“active”) and low (“resting”) neuronal activity were identified in the 

population of the intracellular calcium signal, and the MR signal was binned on the 

basis of these two categories. Two types of time-series analysis methods were 

developed and applied here. For Type 1, we hypothesized that each neuronal 

population activity event would only affect the diffusion MR signal (active) recorded 

immediately after it within a time window, T, which was tested for T = 0.1 s to 1.0 s 

in steps of 0.1 s. The corresponding resting MR for each active MR was the MR 

recorded closest in time before the neuronal event (Fig. 6.6a). For Type 2, we 

hypothesized that each neuronal population activity event would only affect the MR 

signal (active) recorded within 1 s before and following it. All MR signals outside of 

this 2 s time window were denoted as resting state (Fig. 6.6b). The active MR signals 

were further binned into groups on the basis of how separate they were in time (Δ) 

from the neuronal event with a time step of 0.1 s. For each active MR, the four resting 

MRs closest to it in time, both before and after, were chosen and averaged as the 

corresponding resting MR. 
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In the Type 1 analysis, paired Student’s t-Tests were performed on the results 

from all 16 cultures with the null hypothesis that the mean of the active MR signals 

would be larger than the resting MR signals. No significant increases were observed 

for all the time windows, T, from 0.1 s to 1.0 s (p ≥ 0.14, Fig. 6.6c). For the Type 2 

analysis, similar Student’s t-Tests were performed on the paired comparisons between 

the active (the entire 2 s time window without further binning) and resting MR 

signals, and no significant increases were observed for the active signals either (p = 

0.93). The time profiles of the changes in the diffusion MR signals are also shown in 

Fig. 6.6d.  The increases in the diffusion MR signals in each time window, Δ, were 

less than 0.40%, while none showed significant increases (p ≥ 0.24) compared with 

the resting MR. One-way ANOVA performed on the time-profile MR results with the 

null hypothesis that the mean of the changes between active and resting MR in each 

bin would be equal was also accepted (p = 0.97).  These results further support our 

finding that the diffusion MRI signal does not carry information about normal 

spontaneous network events. 
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Figure 6.6. Two statistical methods were used to analyze the potential effects of neuronal activity on 

the MR signals.  (a, b) Schematic diagram of the analysis methods: (a) Type 1 and (b) Type 2. (c) The 

Boxplots of statistical results of the changes in the active state with respect to the resting diffusion MR 

signals at time windows 0.1 s, 0.5 s, and 1.0 s. For display purposes some outliers were not plotted. (d) 

The time profiles of the potential effects of neuronal activity on diffusion MR signals and their 

corresponding p-values with student’s t-Test. The black line is the mean, and the light shadow is the 

mean standard error in (d), top. 

6.10 Cell swelling? Effects of osmotic pressure during depolarization block 

It was speculated that the diffusion MR changes were the result of cell 

swelling during neuronal activity [62]. To investigate this hypothesis, the osmotic 

pressure was changed during perfusion of normal ACSF and ACSF with 100 µM 

kainate. The osmotic pressure of the ACSF was increased and decreased by 80 mOsm 

with a direct addition of mannitol or distilled water into the normal ACSF.   In the 
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control, the following experimental protocol was performed: normal ACSF (30 min) 

à +80 mOsm (15 min) à normal ACSF (30 min) à -80 mOsm (15 min) à normal 

ACSF. The last 10-min diffusion MR data from the osmotic modulation was selected 

and averaged to compare with the pre-osmotic state. A significant reduction (p < 

0.05) of both the diffusion-weighted MR signal (the average of the MR signals at b 

=1800 and 2400 s/mm2, -5.75 ± 1.25%, n = 4) and the slow diffusion component 

fraction f (-4.84 ± 1.71%) was observed at +80 mOsm, while an significant increase 

(p < 0.005) of both parameters  (15.2 ± 1.8% and 14.6 ± 1.7%, respectively) was 

observed at -80 mOsm (Fig. 6.7a). During the wash with normal ACSF, both the 

spontaneous activity in the calcium signal and the levels of the diffusion MR signals 

were recovered close to the pre-osmotic state (Fig. 6.8). 

  To study the effect of the osmotic pressure on the kainate induced diffusion 

MR changes, experiments were performed following the protocol: normal ACSF (20 

min) à kainate 100 µM under +80 mOsm (10 min) à normal ACSF (30 min) à 

kainate 100 µM under normal ACSF (10 min)  à normal ACSF. Compared with the 

results of kainate 100 µM under normal ACSF in Section 6.4, the calcium signal still 

showed the strong dollarization during the kainate application under +80 mOsm (Fig. 

6.8). However, the change in the averaged MR signals at b = 1800 and 2400 s/mm2 

was significantly reduced (p < 0.01, n = 4) from 14.7 ± 3.3% to 1.39 ± 1.42% by the 

addition of mannitol, while the change in the slow diffusion component fraction was 

also significantly reduced (p < 0.005) from 20.1 ± 3.4% to 1.60 ± 0.92% (Fig. 6.7b).  

During the subsequent wash with normal ACSF, the depolarization was reduced 

while some spontaneous activity showing up (Fig. 6.9). The application of the second 
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100 µM kainate perfusion with normal ACSF also showed much higher increases in 

both the diffusion weighted MR signals (averages at b = 1800 and 2400 s/mm2, 11.7 

± 1.7%, p < 0.005) and the slow diffusion component fraction (10.1 ± 1.1%, p < 

0.001) than the first 100 µM kainate perfusion with +80 mOsm ACSF (Fig. 6.9). 

 

 

 

 

 
Figure 6.7. (a) The normalized changes in the diffusion-weighted MR signals (the average of the MR 

signals at b =1800 and 2400 s/mm2, left) and the slow diffusion coefficients (right) in the +80 mOsm  

and -80 mOsm. (b) The normalized changes in the diffusion-weighted MR signals (the average of the 

MR signals at b =1800 and 2400 s/mm2, left) and the slow diffusion coefficients (right) in the 100 µM 

kainate application with normal normal ACSF and +80 mOsm.  * p < 0.05 with Student’s t-Test. 
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Figure 6.8. (a) The calcium fluorescence signal and  (b) the normalized changes in the diffusion-

weighted MR signals (the average of the MR signals at b =1800 and 2400 s/mm2, left) and the slow 

diffusion coefficients (right) in the response of the osmotic pressure modulation. * p < 0.05 with 

Student’s t-Test for MR results. 
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Figure 6.9. (a) The calcium fluorescence signal and  (b) the normalized changes in the diffusion-

weighted MR signals (the average of the MR signals at b =1800 and 2400 s/mm2, left) and the slow 

diffusion coefficients (right) in the response to the perfusion of kainate 100 µM under +80 mOsm and 

normal ACSF. * p < 0.05 with Student’s t-Test for MR results. 

6.11 Discussion: is current diffusion MR method sensitive enough to capture normal 

neuronal activity? 

Our in vitro organotypic cortical cultures produce high-quality diffusion MR 

signals without any hemodynamic or respiratory effects and eliminate most potential 

artifacts and confounds associated with in vivo MRI experiments, such as subject 

motion, pulsation, blood volume redistribution, respiration-induced changes in 

oxygenation, etc.  Moreover, our hybrid test bed with simultaneous monitoring of 

neuronal activity with intracellular calcium during acquisition of the MR signal 
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provides a unique opportunity for direct, spatially resolved, time-dependent 

comparison of the diffusion MR signals with neuronal activity. 

Organotypic cortex cultures have been successfully used as a biological model 

of neuronal activity for decades [159–161]. These cultures have healthy neurons 

similar to those in the in vivo cortex with high cell densities and extracellular matrix 

[159]. More importantly, organotypic cortical cultures in vitro display bursts of 

spontaneous neuronal activity in the form of neuronal avalanches, a well-recognized 

dynamical mode of spontaneous activity found in vivo in humans and nonhuman 

primates during while at rest [161,164,165].   

Kainate is a potent analog of glutamic acid, which is the principal excitatory 

neurotransmitter in the central nervous system (CNS). An application of high 

concentration kainate can cause prolonged depolarization of the cell membrane with 

an influx of Ca+ [348,349];  this phenomenon was clearly demonstrated in Fig. 6.1a. 

High-concentration extracellular K+ can also induce cell depolarization by changing 

the ions’ gradient across the cell membrane [1], as shown in Fig. 6.2a. The GABAA 

receptor chloride channel blocker PTX was also shown to depolarize the cell at high 

concentration in Fig. 6.4a and [350]. In all the three conditions with depolarization 

blocking, the diffusion-weighted MR signals showed significant increases; these 

changes became larger as the b values increased. In other words, the slow diffusion 

component fraction showed significant increases in the bi-component model. Both the 

slow diffusion component fraction and its changes that were found in this study are 

smaller than the results from acute rat brain slices with imaging [93]; this difference 
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might the result of the partial-volume effect here and of the use of different tissue 

types.   

Interestingly, the increases in the diffusion-weighted MR signals were found 

to be dependent only on the depolarization level rather than on the level of the normal 

neuronal population events that encoded by spikes. In the kainate concentration 

experiments, the changes in the diffusion-weighted signals diminished as the 

depolarization level decreased during the reduction of kainate concentration, in which 

the number of calcium neuronal population spikes increased. A similar result was 

found in the PTX experiments, in which significant diffusion MR signal changes 

were only found at the higher PTX concentration, which clearly elicited a prolonged 

depolarization. In the TTX experiments, the suppression of normal spontaneous 

neuronal activity had no significant effect on the diffusion MR signals. In the time 

profile experiments without a drug application, no evidence was found that each 

single event of normal neuronal activity correlated significantly with the highly 

diffusion-weighted MR signals (b = 1800 s/mm2) within a temporal resolution of 100 

ms.  

The phenomenon of cell swelling induced by intense neuronal depolarization 

has been reported in other imaging studies [166,167,172,351–354]. Cell volume 

changes have also been reported in ischemia, osmotic modulation, and spreading 

depression [166,351,352,355]; in all of these cases diffusion-weighted MRI shows a 

positive response [119,120,356].  Thus, cell swelling appears to contribute to the 

reduced water diffusivity observed here and in other pathological states mentioned 

above. The contribution of cell swelling was further studied with osmotic pressure 
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experiments on the organotypic cultures (Fig. 6.7). In the control, the diffusion-

weighted MR signals decreased at +80 mOsm and increased at -80 mOsm; these 

results correspond to cell shrinkage and swelling, respectively [166,351]. The adding 

of mannitol during perfusion of 100 µM kainate significantly reduced the changes in 

the diffusion MR signals caused by the depolarization block; this result suggests that 

cell swelling, at least in part, accounts for the reduced water diffusivity observed 

during cell depolarization, although the underlying mechanisms are still unclear. 

Some possible explanations include, but are not limited to: (a) an increase of diffusion 

tortuosity in the extracellular space and intracellular volume fraction [357]; (b) more 

“bound” water near the lipid membrane and/or macromolecules with slow diffusivity 

during cell swelling [62]; and (c) changes in the configuration of the cytoplasmic 

matrix and streaming [358].  

Cell swelling has also been reported to occur during normal neuronal activity, 

but with a negligible amplitude that is much smaller than that caused by prolonged 

and strong depolarization [166,168–172]. In general, the displacement of the cell 

surface are on the scale of nanometers, with a maximum of several tens of 

nanometers, under normal electrical stimulation [168–171]. However, the surface 

displacement changes in the neuronal soma induced by the prolonged depolarization 

can be approximately one or more micrometers [166,172].  If we assume the 

reduction of water diffusivity is caused mainly by cell swelling, it is highly unlikely 

that the diffusion MRI is sensitive enough to measure the changes caused by normal 

neuronal activity; these changes are estimated to be approximately three or more 

orders of magnitude smaller than the changes observed during strong depolarization. 
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Most physiological processes occurring during normal neuronal activity, such 

as the action potential, ion-exchange, channel opening and closing, and also the cell 

swelling and other mechanical changes, happen on a short time scale (fractions to 

several milliseconds) [1,171]. However, the effect of the depolarization on the 

diffusion MR signals is found to be an integration phenomenon (~several min) rather 

than an instantaneous response. Additionally, no significant changes in the diffusion 

MR signals induced by a single neuronal event were found in the time-series analysis 

within a temporal resolution of 100 ms. In conclusion, the current diffusion MR 

techniques may not be sensitive and fast enough to capture single neuronal 

activity/spikes. 

Diffusion MR signals are obtained from water molecules inside the 

extracellular matrix and cells including neurons, astrocytes, microglial cells, etc.  The 

biophysical relationship between the observed diffusion MR signals and the 

underlying microstructure and water dynamics is still poorly understood and is 

currently a topic of great interest and active research. In addition to neuronal cell 

swelling, other physiological processes might also contribute to the changes in the 

diffusion MR signals. Early morphological experiments showed that the neuron cell 

membrane might become “leaky” under intense excitation [166,167]; this leakiness 

might modulate the water exchange between compartments and change the diffusion 

MR signals [71]. It has also been suggested that advection caused by micro streaming 

might change the diffusion MR signal by a process called pseudo-diffusion [92,128]. 

In addition, astrocytes and other glial cells also play an important role in brain 

function [343], and their contributions to the diffusion MR signals are still not clear. 
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In summary, simultaneous calcium imaging and diffusion MR measurements 

clearly demonstrate the direct correlation between reduced water diffusivity and 

depolarization of the cell membrane. Changes in diffusion MR signals are positively 

correlated with the amplitude of the depolarization rather than with the levels of 

normal neuronal activity.  Current diffusion MR methods are not capable of following 

a single event of normal neuronal activity, either in terms of sensitivity or temporal 

resolution. To achieve the goal of direct MR imaging of neuronal activity, a better 

understanding of the physiological process of neuronal activity and the biophysics of 

diffusion MR in tissue and a smarter MR contrast design are still needed. 

 

6.12 Supporting information: ”stroke” model to test the performance of the test bed  

The reliability and stability of this hybrid imaging system have been 

demonstrated in our previous work (Chapter 5). To further validate the system’s 

ability to detect the intracellular calcium levels and the diffusion signal changes, a 

“stroke” model with an oxygen/glucose deprivation (OGD) protocol was tested 

[120,166,351].  Diffusion MRI is a gold-standard neuroimaging method to diagnose 

stroke clinically with increasing signal in diffusion-weighted images and a 

concomitant reduction in the mean apparent diffusion coefficient (ADC) [119,120]. 

Another phenomenon associated with ischemia caused by acute stroke is 

depolarization of the cell membrane and calcium uptake by neurons [355,359].  These 

two phenomena were both observed in this hybrid system: clearly there were 

increases in the diffusion-weighted MR signals (b ≥ 600 s/mm2), decreases in the 
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ADC, and increases in the calcium signal in the absence of normal neuronal spikes in 

the optical imaging, as the OGD started (Fig. 6.10).  

In the OGD protocol, glucose was removed to the feed stream (NaCl was 

added to maintain the osmotic pressure) and the ACSF saturation was maintained 

with 95% N2 + 5% O2 [120,166,351]. The culture was perfused under OGD at a faster 

perfusion speed (60 mL/hr) for 15 minutes at the beginning of the protocol to remove 

the remaining oxygen and glucose from the tissue at the beginning (during this period 

no MR recording was performed), and then the perfusion speed was set back to 30 

mL/hr for another 2 hrs. 

Calcium imaging revealed clear increases in the calcium signals as the OGD 

started in all the admissible cultures (n = 3). The calcium signal kept increasing until 

the photo bleaching effect dominated while the normal neuronal spikes were 

suppressed (Fig. 6.10a). The followed washout with normal ACSF did not recover 

result in normal neuronal activity returning. In the control (normal ACSF perfusion), 

the calcium signal kept decreasing while normal neuronal activity took place during 

the entire 2.5-hr recording.   

In diffusion MR, the diffusion-weighted MR signals started increasing as the 

OGD started.  As shown in Fig. 6.10a and Fig. 6.10c, greater increases of the 

diffusion MR signals were observed at higher b values and longer OGD perfusion 

times. Additionally, the washout did not result in the recovery of the diffusion signal 

back to the pre-OGD levels. The ADC was calculated at b = 1800 s/mm2 with the 

equation: 

ADC = - !
!
exp  ( !(!)

!(!!!)
)     (6.2) 
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The ADC dropped from 1.35 ± 0.08 µm2/ms by 4.99 % at the first 30-min OGD 

perfusion and kept decreasing until in reached 14.9% at the end of the 2-hr OGD 

perfusion. The washout did not cause the ADC to recover either.  

 

 
Figure 6.10. (a,b) The calcium fluorescence signal (top) and the diffusion MR signal at b = 1800 s/mm2 

in the response of OGD (a) and the normal ACSF (b, control).  In the lower section of panels (a) and 

(b), the red continuous curves are the average of the data with a step of 6 data points. The three black 

arrows in (a) indicate for the starting time of the faster OGD perfusion, normal OGD perfusion and 

washout with normal ACSF, respectly. (c) The changes in the diffusion MR signals at various b values 

and various time points in the OGD model. (d) The changes in ADC at various time points in the OGD 

model. * p < 0.05 with Student’s t-Test for MR results. 
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Chapter 7:  Discussion and future work 

 
In this final chapter, we summarize the results of three candidate fMRI 

methods (i.e., diffusion, proton density, and relaxation time) using the novel test bed 

we built specifically for non-BOLD fMRI. Next, we explain the fundamental 

knowledge about water dynamics in living tissue required to understand the findings 

in this study and to design new non-BOLD fMRI methods in future.  Then, we 

discuss requirements and our plans to further promote the use of multidimensional 

MR diffusion/relaxation to characterize complex water dynamics in living tissue. 

Finally, the potential applications in other fields of this novel test bed for non-BOLD 

fMRI and the new MR methods we developed are briefly discussed.  

 

7.1 Vetted non-BOLD fMRI methods: diffusion, proton density, and relaxation time 

In Chapter 6, diffusion MR signals were shown to be sensitive to 

depolarization block induced by pharmacological manipulations, but were not able to 

detect normal spontaneous neuronal activity. These results suggest that while current 

diffusion MR methods can monitor pathological conditions of hyperexcitability, e.g., 

such as those seen in epilepsy, they do not appear to be sensitive or specific enough to 

detect or follow normal neuronal activity. 

In Chapter 5, the potential effect of normal spontaneous neuronal activity on 

proton density and the efficient transverse relaxation time, T2eff, were studied via an 

MR CPMG sequence, in which no significant effects were observed. In a 

depolarization block experiment with 100 µM kainate (not shown in Chapter 5), there 
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were still no significant changes in proton density (-0.12 ± 0.27%, p = 0.68, n = 7).  A 

small change was observed in T2eff (0.84 ± 0.23%, p < 0.01, n=7) during the 

depolarization block; this change might come mainly from the contribution of water 

self-diffusion in the MR CPMG sequence via Eq. 5.2.  

In conclusion, none of the three vetted fMRI mechanisms (i.e., proton density, 

transverse relaxation times, and diffusion) are capable of detecting or tracking normal 

neuronal activity at the sensitivities currently available. Diffusion fMRI shows 

promise in following depolarization block experiments, but the underlying 

biophysical mechanisms remain still unclear, and whether the method can be 

improved to detect normal neuronal activity in future remains doubtful.  

7.2 Cell swelling or other physiological processes: more knowledge needed 

Cell swelling has been proposed as one of the possible explanations for the 

reduced water diffusivity observed in the depolarization block and in other 

pathological states (e.g., stroke). Our osmotic pressure modulation experiments 

indicate that the cell swelling matters, at least in part, for the reduced water diffusivity 

during prolonged depolarization. To further confirm the important role of cell 

swelling in the diffusion MRI signal, more osmotic experiments with different 

osmolyte types and compositions will be systematically studied in the future.  

On the other hand, the underlying biophysical mechanisms of cell swelling 

and its effect on water diffusion are still unclear. Cell swelling has also been reported 

to occur during normal neuronal activity [166,168–172]. Thus, the further study of 

the underlying biophysical mechanisms would help us design smarter fMRI methods 

that would be sensitive enough to detect or track neuronal activity directly.   
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Some possible explanations for the effect of cell swelling include, but are not 

limited to: (a) an increase of diffusion tortuosity in the extracellular space [357]; (b) 

more bound water near the lipid membrane with slow diffusivity during cell swelling 

[62]; and (c) changes in the configuration of the cytoplasmic matrix and 

microstreaming [358]. In our opinion, the slow diffusion water in the cortex might 

come mainly from the strongly restricted water located inside the neuropil, i.e., an 

area composed of compartments with small diameters, such as dendrites, axons, glial 

processes, etc., whose size is much smaller than the mean diffusion displacement of 

water (~1–5 µm at most diffusion MR sequences, Eq. 1.12).  The swelling of these 

compartments would induce more water into the slow diffusion region, as has been 

observed in the depolarization block state in Chapter 6. 

In addition to neuronal cell swelling, there are other physiological processes 

that may also change the diffusion MR signals. Early morphological experiments 

showed that the neuron cell membrane might become “leaky” under intense 

excitation [166,167]; this leakiness might modulate the water exchange between 

intracellular cytoplasm and the extracellular matrix. In addition to Brownian motion, 

there are also some water translational motions caused by some active biophysical 

processes, such as microstreaming, that might contribute to the changes in the 

diffusion MR signals by creating pseudo-diffusion or other mechanisms [92,128]. 

Clearly, we must understand the complex water dynamics occurring in living 

tissue, including their relation to the underlying microstructure, tissue heterogeneity, 

water exchange among different microenvironments, active water motion, etc., before 

we can fully understand the MR signal we are detecting and then design better MR 
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methods for detection. To the best of our knowledge, current MR studies and methods 

are still far from accomplishing this task. 

We propose two strategies for future studies in an attempt to better 

characterize the water dynamics in living tissue. First, as discussed in Chapter 2, one 

way to simplify the complexity of tissue is by using biomimetic models. Such models 

allow the characterization of chemical and other properties of living tissue and the 

isolation of different components inside the tissue. The hydrogels used in Chapter 2 

with properties similar to those of intracellular cytoplasm are a good choice. On the 

other hand, cell membrane also plays a very important role in water dynamics in 

living tissue by restricting the translational motion of water, controlling the water 

exchange between intracellular and extracellular spaces, inducing active water motion 

in some physiological processes, etc.   A good candidate biomimetic model for cell 

membrane is an emulsion of liposomes, vesicles with one or multiple lipid bilayers, 

which mimics the chemical structure and spatial configuration of the cell membrane 

[360]. The methods for synthesizing and preparing liposomes are fairly mature now, 

and their size, configuration, and permeability to water can be well controlled and 

characterized [360–363]. A well-controlled liposome phantom may be very helpful in 

understanding the role of cell membrane in the water dynamics in living tissue. 

Another strategy is to design new MR methods to better detect the water 

dynamics in living tissue. The multidimensional MR diffusion/relaxation spectra, 

originally developed in a porous medium to study pore structure and composition and 

to track water pore-to-pore exchange [185,191,295], show promise in characterizing 

the microenvironments for water in biological tissue and monitoring the motion of 
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water molecules among different microenvironments. Although our work in 

transferring this method from NMR spectroscopy to MRI with imaging (Chapter 3) 

and accelerating its acquisition speed with compressed sensing (Chapter 4) promotes 

its application in living tissue, substantial effort is still needed before this method can 

be used to characterize water dynamics in living tissue. The work required is 

discussed in the following section. Additionally, diffusion time dependence and 

directional correlation of the diffusion MR signal have also drawn us to study water 

diffusion anisotropy at multiple length scales, e.g., diffusion anisotropy caused by 

local macromolecules, cell membranes, etc., in future.  

7.3 Promoting multidimensional MR diffusion/relaxation spectra to characterize the 

complex water dynamics in living tissue 

As discussed in Section 7.2, there are still several steps needed to apply 

multidimensional MR diffusion/relaxation spectra method to characterize the 

complex water dynamics in living tissue. A description of these steps follows.  

Step 1: Develop a mathematical framework to identify quantitatively the 

microenvironments of water and to characterize the water exchange process among 

these microenvironments in tissue. As shown in Fig. 1.2, the very heterogeneous 

nature of tissue causes a broad distribution of the relaxation spectra and complicates 

the problem of identifying distinct microenvironments. The currently available 

mathematical methods can only describe the exchange process between two or three 

water sites that have very narrow and distinguishable diffusion/relaxation 

distributions.  To deal with the multidimensional spectra of tissue, its heterogeneous 

nature must be considered, and broad distributions rather than a single component 



 
 

184 
 

should be used to characterize both the diffusion/relaxation properties and the 

exchange process in the tissue. 

Step 2: Further accelerate multidimensional MR acquisition and processing by 

compressed sensing and other data reduction methods. One significant obstacle to 

apply these 2D relaxometry for preclinical and clinical imaging is the large amount of 

data and long MR acquisition times required. We recently developed a new MR 

pipeline for 2D relaxometry that incorporates compressed sensing as a means to 

vastly reduce the amount of 2D relaxation data needed for tissue characterization 

without compromising the data. In the future, other data reduction methods will be 

developed, based upon the use of a priori information as well as the use of physically 

based constraints. These methods might further accelerate the data acquisition by 

another factor of ~5. Together with fast acquisition MR pulse sequence design, there 

methods might reduce the acquisition time of these types of multidimensional 

diffusion/relaxation MR to make this method feasible for preclinical and clinical 

applications.  

Step 3: Migrate more of these types of pulse sequences from MR spectroscopy 

to imaging. Currently, there are no commercially available MRI sequences for 

measuring multidimensional diffusion/relaxation maps. We have only developed the 

T1−T2 MRI sequences in our 7T Bruker microimaging system.  In the future, some 

other multidimensional diffusion/relaxation MR spectroscopy sequences will also be 

adapted to work with 2D or 3D imaging, which include, but are not limited to, T2−T2, 

D−D, T2
*−T2

*, D−T2
*, etc. 
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Step 4: Develop multimodal imaging with histology validation. Double-PFG 

diffusion methods developed in our lab can provide information about the axon 

diameter distribution (ADD) [289]. Multidimensional MR diffusion/relaxation spectra 

can provide the volume fraction of water microenvironments and their exchange 

process. All of this information can be combined to create realistic kinetic models 

based on diffusion motion to provide more microstructure information, such as the 

surface-to-volume ratio, cell membrane permeability, etc. This additional information 

might make it possible to quantify the cell-type distribution and grade the health of 

the cells. Histology with high-resolution optical imaging will further validate these 

newly developed methods. 

7.4 Potential applications in other fields  

MRI is a very powerful, noninvasive brain-imaging tool for both research and 

clinical diagnosis.  However, the most important applications of MRI are for brain 

anatomy and, currently, it is difficult to extract detailed information about cellular 

physiological processes from MRI measurements. On the other hand, fluorescence 

optical images show great advantages for the study of the fine structure of tissue and 

the details of cell functions at the cellular and subcellular levels. The hybrid 

fluorescence imaging and MR system we built will be a bridge to connect these two 

important techniques and help transform the findings from fluorescence imaging into 

useful biomarkers that can be used in MRI to track physiological processes or 

diagnose diseases.  

One possible application that has attracted our attention is the study of the role 

of glial cells in brain function. A recent study found that, although glial cells do not 
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work in the same way as neurons, their role in brain function and connectivity may be  

as important as that of neurons [343]. The hybrid system we built here, which uses 

healthy organotypic brain tissue, has the potential to be used not only to study 

neuronal excitatory behavior, but also to assess possible changes in glial structure 

(with proper glial-specific calcium indicators [344]) in response to this behavior, 

particularly over a longer timescale than that used in these experiments. We view 

these applications as important future uses of this novel test system. 

The multidimensional MR diffusion/relaxation spectra methods developed 

here also have the potential to help explore the detailed physiological processes of 

some diseases and then to aid in the development of more efficient clinical diagnosis 

biomarkers. One particularly interesting area is stroke. Diffusion MRI is a gold-

standard for diagnosing stroke clinically with an increasing signal in the diffusion-

weighted image and a reduction in the mean ADC [119,120]. However, some detailed 

physiological processes, such as the failure of ion pumps, cell swelling, cell 

membrane integrity, cell death, etc., are hard to distinguish in conventional clinical 

diffusion MRI scans. As a result it is difficult to grade the stages of the disease and 

provide a proper prognosis. On the other hand, the multidimensional MR 

diffusion/relaxation spectra methods have the potential to characterize water motions 

through the cell membrane, cell volume fractions, etc.; this method might shed light 

on how to detect cellular details of stroke with MRI techniques.  Their applications in 

other brain diseases, such as tumors, brain trauma, epilepsy, etc., will also be 

considered in the future.    
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