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Under the influence of a magnetic field, at low temperatures, charged parti-

cles confined in two-dimensional systems exhibit a remarkable range of macroscopic

quantum phenomena such as the quantum Hall effects. A hallmark of these phe-

nomena is the presence of unidirectional, topologically robust edge states - states

which are confined to the edge of the system. It is, in principle, possible to engineer

a synthetic magnetic field for photons and hence achieve photonic analogs of the

robust electronic edge states. Investigating photonic edge states is interesting from

a fundamental perspective of studying photonic transport in the presence of a gauge

field and also for its application in classical and quantum information processing.

In this thesis, we present the implementation of a synthetic magnetic field

for photons and our observation of topological edge states in a two-dimensional

lattice of coupled ring resonators, fabricated using CMOS-compatible silicon-on-

insulator technology. We qualitatively show the robustness of edge states against

deliberately induced lattice defects. We then analyze the statistics of transport



measurements (transmission and delay) made on a number of different devices and

quantitatively verify the robustness of edge states against lattice disorder. Using

Wigner delay-time distribution, we show that localization is suppressed in the edge

states. Furthermore, to unequivocally establish the non-trivial topological nature of

edge states, we compare their transmission to a topologically trivial one dimensional

system of coupled ring resonators and demonstrate that the edge states achieve

higher transmission.

Moreover, for photonic analogs of the quantum Hall effect, the winding number

- a topologically invariant integer which characterizes edge states - is quantized,

analogous to quantization of conductivity in electronic systems. We measure the

winding number of the edge states in our system. Finally, we investigate the effect

of nonlinear interactions in silicon ring resonators, on the stability of edge states.

We show that the presence of a strong pump can result in a significant decrease in

the transmission through edge states.
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Chapter 1: Introduction

The presence of a magnetic field leads to fundamental changes in the transport

properties of electronic systems. Classical examples are the Lorentz force and the

Hall effect where magnetic field controls electron motion. The Lorentz force has

been widely used in charged particle accelerators and magnetic lenses for electron

beams, while the Hall effect has found substantial use in semiconductor material

characterization. At the quantum level, the hallmark example of magnetic field

affecting electronic motion is the quantum Hall effect [1–4]. In the quantum Hall

effect, at low temperatures and high magnetic field, a two-dimensional (2D) elec-

tron gas exhibits quantized Hall conductivity. The underlying mechanism for this

phenomena is the quantization of energy levels, called Landau levels, resulting from

the application of a perpendicular magnetic field [5].

Further, electronic transport through a disordered two-dimensional system

leads to localization where the conductivity falls exponentially as the system size

increases [6]. However, for quantum Hall systems, the quantization of Hall conduc-

tivity is remarkably insensitive to disorder. This peculiar property of quantum Hall

phenomena is due to the presence of robust and topologically protected edge states

- states which are confined to the edge of the system [7,8]. Edge states are unidirec-
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tional, immune to back-scattering caused by disorder and hence are never localized.

These states carry current and guarantee the quantization of conductance.

With the emergence of artificial photonic structures such as photonic crystals

and metamaterials, there has been a significant interest in manipulating photonic

transport using gauge fields, in a manner similar to electrons. Of particular im-

portance is the need for one-way, reflection free waveguides which find applications

in large scale photonic integration. Fabrication imperfections and environmental

changes often lead to the undesirable back-reflection in ordinary waveguides and

hence limit device functionalities. Implementing photonic analogs of chiral elec-

tronic edge states is, therefore, a natural choice to mitigate back-reflection and

achieve robust waveguides.

In 2008, it was first proposed that analogs of the quantum Hall effect and

edge states could be realized in photonic systems using the magneto-optic effect in

gyro-magnetic photonic crystals [9, 10]. Many proposals followed with specific im-

plementations of the phenomena, and the presence of edge states was experimentally

demonstrated first in the microwave regime [11, 12]. However, subsequent propos-

als and attempts were limited to microwaves since the primary source of coupling

- the magneto-optical effects - are very weak for optical photons [13, 14]. In 2011,

it was first realized that photonic analogs of quantum Hall edge states could be

implemented by engineering a synthetic magnetic field for photons [15]. The pro-

posed system was a 2D lattice of coupled microring resonators which would mimic

the tight-binding Hamiltonian with a magnetic field [8, 16]. The resonators act as

lattice sites where photons are bound, but, with some probability to tunnel to neigh-

2



bouring resonators. To introduce the synthetic magnetic field, the resonators were

arranged such that a round trip along any plaquette (consisting of a 2×2 array of

resonators) results in a total accumulated phase of ϕ - the equivalent of magnetic

flux. It was theoretically shown that the edge states are topologically robust against

lattice disorders. This system, however, does not explicitly break the time reversal

symmetry as do the quantum Hall systems with real magnetic field and hence, is

not immune to all types of fabrication disorders, e.g. back-scattering.

Following Ref. [15], there have been a number of remarkable proposals and

experimental efforts to implement synthetic gauge field for photons. In Ref. [17,18],

imitating graphene, a system of coupled 1D waveguides has been implemented where

a non-uniform strain applied to the lattice results in a pseudo-magnetic field. A

similar system has been reported in Ref. [19] where helical waveguides were used

to demonstrate the presence of edge states. Another proposal makes use of the

dynamic modulation of the coupling between lattice sites to explicitly break the

time-reversal symmetry [20, 21] and implement magnetic field in real space. This

approach has been demonstrated using radio waves [22]. Photonic edge states have

also been studied extensively using metamaterials [13,14].

This thesis reports the experimental implementation of a synthetic magnetic

field for photons and our observation of the topologically robust photonic edge states,

employing the 2D coupled ring resonator system studied in Ref. [15] (Fig. 1.1).

This system has the particular advantage of being directly adaptable to photonic

integrated circuits because it has been implemented in a versatile silicon-on-insulator

platform using CMOS-compatible fabrication process. In this system, we show the

3
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Figure 1.1: The 2D lattice of coupled ring resonators used to implement a synthetic
gauge field for photons. The main site rings (blue) are coupled using another set of
link rings (green). The link rings that are placed horizontally between site rings are
shifted in a particular fashion so as to introduce a uniform magnetic field throughout
the lattice. The lattice is coupled to input and output waveguides (red) to probe
the transmission and delay spectrum of the device.
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presence of topological edge states by directly imaging the path followed by light

in the lattice. The edge states route around a deliberately induced lattice defect

and do not scatter into the bulk of the lattice. We report the first quantitative

analysis of the robustness of edge states using transport properties (transmission

and delay). Using delay-time distributions, we demonstrate that the edge states

avoid localization induced by fabrication imperfections [23–26].

Topological edge states are characterized by their winding number, a topolog-

ically invariant integer [8,27–29]. We measure the winding number of edge states in

our system and show that in the photonic analog of the quantum Hall effect, it is the

winding number that is quantized, analogous to quantization of Hall conductivity

in electronic systems. Furthermore, the use of ring resonators greatly enhances non-

linear effects in silicon, which we use to explore the effect of nonlinear interactions

on the edge states.

In Chapter 2, we begin with a discussion of the basics of quantum Hall effect.

We study the tight-binding model for quantum Hall effect and the emergence of

topological edge states. In Chapter 3, we discuss a ring resonator - the basic building

block of our system. Chapter 4 describes our implementation of synthetic magnetic

field and photonic edge states, using a 2D lattice of coupled ring resonators.

Chapter 5 details the experimental implementation of our system on a silicon

photonics platform and the observation of robust edge states. Chapter 6 reports

the winding number measurements for the edge states. Finally, in Chapter 7, we

investigate the effect of nonlinear interactions in silicon ring resonators on edge

states, using a pump-probe technique.
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Chapter 2: The Quantum Hall Effect

In 1980, while working with two-dimensional electron gas (2DEG) confined

in silicon field effect transistors, at low temperatures and high magnetic field, von

Klitzing et.al. found that when the gate voltage is varied, the Hall conductivity of

the sample exhibits plateau regions [1]. The Hall conductivity value at the plateau

regions was found to be quantized as

σH = n
e2

h
, (2.1)

where n is an integer. Along with this, at the plateau regions of Hall conductivity,

the longitudinal conductivity was negligible (Fig. 2.1). Soon, it was found that this

phenomena is not particular to von Klitzing’s system and it was demonstrated in

other systems as well, for example in 2D electron gas confined at the interface of

a GaAs-AlGaAs heterostructure [2, 4]. More importantly, the quantization of Hall

conductivity was remarkably precise, to 1 part in 107, independent of the device

geometry, material properties, impurities, etc.

The quantum Hall effect is a direct manifestation of the quantization of en-

ergy levels, called Landau levels, in a 2D electron gas with an external magnetic

field applied perpendicular to the 2D plane [1, 7, 30, 31]. The presence of Landau

levels explains the quantization of the Hall conductance and the vanishing of lon-

6



Figure 2.1: Observed Hall (ρxy) and Longitudinal resistivity ρxx, as a function of
applied magnetic field [4]. Plateau regions in Hall resistivity coincide with troughs
in longitudinal resistivity. The markings indicate number of filled Landau levels.
As the magnetic field increases, the number of filled Landau levels below the Fermi
energy decreases and hence the resistivity increases.

gitudinal conductance. But the insensitivity of quantization to system properties

can only be explained by invoking gauge invariance [7, 31] and topological consid-

erations [27, 28, 32]. It has been shown that the quantization of Hall conductance

is a result of the gauge invariance associated with the magnetic vector potential,

and since gauge invariance is independent of material properties, so is the quanti-

zation. Furthermore, disorder in the system leads to localization of electron states

that occupy the bulk of the system and hence, they do not carry current [6,7,33,34].

The current is carried only by topologically ordered, chiral edge states - the states

confined to the perimeter of the system [7, 8, 35]. Edge states are immune against

disorder induced localization and therefore guarantee the quantization of conduc-

tance.

7
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Figure 2.2: Hall Geometry. Applied electric field is along x−axis and the Hall
voltage (VH) develops across y−axis.

Subsequent experiments also found plateaus at fractional multiples (such as

1/3,
2/3) of e2

h
- a phenomena termed as the Fractional Quantum Hall effect [3,

36]. To explain the fractional values of quantization, it is necessary to include

the electron-electron interactions in the system, which are not considered in the

Integer Quantum Hall effect (IQHE). In this report, however, we use only the integer

quantum Hall effect. In the following sections, we briefly review the quantization of

energy levels and the Hall conductance. We discuss the tight-binding model used

to study quantum-Hall effect and explore the topological aspects of edge states.

2.1 The Classical Hall Effect

In the classical Hall effect, when a thin sheet of conductor is placed in the

presence of perpendicular electric and magnetic fields, with the magnetic field being

threading the conductor surface, a current called the Hall current flows in a direction

perpendicular to the applied fields (Fig. 2.2). The Hall current (IH) and the applied

8
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Figure 2.3: Cyclotron motion in a perpendicular magnetic field. The coordinates
(R) of the center are arbitrary.

electric field (E) are related through Hall conductivity σH as [37,38]

IH = σHE . (2.2)

The Hall conductivity is found to decrease monotonically with increasing magnetic

field. To understand the classical Hall effect and Hall conductivity, we first look at

the classical motion of an electron in a two-dimensional plane in the presence of a

magnetic field and then in the presence of both the electric and magnetic fields.

2.1.1 Electron Motion in a Magnetic Field

The classical electron motion under the influence of a magnetic field is governed

by the equation

me
d2r

dt2
= eυ ×B, (2.3)

where r is the position coordinate and υ = dr
dt

is the electron velocity (Fig.2.3).

Electrons perform cyclotron motion with frequency ωc = eB
me

and radius r0 = meυ
eB

9



around an arbitrary center with position coordinates R = (X, Y ) determined by

initial conditions, that is,

r = R+ r0 (cos (ωct), sin (ωct)) (2.4)

υ = r0ωc (− sin (ωct), cos (ωct)) . (2.5)

The position and velocity vectors can further be written as

r = (X + ξ, Y + η) (2.6)

υ = ωc (−η, ξ) . (2.7)

We will use these relations and the arbitrariness of guiding center coordinates (X, Y )

when analysing the quantum mechanics of electrons in the presence of a magnetic

field.

2.1.2 Electron Motion in Electric and Magnetic Fields

In the presence of perpendicular electric and magnetic fields, the classical

equation for motion of an electron is

me
d2r

dt2
= e (E + υ ×B) . (2.8)

The solution to this equation yields a superposition of drift motion and cyclotron

motion, with the direction of drift being perpendicular both to the electric and

magnetic fields. The electron velocity vector is now given as [38]

υ = (−r0ωc sin (ωct), r0 cos (ωct) + υ0) , (2.9)
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where υ0 is the drift component given as

υ0 =
E ×B

B2
. (2.10)

For an applied magnetic field along z−axis and electric field along x−axis, the drift

motion is along y−axis. This drift component of electron motion generates the Hall

effect. The current density generated along the y−axis is then

j = neυ0 = −neE
B

= σHE. (2.11)

This is precisely the Hall current IH and the Hall conductivity is therefore given as

σH = −ne
B
. (2.12)

The Hall conductivity σH thus decreases monotonically as the magnetic field in-

creases.

2.2 The Quantum Hall Effect

In the quantum Hall effect, which is seen at very low temperature and high

magnetic field, the Hall conductivity shows quantized plateau regions with increas-

ing magnetic field, contrary to what is expected classically. To understand this

quantization of Hall conductivity and the quantum Hall effect, we discuss the quan-

tum mechanics of electrons first in the presence of a magnetic field and then in the

presence of both electric and magnetic fields.
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2.2.1 Electron Motion in a Magnetic Field

In the presence of a magnetic field, the Hamiltonian for a 2DEG can be written

as

H =
1

2me

(p− eA(r))2 =
1

2me

π2 (2.13)

where p is the canonical momentum operator and A(r) is the vector potential

resulting from the applied magnetic field. The dynamical momentum operator π is

related to the velocity vector υ and can be expressed as

π = meυ = me
i

~
[H, r] = p− eA. (2.14)

Further, the components of the dynamical momentum operator follow the commu-

tation relation

[πx, πy] = i~eB = −i~
2

l20
, (2.15)

where l0 is the magnetic length defined as

l20 =
~
eB

. (2.16)

Using the above commutation relation, the Hamiltonian in (2.13) can be cast

in the simple harmonic oscillator form

H = ~ωc(a
†a+

1

2
) (2.17)

where the creation and annihilation operators are

a =
1√
2~

(πx − πy) (2.18)

a† =
1√
2~

(πx + iπy) (2.19)

12



and ωc = eB
me

is the classical cyclotron frequency. Thus, we see that the energy

eigenvalues of the Hamiltonian are quantized as

En = ~ωc(n+
1

2
) (2.20)

It is these quantized, equally spaced energy levels which are called the Landau levels.

Now, following classical analysis of the motion of an electron in a magnetic

field, we explore the freedom associated with the guiding center of the cyclotron

motion. Using Eqs. 2.6-2.7, the position operator for the electrons is given as [38]

r =

(
X +

l20
~
πy, Y − l20

~
πx

)
(2.21)

where X, Y are the operators corresponding to the guiding center of cyclotron mo-

tion. Further, using the commutation relation for components of the position oper-

ator r, we find that the operators X, Y commute with the Hamiltonian but do not

commute with each other i.e.

[X, Y ] = il20. (2.22)

Since X, Y commute with the Hamiltonian, the Landau levels are degenerate with

respect to X, Y . To address this degeneracy, we label the eigenstates using the

angular momentum operator

Lz = (r × p)z = − ~2

2l20
(X2 + Y 2) +

l20
2~

(π2
x + π2

y) (2.23)

Both the terms in the above expression are of the harmonic oscillator form and

therefore can be written as

Lz = ~(a†a− b†b), (2.24)

13



where

b =
1√
2l
(X + iY ) (2.25)

b† =
1√
2l
(X − iY ). (2.26)

The eigenvalues of Lz are integer numbers and can be used to label the degener-

ate eigenstates of the Hamiltonian. We label the eigenstates as |n,m⟩, where the

first index n represents the energy eigenvalue (the Landau level) and n −m is the

eigenvalue of the operator Lz. Using a |0, 0⟩ = 0 and b |0, 0⟩ = 0 and the posi-

tion representations of operators a, b, the ground state eigenfunction |0,m⟩ in the

coordinate representation is [38]

ψ0,m(r) =
1√

2π2mm!l

(
x− iy

l

)m

e−
r2

4l2 . (2.27)

This wavefunction represents a electron density cloud confined to the perimeter of a

circle with radius
√
2ml0. This is not the radius for cyclotron motion which is given

by l0. This state |0,m⟩ represents many cyclotron orbits with their guiding center

positioned on the bigger circle of radius
√
2ml0 (Fig. 2.4). The degeneracy in the

eigenvalues of the angular momentum thus corresponds to the arbitrariness of the

guiding center of the cyclotron motion. We will use this phenomena to show the

robustness of edge states using gauge invariance and also to measure the winding

number, an integer characterizing topological order of the edge states.

Moreover, if the area of the 2D electron gas is S and since the area occupied

by each state is 2πl20 (using Eq. 2.22), the maximum value of m and hence the

14
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Y

B

Figure 2.4: Classical cyclotron motion of electron superimposed over quantized
wavefunction in Eq. 2.27. The guiding center of cyclotron motion is confined to
the perimeter of a circle with radius

√
2ml0.

degeneracy in the Landau levels is

mmax =
S

2πl20
. (2.28)

Incidentally, the magnetic flux penetrating this unit area is

Φ0 = B2πl20 =
h

e
(2.29)

which is the flux quantum. Therefore, the degeneracy in each Landau level is the

number of flux quanta threading the system.

Next, we analyze the translation operators of the system. Since the magnetic

field is uniform, the system is translation invariant. Therefore neither the canonical

momentum p, nor the dynamic momentum operator π are the generator of trans-

lation because they does not commute with the Hamiltonian. We can find another
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operator called pseudo-momentum operator defined as

Π = p− eA+ eB × r (2.30)

which commutes with the Hamiltonian and is the generator of translation. Using

classical considerations, the pseudo-momentum operator can in fact be related to

the coordinates (X, Y ) of the guiding center of cyclotron motion of the electrons as

Πx = −eBY (2.31)

Πy = eBX (2.32)

The translation operator T̂ (δ) = eiδΠ is then called the magnetic translation

operator. Since the components of pseudo-momentum operator do not commute

[Πx,Πy] = −i~eB, (2.33)

the magnetic translation operators also do not commute, i.e.,

T̂x(Λx)T̂y(Λy) = e2πiϕT̂y(Λy)T̂x(Λx). (2.34)

Translation in a closed path thus generates a phase ϕ = ΛxΛy

l20
, i.e.

T̂−1
x (Λx)T̂

−1
y (Λy)T̂x(Λx)T̂y(Λy) = e2πiϕ. (2.35)

The phase ϕ here is the induced Aharanov-Bohm phase. Thus, we see that the effect

of applying a magnetic field is essentially the introduction of a non-zero phase for

translation in a closed path. This crucial fact will be used when implementing a

system which simulates magnetic field for photons.
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2.2.2 Electron Motion in Electric and Magnetic Fields

We now discuss the motion of electrons when both the electric and magnetic

fields are applied, and derive an expression for the quantized Hall conductivity. We

consider a system of length L where an external electric field is applied along x−axis.

The Hamiltonian for this system is

H =
1

2me

π2 − eEx. (2.36)

If we choose the Landau gauge, i.e., A = (0, Bx, 0), the Hamiltonian commutes with

py and therefore the eigenfunctions of the Hamiltonian can be written as

ψ(x, y) =
1√
L
exp(−ikyy)φ(x). (2.37)

Using this in (2.36) yields

(
1

2me

p2x +
meω

2
c

2
(x−X)2

)
φ(x) =

[
EX + eEX − me

2

(
E

B

)2
]
φ(x). (2.38)

The left hand side of this equation is the Hamiltonian without the electric field, but

now shifted along x−axis. The energy of the state is therefore,

EX = (n+
1

2
)~ωc − eEX +

me

2

(
E

B

)2

. (2.39)

The first term here is the usual Landau level energy. The second term is the electro-

static potential energy because of the applied electric field. This electrostatic energy

depends on the position X of the guiding center and hence states partially lifts the

degeneracy associated with the X coordinate. States with different Y coordinates

are still degenerate.
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The last term represents the kinetic energy associated with a drift of the

electrons along y−axis, with a velocity of magnitude
(
E
B

)
, calculated as

⟨φ |υy|φ⟩ =
⟨
φ

∣∣∣∣ 1me

(py − eBx)

∣∣∣∣φ⟩ = −E
B
. (2.40)

Moreover, the electrons do not travel along the x axis, since

⟨φ |υx|φ⟩ =
⟨
φ

∣∣∣∣ pxme

∣∣∣∣φ⟩ = 0. (2.41)

Thus, the electrons drift along equipotential lines in a direction perpendicular to

the applied electric field and hence generate the Hall current. In classical sense, the

trajectory of motion is thus in fact a cycloid, with a drift imposed on the cyclotron

rotation motion. For a 2D system with unit area, with n − 1 filled Landau levels,

that is, when the fermi energy EF is in the gap between n − 1 and n Landau

levels, the total number of electrons ne that contribute to Hall current, including

the degeneracy in (Y ) coordinate of the guiding center, is

ne = n
1

2πl20
. (2.42)

Here we have used the fact that the number of degenerate states is same for all

Landau levels. The total Hall current is

Iy = eneυy =
ne2

h
E (2.43)

and the Hall conductivity is therefore,

σH =
Iy
E

=
ne2

h
. (2.44)

Furthermore, since the expectation value of υx is zero, the longitudinal (or diagonal)

conductivity (and also the longitudinal resistivity) is zero. Thus we see that for a 2D
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Figure 2.5: The Corbino geometry for studying the Hall effect [7]. (a) An annulus
with a uniform magnetic field B and a variable magnetic flux Φ threading the center
hole. (b) As the magnetic flux in the hole increases, the locus of the guiding center
for classical cyclotron motion expands in radius.

electron gas in the presence of a magnetic field, the Hall conductivity is quantized.

Whenever the Fermi level EF is in the middle of two Landau levels, the exact

position of the Fermi level does not change the number of electrons that contribute

to conduction and hence the Hall conductivity shows plateau regions, accompanied

by vanishing longitudinal conductivity. Whenever, EF passes through a Landau

level, the electrons in that Landau level contribute to conduction and the Hall

conductivity jumps to the next quantized level.

2.3 Robustness of Quantization and Gauge Invariance

So far, we have only shown that the Hall conductivity is quantized. It still

remains to show that the quantization is robust against material impurities. Laugh-

lin proposed that the quantization of Hall conductance is in fact a consequence of

gauge invariance and is therefore immune against disorder [31]. To show this gauge

invariance, we consider the Corbino geometry (Fig. 2.5) - a 2D electron gas confined
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in a annular region, with a uniform magnetic field B perpendicular to the plane [7].

This geometry has the advantage that the hole of the annulus can be threaded by a

variable magnetic flux Φ. We choose a gauge such that the vector potential is given

as

A(r) =
1

2
Br +

Φ

2πr
, (2.45)

where the second term is the contribution to vector potential by magnetic flux in

the hole. When the flux in the interior region is changed by δΦ, the vector potential

undergoes a gauge transformation. Under the effect of this gauge transformation,

the wavefunction acquires a phase factor as seen

ψ
′
= ψei

e
~ δΦ = ψe

2πi δΦ
Φ0 . (2.46)

But since the electron states extend throughout the circumference of the ring, the

wavefunction is single-valued which forces δΦ
Φ0

to be an integer. Each unit quanta

increase in flux is equivalent to an increase in the angular momentum eigenvalue by

unity (see Eqs. 2.24-2.27). The locus of the guiding center for each of these extended

states (including different Landau levels) therefore moves towards the outer edge of

the ring and occupies the position once occupied by its neighboring degenerate state.

The system thus returns exactly to its previous state, where the position of a state is

now occupied by its preceding state. But in this process, n electrons are transferred

from the inner edge to the outer edge (for n filled Landau levels). If the potential

difference between the inner and outer edges is V , the energy cost of moving these

electrons is ∆E = −neV . Now, the induced Hall current in the ring can be written
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Figure 2.6: A 2D square lattice used to study the 2DEG. The electrons are bound
to lattice sites (red) which represent a periodic crystal potential. The electrons can
tunnel to their nearest neighbors with a tunneling rate J . Depending on the gauge
used, hopping along x−axis or y−axis can have a direction-dependent phase. Here
we chose the Landau gauge.

as [31]

I =
∆E

∆Φ
=
neV

Φ0

=
ne2

h
V. (2.47)

The Hall conductivity is therefore σH = ne2

h
. Using these arguments, we can see

that the accurate quantization of Hall conductivity is a result of gauge invariance of

the Hamiltonian with respect to a vector potential A. In Chapter 6, we will show

that this phenomena of shifting of states from inner to outer edge can be used to

measure the winding number of edge states in our photonic system.
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2.4 The Tight-Binding Model

The Hamiltonian in Eq. 2.13 for a continuum system of 2DEG in a magnetic

field can be reformulated by discretizing the Hamiltonian on a square lattice [8,

39, 40]. Physically, the effect of lattice sites is equivalent to a periodic potential

in the crystal to which the electrons are bound. Also, the electrons have a finite

probability to tunnel to other lattice sites. Here we consider only the tight-binding

model where the electrons can tunnel only to their nearest neighbors (Fig.2.6). In

the limit Λ ≪ l0, where Λ is the lattice spacing, one recovers the continuum theory.

To discretize the Hamiltonian,

H =
1

2me

(p− eA)2 + V, (2.48)

where V is the periodic potential, we approximate the momentum operator acting

on wavefunction ψ(x, y) in Eq. 2.13 as

pψ(x, y) = −i~▽ ψ(x, y) = −i~
[
ψ(x+ Λ, y)− ψ(x, y)

Λ
+
ψ(x, y + Λ)− ψ(x, y)

Λ

]
.

(2.49)

The Hamiltonian in this model (choosing Landau gauge for magnetic field, A =

(0, Bx, 0)) can then be written as [16]

H0 =
∑
x,y

â†x,yâx,y−J

(∑
x,y

â†x+1,yâx,ye
−iyϕ + â†x,yâx+1,ye

iyϕ + â†x,y+1âx,y + â†x,yâx,y+1

)
.

(2.50)

The first term here arises from the periodic potential V . The second and third terms

represent tunneling along±x−axis, with a tunneling rate J , and with a direction and
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Figure 2.7: (a) Hofstadter energy spectrum for a lattice with periodic boundary
conditions. (b) Energy spectrum for a finite lattice. The bandgaps are now popu-
lated with edge states. (c-e) Simulated intensity plots for edge and magnetic bands
eigenfunctions, for αM = 1

4
. Edge state wavefunctions are confined to the perimeter

of the lattice, whereas the bulk eigenfunctions are spread throughput the lattice. (e-
g) Corresponding probability currents. Edge states on the left and right bandgaps
travel in opposite directions.

position-dependent phase yϕ. The last two terms represent hopping along ±y−axis,

without any hopping phase (since we chose the Landau gauge).

2.4.1 Hofstadter Spectrum and Edge States

For an infinite lattice, the energy eigenvalues of the tight-binding Hamiltonian

group into allowed energy bands separated by bandgaps [8,16,39]. When the energy

eigenvalues are plotted against magnetic field strength αM, the famous Hofstadter
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Butterfly spectrum emerges as shown in Fig. 2.7(a) [39]. For αM = p
q
, where p

and q are co-prime integers, the spectrum has q allowed bands (called bulk bands),

interleaved with q − 1 bandgaps. Also, when q is even, the centermost bands are

degenerate at ω = 0, i.e., the two bands touch each other.

For a finite lattice, the otherwise forbidden band-gaps are populated by so

called edge-states. Fig. 2.7(b) shows the Hofstadter spectrum for a finite lattice.

For αM = 1
4
, there are 4 allowed bands with 3 band-gap regions. To highlight the

distinction between edge state and bulk states, Fig. 2.7(c-e) plots the eigenfunctions

of the edge and bulk states. As can be seen, bulk state eigenfunctions occupy the

bulk of the lattice, whereas edge state wavefunctions are confined to the perimeter

of the lattice. Further, the edge states in the two band-gaps travel with opposite

group velocities, circulating clockwise and counterclockwise around the lattice (Fig.

2.7(f-h)). Since the edge states with opposite group velocities have different energies,

the edge states are robust against reflection.

More importantly, the edge states are topologically non-trivial. They are al-

ways confined to the perimeter of the lattice, irrespective of the shape of the lattice.

To characterize their topological order, we use a topological invariant integer called

the winding number. The winding number tn for the edgestates in square lattice

system can be calculated using the Diophantine equations as [8, 16, 29,39]

n = qsn + ptn; |tn| ≤
q

2
, (2.51)

where n and sn are integers with n being the gap index (n ≤ q − 1). A nonzero

winding number indicates topologically non-trivial states. For example, for αM = 1
4
,
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Figure 2.8: Dispersion for an infinite lattice, described by tight-binding Hamiltonian
in Eq. 2.52

the first and the third band-gaps have a winding number ±1, respectively, but the

second bandgap has a winding number 0 (the winding number for second bandgap

is actually not well defined because the bands touch each other [39]). Further, the

opposite sign of winding numbers for the two sets of states signifies their clock-

wise and counter clockwise group velocities. Since the states in the first and third

bandgaps are topologically protected, they are robust against fabrication disorders

in the lattice.
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2.4.2 The Dispersion Relation

Consider an infinite square lattice, with no magnetic field, described by the

tight-binding Hamiltonian

H0 =
∑
x,y

â†x,yâx,y−J

(∑
x,y

â†x+1,yâx,y + â†x,yâx+1,y + â†x,y+1âx,y + â†x,yâx,y+1

)
. (2.52)

For an infinite lattice, we can employ Bloch’s theorem to relate the ladder operators

at different lattice sites as

âx+nx,y+ny = e−i(nxKxΛ+nyKyΛ). (2.53)

Using this relation in Eq. 2.52 gives the dispersion relation for this infinite lattice

as

ω = −2J (cos (KxΛ) + cos (KyΛ)) . (2.54)

Here, we have assumed that the energy of the system is given by ~ω and scaled the

site-potential to zero. Fig. 2.8 plots the dispersion relation. This dispersion relation

defines the tight-binding Hamiltonian (without the magnetic field).

2.5 Summary

In this Chapter, we discussed the quantization of conductance in 2D electron

gas under the influence of a magnetic field. We saw that the quantization of con-

ductance is a direct manifestation of the quantization of energy levels - the Landau

levels. We then discussed a tight-binding lattice model of the quantum Hall effect

and looked at its energy spectrum. For an infinite lattice, the energy spectrum
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is grouped into bands interleaved with bandgaps. For a finite lattice, edge states

appear in the bandgaps. These edge states live on the edge of the lattice and are im-

mune to back-scattering. Finally, we derived the dispersion relation for this system,

which we seek to simulate for photons.
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Chapter 3: Ring Resonator

A ring resonator forms the basic building block of our system which implements

a synthetic gauge field for photons. In the simplest sense, a ring resonator is a

waveguide folded onto itself. Because of this geometry, only the frequencies ω which

satisfy the relation

ω

c
neffL = 2πm, (3.1)

interfere constructively and can exist in the ring. Here neff is the effective refractive

index in the ring waveguide, L is the length of the ring and m is an integer called

the mode number. Usually this ring waveguide is evanescently coupled to one or two

linear waveguides which act as input and output ports to the ring (Fig. 3.1). The

configuration where the ring is coupled only to one waveguide is called the All-Pass

Filter (APF). In an APF, given the ring loss is zero, all wavelengths pass through

the filter with equal transmission. However, the wavelengths which are resonant

with the ring suffer a higher delay because of multiple round trips inside the ring.

For nonzero ring loss, this configuration acts as a notch filter where the transmission

for resonant wavelengths is reduced. The other configuration where a ring is coupled

to two linear waveguides is called the Add-Drop Filter (ADF). In this configuration,

the input to the ring can be from either of the waveguides and depending on the
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Figure 3.1: Schematic of a ring resonator evanescently coupled to input and out-
put waveguides.(a) Add-Drop Filter configuration where the ring is coupled to two
waveguides, (b) All-Pass Filter configuration where the ring is coupled to only one
waveguide.

input waveguide used and the input wavelength, the output appears at one of the

ports. If the input is as shown in Fig. 3.1(a), the frequencies which satisfy Eq. 3.1

are directed to the drop port while the other frequencies to the through port.

The ADF and the APF can be analyzed for their transmission and delay

spectra using a vigorous transfer matrix method (TMM) or using a simpler single-

mode approximation. The TMM yields a solution of the light field at each point

in the ring whereas the single-mode approximation treats the ring resonator as a

lumped element with a single mode. Accordingly, the TMM gives the complete

transmission spectrum of the ring, i.e. the spectrum at all wavelengths, covering

all resonances corresponding to different longitudinal modes. On the other hand,

the single mode approximation yields a solution only for one mode, that is, only

near one resonance. However, the single mode approximation helps develop an
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Figure 3.2: (a) Transfer matrix analysis of a ring resonator. Each coupling region
is characterized by a transfer matrix with transmission coefficient t and coupling
coefficient k. (b) The ring resonator supports a single mode with total energy
amplitude a(t) and is coupled to the waveguides with a coupling rate κIex and κOex.

intuitive approach to the solution. In the following, we study both these approaches

and establish a connection between the two. We will justify the use of the single-

mode approximation to study the 2D system of coupled ring resonators. Also, we

will only discuss the ADF configuration since this is the configuration we will later

use to characterize our system of coupled resonators. The APF can be analyzed

similarly.

3.1 Transfer Matrix Method (TMM)

The transfer matrix method uses electric field amplitudes to analyze a ring

resonator. We begin with designating the field amplitudes at different points in

the ADF as shown in Fig. 3.2(a). The field amplitude here is a function of the

position in the ring waveguide, but the transverse field profile in the ring waveguide
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is not considered, assuming the transverse field profile remains constant throughout

the ring. Fig. 3.2 also shows the port designations we will use. Light input at

the input port and resonant with the ring appears at the drop port after travelling

multiple times through the ring. The input light frequencies not resonant with

the ring appear at the through port. Light which gets backscattered in the ring

at the coupling regions or due to waveguide surface roughness will appear at the

backscattered port. The ring can, in general, support two degenerate, clockwise

and counterclockwise propagating. We can selectively excite a particular mode by

choosing the appropriate input port. However, a significant backscattering in the

ring waveguide can result in a coupling between the two modes and exciting the

ring with only one of the modes can still result in the second mode being generated

(Appendix A). We will usually excite the ring using only one input and assume the

backscattering in our ring waveguides is negligible. Hence in our system only one of

the two modes propagate in the rings. For the single, counterclockwise propagating

mode, the field amplitudes at the coupling regions are then related using the transfer

matrix as [41]  E2

E3

 =

 t ik

ik t


 E1

E6

 (3.2)

and  E8

E5

 =

 t ik

ik t


 E7

E4

 . (3.3)

Here t is the field transmission coefficient through the coupling region and k is the

coupling coefficient. The i in the transfer matrix represents the phase shift during
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coupling and makes the transfer matrix unitary. Therefore, for a coupling region

without coupling loss,

t2 + k2 = 1. (3.4)

The other field amplitudes are related using the propagation phase and loss as

E4 = E3e−iβ L
2 e−αL

2 (3.5)

and

E6 = E5e−iβ L
2 e−αL

2 (3.6)

where

β = ω
neff (ω)

c
(3.7)

is the propagation constant and α is field decay coefficient per unit length. The

frequency dependence of neff accounts for the material and waveguide dispersion.

These relations describe the free propagation of fields inside the ring resonator.

These are a set of 6 equations with 8 variables. For no input at the backscat-

tering port, i.e. E7 = 0, the remaining fields can be solved in terms of the incoming

field E1. On solving these, the drop and through fields are,

ET = E2 =
t− te−iβLe−αL

1− t2e−iβLe−αL
E1 (3.8)

ED = E8 = − k2e−iβ L
2 e−αL

2

1− t2e−iβLe−αL
E1. (3.9)

The power transmission coefficients for the through and drop port are then,

TT =

∣∣∣∣ETE1
∣∣∣∣2 = t2

(
1 + e−2αL − 2e−αL cos(βL)

)
1 + t4e−2αL − 2t2e−αL cos(βL)

(3.10)

TD =

∣∣∣∣EDE1
∣∣∣∣2 = k4e−αL

1 + t4e−2αL − 2t2e−αL cos(βL)
(3.11)
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Figure 3.3: (a)Transmission spectrum at the drop and through ports as a function of
input frequency, calculated using transfer matrix method. At resonance, the output
is maximum at the drop port is minimum at the through port. The spectrum also
shows multiple FSRs corresponding to different mode numbers. (b)

Typical power transmission spectra at the drop and through ports are shown

in Fig. 3.3(a). The spectra show resonance peaks corresponding to different mode

numbers, i.e., at multiples of the free spectral ranges (FSR). FSR is defined as the

frequency spacing between the longitudinal modes of the ring resonator and is given

as

FSR = 2π
υg
L
. (3.12)

Here we have included the frequency dependence of neff, which yields υg =
c
ng
, where

ng = neff(ω) + ω dneff(ω)
dω

.

At resonance, i.e., when βL = 2πm, the minimum transmission at the through

port and maximum transmission at the drop port are

TRES
T = t2

(1− e−αL)2

(1− t2e−αL)2
(3.13)
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and

TRES
D =

k4e−αL

(1− t2e−αL)2
(3.14)

Therefore, we see that in the absence of loss (α = 0), at resonance, all the

input light appears at the drop port
(
TRES
D = 1

)
. However, in the presence of loss,

at resonance, the power transfer to the drop port is not complete and some power

remains at the through port. Away from resonance, TT is maximum and TD is

minimum. We can also verify that in the absence of loss, TT + TD = 1 at all input

frequencies.

Further, we can calculate the delay at the drop port using a derivative of the

phase ϕD of the field as

τD = −dϕD

dω
, (3.15)

where ϕD = ED
|ED| . The delay thus calculated is called the Wigner delay [42]. The

delay spectrum at the drop port is shown in Fig. 3.3(b). As expected, we observe

that the delay is maximum at resonance because the light goes through multiple

round-trips of the ring resonator.

3.2 Single Mode Approximation (SMA)

In the single mode approximation, we treat the ring resonator as a lumped

element consisting a single mode, with total energy stored in the ring at time t

being |a(t)|2, where a(t) is the energy amplitude of the mode (Fig. 3.2(b)). This

total energy content of the ring can be related to the field amplitude ER(t) travelling
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inside the ring as [43]

|a(t)|2 = |ER(t)|2
L

υg
(3.16)

where υg is the group velocity. We can now analyze the ADF using a differential

equation which dictates the time evolution of the energy amplitude a(t) and is given

as

da

dt
= iω0a−

a

τ
−
√
2κIexEI(t). (3.17)

Here ω0 is the resonance frequency of the ring resonator and the last term on the

right is the coupling of the ring to input field EI(t), with a coupling rate κIex. The

second terms on the right represents the decay of ring energy with a rate constant

τ , because of resonator losses and coupling to output waveguides (drop and through

ports). The decay rate τ of the ring can therefore be decomposed as

1

τ
= (

1

τ Iex
+

1

τOex
+

1

τin
) = (κIex + κOex + κin) (3.18)

where τ Iex, τ
O
ex and τin are the decay rate constants due to coupling to the through

port, the drop port and decay due to resonator loss, respectively. κIex, κ
O
ex and κin

are the corresponding decay rates - the inverse of decay rate constants. κIex and κOex

are dictated by the coupling strength of the ring to input and output waveguides,

whereas, κin represents the energy loss due to waveguide surface roughness scattering

and waveguide bending losses.

For a plane wave input excitation of the form EI(t) = EIe−iωt, the steady state

solution for the ring energy amplitude can be derived by setting da
dt

= 0 as,

a =
−
√
2κIex

i (ω − ω0) + (κIex + κOex + κin)
ET. (3.19)
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The output field amplitude at drop port is then [44]

ED =
√

2κOexa =
−2
√
κIexκ

O
ex

i (ω − ω0) + (κIex + κOex + κin)
EI (3.20)

and at the through port is

ET = EI −
√
2κIexa =

i(ω − ω0) + (κOex − κIex + κin)

i(ω − ω0) + (κIex + κOex + κin)
EI. (3.21)

Using these equations, we derive the power transmission at the drop and

through port as

TD =

∣∣∣∣EDEI
∣∣∣∣2 = 4κIexκ

O
ex

(ω − ω0)2 + (κIex + κOex + κin)2
(3.22)

and

TT =

∣∣∣∣ETEI
∣∣∣∣2 = (ω − ω0)

2 + (κOex − κIex + κin)
2

(ω − ω0)2 + (κIex + κOex + κin)2
. (3.23)

A typical transmission spectrum at the drop and through ports is shown in

Fig. 3.4(a). Since we assumed only a single mode travelling inside the ring, unlike

TMM, the transmission spectrum exhibits only one resonance. At resonance, i.e.

when ω = ω0, the transmission is maximum at drop port and minimum at the

through port given by

TRES
D =

4κIexκ
O
ex

(κIex + κOex + κin)2
(3.24)

TRES
T =

(κOex − κIex + κin)
2

(κIex + κOex + κin)2
. (3.25)

As we saw using TMM, for lossless ring (κin = 0) and κIex = κOex, the transmission

at the drop port is equal to unity at resonance and zero at the through port. Away

from resonance, the transmission at the through port is unity and negligible at the

drop port. Also at all frequencies, in absence of loss, TT + TD = 1.

36



 

 

 

 

−50

−40

−30

−20

−10

0

T
 (

d
B

)

0

1

2

3

4

τ
 (

p
s)

Drop

Through

-1.5 -1 0 1 2-0.5 0.5 1.5-2.0

-1.5 -1 0 1 2-0.5 0.5 1.5-2.0

Figure 3.4: Transmission spectrum at the drop and through ports as a function
of input frequency, simulated using single-mode approximation. As with transfer
matrix analysis, at resonance, the transmission is maximum at the drop port. How-
ever, this approximation yields only one resonance peak of the resonator. (b) Delay
(Wigner) spectrum at the drop port.

The Wigner delay at the drop port can be calculated using Eq. 3.15 to be

τD = −dϕD

dω
=

2
√
κIexκ

O
ex

(i(ω − ω0) + (κIex + κOex + κin))
2 . (3.26)

The maximum delay at resonance is

τRES
D =

2
√
κIexκ

O
ex

(κIex + κOex + κin)
2 . (3.27)

For (κin = 0) and κIex = κOex = κex, this relation simplifies to

τRES
D =

1

2κex
. (3.28)

3.3 Equivalence between TMM and SMA

We see that in the transfer matrix method, the ADF is characterized by the

coupling coefficients t, k and the loss coefficient α. In the single-mode approximation,
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the same ADF is characterized by coupling rate κex (assuming κIex = κOex = κex) and

the loss rate κin. We can therefore derive an equivalence between these two sets of

parameters. To do so, we first consider the FWHM (∆ω0) of the transmission peak

at the drop port. For the SMA, the FWHM (in angular frequency units) can be

calculated from Eq. 3.22 to be

∆ωSMA
0 = 2(2κex + κin). (3.29)

Similarly, in the TMM, the FWHM (in angular frequency units) of the drop port

spectrum from Eq. 3.11 is

∆ωTMM
0 =

2υg
L

(eαL − t2e−αL). (3.30)

For small α, k, so that the bandwidth of the drop port is small compared to the

FSR of the resonator, this can be simplified to

∆ωTMM
0 =

2υg
L

(k2 + αL). (3.31)

Thus, equating the two relations, for a ring with low loss and small coupling to the

waveguides,

κex =
k2

2

υg
L

(3.32)

and

κin = αυg. (3.33)

These relations thus establish the equivalence between the two approaches

to analyze the ring resonator in the weak coupling regime. A comparison of the

transmission and delay spectra calculated using the two approaches is shown in
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the FSR of the ring. As the difference ω − ω0 becomes comparable to FSR, the
discrepancy increases.
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Fig. 3.5. We find that the single mode approximation is strictly valid when the

ring resonator is coupled weakly to the input/output waveguides and the resonator

losses are small, i.e., κex, κin ≪ FSR. In other words, this means that the single

mode approximation holds when the bandwidth of the transmission spectrum near

a resonance (4κex + 2κin) is much less than the FSR.

We can also derive these expressions considering the ring energy decay rates.

In the SMA, neglecting loss and in the absence of external input coupling, the energy

decays as

|a(t)|2 = |a(0)|2e−2t/τ (3.34)

where τ is defined as in Eq. 3.18. In the absence of loss, the energy decays because

the ring is coupled to through and drop ports. Now since the through and drop

port waveguide couplers are characterized by coupling constant k, the total power

output at through and drop ports is

|ET|2 + |ED|2 = k2 |ER(t)|2 + k2 |ER(t)|2 = 2k2|a(t)|2υg
L
. (3.35)

In the SMA, with the coupling constant κex, these fields are

|ET|2 + |ED|2 = 2κex |a(t)|2 + 2κex |a(t)|2 . (3.36)

Comparing both expressions we get

κex =
k2

2

υg
L
, (3.37)

which is same as derived earlier (Eq. 3.32).

Similarly, we can equate the ring energy loss in a time duration t, when the

ring is not coupled to any of the waveguides and the ring loses energy only because
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of loss waveguide surface roughness scattering and absorption loss. Doing so yields

the equation,

|a(t)|2 e−2tκin = |a(t)|2 e−2αυgt (3.38)

which gives,

κin = αυg. (3.39)

3.4 Finesse and Quality Factor of the Resonator

The Finesse (F ) of a resonator is a measure of the number of round trips the

light makes before leaking out of the ring. It is defined as the ratio of the free

spectral range to the resonance bandwidth and can also be written as the ratio of

photon lifetime in the ring to the round-trip time.

F =
FSR

∆ω0

= 2π
τP
τR

(3.40)

Using (3.18) and (3.22), the photon lifetime τP (rate constant for energy decay) in

the ring is

τP = τ/2 =
1

2(2κex + κin)
=

1

∆ωSMA
0

= 2τRES
D , (3.41)

and the ring round trip time τR is simply

τR =
L

υg
. (3.42)

Using above expressions, the Finesse of the ADF is calculated to be

F =
πυg

L(2κex + κin)
. (3.43)
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The quality factor Q is a measure of the ring resonator losses and is defined

as

Q = ω0
Energy stored in the ring

Energy loss rate
. (3.44)

The energy stored in the ring is simply |a|2. The energy loss rate of the ring is in

fact the power loss, which includes power lost to input/output waveguides and the

intrinsic resonator loss such as the waveguide scattering. Using (3.36) and (3.38),

the rate of energy loss (or the power loss) from the ring is

PL = 2(2κex + κin)
∣∣a2∣∣ . (3.45)

The quality factor for the ADF is then

Q = ω0
|a2|

2(2κex + κin) |a2|
. (3.46)

Using (3.29), the quality factor can also be written as

Q =
ω0

∆ω
= mF (3.47)

where m is the mode number corresponding to ω0. This is the loaded quality factor

for the ring since it includes the ring energy loss because of coupling to input and

output waveguides.

3.5 Summary

In this chapter, we discussed the two approaches to analyze a ring resonator -

the rigorous transfer matrix method and the more intuitive, single mode approxima-

tion. We derived an equivalence between the parameters defining a ring resonator
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in the two approaches. Most importantly, we justified that a ring resonator can be

treated as a lumped element with a single mode when the ring is excited by fre-

quencies near its resonance. We use this approximation to simulate the 2D lattice

of tight-binding model for photons.
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Chapter 4: Synthetic Magnetic Field for Photons

The presence of a magnetic field in a two dimensional electron gas leads to the

emergence of topologically robust, reflection free, chiral edge states. Implementing

analogs of topological edge states in photonic systems is very desirable from the

viewpoint of achieving, on-chip, one-way waveguides. But, at optical frequencies,

magneto-optic effects - the only source of coupling between photons and magnetic

fields is very weak. In this chapter, we describe how we can engineer a synthetic

magnetic field for photons using a 2D lattice of ring resonators and hence achieve

topologically ordered edge states. We also discuss an application of these edge states

as robust optical delay lines in photonic integrated circuits

4.1 Coupled Ring Resonators

In the single-mode approximation, a ring resonator can be treated as a lumped

element described by an energy amplitude. Using this fact and taking a clue from

the lattice model of the quantum Hall effect, we consider a two-dimensional lattice

of ring resonators (Fig. 4.1). The ring resonators form a square lattice and act as

lattice sites to which photons are bound - analogous to electrons bound to a periodic

potential on lattice sites. These site ring resonators are coupled by evanescent fields
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in the ring waveguides, to their nearest neighbors through link rings. These link

resonators have slightly longer length than the main ring resonators. This extra

length results in a phase shift of π and thus makes the link resonators anti-resonant

to the main site ring resonators. Thus for light in the resonance pass band of

the site rings, the link resonators do not store any energy and hence act simply

as connecting waveguides and not as resonators. More importantly, this coupling

of resonators allows the photons to hop from one site ring to a neighboring site,

simulating a tight-binding model where electrons hop between nearest neighbors.

This 2D lattice of coupled resonators can then described by the same tight-binding

Hamiltonian which describes a 2D electron gas, but without a magnetic field.

To introduce a synthetic magnetic field into this system, we use the fact

that the effect of an external magnetic field is equivalent to the presence of non-

commuting lattice translation operators. In other words, the accumulated phase

around a loop, the sign of which depends on the direction of travel around the loop,

gives rise to what can be thought of as a synthetic magnetic field for photons. In

the following, we discuss how this magnetic field can be realized by appropriate

placement of the link rings. We derive the dispersion relation for this 2D system of

coupled ring resonators and show that it is exactly the same as that of the tight-

binding Hamiltonian.

45



Site ring 

resonator

Link ring

Figure 4.1: A 2D square lattice of ring resonators to simulate the tight-binding model
without a magnetic field. The site ring resonators (blue) act as lattice sites and the
photons hop from one site to another using link rings (green). Field amplitudes
are labeled and discussed in the text. Subscripts indicate specific rings described in
Eqs. 4.1-4.11.
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4.1.1 Tight-Binding Model without Magnetic Field

To show that the 2D system of coupled site and link resonators in Fig. 4.1 in-

deed simulates the tight-binding Hamiltonian, without a magnetic field, we consider

an infinite lattice of such resonators. An infinite lattice allows us to use Bloch’s

theorem to relate field amplitudes in different rings. We use the transfer matrix ap-

proach and label the field amplitudes as shown in Fig. 4.1. We treat each coupling

region between neighboring rings (site and link rings) as a point-like interaction and

the field amplitudes are defined at the outputs of the waveguide coupling region

(i.e. where two rings run tangent to each other). As an example, the coupling re-

gion to the left of the center-most ring in Fig. 4.1 forms a directional coupler and

is described by a transfer matrix which relates the outgoing field amplitudes to the

incoming field amplitudes as E0
a

E1
f

 =

 t iκ

iκ t


 E0

de
−iβ

LSR
4

E1
e e

−iβ
LLR
2

 . (4.1)

Here t is the transmission coefficient through a coupling region and κ is the coupling

coefficient. These parameters can be estimated using finite-difference time domain

(FDTD) simulations. The transfer matrix is unitary, meaning that in the absence

of coupling loss,

t2 + κ2 = 1. (4.2)

The terms e−iβ
LSR
4 and e−iβ

LLR
2 are the phase factors accumulated in travelling 1/4th

of the total length LSR of site resonator and 1/2 of the link resonator length LLR,
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respectively. The above equation can also be written as E0
de

−iβ
LSR
4

E0
a

 =
1

iκ

 −t 1

−1 t


 E1

e e
−iβ

LLR
2

E1
f

 , (4.3)

where now the field amplitudes of one ring are described in terms of the field ampli-

tudes of the neighboring ring. Similarly, we can write the fields of the link resonator

in terms of the next site resonator (to the left of the resonator described in Eq. 4.3) E1
e e

−iβ
LLR
2

E1
f

 =
1

iκ

 −t 1

−1 t


 E1

c

E1
b e

−iβ
LSR
4

 . (4.4)

Using these two equations we can relate the fields of one site resonator to the

neighbouring site E0
de

−iβ
LSR
4

E0
a

 =
−1

κ2

 −t 1

−1 t


 te−iβ

LLR
2 −e−iβ

LLR
2

eiβ
LLR
2 −teiβ

LLR
2


 E1

c

E1
b e

−iβ
LSR
4

 .

(4.5)

Following the same procedure, we can derive another set of equations relating the

field amplitudes of neighboring sites in the vertical direction E0
ae

−iβ
LSR
4

E0
b

 =
−1

κ2

 −t 1

−1 t


 te−iβ

LLR
2 −e−iβ

LLR
2

eiβ
LLR
2 −teiβ

LLR
2


 E2

d

E2
c e

−iβ
LSR
4

 .

(4.6)

However, for this infinite lattice, the field amplitudes of the neighboring rings
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are also related using Bloch’s theorem [45]

E1
b = E0

b e
iKxΛ (4.7)

E1
c = E0

c e
iKxΛ (4.8)

E2
c = E0

c e
iKyΛ (4.9)

E2
d = E0

de
iKyΛ. (4.10)

HereKx andKy are the lattice momentum components and Λ is the lattice constant.

Using these relations in Eqs. 4.5-4.6 gives a set of homogenous equations featuring

only the field amplitudes of a single site ring

0 t
κ2ΦxΦSR

(
ΦLR − Φ−1

LR

)
1
κ2Φx

(
−t2ΦLR +Φ−1

LR

)
ΦSR

1 1
κ2ΦxΦSR

(
ΦLR − t2ΦLR

)
t
κ2Φx

(
ΦLR +Φ−1

LR

)
0

ΦSR 0 t
κ2ΦyΦSR

(
ΦLR − Φ−1

LR

)
1
κ2Φy

(
−t2ΦLR +Φ−1

LR

)
0 1 1

κ2ΦyΦSR

(
ΦLR − t2Φ−1

LR

)
t
κ2Φy

(
−ΦLR +Φ−1

LR

)





a0

b0

c0

d0


= 0,

(4.11)

where we have used Φx = eiKxΛ, Φy = eiKyΛ, ΦLR = e−iβ
LSR
4 and ΦLCR = e−iβ

LLR
2

for brevity. A non-zero solution for this equation implies that the determinant

of the square matrix on the left side is zero. Equating this determinant to zero

and using the fact that the link resonators are anti-resonant to the site rings, i.e.,

βLLR = βLSR + π, results in the following dispersion relation for this 2D system of

coupled ring resonators

sin (βLSR) = tκ2 (cosKxΛ + cosKyΛ) . (4.12)

So far we have not used any approximations. When the input field frequency
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ω is close to the resonance pass-band of the rings

sin (βLSR) ≈ βLSR = (ω0 − ω)
LSR

υg
. (4.13)

Then, in the weak coupling regime (κ << 1andt ≈ 1), the dispersion relation for

this system of coupled ring resonators is given by

ω = ω0 − 2J (cosKxΛ + cosKyΛ) . (4.14)

where the coupling rate J is

J =
κ2

2

υg
LSR

. (4.15)

More importantly, we see that this dispersion relation is exactly the same as that

we derived for the tight binding Hamiltonian without the magnetic field (Eq. 2.54)

H0 =
∑
x,y

â†x,yâx,y−J

(∑
x,y

â†x+1,yâx,y + â†x,yâx+1,y + â†x,y+1âx,y + â†x,yâx,y+1

)
. (4.16)

Therefore, this system of coupled resonators indeed simulates the tight-binding

Hamiltonian for electrons in the weak coupling regime and for input field frequencies

close to the resonance, i.e., when the single-mode approximation for a ring resonator

is valid. We therefore see that, using the above Hamiltonian, this 2D lattice of ring

resonators can be described by the Coupled Mode Theory (CMT) where the single

modes of the ring resonators are coupled by the coupling rate J . Furthermore, in

this derivation, we have used βLLR = βLSR + π. Because of this condition, the

Hamiltonian does not contain any terms relating to the fields in the link rings. For

any given value of βLLR, we can still derive the same dispersion relation but with a

modified coupling rate J (see Appendix B). However, there is no magnetic field in
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Site ring 

resonator

Link ring

Figure 4.2: A plaquette, composed of 4 site rings and 4 link rings, which introduces
synthetic magnetic field for photons by vertically shifting the link ring in the top
row of rings. The black arrows in the rings indicates the circulation of photons
in the rings and the red arrows highlights the propagation direction around the
plaquette. The total phase acquired in going around the loop is −ϕ - the magnetic
flux. ϕLR

0 = iβLLR/2 is the phase acquired in half length of the link ring, without a
shift.

this Hamiltonian. We now introduce a synthetic magnetic field for photons in the

system.

4.1.2 Magnetic Field for Photons

In Chapter 2, we showed that the effect of a magnetic field on a 2D electron

gas is evident in the noncommutative magnetic translation operators. Therefore, for

photons travelling in a closed loop, introduction of a phase which depends on the

direction of travel around the loop, is equivalent to creating a synthetic magnetic

field for photons. In the 2D lattice of ring resonators described above, this can be

achieved easily by shifting the link resonators located horizontally between the site

rings, in the vertical direction by length yξ , where y is the row index. With this

shift, the photons circulating counterclockwise in the site rings, clockwise in the
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Figure 4.3: An infinite 1D array of site ring resonators (blue), coupled using link
rings (green). The link rings are vertically shifted to introduce a direction dependent
hopping phase in the Hamiltonian.

link rings, and hopping from left to right travel a slightly longer path and hence

accumulate an extra phase when compared to the photons hopping from right to

left. Thus, in a closed loop, around a plaquette consisting of 4 site ring resonators

and 4 link ring resonators (Fig. 4.2), the photons accumulate a phase ϕ, when

circulating clockwise around the loop and −ϕ, when circulating counterclockwise

around the loop. To implement a uniform magnetic field in the lattice, we choose

a gauge A = (yξ, 0) and vertically shift the link rings in each row by yξ, where y

is the row index (Fig. 4.4). The Hamiltonian for this 2D system of coupled ring

resonators is now given by

H0 =
∑
x,y

â†x,yâx,y−J

(∑
x,y

â†x+1,yâx,ye
−i2παy + â†x,yâx+1,ye

i2παy + â†x,y+1âx,y + â†x,yâx,y+1

)
.

(4.17)

It remains to be proven that vertically displacing the link ring results in di-

rection dependent hopping phase as it appears in the above Hamiltonian. To this

end, we consider a simple one-dimensional infinite chain of resonators coupled using

link resonators (Fig. 4.3). Each link resonator is shifted as shown in the figure. The

Hamiltonian for this system in the tight-binding model is

H0 =
∑
x

â†xâx − J

(∑
x

â†x+1âxe
−i2πα + â†xâx+1e

i2πα

)
. (4.18)
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The dispersion relation for this Hamiltonian can be derived using the procedure we

followed in Chapter 2 and is given as

ω = ω0 − 2J cos (KxΛ + ϕ), (4.19)

where ϕ = 2πα. Now, as we did for the two dimensional system, we label the field

amplitudes in this 1D system (see Fig. 4.3) and use the transfer matrix approach

to relate the field amplitudes as E0
ae

−iβ
LSR
4

E0
b

 =
1

iκ

 −t 1

−1 t


 E1

de
−iβ

LLR
2 eiϕ

E1
c

 (4.20)

and  E1
c e

−iβ
LLR
2 e−iϕ

E1
d

 =
1

iκ

 −t 1

−1 t


 E1

b e
−iβ

LSR
4

E1
a

 . (4.21)

Again, using Bloch’s theorem, we can relate the field amplitudes in different rings

as

E1
a = E0

ae
iKxΛ (4.22)

E1
b = E0

b e
iKxΛ. (4.23)

Using these in the above equations, we find two homogenous equations in variables

a0, b0, ΦSR − Λx

k2

(
t2ΦLR − Φ−1

LR

)
Λxt
k2

ΦSR

(
ΦLR − Φ−1

LR

)
Λxt
k2

(
Φ−1

LR − ΦLR

)
1 + Λx

k2
ΦSR

(
ΦLR − t2Φ−1

LR

)

 a0

b0

 = 0, (4.24)

where now ΦLR = e−iβ
LLR
2 e−iϕ. These equations have a non-zero solution if the

determinant of the coefficient matrix is zero. Solving the above determinant and
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approximating the phase ϕ, as we did earlier, gives us the dispersion relation

ω = ω0 − 2J cos (KxΛ + ϕ). (4.25)

Thus our two-dimensional system of coupled ring resonators, where the link res-

onators are shifted by yξ, implements a uniform synthetic gauge field for photons

and the flux of this synthetic magnetic field per plaquette is ϕ.

4.2 A Finite Lattice - Transmission, Delay & Edge States

In the above discussion, we considered an infinite system of ring resonators

and derived its dispersion relation. Since the lattice was infinite, there were no edge

states. For a finite lattice, as with its electronic counterpart, edge states appear

naturally. In this section, we investigate a finite lattice of these ring resonators

using the coupled-mode theory, i.e., treating the ring resonators in the single-mode

approximation, with a coupling between the modes. The lattice is also coupled to

input and output waveguides to allow probing of the lattice (similar to an ADF).

We use input-output formalism to describe coupling of the lattice to the input and

output fields, and relate them using power transmission and delay properties of

the lattice [44]. We will show that the presence of edge states is evident in the

transmission and delay spectra of the lattice.

We proved that the 2D lattice of ring resonators is described by the tight-

binding Hamiltonian in Eq. 4.17. We use this Hamiltonian along with the input-

output formalism to express output fields at the drop and through ports in terms

of the incoming fields. The Hamiltonian for a lattice of NSR = Nx × Ny site rings
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Figure 4.4: A 4×4 lattice of site rings. The link rings are shifted vertically to
introduce a uniform synthetic magnetic field. The lattice is coupled to input and
output waveguides to probe the transmission and delay spectra of the lattice

is a square matrix of dimensions NSR × NSR. We choose the configuration space

itself as the basis - a basis of dimension NSR, with the rings of the lattice indexed

linearly. The diagonal elements of the matrix are then the self energy terms, i.e., the

resonance frequency of the resonator ω0. The off-diagonal elements of the matrix

represent the couplings between rings. For example, H i,j
0 = −Je±iαy if ring i is

coupled to ring j and both the rings i, j are in the same row, with index y. The sign

of the phase depends on the hopping direction. For hopping along y-axis, there is

no phase factor since we choose the Landau gauge. For example, in this basis, the

Hamiltonian, H0, for a 3×3 lattice is a square matrix of dimension 9×9

55



H0 =



ω0 −Je−iα 0 −J 0 0 0 0 0

−Jeiα ω0 −Je−iα 0 −J 0 0 0 0

0 −Jeiα ω0 0 0 −J 0 0 0

−J 0 0 ω0 −Je−i2α 0 −J 0 0

0 −J 0 −Jei2α ω0 −Je−i2α 0 −J 0

0 0 −J 0 −Jei2α ω0 0 0 −J

0 0 0 −J 0 0 ω0 −Je−i3α 0

0 0 0 0 −J 0 −Jei3α ω0 −Je−i3α

0 0 0 0 0 −J 0 −Jei3α ω0



.

(4.26)

The time evolution of the ring energy amplitude operators (âi) are then given

by a set of coupled differential equations as

dâi
dt

= i [H, âi]− κinâi − (δi,I + δi,O)κexâi − δi,I
√
2κexEI(t). (4.27)

The first term on the right gives the resonance frequency term, ω0, and the couplings

of the ring k to its neighbors. The second term is the loss rate, κin, of the ring. The

third term represents the loss of energy at the input and output ports. Even though

it is an input port, it is a waveguide coupler and hence, also acts as an output - we

call it the through port. The fourth term is the energy input to the lattice by an

electric field EI(t). The electric field here is normalized to power, i.e., the square of

the electric field amplitude is power and not the energy, as we did in the description

of a single ring resonator in Chapter 3. These relations are valid for an electric field

excitation with an arbitrary time behavior. When the input electric field is a plane
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wave, of the form EIe−iωt, the above relations can be simplified in the rotating frame

to give

−iωai = i [H, ai]− κinai − (δi,I + δi,O)κexai − δi,I
√
2κexEI, (4.28)

where there is no time dependence now. Also, the ring energy amplitudes ai are

now the expectation values of the corresponding operators i.e., ai = ⟨âi⟩. The above

equations are a set of coupled linear equations and can be solved using matrix

methods. The output at the drop and through ports is

ED =
√
2κexaO (4.29)

ET = EI −
√
2κexaI, (4.30)

where we have used the single ring relations as given in Eqs. 3.20-3.21.

A typical spectrum at the drop and through ports for a 8×8 lattice is shown

in Fig. 4.5. The magnetic field has been chosen such that ϕ = 2παM = 2π/4.

Now, if we look at the energy distribution in the lattice we find that the highlighted

regions are the edge state bands. Further analysis of the probability current in

these regions reveals the direction of circulation of these edge states. We refer the

counterclockwise propagating states as the short-edge and the clockwise propagating

states as the long-edge, because of the path length they travel through the lattice

from input to the output. The bulk states, on the other hand, show a random

distribution and a random probability current. Also, the edge-state distribution

remains the same even when the input frequency is changed by ≈ 0.5J , whereas,

the bulk state distribution changes for even ≈ 0.01J change in the input frequency.

Fig. 4.5(b) shows the delay spectrum at the drop port for this lattice. The
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Figure 4.5: (a) A typical transmission and (b) delay spectrum for an 8×8 lattice.
The long-edge band (red), bulk-band (blue) and the short-edge band (green) are
highlighted. (c-e) Ring intensity distributions for the edge and the bulk states.
The short-edge and the long-edge paths can be easily identified. The bulk-state
distribution is random. (f-h) Probability currents for the edge states in (c-e). The
short and the long-edge states have opposite currents. Here we have used κex =
1.25J and κin = 0.08J .
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Figure 4.6: Transmission spectrum of a 8×8 lattice with weak input/output cou-
pling, κex = 0.1J . Individual edge states can now be resolved.

delay shown here is the Wigner delay which is calculated using the derivative of the

phase of the electric field at drop port as

τD =
d

dω

(
ED
|ED|

)
. (4.31)

We see that the delay is flat in regions of edge states. We also observe that the

delay in the long-edge state is higher than the delay in short-edge state since the

former travels a longer path. We should note that the Wigner delay can be negative

for anomalous dispersion regions around a phase jump, as is evident in the delay

spectrum.

We discussed in Chapter 2 that the Hofstadter spectrum for a finite lattice

exhibits discrete edge states in the bandgap. However, the individual edge state

peaks are not resolved in this spectrum. This is a result of a strong coupling κex to

input and output waveguides used for the plots in Fig. 4.5 and also the high intrinsic

loss κin, which broadens the individual peaks. Fig. 4.6 shows a spectrum for the
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Figure 4.7: Flipping of the transmission spectrum as a result of spin reversal. Edge
state currents also get reversed.

same device where now κex = 0.1J and κin = 0.01J . In this regime, the spectrum

clearly shows transmission through individual edge states and it corresponds to a

cross-section of the Hofstadter butterfly spectrum, with finite lattice size, at α =

1/4. When the input field frequency coincides with one of the eigenstates, the

transmission is high (and low otherwise). Also, since we couple light to a single ring

in the lattice, a point-like excitation, we can excite all the eigenstates of the system.

4.3 Spin Degree of Freedom

In the preceding discussion, the field circulated counterclockwise in the site res-

onators and clockwise in the link resonators. However, a ring resonator can support

two degenerate clockwise and counterclockwise propagating modes. Therefore, with

this 2D system of coupled ring resonators, the site resonators support a counter-

clockwise circulating mode and the link resonators support a clockwise circulating

mode or vice-versa. This is equivalent to having a spin degree of freedom in the
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lattice with two possible states - ±1. Furthermore, because of their opposite sense

of rotation in the rings, they also experience opposite magnetic fields (sign reversed

magnetic flux) in the lattice. The Hamiltonian for this system considering the spin

degree of freedom is thus given as

H0 =
∑
σ,x,y

â†σ,x,yâσ,x,y

−J

(∑
σ,x,y

â†σ,x+1,yâσ,x,ye
−i2πασ + â†σ,x,yâσ,x+1,ye

i2πασy + â†σ,x,y+1âσ,x,y + â†σ,x,yâσ,x,y+1

)
,

(4.32)

where σ is ±1, representing the spin. Also, the sign of hopping phase in this Hamil-

tonian is now spin dependent, indicating reversal of magnetic field. The Hamiltonian

does not contain a term which couples these spin states. However, backscattering

in the ring waveguides can lead to a mixing of the two states. But as we will show

in Chapter 5, this coupling is negligible.

For a given input frequency, the spin reversed states also rotate in opposite

direction around the lattice, i.e., the edge state currents are reversed. As shown

in Fig. 4.7, with spin reversal, the long-edge and the short-edge states have also

reversed positions in the spectrum. Our system is therefore equivalent to a quantum

spin-Hall system where the two degenerate spin states travel in opposite directions

[46,47]. In the finite lattice (Fig. 4.4), spin can be easily reversed by launching light

into the through port and observing the output at the backscattering port. Coupling

light into the drop port does reverse the spin, but it also reverses the direction of

magnetic field and hence has no effect on the spectrum.
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4.4 Edge States as Robust Optical Delay Lines

Optical delay lines find frequent use in optical telecommunication systems,

such as in optical switching, optical header processing, channel interleaving, etc.

[48–50]. An ideal optical delay line, integrated on a chip, would achieve maximum

delay with minimum loss and have a minimal footprint on the chip. The delay line

should also be broadband with operating bandwidth of at least a nm. Conventionally

a linear (1D) array of resonators, called a Coupled Resonator optical Waveguide

(CROW), has been proposed as optical delay line [51,52]. A CROW can be realized

using ring resonators or using photonic crystal cavities and provides a significant

reduction in the device footprint when compared to a simple, long waveguide [42,

53–55]. As discussed in Section 4.1, the Hamiltonian for such an infinite 1D array

of ring resonators is

H0 =
∑
x

â†xâx − J

(∑
x

â†x+1âx + â†xâx+1

)
. (4.33)

A finite 1D array of ring resonators with input/output couplings can be an-

alyzed similarly to a 2D lattice. The simulated transmission and delay spectra for

an array with 20 rings is shown in Fig.4.8.

For an ideal array of ring resonators, the delay increases linearly with the num-

ber of rings in the array, without compromising the bandwidth. The bandwidth-

delay product of such an array is therefore a monotonically increasing function of the

length of the array. However, integrated photonic device fabrication invariably leads

to lattice disorders. Disorder can manifest as a mismatch of the ring resonance fre-
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Figure 4.8: Transmission and delay spectrum of a 20 ring array.
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Figure 4.9: Effect of disorder on the (a) transmission, (b) delay spectrum of the 20
ring array. The solid blue line shows the mean transmission and the grey shading
indicates the standard deviation resulting from disorder. (c) Intensity distribution
in the array for a pure system, in the mid-band. The intensity distribution extends
throughout the length of the array. (d) Intensity distribution in the array for same
system, but in the presence of strong disorder. The intensity distribution is localized
towards the input of the array.
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Figure 4.10: A typical transmission and delay spectrum of an 8×8 lattice. The edge
state regions, highlighted, are less susceptible to disorder.

quencies ∆ω0, variations in the coupling constant ∆J and the loss rate ∆κin. In the

presence of disorder, the transmission of the array falls exponentially, in addition to

the usual reduction in transmission due to resonator losses [55,56]. Also, the band-

width of the delay line decreases as the length of the array increases [57]. Ultimately,

as the length of the array or the disorder strength increases, localization of light is

observed, i.e., the forward transmission of light is halted (Fig. 4.9) [58–60]. The

light does not couple to the lattice and instead appears at the through port. This

localization of light is similar to Anderson localization observed in low-dimensional

electronic systems and has been observed experimentally [58] in an array of ring res-

onators. In this regime, the only mode of transmission is tunneling through localized

states. Such a transmission is characterized by dips in the transmission spectrum

and peaks in the delay spectrum, because of the slow tunneling rate through local-

ized states.

Since the edge states are quasi-one-dimensional, they behave exactly as 1D de-
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lay lines, but with the obvious advantage of being robust against certain fabrication

disorders. Fig. 4.10 shows the transmission and delay spectrum of a lattice in the

presence of disorders (∆ω0,∆J,∆κin). We clearly see that the edge state regions are

much less susceptible to disorder, i.e., their transmission and delay are least affected.

Contrary to this, the bulk-state region is very noisy. These edge states are however

not robust against all the fabrication disorders, for example, back-scattering (spin

reversal in ring resonators) due to waveguide surface roughness. For electronic sys-

tems, the real magnetic field breaks the time-reversal symmetry and the edge states

are also robust against scattering which couples the clockwise and the counterclock-

wise spin states. In other words, the clockwise and counterclockwise propagating

states have different energies. However, for our photonic analogue of the quantum

Hall effect, the synthetic magnetic field does not break the time-reversal symmetry

and hence the system is not robust against spin coupling disorders. But, in our pho-

tonic system, we can selectively excite a spin state using a specific input waveguide

(see Fig. 4.4). Also, as we will see in the next chapter, the use of directional couplers

to couple ring resonators ensures that the spin coupling disorder is negligible.

4.5 Transfer Matrix Simulations

The single-mode approximation and the coupled-mode theory (CMT) dis-

cussed in the previous sections is only valid when the ring resonators are coupled

weakly, i.e., when the resonance bandwidth is much less than the FSR of the ring. It

is therefore imperative that we compare the CMT results to those simulated using
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Figure 4.11: A 2×2 lattice used an example to demonstrate the transfer matrix
approach to simulate the transmission and delay spectrum of the lattice.

Figure 4.12: Unfolded paths through the 2×2 lattice. The straight red lines represent
propagation in the ring waveguides. The green dots are the coupling regions. The
blue lines represent a coupling between two regions. The transfer between two
sections is described by matrices Ma,b,c,d. Input and output couplers are also shown.
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the more accurate transfer-matrix approach, where the field solution at any point

along the length of the ring can be computed. Further, in this approach, the link

rings are not merely represented by a coupling term J . The link rings act as res-

onators, though at a resonance frequency different from the main site rings, because

of the difference in ring lengths. This approach, therefore, includes the loss and

delay incurred in the travelling through the link resonators.

Since the ring resonators are coupled in two dimensions, it is not easy to write

an explicit set of equations relating the field amplitudes inside the rings to the input

field amplitude. We have developed a simulation technique following a procedure

reported in [61]. As an example of this technique, we consider a 2×2 lattice and

labelling the field amplitudes in the site and link rings as shown in Fig.4.11. The

field arrays Ea,b,c,d are such that

Ea =
[
E1
a , E2

a , E3
a , . . . EN

a

]T
. (4.34)

The length of this vector N = NSR + NLR, where NSR = Nx × Ny is the number

of site rings and NLR = (Ny − 1) + Ny (Nx − 1) is the number of link rings for a

Nx × Ny lattice. We index the rings serially as shown in Fig.4.11. Also the field

amplitudes are the field values just at the output of a coupling region. We now

unfold the rings as straight waveguides, with sections corresponding to propagation

between the coupling regions (Fig.4.12). The propagation of field components within

each section accumulates a phase as well as attenuation because of waveguide losses.

For the site resonators, the accumulated phase and attenuation in each section is

e−iβ
LSR
4 e−α

LSR
4 . For the link resonators, however, the phase and attenuation will
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correspond to half-length of the link ring and will also depend on the location of the

link ring so that the vertical shifting of rings is included.

The field amplitudes at the section endpoints are now coupled to other waveg-

uides (representing other rings), according to the coupling pattern in the square

lattice. Each coupling region, shown by blue lines, is represented by a transfer

matrix  t iκ

iκ t

 , (4.35)

which gives the outgoing fields of the coupler as a function of the incoming fields.

The complete transfer matrix for the lattice is thus of dimension N . For example,

the matrix Ma describing the intersection between sections a and b is

Ma =



ΦSRASR 0 0 0 0 0 0 0

0 ΦLRALR 0 0 0 0 0 0

0 0 ΦSRASR 0 0 0 0 0

0 0 0 tΦLRALR 0 ik 0 0

0 0 0 0 tΦLRALR 0 0 ik

0 0 0 ik 0 tΦSRASR 0 0

0 0 0 0 0 0 ΦLRΦMALR 0

0 0 0 0 ik 0 0 tΦSRASR



.

(4.36)

Here ΦSR = e−iβLSR/4 and ΦLR = e−iβLLR/2 are the propagation phase terms. Sim-

ilarly, ASR = e−αLSR/4 and ALR = e−αLLR/2 are the attenuation terms. The phase

ΦM = eiβξ arises because of the vertical shift of the link resonator (ring number 7).
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We can write similar matrices, Mb,c,d for the other coupling regions as well. Then,

Ea = LMEa + E I, (4.37)

where M = MdMcMbMa describes the complete evolution of the field in the rings.

The matrix L represents the coupling of the lattice to the input and output waveg-

uides, i.e., the drop and the through ports

L = diag [tI, 0, tO, 0, 0, . . . 0] . (4.38)

The input field array EI in this example is

EI = [iκIEI, 0, 0, . . . , 0]T . (4.39)

Here tI,OandκI,O are the transmission and coupling coefficient for the input and

output waveguide couplers to the lattice. Using above equations, we can write the

solution of the fields as

Ea =
EI

(I− LM)
, (4.40)

where I is the identity matrix.

Fig. 4.13 shows the transmission and delay spectra for an 8×8 lattice com-

puted using the transfer matrix method. Also plotted is the transmission spectrum

simulated using the CMT. For this simulation, we have used the experimentally

observed values for J, κex and κin. We can clearly see the agreement between trans-

mission spectra. The small difference in the transmission and delay is because of the

the link rings which were absent in the CMT. Field propagation through the link

rings results in lower transmission and higher delay for the TMM. The difference is

more evident in the long-edge region.
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Figure 4.13: Comparison of the transmission and delay spectra calculated using the
TMM and the CMT, for 8×8 lattice.
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Figure 4.14: Transmission spectrum for the link rings, at the resonance frequency
of the link rings. This spectrum is very different from the spectrum of site rings in
Fig. 4.13
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Moreover, as we have seen earlier for the case of an ADF, the TMM approach

gives the transmission spectrum for the link rings as well (see Fig.4.14). The trans-

mission spectrum for the link rings is significantly different from that of the site

rings.

4.6 Summary

In this chapter, we discussed, how a 2D lattice of coupled ring resonators sim-

ulates a magnetic field for photons. Using dispersion relations, we proved that in

the limit of weak coupling, this lattice is defined by the same tight-binding Hamil-

tonian which describes the electronic quantum Hall system. We then discussed a

finite lattice coupled to input and output waveguides and related the fields at the

input and output ports of this finite lattice using transmission and delay spectra.

We saw that these spectra arise from transmission through edge and bulk states.

We explored the spin degree of freedom in this system. With the two spin states

of the system, the 2D lattice actually implements the quantum spin-Hall effect. We

further discussed an application of the robust edge states as robust optical delay

lines. In the last section, we compared the transmission and delay spectrum simu-

lated using the transfer matrix approach to the coupled mode analysis and verified

that they are in agreement.
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Chapter 5: Robust Transport of Photons through Edge States

In this chapter, we present the experimental realization of the system of cou-

pled ring resonators which implements a synthetic magnetic field for photons and

hence demonstrates topologically robust edge states. We use the versatile silicon

photonics platform to fabricate our devices. We start with a discussion of the de-

vice fabrication, followed by device design and the experimental setup to measure

the transmission and delay spectrum of the devices. We demonstrate the presence of

edge states in our system using direct imaging. We further analyze the transmission

and delay distribution statistics made over a number of devices and quantitatively

establish the robustness of edge states.

5.1 Device Fabrication

A variety of materials like silicon, silicon-nitride, doped silica, lithium-niobate,

GaAs, etc. have been widely used to implement ring waveguide resonators [62–66].

Of these available choice of materials, silicon has the advantages of a particularly

high refractive index and a mature, commercially available fabrication technology

being used for electronic integrated devices. Silicon waveguides have been com-

monly fabricated using the silicon-on-insulator (SOI) platform, where a 100-220 nm
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Figure 5.1: (a) Silicon waveguide cross-section used in the ring resonators. (b)
Simulated TE mode profile for the waveguide. The waveguide supports single TE
mode.

device layer silicon sits on a 2-3 µm layer of silicon dioxide grown over a silicon

substrate [63]. The SiO2 buffer acts as the bottom cladding layer and also provides

optical isolation of the device layer silicon from the bulk silicon substrate. To re-

duce waveguide scattering loss, a top cladding of SiO2 or PMMA is also used. A

schematic of the typical silicon waveguide cross-section is shown in Fig. 5.1(a).

Fig. 5.1(b) shows the TE mode distribution in the silicon waveguide, simu-

lated using a commercial FDTD mode solver (MODE Solutions from Lumerical).

Simulation results indicate that a waveguide of width 510 nm and height 220 nm is

essentially a single-mode waveguide. The waveguide does support a leaky TM mode

but it does not propagate and radiates away after a few bends [67]. Because of its

high refractive index, silicon waveguides achieve tight confinement of the travelling

mode, low scattering loss and a very small bend radius [67, 68]. Similar waveguide

geometries with widths in the range 450-500 nm and heights of 200-220 nm, have

been reported with transmission losses of ≈3 dB/cm [67,69] and bend radii as small

as 2 µm with a loss of 0.01 dB per 90o turn [67]. The waveguide loss results mainly

because of light scattering from surface roughness introduced during the fabrication
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Figure 5.2: A typical photolithography and etching step in the fabrication process.
(a) Patterning the photoresist with deep UV light and a mask, (b) subsequent
etching of the device layer silicon using reactive ions. (c) The waveguide features
emerge after removing the photoresist. (d) Top oxide/PMMA deposition.

process. The absorption loss in silicon is negligible since the photon energy at tele-

com wavelengths is less than the bandgap of silicon. Silicon is, therefore, a natural

choice of material for the design of our ring resonator devices.

Using mode solver, we also estimate neff and ng for the fundamental mode to

be 2.46 and 4.07, respectively, at 1550 nm. The large difference between the effective

and group indices indicates the significance of dispersion in these waveguides.

5.1.1 Lithography

Conventional photolithography has been used to fabricate waveguides and ring

resonators where the waveguide dimensions are of the order of a few µm. However,
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conventional photolithography can not be used for our system of coupled resonators

because it can not provide the resolution required for feature dimensions as small as

≈ 150 nm which, we will see later, is the evanescent coupling gap between the rings.

E-beam lithography is one option which can be used to pattern nanoscale features

and has been widely used to fabricate single ring devices [63,66,70]. But it is plagued

by the issue of stitching errors [71,72]. E-beam lithography writes a pattern in blocks

of size 50-100 µm which leads to discontinuities at the boundaries of each block.

Because our device structure will be ≈ 500 µm × 500 µm, there will be multiple

discontinuities in the lattice which will add to disorder. The issue of stitching error

has been addressed using Spatially Phase Locked E-Beam Lithography (SPLEBL)

but it is hardware intensive and not available commercially [73]. Further, since the

e-beam patterns are written serially and our structure is comparatively large, beam

parameters (like focus, alignment) can change over the write duration which will

result in additional disorder in the devices [71, 72].

The best solution then is to use deep UV projection photolithography. It uses

light with a wavelength of 193 nm and can achieve resolution of the order of 130

nm [69]. The fabrication process starts with patterning the top most silicon device

layer using deep UV projection photolithography (Fig. 5.2). Following patterning,

the devices are etched using an inductively-coupled plasma etcher. The patterning

and etching are done in two steps of 70 nm and 220 nm etch depths for the grating

couplers and waveguide, respectively. Following etching, the top silicon layer is

thermally oxidized to grow a very thin layer of SiO2 and then wet etched to reduce

surface roughness. Finally, a layer of silicon oxide (1.5 µm) or PMMA (5 µm) is
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Figure 5.3: SEM of a grating coupler used to couple light to the devices. When light
from a standard optical fiber shines on the grating, the dominant diffraction mode
travels towards the waveguide. The curved grating helps to focus the fiber mode to
the size of the waveguide mode for efficient coupling.

deposited on the top to protect the device surface. This layer also acts as the top

cladding for the waveguide.

The fabrication procedure outlined here is compatible with standard CMOS

fabrication and hence can be carried out at various commercial foundaries. These

devices were fabricated at IMEC foundary in Belgium and LETI in Netherlands.

5.1.2 Coupling Light to Waveguides

A typical SOI waveguide has a mode field size of ≈ 500nm (see Fig. 5.1)

whereas that of a standard optical fiber is ≈ 10 µm. This large mismatch in the

size of the mode field makes direct coupling of light from an optical fiber to the SOI

waveguide impossible. An adiabatic, on chip, mode conversion is possible using a

tapered waveguide matching the mode of the fiber at input and of the waveguide

at output. However, the taper length required to avoid coupling to radiation modes

is on the order of a few mm [74]. Very short length (≈ µm) inverse tapers with a
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waveguide cross-section of only ≈ 50-100 nm facing the optical fiber have also been

used to couple light into a SOI waveguide [75]. Inverse tapers have been reported

with a coupling efficiency as high as 2.7 dB [76]. However, the very small tip size

of the inverse taper necessitates the use of e-beam lithography for their fabrication.

Moreover, edge coupling to the inverse taper is difficult to achieve because of small

misalignment tolerance.

To couple light into the waveguide, we use focussing grating couplers [77–79].

The grating couplers are designed such that when an optical fiber is held at an angle

(10o) from the vertical, the dominant diffraction mode of the grating is launched

towards the waveguide (Fig. 5.3). Further, the grating is designed as a triangular

shaped lens which can focus the fiber mode field (≈ 10 µm in diameter) to the

waveguide mode (≈ 510 nm) [77]. These grating couplers have a very small footprint

(40 µm × 20 µm) and have an excellent alignment tolerance, with the best reported

coupling efficiency of 4 dB (although with Bragg reflecting mirrors on the bottom,

the reported efficiency is as high as 1.6 dB [79]). Furthermore, the grating couplers

are available as standard library elements in IMEC and LETI foundaries and their

design has been optimized to achieve maximum coupling efficiency.

5.2 Device Design and Spectrum Measurements

As discussed in Chapter 4, the response of the lattice and the presence of edge

states can be probed by measuring the transmission and delay spectra of the devices.

We use an Optical Vector Analyzer (OVA) to measure the transmission and delay
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Figure 5.4: Experimental setup for transmission, delay and IR intensity measure-
ments. Light from an optical vector analyzer (OVA) is amplified using an erbium-
doped fiber amplifier (EDFA) and coupled to the lattice using grating couplers. We
use a variable attenuator (VOA) to control input power and also a polarization
controller to maximize TE polarization being input to the lattice. The microscope
objective and the visible CCD camera help to align optical fiber to the grating cou-
pler. The scattered IR light from the lattice is collected by the same objective and
imaged on the IR CCD camera, yielding the ring intensity distribution in the lattice.
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spectra. This commercially available OVA from LUNA (OVA5000) is based on swept

wavelength interferometry [80]. The analyzer uses a gas-cell-calibrated tunable laser

source along with a Mach-Zender interferometer to calculate the complete Jones

matrix for the device transmission - the four elements of the matrix along with the

relative phase of the elements with respect to the input. These matrix elements

are then used to calculate device insertion loss and the accumulated phase for each

wavelength. The delay incurred during propagation is calculated as derivative of

the phase with respect to angular frequency. In addition, we use an EDFA and a

variable optical attenuator (VOA) to control the laser power input to the device. We

also use a polarization controller to control the polarization state of the light input

to the device. To aid fiber coupling to the grating couplers, we use a microscope

objective (×10) positioned above the device, along with a CCD camera.

5.2.1 The ADF Design and Spectrum

The scanning electron microscope (SEM) image of a typical ADF is shown in

Fig. 5.5(a). As is evident, the ring resonator in the ADF is actually in the shape of

a racetrack with four straight edges and two of the straight sections of the racetrack

are coupled to the input and output waveguides. The coupling rate between the ring

waveguide and the input/output waveguide can be expressed in terms of a coupling

coefficient between waveguides as

κex =
|k|2

2

υg
L
, (5.1)
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Figure 5.5: (a) SEM image of an ADF. The racetrack resonator is coupled to two
waveguides on the top and bottom. The square pattern in the image is to maintain
a uniform silicon density across the chip. This helps to achieve a uniform silicon
etch rate throughout the chip. (b) Transmission spectrum at the drop, through and
backscattering ports. (c) Delay spectrum at the drop port.

where |k|2, the cross-coupling coefficient between the waveguides, is a function of

the gap between the waveguides and the length of interaction. For a circular ring

resonator, because the interaction length is very small, a strong coupling between

the ring and the input/output waveguide would require reducing the gap between

the waveguides to very small values. This poses a fabrication challenge and also

increases the fabrication uncertainty in κex. The straight sided racetrack resonator

thus eases the constraint on coupling gap because of the much longer interaction

length in the straight section of the racetrack.

We fix the length of the coupling region to be 7 µm and the total racetrack

length to be ≈ 70 µm in all our devices. Guided by FDTD simulations, we choose a

coupling gap of 170 nm for κex (180 nm for J) which would result in κex ≈ 38 GHz.

The resulting FSR of ≈ 1000 GHz (8 nm) is then much larger than the resonance

bandwidth of the ADF (≈ 140 GHz). This choice, thus, also guarantees that the
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coupled-mode theory can be used to simulate the ring resonator devices. The bend

radius for the racetrack is chosen to be 6 µm so that the bending loss is less than

0.005 dB per turn [67].

Fig. 5.5(b) shows the experimentally measured transmission spectrum for

an ADF using OVA, at the drop, through and backscattering ports. We observe

that the output at the backscattering port is ≈ 25 dB lower than that at the drop

port. This suggests that the backscattering due to waveguide surface roughness and

directional couplers is negligible. Also shown in Fig. 5.5(c) is the observed delay at

the drop port. The maximum delay at the drop port is 3.5 ps and the estimated

round trip time is 1 ps. This ring resonator therefore has a very low Q of about 1500.

But this is the loaded Q factor, i.e., it includes the loss to through and drop ports.

The Q factor of the resonator can be easily increased by making the ring resonator

very weakly coupled to the input/output waveguides (reducing κex). However, a

large coupling, larger than the disorder in the lattice, is desirable to demonstrate

the presence of edge states in the system.

An ADF can also be used to characterize the coupling rate κex (or J) and the

loss rate κin of the ring resonators. Fig. 5.6 shows a fit to the transmission spectra

using single-mode approximation. We see that the SMA gives an excellent fit to the

spectra for frequencies close to the resonance. Using (3.24) and (3.29), the fitting

parameters, κex and κin, can be extracted using the bandwidth and contrast of the
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Figure 5.6: A typical transmission spectrum for the ADF, (a) at drop and (b)
at through ports. The single-mode approximation fits very well to the measured
spectrum for input frequencies close to the resonance, giving κex = 38.0 GHz and
κin = 2.9 GHz.

transmission spectra as

κin =
1

2

BW√
CT

(5.2)

κex =
1

4

(
BW− BW√

CT

)
=

1

4
(BW− 2κin) , (5.3)

where CT is the transmission contrast at through port (in linear scale). For the ADF

spectra shown in Fig. 5.6, κex = 38.0 GHz and κin = 2.9 GHz. The corresponding

cross-coupling coefficient k = 0.48 and the absorption coefficient α = 15.8 m−1.

These values are the typical coupling and loss rates in our devices.

We also simulated the transmission spectrum of an ADF using the FDTD

solver (MODE Solutions). The experimentally measured and simulated transmission

spectra at the drop and through ports of an ADF are shown in Fig. 5.7. For this

simulation, we have used the actual parameters (ring length, coupling gap, material

etc.) used in device fabrication. The estimated waveguide loss (≈ 3 dB/cm) has also

been included in the FDTD simulations. We observe that our FDTD simulations
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Figure 5.7: Comparison of a measured ADF spectrum with that simulated using
FDTD. Actual fabrication parameters were used in the FDTD simulation. The two
spectra show a very good match. The deviation seen in the through port spectrum
is because of the wavelength response of fiber coupling.

match very well to the experimental measurements for all input light frequencies. We

can therefore rely on our FDTD simulations for estimating the separation between

ring waveguides to achieve a desired coupling rate κex or J .

5.2.2 The 2D Lattice Design and Spectrum

An SEM image of a 8×8 lattice sized device (Fig. 5.8(a)) shows the main

site resonators, the link resonators and the input/output waveguides. For all our

2D lattice devices, we choose a magnetic field strength ϕ = 2παM = 2π 1
4
. For

αM = 1
4
, there are three bandgaps occupied by edge states with winding numbers

+1, 0 and −1 respectively. The first and third bandgaps are, therefore, topologically

non-trivial, separated by a large topologically trivial region. The edge states in

these two topologically ordered bandgaps are the clockwise and the counterclockwise
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Figure 5.8: (a) SEM image of a 8×8 lattice. The input and output ports are also
marked on the image. (b) Experimentally observed transmission spectrum at the
drop, through and backscattering ports ports. (c) Delay spectrum at the drop port.
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propagating modes with opposite group velocities. This value of ϕ can be achieved

using a shift of the link resonators in the y direction, calculated as

ξ =
c

ωneff

ϕ. (5.4)

For ϕ = 2π
4
, using neff from the simulations, the required shift ξ is 80nm.

Similarly, the extra length η of the link resonators required to make them anti-

resonant with the main rings is such that

η =
c

ωneff

π, (5.5)

which gives η to be 160 nm at a wavelength of 1550 nm. For these devices, we have

used a coupling gap between the ring resonators as 180 nm and the coupling length

between each pair is 7 µm. This results in J ≈32 GHz. The input and output

waveguides are coupled to the lattice with a gap of 170 nm which yields κex ≈ 38

GHz.

Experimentally observed transmission spectra at the drop, through and backscat-

tering ports and the delay spectrum at the drop port for a 8× 8 lattice is shown in

Fig. 5.8(b,c). Although the long-edge region of the spectrum is expected to have

a lower transmission than the short-edge because of the longer path it travels, we

observe that the short-edge has a lower transmission. We will return to this issue in

Section 5.4. However, we see that the long-edge region still has a higher delay due

to traveling a longer path. The plot also shows the output at the back-scattering

port which we see is ∼ 25 dB down from the drop port.
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5.3 Imaging the Path of Light

To demonstrate the presence of edge states, we use the surface scattering from

ring resonator waveguides and hence, directly image the path followed by light in

the lattice. A fraction of the light scattered by waveguide surface is directed to the

microscope objective (positioned above the device for fiber coupling). The scattered

light collected by the microscope objective is spatially imaged onto an GaAs-based

IR CCD camera (320KTS-1.7RT from Goodrich, with 320× 256 pixels). The output

from the objective is split into two ports by a beam splitter. One of the ports is

connected to the CCD camera in the visible domain (to assist in the fiber coupling)

and the other to an IR CCD camera. We can, thus, simultaneously couple light to

the device and image the device response to an excitation.

5.3.1 CCD Camera Calibration

We used an add-drop filter (ADF) to correlate the observed CCD Camera in-

tensity to the ring resonator intensity. The ADF was fabricated on the same chip and

with the same dimensions as the ring resonators in the 2D array devices. The trans-

mission spectrum of the ADF was measured at the drop port using the LUNA OVA

5000, while simultaneously acquiring IR images at different wavelengths. The nor-

malized transmission spectrum and the observed CCD camera intensity are shown

in Fig. 5.9. The CCD camera intensity shown here is the intensity after integrating

over the ring area. Since the transmitted power at the drop port is proportional to

the ring resonator intensity, this plot is well correlated with the observed CCD cam-
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Figure 5.9: Intensity seen by the CCD camera as a function of input frequency,
for an ADF. Since all the waveguide losses are proportional to internal energy, the
camera intensity traces out the transmission spectrum.

era intensity. Therefore, even if a direct measurement of the light intensity traveling

in a ring resonator sitting in a 2D array is not possible, the CCD camera imaging

is a good proxy for the power distribution in ring resonators of the 2D array and

hence, facilitates direct observation of edge states.

5.3.2 Imaging Edge States

To show the presence of edge states in our system, we used an 8×8 lattice

sized device with a uniform synthetic magnetic field. Fig. 5.10 shows the measured

transmission spectrum of the device. When the lattice is excited in specific regions

of the spectrum (shaded red and green), the measured intensity distribution shows

that the long and the short edges get excited. The transverse spatial width of the

edge state was about one to two resonators, as observed both in experiment and
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Figure 5.10: (a) SEM image of an 8×8 lattice. The path followed by short and
long edge states is highlighted. (b) Transmission spectrum for this lattice. (c-h)
Intensity plots for the experimentally observed and simulated short-edge, long-edge
and bulk states. The experimental results match very well to the simulation results.
The bulk state intensity plots shown here are the measured distributions at two very
close lying input frequencies. For even a small change in the input frequency, bulk
state pattern changes drastically [81].
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simulation. The width is slightly greater in the experiment than in the numerical

simulation due to the presence of intrinsic disorder in the fabrication which was

not included in the simulation here (in Section 5.4, we will discuss simulations

with disorder). For the simulation, we used parameters which were independently

measured using single-ring devices. Because of topological protection, the light

traverses two sharp corners in the long-edge band and leaves the system at the output

port. In absence of topological protection, such sharp bends would cause enhanced

scattering of light into the bulk of the lattice. Note that if the system were isolated

(i.e., in the absence of input/output ports), the edge states could circulate around

the entire system (as shown earlier in Chapter 2). When the system is pumped at a

different frequency, bulk states are excited that do not have a particular shape (Fig.

5.10(d,g)). More importantly, the edge-state profile does not significantly change

over a frequency band broader than 5 GHz. In contrast, the profile of the bulk

states changes dramatically when the frequency is changed even by 0.2 GHz. We

attribute this remarkable difference to the topological protection of the edge states.

Note that the observed intensity in the CCD camera is a function of the light

intensity traveling in the ring and the loss factor κin of the ring. So if there are mul-

tiple resonators with equal light intensity traveling through them but with different

κin, the corresponding intensities read by the CCD camera imaging will be different.

In our structures, since the standard deviation in κin is of the order of 0.4κin, we

expect some discrepancy between the simulated and the experimentally observed

ring resonator intensities on the edge states. Such variation could be responsible

for the discrepancy between the smooth edge state profile in the simulation and
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Figure 5.11: (a) SEM image of a 10×10 lattice with a missing resonator - a defect
- along the short edge. (b,c) Observed and simulated intensity distribution showing
the routing of edge state around the defect, without scattering into the bulk of the
lattice [81].

inhomogenous profile of the edge states in the experimental images.

5.3.3 Robustness of Edge States

To demonstrate the robustness of edge states against an introduced disorder,

we fabricated a 10×10 array with a missing resonator on one of the edges (Fig.

5.11(a)). As a result of topological robustness, it is expected that the edge state

would bypass the impurity without scattering into bulk. When light was launched

in the short edge band (over 15 GHz), we observed that the light entered at the

bottom row from the left input corner, routed tightly around the disorder - in this

extreme case of an entirely missing resonator - and travelled to the output port
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Figure 5.12: (a) Measured transmission and (b) delay-time spectra for eight 8×8
lattice size devices. The spectra have been normalized and shifted along x-axis to
superpose them. Two regions with reduced variance in transmission and delay are
indicated for the long edge (red) and the short edge (green). Noisy bulk states
region is shown in blue. (c,d) Simulated transmission and delay with the average
(solid blue line) and 95% confidence band (grey shaded area) determined from the
standard deviation across devices. (e,f) Measured and simulated delay distributions
for edge and bulk states. Delay distribution for edge states is gaussian indicating
diffusive transport. For bulk states the distribution is asymmetric, showing localized
transport. Data is averaged for 8 devices. The delays are normalized to the average
(rms) and the overall delay distribution is normalized to in-band average and the
delay distribution is normalized such that the area under the curve is unity [82].

without entering into the bulk (Fig. 5.11(b)), in good agreement with simulation

(Fig. 5.11(c)). The residual presence of light at the missing resonator location in

Fig. 5.11(b) is due to background noise.

5.4 Robust Transport of Photons

Having shown the presence of edge states in our system using a qualitative

imaging technique, we now quantitatively demonstrate the robust transport prop-

erties of edge states using statistics of transmission and delay measurements made

on a number of devices. Fig. 5.12(a,b) shows the observed transmission and de-
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lay spectra at the drop port for eight different 8×8 lattice size devices. While the

spectra differ significantly because of intrinsic fabrication variations in waveguide

dimensions, we can already see the first manifestation of robust edge states in the

form of two regions with suppressed variance across devices, in both the transmis-

sion and delay spectra. Since edges states are topologically constrained to travel

along the lattice edge, device-to-device fabrication variations in system parameters

do not affect the edge state wavefunctions as much as they do for bulk states. Edge

states, therefore, show reduced variation. Using numerical modeling including our

measured values for disorder, as shown in Fig. 5.12(c,d), we can identify these re-

gions as due to the long-edge and the short-edge state. Because of the intrinsic

spread in resonance frequencies resulting from fabrication disorders, the measured

and simulated spectra have been shifted along the frequency axis to superpose them.

Each transmission and delay spectrum shown here is normalized to its correspond-

ing measurement made away from the resonance band, at the through port. The

measurements thus normalized give the actual transmission and delay incurred only

through the lattice and excludes those in the coupling waveguides and connecting

fibers.

5.4.1 Delay Distribution

Next, we analyze the delay distribution to distinguish edge state transport from

bulk states. This approach provides an unequivocal signature of localization [25,83,

84]. Fig. 5.12(e,f) show the measured and simulated delay distributions for the edge
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and bulk states in 8×8 lattice sized devices and highlight the remarkable difference

between edge and bulk states. For edge states, the delay distribution normalized

to its average (in actuality, we used root mean square to allow for negative delay

values), is essentially gaussian with width independent of system size. This behavior

is characteristic of diffusive transport as seen previously in one-dimensional systems

[24,85]. The bulk state distribution is, however, asymmetric with the most probable

value being less than the average. This feature is reminiscent of transport governed

by localization which has also been observed earlier in the microwave regime for one-

dimensional systems [25, 84]. For localized transport, the delay spectrum exhibits

spikes (see 5.12(b)) which manifest in the asymmetric delay statistics. These spikes

appear due to resonant tunneling through (delocalized) necklace states which are

common to finite-size open systems [86]. Therefore, even in the presence of loss, the

delay distribution can clearly differentiate two different regimes of transport in the

same photonic system. Our measured results show a good match with numerical

modeling. We observe similar behavior for other lattice sizes as well, as shown in

Fig. 5.13 for 15×15 sized devices.

5.4.2 Comparison with 1D Array

A test to further establish the topologically-protected nature of edge states

would be a comparison of the transmission scaling with system size for an edge

state against that of a topologically trivial 1D system [54, 55], both with similar

degrees of disorder. Fig. 5.14 shows the observed transmission and delay spectra
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tra for eight 15×15 lattice size devices. (e,f) Measured and simulated delay distri-
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Figure 5.14: (a,b) Measured transmission and delay spectra for ten, 10 ring 1D-
array devices. (c,d) Simulated spectra. There are no regions which are robust
against disorder.
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for ten 10-ring devices. Fabrication-induced disorder in a 1D ring resonator array

leads to a spread in the resonance wavelengths of the resonators. This impedes the

forward propagation of light, increases back-reflection, i.e., less light is coupled into

the array and, hence, the transmission at output is reduced [56]. Ultimately, as the

array length increases, Anderson localization halts transmission of the light (Fig.

4.9) [59, 87–89]. Edge states, on the other hand, are unidirectional and immune

to reflection caused by disorder. Therefore, transmission through edge states is

expected to be less affected.

Fig. 5.15(a) shows the measured average transmission and its standard devia-

tion across a number of chips (95 in total) for the long edge state band in 2D lattice

and the mid-band of the 1D array as a function of system size, i.e. the number of

resonators travelled from input to output (excluding the link resonators). Trans-

mission in both the long-edge state as well as the 1D system decays exponentially

with system size. A linear fit to measured transmission (in dB) in the long edge

band gives the decay slope as -0.75(20) dB per ring but for 1D transmission, the

slope is -0.93(16) dB per ring, where uncertainties represent one sigma standard

deviations. Transmission along long edge state can be seen to decay at a slower rate

as compared to 1D transport. Simulation results using the experimentally estimated

parameters are also presented in the figure. The simulated transmission decay slopes

are -0.66(2) and -1.06(5) dB per ring for long edge state and 1D, respectively. The

experimental and simulation results are seen to agree, given that the number of

devices measured for each lattice size is only ≈8 versus the 5000 realizations for

each simulation. To differentiate the decay of transmission with system size result-
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band-ends in 1D devices however show localization [82].
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ing from resonator losses characterized by κin, from losses due to disorder - both

resulting in exponential attenuation - we plot the simulated result for transmission

without disorder (presented as a dashed line). In that zero disorder limit, both the

2D and 1D systems are similarly attenuated by loss with a decay rate of 0.46dB

per ring. We therefore observe that disorder affects both 2D and 1D systems, but

transport in edge states is less susceptible to disorder.

Fig. 5.15(b) shows the measured and simulated average delay and its standard

deviation for the short-edge and long-edge-state-bands. The measured delay, when

plotted against the number of rings on the short and long edges of the lattice,

increases linearly with a slope 3.9(9)ps and 5.4(1.0)ps per ring for long and short edge

states, respectively. The simulated delay slopes are 3.2(2)ps and 4.4(1)ps per ring,

respectively. Again, the experimental results are in agreement with the simulation.

Also shown in the figure, for comparison, is the measured delay in 1D devices. That

delay follows the same scaling as the edge states. However, it can be seen that the

standard deviation in delay for 1D devices is less than that for edge states. This

is contrary to the case of a uniform magnetic field where the standard deviation of

delay in edge states remains smaller than in a 1D system [15]. Using simulations

we have verified that this is due to the fabrication disorder of ∆ϕ in the 2D lattice.

We further compare the delay distribution for edge states and a 1D system. The

normalized delay distributions for long-edge states in a 15×15 lattice and for mid-

band and band-ends of a 30 ring 1D array are shown in Fig. 5.15(c). We see that

for both, edge states and the mid-band of a 1D array, the transport is diffusive, the

distribution is gaussian and the width of the distribution is independent of system
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Figure 5.16: Simulation results showing localization in a 1D array of 70 rings, in the
presence of disorder.

size. However, the band ends of the 1D array are localized. Using simulations, we

also find that as the array length increases beyond 70 rings, even the mid-band of

the 1D system shows localization (Fig. 5.16).

From simulation, we infer that the main disorder terms affecting transmission

in a 2D lattice are ∆ω0 and variations in the otherwise uniform magnetic field,

i.e. ∆ϕ, whereas for a 1D array only the first term is applicable since there is no

magnetic field. In the absence of ∆ϕ, the transmission in the edge state would be

even closer to the dashed line with no disorder.

The short-edge transmission in our system was, however, consistently found

to be much lower (≈8 dB for 6x6 devices) than expected using simulations, but it

tends to match the simulation results for bigger sized devices. We expect that this

is the result of some systematic problem with our fabrication process which couples
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Figure 5.17: Mean transmission at the drop and through ports for 8×8 lattice sized
devices, (a) Measured, (b) Simulated. The experimental results clearly show that
the power coupled to the lattice around short edge region is less than that at the
long edge region.

less light to the short edge at the input port and hence, produces a non-zero inter-

cept on the transmission axis. Using through port data, we verified the reduction

in coupling efficiency for the short edge band, for all devices (Fig. 5.17).

5.4.3 Disorder Characterization and Numerical Simulations

To characterize the system parameters, we use the simpler one ring devices,

i.e., the ADF and the APF, designed with the same parameters as those of the

rings in the lattice. Transmission measurements were made on 26 single ring ADFs

on different chips. Using these measurements κin, κex and J were measured to be

2.35 GHz, 37.8 GHz and 32.0 GHz with relative standard deviations of 20%, 4%

and 4%, respectively. The magnetic flux ϕ is designed to be π
2
. For 1D devices,

the measured bandwidth was less than that expected from simulations with J = 32

99



GHz. Therefore, for 1D simulations, a corrected value of J = 25 GHz was used. A

similar procedure was used earlier to estimate J for a 1D array of coupled resonators

in [55]. Fabrication errors also result in a variation of the resonance frequency ν0

of the rings in a given lattice. The standard deviation ∆ν0 was estimated using

transmission measurements on three chips with five all-pass filters each, with a

physical separation of the APFs commensurate to rings in a lattice. ∆ν0 can then

be used to calculate the deviation of optical path length and hence, ∆ϕ in the link

rings. ∆ν0 was estimated to be 27.5 GHz and ∆ϕ to be 0.1.

For numerical simulations, we use the single-mode approximation as discussed

earlier. To include lattice disorder into this Hamiltonian, we impose random varia-

tions on each of the parameters with a gaussian probability distribution around the

mean. For each numerical realization of the lattice, each resonator ring has noise

added to its resonance frequency ω0, coupling rate J to neighboring resonators and

also to the magnetic phase acquired in hopping along the x−axis. To get mean

transmission and delay, we then average the results over 5000 realizations for each

device type. Required simulation parameters and their deviations, characterizing

the system and its disorder, have been measured using multiple add-drop filters as

described above.

5.4.4 Calibration of Spectra and Device Yield

Each transmission and delay spectrum shown in the previous section is nor-

malized to the corresponding measurement made away from the resonance band,
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at the through port. The measurements thus normalized give the actual transmis-

sion and delay incurred only through the lattice and excludes those in the coupling

waveguides and connecting fibers. Because of the intrinsic spread in resonance fre-

quencies resulting from fabrication disorders, the measured and simulated spectra

have been shifted along the frequency axis to superpose them. Since the spectra are

expected to be disparate in the bulk region [15], we can rely only on the edge state

regions to superpose them. For measured spectra, we therefore first do a manual

coarse shift to align similar looking features in the expected edge state regions of the

spectra. This accounts for ∆ν0 across various chips (which is much greater than ∆ν0

for a given lattice). Subsequently we analyze the standard deviation of transmission

and delay across devices as a function of frequency and find that the edge states are

evident as regions with reduced noise. To verify this evidence for edge states and

to align them further, we require an algorithm based on quantitative measurements

of transmission (T) and delay-time (τ). Weighted delay time W (ν) = T (ν)τ(ν)

is one parameter that accounts for both our measurements and has been used ex-

tensively to study transport properties in random media [25, 85]. For completely

random transport, as is the case for bulk states, we expect increased variations in

T (ν) and τ(ν) and hence, also in W (ν) as a function of frequency. On the contrary,

transport through the edge states band follows a definite path and should, therefore,

display regions with reduced variance in W (ν). We accordingly use the standard

deviation of W (ν) to look for edge state regions and align the measured spectra.
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Each spectrum is shifted such that fν given by

fi =
σν(Ti(ν))

Ti(ν)
+
σν(τi(ν))

τi(ν)
, (5.6)

where i refers to device index, is minimized in the designated edge state bands. The

bandwidth of the long edge is found to be ≈10 GHz, independent of the device size,

while the short edge is wider (12.5 GHz - 19 GHz). For our analysis, we fix the

bandwidth of the short- and long-edge regions to be 10 GHz for all devices. For

simulated spectra, we follow exactly the same protocol except for the course shift

which is not required. The spectra have not been shifted along y axis and there is

no re-scaling of the spectrum.

Table 5.1 shows the detailed device yield. For 2D devices, the device yield

was found to be ≈23%. For 1D devices (other than 50 rings), the device yield was

100%. For 50 ring devices, the yield was ≈50%. The devices with a very noisy or

attenuated spectrum were considered as bad.

5.5 Summary

In this Chapter, we reported the experimental realization of our system of a

2D lattice of coupled ring resonators. We started with a discussion of the fabrication

procedure followed by the experimental setup which measure the transmission and

delay spectra of the devices. The setup used an IR CCD camera which allowed us

to directly show the presence of edge states in our system. We demonstrated the

robustness of edge states by deliberately introducing a defect into the lattice. The

edge state routes around the defect and do not scatter into the bulk. Finally, using
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Device size Worked Bad Did not

scan

Total

6×6 7 28 0 35

8×8 8 27 0 35

10×10 9 26 0 35

15×15 8 27 0 35

18×18 8 27 0 35

2×1 11 0 21 35

10×1 15 0 20 35

20×1 11 0 24 35

30×1 12 0 23 35

50×1 6 7 22 35

Table 5.1: Number of devices measured, good and bad, for each device type.
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delay distributions and comparison with topologically trivial states, we quantita-

tively established the robustness of edge states against fabrication induced disorder.

We showed that the edge states are less susceptible to localization.
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Chapter 6: Measuring Winding Number in Photonic Systems

Edge states are characterized by a topologically invariant integer, the winding

number. As discussed in Chapter 2, the winding number tn for the edge-states is

calculated using Diophantine equations as [8, 16,29,39]

n = qsn + ptn; |tn| ≤
q

2
. (6.1)

Here, the uniform magnetic flux threading the lattice is ϕ = 2παM, where αM = p/q.

The energy spectrum for this lattice, the Hofstadter butterfly, shows that there

are q energy bands separated by q − 1 band-gaps. For a finite lattice, the band-

gaps are occupied by edge states. n is the gap index (1 ≤ n ≤ q − 1), with the

lowest energy bandgap labelled n = 1. sn is an integer which satisfies the above

equation. A nonzero winding number indicates topologically non-trivial states. For

photonic edge states, the integer quantization of winding number is analogous to

the quantization of Hall conductance in electronic systems. In this Chapter, using a

square annulus geometry, we show that the winding number of the edge states can

be determined using Laughlin’s gauge invariance approach (refer Section 2.3) and

the transmission spectrum measurements. We also compare the square annulus to a

simple ring geometry where the eigenstates possess a non-zero winding number but

are not robust.
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6.1 Winding Number of Edge States in a Square Annulus

For electronic systems, the winding number of the edge states is related to the

quantized Hall conductance through the bulk-edge correspondence principle [8, 16].

Therefore, a direct measurement of the Hall conductance yields the winding number

of the edge states. Since the concept of conductance does not apply for photonic-

bosonic-systems, measuring the winding number of photonic edge states using reg-

ular conductance methods is not possible. However, we can still use Laughlin’s

adiabatic pump in a circular annulus (the Corbino geometry - Fig. 2.5) to measure

the winding number.

In the presence of a uniform magnetic field threading the annulus, the spatial

wavefunction of the electron cyclotron orbits is labelled by the energy level n (the

Landau level) and the z−component of the angular momentum, m (see Section 2.3).

The electron cyclotron orbits are localized to the perimeter of a circle of radius

√
2ml0, where l0 is the magnetic length [7, 31, 37]. Introduction of an additional

magnetic flux Φ in the central hole causes a gauge transformation of the vector

potential. Each unit flux quanta increase in the magnetic flux raises the angular

momentum value by one. The electron wavefunction for a given m thus expands

outwards and takes the position once occupied by its neighbor corresponding to

angular momentum (m + 1). In this process, n electron states are adiabatically

pumped from the inner edge to the outer edge, where n is the number of filled

Landau levels.

The spatial transport of edge states can also be observed in the energy spec-
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trum of the system [29], where, for a unit quanta change in flux, edge states shift

by their winding number. A measurement of the energy spectrum as a function of

external flux, thus, reveals the winding number of edge states. A similar scheme to

measure the winding number of edge states has been demonstrated in the microwave

domain using a 2D directed network [90]. Adiabatic pumping in photonic systems

has also been achieved in 1D arrays of coupled waveguides [91]. A direct measure-

ment of the winding number of edge states in the optical domain has still remained

elusive. Here, following a theoretical proposal to measure the winding number in our

system [29], we report the first experimental measurement of the winding number

for photonic edge states.

Mimicking the Corbino geometry used in [7], we design a square annulus of

ring resonators, coupled by link rings (Fig. 6.1). The link rings have been shifted

vertically to achieve a uniform synthetic magnetic field with flux ϕ = 2π/4, in

exactly the same fashion as we did for the square lattice in Fig. 4.4. To introduce

an external magnetic flux into this system, we use the fact that the external flux

essentially results in an Aharanov-Bohm phase in the annulus. This additional phase

can be incorporated into the lattice by placing metal heaters above the link ring

waveguides. In the simplest form, as the name suggests, heaters are high resistance

metal pads (Fig. 6.2). A current flowing through the pad generates heat which

in turn modulates the effective refractive index of silicon waveguide and hence, the

phase incurred by light travelling through it. The heaters are placed such that any

closed path around the central hole results in equal Aharanov-Bohm phase, given all

the heaters are the same and carry equal current. This geometry is then equivalent
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Figure 6.1: Square annulus geometry to measure the winding number of edge states.
The total phase Φ introduced by heaters (placed on link-resonator arms) is the sum
of individual phases incurred in link resonator arms, in any closed path. Heaters
(shown in red) are placed such that the accumulated phase Φ is same for any path
enclosing the center hole.
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Figure 6.2: Waveguide cross-section with heaters. Heaters are 110 nm thick TiN
pads. The heater pads are connected to outside metallization to provide electrical
connectivity.

to the Corbino geometry (Fig. 2.5) with a uniform magnetic field in the annulus

and variable magnetic flux in the central hole.

For this system, since αM = 1/4, there are 4 bulk bands separated by 3

bandgaps. Using Eq. 6.1, the edge states in the first bandgap have t1 = +1,

whereas for those in the third band t3 = −1. The states in the second bandgap have

a winding number zero and hence are topologically trivial. Moreover, the system

now supports two sets of edge-states in each bandgap, on the outer edge and the

inner edge, which circulate around the lattice in opposite directions.

Fig. 6.3 shows the eigenvalues of this system as a function of the external

phase Φ, the total phase introduced by a loop of heaters. We observe that with

an increase in the external flux, all the edge states shift outwards or inwards. The

CW-propagating outer edge states in the first bandgap move toward lower energies,

whereas the CCW-propagating outer edge states in the third bandgap move toward

higher energies. The inner edge states move exactly opposite to the outer edge
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Figure 6.3: (a) Shifting of eigenvalues as a function of external magnetic flux Φ. The
annulus now supports two sets of edge states, at the outer (b,e) and the inner edges
(c,d). In a given bandgap, the outer (f,i) and the inner (g,h) edge states circulate
around the lattice in opposite directions because of their opposite group velocity.
Furthermore, in the energy spectrum (a), the clockwise and the counterclockwise
circulating states move in opposite directions because of their winding number which
is ± 1.
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Figure 6.4: (a) Measured and (c) simulated transmission (in linear scale) as a func-
tion of phase Φ and frequency ω. As the phase Φ increases, the edge state peaks
in the transmission move away from the center. For a 2π increase in magnetic flux,
the edge states move by one. (b) Measured and (d) simulated transmission spectra
(in log scale) for Φ/2π = 0.5, 1.5. For this 2π increase in flux, the measured spectra
match approximately in the edge state regions. The transmission spectra have been
normalized such that the maximum transmission is unity.

states. More importantly, for a 2π increase in magnetic flux, each set of states shift

exactly by one, their winding number. The direction of shift is indicated by the sign

of the winding number. After a 2π increase in the flux, the spectrum returns back

to its original shape with Φ = 0.

This shifting of edge states in the energy spectrum can easily be probed us-

ing transmission spectrum measurements in our devices. Fig. 6.4(a, c) shows the

measured and simulated transmission spectra as a function of external flux Φ and

frequency ω, for a square annulus with outer edge of 10 site rings and inner edge of

4 site rings (Fig. 6.1). Individual edge states can be resolved in this plot and can

be seen to move in opposite directions. For any given input field frequency, which

in this case acts as the Fermi energy level, for a 2π increase in the external phase Φ,

only one edge state crosses the Fermi level. This indicates that the winding number
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of these edge states is ±1, as expected.

Comparing Fig. 6.4(a, c) to Fig. 6.3(a), we see that the contour plot here shows

only the outer edge states. This is because the probe waveguides are coupled only to

the outer edge and the coupling to the inner edge decreases exponentially as e−d/l0 ,

where d is the number of rings between the outer and the inner edge (in this case 4)

and l0 = 1/
√
2παM is the magnetic length in units of lattice spacing. Furthermore,

the input/output coupling (κex) to the annulus was made weak (κex < 4J/NxNy), so

as to resolve the individual peaks in the spectrum arising from transmission through

the edge states.

Fig. 6.4(b) shows the overlap of the observed transmission spectra at Φ
2π

=

0.5, 1.5. We see that the two measured spectra roughly overlap and show qualitative

agreement with the simulations. The discrepancy in the overlap is because we

have heated only the outermost link rings for these measurements, even though we

fabricated heaters on all the link rings as shown in Fig. 6.1. In our design, the

heaters are placed 600 nm above the link ring waveguides. Therefore, instead of

just heating the waveguides beneath them, the heaters also heat the neighboring

rings and hence add to disorder in the lattice. When we tried heating all the link

rings, we saw that the spectra distort significantly, making it impossible to resolve

the edge states. We find that for Φ = 0.5−1.5, the spectrum retains its shape when

only the outer loop is heated. Moreover, the small curvature observed in the shifting

of edge states is also a result of the resonance frequency shift of the site rings (in

the outer loop, connected by heated link rings) caused by heating the link rings. We

have accounted for this disorder in the simulation. This technique of heating only
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Figure 6.5: A ring geometry to investigate winding number of topological, but not
robust, states. The ring supports CW and CCW circulating modes. External flux
can be introduced for these states using the heaters.

the outer loop works mainly because of the fact that the edge states are confined

to the edge of the annulus, which experiences the external gauge field. However,

because of disorder in the lattice, the edge state might not always be confined to

the edge but instead it may occupy some of the bulk. This, therefore, explains the

only approximate overlap of the spectra after incurring a phase ∆Φ = 2π. We have

also confirmed that heating only the inner edge does not shift the edge states.
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Figure 6.6: (a) Measured and (c) simulated transmission as a function of external
flux Φ and frequency ω. The CW and CCW modes move in opposite directions
and cross the neighboring states. For one unit increase in flux, they move by ex-
actly one position. Not all the crossings are observed in the experiments, because
of the disorder in the ring. (b) Measured and (d) simulated transmission spectra at
Φ = 0, 2π. Even though not all of the crossings are visible, the measured spectra
overlap well. The significantly different shape of the measured transmission spectra
compared to the simulations, indicates the severity of disorder. The measured spec-
trum at Φ = 2π has been scaled along the frequency axis (by a factor of 0.98), to
offset the dispersion effect which results in slight broadening of the spectrum.

6.2 Winding Number in a Chain of Ring Resonators

We further investigate topological states in a chain of ring resonators (Fig.

6.5). This chain of rings is similar to the 1D array of rings, the CROW, which we

discussed earlier, except for the coupling of the end rings. This geometry supports

CW and CCW circulating modes around the chain. However, this system does not

have any magnetic field. These states are therefore, in general, degenerate and thus

are not robust against disorder. Fabrication-induced disorder can easily break the

degeneracy of the two modes.

We introduce external flux into this system, as we did for the case of square

annulus, by heating the link rings. Fig. 6.6 shows the experimentally observed and
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the simulated transmission as a function of magnetic flux Φ and frequency ω. The

additional phase lifts the degeneracy of the CW and the CCW states. With an

increase in the external flux, these states move in opposite directions and cross the

neighboring states. The states move by exactly one unit, indicating the winding

number of these states. After a 2π increase in the external flux, the transmission

spectrum returns to its original shape (Fig. 6.6). We can however, only see some

of the crossings in the experimental data. This is because of the disorder in the

system which destroys the degeneracy of the CW and CCW modes, as is evident by

the fact that crossings are visible for Φ other than integer multiples of π. Another

indication is the big difference between the observed transmission spectrum and the

simulation. This is contrary to the case of square annulus where the transmission

spectra of the robust edge states qualitatively matched with the simulated spectrum.

We do note, however, that even in the presence of disorder, the spectrum for Φ = 2π

has excellent agreement with the spectrum at Φ = 0.

6.3 Heater Calibration

We used an ADF with a heater, to calibrate the phase shift acquired for a

unit heater power. The ADF ring had exactly the same dimensions as the rings in

the square annulus and the chain of resonators. Fig. 6.7 shows the observed phase

shift as a function of heater power. The heater resistance was 120 Ohms and the

voltage applied to the heater ranged from 0-3 Volts. We see that the acquired phase

increases linearly with the heater power.
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Figure 6.7: Measured phase shift in an ADF, as a function of the heater power.
The acquired phase shift (in units of 2π) increases linearly with the heater power
(in mW), with a slope of 0.026(1).

For the square annulus and the chain geometry, we used this calibration curve

to estimate Φ for a given voltage applied to the heaters. For the annulus, all the 12

heaters in a given loop (Fig. 6.1) were serially connected. The measured resistance

was 1.4 KOhms and the applied heater voltage across the loop ranged from ≈ 8-14

Volts, which introduced the phase Φ = 0.5π − 1.5π. Similarly, in the chain of rings

(Fig. 6.5), all the 20 heaters were connected serially, giving a total resistance of 2.31

KOhms. The total voltage applied across the heaters ranged from ≈ 0 − 13 Volts,

for Φ = 0− 2π.

Furthermore, the transfer matrix analysis of a three-ring device (a link ring

sandwiched between two site ring resonators) shows that if the heater introduces an

extra phase Φ in one of the arms, the effective hopping phase (using CMT) between

the link rings is Φ/2. The phase Φ used in preceding discussion of the annulus and

the chain geometry is the effective hopping phase. Therefore, both the CW and

the CCW propagating states (the long-edge and the short-edge states) enclose same
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additional phase.

6.4 Summary

In this Chapter, we demonstrated direct measurement of the winding number

of the edge states, an integer characterizing the topological order. In the absence

of conductance measurements in photonic systems, we employed Laughlin’s adi-

abatic pump technique to shift the edge states in the energy spectrum using an

external gauge field. Specifically, we used a square annulus geometry and used the

thermo-optic effect in silicon to introduce the additional phase. We demonstrated

the quantization of magnetic flux in photonic quantum Hall systems, which is anal-

ogous to quantization of conductance in electronic systems. We further compared

this system to a simple ring geometry where the allowed eigenstates are topological

but not robust. Even though our technique reveals the winding number in this ge-

ometry, the susceptibility of the system to fabrication induced disorders was clearly

visible in the transmission spectrum measurements.
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Chapter 7: Effect of Silicon Nonlinearities on Edge States

At telecom wavelengths, silicon exhibits a plethora of nonlinear effects, for ex-

ample, the Kerr effect, two-photon absorption (TPA), free carrier dispersion (FCD),

free carrier absorption, etc. [63,92–95]. Because the refractive index of silicon is very

high, light can be tightly confined in Si nanowaveguides which enhances the light

intensity and ultimately the nonlinear effects in the waveguide. [63, 96–98]. Addi-

tionally, using a ring resonator with high finesse further boosts the light intensity

in the waveguide and also the length of interaction. Nonlinear processes in sili-

con waveguides and ring resonators have been used to generate entangled photons

pairs [99, 100], heralded single photons [101], four-wave mixing [102–105], modula-

tors [106], passive optical diodes [107] and for many other interesting and useful

applications. Having used silicon ring resonators to implement topological photonic

structures, it is a natural progression for us to investigate the effect of nonlinear

interactions on the edge and bulk state transport. Furthermore, the edge-state

transport could be used for robust, travelling wave optical wavelength conversion,

as has been demonstrated in 1D array of coupled ring resonators [103].

In this Chapter, we develop a simple model to study the nonlinear effects in a

silicon ring resonator using the single-mode approximation. Using an ADF and the
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pump-probe technique, we characterize the free parameters of our model. We then

explore the effect of a strong pump on the transmission of edge states.

7.1 Nonlinear Effects in Silicon Ring Resonators

Silicon is a centro-symmetric crystal and, therefore, it does not support any

second order nonlinear effects (χ2) such as sum and difference frequency generation.

However, the third order nonlinear term χ3 is non-zero. This is the basis of the

Kerr nonlinearity and Two Photon absorption (TPA) found in silicon. Moreover,

since silicon is a semiconductor, TPA leads to a generation of excess free carriers

(electron and hole pairs) which affect the refractive index (Free Carrier Dispersion

- FCD) and also absorb incident power (Free Carrier Absorption - FCA). TPA and

FCA also result in heating of the device which ultimately leads to a refractive index

change through the Thermo-Optic(TO) effect.

For a ring resonator, the light intensity in the ring waveguide and, therefore,

the nonlinear effects are enhanced by the finesse of the resonator. To model these

enhanced nonlinear effects in a silicon ring resonator, we use the single-mode ap-

proximation where the time evolution of the ring energy amplitude a is given as (see

Eq. 3.17)

da

dt
= i(ω − ω0)a+ (2κex + κin) a−

√
2κexεin, (7.1)

and the steady-state solution for the energy amplitude is

a =

√
2κexεin

i(ω − ω0) + (2κex + κin)
. (7.2)

The resonance frequency ω0 of the ring is a function of the effective refractive index
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(neff) of light in the ring waveguide and a change ∆neff in this index results in

resonance frequency shift ∆ω0 as

∆ω0 = − ω0

neff

∆neff ≈ − ω0

neff

∆n, (7.3)

where ∆n is the change in the bulk refractive index of silicon. The resonator loss

rate κin is related to the waveguide loss coefficient α as

κin = αυg. (7.4)

The nonlinear absorption mechanisms, TPA and FCA, increase the waveguide loss

coefficient by ∆α. The corresponding change, ∆κin, in resonator loss rate is then,

∆κin = ∆αυg. (7.5)

Furthermore, the nonlinear refractive index contributions are very small compared

to neff and we can, therefore, assume that the nonlinear effects do not change κex.

Thus, in principle, a knowledge of ∆ω0 and ∆κin as a function of intensity in the

ring waveguide is sufficient to analyze the effect of nonlinear processes on a ring

resonator. In the following, we derive expressions for ∆ω0 and ∆κin due to various

nonlinear processes. Our analysis assumes that the system is in steady state, i.e., it

is valid for time scales much longer than the carrier lifetime and the heat lifetime

in the resonator.

7.1.1 Kerr Effect

The Kerr effect is due to the nonlinear response of bound electrons and causes

a refractive index change which is proportional to the intensity IR of the field present
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in the ring waveguide, i.e.

∆nKerr = nKerr
2 I. (7.6)

The reported Kerr coefficient nKerr
2 in silicon is 4.4 × 10−18m2W−1 [96]. For a ring

resonator,

I =
PR

A
= |a|2 υg

AL
, (7.7)

where PR is the field power in the ring waveguide with cross section area A and L is

the ring length. Using this relation, we can express the Kerr refractive index change

as

∆nKerr = nKerr
2 |a|2 υg

V
. (7.8)

Here, V = AL is the ring volume.

7.1.2 Two-Photon Absorption

The bandgap of silicon is ≈1.1 eV and, thus, it has a linear absorption edge

at about 1.2 µm. However, because of the third order nonlinearity, two photons

with a wavelength > 1.2 µm can still be simultaneously absorbed as long as the

combined energy of both the photons is sufficient to overcome the bandgap. This

TPA process leads to absorption of input light where the absorption coefficient

itself is proportional to the light intensity in the ring waveguide. The two-photon

absorption loss coefficient in the waveguide is given as

αTPA = β2I (7.9)
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where β2 is the TPA coefficient and is 8.4 × 10−12mW−1 [96]. The additional res-

onator loss rate ∆κTPA
in due to TPA is therefore

∆κTPA
in = β2 |a|2

υ2g
V
, (7.10)

where we have used Eqs. 7.5 and 7.9. The total power absorbed in the ring due to

TPA can be calculated as

PTPA
abs = 2∆κTPA

in |a|2 = 2β2 |a|4
υ2g
V
. (7.11)

7.1.3 Free Carriers

Since silicon is a semiconductor, TPA leads to generation of free carriers, elec-

trons and holes, in the conduction and valence bands, respectively. The generated

free carrier number density (both for electrons and holes) is given as

Nc =
PTPA
abs τc
2~ωV

= β2 |a|4
τc
~ω

υ2g
V 2

. (7.12)

where τc is the free carrier lifetime in silicon. Note that the carrier lifetime in a silicon

waveguide is significantly different than that in bulk silicon and it also depends on

the waveguide geometry and the fabrication technology. The reported values for

carrier lifetime in silicon waveguides vary from ≈1 ns to over 200 ns. This is mainly

because of the carrier recombination at the rough waveguide surface which lowers

their lifetime. Moreover, the carrier lifetime is a function of the free carriers density

and can be modelled as

τ =
1

A+BNc
r (7.13)
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where the parameters A, B and r depend on waveguide geometry and are generally

treated as fitting parameters.

If the generated free carriers contribute an absorption cross-section of σFCA

per unit carrier density, the total increase in the absorption coefficient of the ring

waveguide is

αFCA = σFCANc, (7.14)

and the corresponding increase in the resonator loss rate is

∆κFCA
in = αFCAυg = σFCAβ2 |a|4

τc
~ω

υ3g
V 2

. (7.15)

The observed absorption cross-section σFCA for silicon is 14.5 × 10−22m2 [96]. The

total absorbed power in the ring resonator due to FCA is given as

PFCA
abs = 2∆κFCA

in |a|2 = 2σFCAβ2 |a|6
τc
~ω

υ3g
V 2

. (7.16)

As evident, the FCA power absorption is proportional to I3 and is, therefore, the

most significant nonlinear process at high ring intensities.

The generated free carriers also lead to dispersion, i.e., a change in the refrac-

tive index which can be calculated as,

∆nFCD = −ζNc = −ζβ2 |a|4
τc
~ω

υ2g
V 2

. (7.17)

Here, ζ = 8.8(4.6) × 10−28m3 for electrons(holes) is the change in refractive index

per unit free carrier density. The negative sign indicates that an increase in the

carrier density reduces the refractive index of the ring waveguide.
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7.1.4 Thermo-Optic Effects

Absorption of power in the ring waveguide heats the waveguide which changes

its refractive index through Thermo-Optic (TO) effect. This change in refractive

index due to thermal effects is written as

∆n =
dn

dT

dT

dPabs

Pabs. (7.18)

Here, dn
dT

= 1.86 × 10−4K−1 is the thermo-optic coefficient of silicon. dT
dPabs

is the

change in temperature of the waveguide for a unit of absorbed power and it depends

on the material and shape of the waveguide, top and bottom cladding layers and

also the substrate. Reported values of dT
dPabs

in silicon waveguides range from 5 to

40 K/mW [96]. Pabs is the total absorbed power in the ring waveguide due to linear

absorption, TPA and FCA. It can be evaluated as

Pabs = P Lin
abs + PTPA

abs + PFCA
abs = 2γκin |a|2 + 2β2 |a|4

υ2g
V

+ 2σFCAβ2 |a|6
τc
~ω

υ3g
V 2

, (7.19)

where γ is the fraction of linear waveguide loss which is due to absorption in silicon

(and not scattering) and hence, contributes to heating. For bulk silicon, the linear

material absorption coefficient at telecom wavelengths is negligible. However, for

silicon waveguides, the surface roughness leads to a finite linear absorption coefficient

estimated to be ≈10-40% of the total linear loss coefficient α.

7.1.5 Modeling

Having discussed the various nonlinear effects, we now proceed to further sim-

plify our model for the ring resonator. We write the total shift in the ring resonance
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frequency as

∆ω0 = − ω0

neff

∆n = − ω0

neff

(
N2 |a|2 +N3 |a|4 +N4 |a|6

)
. (7.20)

The refractive index parameters, N2, N3, N4, are first, second and third order terms

in the ring energy |a|2, respectively. From the preceding discussion, we see that N2

represents the combined Kerr nonlinearity and TO effect due to linear absorption.

The FCD and the TO effect due to TPA are contained in N3. N4 is the refractive

index change caused by the TO effect related to free-carrier absorption. Thus,

N2 = nKerr
2

υg
V

+ 2
dn

dT

dT

dPabs

γκin (7.21)

N3 = −ζβ2
τc
~ω

υ2g
V 2

+ 2
dn

dT

dT

dPabs

β2
υ2g
V

(7.22)

N4 = 2
dn

dT

dT

dPabs

σFCAβ2
τc
~ω

υ3g
V 2

. (7.23)

Similarly, we can write the total change in resonator loss rate ∆κin as

∆κin = υg
(
B2 |a|2 +B3 |a|4

)
, (7.24)

where B2 and B3 are the waveguide loss parameters due to TPA and FCA, respec-

tively. They are first and second order in ring energy, respectively, and

B2 = β2
υg
V

(7.25)

B3 = σFCAβ2
τc
~ω

υ2g
V 2

. (7.26)

Using these relations and (7.2), we can write the steady state solution for the

ring energy amplitude, in the presence of nonlinear effects, as

a =
−i

√
2κexεin

i(ω − ω0 +
ω0

neff
(N2|a|2 +N3|a|4 +N4|a|6) + (2κex + κin + υg (B2|a|2 +B3|a|4))

.

(7.27)
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However, an analytic solution for the ring energy amplitude is not possible using

this equation. Nevertheless, it can be solved using numerical methods (for example,

the iterative technique) to estimate a and hence, the transmission at the drop and

through ports.

7.2 Experimental Characterization of Nonlinear Parameters

We use an ADF to characterize the nonlinear effects in our system. For an

ADF, a change in refractive index leads to a shift in the resonance frequency (or the

transmission spectrum) of the resonator as

∆ω0 =
ω0

Neff

∆n, (7.28)

and an increase in the loss rate, due to TPA and FCA, results in a change in the

through port transmission contrast CT as

1√
CT

=
κin +∆κin

2κex
. (7.29)

By measuring the shift in resonance frequency (of the transmission spectrum) and

the through port contrast as a function of ring intensity, it is possible to extract the

nonlinear parameters using the expressions derived in the previous section.

However, an accurate and simultaneous experimental estimation of all the

nonlinear effects in silicon is extremely challenging, mainly because of the waveguide

geometry dependence of the free carrier dynamics and the thermal effects. We,

therefore, assume that the material parameters such as the TPA coefficient (β2),

the FCA cross-section (σFCA), the refractive index change due to free carriers(ζ)
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Figure 7.1: Pump-probe setup to investigate the nonlinear effects in the coupled
ring resonator structures.

and the TO coefficient ( dn
dT
) are known. We assume that the other parameters such

as Neff, υg, κex, κin, V, L are also known. Then, the quantities N2, N3, N4, B2 and B3

are in fact functions of only three free parameters - the carrier lifetime τ , the change

in temperature of the waveguide per unit absorbed power dT
dPabs

and the fraction

γ of the linear loss rate α which is due to absorption. These free parameters are

waveguide geometry dependent and we use them as fitting variables.

We use a pump-probe setup to estimate the free parameters of our model.

The high power pump sets the nonlinearity in the ring. The nonlinear response of

the ring is analyzed by measuring the transmission spectrum (at through and drop

ports) of the ring using a weak probe signal with tunable wavelength (LUNA OVA).
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Figure 7.2: (a) Measured change in refractive index as a function of ring intensity.
Contributions to ∆n from N2 (blue), N3 (green) and N4 (red), calculated using the
fitted parameters are also shown. (b) Measured inverse square root of the through
port contrast as a function of ring intensity. The plot also shows the respective
contributions by B2 (green) and B3 (blue) nonlinear processes. The most dominant
mechanism is the FCA.

To vary the light intensity in the ring, we sweep the frequency of the pump with

respect to the ring resonance frequency. The pump frequency is set in one FSR of

the spectrum and the probe in the neighboring FSR. The pump power travelling in

the ring is then governed by Eq. 7.27, which requires a knowledge of the parameters

we seek. Since ED =
√
2κexa, we can use the measured transmission at the drop

port to estimate the pump energy in the ring.

Fig. 7.2 shows the measured resonance shift and contrast as a function of ring

intensity. The data is taken across 2 different devices, for 3 different input pump

power levels. A fit to the shift and contrast data give τc = 44ns, dT
dPabs

= 12.4 K/mW

and γ to be 0.07. The observed carrier lifetime in our system is more than an order

of magnitude higher than that reported for similar waveguide geometries [96]. We

are uncertain of the reason for this discrepancy. It could be due to global heating
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of the chip which we see in our system. We observe that apart from the local shift

of the ADF resonance due to thermal effects, the chip is globally heated because of

the high laser power incident on the input grating coupler (Section 7.3). Moreover,

in our model, we have not considered the spatial and temporal dynamics of the free

carriers and the thermal effects. For simplicity, we have assumed a steady state value

for the carrier density and the temperature. The reported carrier lifetime (≈ ns)

and the heat lifetime (≈ µs) are orders of magnitude higher than the photon lifetime

in our low finesse ring resonators (≈ ps). Developing a model which incorporates all

these dynamics is extremely challenging and computationally intensive, especially

for the 2D lattice of coupled resonators.

We also observe that the fit to the measured data is particularly bad at high

ring intensities. At high ring intensities, the observed shift in the resonance spectrum

is about one half of the FSR. Such a large shift suggests the breakdown of the single-

mode approximation in this regime. Transfer matrix analysis for the nonlinear ring

resonator might avoid some of these issues. A first step would be to write the

differential equation for the propagation of field inside the ring as

dE(z)
dz

=
(
i
ω

c
n(z)− α(z)

)
E(z), (7.30)

where z is the length along the ring waveguide, n(z) and α(z) are the effective

refractive index and absorption coefficient, respectively. This equation along with
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the boundary conditions

E (0) = iκEin + tE(L) (7.31)

E
(
L

2
+ ϵ

)
= tE

(
L

2

)
(7.32)

ED = iκE
(
L

2

)
(7.33)

ET = tEin + iκE (L) , (7.34)

give a solution for the field inside the ring. Here, we have assumed that the input

and output waveguides are coupled to the ring at z = 0 and z = L/2, respectively.

However, this procedure would be very difficult to implement for the lattice of ring

resonators.

7.3 Problem of Global Shift

In our experiments, we find that even when the pump is in the mid-FSR, i.e.,

when it does not enter the ring, it causes huge resonance shifts in the ADF spectrum

(Fig. 7.3). Further, this shift is similar in magnitude to a shift induced by moving

the fiber away from the grating coupler, so that most of the pump power doesn’t

couple into the silicon waveguide but just hits the silicon substrate. This shift is

measured to be 0.11 GHz per mW of pump power at the output of the EDFA. We

call this shift the global thermal shift because it does not depend on the intensity of

the pump power in the waveguide. It depends solely on the pump power incident on

the chip. Therefore, for the characterization of nonlinear parameters in our system,

we used a pump wavelength sweep to vary the pump intensity in the ring and fixed

the input pump power to ensure that the global shift remained constant. With
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Figure 7.3: (a) Indication of global heating. The input light shining on any part
of the chip results in almost the same shift as it does while passing through the
coupling waveguide of the ADF (off-resonant pump). Pp-off/on refers to the pump
power being off and on. Cp-on indicates the fiber is aligned on the grating coupler
for maximum pump power coupling to the ADF. For Cp-off, the fiber is shifted away
from the grating coupler, so that most of the pump power falls on the silicon sub-
strate, with just a small fraction passing through the ADF to measure its response.
(b) Global shift introduced as a function of the pump power incident on the chip.
Off-resonant pump and a pump detuned from the grating coupler result in similar
shifts.

this procedure, when the shift is calibrated to a transmission spectrum taken in the

presence of a mid-FSR pump, the resulting shift is independent of global shift. This

is not the case when we fix the pump frequency and vary the pump power instead.

In that case, the shift arising from nonlinearity in the ring resonator is convoluted

with the global shift.

For a 2D lattice of ring resonators, this global shift can lead to a uniform

increase in temperature throughout the lattice and hence, wash out any changes in

the transmission spectrum. However, we confirmed that along with a global shift,

each ring also has a local heat/shift component and the lattice does not thermalize

as a whole. We used a three-ring device - a link resonator sandwiched between

two site resonators. Fig. 7.4 shows the observed spectra when the pump is at the

resonance of site rings. The spectra have been shifted to align the peaks of the link
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Figure 7.4: Through port transmission spectra of a three-ring device, a link resonator
sandwiched between two site rings, with and without pump. The spectra have been
shifted to align the transmission dip of the link ring, thus offsetting the global shift
component. The transmission dips of the site rings show a shift, indicating a local
component of heat which arises from the nonlinear interactions in the site rings.

resonator, which accounts for the global shift contribution (since the pump is at the

resonance of site rings). We can clearly see that there is a differential shift in the

site and link resonators. This implies that a fraction of the total nonlinear shift is in

fact local to a single ring resonator and we can hope to investigate nonlinear effects

in a 2D lattice.

7.4 Effect of Nonlinear Interactions on Edge States

To explore the effect of silicon nonlinearities on the topological edge states,

we employed the pump-probe setup shown in Fig. 7.1 on a 8×8 lattice. The strong

pump beam is tuned within one FSR and the transmission spectrum of the lattice

is probed at a neighboring spectrum. We fixed the pump power and scanned the

pump wavelength across the resonance spectrum of the lattice. We find that when

the pump is positioned in the edge-state region of the spectrum, the spectrum of
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Figure 7.5: (a) Transmission spectra of a 8×8 lattice device, without a pump, and
with a pump in the short (green) and long-edge (red) region. The shape of the
spectrum does not change. (b) Transmission spectra when the pump is positioned
in a side-band of the long-edge. The transmission in the long-edge region reduces
by ≈5 dB.

the lattice does not change in shape at all (Fig. 7.5(a)). However, when the pump

is positioned in the neighboring regions, the edge state transmission is drastically

reduced, by as much as 5 dB. Simultaneously, the transmission at frequencies close

to the pump rises by approximately the same amount.

We have tried to simulate this effect using the nonlinear model discussed above

for a single ring. However, when we use a carrier lifetime of 44 ns in the model

(from ADF data fitting), the transmission spectrum of the lattice is greatly reduced

because of the very strong FCA. We therefore conclude that further investigation

is required to understand this effect. The best way forward will be to use a pulsed

pump and probe beams. By using a pulse width less than the heat lifetime (≈ µs)

and a repetition rate more than that, we can eliminate all of the thermo-optic effects

as well as the global heating effects. In that case, the dominant nonlinear dispersion

effect would only be the free carrier dispersion. This should result in a significant
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simplification of the model and hopefully, a simulation of the observed effect on edge

states would be possible.

7.5 Summary

In this Chapter, we discussed the various nonlinear effects in a silicon res-

onator. We developed a simple model based on single-mode approximation. In this

model, the nonlinear dispersive effects are captured by the shift in the resonance fre-

quency and the absorptive effects are included as additional resonator loss rates. We

find, however, that this simple model is insufficient to explain the observed change

in refractive index and the loss rate, especially at high pump powers. Further, the

observed free carrier lifetime is significantly higher than that reported in the litera-

ture for similar waveguide dimensions. In the 2D lattice of ring resonators, we find

that a strong pump positioned in the edge state regions does not affect the spec-

trum, apart from a shift of the spectrum. However, when the pump is positioned in

the side-bands of the long-edge, we see that the transmission in the long-edge state

decreases by ≈ 5 dB. We have not been able to simulate this effect. We conclude

that further experiments, using a pulsed pump and probe beams, are required to

investigate the the effect of nonlinear interactions on edge states.
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Chapter 8: Conclusions and Outlook

Large scale photonic integration demands an arbitrary control over the flow

of photons, for example, unidirectional waveguides and reflection-free sharp bends.

Bandgap engineering in photonic crystals and metamaterials has been widely used

to manipulate the transport of photons. Using a magnetic field to control pho-

tonic transport, analogous to electronic systems, is another viable option. However,

magneto-optic effect - the only source of coupling between a magnetic field and

photons - is very weak at optical frequencies. At optical frequencies, it is feasible

to introduce a synthetic magnetic field for photons. This work demonstrates the

implementation of such a synthetic magnetic field using a two-dimensional lattice of

coupled ring resonators, on a silicon photonics platform. Specifically, we implement

photonic analogs of the topologically robust edge states which appear in quantum

Hall systems.

We began with a discussion of the integer quantum Hall effect and the tight-

binding lattice model generally used to study this effect. We showed that for a

finite lattice, edge states emerge naturally in the energy spectrum of the system.

These states are chiral, topologically protected and robust against lattice disorders.

We then described the design of a two-dimensional lattice of ring resonators which
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implements a synthetic magnetic field for photons. The lattice site resonators were

coupled using link rings and the magnetic field was introduced by vertically shifting

the link rings. We used input-output formalism to simulate the transmission and

delay spectra of the lattice. The presence of edge states was evident in the transport

measurements. We further discussed an application of these edge states as robust

optical delay lines.

We implemented this system using CMOS-compatible SOI technology and

demonstrated the presence of edge state using direct imaging. We then presented

first quantitative analysis of the robustness of edge states against fabrication induced

disorder. Using transmission and delay distributions, we showed that the localization

is suppressed in edge states. We measured the winding number of the edge states.

The quantized Hall conductance in electronic systems manifests as quantization of

winding number in photonic quantum Hall systems. Finally, we investigated the

effect of nonlinear interactions on edge states. We observed that a strong pump can

significantly affect the transmission through edge states. Our simple model was,

however, not able to simulate this observation.

Our system provides a new platform to explore the various quantum Hall

phenomena, at room temperature. For example, using the thermo-optic effect, as

we did for the winding number measurements, it is possible to probe the Hofstadter

butterfly spectrum - which has only been recently spotted using cold atoms and van

der Waal heterostructures, and graphene [108–110]. Because photons do not interact

with each other, the experimental efforts have been limited to the non-interacting

regime, i.e., simulations of the integer quantum Hall effect. Adding photon-photon
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interactions to this system, for example using quantum dots, would further enable

investigations of the intriguing fractional quantum Hall physics. Moreover, the

experiments reported in this thesis used coherent laser source as input. It would

be very interesting to study the transport of correlated photons through the lattice.

Similar experiments in one-dimensional arrays of coupled waveguides have revealed

non-trivial quantum correlations [111–113]. Our system, thus, opens a new avenue

to investigate the transport of photons under the influence of a gauge field and use

topological features to achieve new photonic device functionalities.
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Chapter A: Spin Degree of Freedom in a Ring Resonator

In Chapter 3, we showed that a ring resonator can support two degenerate, the

clockwise and the counterclockwise circulating, states. However, backscattering in

the ring waveguides can lead to a coupling between the two modes. In this Chapter,

we show that this coupling causes a splitting of the transmission spectrum of an

ADF. We also discuss the effect of backscattering on the robustness of edge states.

We consider an add-drop filter and employ the single-mode approximation.

But now, instead of a single mode, the ring has two degenerate modes, labelled by

spin up and down. In the absence of any coupling between the modes, the time

evolution for the ring energy amplitude aσ of a mode, for a plane wave excitation

with frequency ω, is given as (see Chapter 3)

daσ
dt

= −i (ω − ω0) aσ − (2κex + κin) aσ −
√
2κexEσ

I . (A.1)

Here, σ = ± represents the two spin states of the modes and Eσ
I is the corresponding

input field amplitude. For example, in Fig. A.1, input field at port 1 excites the

counterclockwise circulating mode (σ = +), while an excitation from port 2 results

in a clockwise (σ = −) circulating mode. For an ideal ring, the two modes coexist in

the ring without any coupling. However, the dry etching step during the fabrica-

tion process (see Chapter 5) of an integrated ADF results in rough ring waveguide
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Figure A.1: (a) An ADF showing the two spin - the clockwise and counterclockwise
rotating - modes. Input from port 1 excites the counterclockwise mode whereas input
from port 2 excites the clockwise mode. (b) Transmission spectrum at the drop port
(port 2 for CCW mode and port 1 for CW mode), with input only at port 1, in the
absence and presence of backscattering. In the absence of backscattering (β = 0),
only the CCW mode exists in the ring. Presence of backscattering (β = 2κex) also
excites the CW mode in the ring and hence the output at port 1 is nonzero. Also,
the transmission spectrum splits.

surface, particularly the side walls of the waveguide. The surface roughness induces

backscattering in the waveguide and hence, can lead to a coupling between the two

modes. The steady-state solution for the two modes can then be written as i (ω − ω0) β

β i (ω − ω0)


 a+

a−

+

 2κex + κin 0

0 2κex + κin


 a+

a−

 = −
√
2κex

 E+
I

E−
I

 .

(A.2)

Here, the parameter β is the coupling rate between the two modes. Fig. A.1(b)

shows the transmission spectrum at the drop and through ports for this system

with β/κex = 2. As is evident from the spectrum, the coupling between the two

spin states causes a splitting of the spectrum and the splitting, ∆ω0, increases with

2β. In practice, the coupling rate β is very small compared to κex. The particularly

high value of β chosen here is just to exaggerate the splitting of the spectrum.
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Figure A.2: (a) Transmission spectrum of a 8×8 lattice in the absence and presence
of backscattering (β = 0.6J). (b,c) Ring intensity distributions at the long-edge for
the two cases. Backscattering affects the robustness of edge states.
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We use a similar procedure to analyze the transmission of coupled ring res-

onators in the presence of backscattering. For a lattice with NSR = Nx ×Ny rings,

the Hilbert space is now of dimension 2NSR and the corresponding Hamiltonian is

a square matrix of dimension 2NSR. For example, for a 2×2 lattice, the ring energy

amplitude vector is

a = [a+1, a+2, a+3, a+4, a−1, a−2, a−2, a−4]
T , (A.3)

where we have labeled the rings following Fig. 4.10. The Hamiltonian for this

system is then written as

H0 =



ω0 −J −J 0 −β 0 0 0

−J ω0 0 −J 0 −β 0 0

−J 0 ω0 −Jeiα 0 0 −β 0

0 −J −Je−iα ω0 0 0 0 −β

−β 0 0 0 ω0 −J −J 0

0 −β 0 0 −J ω0 0 −J

0 0 −β 0 −J 0 ω0 −Je−iα

0 0 0 −β 0 −J −Jeiα ω0



. (A.4)

In the absence of backscattering (β = 0), the system is thus equivalent to two

independent spin systems. Moreover, the magnetic field for the two spin states is

reversed indicated by the sign reversal in hopping phase along x−axis. The system

therefore simulates a quantum spin-Hall effect. However, by appropriately choosing

an input port, we can excite a particular spin state in the system.

The presence of backscattering (β ̸= 0) results in a mixing of the two spin

states and affects the topological protection of the edge states. As an illustration,
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Fig. A.2 shows the transmission spectrum of an 8×8 lattice with β = 0, 0.6J . The

backscattering significantly distorts the spectrum, especially for the long edge. The

ring intensity distribution for the two cases, at the long-edge, is also shown. In

the presence of backscattering, the edge state is no longer confined to the edge of

the lattice and instead, spreads to the bulk. The choice of β = 0.6J was made to

demonstrate the effect of backscattering. For our experimental system, we estimate

β/J to be 0.04 and hence, its effect is negligible.
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Chapter B: Effect of Link Ring on Coupling Rate

The implementation of a synthetic magnetic field for photons hinges on the

specific placement of the link rings in our system. In Chapter 4, using a rigorous

transfer matrix approach, we showed that when the link ring is anti-resonant with

the site rings, i.e., when the length LLR = LSR + η, the link ring does not store any

energy and hence, it acts only as a waveguide coupler, and not as a resonator. In

this situation, the coupling rate between a link ring and its nearest neighbor is the

same as that between the site ring and the link ring connecting the two site rings.

Here, we analyze a situation when the anti-resonant condition is not necessarily

valid. We consider two site rings coupled by a link resonator (Fig. B.1). The site

rings have a length LSR and the link ring LLR = LSR + η. Furthermore, the link

ring is vertically displaced by length ξ. We label the fields as shown in Fig. B.1.

(a) (b)

Figure B.1: (a) A system of two site rings, coupled by a link ring, and also coupled
to input and output waveguides. The figure labels the fields for the transfer matrix
analysis. (b) Description of the system in coupled mode theory. The effect of the
link ring is contained in the coupling rate J and hopping phase ϕ.
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Using transfer matrix formalism (see Section 4.1), we can relate the different field

amplitudes as  Ea

Eb

 =
1

iκI,O

 tI,O −1

1
ΦR

− tI,O
ΦR


 ET

EI

 , (B.1)

 Ec

Ed

 =
1

iκ

 t −ΦR

1
ΦCRL

− tΦR

ΦCRL


 Eb

Ea

 , (B.2)

 Ee

Ef

 =
1

iκ

 t −ΦCRU

1
ΦR

− tΦCRU

ΦR


 Ed

Ec

 (B.3)

 ED

0

 =
1

iκI,O

 tI,O −ΦR

1 −tI,OΦR


 Ef

Ee

 (B.4)

Here, tI,O and kI,O are the field transmission and cross coupling coefficients for

coupling of link rings to the input and output ports, and t, k are those for the

coupling between the rings. ΦR = e−iβ
LSR
2 e−α

LSR
2 is the propagation term in the half

length of the link rings. Similarly, ΦCRL = e
−iβ

(
LLR
2

−2ξ
)
e
−iβ

(
LLR
2

−2ξ
)
and ΦCRU =

e
−iβ

(
LLR
2

+2ξ
)
e
−iβ

(
LLR
2

+2ξ
)
are the propagation terms for the lower and upper arms

of the link ring. These equations give the field at the drop port as

ED =
e−

1
2
γ(3LSR+η−4ξ)κ2κ2I,O

1− e−γ(LSR+η)t2 − e−γ(3LSR+η)t2I,O + 2e−γ(2LSR+η)ttI,O − 2e−γ(LSR)ttI,O + e−γ(2LSR)t2t2I,O
,

(B.5)

where γ = (α + iβ).

In the weak coupling limit, i.e., when κI,O, κ≪ 1 and tI,O, t ≈ 1, the expression
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for the drop field can be simplified to

ED =
2ei2βξκ2κ2io

2 (2γLSR + κ2io)κ
2 cos

(
βη
2

)
− i
((

2γLSR + κ2I,O
)2

+ κ4
)
sin
(
βη
2

) . (B.6)

Here, we have assumed that the extra length η of the link ring and its vertical shift

ξ are negligible compared to LSR, so that the loss incurred in these extra lengths is

insignificant. In our experimental system, η = 320 nm, ξ = 80 nm and LSR ≈ 70µm,

which justifies the above assumption.

Now, we analyze this system of two site rings coupled by a link ring using the

coupled mode theory, where the coupling between the site rings can effectively be

described by a coupling rate J and a hopping phase ±ϕ (Fig. B.1(b)). The effect

of the link ring is captured in J and ϕ. The rate equations for the time evolution of

the ring energy amplitudes, a1(t) and a2(t), are

da1
dt

= (−iω0 − κex − κin) a1 − iJe−iϕa2 −
√
2κexEI (B.7)

da2
dt

= (−iω0 − κex − κin) a2 − iJeiϕa1, (B.8)

where κex is the coupling of the site rings to the input and output waveguides and

κin is the resonator loss rate. A steady-state solution of the above equations for a

plane wave excitation of frequency ω gives

a1 =
(i (ω − ω0)− κex − κin)

√
2κexEI

(i (ω − ω0)− κex − κin)
2 + J2

(B.9)

a2 =
iJeiϕa1

(i (ω − ω0)− κex − κin)
. (B.10)

Then, the field output at the drop port ECMT
D =

√
2κexa2 is

ECMT
D =

i2eiϕJκexEI
(i (ω − ω0)− κex − κin)

2 + J2
. (B.11)
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To compare this expression for the drop field to that derived using the transfer

matrix approach, we use the relations derived in Chapter 3,

β =
(ω0 − ω)

υg
(B.12)

κin = αυg (B.13)

κex =
κ2I,O
2

υg
LSR

(B.14)

J =
κ2

2

υg
LSR

. (B.15)

The drop field in the transfer matrix formulation is then

ED =
2eiϕJκex

−2J (i (ω − ω0)− κex − κin) cos (
βη
2
)− i

(
J2 + (i (ω − ω0)− κex − κin)

2) sin (βη
2
)
EI ,

(B.16)

where ϕ = 2βξ. We see that for βη = (π, 3π, 5π, . . . ), i.e., when the link ring is

anti-resonant to the site rings, the two expressions are identical. Because the link

ring is anti-resonant, it does not store any energy and simply acts as a waveguide,

without affecting the coupling between the site rings.

When βη is not an odd-integer multiple of π, the two expressions for the drop

field, derived using the coupled mode theory and the transfer matrix method, are

identical if we use an effective coupling rate Jeff = J/ sin
(
βη
2

)
and shift the resonance

frequency of the site rings as ωeff
0 = ω0 + J cot

(
βη
2

)
.
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