

ABSTRACT

Title of Document: APPLICATION AND REFINEMENTS OF

THE REPS THEORY FOR SAFETY

CRITICAL SOFTWARE

 Ying Shi, Doctor of Philosophy, 2010

Directed By: Professor Carol Smidts

Professor
Department of Mechanical Engineering

With the replacement of old analog control systems with software-based digital

control systems, there is an urgent need for developing a method to quantitatively and

accurately assess the reliability of safety critical software systems. This research

focuses on proposing a systematic software metric-based reliability prediction

method. The method starts with the measurement of a metric. Measurement results

are then either directly linked to software defects through inspections and peer

reviews or indirectly linked to software defects through empirical software

engineering models. Three types of defect characteristics can be obtained, namely, 1)

the number of defects remaining, 2) the number and the exact location of the defects

found, and 3) the number and the exact location of defects found in an earlier version.

Three models, Musa’s exponential model, the PIE model and a mixed Musa-PIE

model, are then used to link each of the three categories of defect characteristics with

reliability respectively. In addition, the use of the PIE model requires mapping

defects identified to an Extended Finite State Machine (EFSM) model. A procedure

that can assist in the construction of the EFSM model and increase its repeatability is

also provided.

This metric-based software reliability prediction method is then applied to a

safety-critical software used in the nuclear industry using eleven software metrics.

Reliability prediction results are compared with the real reliability assessed by using

operational failure data. Experiences and lessons learned from the application are

discussed. Based on the results and findings, four software metrics are

recommended.

This dissertation then focuses on one of the four recommended metrics, Test

Coverage. A reliability prediction model based on Test Coverage is discussed in

detail and this model is further refined to be able to take into consideration more

realistic conditions, such as imperfect debugging and the use of multiple testing

phases.

APPLICATION AND REFINEMENTS OF THE REPS THEORY FOR SAFETY
CRITICAL SOFTWARE

By

Ying Shi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor Carol Smidts, Advisor, Co-Chair
Professor Balakumar Balachandran, Chair
Professor Ali Mosleh
Professor Mohammad Modarres
Associate Professor Jeffrey Herrmann
Professor Marvin Zelkowitz

© Copyright by
Ying Shi

2010

ii

Dedication

To my parents.

iii

Acknowledgements

First and foremost I would like to express my deepest gratitude to my advisor

and friend, Dr. Carol S. Smidts. Her supervision, guidance, support and commitment

to the highest standards inspired and motivated me throughout my graduate study at

the University of Maryland and will remain with me for a lifetime. From the bottom

of my heart, I thank her.

I want to thank the other members of my dissertation committee, Dr. Balakumar

Balachandran, Dr. Ali Mosleh, Dr. Mohammad Modarres, Dr. Jeffrey Herrmann and

Dr. Marvin Zelkowitz, for agreeing to serve on my committee and for their comments

and ideas.

Many thanks go in particular to Dr. Ming Li and Dr. Wende Kong for their

invaluable help and guidance in refining the methodologies presented in this

dissertation. I also want to thank my previous lab members Mr. Jun Dai, Ms. Lulu

Wang, Mr. Chao Hu and Mr. Anand Ladda for the collaboration and support they

have provided for my research.

I thank my parents Mr. Xinming Shi and Mrs. Li Sun, who have always believed

in me. Their love, support and encouragement propelled me to complete my Ph.D. I

also want to thank my daughter, Katelyn Zhao, who has been a great joy of my life.

At last and foremost, I want to thank my husband Dr. Bryan M. Zhao for his love

and persistent confidence in me. This dissertation would not have been possible

without his understanding, patience and support.

iv

Table of Contents

Dedication ... ii

Acknowledgements .. iii

Table of Contents ... iv

List of Tables .. vii

List of Figures .. ix

Chapter 1: Introduction ... 1

1.1 Motivation ... 1

1.2 Research Objective ... 2

1.3 Related Research ... 3

1.4 Approach ... 5

1.5 Contents .. 6

1.6 Summary of Contributions .. 8

Chapter 2:Metric-based Software Reliability Prediction Approach and its Application

... 12

2.1 Metric-based Software Reliability Prediction Approach 12

2.2 D-R Model I: Reliability Prediction Model using only the Number of

Defects .. 14

2.3 D-R Model II: Reliability Prediction Model using the Exact Locations of

Defects .. 15

2.4 D-R Model III: Reliability Prediction Model using an Estimate of the

Number of Defects in the Current Version and the Exact Locations of the

Defects Found in an Earlier Version (mixed Musa-PIE model) 17

2.5 Operational Profile .. 18

2.6 Extended Finite State Machine (EFSM) ... 19

2.6.1 Step 1: Construct of a High Level EFSM Based on the SRS 21

2.6.2 Step 2: Identify, Record and Classify the Defects 26

2.6.3 Step 3: Modify the HLEFSM by Mapping the Identified Defects 28

2.6.3.1 Section a: Localize the defects in the HLEFSM: .. 28

2.6.3.2 Section b: Modify the HLEFSM: .. 28

v

2.6.3.3 Section c: Split the HLEFSM to a LLEFSM and modify it:....................... 31

2.6.4 Step 4: Map the OP to the Appropriate Variables (or Transitions) 32

2.6.5 Step 5: Obtain the Failure Probability by Executing the Constructed EFSM

 .. 33

2.7 Application of the Metric-based RePS Theory ... 35

2.7.1 Summary of the Measures and RePSs .. 36

2.7.2 APP Operational Profile Generation ... 40

2.7.3 Application Results: Analysis ... 45

2.7.4 Discussion about the Measurement Process ... 48

2.7.5 Conclusions ... 51

2.8 Test Coverage Based RePS ... 52

Chapter 3: Predicting the Types and Locations of Faults Introduced During An

Imperfect Repair Process and their Impact on Reliability .. 58

3.1. Introduction ... 59

3.2. Repair Error Taxonomy .. 61

3.3. Modeling Repair Error Types and Determining Whether They Remain in

the Program ... 64

3.4. Assessing the Probabilities of Different Types of Repair Errors 66

3.5. Effect of Remaining Faults on Reliability .. 72

3.6. Application .. 73

3.7. Conclusions: Integrating the Results of the Proposed Method into the

SRGMs .. 76

Chapter 4: Predicting Residual Software Fault Content and their Location during

Multi-Phase Functional Testing Using Test Coverage ... 78

4.1. Introduction ... 78

4.2. Notations ... 81

4.3. Number of Failures Experienced and Faults Remaining In the Case of

Multiple Functional Test Phases ... 83

4.4. Extensions to Account for Auxiliary Observations and Continuously Refine

the Predicted Fault Count ... 87

4.4.1. Updating of the Repair and Fault Introduction Rates 92

vi

4.4.2. Updating of the Fault Propagation Constant ... 97

4.5. Extensions in the Case of a Non-Uniform Distribution of Faults 101

4.6. Conclusions ... 105

Chapter 5: Summary and Future Research ... 108

5.1 Summary ... 108

5.2 Areas for Future Research .. 109

Appendix A. Eleven Software Metrics used in this Study 112

Appendix B. The M-D Models for each of the Eleven RePSs 117

Bibliography ... 124

vii

List of Tables

Table 2.1 EFSM Construction Step 1 for Example 1 ... 26

Table 2.2 Example Table for Recording Identified Defects 26

Table 2.3 Possible Instances or Further Description for Each Field in Table 2.2 27

Table 2.4 Record of Identified Defects for Example 1 ... 28

Table 2.5 Phases for which Metrics are Applicable ... 37

Table 2.6 M-D Models for Each Root Metric ... 39

Table 2.7 Three Groups of Metrics ... 40

Table 2.8 APP’s Operational Profile-Plant Inputs (OPPI) .. 42

Table 2.9 Failure data information required to quantify Event 2 45

Table 2.10 APP OP-Infrastructure Example Results .. 45

Table 2.11 Reliability Prediction Results ... 46

Table 2.12 Fault Exposure Ratio Results .. 48

Table 2.13 Total Time Spent for the Eleven RePSs ... 49

Table 2.14 Cost of Supporting Tools .. 50

Table 2.15 Experts Required .. 50

Table 3.1 Hierarchical Error Taxonomy to Capture the Physical Manifestations of

Repair Errors ... 63

Table 3.2 Parameters of the Prior and Posterior Distribution 70

Table 3.3 Mutant Programs Generated for the Code Modification CS1 75

Table 3.4 Error Data from sources S1, S2 and S3 and corresponding updated value of

the average Normalized Proportion 𝜃12 for Error Class Cl12. 75

Table 3.5 The Exact Error Class Proportions 𝜑𝐶𝑆𝑖 for APP’s Code Modification CS1

derived from the Normalized Proportions .. 76

Table 3.6 Determination of the Probability of Occurrence of APP’s Live MPs 76

Table 4.1 Multiple Phase Test Profile for Software S .. 86

Table 4.2 Predictions made at different instants of time of a multi-phase testing

process... 92

Table 4.3 Parameters of the Prior and Posterior Distributions for repair rate rP(...) 95

viii

Table 4.4 Parameters of the Prior and Posterior Distributions for the new fault

introduction rate γP(…) .. 96

Table 4.5 Parameters of the Prior and Posterior Distributions for 𝐾1𝑃(. .) 98

Table 4.6 Parameters of the Prior and Posterior Distributions for 𝐾2𝑃(. .) 99

Table 4.7 Industry Average Data Used in the Analysis of Software System SY 99

Table 4.8 Weights Used in the Analysis of Software System SY 99

Table 4.9 Predictions Made for the Upper and Lower Bounds of Test Coverage Based

on Information Available in the Test Plan .. 100

Table 4.10 Observations Used in the Analysis of Software System SY 100

Table 4.11 Multi-Phase Test Profile for Software SX... 104

Table 4.12 Detection probabilities per location for the two phases for Software SX 104

Table 4.13 ki(L’,L) for the two phases (i = 1,2) .. 104

Table 4.14 Remaining Parameters for SX ... 104

Table B.1 Percentages for Delivered Defects by Severity Level 117

Table B.2 CMM Levels and Average Number of Defects per Function Point 118

Table B.3 Averages for Delivered Defects per Function Point (Extracted From Table

3.46 [45])... 121

Table B.4 Rating Scale and SLI Estimation for REVL .. 122

ix

List of Figures
Figure 2.1 Metric-Based RePS ... 13

Figure 2.2 Typical Prototype Outline of SRS ... 22

Figure 2.3 SRS-Based High Level EFSM Construction ... 23

Figure 2.4 General procedures for defect mapping .. 29

Figure 2.5 Flowchart for localizing the defects .. 30

Figure 2.6 Original EFSM for Example 1 .. 31

Figure 2.7 Modified EFSM for Example 1 ... 31

Figure 2.8 Flux/Flow Delta Flux Trip Condition (Barn Shape) 41

Figure 2.9 An Example EFSM Model for a PROM self-test function in the APP

system ... 43

Figure 2.10 Fault Tree for Event 2: PROM Test Status Flag is BBH 44

Figure 2.11 Defect Categories .. 55

Figure 2.12 Multiple Versions of the Source Code and Test Plan 56

Figure 3.1 Code Repair and Its Mutants ... 65

Figure 3.2 Test Cases and Mutants ... 66

Figure 4.1 Coverage is a continuous monotonic non-decreasing function of testing

time (a); Coverage function for Multiple Phases of Functional Testing (b) (c) 80

Figure 4.2 Sequential-intermittent Assimilation Framework, excerpted from [90] ... 88

Figure 4.3 Predictions and Observations made throughout the testing phases 89

Figure 4.4 ∆𝑀1𝑃(𝑡), ∆𝑀2𝑃(𝑡),∆𝑀1𝐸,∆𝑀2𝐸,𝑛𝑓𝑟 1(𝑡)and 𝑛𝑓𝑟 2 𝑡 for SY 100

Figure 4.5 Fault Location Distributions for SX ... 105

 1

Chapter 1: Introduction

1.1 Motivation

Over the past few decades, software has been used more and more widely in our

daily lives: from personal computers, home appliances, telecommunications,

automobiles to medical devices, nuclear power plants, space missions and many

more. Compared to pure hardware based systems, software possesses a greater

capability to solve complex problems. As a result, the size and complexity of

software have dramatically increased in recent years and this trend will continue.

In the safety critical domain which is the focus of this research, software-based

digital control systems are now replacing the old analog control systems. The

performance of such new systems thus heavily depends on software for their correct

operation. Like hardware failure, software failure can also lead to severe and even

fatal consequences. For example, the failure of the Patriot mission defense system in

1991, the explosion of the Ariane 5 rocket in 1996 and the anomaly experienced in

the Mars Exploration Rover in 2004 are all due to software failures. Therefore, to

verify whether released software meets the users’ requirements, one should first know

how good it is, more specifically, how reliable it is. There is a great need for

developing a method to accurately and quantitatively assess the reliability of safety

critical software systems.

In the nuclear industry, the Nuclear Regulatory Commission (NRC) hasn’t

endorsed any particular quantitative software reliability method. With the acceptance

of Probabilistic Risk Assessment (PRA) as a tool for quantify system risks, there is an

 2

urgent need of a quantitative method to assess the software failure rate. National

Aeronautics and Space Administration (NASA) Headquarters specified general

requirements for software reliability assurance [1] after having experienced an

increased number of software-related mission failures. However, there is no clear

single guideline at present on how to implement detailed requirements and practices

across the NASA centers and, in particular, no critical guidance for robotic missions.

The aircraft industry is also seeking new methods or guidance for assessing software

failure rates since current available software reliability methods recommended in its

current standards “do not provide results in which confidence can be placed to the

level required for this purpose [2].”

1.2 Research Objective

As addressed in section 1.1, there is an urgent need for an acceptable software

reliability quantification method in the safety critical industry. Many software

reliability prediction models have been proposed in the research literature [3][4].

However, none of these models have found wide acceptance in the safety critical

industry due to existing limitations. For example, software reliability growth models

rely heavily on the collection of testing and operational data which is limited in the

safety critical domain. These models can be only applied in the late stages of

development, i.e. after testing, which provides little help in decision making in the

early development stages.

Software metrics have been used in software engineering and their connection to

reliability has been recognized. The objective of this research is to identify software

metrics which could be used for quantitative software reliability prediction

 3

throughout the software development process. More specifically, a need exists for the

definition of an approach which will use software metrics to predict software

reliability, for a successful application of a set of software metrics to a safety critical

application, for refinements of the models linking software metrics to reliability based

on the experience gained from the effort, for recommendations for the practical and

direct usage of such software metrics in the safety critical domain.

1.3 Related Research

Software reliability is defined by IEEE as the probability of failure free

software1 operation for a specified period of time in a specified environment [5]. It is

one of the most important aspects of software quality.

Over the past 40 years, a multitude of software reliability growth models

(SRGMs) have been proposed to assess the reliability of software systems. However,

these models have not been recommended for use in the safety critical domain due to

the following reasons. First, model parameters are typically estimated from failure

data. For safety critical software, historical failure data is rare to nonexistent since

these systems are designed to be ultra-reliable and their typical failure rates are less

than 10-7 failures per hour. Similarly, failures are also rarely observed during testing.

Even after thousands of years of testing [6], one would not be able to observe a

sufficient number of failures to accurately estimate the reliability of such systems.

Second, failures experienced in the testing may not represent those under the actual

operational environment. Reliability predicted through statistical extrapolation of

such testing failure data is also questionable. Third, SRGMs can be only applied in

1 Failure free software does not guarantee the software is 100% correct. Defects could still exist in the software but are not

exposed and converted to failures.

 4

the late stages of development, i.e. after testing. This is generally too late and is not

able to provide real time feedback to requirements and design development and

therefore could not assist in decision making in the early development stages.

Other models use Bayesian Belief Network (BBN) as an analytical tool to assess

reliability [7] by combining diverse sources of product and process information such

as the number of latent defects, effectiveness of inspections and debug testing etc.

However, approaches based on BBN use either published empirical data or subjective

judgment for node probability quantification which is difficult to validate in

numerical terms or even through qualitative relationships.

Several researchers have proposed software reliability models specifically

designed to handle safety critical software. Schneidewind [8] developed an approach

for reliability prediction which integrates software-safety criteria, risk analysis,

reliability prediction and stopping rules for testing. Unfortunately, this model still

relies on the collection and selection of space shuttle failure data. Miller proposed

formulae which incorporate random testing results, input distribution and prior

assumptions about the probability of failure for the cases when testing reveals no

failures [9]. But how to partition the input space and how to estimate the prior failure

probability distributions are the remaining problems. A quantitative model using

statistics of the extremes which can analyze rare events was proposed by Kaufman et

al [10]. Statistics of the extremes is a statistical approach which allows analysis of

cases where there is few or no failure data without assuming any prior distribution.

Kaufman’s method has not been validated on real safety critical software. Thomason

[11] extended this model by incorporating the statistics of the extremes approach to a

 5

Markov Chain model to capture the stochastic behavior of the software system.

However, the method was not validated either.

Other research efforts have focused on the development and/or study of metric-

based software reliability prediction models which capture the characteristics of

software products through software engineering measures. As addressed in [12],

software metrics are essential not only to good software engineering practice, but also

for the thorough understanding of software failure behavior and reliability prediction.

Software characteristics, such as size and complexity can be used to predict the

number or location of defects which themselves can be used to predict reliability [13].

Zhang and Pham [14] identified and ranked 32 factors which affect software

reliability based on results of a survey of 13 participating companies. Lawrence

Livermore National Laboratory [15] documents 78 software engineering measures2.

IEEE [16] provides 39 measures which could be used to predict reliability of mission

critical software systems. Forty software engineering measures from either the LLNL

report or IEEE 982.1 were systematically ranked with respect to their ability to

predict software reliability using expert opinion elicitation [17][18].

1.4 Approach

This research focuses on proposing a software metric-based reliability prediction

method. The method starts with the measurement of a software metric. The

measurement results are then linked to three different types of defect characteristics:

1) the number of defects remaining or 2) the number and the exact location of the

remaining defects or 3) the number and the exact locations of defects in an earlier

2 In this research, software engineering measures are represented by software metrics.

 6

version. Three models, Musa’s exponential model [3], the PIE [19] model and a

mixed Musa-PIE model, are used to link the three categories of defect characteristics

with reliability using the operational profile. Applying the PIE model requires

mapping defects identified through inspection and/or testing to an Extended Finite

State Machine (EFSM) model. A procedure is defined to construct the EFSM model

in a repeatable fashion.

This software reliability prediction method is then applied to a safety-critical

software used in the nuclear industry using eleven software metrics. Reliability

prediction results are compared with the real reliability assessed using operational

failure data. Experiences and lessons learned from the application are discussed.

Possible extensions to the existing models as well as procedures for repeatable

measurement and prediction are proposed. The test coverage measure, which

provides credible prediction results, is discussed in details and is refined to be able to

take into consideration more realistic conditions, such as imperfect debugging and the

use of multiple testing phases.

1.5 Contents

In Chapter 2, a systematic software metric-based reliability prediction method is

presented. By using this method, measurement results are connected to defect

information that is then combined with the operational profile for reliability

prediction. An approach is presented for construction of the EFSM model which is a

simple, convenient and effective method to model the software failure mechanism.

The approach allows the mapping of the defects and the operational profile to the

 7

constructed EFSM model so that the execution of the updated EFSM model

(UEFSM) can be used to abstractly represent the faulty execution of the real software.

An application of the proposed method based on eleven software metrics to a

safety critical system is presented. Results show that the metric-based prediction

method can be applied to safety-critical software for reliability assessment, and the

prediction results from four metrics are close to the reality. Experiences and lessons

learnt from the application are also discussed.

In Chapter 3, the author introduces a first refinement of the reliability prediction

method based on the Test Coverage metric which is among the top metrics providing

best reliability prediction. This refinement assesses the impact of newly introduced

defects during the debugging process on reliability. The newly introduced defects

could be located non-uniformly around the fault being fixed and they may possibly

display different propagation characteristics than the faults being fixed. The

refinement combines a fault taxonomy, code mutation and Bayesian statistics.

In Chapter 4, a second refinement of the reliability prediction method based on

the Test Coverage metric is described. This refinement allows the description of

software systems developed through multiple phases of functional testing. Multi-

Phase functional testing is a common practice that is used in ultra-reliable software

development to ensure that no known faults reside in the software to be delivered.

This refinement is further extended to take advantage of auxiliary observations

collected during the multi-phase testing and of the consequent process of analysis to

refine the predictions made. This refinement also describes software systems where

 8

either the initial fault distribution is non-uniform with respect to location, or the

repair/test and detection process favor certain locations.

In Chapter 5, conclusions and directions for future research are provided.

1.6 Summary of Contributions

The contributions of the dissertation can be summarized as follows:

1) The author identified the key components in the RePS theory, i.e. the M-D

model, the D-R model and the Operational Profile. With the successful

identification of these key components, software metrics are connected to

software reliability through the RePS theory.

2) The author participated in the application of the eleven metric-based

prediction methods to a safety critical system. All the measurements rules,

reliability prediction results and lessons learned are documented in a NUREG

report [20]. The author conducted measurements for two metrics, assessed

reliability based on the measurements results of five metrics. The author also

summarized the application results, summarized the application process for

each metric-based RePS and identified the lessons learned.

3) The author proposed a method for operational profile quantification for safety

critical software and successfully applied this method to the software system

under study.

4) The author created a procedure for EFSM construction through which

reliability prediction can be completed in a repeatable fashion.

5) The author developed an approach for assessing the impact of imperfect repair

on reliability by predicting repair fault propagation rates. These rates can be

 9

calculated as soon as primary faults are uncovered. The method also provides

possible locations and types for newly introduced faults from imperfect

repairs.

6) The author developed a method (based on test coverage) for defect and

reliability prediction during late phases of the development life cycle which

considers the fact that safety critical software typically undergoes a multi-

phase test process.

7) Associated publications are:

a. Application results of the RePS theory on a safety critical software

were presented at the 5th American Nuclear Society International

Topical Meeting on Nuclear Plant Instrumentation, Controls, and

Human Machine Interface Technology (NPIC&HMIT) in 2006

(coauthored with Carol Smidts).

b. “Data Collection and Analysis for the Reliability Prediction and

Estimation of a Safety Critical System” was published in the

proceedings of the Reliability Analysis of System Failure Data 2007

Workshop held by Microsoft Research (coauthored with Wende Kong

and Carol Smidts) [21].

c. “Early Software Reliability Prediction Using Cause-Effect Graphing

Analysis” was published in the Annual Reliability and Maintainability

Symposium (RAMS) in 2007 (coauthored with Wende Kong and

Carol Smidts) [22] .

 10

d. “Lesson Learnt from the Application of Test Coverage RePS”, in the

6th American Nuclear Society International Topical Meeting on

NPIC&HMIT in 2009 (coauthored with Man Cheol Kim and Carol

Smidts) [23].

e. “On the Use of Extended Finite State Machine Models for Software

Fault Propagation and Software Reliability Estimation” was published

in the 6th American Nuclear Society International Topical Meeting on

NPIC&HMIT in 2009 (coauthored with Ming Li and Carol Smidts)

[24].

f. “A Reliability Prediction Method for Safety Critical Systems Based on

Test Coverage” which describes the new Test Coverage RePS method

was published at the 3rd International Conference on Reliability and

Safety Engineering (INCRESE) in 2007 (coauthored with Wende

Kong, Jun Dai and Carol Smidts) [25].

g. “Predicting the Types and Locations of Faults Introduced During an

Imperfect Repair Process and their Impact on Reliability” was

published in the International Journal of Systems Assurance

Engineering and Management (IJSAEM) in March 2010, Springer

Verlag (coauthored with Carol Smidts) [26].

h. “A Test Coverage-Based Model for Predicting Software Fault Content

and Location” was published in Advanced Technologies for Software

Reliability and Safety (ATSRS) in 2009 (coauthored with Carol

Smidts) [27].

 11

i. “Predicting Residual Software Fault Content and their Location

during Multi-Phase Functional Testing Using Test Coverage” was

submitted to the International Journal of Reliability and Safety

(coauthored with Carol Smidts).

 12

Chapter 2: Metric-based Software Reliability Prediction

Approach and its Application

2.1 Metric-based Software Reliability Prediction Approach

Software fails due to defects introduced during the development process. As

discussed in [17], software reliability is essentially determined by product

characteristics and operational environment. The reliability of a software system is

therefore determined by the defects residing in the software and the ways in which the

software is operated. That is,

 𝑅𝑆𝑊 = 𝑓{D, OP} (2.1)

Where:

 RSW is the reliability of the software,

 D stands for the defects which are residing in the software and

 OP is the operational profile.

Figure 2.1 displays the metric-based software reliability prediction system

(RePS) introduced to bridge the gap between a software metric and reliability.

The construction of a RePS as shown in Figure 2.1 starts with the "Metric",

which is also the "root" of a RePS. “Support metrics” are identified to help connect

the root metric to “Software defects” (i.e. software defects information) through a

“Metric-Defect Model” (M-D Model) if necessary. The "Defect-Reliability Model"

(D-R Model) derives software reliability predictions (i.e. Reliability) using the

“Software Defects” and the “Operational Profile”. “Support metrics” may be also

 13

required in D-R model to help the connection between “Software Defects” and

“Reliability”.

Figure 2.1 Metric-Based RePS

Software metrics may be direct measurements of defects characteristics (such as

a number of defects obtained through software quality assurance activities, e.g.

formal inspection, peer review etc). Software metrics can also be indirectly

connected to the number of defects or other defect characteristics through empirical

models. For example, Gaffney [28] established that the number of defects remaining

in the software could be expressed empirically as a function of the number of line of

codes (where “lines of code” is an example root measure in Figure 2.1).

Three categories of defect information can be derived from the M-D model:

1) The number of defects estimated only;

2) The number of defects found and the exact location of the defects;

 14

3) The estimated number of defects in the current version and the exact location

of the defects found in an earlier version of the software.

How each of the three categories of defects information is to be incorporated in an

appropriate software reliability model for reliability quantification and how the OP

should be constructed will be discussed in sections 2.2 through 2.6. Section 2.7

presents the results obtained from the application of the metric-based RePS method to

a safety critical software used in the nuclear industry. Section 2.8 introduces the Test

Coverage – based RePS which will be the object of further refinements in Chapters 3-

4.

2.2 D-R Model I: Reliability Prediction Model using only the Number of Defects

When one only knows the number of defects, Musa’s exponential model for

reliability prediction can be applied. Musa [3] proposed the concept of fault exposure

ratio K and its relation to λ, the failure rate and N, the number of defects remaining.

That is

 λ =
K
TL

N
(2.2)

Thus, the probability of success at time t is obtained using:

 𝑅(𝑡) = e−λt = e
−K×N×t

TL� (2.3)

where

 K Fault exposure ratio, in failure/defect.

N Number of defects estimated using specific software metrics (the root

metric and the support metrics of a RePS) and the M-D model for this

RePS (whose outcome is N).

 15

 TL Linear execution time of a system3, in second

 t Execution time, in second.

Since a priori knowledge of the defects' location and their impact on failure

probability is not known, the average K value given in [3], which is 4.2E-7

failure/defect, will be used.

It should be noted that if only the number of defects is known, the use of Musa’s

model is a natural choice since what can be obtained from the measurement is the

number of defects at a specific time only. No detailed defect characteristics, such as

the location of the defects, how and when the defects are revealed, are available.

Musa’s model provides a simple connection between the number of defects and

reliability with the support of the empirical fault exposure ratio.

A more advanced model which could account for the impact of the defects’

location on reliability is presented as follows.

2.3 D-R Model II: Reliability Prediction Model using the Exact Locations of

Defects

When one knows the location of defects, the failure mechanism can be modeled

explicitly using the Propagation, Infection and Execution (PIE) theory [19].

According to the PIE theory, a defect will lead to a failure if it meets the following

constraints: first, it needs to be triggered (executed), then the execution of this defect

should modify the state of the execution, and finally the abnormal state-change

should propagate to the output of the software and manifest itself as an abnormal

output, in other words, as a failure. The acronym PIE corresponds to the above three

3 TL is usually estimated as the ratio of the execution time and the software size on a single microprocessor basis.

 16

program characteristics: the probability that a particular section of a program (termed

“location”) is executed (execution and noted as E), the probability that the execution

of such section affects the data state (infection and noted I), the probability that such

an infection of the data state has an effect on program output (propagation and noted

P). Therefore the failure probability of the software (Pf) given that a specific location

contains a defect is:

 𝑃𝑓 = 𝑃 × 𝐼 × 𝐸 (2.4)

Where

P, I and E are evaluated for this particular defect and its location.

Reliability can be estimated using the PIE model. Indeed:

 𝑅𝑆𝑊 = 1 − 𝑃𝑓 = 1 −� � 𝑃(𝑖) × 𝐼(𝑖) × 𝐸(𝑖)
𝑁

𝑖

𝑡 𝜏�

1
 (2.5)

where

𝑃(𝑖), 𝐼(𝑖), and 𝐸(𝑖) are the values of P, I and E for the ith defect respectively.

τ is the average execution time per demand;

t is the execution time

𝑡/𝜏 is the average number of software executions;

∮
𝑡 𝜏�
1 is defined to account for the accumulated failure probability due to the

𝑡/𝜏 iterations (average number of software executions).

In this thesis, we propose a simple, convenient, and effective method to solve

equation (2.5) using an extended finite state machine model (EFSM) [29]. EFSMs

describe a system's dynamic behavior using hierarchically arranged states and

transitions. A state describes a condition of the system; and the transition can

 17

graphically describe the system's new state as the result of a triggering event.

Detailed EFSM construction procedures will be presented in section 2.6.

It should be noted that by using equation (2.5), we assume that all the defects are

independently located in different I/O (input/output) paths. If two or more defects are

located in the same I/O path, using equation (2.5) is not accurate since it

overestimates the probability of failure and therefore underestimates reliability. This

limitation has been overcome by using EFSM since EFSM is developed to reflect the

actual execution of the software and handles dependent defects. For example, the

failure probability will not be double counted if two defects are located in the same

I/O path. The integral notation used in equation (2.5) is defined to be able to

eliminate the dependency issues automatically.

2.4 D-R Model III: Reliability Prediction Model using an Estimate of the Number

of Defects in the Current Version and the Exact Locations of the Defects

Found in an Earlier Version (mixed Musa-PIE model)

When the defect information available falls in the third category, using Model I

alone overlooks the available defect content information found in previous versions.

In this case, both Model I and Model II need to be used. More specifically, since the

defect location in previous versions of the software is known, the PIE model can be

used first to obtain a software-specific fault exposure ratio (υK) through the

propagation of these known defects:

 𝜈𝐾(𝑡) =
𝐾
𝑇𝐿
𝑡 (2.6)

 18

υK(t) is an average value, and can be estimated analytically from the N’ known

defects in an early version of the software using the PIE theory and the inverse of

Musa’s model. That is:

 𝜈𝐾(𝑡) = −
1
𝑁′ 𝐿𝑛 �1 −� �� 𝑃(𝑖) × 𝐼(𝑖) × 𝐸(𝑖)

𝑁′

𝑖
�

𝑡 𝜏�

1
� (2.7)

This new calculated υK will be much more accurate than the average K used in

Model I. Once the new fault exposure ratio is obtained, Model I is then used for

reliability prediction knowing the number of defects remaining in the software. We

thus name this model as the Combinational Model (Model III). The probability of

failure simply becomes a function of the number of defects:

 𝑃𝑓 = 1 − 𝑒−𝜈𝑘(𝑡)×𝑁 (2.8)

2.5 Operational Profile

The operational profile (OP) is a quantitative characterization of the way in

which a system will be used [30]. It associates a set of probabilities to the program

input space and therefore describes the behavior of the system. The OP is

traditionally evaluated by enumerating field inputs and evaluating their occurrence

frequencies. Expert opinion can also be used to estimate the hardware components-

related operational profile if field data is in limited availability. Musa’s [30]

recommended approach for identifying the environmental variables (i.e. those

variables that might necessitate the program to respond in different ways) is to have

several experienced system design engineers brainstorm a possible list. Sandfoss [31]

suggests that estimation of occurrence probabilities could be based on numbers

 19

obtained from project documentation, engineering judgment, and system development

experience.

2.6 Extended Finite State Machine (EFSM)

As specified in section 2.3, for D-R model II, the PIE concept [19] was

introduced to describe the software failure mechanism if one knows the location of

the defects. D-R model III, introduced in section 2.4, also requires the use of the PIE

concept to propagate the known defects in an early version of the software. How to

implement the PIE concept for reliability quantification is discussed in this section.

In the original assessment method, P, I and E are quantified statistically using

mutation [19]. This method, however, is neither able to combine the operational

profile, nor able to consider defects that do not appear in the source code, such as

requirements or design errors (e.g. “missing functions”). Moreover, the large amount

of mutants required hampers the practical implementation of the method to complex

systems.

In this section, a simple, convenient and effective method to solve this problem

using an Extended Finite State Machine (EFSM) model [29] is proposed. An EFSM

describes a system’s dynamic behavior using hierarchically arranged states and

transitions. A state describes a condition of the system; and the transition visually

describes the system’s new state as a result of a triggering event. The operational

profile of the software system is mapped into the model to analytically represent the

probabilities of the system traversing each execution state. More specifically, an

EFSM is a septuple (Σ, Γ, S, T, P, V, OP), where:

 20

• Σ is the set of input variables of the software. These variables are crossing the

boundary of the application.

• Γ is the set of output variables of the software. These variables are crossing

the boundary of the application.

• S is a finite non empty set of states. A state usually corresponds to the real-

world condition of the system.

• T is the set of transitions. An event causes a change of state and this change

of state is represented by a transition from one state to another.

• P is the set of predicates, the truth value of the predicates is attached to the

relevant transition,

• V is the set of variables defined and used within the boundary of the

application, and

• OP is the set of probabilities of the input variables.

The method proposed for assessing software reliability based on EFSM proceeds

in five stages:

1) Construct a high level EFSM based on the Software Requirement

Specifications (SRS);

2) Identify, record and classify the defects;

3) Modify the high level EFSM by mapping the identified defects;

4) Map the operational profile of the software to the appropriate variables (or

transitions);

5) Obtain the probability of failure by executing the modified EFSM.

 21

As stated before, the failure probability can be assessed by calculating the

product of the execution probability, the infection probability and the propagation

probability. The first three steps of the proposed method are used to construct the

EFSM model and identify the infected states. The execution probability can be

determined through step 4) by mapping the operational profile to the EFSM. The

overall failure probability can be obtained through execution of the EFSM in step 5).

Generally speaking, the proposed approach is based on constructing and refining the

EFSM model. Both construction and refinement steps are rule-based processes.

Different rules for handling different requirement specifications and different types of

defects are provided. Thus, the approach is actually a Rule-based Model Refinement

Process (RMRP).

The advantages of this approach are: 1) it can avoid time and labor intensive

mutation testing; 2) it can combine the operational profile which reflects the actual

usage of the software system; 3) it allows assessment of the impact of requirements

defects, e.g. “missing functions”, on software reliability; 4) tools are available for

executing the constructed EFSM model.

Each of the five steps is discussed in turn in the following subsections.

2.6.1 Step 1: Construct of a High Level EFSM Based on the SRS

This step is used to construct a high level EFSM (HLEFSM) based on the SRS.

This step is independent of the defect identification process and corresponding results,

i.e. the defects identified.

The HLEFSM can be systematically constructed by mapping each occurrence of

a function specification to a transition. HLEFSM will be manually constructed based

 22

on the SRS. Figure 2.2 shows a typical prototype outline for SRS [32]. The general

procedure to be followed for constructing a HLEFSM can be illustrated in Figure 2.3.

3.Specific Requirements
 3.1 Functional Requirements
 3.1.1 Functional Requirement 1
 3.1.1.1 Introduction
 3.1.1.2 Inputs
 3.1.1.3 Processing
 3.1.1.4 Outputs
 3.1.2 Functional Requirement 2
 ……
 3.2 External Interface Requirements
 3.2.1 User Interfaces
 3.2.2 Hardware Interfaces
 3.2.3 Software Interfaces

3.2.4 Communications Interfaces
 3.3 Performance Requirements
 3.4 Design Constraints
 3.4.1 Standards Compliance
 3.4.2 Hardware Limitations
……
 3.5 Attributes
 3.5.1 Security
 3.5.2 Maintainability
……
 3.6 Other Requirements
 3.6.1 Data Base
 3.6.2 Operations
 3.6.3 Site Adaptation

Figure 2.2 Typical Prototype Outline of SRS

The general construction procedure includes:

a) Study the SRS and focus on the Functional Requirements section, here section

3.1. It should be noted that there exists several other SRS prototypes [32].

For those prototypes, one can still find a section similar to the Functional

Requirements section which describes the functions of the software system.

b) Create an ENTRY state and an EXIT state for the entire application;

 23

Figure 2.3 SRS-Based High Level EFSM Construction

c) Examine the first bulleted4 function f1 here denoted as 3.1.1;

d) Define the corresponding states of the function f1 (normally it is the logically

first function of the software system): the starting state 𝑆𝑖(𝑓1) : 𝑆𝑖(𝑓1) ∈ 𝑆 and

the ending state 𝑆𝑜(𝑓1): 𝑆𝑜(𝑓1) ∈ 𝑆 of the function f1.

4 A bulleted function is a function explicitly documented using a bullet in the SRS document for distinguishing it from other

functions. It should not be a function within a paragraph which will certainly contain multiple functions.

START

Go to Functional Requirements Section (3.1)

Link the Beginning State and Ending State of
the function currently examined

Identify the variables

Examine function 3.1.1, the f irst bulleted
function

Create HLEFSM ENTRY and EXIT States

Link this Beginning state w ith the logically
previous state

Is this the
logically last

bulleted function?

Link the Ending state of this logically last
bulleted function w ith the EXIT State

END

Y
E

S
Y

e s

Examine the next function

Identify the Beginning State and Ending State
of the function currently examined

Is this the last
bulleted function? No

No

 24

e) Identify the following elements:

i. Specify the input variables 𝑖𝑣(𝑓1) of function f1 based on section

3.1.1.2 “Input”: ‘iv’ could be part of Σ or V or a combination of Σ and

V.

ii. Specify the predicates 𝑝(𝑓1). Normally, the predicates can be found

in section 3.1.1.1 “Introduction”.

iii. Specify the output variables ov(f1) of function f1 based on section

3.1.1.4 “Output”: ‘ov’ could also be part of Γ or V or a combination of

Γ and V.

iv. Specify the variables stored in Si(f1), denoted as ()1iS fV , and the

variables stored in So(f1), denoted as ()1oS fV , since a state is the

condition of a finite state machine at a certain time and is represented

by a set of variables and their potential values. It should be noted that

not all of the variables stored in Si(f1) will be used by function f1, that

is () ()
1 1iS fV iv f⊃ . The predicates also should be part of the variables

stored in Si(f1) and () ()
1 1iS fV p f⊃ . Those variables, denoted as

nu(f1), which are neither used as the input variables nor used as the

predicates of function f1 will remain the same and be part of the

variables stored in the output. Thus ()1 1 1 1() () ()
iS fV iv f p f n uf= ∪ ∪

and () () ()
1 1 1oS fV ov f nu f= ∪ .

 25

f) Link the beginning state and the ending state of function f1 by a transition, t1:

1t T∈ and t1 is the set of the function f1 and its associated predicates p(f1),

1 1 1{ (), }t p f f= , pointing from starting state Si(f1) to the ending state So(f1).

g) For function f1, link the starting state Si(f1) to the ENTRY state. For function

fj, link the starting state Si(fj) of to the ending state of the logically previous

function fj-1. The logical relationship between the functions should be

specified in the “introduction” subsection of the description of the bulleted

function. The variables stored in the starting state of function fj, ()i jS fV ,

should be the variables stored in the ending state of its logically previous

function, ()1o jS fV
−

plus some inputs from Σ. That is () ()1i j o j
jS f S fV V v

−
= ∪ ,

where jv ⊂ ∑ .

h) Iterate step d) to step g) for the next function until all the bulleted functions

are represented in the HLEFSM. It should be noted that the HLEFSM model

should remain at a high level to minimize the construction effort. Only the

bulleted functions, i.e. 3.1.1, 3.1.2 etc shown in Figure 2.2, should be

represented in this HLEFSM model. There is no need at this point to further

break down the bulleted functions and display their corresponding sub-

functions.

i) Link the ending state of the logically last bulleted function to the EXIT state.

Normally the logically last bulleted function will send out all required outputs

and reset all variables to their initial values for the next round of processing.

 26

Example 1: To better illustrate the above EFSM construction step, a paragraph

excerpted from PACS (Personal Access Control System5) [33] SRS and its associated

EFSM elements identifications are shown in Table 2.1.

Table 2.1 EFSM Construction Step 1 for Example 1

PACS SRS:
Software will validate the entrant’s card data (SSN and last name). If correct data, software will display
“Enter PIN”.
Function 1 Function f1: card validation function;
• Starting State of the function Si(f1):card is awaiting for validation;
• Ending state of the function So(f1):card has been validated;
• Input variables iv(f1) = {SSN, Last name};
• Output variables ov(f1) = {card validation results};
• Predicates N/A
• Variables stored in the starting state In this case, the variables stored in Si(f1) will all be used by

function f1. That is,
()1 1()

iS fV iv f=

• Variables stored in the ending state ()1 1()
oS fV ov f=

Function 2 Function f2: card validation results display function;

• Starting State of the function Si(f2):card validation results are awaiting to be displayed;
• Ending state of the function So(f2):card validation results have been displayed;
• Input variables iv(f2) = {card validation results};
• Output variables ov(f2) = {“Enter PIN” displayed};
• Predicates p(f2) ={card data = correct}.
• Variables stored in the starting state ()2 2 2() ()

iS fV iv f p f= ∪

• Variables stored in the ending state ()2 2()
oS fV ov f=

2.6.2 Step 2: Identify, Record and Classify the Defects

This step is used to identify defects through software inspection or testing.

Software defects can be uncovered by using different inspection and testing

techniques [34] [35]. All the defects identified through inspection or testing should

be recorded properly for further references and examinations. Table 2.2 or similar

table should be generated.

5 PACS is a system which provides privileged physical access to rooms/buildings, etc. The user needs to swipe his card and enter

a four digit PIN. The application verifies this against a database and if authorized, provides access to the room/building by
opening the gate.

 27

Table 2.2 Example Table for Recording Identified Defects

NO. Defect Description Defect Location Defect Type Variables/Functions Affected
1
2
……

The possible instances or further description of each field are shown in Table

2.3. In the Defect Description column, the inspector should provide a general

description of the defect using plain English sentences; in the Defect Location

column, one should record where the defect originated, i.e. either in the SRS, SDD or

Code. The module name or function name (associated to the location of the defect)

should be provided as well. The specific defect type should be documented in the

Defect Type column of the table. The exact affected variable/function should be

specified in detail in the Variable/Functions Affected column of Table 2.2.

Table 2.3 Possible Instances or Further Description for Each Field in Table 2.2

Item Possible Instances of Each Field in Table 2.2
Defect Description Plain English sentence.
Defect Location SRS;

Software Design Documents
(SDD);
Code

Function name (if the defect is in
SRS);
Module name (if the defect is in SDD
or code)

Defect Type Missing function; Extra function; Incorrect function; Ambiguous
function;
Missing input; Extra input; Input with incorrect/ambiguous value; Input
with incorrect/ambiguous type; Input with incorrect/ambiguous range;
Missing output; Extra output; Output with incorrect/ambiguous value;
Output with incorrect/ambiguous type; Output with incorrect/ambiguous
range;
Missing predicate; Extra predicate; Incorrect/ambiguous predicate.

Variables/Functions
Affected

The exact name of the affected variables or functions given in the
documents.

 28

Using the same PACS SRS described in step 1 as an example, the following

table should be generated:

Table 2.4 Record of Identified Defects for Example 1

NO. Defect Description Defect Location Defect
Type

Variables/Functions
Affected

1 This requirement specification
does not specify the case
where the data stored in the
card is not correct.

PACS SRS: Card
validation results
display function

Missing
predicate

p(f2) ={card data =
incorrect}

2.6.3 Step 3: Modify the HLEFSM by Mapping the Identified Defects

Once defects have been identified, they should be mapped into the HLEFSM and

the infected states should be identified for later assessment of their final impacts. The

defect mapping process ultimately modifies the HLEFSM. The modified EFSM

obtained is therefore an octuple (Σ, Γ, S, T, P, V, OP, D) where D is the set of defects

discovered through inspection.

The defect mapping procedures are shown in Figure 2.4. The following

subsections will describe how to localize the defects in the HLEFSM and how to

modify a HLEFSM and the low level EFSM (LLEFSM) obtained.

2.6.3.1 Section a: Localize the defects in the HLEFSM:

One needs to know the exact locations of the defects in order to modify the

HLEFSM correctly. The localization of the defects is based on tracing among the

development documents: SRS, SDD and code which have been inspected. Figure 2.5

illustrates the detailed tracing procedures.

2.6.3.2 Section b: Modify the HLEFSM:

 29

START

Localize all the defects in SRS
(see section a)

END

Modify the low level EFSM by flagging
the faulty transition (see section c)

Examine defect #1

Split the corresponding high level EFSM
to a low level EFSM (see section c)

Is it a bulleted SRS
function defect?

No

Yes Modify the high level
EFSM by flagging
the faulty transition

(see section b)

Is it the last defect?

Ye
s

Examine the next
defect

No

Figure 2.4 General procedures for defect mapping

The infected state should be identified during the EFSM modification process.

The process of definition and identification of the infected state is discussed next. If a

defect found was directly related to a bulleted function, (i.e. the defect is a bulleted

function level defect,) there is no need to split the HLEFSM. A new state or

transition should be created or certain variables within the transitions should be

flagged to reflect the infections. It should be mentioned that all the defects should be

represented by a variable, i.e. variable d, and attached to the transitions. If d with the

initial value of 0 is assigned to 1, it means there is a defect along with the transition.

Thus, the attributes of the transition t have now changed from { , ()}i i it p f iv= to

{ , (), }i i i it p f iv d= .

 30

START

Examine defect #1

END

No

Is it a bulleted SRS
function defect?

Is it a sub-function
level SRS defect?

Yes

Find the name of the
bulleted function which this

sub-function belongs to

Ye
s

No

The defect is a SDD or code defect

Examine the module name containing
the defect

Is this module a
bulleted function?

Yes

Go to the detailed SDD section to find
the description of the module

No

Is this module called
by a bulleted function?

Find the
name of the

bulleted
function

Yes

No

This module is called by a sub-function

Go to the detailed SDD section again to
find the description of the sub-function

Find the name of the bulleted function
this sub-function is called by

Mark that function for further EFSM
modification

Is it the last defect?

Ye
s

Examine the next
defect

No

Is it an entire extra
module/function?

No

Identify the input and output
of the extra module/function

Go to the detailed SDD section

Yes

Is the input the
output of an existing

module/function?

Are fb and fa
bulleted SRS

function?

Is the output the input
of another existing
module/function?

Ye
s

Yes

No

The Extra module is not related
to the software under study

No

The extra module/function is right
after the existing module/function (fb)

Ye
s

The extra module/function is right
before the existing module/function (fa)

The extra module/function
is located between fb and fa

The extra module/function is
located between fb and EXIT

No

Is it a SRS defect?

Yes

Figure 2.5 Flowchart for localizing the defects

Using the defect mapping procedures, the original and the modified EFSM for

example 1 is shown below:

 31

Function f2: Validation Results Displaying
Function

Function f1: Validate Card

So(f2): Card has
been validated and

“Enter PIN” is
displayed

Si(f1): Card is
awaiting

validation

p(f2): Card data
is correctSi(f2):Validation

Results is awaiting
to be displayed

So(f1):Card has
been validated

t1= Validate
Card Data

Figure 2.6 Original EFSM for Example 1

Function f2: Validation Results Displaying
Function

Function f1: Validate Card

Card has been
validated and “Enter

PIN” is displayed

Function that should
associate with the
missing predicate

d(t(f2))=1

Si(f1): Card is
awaiting

validation

p(f2):Card
data is correct

p(f2):Card data
is incorrect

Si(f2):Validation
Results is awaiting

to be displayed

So(f1):Card has
been validated

t1= Validate
Card Data

So(f2)

Figure 2.7 Modified EFSM for Example 1

2.6.3.3 Section c: Split the HLEFSM to a LLEFSM and modify it:

If a defect was not directly related to a bulleted function, the HLEFSM model

should be decomposed to a lower level of modeling. This is because a defect could

be within a bulleted function while only part of the bulleted function is infected and

will fail to perform adequately. Thus, one needs to break down the bulleted function

to the level where the defect can be represented directly6.

6 A defect can be represented directly if the variable/function/subfunction which contains the defect is visible in the model since

the level of detail in the model reaches the variable/function/subfunction.

 32

The general procedures for the construction of the HLEFSM are still valid for the

construction of the LLEFSM. However, special attention should be paid to the

following issues:

1) Function fi has a hierarchical structure, i.e. it is the parent function of its n sub-

functions fij, j = 1, 2 …n. These identified sub-functions are acting as child functions;

2) The I/O connections between the child functions can be easily determined by

following steps c) to f) of the general construction procedures for the bulleted

functions (step 1) but applying it now to the “Processing” section of the bulleted

function. One should determine the interface between the child functions and their

parent function by linking the beginning state Si(fi) of the parent function with the

beginning state of its first child function Si(fi1) and linking the ending state So(fin) of

the last child function with the ending state of its parent function So(fi) directly.

3) The input and output of the child functions may not be only in the “input” and

“output” section of their parent function. The “processing” part also needs to be

manually examined to identify the input and output of the child functions.

2.6.4 Step 4: Map the OP to the Appropriate Variables (or Transitions)

Generally, the operational profile is defined as {iv, OP(iv)} in EFSM, where iv is

the set of input variables and OP(iv) is the set of probabilities of iv. As a very

important attribute of the EFSM, OP should be predetermined and then mapped into

the EFSM constructed through steps 1 to 3. If there is any predicate existing in the

constructed EFSM, the probability of the execution of each branch needs to be

determined since there are multiple subsequent states after the predicate.

 33

If the predicate is only a function of the input variables from set Σ, which are

crossing the boundary of the application, the probability of execution of each branch

is usually determined by analyzing the operational data or can be found in various

databases.

If the predicate is a function of internal variables from set V, i.e. variables which

are within the boundary of the application, the probability of execution of each branch

can be calculated based on input variables from set Σ since the internal variables are

actually functions of the input variables from set Σ. For instance, consider the case

where a predicate is determined by the value of an internal variable y which is a

function of variable x (()y f x=). Variable x is from set Σ whose OP is known either

by analyzing operational data or by searching in databases. Thus, the OP of variable

y can be analytically calculated through function ()y f x= . If function f is a complex

function, the input/output table as suggested in Garret [36] should be utilized to

obtain the value of y based on which the execution probability of each branch can be

determined.

It should be mentioned that the mapping process does not entail as much work as

one might think because the constructed EFSM is a compact version of the actual

application since only defect related sections are modeled in detail. Furthermore, for

safety critical systems, the relationship between the internal variables and the

variables crossing the boundary of the system is kept simple to reduce the calculation

error.

2.6.5 Step 5: Obtain the Failure Probability by Executing the Constructed EFSM

 34

Application of the procedure described in Steps 1 to Step 4 yields the execution

probability and the infected state. As for the propagation probability, it is assumed to

be equal to 1. If a low level defect is detected, experimental methods such as fault

injection can be utilized to assess the exact propagation probability.

The failure probability can be obtained by executing the constructed EFSM. The

execution of the EFSM can be implemented using an automatic tool such as

TestMaster [37]. TestMaster is a test design tool that uses the EFSM notation to

model a system. TestMaster and similar tools capture system dynamic internal and

external behaviors by modeling a system through various states and transitions. A

state in a TestMaster model usually corresponds to the real-world condition of the

system. An event causes a change of state and is represented by a transition from one

state to another. TestMaster allows models to capture the history of the system and

enables requirements-based finite state machine notation. It also allows for the

specification of the likelihood that events or transitions from a state will occur.

Therefore, the operational profile can be easily integrated into the model. Thus, the

probability of failure from unresolved known defects can be assessed by simply

executing the constructed TestMaster model.

First, TestMaster will execute all the possible paths of the constructed EFSM

model. The paths which contain defect(s) can be recognized by TestMaster

automatically. Thus, the probability of execution of the ith path with defect(s) ipathp

can be calculated. Then the probability of failure is:

 i

i

f path
path

p p= ∑ (2.9)

 35

where:

 pf is the probability of failure and

 ipathp is the probability of execution of the ith path with defect(s).

2.7 Application of the Metric-based RePS Theory

Six of the forty metrics identified in [18] were applied to a small scale software,

PACS, an automated Personnel entry/exit Access Control System [38] [39]. By

“applied”, it is meant that the six metrics were used as root metrics and the

corresponding RePSs were developed and used to predict the reliability of the system

under study, i.e. PACS. The predictions obtained were then compared to PACS’

operational reliability. PACS was developed industrially by one of the US leading

defense contractors using the waterfall methodology and a CMM level 4 software

development process. PACS counts around 800 lines of code and was developed in

C++. The six selected metrics were "Mean time to failure (MTTF)", "Defect density

(DD)", "Test coverage (TC)", "Requirements traceability (RT)", "Function point

analysis (FP)" and "Bugs per line of code (BLOC)"7.

In the research at the origin of this thesis, we applied eleven root metrics to a

safety-critical software system used in the nuclear industry and assessed its reliability.

The software selected, APP 8 , is a real-time safety-critical system. It is a

microprocessor-based digital implementation of one of the trip functions of a Reactor

Protection System (RPS) used in the nuclear power industry. The software system is

based on a number of modules which include a “system software” and an “application

7 The units of these six metrics are: hours, defects per line of code, percentage, percentage, function point and defects

respectively.
8 Detailed APP information (development and testing documents) can not be provided since they are proprietary documents.

 36

software”. The “system” software monitors the status of the system hardware

components through well defined diagnostics procedures and conducts the

communications protocols. The “application” software reads input signals from the

plant and sends outputs that can be used to provide trips or actuations of safety

system equipment, control a process, or provide alarms and indications. The APP

software was developed in ANSI C and is about 12,000 lines of executable code.

The eleven root metrics are "Bugs per line of code" (BLOC), "Cause & effect

graphing" (CEG), "Software capability maturity model" (CMM), "Completeness"

(COM), "Cyclomatic complexity" (CC), "Defect density" (DD), "Fault days number"

(FDN), "Function point analysis" (FP), "Requirement specification change request"

(RSCR), "Requirements traceability" (RT) and "Test coverage" (TC). Definitions of

the eleven software metrics used for APP reliability prediction are presented in the

Appendix A.

A summary description of the eleven metrics is provided in section 2.7.1. The

generation of APP’s OP is presented in 2.7.2. The reliability prediction results

obtained using the eleven metric-based RePSs are displayed and analyzed in section

2.7.3. These predictions are validated by comparison to the "real" software reliability

obtained from operational data & statistical inference. Further discussions about the

measurement process for the eleven metrics used in this research are provided in

section 2.7.4. The discussion includes an analysis of feasibility which takes into

account the time, cost and other concerns such as special technology required to

perform the measurements. Conclusions are presented in section 2.7.5.

2.7.1 Summary of the Measures and RePSs

 37

Different software metrics can be collected at different stages of the software

development life-cycle (i.e. requirements, design, code and test) and measurements

will be based on applicable software development products, i.e software requirements

specifications (SRS), software design documents (SDD), software code (SCODE) etc.

For instance, the BLOC measurement process can not be conducted until code is

developed, thus the earliest phase at which BLOC becomes “applicable” is the end of

the implementation phase. Applicable phases (marked as “√”) for each measure

studied are summarized in Table 2.5. The earliest applicable phase (i.e. the phase for

which measurement of a particular metric becomes meaningful) is marked with an

additional symbol “*”.

Table 2.5 Phases for which Metrics are Applicable

Metrics
Applicable Phases

Requirements
(RE)

Design
(DE)

Implementation
(IM)

Testing
(TE)

Operation
(OP)

BLOC √ * √ √
CEG √* √ √ √ √
CMM √* √ √ √ √
COM √* √ √ √ √

CC √* √ √
DD √* √ √

FDN √* √ √ √ √
FP √* √ √ √ √

RSCR √* √ √ √ √
RT √* √ √ √
TC √* √

It should be pointed out that all measurements are performed during APP’s

operation phase. Focus on the operation phase is driven by the time elapsed since

delivery of the APP system and the consequent unavailability of important historical

information which could have characterized the software development process. For

example, one can measure the FP count in the Requirements phase using an early

 38

version of the SRS. This would give us an estimate of reliability based on FP early in

the development life-cycle. Unfortunately, these early versions of APP’s SRS are no

longer available. The only SRS version available today is the final version, i.e., the

version which was delivered at the end of the testing phase.

As addressed in section 2.1, measurement results can be either directly linked to

software defects through inspections and peer reviews or indirectly linked to software

defects through empirical software engineering models. The M-D models for each of

the eleven root metrics are specified in Table 2.6. Support metrics used for the M-D

models are also identified in the right column of Table 2.6. Detailed descriptions of

the M-D models for each metric are provided in Appendix B.

As shown in Table 2.7, the eleven metrics under study can be further divided into

three groups corresponding to the three types of defect information defined in section

2.1. In the case of the first group of metrics, only the number of defects can be

obtained. Their location is unknown. Metrics in the second group correspond to

cases where actual defects are obtained through inspections or testing. Thus, the

exact location of the defects identified and their number is known. The metrics in the

third group have the combinational characteristics of the first two groups. The exact

location of defects detected in an earlier version is known and only the total number

of defects in the current version can be predicted. Support metrics are also identified

for each D-R model.

 39

Table 2.6 M-D Models for Each Root Metric

Root
Metrics

M-D Model Support Metrics for M-D Model

BLOC
Gaffney’s empirical model [28] • The total number of modules

• The code size ratio of a particular module
• Severity level of the failures of interest

CEG Rule-based Inspection -

CMM

Correlation model relates CMM
level with number of defects
remaining based on empirical
data [40]

• The number of function points
• Severity level of the failures of interest

COM Rule-based Inspection -

CC
Correlation model based on the
Success Likelihood Index Method
(SLIM) [41] [42] [43]

• The number of modules whose CC belong to a
certain pre-defined level

• The total lines of code in the application
DD Rule-based Inspection -

FDN

Development process defects
records and phase – based defect
prediction method [44]

• The phase within which a defect originated
(determined for each defect)

• The number of requested repairs that are fixed
in a specific phase

• The number of repairs requested in a specific
phase

• The number of function points
• The length of each life cycle phase
• Type9 of software systems
• Severity level of the failures of interest

FP
Correlation model relates FP with
number of defects remaining
based on empirical data[45]

• Severity level of the failures of interest
• Type of software systems

RSCR
Correlation model based on the
Success Likelihood Index Method
(SLIM) [41][42][43]

• The size of the changed source code
corresponding to RSCR

• The total lines of code in the application
RT Rule-based Inspection -

TC
Testing records and Malaiya’s
model [46]

• The number of defects found by test cases
documented in the testing results.

9 The types of software systems are defined as End-user software, Management information system, Outsourced and contract

software, Commercial software, System software and Military software. Detailed definition of each type is provided in [45].

 40

Table 2.7 Three Groups of Metrics

Group I II III

Model Model I Model II Model III

Metrics BLOC CMM CC FP RSCR CEG COM DD RT FDN TC

Support
Metrics

𝑇𝐿, τ τ τ

2.7.2 APP Operational Profile Generation

The operational profile for APP is defined as a complete set of “plant inputs” and

“infrastructure inputs”. The set of “Plant inputs” consists of the reactor’s delta flux

parameters which are being monitored by sensors. The counterparts to "plant inputs"

are "infrastructure inputs," which are used to determine the hardware (i.e. computer

platform) and software health statuses. Thus, APP’s OP is:

 𝑂𝑃𝐴𝑃𝑃 = (𝑂𝑃𝑃𝐼 ,𝑂𝑃𝐼𝐼) (2.10)

Where:

 𝑂𝑃𝐴𝑃𝑃is the operational profile for APP;

𝑂𝑃𝑃𝐼 is a subset of the operational profile which corresponds to the plant

inputs;

𝑂𝑃𝐼𝐼 is a subset of the operational profile which corresponds to the

infrastructure inputs.

Ideally the OP for plant inputs can be derived from the plant's operational data if

this data set is complete. By "complete", it is meant that data corresponding to both

normal and abnormal conditions should be present in the data set. In the case of APP,

"normal data" corresponds to situations under which the reactor operates within the

Barn-Shape given in Figure 2.8; "abnormal data" corresponds to situations such that

 41

the data is outside the Barn-Shape. If the power and delta flux pair falls out of the

barn-shape, APP’s application software trips; otherwise it does not.

Figure 2.8 Flux/Flow Delta Flux Trip Condition (Barn Shape)10

We examined a data set which contains eleven years (1/1/96 to 1/1/06) worth of

operational data collected (hour by hour) for one of the power plant’s channel11.

There are altogether 88,418 distinct data records. After eliminating 15,907 outage,

missing and aberrant data, 72,511 data records are used for the assessment of 𝑂𝑃𝑃𝐼.

The results are summarized in Table 2.8.

10 DF is the flux imbalance, P is the thermal power, TT is the maximum thermal power, B,1 B,2 B,3 B4 M1 and M2 are setpoints

(coefficients).
11 The power plant control logic is comprised of three independent control units. Each unit contains 4 channels, each channel
contains one APP safety module.

 42

Table 2.8 APP’s Operational Profile-Plant Inputs (OPPI)

Event Condition12
Number
of Data
Records

Probability
(per

demand)
1 𝐷𝐹 < 𝐵1 2 9.8828E-10
2 𝐵1 ≤ 𝐷𝐹 ≤ 𝐵2 and 𝑃 > (𝑀1)(𝐷𝐹) + [𝑇𝑇 − (𝑀1)(𝐵2)] 0 5.1134E-10
3 𝑃 > 𝑇𝑇 7 3.4594E-9
4 𝐵3 ≤ 𝐷𝐹 ≤ 𝐵4 and 𝑃 > (𝑀2)(𝐷𝐹) + [𝑇𝑇 − (𝑀2)(𝐵3)] 0 2.4725E-10
5 𝐷𝐹 > 𝐵4 1 4.9414E-10
6 Normal 72,501 0.9999999943

The probability of occurrence of conditions 1, 3 and 5 can be estimated as the

number of data records over the total number of operational data records. No data

records fall within the domains delineated by conditions 2 and 4. A statistical

extrapolation method was applied to generate estimates for the operational profile in

these two regions. The data sets which could be used to perform the extrapolation are

those in the shaded area in Figure 2.8. The number of data records in area 1 is forty

five (45) and in area 2 is one (1). A normal distribution is proved to fit the 45 data

records corresponding to condition 213. For condition 4, obviously, the fact that there

exists only 1 data record in area 2 is not sufficient to perform a valid statistical

extrapolation. The maximum likelihood estimator, an unbiased estimator of the

likelihood of occurrence of an event is given in [47] as 𝜆̂ = 𝑟
𝑇
 if we assume "r" event

occurrences are observed in "T" hours of operating time. A common solution to

occurrence rate estimation when no event has been observed is to take one half as the

numerator (r) [48]. Thus, the probability of occurrence of condition 4 can be roughly

estimated as 0.5/72,511 = 6.9 x 10-6/hour (2.4725E-10/demand).

12 It should be noted that these conditions are mutually exclusive although they may not appear to be so since the software

handles these events in sequence. For instance, the software will first check whether Event 1 is satisfied. If DF does not
satisfy the condition, Event 2 is then triggered and the code checks whether DF and P satisfy the second condition.

13 Use Shapiro-Wilk test.

 43

The operational profile for the infrastructure inputs cannot be obtained from

field data. This is simply because 𝑂𝑃𝐼𝐼 is a function of the health status (i.e. normal

conditions and in failure conditions) of related hardware components. The failures of

these hardware components are rare and hardly observed, sometimes even over their

entire performance periods. For 𝑂𝑃𝐼𝐼 quantification, first, the hardware-related OP

events and the hardware component involved in such OP events should be identified.

Then a quantitative fault tree technique can be used to assess the probability of such

events. This approach is further explained using the following example. The example

refers to a PROM (Programmable Read-Only Memory) self-test carried out by APP’s

system software. The EFSM which models the test is given in FigureFigure 2.9.

Figure 2.9 An Example EFSM Model for a PROM self-test function in the APP

system

The events whose occurrence we are interested in are: Event 1 = “The “Test

Results == 55H” ”, Event 2 = “The “Test Results == BBH” ”, and Event 3 = “The

“Test Results == Anything Else” ”. The probabilities of these events should be

determined. The PROM test compares the checksum of the PROM with a predefined

value. The value 55H will be written to a specific status address if the test passes or

BBH if it fails. Any value other than 55H or BBH is not expected but may occur if

 44

the hardware components performing the writing operation (i.e. Random Access

Memory, register, etc.) fail during the status writing operation.

The following fault tree is constructed to quantify Event 2 = “The “Test Results

== BBH””.

Figure 2.10 Fault Tree for Event 2: PROM Test Status Flag is BBH

The basic fault tree events need to be quantified. The ideal solution is to obtain

all failure rate data of the specific hardware components from the manufacturers.

This approach normally does not work due to the proprietary nature of such

information. Some public databases, such as the RAC database [49], [50] and the

Nuclear Regulation Commission (NRC) database [51] which provide generic failure

rate data of a certain type of hardware component (i.e. the data can not be traced to a

particular manufacturer or to the detailed specification of a particular hardware

component), can be used for the probabilistic modeling of digital systems.

In this application, NRC database was used to obtain the failure rates of the basic

event. The information required to quantify the fault tree illustrated in Figure 2.10 is

listed in Table 2.9. A same approach was taken for event 3 probability quantification.

 45

The complete infrastructure inputs-related OP for the PROM test in Figure 2.9 is

shown in Table 2.10.

Table 2.9 Failure data information required to quantify Event 2

Events
Hardware

Components Failure Rate
(failure/demand)

Resources Results
(failure/demand)

The
probability of
Event 2 =
“PROM Test
Status Flag is
BBH”

PROM 𝐹𝑅1 = 9.32 × 10−13 NUREG/CR-5750 𝐹𝑅 = �𝐹𝑅𝑖
= 7.23 × 10−11

RAM 𝐹𝑅2 = 1.18 × 10−11 NUREG/CR-5750
Read/Write 𝐹𝑅3 = 5.73 × 10−11 NUREG/CR-5750
Register 𝐹𝑅4 = 2.19 × 10−12 NUREG/CR-5750

Table 2.10 APP OP-Infrastructure Example Results

No. Event OP (per demand)
1 PROM Test Status Flag is 55H P1 = 1 - P2 - P3 = 0.9999999998564
2 PROM Test Status Flag is BBH P2 = 7.23E-11
3 PROM Test Status Flag is neither 55H nor BBH P3 = 7.13E-11

2.7.3 Application Results: Analysis

APP’s actual reliability is assessed though analyzing the operational data. It is

known that three copies of APP have been deployed in a nuclear power plant and

have been functioning for a total of 281 months. APP operational failures have been

documented in the Problem Records. Each record mainly consists of a detailed

problem description and a corresponding set of corrective actions. Two out of the

fourteen APP related records have been identified as being the result of APP

software-related failures. Therefore, the failure rate (failure/demand) of the APP

software can be estimated as: 𝜆̂ = 𝑟
𝑇

× 𝜏 = 2
281×30×24×3600

× 0.129 = 3.542 × 10−10 per

demand.

The artifacts used, the number of defects found using each metric and the

probability of failure based on each metric’s RePS are shown in Table 2.11. The

 46

prediction results are further compared with the actual assessment. The inaccuracy

ratio (ρ) is defined to quantify the quality of the prediction:

 𝜌(𝑅𝑒𝑃𝑆) = �𝑙𝑜𝑔
𝑃𝑓(𝑅𝑒𝑃𝑆)

𝑃𝑓
� (2.11)

where

 ρ RePS is the inaccuracy ratio for a particular RePS;

Pf is the probability of actual failure per demand obtained from APP

operational data;

Pf (RePS) is the probability of failure per demand predicted by the particular

RePS.

This definition implies that the lower the value of ρ(RePS), the better the

prediction. The last column of Table 2.11 provides the inaccuracy ratio for each of

the eleven RePSs.

Table 2.11 Reliability Prediction Results

Group Root
Metric

Required
Documents

Number of
Defects

(Outcome of the
M-D model)

Probability of Failure
(per demand)

(Outcome of the D-R
model)

Inaccuracy
Ratio

I

BLOC Code 14 8.43E-5 5.3764
CMM SRS, SDD, Code 26 1.144E-4 5.5091

CC Code 29 1.746E-4 5.6927
FP SRS 10 6.02E-5 5.2303

RSCR SRS, Code 12 7.22E-5 5.3095

II

CEG SRS, Code 1 6.732E-13 2.7243
COM SRS, Code 1 6.683E-13 2.7211
DD SRS, SDD, Code 4 2.312E-10 0.1853
RT SRS, Code 5 3.280E-10 0.0334

III
FDN SRS, SDD, Code 1 6.45E-11 0.7397

TC Code, Test Plan,
Test Results

9 5.805E-10 0.2146

Generally speaking, reliability prediction based on RePSs constructed from the

metrics in the first group is not good. This is because the defects’ locations are

 47

unknown and Musa’s exponential model is unable to model the exact software system

structure. For instance, during normal operation, two microprocessors work

redundantly for safety concerns. If either of the microprocessors calculates a trip

condition, the APP system will send out a trip signal. However, it may be very

difficult to take into account the actual structure of the system in Musa's exponential

model since it is difficult to separate the number of defects per processor and envision

what type of failure might occur.

In addition, Group I RePSs use an exponential reliability prediction model with a

fault exposure ratio parameter set to 4.2x10-7. This parameter always dominates the

results despite possible variations in the number of defects. This is evidenced by the

small variation of the inaccuracy ratios observed for Group I RePSs. The value of K

is not suitable for current safety critical systems. For instance, if one evaluates safety

critical software reliability within a one-year period, the time t is roughly 3.15E7

seconds. For a real time system, the TL is normally below 1 second. Further

assuming there is only one fault remaining in the code, the reliability is calculated as:

𝑅(𝑡) = e
−K×N×t

TL� = e−4.2×10−7×1×3.15×107
1� = 1.8 × 10−6 where we assume that

the TL is less than 1 second. This tells us that software with only one fault remaining

definitely fails at the end of one year. This conclusion contradicts what we have

learnt from power plant field data.

DD in Group II enforces the inspection of all documents (SRS, SDD and code)

for all possible types of faults. Application of this metric, however, requires more

software engineering experience than that which is needed to implement measures

like CEG, COM and RT whose inspection rules are relatively simple.

 48

In the case of Test coverage, the fault exposure ratio, K, can be updated using

the finite state machine models and defects found during testing. The result is shown

in the following table.

Table 2.12 Fault Exposure Ratio Results

 Fault Exposure Ratio
Musa's K 4.2 x 10-7
𝜐𝐾(𝜏) 4.5 x 10-12

It is clear that the actual fault exposure ratio for APP is far less than 4.2 x 10-7. It

is proved again that Musa’s K is not suitable for safety critical systems.

2.7.4 Discussion about the Measurement Process

An estimate of the total time taken14 for reliability prediction based on each of

the eleven root metrics is provided in Table 2.13. The total time spent is further

separated to account for the following five categories of effort:

1) Effort category 1 covers the time spent for tool acquisition, comparison

between possible tools and training to become familiar with the identified

tools;

2) Effort category 2 covers the time spent for the implementation of the M-D

models: i.e. measurement of the root metric and of the support metrics;

3) Effort category 3 covers the time spent for the implementation of the D-R

models: e.g. construction of the EFSM;

4) Effort category 4 covers time spent for documentation;

5) Effort category 5 covers other contributions.

14 All the measurements except the measurement of FP were performed by graduate students. The total time taken was

approximately recorded by the students.

 49

The time spent in each effort category is also provided in Table 2.13.

Table 2.13 Total Time Spent for the Eleven RePSs

Group Root
Metric Total Time Spent Speed Effort Category (in days)

1 2 3 4 5

I

BLOC 160 hrs (20 days) Fast 4 10 2 4 -
CMM 120 hrs (15 days) Fast - 4 8 3 -

CC 360 hrs (45 days) Medium 4 2 3 6 30
FP 128 hrs (16 days) Fast - 7 5 4 -

RSCR 360 hrs (45 days) Medium - 8 3 4 30

II

CEG 350 hrs (44 days) Medium 10 26 5 3 -
COM 512 hrs (64 days) Medium 10 45 5 4 -
DD 704 hrs (88 days) Slow 10 69 5 4 -
RT 640 hrs (80 days) Slow 10 61 5 4 -

III FDN 240 hrs (30 days) Fast - 16 8 6 -
TC 904 hrs (113 days) Slow 10 30 15 4 54

The speed is defined as follows:

1) Fast − the set of measurements and calculations can be finished within 300 hours;

2) Medium − the sets of measurements and calculations require at least 300 hours

and no more than 600 hours; and

3) Slow − the sets of measurements and calculations require more than 600 hours.

Measurements and calculations related to BLOC, CMM, FDN, and FP RePSs can

be completed quickly since there is no need to inspect the SRS, SDD, and Code.

Measurements and calculations related to CEG, COM, CC, and RSCR require careful

inspection of the SRS or the Code. Thus they need more time. Measurements related to

DD and RT15 require inspection of all the related documents. As a result, the RePSs

measurement process for these two metrics is slow.

For CC and RSCR, additional effort (30 days for each) was spent developing new

correlation models linking CC and RSCR measurements to number of software defects.

15The effort devoted to RT measurement could have been improved with current traceability tools.

 50

For the measurement of test coverage, since no defects were uncovered by the last

set of test cases, 20 out of the 30 days of measurement effort were devoted to exploring

earlier test plans and corresponding test results. In addition, much time was spent (54

days) modifying the original test cases to adapt them to current simulation environments.

In the absence of such compatibility problems, the measurements would have been

completed significantly faster.

Some measurements are also quite costly. In Table 2.14, the required tools and

corresponding cost for performing measurements related to the eleven RePSs are shown.

Table 2.14 Cost of Supporting Tools

Group Root Metric Required Tools Tool Cost

I

BLOC RSM Software Free
CMM CMM Formal Assessment $50,00016

CC RSM Software Free
FP FP Inspection $7,000

RSCR N/A 0

II

CEG UMD Software 1 (CEGPT) $750
COM TestMaster $50,000
DD TestMaster $50,000
RT TestMaster $50,000

III
FDN UMD Software 2 (FDNPT) $750
TC TestMaster, Keil, IAR $51,220

For three of these eleven RePSs, corresponding measurements have to be performed

by experts. The following table presents the related information.

Table 2.15 Experts Required

Metric Expert Training
CMM CMM Authorized Lead Appraiser and

Development Team
SEI Formal Training

DD Senior Software and System Engineer 10 Years Experience
FP Function Point Analyzer and Development Team Function Point Training

16 If a company/organization is CMM certified, the cost related to CMM measurement will be zero.

 51

2.7.5 Conclusions

A panel of experts was invited to review and provide comments on the

methodology and results presented in this research. The following experts were

contacted and invited to participate in the review.

1) Dave N. Card, Fellow, Software Productivity Consortium

2) J. Dennis Lawrence, Partner, Computer Dependability Associates, LLC

3) Michael R. Lyu, Professor, Chinese University of Hong Kong

4) Allen P. Nikora, Principal Member, Jet Propulsion Laboratory

As an integral part of their review of [20] and based on the results of this

research, the experts recommended a subset of the measures and corresponding

RePSs for use. The experts elected to recommend a measure if the inaccuracy ratio of

its related RePS is less than 1. Thus they recommended RT, DD, TC and FDN.

FDN seems to be able to provide good prediction results. However, the

accuracy of FDN measurement heavily relies on the documentation which tracks

defects throughout the development life cycle. The quality of these documents is

unknown. Thus, if any of the other three metrics (RT, DD and TC) is available, FDN

will not be recommended for use.

As shown earlier in Table 2.13, DD, RT and TC are all very time-consuming.

Rule-based inspections or peer reviews are required by DD and RT. On the contrary,

one should be able to conduct a reliability prediction based on the TC metric

efficiently. In the case of APP, the time required for the measurement and

calculations related to TC was excessive. This was due to the fact that significant

time was wasted while modifying the original APP source code so that it could be

 52

compiled successfully by current compilers. In addition, for the measurement of TC,

time was spent modifying the original test cases for the current simulation

environments. In the absence of compatibility problems, the measurements would

have been completed much faster.

Based on our findings and the expert’s recommendations, we conclude that the

TC RePS is a good candidate for reliability prediction. In the next section, the TC-

based RePS is described in details.

2.8 Test Coverage Based RePS

Test coverage is routinely used in industry to determine the level of

completeness of the testing process. In IEEE [16], Test coverage (TC) is defined as

the percentage of requirement primitives implemented multiplied by the percentage of

primitives executed during a set of tests. A simple interpretation of test coverage can

be expressed by the following formula:

 𝑇𝐶% = �
𝐼𝐶
𝑅𝐶

� × �
𝑃𝑅𝑇
𝑇𝑃𝑃

� × 100 (2.12)

Where:

IC is the implemented capabilities;

RC is the required capabilities;

PPT is the tested program primitives and

TPP is the total program primitives.

In this research, it is assumed that all the requirements have been implemented

and the tested program primitives are represented by the lines of code, the definition

of test coverage then becomes:

 53

 𝐶1 =
𝐿𝑂𝐶𝑇𝑒𝑠𝑡𝑒𝑑
𝐿𝑂𝐶𝑇𝑜𝑡𝑎𝑙

× 100% (2.13)

Where:

 C1 is test coverage obtained through testing.

LOCTested is the number of lines of code that are being executed by the

test data listed in the test plan.

 LOCTotal is the total number of lines of code.

The existence of a relationship between Test Coverage and reliability has been

confirmed by many researchers. Empirical studies have shown that defect

detectability is correlated to test coverage [52] [53] [54]. Piwowarsky [55] predicts

reliability based on the fact that the fault removal rate is a linear function of the code

coverage. Malaiya introduces a logarithmic model [46] that relates testing effort to

test coverage and then estimates reliability using Musa’s [3] exponential model.

Chen’s model [56] reduces the overestimation of the reliability prediction by

Software Reliability Growth models by using coverage information collected during

testing to extract only effective data from a given operational profile. Gokhale et al.

[57][58] propose a unified definition of TC and incorporate explicitly the time-

varying TC functions into the Enhanced Non-homogeneous Poisson Process

(ENHPP) framework. In their model, variation in the number of failures experienced

is proportional to variation in coverage via a detection rate function which varies with

time. Pham and Zhang [59] revise the ENHPP reliability model by proposing S-

shaped TC functions and by considering imperfect repair while assuming repairs take

place as soon as the failure is experienced. Cai and Lyu [60] further integrate time

and TC measurements together and present a hybrid reliability prediction model.

 54

Among these proposed models, Malaiya’s model directly relates test coverage to

defect coverage and uses Musa’s exponential model (described in section 2.2) to

predict reliability. Malaiya’s TC-based model is discussed next.

Malaiya’s model calculates the number of defects remaining N from the number

of defects found N0 and test coverage C1. The defects in the software can be grouped

into three categories with respect to the concept of test coverage: 1) Type 1 defects

include known defects discovered by test cases. These are located in the code

covered; 2) Type 2 includes unknown defects located in the code covered; 3) Type 3

includes unknown defects located in areas of the code which have not been covered

(see Figure 2.11). The number of defects remaining, N, calculated using Malaiya’s

model includes both known defects (type 1) and unknown defects (type 2 and type 3).

N0 corresponds to the type 1 defects. N is obtained using the following equations:

 𝑁 = 𝑁0 𝐶0⁄ (2.14)

where: N0 The number of defects found by test cases provided in the test

plan.

 C0 The defect coverage, which is defined in [30] as the fraction of

defects found by test cases given in the test plan.

and

 𝐶0 = 𝑎0 𝑙𝑛�1 + 𝑎1(𝑒𝑥𝑝(𝑎2𝐶1) − 1)� (2.15)

where: a0, a1, a2 Coefficients which can be estimated from field data.

 55

Figure 2.11 Defect Categories

Once the total number of defects is obtained, D-R Model I described in section

2.2 can be applied as 𝑅𝑇𝐶 = e
−K×N×t

TL� .

As we can see from equation (2.14), Malaiya’s reliability prediction method is

not valid if the number of defects found by test cases, N0, is zero. It will lead to

assessing N as equal to zero even when the test coverage is low which is meaningless.

But for safety critical systems N0 is typically zero since the last version of the code

should be failure free [61]. Other existing approaches all rely on the assumption that

the number of defects found by test cases is not zero; otherwise their approaches are

not applicable.

Since the last version of a safety critical code should be failure free, there will

definitely be multiple versions of this code. Consider Figure 2.12 displaying the

Code Not
Covered by Test

Cases

Code Covered
by Test Cases

Notes: stands for the known defects found by testing in the testing covered code;
stands for the unknown defects in the testing covered code;

 stands for the unknown defects in the testing uncovered code;

 56

possible multiple versions of the source code and test plan for a safety critical system

S.

Figure 2.12 Multiple Versions of the Source Code and Test Plan

Let us assume that zero defects were found in version n, Vn, by test plan TPn.

While one can not as explained above use existing test coverage models for Vn , the

models are applicable to earlier versions of the source code. However, the direct

usage for reliability prediction based on TC of a previous version TPn-1 of the test

plan and source code Vn-1 is not accurate since the defects found in Vn-1 by TPn-1 will

undergo a repair process which will modify these defects and the affected code.

Direct usage of an earlier version of the source code to determine the number of

defects remaining and that of the corresponding earlier version of the test plan to

conduct the TC measurement and the reliability prediction introduces the following

potential errors: 1) the prediction may be too conservative if the defects found are

actually fixed; this is the most likely case; 2) the prediction may be overly optimistic

if new defects are introduced during repair and not detected by the new test cases.

These new defects could potentially be located on high probability paths and have the

effect of drastically reducing reliability or on low probability paths and lead to more

severe consequences than the original defects under repair. Two refinements for the

TC RePS are presented in Chapter 3 and Chapter 4. They attempt to resolve issues

VnVn-1V2V1

…...

TPnTPn-1TP2TP1

N0 Modifications

 57

associated to the use of test coverage (for reliability prediction) within a multi-phase

functional testing process such as the one encountered in safety critical applications

and the effects of non uniform repair.

 58

Chapter 3: Predicting the Types and Locations of Faults

Introduced During An Imperfect Repair Process and their

Impact on Reliability

This chapter is a verbatim reproduction of the paper “Predicting The Types and

Locations of Faults Introduced During An Imperfect Repair Process and their Impact

on Reliability” published in the International Journal of Systems Assurance

Engineering and Management, Vol 1, Issue 1, pp 33-40, March 2010, Springer

Verlag.

Abstract

Imperfect debugging of software development faults (called primary faults) will

lead to the creation of new software faults denoted secondary faults. Secondary faults

are typically fewer in numbers than the initial primary faults and are introduced late

in the testing phase. As such it is unlikely that they will be observed during testing

and their failure characteristics are unlikely to be assessed accurately. This is an issue

since they may possibly display different propagation characteristics than the primary

faults that led to their creation. In particular their location will be distributed non-

uniformly around the fault being fixed. The paper proposes a methodology to assess

the impact of secondary faults on reliability based on predicting their possible types

and locations. The methodology combines a fault taxonomy, code mutation and

Bayesian statistics. The methodology is applied to portions of the application

software code of a nuclear reactor protection system. The paper concludes with a

 59

discussion on the integration of the results within existing Software Reliability

Growth Models.

Keywords: Software Reliability, Imperfect Debugging, Code Mutation

3.1. Introduction

In early software reliability growth models (SRGMs), such as the Jelinski-

Moranda (JM) [62] or the Goel-Okumoto (GO) model [63] it is assumed that once a

fault is detected, it is removed instantaneously through repair and that no new fault is

introduced. This assumption reduces the complexity of the models greatly.

However, it is not valid in real projects and is therefore not a reasonable assumption.

It is possible that either the fault was not fixed or the fault was fixed, but a new fault

was introduced during the repair process. In addition, the repair process may not be

immediate.

The assumption of perfect repair has been questioned by many researchers and

some SRGMs have been proposed to remove this unrealistic assumption. Goel [64]

updates the hazard function in his original GO model by introducing an imperfect

debugging probability; Ohba and Chou [65] model repair as a Markov process and

update the JM model and the Littlewood model [66] by introducing an imperfect

repair rate. They also update the GO model using an error-reintroduction rate;

Yamada et al [67] introduce a fault introduction rate to correct both the exponential

fault-content function and the linear fault-content function; Zeephongsekul et al [68]

further distinguish the original faults (primary faults) from the faults introduced by

imperfect repair (secondary faults) and introduce different repair rates and detection

rates for these two types of faults; Other researchers introduce time-dependent repair

 60

rates to reflect the learning process during the testing phase[69] [70]; Gokhale [71]

identifies different repair policies and applies a rate-based simulation [4] technique to

estimate the corresponding number of residual faults. Other researchers propose

more realistic SRGMs by removing the assumption of instantaneous repair and

incorporating repair time [72] [73].

These various models point to the fact that: 1) New faults due to imperfect

debugging (secondary faults) are much fewer in number than the original faults.

Depending on the repair rate, the number of secondary faults introduced might be 5 to

50 times less than the number of primary faults with an industry average of 14 [74]

[75]. This phenomenon is most acute for safety critical systems and ultra reliable

systems, developed using great care and which are characterized by high repair rates

[75]; 2) Secondary faults are introduced late in the testing phase. Indeed one will

need to first experience the primary faults [76], then repair these thereby introducing

a significant time delay especially if resources are limited [71]; 3) Secondary faults

may have different fault propagation characteristics [76]. Due to 1) and 2), we will

most likely be limited to observations of primary faults and the secondary fault

process may not be understood accurately. This may be an issue if the secondary

fault introduced has a more significant impact than the primary fault being fixed, for

instance, if it is located in a path with a high fault exposure rate17 or if the defect

resides on a path of execution where it will have more severe consequences. These

facts argue for the separate study of secondary faults and their propagation

characteristics.

17 Fault exposure rate is taken loosely here to mean the probability per unit of time that this particular fault becomes a failure.

 61

This paper presents a methodology for predicting the fault propagation

characteristics of residual secondary faults (i.e. faults that have not been detected

through testing).

The remainder of the paper is organized as follows: section 3.2 introduces a

taxonomy of debugging/repair errors; section 3.3 proposes a technique to model

debugging/repair errors and the corresponding secondary faults and assess whether

these secondary faults would survive the testing process; section 3.4 describes a

method for assessing the probability of existence of these residual secondary faults;

section 3.5 presents a method to assess the impact of these faults on reliability and

their fault propagation characteristics. An application of the proposed technique to a

software system used in the nuclear industry is presented in section 3.6. Section 3.7

concludes the paper and discusses possible integration of the results into software

reliability growth models.

3.2. Repair Error Taxonomy

To identify the types of secondary faults that can be created through an

erroneous repair process, one should first have a well-defined repair error taxonomy

which categorizes possible repair errors. Each imperfect code repair is due to a

human error taking place during the repair process18. But what types of errors are

possible? Many researchers have attempted to answer this question and have

developed corresponding taxonomies (see for instance [77] [78]). These taxonomies

were built to satisfy a wide range of underlying motivations (e.g., understanding root

causes of programming mistakes, developing fault tolerance measures, or facilitating

18 We assume the repair errors have similar characteristics as the programming errors.

 62

testing [79]) which have influenced the classification scheme. In this paper, we

classify errors with respect to their impact in terms of physical variations of the code

since we are interested in the type and location of secondary faults. The taxonomy

used is shown in Table 3.1. It consists of two levels of abstraction. To the left is the

most abstract level of the taxonomy which derives from James’ error taxonomy [80]

and classifies errors in five broad categories from omission to blending (where

blending is a mixture of the other four types of errors). To the right are fourteen

classes of errors obtained by applying each of the five abstract error classes to three

different logical groupings of the code: entities (E), logical lines of code (L) and

clusters of lines of code denoted cluster of multi-logical lines of code (M). Entities,

logical lines of code (LOC) and clusters of multi-logical lines of code correspond to

various groupings of the code locations. An “entity” includes the primitive concepts

of the language such as variables, constants, operators and syntactic connectives (e.g.

braces). Entities form the base vocabulary of the programming language and as such

correspond to the lowest grouping level. A “logical LOC” refers to a computer

“instruction”, but its specific definition is tied to specific computer languages. In C-

like programming languages, a “logical LOC” is contained within two semicolons.

Detailed logical LOC counting rules for a specific language can be found in the 2001

CMU/SEI technical report [81]. This grouping is used to express the lowest level

functions 19 found in a computer program such as initialization, input, input data

19 A “function” is a unit which performs a specific functionality. The 2nd level proposed in this paper is applicable to functional

languages such as C where the primary concept of the language is that of function. For object oriented languages where the
primary concept is that of object this second level of the taxonomy could be modified accordingly.

 63

validation etc20 [82]. A “cluster of multi-logical LOC” is a set of coupled logical

LOCs which implements a meaningful system action. This corresponds to the next

level of functional abstraction found in computer programs. The determination of

clustered LOCs is not an easy task, and, preliminary rules for partitioning source code

into clustered LOCs have been devised by adopting the rules used in natural language

partitioning [83] [84].

An index (from Cl1 to Cl14) is assigned to each of these fourteen error classes.

Note that the blend errors are not fully enumerated. Cl13 to Cl14 are two

representative examples of the possible blend error classes.

Table 3.1 Hierarchical Error Taxonomy to Capture the Physical Manifestations of

Repair Errors

1st Level Error
Taxonomy

2nd Level Error Taxonomy

Omission Omission of a multi- logical LOC cluster (Cl1)
Omission of a logical LOC (Cl5)
Omission of an entity in a logical LOC (Cl9)

Addition Addition of a multi- logical LOC cluster (Cl2)
Addition of a logical LOC (Cl6)
Addition of an entity in a logical LOC (Cl10)

Misordering Misplacement of a multi- logical LOC cluster (Cl3)
Misplacement of a logical LOC (Cl7)
Misplacement of an entity within a logical LOC (Cl11)

Misformation Using an incorrect multi- logical LOC cluster (Cl4)
Using an incorrect logical LOC (Cl8)
Using an incorrect entity within a logical LOC (Cl12)

Blend Error Omission of an entity of a logical LOC and Misplacement of an entire
logical LOC (Cl13)
Misplacement of an entire logical LOC and Misplacement of an entity of a
logical LOC (Cl14)

……

20 If a logical LOC contains a nested function call, it is still considered as a logical LOC and the nested function call itself is

considered as an entity of the line. For instance, “a = f(b) +c;” is considered as one LOC even if “f(b)” is implemented using
multiple LOCs. “f(b)” is an entity of this LOC.

 64

3.3. Modeling Repair Error Types and Determining Whether They Remain in the

Program

The method which we will use to obtain the potential secondary fault types

appearing as a result of repair errors and to assess whether they remain in the code

after test uses code mutation. Code mutation is a fault-based technique which

attempts to represent the behavior of code subject to programmer errors by injecting

faults in the code and observing the modified code behavior under various inputs.

The injection of faults in the program is obtained through application of mutant

operators (MO) to the program. The resulting program is called a mutant program

(MP). In order to mimic all types of programmer errors, errors are introduced into a

program by creating many versions of the program, each of which contains one error

[85].

Consider a particular code repair activity (see Figure 3.1), it can be either

successful and lead to a perfectly modified code with probability “1-r”, or, be

unsuccessful and lead to an imperfectly modified code with probability “r”.

Systematic mutation of the portion of code being repaired will create a set of mutant

programs within which the correct code should reside (in Figure 3.1, A3).

By limiting code mutation to the portion of code being repaired, we mimic the

non-uniformity of secondary fault location. Secondary faults will indeed be restricted

to the areas of the code being reworked. More specifically, secondary faults can be

located within places either physically or logically close to the code repair areas.

Areas physically close to code repair areas are easily identifiable. Areas logically

close to the code repair areas can be determined by using techniques such as Program

 65

Slicing (PS) or examining the Program Dependency Graph (PDG) which illustrates

explicitly both the data and control dependence for each operation in a program.

Code
Modification

Imperfect
Modified

Code

Perfect
Modified

Code

Mutant
Program

A1

Mutant
Program

A3
(Perfect
Code)

Mutant
Program

A2

Perfect
Repair

Imperfect
Repair r

1-r

Mutant
Program

An

…
…

…

...

Figure 3.1 Code Repair and Its Mutants

During one specific attempt at repairing the code (i.e. one code repair), one or

multiple repair errors can occur. The types of errors that might occur were defined in

Table 3.1 of Section 3.2. If one assumes independence between errors, the

probability of multiple errors occurring during one code repair activity is low. We

will thus assume that only one error occurs during each repair. Therefore, all 2nd

level error categories (i.e. the lowest abstraction level in Table 3.1) besides the “blend

error” (which corresponds to a combination of multiple errors) should be modeled by

applying corresponding mutant operators to reflect possible repair errors and obtain

the related secondary faults.

For each mutant program generated, test cases are run to check whether they can

distinguish the mutant program from the modified code. If they can, the mutant

 66

program is defined as “killed”; otherwise, the mutant program is defined as “live”

(see Figure 3.2). Whenever the program is “killed”, test cases distinguish the mutant

program from the modified program. If there is indeed a defect in the modified code

and the mutant is the correct program, test cases can detect it successfully. In case of

a “live” program, test cases cannot distinguish differences between the mutant

program and the modified program. If there is a defect in the modified code, the test

cases cannot detect this fault. Therefore a live mutant program indicates potential

existence of secondary faults in the modified code which are undetected by the suite

of tests.

Modified
Code

Mutant
Program

A1

Mutant
Program

A3

Mutant
Program

A2

Mutant
Program

A5

…… …...

Mutant
Program

A4

Mutant
Program

An

Test Cases

Test Cases

Test CasesTest Cases

Test Cases

Test Cases
X Killed

X
Killed

X
Killed

X
Killed

Live

Killed
X

Figure 3.2 Test Cases and Mutants

3.4. Assessing the Probabilities of Different Types of Repair Errors

Using the methods described in Sections 3.2 and 3.3, one can identify the live

mutant programs (LMP) which correspond to possible undetected secondary faults

spawned by repair errors. These could lead to software failure. But initially before

 67

even assessing the impact these errors might have on reliability their probability of

occurrence should be assessed.

The probability of occurrence of a mutant program, MP, is the probability that a

repair error will lead to a version of the program under study whose physical

form/embodiment is identical to that of the particular mutant program of interest.

The probabilities of occurrence of each repair error are not the same. Certain

types of errors are more likely to happen depending on developers’ programming

characteristics. A programmer may tend to make certain types of errors over other

types of error. The probabilities of occurrence of each repair error type can be

determined using the following two sets of information: 1) the proportion of different

types of repair errors. This reflects the developers’ general preferences; 2) the total

number of possible errors of each error type for a code segment under repair. There is

a finite number of entities (E), logical lines of code (L) and multi-logical lines of code

cluster (M) that repair errors can reside in. These two sets of information will be

evaluated in turns.

Let us denote as θi the normalized proportion/percentages of errors that fall in the

twelve error classes (Cl1 to Cl12) as given in Table 3.121. We have: ∑ 𝜃𝑖 = 112
𝑖=1 .

The normalization process ensures independence of θi with code size and/or

relative numbers of entities, lines of codes or clusters of multi-logical lines of code.

This normalized proportion can be derived from error data collected from the

following three sources of evidence (S1 to S3) ordered by increasing degree of

relevance: S1: error data, either from operation, testing or development, collected on

other software systems; S2: error data collected during development of the software

21 Blend errors are not considered.

 68

under study (excludes data collected during testing); and S3: error data obtained

during testing of the software under study.

Once collected, error data from any of these sources should be classified into the

error taxonomy defined in section 3.2 (Table 3.1). Let us denote N1eT as the total

number of errors from S1. Among N1eT errors, there are N1ei (i=1 to 12) number of

errors that fall in error classes Cl1 to Cl12. Similar notations can be applied to errors

from sources S2 and S3.

To obtain the normalized proportion θi, the maximum number of possible

occurrences of a particular type of error in the programs used to collect the error data

discussed needs to be assessed. This number will be given by the number of

occurrences of the semantic concept (violated by the error type) in the code22. For

instance, for the error class “omission of an entire cluster of multi-LOC”, the

maximum number of opportunities is the total number of multi-LOC functions in the

code. For the error class “omission of an entity of a LOC”, the maximum number of

opportunities is the total number of variables, constants, syntactic connectives such as

parentheses and the nested functions in the code that served for data collection.

For a particular program Pj, the total number of opportunities for occurrence of

an error in each error class (Cli), Oij, is equal to the total number of semantic concepts

underlying the class in the program. That is:

1,...,4

5,...,8

9,...12

Mj

ij Lj

Ej

N i

O N i

N i

 =
= =
 =

 (3.1)

where:

22 This argument may not be true for those repair operations with iterated modifications. However, this case can be neglected

since the possibility of occurrence of this situation is rare.

 69

NMj is the total number of clusters of multi-logical LOC in program Pj,

NLj is the total number of logical LOCs in program Pj.

NEj is the total number of entities in program Pj.

If we have observed Neij (i=1 to 12) number of errors in error class Cli for a

particular program Pj from one of the data sources (S1 to S3), and if m such programs

are available, the normalized proportion of errors in error class Cli is:

 𝜃𝑖 =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

1
4 8 12

1 1 5 1 9 1

m
ij

Mjj
m m m

ij ij ij

Mj Lj Eji j i j i j

Ne
N

Ne Ne Ne
N N N

=

= = = = = =

+ +

∑

∑∑ ∑∑ ∑∑
1,...,4i =

1
4 8 12

1 1 5 1 9 1

m
ij

Ljj
m m m

ij ij ij

Mj Lj Eji j i j i j

Ne
N

Ne Ne Ne
N N N

=

= = = = = =

+ +

∑

∑∑ ∑∑ ∑∑
5,...,8i =

1
4 8 12

1 1 5 1 9 1

m
ij

Ejj
m m m

ij ij ij

Mj Lj Eji j i j i j

Ne
N

Ne Ne Ne
N N N

=

= = = = = =

+ +

∑

∑∑ ∑∑ ∑∑
9,...,12i =

� (3.2)

Using Equation (3.2), one can easily transform the direct counts of errors into the

normalized proportion, θi, which accurately represents the error proportion

distribution for the error data from a particular source. A Bayesian updating approach

is applied to incorporate both historical/heritage repair data S1 (e.g. [86]) and project

specific repair data (S2 and S3). ζi
s (i=1,…,12 and s=1,2,3) are denoted to represent

the proportion of the ith class of error in the sth error data source. The Bayesian

framework is selected over classical statistics because it can handle insufficient data;

it can incorporate subjective data with objective data; and it can ease the parameter

updating process if conjugate distributions can be used. In this paper, we use the

 70

Dirichlet-Multinomial prior-likelihood conjugate pair to update the parameters of the

Dirichlet distribution as more data on proportions becomes available. The formulas

used to update the parameters of the prior and posterior Dirichlet distributions are

shown in Table 3.2.

Table 3.2 Parameters of the Prior and Posterior Distribution23

Initial
Prior

(Unifor
m Prior)

Evidence
from S1

→

Scaled
Posterior
(Prior For

Next
Update)

Evidence
from S2

→

Scaled
Posterior
(Prior For

Next Update)

Evidence
from S3

→
Posterior

γi = 1 ζi
1

γi’= 1 + W1*
N3eT * ζi

1
ζi

2
γi”= γi’+ W2*

N3eT * ζi
2

ζi
3

γi’’’= γi”+
W3* N3eT * ζi

3

The average proportion for each error class (which corresponds to the expected

value of the Dirichlet distribution) is obtained using the parameters γi, calculated with

the formulas provided in Table 3.2:

 𝜃𝑖 = 𝐸(𝜗𝑖) =
𝛾𝑖

,,,

∑ 𝛾𝑖
,,,12

𝑖=1
 (3.3)

Having obtained the average normalized proportion 𝜃𝑖, we move onto calculating

the exact proportion for a specific piece of modified code segment (CS). The exact

proportion of each error class can be calculated with the known total number of

opportunities. This exact proportion, denoted as 𝜑𝐶𝑆𝑖, is no longer independent of

code segment size and/or respective number of entities, lines of code or clusters of

multi-lines of LOCs in CS. The exact proportion of errors of type “i" is given by:

23 γ is a parameter of the Dirichlet distribution and ν is the variable. W1 W2 and W3 are weights assigned to sources of data S1, S2

and S3 used to update the Dirichlet distribution. The weighting scheme selected ensures that the importance/weight of sources
of data S1 and S2 does not exceed the importance of error data related to S3.

 71

 𝜑𝐶𝑆𝑖 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

4 8 12

1 5 9

CS
i M

CS CS CS
i M i L i E

i i i

N

N N N

θ

θ θ θ
= = =

⋅

⋅ + ⋅ + ⋅∑ ∑ ∑
1,...4i =

4 8 12

1 5 9

CS
i L

CS CS CS
i M i L i E

i i i

N

N N N

θ

θ θ θ
= = =

⋅

⋅ + ⋅ + ⋅∑ ∑ ∑
5,...8i =

4 8 12

1 5 9

CS
i E

CS CS CS
i M i L i E

i i i

N

N N N

θ

θ θ θ
= = =

⋅

⋅ + ⋅ + ⋅∑ ∑ ∑
9,...12i =

� (3.4)

where:

𝜑𝐶𝑆𝑖 is the exact proportion of the ith class of error for code repair CS;

CS
MN , CS

LN and CS
EN are the total number of multi-logical LOC clusters, logical

LOCs and entities of CS respectively;

θi is the average normalized proportion/percentages of errors that fall in the

twelve error classes and ∑ 𝜃𝑖 = 112
𝑖=1 .

Thus, the probability of occurrence of the kth live mutant program (corresponding

to an error in the ith class of error) of a CS, 𝐿𝐶𝑆𝑘 , during repair can be determined by

the proportion of the class of errors (𝜑𝐶𝑆𝑖) and the total number of possible MPs of

this error class (NMPi) that can be generated for the modified CS. That is:

 𝐿𝐶𝑆𝑘 =
𝜑𝐶𝑆𝑖
𝑁𝑀𝑃𝑖

 (3.5)

Here we assume uniform distribution between mutants which is a reasonable

initial assumption since no evidence to the contrary is currently available.

The total number of possible MPs (NMPi) can be readily obtained by multiplying

the total number of opportunities (the total number of semantic concepts in CS) and

 72

the total number of substitutions defined by the mutation rules for each opportunity24.

For instance, for the error class (Cl12) “using an incorrect entity within a statement”

class error, the total number of opportunities for using an incorrect variable is the

total number of variables (Nv) in the modified code. The number of possible

substitutions would be the number of other variables (Nv’) defined in the program.

Thus, the total number of MPs which can be generated for “using an incorrect

variable” would be Nv*Nv’.

3.5. Effect of Remaining Faults on Reliability

Having defined in Section 3.2 a taxonomy of possible repair errors, in Section

3.3 a method to replicate the form of these errors in code modifications and to

determine whether they will remain in the code after test (i.e. identify LMP), having

introduced a quantification framework in Section 3.4 which allows us to estimate the

conditional probability of existence of a particular live mutant program LMP given a

repair error, one should now determine the effect of this LMP on reliability. The

LMP as discussed earlier corresponds to the possible existence of an undetected

secondary fault spawned through repair errors.

The impact of the secondary faults largely depends on their location, their type,

the architecture of the system and the operational profile. The failure probability

contribution due to each live mutant program can be estimated by applying the PIE

[19] concept and using a Finite State Machine (FSM) model of the software system.

24 For error class “addition” and “misplacement”, multiple possible code injection locations, e.g. “before” or “after” or “within”

places which are either physically or logically close to the code repair areas, are also counted when determining the total
number of possible MPs.

 73

Application of this technique allows us to identify the propagation characteristics of

each potential remaining secondary faults spawned by repair errors.

Once the FSM model is built and executed, the fault propagation rate of

secondary faults created during repair of a code segment CS can be obtained using the

following equation:

 𝑏(𝐶𝑆) = �(𝑃(𝑓𝐶𝑆|𝐶𝑆𝑘) ∙ 𝐿𝐶𝑆𝑘)/𝜏𝐶𝑆𝑘

𝑛𝐶𝑆

𝑘=1

 (3.6)

where

𝑏(𝐶𝑆) The fault propagation rate of secondary faults created during repair of

a code segment CS.

𝑃(𝑓𝐶𝑆|𝐶𝑆𝑘) The probability of failure due to a specific live mutant program 𝐿𝐶𝑆𝑘 of

code segment CS. This probability is obtained by execution of the

Finite State Machine for the particular mutant program;

𝐿𝐶𝑆𝑘 The probability of occurrence of a specific kth live mutant program of

code segment CS;

nCS The total number of live mutant programs for code segment CS.

𝜏𝐶𝑆𝑘 The time required to execute a specific kth live mutant program of code

segment CS under the operational profile.

3.6. Application

The methodology is now applied to an ultra-reliable software of about 12,000

lines of executable code. The software studied, APP, is a real-time microprocessor-

based digital implementation of one of the trip functions of a Reactor Protection

System (RPS) used in the nuclear power industry. The software is based on a number

 74

of modules which include a “system software” and an “application software”. The

“system” software monitors the status of the system hardware components through

well defined diagnostics procedures and conducts the communications protocols. The

“application” software reads input signals from the plant and sends outputs that can

be used to provide trips or actuations of safety system equipment, control a process,

or provide alarms and indications. The APP software was developed in ANSI C

language. In the following, results of the application of the proposed approach to the

“application” software of APP are described.

We apply the approach defined to three code repairs undertaken towards the end

of APP’s testing phase. By applying the code mutation technique to the three code

repairs, a total of 1,969 MPs were generated among which there are 27 LMPs (see

Table 3.3 for mutants generated for the first code modification CS1). The probability

of occurrence of the 27 identified LMPs was determined (see Table 3.4 and

Table 3.5 for determination of the normalized and exact proportions respectively

and Table 3.6 for the probability of occurrence of LMPs of CS1).

The probability of failure corresponding to these 27 LMPs was obtained by

mapping each of them into an FSM representing APP’s functionality. Among the 27

identified LMPs, 15 LMPs of CS1 and 8 LMPs of CS2 had the same propagation

characteristics. Their contribution to the probability of failure of the application was

obtained as 7.08 × 10−10 per demand (the average duration of a demand is .082

 75

seconds). The remaining 4 LMPs of CS3 had a zero failure contribution since they

had no impact on the trip function25.

The fault propagation rate for each code repair can be obtained as:

𝑏(𝐶𝑆1) = ∑
𝑃(𝑓𝐶𝑆1|𝐶𝑆1𝑘)∙𝐿𝐶𝑆1𝑘

𝜏𝐶𝑆1𝑘
=15

𝑘=1
15×�7.08×10−10�×�6.3×10−4�

0.082
= 8.16 × 10−11 per

second and

𝑏(𝐶𝑆2) = ∑
𝑃(𝑓𝐶𝑆2|𝐶𝑆2𝑘)∙𝐿𝐶𝑆2𝑘

𝜏𝐶𝑆2𝑘
=23

𝑘=16
8×�7.08×10−10�×�5.9×10−4�

0.082
= 4.07 × 10−11 per

second.

Table 3.3 Mutant Programs Generated for the Code Modification CS1

Error Class Total MPs LMPs
Cl1 3 0
Cl2 3 0
Cl3 66 0
Cl4 0 0
Cl5 4 0
Cl6 30 0
Cl7 20 0
Cl8 4 0
Cl9 2 0
Cl10 2 0
Cl11 0 0
Cl12 438 15

Total 572 15

Table 3.4 Error Data from sources S1, S2 and S3 and corresponding updated value of

the average Normalized Proportion 𝜃12 for Error Class Cl12.

Error Class N1e12 𝜁112 N2e12 𝜁212 N3e12 𝜁312 𝜽𝟏𝟐
Cl12 18 0.017 27 0.054 3 0.060 0.081

25 They have an impact on the display function, i.e. these failures could result in an incorrect display. However,

this function is not safety related. In this study, only type II failures are considered. This type of failure occurs
when the system sends out a signal to trip the reactor while it should not.

 76

Table 3.5 The Exact Error Class Proportions 𝜑𝐶𝑆𝑖 for APP’s Code Modification CS1

derived from the Normalized Proportions

Error
Class

Normalized Proportions CS1

θ Number of
Opportunities

𝝋𝑪𝑺𝟏

Cl1 0.298 1 2CS
MN =

0.063
Cl2 0.059 0.013
Cl3 0.079 0.017
Cl4 0.069 0.015
Cl5 0.109 1 4CS

LN =
0.046

Cl6 0.053 0.023
Cl7 0.05 0.021
Cl8 0.053 0.022
Cl9 0.05 1 32CS

EN =
0.172

Cl10 0.049 0.166
Cl11 0.049 0.166
Cl12 0.081 0.276

Table 3.6 Determination of the Probability of Occurrence of APP’s Live MPs

Code
Modifications

Error
Class

Number of
Live MPs

Probability of Occurrence

CS1 Cl12 15 𝐿𝐶𝑆𝑘 =
𝜑𝐶𝑆𝑖
𝑁𝑀𝑃𝑖

= 0.276
438

= 6.3 × 10−4,𝑘 = 1, … ,15,

3.7. Conclusions: Integrating the Results of the Proposed Method into the SRGMs

The method presented in Sections 3.2 to 3.5 allows us to predict the fault

propagation rate for residual secondary faults due to repair errors as they would

appear in operation. These rates can be calculated as soon as primary faults are

uncovered. The method also provides possible locations and types for secondary

faults. Potential locations, types and rates can help further inform the testing

processes and can help increase learning as well as detection. The rates can also be

used in conjunction with the number of residual secondary faults predicted by

SRGMs to predict the contribution of secondary faults to reliability in operation.

 77

When the testing environment reflects the operational environment, fault detection

rates and fault propagation rates calculated by our method are identical and can be

used to obtain a better assessment of the residual number of secondary faults. Further

research will focus on how to better integrate our research with existing SRGMs.

 78

Chapter 4: Predicting Residual Software Fault Content and their

Location during Multi-Phase Functional Testing Using Test

Coverage

This chapter is a verbatim reproduction of the paper “Predicting Residual

Software Fault Content and their Location during Multi-Phase Functional Testing

Using Test Coverage” submitted to the International Journal of Reliability and Safety.

Abstract

Multi-Phase functional testing is a common practice which is used in ultra-

reliable software development to ensure that no known faults reside in the software to

be delivered. In this paper, we present a new test coverage-based model which allows

the description of software systems developed through multiple phases of functional

testing. This model is further extended: 1) to take advantage of auxiliary observations

collected during the multi-phase testing and consequent analysis process to refine the

predictions made; 2) to describe software systems where either the initial fault

distribution is non-uniform with respect to location, or the repair and test and

detection process favor certain locations.

Keyword: Test Coverage, Multi-phase Testing, Imperfect Repair, Defect Location

Prediction, Recursive Bayesian estimation

4.1. Introduction

Test coverage is an important measure used in software testing to reflect the

degree to which the software has been tested. The relationship between test coverage

 79

(TC) and defect coverage (i.e. percentage of defects identified through test) has been

highlighted by many and number of research efforts have been devoted to linking test

coverage to the number of faults remaining and number of failures experienced. To

cite only a few, Vouk[52] directly relates the number of detected faults and test

coverage through a Weibull function. Piwowarsky et al. [55] predicts reliability

based on the fact that the fault removal rate is a linear function of the code coverage.

Malaiya et al. introduces a logarithmic model [46] that relates testing effort to TC and

then estimates reliability using Musa’s exponential model. Malaiya et al. [87] also

develop a logarithmic-exponential model which differs from his earlier model by

considering the linear relations between defect coverage and TC once a certain TC

level is achieved. Gokhale et al. [57][58] propose a unified definition of TC and

incorporate explicitly the time-varying TC functions into the Enhanced Non-

homogeneous Poisson Process (ENHPP) framework. In their model, variation in the

number of failures experienced is proportional to variation in coverage via a detection

rate function which varies with time. Pham and Zhang [59] revise the ENHPP

reliability model by proposing S-shaped TC functions and by considering imperfect

repair while assuming repairs take place as soon as the failure is experienced. Cai

and Lyu [60] further integrate time and TC measurements together and present a

hybrid reliability prediction model.

Existing models assume that functional testing is a continuous single phase

process where the software is run through a single predefined series of tests. For such

cases the coverage function is a monotonically non-decreasing function of time as

described in Figure 4.1a. While this assumption is appropriate for a large class of

 80

software development efforts, it fails to represent development efforts where

functional testing is organized as a multi-phase process. In such case the software will

undergo several series of functional tests and the coverage function will increase

monotonically by phase while experiencing discontinuities between phases (see

Figure 4.1b and Figure 4.1c). Furthermore, repairs are not attempted as soon as

failures are experienced but are deferred to the end of each phase. This process will

in particular be found in the case of ultra-reliable systems where one needs to ensure

that the software will pass through an entire series of tests without experiencing faults

(See Section B.3.1.12.4 of [61]; Section 5.4.2 of [88]; [20]). This leads to the

existence of at least two phases: one with faults, and one without faults.

(a) (b) (c)

Figure 4.1 Coverage is a continuous monotonic non-decreasing function of testing

time (a); Coverage function for Multiple Phases of Functional Testing (b) (c)

In addition, these models make the assumption that faults are distributed

uniformly in the code. There is no evidence that this might be true in practice (see for

instance a recent study by [89]). While the uniformity assumption may not be critical

for most software systems and as such is a very useful assumption, it needs to be

carefully examined for ultra-reliable systems which are more sensitive to the location

of faults. Location is indeed an important contributing factor in the severity of faults.

0

0.5

1

0 5 10

0

0.5

1

0 10 20

0

0.5

1

0 10 20

 81

This paper proposes analytical expressions for the number of remaining faults

and the fault location distribution which can be used for reliability prediction or to

adjust testing efforts. Section 4.2 lists key notations used in the paper. In Section 4.3

we derive expressions for failures experienced and faults remaining for a software

system undergoing multiple phases of functional test before being declared ready for

fielding and operation. In Section 4.4 we extended the model presented in section II

by incorporating auxiliary testing observations for key model parameters estimation.

In Section 4.5, we account for the non-uniformity of the distribution of faults on fault

sites. We conclude with possible applications of the extensions presented (see

Section 4.6).

4.2. Notations

ã
Initial number of faults which exist in the code at the beginning of

the first test phase

ãP(0) Initial number of faults predicted at time 𝑡 = 0

𝑚(𝑡) Number of faults experienced by time t

∆𝑚𝑗(𝑡) Number of faults experienced between ti-1 and t where ti-1 ≤ t < ti

∆𝑀𝑖
𝑃(0)

Number of failures we expect to experience during testing phase i

predicted at time 𝑡 = 0

∆𝑀𝑖
𝐸 Total number of failures observed at the end of testing phase i

∆𝑚𝑖_𝑛𝑒𝑤
𝐸 (𝑡𝑖∗)

Observed number of new faults introduced during the repair process

which takes place at the end of phase i

∆𝑚𝑖_𝑛𝑟
𝐸 (𝑡𝑖∗) Observed number of faults which were not repaired during the repair

 82

process which took place at the end of phase i

𝑛𝑓𝑟𝑖(0)
Number of faults remaining in the code at the end of testing phase i,

predictions made at time 𝑡 = 0

𝑛𝑓𝑟𝑖(..)
The number of faults remaining in the code at the end of testing

phase i, predictions made at time 𝑡 = 𝑡𝑖∗, 𝑡𝑖+ , …

r Repair rate

rP(0) Repair rate predicted at time 𝑡 = 0

rP(..) Repair rate predicted at time 𝑡 = 0, 𝑡𝑖∗, 𝑡𝑖+, …

γ New fault introduction rate given that a repair fault has occurred

γP(0)
New fault introduction rate (given that a repair fault has occurred)

predicted at time 𝑡 = 0

γP(..)
New fault introduction rate predicted (given that a repair fault has

occurred) at time 𝑡 = 0, 𝑡𝑖∗, 𝑡𝑖+, …

𝐾 Fault detection probability

𝐾𝑖 Fault detection probability during phase i

𝐾𝑖
𝑃(..)

Fault detection probability during phase i predicted at time 𝑡 =

0, 𝑡𝑖∗, 𝑡𝑖+

𝑐𝑖(𝑡) Coverage function over interval of time ti-1 and ti where ti-1 ≤ t < ti

cU(i) Upper bound for the coverage in phase i

cL(i) Lower bound for the coverage in phase i

𝐶𝑖𝐸(𝑡) Actual coverage function for phase i

𝐶𝑈
𝑃(0)(𝑖) Predicted (at time 𝑡 = 0) upper bound for the coverage in phase i

 83

𝐶𝐿
𝑃(0)(𝑖) Predicted (at time 𝑡 = 0) lower bound for the coverage in phase i

kD Number of failed repair attempts during the development process

nD Number of repair attempts during the development process

νD Number of newly introduced faults due to imperfect repair

ci(L,t) Probability that a location is covered by time t in phase i.

fi(L,t) Probability that a fault resides in location L at time t during phase i

Ki(L,t)
Probability that a fault residing in location L at time t during phase i

is detected when the potential fault site is covered

ki(L,L’)
Conditional probability that given that a fault is introduced or is

moved due to a repair at location L, it moves to L’

4.3. Number of Failures Experienced and Faults Remaining In the Case of Multiple

Functional Test Phases

For software systems such as ultra-reliable systems, a software component

before being considered ready for release will need to undergo multiple phases of

functional test. In phase 1, a first test plan will be used which contains a first set of

functional tests. Failures are uncovered as testing progresses. Corresponding fixes

are made at the end of the test phase. The modified code then undergoes another set

of functional tests extract from a second test plan and so forth and so on. There may

of course be some overlap between consecutive test plans. In such case the evolution

of coverage with time will cease to be a continuous monotonic non-decreasing

function of time as assumed in the models of section 4.1 and instead will take the

form given in Figure 4.1or Figure 4.1c. Let us then try to express 𝑚(𝑡), the number

of faults experienced by time t. We will denote by ti-1 and ti respectively the

 84

beginning and end of phase “i”; by ∆𝑚𝑗(𝑡) the number of faults experienced between

ti-1 and t where ti-1 ≤ t < ti ; by 𝑎�, the initial number of faults which exist in the code at

the onset of functional testing, i.e. at the beginning of the first test phase.

Our assumptions are as follows: 1) Faults are uniformly distributed over all

potential fault sites; 2) When a potential fault-site is covered, any fault present at that

site is detected with probability K(t); 3) Repairs take place at the end of the phase and

new faults may be introduced through repair errors. The repair rate is r and the

probability of fault introduction given that a repair error has occurred is γ; 4)

Coverage is a continuous monotonic non-decreasing function of testing time per

phase as displayed in Figure 4.1b or Figure 4.1c.

Under those assumptions we obtain the following set of equations:

 𝑑𝛥𝑚1(𝑡)
𝑑𝑡

= ã K1(t)
𝑑𝑐1(𝑡)
𝑑𝑡

 (4.1)

for 0 ≤ t < t 1 where t1 is the end of the first phase, Δm1(0) = 0, and c1(t) is defined

over 0 ≤ t < t1 and is the coverage function over that interval of time.

 𝑑𝛥𝑚2(𝑡)
𝑑𝑡

= (ã − Δm1(t1) × r + Δm1(t1) × (1 − r) × γ)K2(t)
𝑑𝑐2(𝑡)
𝑑𝑡

 (4.2)

for t1 ≤ t < t2 where t2 is the end of the second phase, Δm2(t1) = 0, and c2(t) is defined

over t1 ≤ t < t2 and is the coverage function over that interval of time.

𝑑𝛥𝑚3(𝑡)
𝑑𝑡

= (ã − Δm1(t1) × r + Δm1(t1) × (1 − r) × γ) − Δm2(t2) × r

+ Δm2(t2) × (1 − r) × γ) K3(t)
𝑑𝑐3(𝑡)
𝑑𝑡

(4.3)

for t2 ≤ t < t3 where t3 is the end of the third phase, Δm3(t2) = 0, and c3(t) is defined

over t2 ≤ t < t3 and is the coverage function over that interval of time.

We rewrite 𝑑𝛥𝑚3(𝑡)
𝑑𝑡

 as:

 85

𝑑�𝑚3(𝑡)
𝑑𝑡

= �ã − �Δm1(t1) + Δm2(t2)�× r + �Δm1(t1) + Δm2(t2)�

× (1 − r) × γ� K3(t)
𝑑𝑐3(𝑡)
𝑑𝑡

(4.4)

So more generally we have:

𝑑𝛥𝑚𝑖(𝑡)

𝑑𝑡
= �ã − r × �(Δmk

i−1

k=1

(tk) + (1 − r) × γ × �Δmk(tk)�)�Ki(t)
𝑑𝑐𝑖(𝑡)
𝑑𝑡

 (4.5)

for ti-1 ≤ t < ti where ti is the end of the ith phase, Δmi(ti-1) = 0, and ci(t) is defined over

ti-1 ≤ t < ti and is the coverage function over that interval of time.

If the different K’s are constant per phase, equation (4.5) can be integrated over

each phase and we will obtain after integration:

Δmi(t) = �ã− r × (�Δmk(tk)) + (1 − r) × γ
i−1

k=1

× ��Δmk(tk)
i−1

k=1

� �Ki �
𝑑𝑐𝑖(𝑡)
𝑑𝑡

𝑐𝑈(𝑖)

𝑐𝐿(𝑖)

𝑑𝑡

(4.6)

which is thus

Δmi(t) = �ã − r × (�Δmk(tk)) + (1 − r) × γ

i−1

k=1

× ��Δmk(tk)
i−1

k=1

��Ki

× �cU(i)− cL(i)�

(4.7)

where cU(i) and cL(i) are respectively the upper and lower bounds of coverage for

phase i.

Example- Let us consider example software S. S is undergoing three functional test

phases. Let us also assume that the upper and lower coverage values for each

 86

functional test phase, as well as the number of defects found in each phase is given in

Table 4.1.

Table 4.1 Multiple Phase Test Profile for Software S

Phases 1 2 3
CL(i) 0 0 0
CU(i) .5 .7 .95
Number of faults found during Phase “i” Functional Test 5 2 0

This profile is representative of ultra-reliable systems which typically will

achieve high levels of test coverage at the end of functional testing and are also

characterized by no-defects found during the last functional test phase. Let us also

assume that r =.9 and γ=.25. Under those conditions the set of equations (4.7)

becomes:

ãK1 = .1

(ã − 4.375) × K2 = 0.028571

(ã − 6.125) × K3 = 0

The set of equations contains four unknowns and as such can not be solved

without the help of an additional equation. In particular one could use early

prediction models to compute a value for ã as suggested in Gokhale [57]. The issue

with using early prediction models is of course the large uncertainty in the estimate

which can lead us to either overestimate or underestimate the number of faults. Note

also that the last equation leads to a situation where one can possibly make two

different conclusions. One is that ã = 6.125 (which we can interpret conservatively as

being ã = 7) or K3 = 0 (i.e. the tests are not able to trigger failures and

correspondingly reveal faults).

 87

In the phase-based functional test expression defined by equation (4.7), one

should also note that:

 ã − r × (�Δmk(tk)) + (1 − r) × γ
i−1

k=1

× ��Δmk(tk)
i−1

k=1

� (4.8)

is the number of faults remaining after i-1 phases of functional testing. For system S

and i - 1= n, this number is given by ã - 6.125.

4.4. Extensions to Account for Auxiliary Observations and Continuously Refine the

Predicted Fault Count

For a multi-phase testing process with n phases, equations (4.7) and (4.8)

provide the number of failures experienced in each phase and the number of faults

remaining at the end of a phase respectively. If predictions for the quantities, ã, r, γ,

Ki, cU(i), cL(i) are available from the onset of the testing process, one can derive

predictions for the number of failures experienced and number of faults found for all

phases of testing (i=1 to n) at the onset of phase 1. These early predictions may or

may not be accurate. However, as the testing progresses information becomes

available which will allow us to correct our predictions. The purpose of this section

is to show which auxiliary observations become available during the multi-phase

testing process and how these can be used to refine our predictions. It should be

noted that an "observation" is defined as information that one can collect through

one's experience. Mixing of model predictions and observations is referred to as

model-data fusion (MDF). Model-data fusion approaches allow the use of

observations which are representatives of the "real world" to update the initial

 88

prediction models which may be subjective and incomplete. The updated models

should therefore have stronger prediction ability.

Current MDF research proposes four basic strategies to integrate available

observations in the prediction process: sequential-intermittent assimilation (SIA),

sequential-continuous assimilation (SCA), non sequential-intermittent assimilation

(NSIA) and non sequential-continuous assimilation (NSCA) [90]. In order to

continuously refine the predicted number of faults over multiple testing phases,

sequential-intermittent assimilation (SIA) which considers observations made in a

past period of time until the time of analysis, is applicable. The typical SIA

framework is depicted in Figure 4.2.

Figure 4.2 Sequential-intermittent Assimilation Framework, excerpted from [90]

Figure 4.3 depicts for a multi-phase testing process which follows the SIA

framework illustrated in Figure 4.2: 1) the observations available during each testing

phase, 2) the types of predictions one can make and 3) the time at which such

predictions can be made as well as the parameters used for these predictions.

While the framework and corresponding derivations are applicable and can be

extended to any number of functional testing phases, n, the discussion in this paper is

limited to a multi-phase testing process where n is equal to two.

 89

Figure 4.3 Predictions and Observations made throughout the testing phases

At the beginning of phase 1, i.e. t = 0, the only observations available pertain to

the software development process. These can help us derive predictions for ã

[57][20][75] as well as a first set of predictions for r [74] and γ [75]. These

predictions are denoted as: ãP(0), rP(0) and γP(0) respectively where the superscript P(0)

denotes a prediction made at time “t = 0”. From these predictions and equations (4.7)

and (4.8) one derives the first set of predictions in Table 4.2 (i.e. predictions at t=0).

In Table 4.2, ∆𝑀1(2)
𝑃(0)stand for the number of failures we expect to experience during

testing phase 1(2) predicted at time t=0 using equation (4.7), 𝑛𝑓𝑟1(0) (respectively

𝑛𝑓𝑟2(0)) stand for predictions made at time t=0 of the number of faults remaining in

the code at the end of testing phase 1 (respectively testing phase 2) obtained using

equation (4.9). During phase 1 testing, i.e. t ∈ (0, t1), one observes 1) software

failures through testing and the total number of failures observed is ∆M1
E ; 2) the

actual test coverage C1E(t) from which one can derive the upper and lower bounds of

coverage achieved at the end of phase 1, CUE(1) and CLE(1) . From those two

 90

observations one derives the second set of predictions in Table 4.2 (i.e. predictions at

t=t1). Values of ∆M1
E, CUE(1), and CLE(1) used in combination with predictions of the

number of faults remaining at the end of a phase allow updating of K1 and K2 as will

be explained in section 4.4.2.

One should note at this point that our MDF strategy further consists in updating

parameters (such as r, γ, K1, K2) when observations are available using a Bayesian

framework (see the following sections 4.4.1 and 4.4.2. for a discussion of the

Bayesian updating methodology) and replacing unknowns such as ∆𝑀1(2)
𝑃(..) by their

observed value ∆𝑀1(2)
𝐸 when they become available (see Table 4.2). Choices such as

these further characterize the MDF strategy followed beyond it being of the type SIA.

For example, one could consider that observations may not truly reflect "reality" due

to an imperfect "understanding" of the situation at hand and modify the MDF strategy

accordingly by combining observations such as ∆M1
E and predictions such as ∆𝑀1(2)

𝑃(..)

through a weighted scheme instead of replacing ∆𝑀1(2)
𝑃(..) by ∆M1

E when the latter

becomes available.

During the following post-testing analysis (PTA) period where t∈ (𝑡1, 𝑡1∗) , one

will identify the faults which correspond to the failures experienced in the phase 1

testing. Thus, the observation during PTA is the total number of uncovered faults

∆m1
E(t1∗). These faults were the result of software development errors. Amongst these

faults, some may be the result of repairs which took place during the development

process and were not carried out properly. These correspond to the additional

observations: ∆m1_nr
E (t1∗) are faults which were not repaired although they should

 91

have and ∆m1_new
E (t1∗) are new faults introduced during the repair process. This

information can be used to update the rates rP(0) and γP(0) and leads to the third update

of our predictions in Table 4.2 (i.e. predictions at t = t1*). A repair process is

conducted after faults have been identified. One will not observe the effect of such

repair until the next testing phase. Therefore, no new observation is available during

phase 1 repair (which occurs for 𝑡 ∈ (𝑡1+, 𝑡1∗)). As such predictions remain identical

(see Table 4.2, predictions at t=t1
* and t= t1

+ are identical).

During the phase 2 testing, i.e. t ∈ (t1+, t2), one observes the total number of

software failures ∆M2
E and test coverage C2E(t) . The predictions are once again

updated taking this information into consideration (see Table 4.2, predictions at t=t2).

During the next PTA (which occurs for t ∈ (t2, t2∗)) , two new observations besides

∆m2
E(t2∗) are available and can be used to update the predictions. These observations

are: 1) the number of new faults introduced into the software due to bad repairs,

∆m2_new
E (t2∗), 2) the number of faults that have not been repaired, ∆m2_nr

E (t2∗). This

information can be used to update the rates rP(t
1

*) and γP(t
1

*).

Table 4.2 provides the set of high level equations used to update the unknowns

 ∆𝑀1(2) , 𝑛𝑓𝑟1(0) and 𝑛𝑓𝑟2(0). These equations involve parameters such as r, γ, K1

and K2 who are also updated periodically as observations pertinent to these quantities

become available. We next examine a possible Bayesian updating framework for

these parameters.

 92

Table 4.2 Predictions made at different instants of time of a multi-phase testing

process

Time of
Prediction

Prediction Equation

𝑡 = 0 ∆𝑀1
𝑃(0) = ∆𝑚1

𝑃(0)(ã𝑃(0),𝐾1
𝑃(0), 𝑟𝑃(0),𝛾𝑃(0), 𝑐𝑈

𝑃(0)(1), 𝑐𝐿
𝑃(0)(1))

∆𝑀2
𝑃(0) = ∆𝑚2

𝑃(0)(ã𝑃(0),𝐾2
𝑃(0), 𝑟𝑃(0),𝛾𝑃(0), 𝑐𝑈

𝑃(0)(2), 𝑐𝐿
𝑃(0)(2),∆𝑚1

𝑃(0)))

𝑛𝑓𝑟1(0) = �ã𝑃(0) + (−𝑟𝑃(0) + �1 − 𝑟𝑃(0)� × 𝛾𝑃(0))

× ∆𝑚1
𝑃(0)(ã𝑃(0),𝐾1

𝑃(0), �𝑃(0), 𝛾𝑃(0), 𝑐𝑈
𝑃(0)(1), 𝑐𝐿

𝑃(0)(1)�

𝑛𝑓𝑟2(0) = �ã𝑃(0) + (−𝑟𝑃(0) + �1 − 𝑟𝑃(0)� × 𝛾𝑃(0))

× �
∆𝑚1

𝑃(0)(ã𝑃(0),𝐾1
𝑃(0), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈

𝑃(0)(1), 𝑐𝐿
𝑃(0)(1))

+∆𝑚2
𝑃(0)(ã𝑃(0),𝐾2

𝑃(0), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈
𝑃(0)(2), 𝑐𝐿

𝑃(0)(2),∆𝑚1
𝑃(0))

��

𝑡 = 𝑡1 ∆𝑀1
𝐸

∆𝑀2
𝑃(𝑡1) = ∆𝑚2

𝑃(𝑡1)(ã𝑃(0),𝐾2
𝑃(𝑡1), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈

𝑃(0)(2), 𝑐𝐿
𝑃(0)(2),∆𝑚1

𝑃(𝑡1)))

𝑛𝑓𝑟1(𝑡1) = �ã𝑃(0) + (−𝑟𝑃(0) + �1 − 𝑟𝑃(0)� × 𝛾𝑃(0)) × ∆𝑚1
𝑃(𝑡1)(ã𝑃(0),𝐾1

𝑃(𝑡1), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈𝐸(1), 𝑐𝐿𝐸(1)�

𝑛𝑓𝑟2(𝑡1) = �ã𝑃(0) + (−𝑟𝑃(0) + �1 − 𝑟𝑃(0)� × 𝛾𝑃(0))

× �
∆𝑚1

𝑃(𝑡1)(ã𝑃(0),𝐾1
𝑃(𝑡1), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈𝐸(1), 𝑐𝐿𝐸(1))

+∆𝑚2
𝑃(𝑡1)(ã𝑃(0),𝐾2

𝑃(𝑡1), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈
𝑃(0)(2), 𝑐𝐿

𝑃(0)(2),∆𝑚1
𝑃(𝑡1))

��

𝑡 = 𝑡1∗ ∆𝑀1
𝐸

∆𝑀2
𝑃(𝑡1∗) = ∆𝑚2

𝑃(𝑡1∗)(ã𝑃(0),𝐾2
𝑃(𝑡1∗), 𝑟𝑃(𝑡1∗), 𝛾𝑃(𝑡1∗), 𝑐𝑈

𝑃(0)(2), 𝑐𝐿
𝑃(0)(2),∆𝑚1

𝐸))
𝑛𝑓𝑟1(𝑡1∗) = �ã𝑃(0) + (−𝑟𝑃(𝑡1∗) + �1 − 𝑟𝑃(𝑡1∗)� × 𝛾𝑃(𝑡1∗)) × ∆𝑚1

𝐸�

𝑛𝑓𝑟2(𝑡1∗) = �ã𝑃(0) + (−𝑟𝑃(𝑡1∗) + �1 − 𝑟𝑃(𝑡1∗)� × 𝛾𝑃(𝑡1∗))

× �∆𝑚1
𝐸+∆𝑚2

𝑃(𝑡1∗)(ã𝑃(0),𝐾2
𝑃(𝑡1∗), 𝑟𝑃(𝑡1∗), 𝛾𝑃(𝑡1∗), 𝑐𝑈

𝑃(0)(2), 𝑐𝐿
𝑃(0)(2),∆𝑚1

𝐸)��

𝑡 = 𝑡1+ Identical to 𝑡 = 𝑡1∗
𝑡 = 𝑡2 ∆𝑀1

𝐸
∆𝑀2

𝐸
𝑛𝑓𝑟1(𝑡2) = �ã𝑃(0) + (−𝑟𝑃(𝑡1∗) + �1 − 𝑟𝑃(𝑡1∗)� × 𝛾𝑃(𝑡1∗)) × ∆𝑚1

𝐸�

𝑛𝑓𝑟2(𝑡2) = �ã𝑃(0) + (−𝑟𝑃(𝑡1∗) + �1 − 𝑟𝑃(𝑡1∗)� × 𝛾𝑃(𝑡1∗))

× � ∆𝑚1
𝐸+∆𝑚2

𝑃(𝑡2)(ã𝑃(0),𝐾2
𝑃(𝑡2), 𝑟𝑃(𝑡1∗), 𝛾𝑃(𝑡1∗), 𝑐𝑈𝐸(2), 𝑐𝐿𝐸(2),∆𝑚1

𝐸)��

𝑡 = 𝑡2∗ ∆𝑀1
𝐸

∆𝑀2
𝐸

𝑛𝑓𝑟1(𝑡2∗) = �ã𝑃(0) + (−𝑟𝑃(𝑡2∗) + �1 − 𝑟𝑃(𝑡2∗)� × 𝛾𝑃(𝑡2∗)) × ∆𝑚1
𝐸�

𝑛𝑓𝑟2(𝑡2∗) = �ã𝑃(0) + �−𝑟𝑃(𝑡2∗) + �1 − 𝑟𝑃(𝑡2∗)� × 𝛾(𝑡2∗)� × (∆𝑚1
𝐸 + ∆𝑚2

𝐸�)
𝑡 = 𝑡2+ Identical to 𝑡 = 𝑡2∗

4.4.1. Updating of the Repair and Fault Introduction Rates

 93

Let us examine how updating of the repair and fault introduction rate may be

performed using a Bayesian updating approach.

A Beta distribution () ()
() () () 11; , 1Beta r r r βαα β

α β
α β

−−Γ +
= −
Γ Γ

 is selected as prior

distribution for the repair rate (r). The Beta distribution is an appropriate choice for

the representation of quantities which take values on the interval [0, 1] like the repair

rate and allows modeling of a large range of behaviors through the distribution’s

parameters α and β.

It will be initially assumed that no prior information exists on the repair rate, a

situation which is represented by a uniform distribution, a Beta distribution with α = 1

and β = 1. Different sources of evidence can then be used to update the prior: 1)

Evidence on other software systems than the one currently tested (such as for instance

Capers Jones’ compendium of industry data which shows that the percentage of

perfect code modifications (rj) can vary from 40% to 99% [74] dependent upon the

degree of formality of reviewing techniques and other factors), 2) Evidence related to

development of the software system and which precedes the multi-phase testing if

such evidence is available. These two sources of evidence can be used to define rP(0).

They should be cast in terms of repair attempts and corresponding repair

successes/failures experienced in order to allow updating of the initial prior, i.e. the

uniform distribution. More specifically, the repair data needs to take the form “(k, n)”

where n is the total number of repairs made and k is the number of imperfect repairs

as a result of the repairs undertaken.

The likelihood function used in the Bayesian updating process should

characterize the repair process and gives the likelihood of observing the evidence

 94

given the prior. The repair process can be seen as a succession of independent repair

attempts. Each repair attempt can typically be described using the Binomial

distribution 𝐵(𝑘,𝑛/�) = 𝐶𝑘𝑛𝑟𝑛−𝑘(1 − 𝑟)𝑘 which is the probability distribution of the

number of "unsuccessful trials (here imperfect repair)" in n independent Bernoulli

trials (n repairs), with the same probability of "failure", “1-r”.

The posterior distribution obtained after each of the updating processes is also a

Beta distribution with parameters α’ and β’ based on the fact that Beta, Binomial are

conjugate pairs.

Since the number of repair attempts at the origin of Jones’ data is unknown and

this source of evidence should not be given more importance than the data collected

on the system under study, the scaling method proposed in [91] is utilized. Firstly,

this scaling method assigns the same number of observations (here repair attempts) to

each source of evidence. Then, appropriate weights (w1r for Jones’ data and w2r for

auxiliary observations during development) are assigned to these two sources of

evidence. Here, the number of observations is taken as nD which is the number of

repair attempts during the development process, kD the number of failed repair

attempts during the development process, and w2r is larger than w1r since

development process data pertinent to the software under study should be given more

importance than generic data related to industry averages.

Once testing is initiated further observations become available such as

∆m1_nr
E (t1∗), ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗) , ∆m2_nr
E (t2∗) , ∆m2new

E (t2∗) and ∆𝑚1
𝐸 . The first four

observations correspond to repair errors which can be traced either to development or

to repair attempts at the end of phase 1 and can be lumped with the kD failed repair

 95

attempts. As for ∆𝑚1
𝐸, it corresponds to new repair attempts at the end of phase 1 and

can be lumped with the nD repair attempts. Note that this particular choice, assumes

that the repair process taking place during development and at the end of the testing

process retains similar characteristics. Note also that the scaling is revised as the

number of opportunities for repair errors grows from nD to nD+ ∆𝑚1
𝐸 . Table 4.3

describes the multiple updates discussed.

Table 4.3 Parameters of the Prior and Posterior Distributions for repair rate rP(...)

 Initial Prior Evidence from
Capers Jones

Posterior

1-rP(0) Uniform
Distribution

The percentage of
perfect code
modifications, r, from
industrial data
averages (i.e. Capers
Jones) and kD out of nD
repairs during the
development process
of the current software
are imperfect

a(0) = 1 +w1r* (1-rj)* nD + w2r kD

β(0) = 1 + w1r*r* nD + w2r (nD – kD)

1
− 𝑟𝑃(𝑡1∗)

Beta
Distribution
for 1- rP(0)

∆m1_nr
E (t1∗) and

∆m1new
E (t1∗)

a(t1
) = 1 +w1r (1- rj)* nD + w2r *(kD

+∆𝑚1𝑛𝑒𝑤
𝐸 (𝑡1∗)+∆𝑚1𝑛𝑟

𝐸 (𝑡1∗))
β(t1

) = 1 + w1 rj * nD + w2 (nD –
kD+ ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗)))

1
− 𝑟𝑃(𝑡2∗)

Beta
Distribution
for 1- rP(t

1
*)

∆m2_nr
E (t2∗),

∆m2new
E (t2∗) and

∆𝑚𝟏
𝑬

a(t2
) = 1 +w1r (1- rj)*(nD +∆𝑚𝟏

𝑬)+ w2r
*(kD +∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗) +

𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)+∆𝑚2_𝑛𝑟

𝐸 (𝑡2∗))
β(t2

) = 1 + w1r rj *(nD +∆𝑚𝟏
𝑬))+ w2r ((nD

+∆𝑚𝟏
𝑬)– (kD+ ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗) +

∆𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)+∆𝑚2_𝑛𝑟

𝐸 (𝑡2∗)))

The same Bayesian updating approach can be applied to the new fault

introduction rate γ. Industry averages data on the fault introduction rate such as the

one found in [75] and denoted γj can serve to initially update the uniform distribution.

 96

This evidence is given a weight w1j. Repair data collected during the development

process “(νD, kD)” where νD number of newly introduced faults due to imperfect repair

as a result of a repair process will serve as second source of evidence and is assigned

a weight w2γ. Finally further evidence collected during the multi-phase functional

testing process is also used. This evidence is also assigned weight w2γ (as it is

assumed that repairs taking place during development process and at the end of each

testing phase retain same characteristics. This assumption can be easily modified if

need by adding supplementary weights). The evidence in question is: ∆m1_nr
E (t1∗),

∆m1new
E (t1∗), ∆m2new

E (t2∗), ∆m2_nr
E (t2∗). Table 4.4 shows the different updates for the

parameters of the prior and posterior distributions for γ.

Table 4.4 Parameters of the Prior and Posterior Distributions for the new fault

introduction rate γP(…)

 Initial Prior Evidence Posterior

γP(0) Uniform
Distribution

 γ from Capers
Jones and νD out
of kD failed
repairs during the
development
process led to the
introduction of
new faults

a(0) = 1 + w1γ * γj * kD + w2 γ * νD

β(0) = 1 + w1γ *(1- γj)* kD + w2 γ *(kD – νD)

 𝛾𝑃(𝑡1∗) Beta
Distribution
for γ P(0)

∆m1_nr
E (t1∗)

and ∆m1new
E (t1∗)

a(t1
*) =1 + w1 γ * γj *(kD +∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗))+ w2 γ *(

νD+∆𝑚1𝑛𝑒𝑤
𝐸 (𝑡1∗))

β(t1
*) = 1 + w1 γ *(1- γj) *(kD +∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗))+

w2 γ *((kD +∆𝑚1𝑛𝑒𝑤
𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟

𝐸 (𝑡1∗)) - (νD+∆𝑚1𝑛𝑒𝑤
𝐸 (𝑡1∗)))

𝛾𝑃(𝑡2∗) Beta
Distribution
for γ P(t

1
*)

∆m2new
E (t2∗) and

∆m2_nr
E (t2∗)

a(t2
*) = 1 + w1 γ * γj *(kD+ ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗) +

∆𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)+∆𝑚2_𝑛𝑟

𝐸 (𝑡2∗))+ w2 γ *(
νD+∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗))

β(t2
*) = 1 + w1 γ *(1- γj) *(kD+ ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗) +

∆𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)+∆𝑚2_𝑛𝑟

𝐸 (𝑡2∗))+ w 2 γ
*((kD+ ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗) +

∆𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)+∆𝑚2_𝑛𝑟

𝐸 (𝑡2∗))- (νD+∆𝑚1𝑛𝑒𝑤
𝐸 (𝑡1∗)+∆𝑚2𝑛𝑒𝑤

𝐸 (𝑡2∗)))

 97

4.4.2. Updating of the Fault Propagation Constant

A fault propagation constant Ki (K1 and K2) is used within the multi-phase testing

process to model the probability that when faults are covered they will lead to

failures. This probability depends on the faults remaining in the application and on

the test cases used. Values for Ki can be obtained experimentally using techniques

such as fault seeding and determining a value of the propagation constants for the test

cases under consideration or using the evidence obtained from the remaining faults

and failures identified.

In

Table 4.2, we are concerned with: 𝐾1

𝑃(0) , 𝐾1
𝑃(𝑡1) , 𝐾2

𝑃(0) ,𝐾2
𝑃(𝑡1) ,𝐾2

𝑃(𝑡1∗) and

 𝐾2
𝑃(𝑡2). Since the K values are probabilities, they can also be represented using a

Beta prior and the likelihood function can be initially assumed Binomial. Each set of

tests (within a phase) which covers a fault attempts to trigger a failure and this

experiment can be seen (in first approximation) as independent of the triggering of

another failure by another covered fault.

Initially, if we exclude an experimental a priori determination of K1, no evidence

is available and the prior is a Uniform distribution. Evidence becomes available

when the application is tested in phase 1 under the form of ∆𝑀1
𝐸. These failures are

the direct result of triggering in average (and as a first approximation) (ã𝑃(0) ∗

(𝑐𝑈𝐸(1) − 𝑐𝐿𝐸(1)) possible covered faults. Hence the update proposed in Table 4.5 for

𝐾1
𝑃(𝑡1). The weight assigned to this evidence is w1K1.

A similar reasoning is applied for K2. At time t=0, if we again preclude a

possible experimental determination of K2, no evidence is available and the prior is a

 98

Uniform distribution. Evidence on K1 (∆𝑀1
𝐸 which becomes available at the end of

testing phase 1) is our first source of evidence. It provides indirect information on the

fault propagation characteristics of the application under test. Hence we use it to

update K2 and obtain 𝐾2
𝑃(𝑡1). The weight assigned to this evidence is w1K2.

Table 4.5 Parameters of the Prior and Posterior Distributions for 𝐾1
𝑃(..)

Variable Initial Prior Evidence Posterior

𝐾1
𝑃(0) Uniform None a(0) = 1

β(0) = 1

𝐾1
𝑃(𝑡1) 𝐾1

𝑃(0) ∆𝑀1
𝐸, 𝑐𝑈𝐸(1),

𝑐𝐿𝐸(1)
a(t1) = 1 +w1k1 ∆𝑀1

𝐸
β(t1) = 1 + w1k1* (ã𝑃(0)*(𝑐𝑈𝐸(1) − 𝑐𝐿𝐸(1))-∆𝑀1

𝐸)

The scaling factor applied is 𝑛𝑓𝑟1(𝑡1) ∗ (𝑐𝑈
𝑃(0)(2) − 𝑐𝐿

𝑃(0)(2)) since it represents

the maximum number of failures which we will experience during phase 2 testing. At

t= t1*, nfr1 is updated and as such a new estimate of K2 is produced ,𝐾2
𝑃(𝑡1∗). During

phase 2 testing, new evidence in the form of ∆𝑀2
𝐸 failures becomes available. The

actual coverage (𝑐𝑈𝐸(2), 𝑐𝐿𝐸(2)) is also known. K2 is updated with this new evidence

which is this time directly pertinent to the test cases K2 characterizes and given a

weight of w2K2 (where w2K2 is superior to w2K1). Updates for K2 are described in Table

4.6.

Parameters α() and β() in Table 4.5 and Table 4.6 are the parameters of the

respective Beta distributions. It should be noted that since there is only one set of

observations available for updating K1, weight w1K1 should be equal to 1.

 99

Table 4.6 Parameters of the Prior and Posterior Distributions for 𝐾2
𝑃(..)

Variable Initial Prior Evidence Posterior

𝐾2
𝑃(0) Uniform

Distribution
None α (0)= 1

β(0) = 1

𝐾2
𝑃(𝑡1) 𝐾2

𝑃(0) ∆𝑀1
𝐸,𝑐𝑈𝐸(1),

𝑐𝐿𝐸(1)
a(t1) = 1 + w1k2 * ∆𝑀1

𝐸 * nfr1 (t1)*(𝑐𝑈
𝑃(0)(2) −

𝑐𝐿
𝑃(0)(2))

β(t1) = 1 +w1k2 *(ã𝑃(0)*(𝑐𝑈𝐸(1) − 𝑐𝐿𝐸(1))-∆𝑀1
𝐸))) *

nfr 1 (t1)*(𝑐𝑈
𝑃(0)(2) − 𝑐𝐿

𝑃(0)(2))

𝐾2
𝑃(𝑡1

∗)and

𝐾2
𝑃(𝑡1

+)

𝐾2
𝑃(𝑡1) ∆𝑚1

𝐸 a(t1
*) = 1 +w1k2 * ∆𝑀1

𝐸 *nfr 1 (t1
*)*(𝑐𝑈

𝑃(0)(2) −
𝑐𝐿
𝑃(0)(2))

β(t1
*) = 1 + w1k2 *(ã𝑃(0)*(𝑐𝑈𝐸(1) − 𝑐𝐿𝐸(1))-

∆𝑀1
𝐸))) * nfr 1 (t1

)(𝑐𝑈
𝑃(0)(2) − 𝑐𝐿

𝑃(0)(2))

𝐾2
𝑃(𝑡2) 𝐾2

𝑃(𝑡1
+) ∆𝑀2

𝐸,𝑐𝑈𝐸(2),
𝑐𝐿�(2)

a(t2) = 1 +(w1k2 *∆𝑀1
𝐸 + w2 * ∆𝑀2

𝐸) * nfr 1 (t2)
*(𝑐𝑈𝐸(2) − 𝑐𝐿𝐸(2))
β(t2) = 1 +(w1k2*(ã𝑃(0)*(𝑐𝑈𝐸(1) − 𝑐𝐿𝐸(1))-∆𝑀1

𝐸))
 + w2k2 * nfr 1 (t2)*(𝑐𝑈𝐸(2) − 𝑐𝐿𝐸(2))-∆𝑀2

𝐸)))
nfr 1 (t2)(𝑐𝑈𝐸(2) − 𝑐𝐿𝐸(2))

Example-

The equations developed in paragraphs 4.4.1 and 4.4.2 were applied to a hypothetical

software system SY. The industry average data, weights, predicted values of test

coverage made using a description of planned tests in the test plan and example

observations are provided respectively in Table 4.7 - Table 4.10. Three cases are

considered. The results obtained are given in Figure 4.4.

Table 4.7 Industry Average Data Used in the Analysis of Software System SY

Case # rj γj
1-3 .9 .1

Table 4.8 Weights Used in the Analysis of Software System SY

Case # w1r w2r w1γ w2γ w1K1 w1K2 w2K2
1-3 .25 .75 .25 .75 1 .25 .75

 100

Table 4.9 Predictions Made for the Upper and Lower Bounds of Test Coverage Based

on Information Available in the Test Plan

Case # 𝒄𝑳
𝑷(𝟎)(𝟏) 𝒄𝑼

𝑷(𝟎)(𝟏) 𝒄𝑳
𝑷(𝟎)(𝟐) 𝒄𝑼

𝑷(𝟎)(𝟐)
1-3 0 .5 0 .9

Table 4.10 Observations Used in the Analysis of Software System SY

Case

𝐭 ∈ (−∞,𝟎) 𝐭 ∈ (𝟎, 𝐭𝟏) 𝒕 ∈ (𝒕𝟏, 𝒕𝟏∗) 𝐭 ∈ (𝐭𝟏+, 𝐭𝟐) 𝐭 ∈ (𝐭𝟐, 𝐭𝟐∗))
nd kd νd ∆M1

E 𝑐𝐿𝐸(1) 𝑐𝑈𝐸(1) ∆𝑚𝟏
𝑬 ∆m1_nr

E (t1∗) ∆m1new
E (t1∗) ∆M2

E 𝑐𝐿𝐸(2) 𝑐𝑈𝐸(2) ∆𝑚𝟐
𝑬 ∆m2_nr

E (t2∗) ∆m2new
E (t2∗)

1 100 3 0 2 0 0.4 2 1 0 4 0 0.8 4 0 0
2 100 3 0 1 0 0.4 1 1 0 2 0 0.8 2 0 0
3 100 3 0 5 0 0.4 5 1 0 2 0 0.8 2 0 0

(a) Case 1 (b) Case 2

(c) Case 3

Figure 4.4 ∆𝑀1
𝑃(𝑡), ∆𝑀2

𝑃(𝑡),∆𝑀1
𝐸 ,∆𝑀2

𝐸 ,𝑛𝑓𝑟 1(𝑡)and 𝑛𝑓𝑟 2 (𝑡) for SY

The figures clearly demonstrate the impact of observations on the number of

faults remaining in phases 1 and 2. Case 1 is a case where predicted behavior and

observations match closely (i.e.∆M1
E and ∆M1

P are close and so are ∆M2
E and ∆M2

P).

Only slight corrections are brought to the parameters and the predictions at time 0 are

 101

close to the predictions at the end of phase 2. On the other hand Case 2 and Case 3

present situations that further and further deviate from the initial predictions. The

figure shows how these deviations are accounted for and corrected.

4.5. Extensions in the Case of a Non-Uniform Distribution of Faults

We will now focus on another extension of interest which considers the fact that

faults may not be distributed uniformly over the different fault locations. This is of

particular importance in ultra-reliable systems because the location of a fault is a

determinant factor in the severity of the associated failure. As such it is necessary if

possible to locate the position of the remaining faults. We will establish the equations

providing the number of failures experienced and the number of faults remaining for

multiple test phases.

Our assumptions have now become: 1) Faults are not uniformly distributed over

all potential fault sites. The probability that a fault resides in location L at time t

during phase “i" is given by fi(L,t); 2) When a potential fault-site is covered, any fault

present at that site is detected with probability Ki(L,t) where “L” is the fault location

and “i" is the functional test phase; 3) Repairs take place at the end of each phase.

Repair activities are subject to errors. The probability of a perfect repair which

eliminates the original fault and does not introduce any new faults is ri for functional

test phase “i”. Different repair errors are considered: a) the fault is not corrected and

remains in its initial location L, no new fault is introduced; b) a fault moves from its

original location L to a new location L’; c) a fault remains in its original location L

and a new fault is introduced in a new location L’. To express these different cases

we introduce: γi the conditional probability that a new fault is introduced during

 102

functional test phase “i"; mi the conditional probability that a fault changes location;

ki(L,L’) the conditional probability that given that a fault is introduced or is moved

due to a repair at location L, it moves to L’; 4) Coverage is a continuous monotonic

non-decreasing function of testing time per phase.

Let us introduce additional notations for the coverage function. We define by

ci(L,t) the probability that a location is covered by time t in phase “i". Ci(t) is the

program coverage at time t during phase “i" and is given by:

 Ci(t) = � ci(L, t)
S

 for ti−1 ≤ t < 𝑡𝑖 (4.10)

where S is the set of software locations for software system S. From there, one

obtains the number of failures experienced since the beginning of phase “i” as:

 Δmi(t + 𝑑𝑡) = Δmi(t) + ��ci(L, t + 𝑑𝑡) − ci(L, t)� × ã × fi(L, t) × Ki(L, t)
S

 (4.11)

for ti-1 ≤ t < ti and where ã as before is the number of faults in the code at time t0= 0.

Dividing by dt and taking the limit for dt going to zero, we obtain:

𝑑𝛥𝑚𝑖(𝑡)

𝑑𝑡
= �

∂ci(L, t)
∂t

× ã × fi(L, t) × Ki(L, t)
S

 (4.12)

for ti-1 ≤ t < ti . The number of failures experienced during a phase “i” is then given

by:

 �
𝑑𝛥𝑚𝑖(𝑡)

𝑑𝑡
𝑑𝑡

𝑡𝑖

𝑡𝑖−1
= � �

∂ci(L, t)
∂t

× ã × fi(L, t) × Ki(L, t)
S

𝑡𝑖

𝑡𝑖−1
𝑑𝑡 (4.13)

The number of failures experienced due to a particular location over all n phases

is:

 ��
𝑑𝛥𝑚𝑖(𝐿, 𝑡)

𝑑𝑡
𝑑𝑡

𝑡𝑖

𝑡𝑖−1

𝑛

𝑖=1

= ��
∂ci(L, t)
∂t

× ã × fi(L, t) × Ki(L, t)
𝑡𝑖

𝑡𝑖−1
𝑑𝑡

𝑛

𝑖=1

 (4.14)

 103

The number of faults in location L changes as a function of detection and repair.

During the phase, the fault count does not change but faults are uncovered. At the

end of the phase, faults uncovered due to failures experienced are fixed. Let us

denote by ti+ the time at the end of phase “i” where repair is attempted, the

probability that a fault still exists at time ti+ in location L is given by the following

equation:

f𝑖(L, ti +) = fi−1(L, ti−1 +) − ri × �
𝛿𝑐𝑖(𝐿, 𝑡)

𝛿𝑡
× f𝑖−1(L, ti−1 +) × Ki(L, t)𝑑𝑡

ti

ti−1

− (1 − ri) × (1 − γi)

× mi �
𝛿𝑐𝑖(𝐿, 𝑡)

𝛿𝑡
× f𝑖−1(L, ti−1 +) × Ki(L, t)𝑑𝑡

ti

ti−1

+ (1 − ri) × γi

× � � �
𝛿𝑐𝑖(𝐿′, 𝑡)

𝛿𝑡
× fi−1(L′, ti−1 +) × Ki(L′, t) × ki(L′, L)𝑑𝑡

ti

ti−1

�
L′≠L

+ (1 − ri) × (1 − γi) × mi

× � � �
𝛿𝑐𝑖(𝐿′, 𝑡)

𝛿𝑡
× fi−1(L′, ti−1+) × Ki(L′, t) × ki(L′, L)𝑑𝑡

ti

ti−1

�
L′≠L

(4.15)

The first term corresponds to faults that were in L at the beginning of the phase,

the second term corresponds to successful repair of faults detected through failures

experienced, the third term corresponds to the attempted repair of a fault in L where

the fault will be moved to some unknown location L’, the fourth term corresponds to

the attempted repair of a fault at location L’ resulting in a new fault introduced in

location L, and the fifth term to unsuccessful repairs in location L’ that resulted in the

moving of the fault in L. The number of faults remaining is given by:

 104

 A(ti +) = � ã fi(L, ti +)
S

 with A(t0+) = ã. (4.16)

Example- Let us consider an example software SX. SX is undergoing two functional

test phases. Let us also assume that the upper and lower coverage values for each

functional test phase are given in Table 4.11. The case study considers 100,000

different locations. These could be different modules, lines of code, etc dependent

upon the level of abstraction selected. Values of the additional parameters are given

in Table 4.12 to Table 4.14. In this example we assume that Ki(L,t) is dependent

upon the phase and the location but not upon time.

Table 4.11 Multi-Phase Test Profile for Software SX

Phases 1 2
CL(i) 0 0
CU(i) .67 1

Table 4.12 Detection probabilities per location for the two phases for Software SX

Case # (a) (b)
K1(L) 0 for L= [12000, 21999] U [32000,

41999] U [82000, 94999]
.5 for all other values of L

0 for L= [33000, 54999] U [82000,
92999]
.5 for all other values of L

K2(L) .5 for all L in [0, 100000] .5 for all L in [0,100000]

Table 4.13 ki(L’,L) for the two phases (i = 1,2)

Case # For L’=1 For L’=2 to 99,999 For L’=100,000
(a) ki(L’,L)=1 if L=2

ki(L’,L)=0 otherwise
ki(L’,L)=.5 if L’=L-1 or L’=L+1
ki(L’,L)=0 otherwise

ki(L’,L)=1 if L=99999
ki(L’,L)=0 otherwise

(b) ki(L’,L)=1 if L=2
ki(L’,L)=0 otherwise

ki(L’,L)=1 if L’=L-1
ki(L’,L)=0 otherwise

ki(L’,L)=1 if L=99999
ki(L’,L)=0 otherwise

Table 4.14 Remaining Parameters for SX

Case # (a) (b)

r1=r2 γ1=γ2 m1=m2 ã r1=r2 γ1 γ2 m1=m2 ã

.9 .25 .2 3 .9 .4 .3 .2 3

 105

Results are given in Figure 4.5. The example shows the likely location of

remaining defects and their distribution as well as the potential number of faults

remaining.

Figure 4.5 Fault Location Distributions for SX

4.6. Conclusions

This paper presents a new test coverage-based model which allows the

description of ultra reliable software systems developed through multiple phases of

functional testing. The paper establishes the equations governing the number of

failures experienced and the number of faults remaining as a function of the multi-

phase test coverage function.

This model is further extended: 1) to take advantage of auxiliary observations

collected during the multi-phase testing and analysis process to refine the predictions

made; 2) to describe software systems where either the initial fault distribution is non-

uniform with respect to location, or the repair and test and detection process favor

certain locations.

The first extension is based on a model-data fusion paradigm where parameters

and unknowns are updated sequentially as and when information becomes available.

 106

The example discussed in section 4.4 demonstrates that the model-data fusion

framework proposed can be used to progressively and efficiently correct and refine

the residual fault counts prediction if initial test-coverage based predictions deviate

significantly from actual observations. The second extension of the model deals with

potential fault location predictions. For ultra-reliable systems fault location

information is of importance because the location of a fault determines how

frequently it will be executed in operation and whether it will propagate. As such

location is primary in determining fault propagation characteristics and whether the

fault will have a large impact or not. The fault location distribution could be used in

combination with mutation or modeling approaches to determine the fault

propagation characteristics of the software in operation before it runs in the field.

Such information is important for ultra-reliable systems which cannot be allowed to

fail in the field and for which we will not be able to collect field data (failures in

operation). Location information can also be used to refine testing and target it

towards high impact high likelihood faults if those exist. In this paper the framework

was applied to synthetic examples whose characteristics were chosen to be

representative of real case studies. Application of the framework to a system with

100,000 locations shows that its computational complexity is limited, that results

obtained for diverse sets of parameters display foreseeable trends, and that the tool

developed can easily be expanded to handle more complex systems. Through

simulations such as those presented in section 4.5, one can observe the effect of

different test strategies, of initial fault distributions, of repair and new fault

introduction rates, of the number of functional test phases and determine how these

 107

influence the final fault distributions. The knowledge gained can be used to optimize

testing and improve reliability. Application of the models developed to an actual case

study is not discussed in this paper and will be the object of future extensions. This

will in particular entail selection of adequate approaches for parameter estimation.

The parameters should be identifiable using a combination of methods and tools such

as: code coverage tools for c(L); early prediction methods [20] for f0(L); limited

mutation for transfers of faults k(L’,L) [25]; field data for repair rates, fault

introduction rates and K(L’) updated using information related to faults observed

during the different phases.

 108

Chapter 5: Summary and Future Research

5.1 Summary

This research focused on proposing a systematic software metric-based

reliability prediction method. The method started with the measurement of a metric.

Measurement results are then linked to three different types of defect characteristics:

1) the number of defects remaining or 2) the number and the exact locations of the

defects found or 3) the number and the exact locations of defects found in an earlier

version. Three models, Musa’s exponential model, the PIE model and a mixed Musa-

PIE model, are used to link the three categories of defect characteristics with

reliability using the operational profile.

In order to implement the PIE model, an approach for construction of the EFSM

model is presented. The EFSM is used in most of the top ranked software metrics

studied in this thesis to identify the fault propagation rates of faults. The approach

allows the mapping of the defects and the operational profile to the constructed

EFSM model so that the execution of the updated EFSM model can be used to

abstractly represent the faulty execution of the real software.

This software reliability prediction method is then applied to a safety-critical

software used in the nuclear industry using eleven metrics. Reliability prediction

results are compared with the real reliability assessed using operational failure data.

Results show that reliability prediction based on DD, FDN, RT and TC are close to

the operational reliability. Experiences and lessons learned from the application are

discussed.

 109

Possible extensions to the existing models as well as procedures for repeatable

measurement and prediction are proposed.

The RePS built upon the test coverage measure provides credible prediction

results and is refined to be able to take into consideration more realistic conditions,

such as imperfect and non-uniformly distributed debugging and the use of multiple

testing phases. More specifically, Chapter 3 introduces a first refinement for TC

RePS. This refinement assesses the impact of newly introduced defects during the

debugging process on reliability. The newly introduced defects could be located non-

uniformly around the fault being fixed and they may possibly display different

propagation characteristics than the faults being fixed. Chapter 4 describes a second

refinement for TC RePS. This refinement allows the description of software systems

developed through multiple phases of functional testing and takes advantage of

auxiliary observations collected during the multi-phase testing and of the consequent

process of analysis to refine the predictions made. This refinement also describes

software systems where either the initial fault distribution is non-uniform with respect

to location, or the repair/test and detection process favor certain locations.

5.2 Areas for Future Research

This section discusses the follow-on issues raised as a consequence of

performing this study. The issues are listed as follows:

5.2.1 Defect Density Robustness

Defect density RePS is one of the best RePSs. The key step in this measurement

is to identify defects in the products of each software development phase. That is, to

reveal defects in the SRS, SDD and the code. The quality of results obtained using

 110

this RePS is a function of the inspector’s detection efficiency. More specifically, the

question is “What is the relationship between the ability of on inspector to detect a

defect and the fault exposure probability of this defect?” Restated: “Is an inspector

more likely to detect a defect with high exposure probability (probability of observing

the failure is high) than with low exposure probability (probability of observing the

failure is low) or reversely? Or is his/her detection ability independent of the fault

exposure probability of that defect?” If the inspector mostly detects defects that have

a small probability of occurrence then reliability assessments may be of low quality.

If the inspector on the other hand detects defects that have a high likelihood of

occurrence, then reliability estimation may be precise even if the defect detection

efficiency is low.

5.2.2 Issues with Repeatability and Scalability

As has been clearly shown in section 2.7.4, the measurement process can be

extremely time-consuming, error prone and highly dependent on the qualification of

the inspectors involved. A considerable amount of time may be spent in manually

"parsing" the natural language SRS, SDD or even the code and the number and type

of defects found may depend heavily on the inspectors. Two solutions to these

problems are possible: 1) Training and certification of inspectors; 2) Automation of

the measurement process. Automation can help improve the repeatability of the

measurement process while assisting the analyst and thereby increasing review speed.

Future research should examine each of these avenues and how they should be

implemented.

5.2.3 Issues with Common Cause Failures (CCF)

 111

At this point, none of the RePSs considered include a measurement of common

cause. This may lead to an underestimation of the probability of failure at the

software system level since we currently assume independence between the versions.

This underestimation may be of several orders of magnitude. For metrics such as CC,

FP, BLOC and RSCR, a CCF correction factor will need to be investigated. This

factor would represent the fraction of CCF which will be observed. For metrics such

as DD and RT, the EFSM propagation technique will need to be modified to account

for similar defects in multiple versions.

5.2.4 Issues with Uncertainty

Software reliability prediction is subject to uncertainty. The sources of

uncertainties in software reliability prediction can generally be divided into two main

categories: measurement uncertainty and model uncertainty. Measurement

uncertainty can arise from inaccuracies in the methods and tools used to assess a

quantity, from the artifact being measured, from the operator, and from other sources.

Model uncertainty can stem from simplifications, assumptions and approximations, or

from uncertainties in the values assumed by the model parameters. Further research

is needed in the area of identifying the uncertainty components in a measurement

process, estimating the total uncertainty, and reducing the degree of uncertainty.

5.2.5 Combining Measures

A future research project could determine how to down-select to a smaller

number of measures that can be combined and yield a more accurate reliability

estimation than that produced by any one measure taken in isolation.

 112

Appendix A. Eleven Software Metrics used in this Study

1) Bugs per line of code (BLOC)

The goal of this measure is to give a crude estimate of the number of faults in

a program module per line of code.

2) Cause & effect graphing (CEG)

A CEG is a formal translation of natural-language specification into its input

conditions and expected outputs. The graph depicts a combinatorial logic

network. CEG aids in identifying requirements that are incomplete and

ambiguous. This measure explores the inputs and expected outputs of a

program and identifies the ambiguities. Once these ambiguities are

eliminated, the specifications are considered complete and consistent. The

measure is computed as follows:

𝐶𝐸% = 100 × �1 −
𝐴𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
𝐴𝑡𝑜𝑡

�

Where:

Aexisting is the number of ambiguities in a program remaining to be

eliminated and

Atot is the total number of ambiguities identified.

3) Software capability maturity model (CMM)

CMM is a framework that describes the key elements of an effective software

process. The goal of this measure is to describe the principles and practices

underlying software-process maturity and to help software organizations

improve the maturity of their software processes [16]:

 113

𝐶𝑀𝑀 = 𝑖 𝑖 ∈ {1, 2, 3, 4, 5}

4) Completeness (COM)

The COM measure determines the completeness of the software requirements

specifications (SRS). This measure provides a systematic guideline to

identify the incompleteness defects in SRS. COM is the weighted sum of ten

derivatives, D1 through D10 [16] [92]:

𝐶𝑂𝑀 = �𝑤𝑖𝐷𝑖

10

𝑖=1

Where:

COM is the completeness measure,

wi is the weight of the ith derived measure,

Di is the ith derived measure calculated from the primitive measures Bi

(i = 1,…,18).

5) Cyclomatic complexity (CC)

This measure determines the structural complexity of a coded module. The

Cyclomatic Complexity (CC) of a module is the number of linearly

independent paths through a module. The cyclomatic complexity for the ith

module is originally defined by McCabe [93] [94] as:

𝐶𝐶𝑖 = 𝐸𝑖 − 𝑁𝑖 + 1

Where:

CCi : is the cyclomatic complexity measure of the ith module,

Ei : is the number of edges of the ith module (program flows between

nodes)

 114

Ni : is the number of nodes of the ith module (sequential groups of

program statements).

6) Defect density (DD)

Defect density is defined as the number of defects remaining divided by the

number of lines of code in the software. The defects are discovered by

independent inspection. Defect Density is given as:

𝐷𝐷 =
∑ 𝐷𝑖𝐼
𝑖=1

𝐾𝑆�𝑂𝐶

Where:

Di : is the number of unique defects detected during the design and

code inspection and still remain in the code.

KSLOC: is the number of source lines of code (LOC) in thousands.

7) Fault days number (FDN)

This measure represents the number of days that faults remain in the software

system from introduction to removal. The fault day measure evaluates the

number of days between the time a fault is introduced into a system and until

the point the fault is detected and removed [18] [95], such that:

FDi = fouti−fini and 𝐹𝐷 = ∑ 𝐹𝐷𝑖𝐼
𝑖=1

Where:

FD : Fault-days for the total system;

FDi : Fault-days for the ith fault;

fini : Date at which the ith fault was introduced into the system;

fouti : Date at which the ith
 fault was removed from the system;

8) Function point analysis (FP)

 115

Function Point is a measure designed to determine the functional size of the

software. The Function Point Counting Practices Manual is the definitive

description of the Function Pointing Counting Standard. The latest version is

Release 4.2, which was published in 2004 [96].

9) Requirement specification change request (RSCR)

RSCR is defined as the number of change requests that are made to the

requirements specification. This measure indicates the stability and/or growth

of the functional requirements. The requested changes are counted from the

first release of the requirements specification document to the time when the

product begins its operational life.

RSCR =Σ(requested changes to the requirements specification)

Where:

The summation is taken all requirements change requests initiated

during the software development life cycle.

10) Requirements traceability (RT)

According to IEEE [16], the requirements traceability measure aids in

identifying requirements that are either missing from, or in addition to, the

original requirements. Requirements traceability is defined as:

𝑅𝑇 =
𝑅1
𝑅2

× 100%

Where:

RT is the value of the measure requirements traceability,

R1 is the number of requirements met by architecture, and

R2 is the number of original requirements.

 116

11) Test coverage (TC)

As in IEEE [16], Test coverage (TC) is the percentage of requirement

primitives implemented multiplied by the percentage of primitives executed

during a set of tests. A simple interpretation of test coverage can be expressed

by the following formula:

𝑇𝐶% = �
𝐼𝐶
𝑅𝐶

� × �
𝑃𝑅𝑇
𝑇𝑃𝑃

� × 100

Where:

IC is the implemented capabilities;

RC is the required capabilities;

PPT is the tested program primitives and

TPP is the total program primitives.

 117

Appendix B. The M-D Models for each of the Eleven RePSs

1) Bugs per Line of code (BLOC)

Gaffney [28] established that the number of defects remaining in the software

(NG) could be expressed empirically as a function of the number of line of

codes:

𝑁𝐺 = ��4.2 + 0.0015�𝑆𝑖4
3

�
𝑀

𝑖=1

Where:

i is the module index,

M is the number of modules, and

Si is the number of lines of code for the ith module.

The next step is the partitioning of the defects based on their criticality. Using

Table B.1 from [45] for US Averages percentages for delivered defects by

severity level and logarithmic interpolation, the percentages of delivered

defects by severity level can be obtained.

Table B.1 Percentages for Delivered Defects by Severity Level

Severity 1
(critical)

Severity 2
(significant)

Severity 3
(minor)

Severity 4
(cosmetic)

Percentage of
delivered defects

0.0185 0.1206 0.3783 0.4826

So the number of delivered defects of interest (N) can be obtained as:

𝑁 = 𝑁𝐺 × 𝑆𝐿

Where:

 118

SL is the percentage of defects introduced at the severity level of

interest with the value of 0.1391 (0.0185+0.1206).

2) Cause & effect graphing (CEG)

Defects are uncovered during the inspection of the SRS using measurement

rules for CEG. All the defects identified through inspection along with their

descriptions, their locations and their types are recorded. Detailed

measurements rules are provided in [20].

3) Software capability maturity model (CMM)

Historical industry data collected by Software Productivity Research Inc [40]

links the CMM level to the number of defects per function points. Table B.2

presents this data.

Table B.2 CMM Levels and Average Number of Defects per Function Point

CMM level Average Defects/Function Point
Defects for SEI CMM level 1 0.75
Defects for SEI CMM level 2 0.44
Defects for SEI CMM level 3 0.27
Defects for SEI CMM level 4 0.14
Defects for SEI CMM level 5 0.05

Using Table B.1 from [45] for US Averages percentages for delivered defects

by severity level and logarithmic interpolation, the percentages of delivered

defects by severity level can be obtained.

Therefore, the number of defects based on the measurement of CMM can be

expressed as:

𝑁 = 𝐷𝐶𝑀𝑀 × 𝑆𝐿

Where:

 DCMM is the total number of defects for a certain CMM level;

 119

SL is the percentage of defects introduced at the severity level of

interest with the value of 0.1391 (0.0185+0.1206).

4) Completeness (COM)

Defects are uncovered during the inspection of the SRS using measurement

rules for COM. All the defects identified through inspection along with their

descriptions, their locations and their types are recorded. Detailed

measurements rules are provided in [20].

5) Cyclomatic complexity (CC)

An empirical correlation was derived to relate cyclomatic complexity and

number of defects. The correlation is based on an experimental data set

composed of system software applications developed by graduate students

The empirical correlation was established by following the form proposed in

[97]:

𝑆𝐿𝐼𝐶𝐶 = 1 −�𝑓𝑖 × 𝑝𝑖%
9

𝑖=1

Where:

SLICC : The SLI26 value of the cyclomatic complexity factor

fi : Failure likelihood fi used for SLI1 calculations [97]

pi : The percentage of modules whose cyclomatic complexity belong to

the ith level, i = 1, 2, ..., 9.

The number of defects predicted based on CC measurement results is:

26 SLI stands for Success Likelihood Index which is used to represent the likelihood of an error occurring in a particular situation
depends on the combined effects of a relatively small number of performance influencing factors (PIFs). SLI was used as an
index which quantifies whether a particular environment will increase the human error probability or decrease it (with respect to
a “normal situation”) [44]. SLICC is related to the likelihood that developers will err (i.e. introduce fault in the software product
and/or fail to remove them) because of the cyclomatic complexity of the modules.

 120

𝑁 = 0.036 × 𝑆𝐼𝑍𝐸 × (20)1−2𝑆𝐿𝐼𝑐𝑐

where

SIZE : the size of the delivered source code in terms of LOC (Line of

Code)

6) Defect density (DD)

Defects are uncovered during the inspection of the SRS, SDD and code using

measurement rules for DD. All the defects identified through inspection along

with their descriptions, their locations and their types are recorded. Detailed

measurements rules are provided in [20].

7) Fault days number (FDN)

Based on the cumulative characteristic of the FDN metric and by using the

concepts introduced in [44], one can show that FDN is related to μU(t) by the

following equation:

𝑑(𝐹𝐷𝑁)
𝑑𝑡

= 𝜇𝑈(𝑡)

Where:

 𝜇𝑈(𝑡): expected fault count at time t;

This equation shows the direct relationship between the measured real FDN

and the corresponding fault count. The number of faults can be obtained

using this equation once FDN is known (i.e. measured).. However, the real

FDN can not be obtained experimentally since not all the faults can be

discovered during the inspection. One can only obtain the apparent FDN,

FDNA which corresponds to faults identified through the inspection process

and removed through repair. One can relate FDNA to FDN by:

 121

𝑑(𝐹𝐷𝑁𝐴)
𝑑𝑡

= 𝛾(𝑡;𝜗𝜇𝐻, 𝑧𝑎, 𝜇𝑅) ∙
𝑑(𝐹𝐷𝑁)

𝑑𝑡

Where:

𝛾(𝑡;𝜗𝜇𝐻 , 𝑧𝑎, 𝜇𝑅 ,) is a function of 𝜗𝜇𝐻, 𝑧𝑎, 𝜇𝑅, relates FDNA to FDN;

𝜗 𝜇𝐻: estimate of fault introduction rate;

𝑍𝑎: intensity function of per-fault detection;

𝜇𝑅: expected change in fault count due to each repair.

Therefore, one can still obtain the fault count based on the measured apparent

FDN as shown by:

𝜇𝑈(𝑡) =
𝑑(𝐹𝐷𝑁𝐴)

𝑑𝑡
∙

1
𝛾(𝑡;𝜗𝜇𝐻, 𝑧𝑎, 𝜇𝑅)

8) Function point analysis (FP):

Jones’ empirical industry data [45] links the FP to the number of defects per

function point for different categories of applications. Table B.3 (Table 3.46

in [45]) provides the average numbers for delivered defects per function point

for different types of software systems. Logarithmic interpolation can then be

used for number of defects quantification.

Table B.3 Averages for Delivered Defects per Function Point (Extracted From [45])

Function
Points

End
user MIS Outsource Commercial Systems Military Average

1 0.05 0 0 0 0 0 0.01
10 0.25 0.1 0.02 0.05 0.02 0.03 0.07

100 1.05 0.4 0.18 0.2 0.1 0.22 0.39
1000 0 0.85 0.59 0.4 0.36 0.47 0.56

10000 0 1.5 0.83 0.6 0.49 0.68 0.84
100000 0 2.54 1.3 0.9 0.8 0.94 1.33

Average 0.45 0.9 0.48 0.36 0.29 0.39 0.53

 122

Therefore, the number of defects based on the measurement of FP can be

expressed as:

𝑁 = 𝐷𝐹𝑃 × 𝑆𝐿

Where:

DFP is the total number of defects obtained from Jones’ data for a

specific type of software system;

SL is the percentage of defects introduced at the severity level of

interest with the value of 0.1391 (0.0185+0.1206).

9) Requirement specification change request (RSCR)

To link requirements specification change requests to the reliability of a

software system, a derived measure called REVL was used. The measure is:

𝑅𝐸𝑉𝐿 =
𝑆𝐼𝑍𝐸𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑑𝑢𝑒 𝑡𝑜 𝑅𝑆𝐶𝑅

𝑆𝐼𝑍𝐸𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
× 100%

where

REVL : measure of requirements evolution and volatility;

SIZEchanged due to RSCR : size of changed source code corresponding to

RSCR, in Kilo Line of Code (KLOC);

SIZEdelivered : size of the delivered source code, in KLOC.

SLI for the REVL, denoted by SLIRSCR, is estimated using the value of REVL,

as shown in Table B.4.

Table B.4 Rating Scale and SLI Estimation for REVL

REVL 5% 20% 35% 50% 65% 80%
Rating
Levels

Very low Low Nominal High Very High Extra High

SLIRSCR 1 0.75 0.5 0.34 0.16 0

 123

The number of defects predicted based on RSCR measurement results is:

𝑁 = 0.036 × 𝑆𝐼𝑍𝐸𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 × (20)1−2𝑆𝐿𝐼𝑅𝑆𝐶𝑅

10) Requirements traceability (RT)

Defects are uncovered during the inspection of the SRS, SDD and code using

measurements rules for RT. All the defects identified through inspection

along with their descriptions, their locations and their types are recorded.

Detailed measurements rules are provided in [20].

11) Test coverage (TC)

Malaiya et al. investigated the relationship between defect coverage, C0, and

statement coverage, C1. In [46], the following relationship was proposed:

𝐶0 = 𝑎0𝑙𝑛(1 + 𝑎1𝑒𝑎2𝐶1−1)

where

a0, a1, a2 are coefficients, and

C1 is the statement coverage.

The number of defects remaining in the software N is:

𝑁 =
𝑁0
𝐶0

where

N0 is the number of defects found by test cases provided in the test plan,

C0 is the defect coverage.

 124

Bibliography

[1] NASA, "Standard for Software Assurance," NASA STD 8739.8, 2004.

[2] RTCA, "Software Considerations in Airborne Systems and Equipment

Certification," RTCA RTCA/DO-178, 1992.

[3] J. D. Musa, Software Reliability: Measurement, Prediction, Application. New

York, USA: McGraw-Hill, 1990.

[4] M. R. Lyu, Ed., Handbook of Software Reliability Engineering. New York:

McGraw-Hill, 1996.

[5] IEEE, "IEEE standard glossary of software engineering terminology 610.12-

1990," IEEE Computer Society, 1990.

[6] R. W. Butler and G. B. Finelli, "The Infeasibility of Quantifying the Reliability

of Life-Critical Real-Time Software," IEEE Transactions on Software

Engineering, vol. 19, p. 10, Jan. 1993.

[7] N. Fenton, et al., "Assessing dependability of safety critical systems using

diverse evidence," IEEE Proceedings Software Engineering, vol. 145, no. 1, pp.

35-39, 1998.

[8] N. Schneidewind, "Reliability Modeling for Safety-critical Software," IEEE

Transactions on Reliability, vol. 46, 1997.

[9] K. W. Miller, et al., "Estimating the Probability of Failure When Testing Reveals

No Failures," IEEE Transactions on Software Engineering, vol. 18, no. 1, pp.

 125

33-43, Jan. 1992.

[10] L. M. Kaufman, J. B. Dugan, and B. W. Johnson, "Using Statistics of the

Extremes for Software Reliability Analysis of Safety Critical Systems," in

Proceedings of The Ninth International Symposium on Software Reliability

Engineering, Paderborn, Germany, 1998, p. 355.

[11] M. G. Thomason and J. A. Whittaker, "Properties of Rare Fail-States and

Extreme Values of TTF in a Markov Chain Model for Software Reliabilit,"

University of Tennessee, 1999.

[12] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical

Approach, 2nd ed. New York: Int'l Thomson Computer Press, 1997.

[13] J. C. Munson and T. Khoshgoftaar, "The Detection of Fault-Prone Program,"

IEEE Transactions on Software Engineering, vol. 18, no. 5, pp. 423-433, 1992.

[14] X. Zhang and H. Pham, "An Analysis of Factors Affecting Software Reliability,"

The J. Systems and Software, vol. 50, p. 14, 2000.

[15] J. D. Lawrence, A. S. W. L. Person, and G. L. Johnson, "Assessment of Software

Reliability Measurement Methods for Use in Probabilistics Risk Assessment,"

Lawrence Livermore Nat'l Laboratory FESSP, 1998.

[16] IEEE, "IEEE Standard Dictionary of Measures to Produce Reliable Software

982.1," IEEE Computer Society 982.1, 1988.

[17] M. Li and C. Smidts, "A Ranking of Software Engineering Measures Based on

Expert Opinion," IEEE Transactions on Software Engineering, vol. 29, no. 9, pp.

811-824, Sep. 2003.

 126

[18] C. Smidts and M. Li, "Software Engineering Measures for Predicting Software

Reliability in Safety Critical Digital Systems," USNRC NUREG/GR-0019,

2000.

[19] J. M. Voas, "PIE: A Dynamic Failure-Based Technique," IEEE Transactions on

Software Engineering, vol. 18, pp. 717-727, 1992.

[20] C. S. Smidts, M. Li, Y. Shi, W. Kong, and J. Dai, "A Large Scale Validation of

A Methodology for Assessing Software Quality (under revision)," University of

Maryland-College Park, 2009.

[21] Y. Shi, W. Kong, and C. Smidts, "Data Collection and Analysis for the

Reliability Prediction and Estimation of a Safety Critical System," in Reliability

Analysis of System Failure Data, Cambridge, UK, 2007.

[22] W. Kong, Y. Shi, and C. Smidts, "Early Software Reliability Prediction Using

Cause-Effect Graphing Analysis," in Annual Reliability and Maintainability

Symposium (RAMS), Orlando, Florida, 2007.

[23] Y. Shi, M. C. Kim, and C. Smidts, "Lesson Learnt from the Application of Test

Coverage RePS," in the 6th American Nuclear Society International Topical

Meeting on Nuclear Plant Instrumentation, Controls, and Human Machine

Interface Technology, Knoxville, Tennessee, 2009.

[24] Y. Shi, M. Li, and C. Smidts, "On the Use of Extended Finite State Machine

Models for Software Fault Propagation and Software Reliability Estimation," in

the 6th American Nuclear Society International Topical Meeting on Nuclear

Plant Instrumentation, Controls, and Human Machine Interface Technology,

 127

Knoxville, Tennessee, 2009.

[25] Y. Shi, W. Kong, J. Dai, and C. Smidts, "A Reliability Prediction Method for

Safety Critical Systems Based on Test Coverage," in in The 3rd International

Conference on Reliability and Safety Engineering, Kharagpur, India, 2007.

[26] Y. Shi and C. Smidts, "Predicting the Types and Locations of Faults Introduced

During an Imperfect Repair Process and their Impact on Reliability,"

International Journal of System Assurance Engineering and Management, vol. 1,

no. 1, Mar. 2010.

[27] C. Smidts and Y. Shi, "A Test Coverage-Based Model for Predicting Software

Fault Content and Location," in Advanced Technologies for Software Reliability

and Safety, Jeju Island, Korea, 2009.

[28] J. E. Gaffney, "Estimating the Number of Faults in Code," IEEE Transactions on

Software Engineering, vol. 10, pp. 459-464, 1984.

[29] C. J. Wang and M. T. Liu, "Generating Test Cases for EFSM with Given Fault

Models," in 12th Annual Joint Conference of the IEEE Computer and

Communications Societies (IEEE INFOCOM '93), San Francisco, CA, 1993.

[30] J. Musa, "The operational profile in software reliability engineering: an

overview," in Third International Symposium on Software Reliability

Engineering, 1992.

[31] R. V. Sandfoss and S. A. Meyer, "Input Requirements needed to Produce an

Operational Profile for a New Telecommunications System," in The Eighth

International Symposium On Software Reliability Engineering, 1997.

 128

[32] "IEEE recommended practice for software requirements specifications," IEEE

IEEE Std 830, 1998.

[33] "PACS Requirements Specification," West Virginia University, 1998.

[34] M. E. Fagan, "Design and Code inspections to reduce errors in program

development," IBM Systems Journal, vol. 15, no. 3, pp. 182-211, 1976.

[35] B. Beizer, Software Testing Techniques, 2nd ed. Van Nostrand Reinhold, 1990.

[36] C. Garrett, S. Guarro, and G. Apostolakis, "Dynamic Flowgraph Methodology

for Assessing the Dependability of Embedded Software Systems," IEEE

Transactions on Systems, Man and Cybernetics, 1995.

[37] "TestMaster Users’ Manual," Teradyne Software & Systems Test, 2000.

[38] M. Li, et al., "Validation of a Methodology for Assessing Software Reliability,"

in Proceeding of The 15th International Symposium on Software Reliability

Engineering, Saint-Malo, France, 2004, pp. 66-76.

[39] C. S. Smidts and M. Li, "Preliminary Validation of a Methodology for Assessing

Software Quality," U.S. Nuclear Regulatory Commission NUREG/CR-6848,

2004.

[40] C. Jones, "Measuring Global Software Quality," Software Productivity Research,

1995.

[41] D. E. Embrey, "The Use of Performance Shaping Factors and Quantified Expert

Judgement in the Evaluation of Human Reliability: An Initial Appraisal," U.S.

Nuclear Regulatory Commission NUREG/CR-2986, 1983.

[42] E. M. Dougherty and J. R. Fragola, Human Reliability Analysis: A System

 129

Engineering Approach with Nuclear Power Plant Applications. John Wiley &

Sons, 1988.

[43] J. Reason, Human Error. Cambridge University Press, 1990.

[44] M. A. Stutzke and C. S. Smidts, "A Stochastic Model of Fault Introduction and

Removal During Software Development," IEEE Transactions on Reliability

Engineering, vol. 50, no. 2, 2001.

[45] C. Jones, Applied Software Measurement: Assuring Productivity and Quality,

2nd ed. New York: McGraw-Hill, 1996.

[46] Y. K. Malaiya, N. Li, J. M. Bieman, R. Karcich, and B. Skibbe, "The

relationship between test coverage and reliability," in Proceeding of The 5th

International Symposium on Software Reliability Engineering, Los Alamitos,

1994, pp. 186-195.

[47] W. G. Ireson, Reliability Handbook. McGraw Hill, 1966.

[48] E. L. Welker and M. Lipow, "Estimating the exponential failure rate from data

with no failure events," in the 1974 Annual Reliability and Maintainability

Conference, New York, 1974.

[49] "Electronic Parts Reliability Data," Reliability Analysis Center EPRD-95, 1995.

[50] "Reliability Prediction of Electronic Equipment," Department of Defense

Military Handbook 217FN2, 1995.

[51] J. P. Poloski, D.G.Marksberry, C. L. Atwood, and W.J.Galyean, "Rates of

Initiating Events at U.S. Nuclear Power Plants: 1987-1995," Nuclear Regulatory

Commission NUREG/CR-5750, 1998.

 130

[52] M. A. Vouk, "Using reliability models during testing with non-operational

profile," in in Second Bellcore/Purdue Symposium on Issues in software

reliability estimation, 1993, pp. 103-110.

[53] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, "Effect of test set size

and block coverage on fault detection effectiveness," in The Fifth IEEE

International Symposium on Software Reliability Engineering, Monterey, CA,

1994, pp. 230-238.

[54] F. D. Frate, P. Garg, A. Mathur, and A. Pasquini, "On the correlation between

code coverage and software reliability," in the Sixth IEEE International

Symposium on Software Reliability Engineering, Toulouse, France, 1995, pp.

124-132.

[55] P. Piwowarski, M. Ohba, and J. Caruso, "Coverage measurement experience

during function test," in Proceeding of The 15th International Conference on

Software Engineering, Baltimore, MD, 1993, pp. 287-301.

[56] M. H. Chen, M. R. Lyu, and W. E. Wong, "An Empirical Study of the

Correlation between Code Coverage and Reliability Estimation," in The 3rd

International Software Metrics Symposium, Los Alamitos, CA, 1996, pp. 133-

141.

[57] S. S. Gokhale and K. S. Trivedi, "A Time/Structure Based Software Reliability

Model," Annals of Software Engineering, vol. 8, pp. 85--121, 1999.

[58] S. S. Gokhale, T. Philip, P. N. Marinos, and K. S. Trivedi, "Unification of finite

failure non-homogeneous Poisson process models through test coverage," in

 131

Proceedings of the International Symposium on Software Reliability

Engineering, White Plains, NY, 1996, pp. 299-307.

[59] H. Pham and X. Zhang, "NHPP software reliability and cost models with testing

coverage," European Journal of Operational Research, vol. 145, no. 2, pp. 443-

454, Mar. 2003.

[60] X. Cai and M. R. Lyu, "Software reliability modeling with test coverage:

Experimentation and measurement with A fault-tolerant software project," in

Proceedings of the 18th IEEE International Symposium on Software Reliability

Engineering, Trollhättan, Sweden, 2007, pp. 17-26.

[61] USNRC, "Guidance on Software Reviews for Digital I &C Systems," NUREG

0800 BTP 7-14, 2007.

[62] Z. Jelinski and P. B. Moranda, "Software reliability research," Statistical

Computer Performance Evaluation, 1972.

[63] A. L. Goel and T. Okumoto, "Time-dependent error detection rate model for

software reliability and other performances measures," IEEE Transactions on

Reliability, vol. 28, pp. 206-211, 1979.

[64] A. L. Goel, "Software reliability models: assumptions, limitations and

applicability," IEEE Transactions on Reliability, vol. SE-II, pp. 1411-1423,

1985.

[65] M. Ohba and X. Chou, "Does Imperfect Debugging Affect Software Reliability

Growth?," in The 11th International Conference on Software Engineering,

Pittsburg, PA, 1989, pp. 237-244.

 132

[66] B. Littlewood, "Stochastic reliability-growth: A model for fault removal in

computer programs and hardware designs," IEEE Transactions on Reliability,

vol. 30, no. 4, pp. 313-320, 1981.

[67] S. Yamada, K. Tokuno, and S. Osaki, "Imperfect debugging models with fault

introduction rate for software reliability assessment," International Journal of

Systems Science, vol. 23, no. 12, 1992.

[68] P. Zeephongsekul, G. Xia, and S. Kumar, "Software-Reliability Growth Model:

primary-Failures Generate Secondary-Faults Under Imperfect Debugging," IEEE

Transactions on Reliability, vol. 43, no. 3, pp. 408-413, Sep. 1994.

[69] P.K.Kapur and S. Younes, "Modelling an Imperfect Debugging Phenomenon in

Software Reliability," Microelectron Reliability, vol. 36, no. 5, pp. 645-650,

1996.

[70] H. Pham, L. Nordman, and X. Zhang, "A General Imperfect-Software-

Debugging Model with S-Shaped Fault-Detection Rate," IEEE Transactions on

Reliability, vol. 48, no. 2, pp. 169-175, Jun. 1999.

[71] S. S. Gokhale, "Software Failure Rate and Reliability Incorporating Repair

Policies," in Proceeding of the 10th International Symposium on Software

Metrics, 2004.

[72] S. S. Gokhale, T. Philip, and P. N. Marinos, "Non-homogeneous Markov

software reliability model with imperfect repair," in Proceedings -IEEE

International Computer Performance and Dependability Symposium, 1996, pp.

262-270.

 133

[73] Y. Levendel, "Reliability Analysis of Large Software Systems: Defect Data

Modeling," IEEE Transactions on Reliability, vol. 16, no. 2, pp. 141-152, Feb.

1990.

[74] C. Jones, "Software defect-removal efficiency," Computer, vol. 29, pp. 94-95,

1996.

[75] C. Jones, "Software Engineering: The State of the Art in 2008," Software

Productivity Research LLC, 2008.

[76] P. Zeephongsekul, "Reliability Growth of a Software Model under Imperfec

Debugging and Generation of Errors," Microelectron Reliability , vol. 36, no. 10,

pp. 1475-1482, 1996.

[77] D. Knuth, "The error of Tex," Software: Practice and Experience, vol. 19, pp.

607-685, 1989.

[78] W. L. Johnson, E. Soloway, B. Cutler, and S. Draper, "Bug Catalogue I," Yale

University, 1983.

[79] J. Ploski, "Research Issues in Software Fault Categorization," ACM Sigsoft

Software Engineering Notes, vol. 32, p. 8, 2007.

[80] C. James, Errors in Language Learning and Use: exploring error analysis.

London, UK: Longman: Pearson Education, 1998.

[81] R. E. Park, "Software Size Measurement: A Framework for Counting Source

Statements," Software Engineering Institute, Camegie-Mellon University, 2001.

[82] L. Wu, "Application of Functional Modeling to Software Reliability in Materials

and Nuclear Engineering," Department of Mechanical Engineering, University of

 134

Maryland-College Park, 1997.

[83] R. C. Schank and C. J. Rieger, "Inference and the Computer Understanding of

Natural Language," Artificial Intelligence, vol. 5, pp. 373-412, 1974.

[84] J. Allen, Natural Language Understanding. Redwood City, CA, USA:

Benjamin/Cummings Publishing Company , 1987.

[85] A. J. Offutt, " practical system for mutation testing: help for the common

programmer," in Proceeding of the International Test Conference, Altoona, PA,

1994, pp. 824-830.

[86] J. Spohrer, "Bug Catalogue: II~IV," Yale University, 1985.

[87] Y. K. Malaiya, M. N. Li, J. M. Bieman, and R. Karcich, "Software reliability

growth with test coverage," IEEE Transactions on Reliability, vol. 51, no. 4, pp.

420-426, Dec. 2002.

[88] IEEE, "Systems engineering — Application and management of the systems

engineering process," IEEE STD 1220, 2005.

[89] A. G. Koru, D. Zhang, K. E. Eman, and H. Liu, "An Investigation into the

Functional Form of the Size-Defect Relationship for Software Modules," IEEE

Transactions on Software Engineering, vol. 35, no. 2, pp. 293-304, Mar. 2009.

[90] F. Bouttier and P. Courtier, "Data assimilation concepts and methods," European

Centre for Medium-Range Weather Forecasts Lecture Notes, 1999.

[91] C. S. Smidts and D. Sova, "An Architectural Model for Software Reliability

Quantification: Source of Data," Reliability Engineering and System Safety, vol.

64, pp. 279-290, 1999.

 135

[92] G. E. Murine, "On Validating Software Quality Metrics," in 4th Annual IEEE

Conference on Software Quality, Phoenix, Arizona, 1985.

[93] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software

Engineering, 1976.

[94] T. J. McCabe, "Structured Testing: A Software Testing Methodology Using the

Cyclomatic Complexity Metric," National Bureau of Standards Special

Publication 500-99, 1982.

[95] D. S. Herrmann, Software Safety and Reliability: Techniques, Approaches, and

Standards of Key Industrial Sectors, First Edition ed. Wiley-IEEE Computer

Society , 2000.

[96] "Function Point Counting Practices Manual (Release 4.2)," International

Function Point Users Group, 2004.

[97] R. M. Chapman and D. Solomon, "Software Metrics as Error Predictors,"

NASA, 2002.

[98] M. C. Thompson, D. J. Richardson, and L. A. Clarke, "An Information Flow

Model of Fault Detection," in International Symposium on Software Testing and

Analysis, Cambridge, MA, 1993.

