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With the replacement of old analog control systems with software-based digital 

control systems, there is an urgent need for developing a method to quantitatively and 

accurately assess the reliability of safety critical software systems.  This research 

focuses on proposing a systematic software metric-based reliability prediction 

method.  The method starts with the measurement of a metric.  Measurement results 

are then either directly linked to software defects through inspections and peer 

reviews or indirectly linked to software defects through empirical software 

engineering models.  Three types of defect characteristics can be obtained, namely, 1) 

the number of defects remaining, 2) the number and the exact location of the defects 

found, and 3) the number and the exact location of defects found in an earlier version.  

Three models, Musa’s exponential model, the PIE model and a mixed Musa-PIE 

model, are then used to link each of the three categories of defect characteristics with 



 
 

reliability respectively.  In addition, the use of the PIE model requires mapping 

defects identified to an Extended Finite State Machine (EFSM) model.  A procedure 

that can assist in the construction of the EFSM model and increase its repeatability is 

also provided.  

This metric-based software reliability prediction method is then applied to a 

safety-critical software used in the nuclear industry using eleven software metrics.  

Reliability prediction results are compared with the real reliability assessed by using 

operational failure data.  Experiences and lessons learned from the application are 

discussed.  Based on the results and findings, four software metrics are 

recommended.   

This dissertation then focuses on one of the four recommended metrics, Test 

Coverage.  A reliability prediction model based on Test Coverage is discussed in 

detail and this model is further refined to be able to take into consideration more 

realistic conditions, such as imperfect debugging and the use of multiple testing 

phases.   
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Chapter 1: Introduction 

1.1 Motivation 

Over the past few decades, software has been used more and more widely in our 

daily lives: from personal computers, home appliances, telecommunications, 

automobiles to medical devices, nuclear power plants, space missions and many 

more.  Compared to pure hardware based systems, software possesses a greater 

capability to solve complex problems.  As a result, the size and complexity of 

software have dramatically increased in recent years and this trend will continue. 

In the safety critical domain which is the focus of this research, software-based 

digital control systems are now replacing the old analog control systems.  The 

performance of such new systems thus heavily depends on software for their correct 

operation.  Like hardware failure, software failure can also lead to severe and even 

fatal consequences.  For example, the failure of the Patriot mission defense system in 

1991, the explosion of the Ariane 5 rocket in 1996 and the anomaly experienced in 

the Mars Exploration Rover in 2004 are all due to software failures.  Therefore, to 

verify whether released software meets the users’ requirements, one should first know 

how good it is, more specifically, how reliable it is.  There is a great need for 

developing a method to accurately and quantitatively assess the reliability of safety 

critical software systems. 

In the nuclear industry, the Nuclear Regulatory Commission (NRC) hasn’t 

endorsed any particular quantitative software reliability method.  With the acceptance 

of Probabilistic Risk Assessment (PRA) as a tool for quantify system risks, there is an 
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urgent need of a quantitative method to assess the software failure rate.  National 

Aeronautics and Space Administration (NASA) Headquarters specified general 

requirements for software reliability assurance [1] after having experienced an 

increased number of software-related mission failures.  However, there is no clear 

single guideline at present on how to implement detailed requirements and practices 

across the NASA centers and, in particular, no critical guidance for robotic missions.  

The aircraft industry is also seeking new methods or guidance for assessing software 

failure rates since current available software reliability methods recommended in its 

current standards “do not provide results in which confidence can be placed to the 

level required for this purpose [2].” 

1.2 Research Objective 

As addressed in section 1.1, there is an urgent need for an acceptable software 

reliability quantification method in the safety critical industry.  Many software 

reliability prediction models have been proposed in the research literature [3][4].  

However, none of these models have found wide acceptance in the safety critical 

industry due to existing limitations.  For example, software reliability growth models 

rely heavily on the collection of testing and operational data which is limited in the 

safety critical domain.  These models can be only applied in the late stages of 

development, i.e. after testing, which provides little help in decision making in the 

early development stages.   

Software metrics have been used in software engineering and their connection to 

reliability has been recognized.  The objective of this research is to identify software 

metrics which could be used for quantitative software reliability prediction 
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throughout the software development process.  More specifically, a need exists for the 

definition of an approach which will use software metrics to predict software 

reliability, for a successful application of a set of software metrics to a safety critical 

application, for refinements of the models linking software metrics to reliability based 

on the experience gained from the effort, for recommendations for the practical and 

direct usage of such software metrics in the safety critical domain. 

1.3 Related Research 

Software reliability is defined by IEEE as the probability of failure free 

software1 operation for a specified period of time in a specified environment [5].  It is 

one of the most important aspects of software quality.  

Over the past 40 years, a multitude of software reliability growth models 

(SRGMs) have been proposed to assess the reliability of software systems.  However, 

these models have not been recommended for use in the safety critical domain due to 

the following reasons.  First, model parameters are typically estimated from failure 

data.  For safety critical software, historical failure data is rare to nonexistent since 

these systems are designed to be ultra-reliable and their typical failure rates are less 

than 10-7 failures per hour.  Similarly, failures are also rarely observed during testing.  

Even after thousands of years of testing [6], one would not be able to observe a 

sufficient number of failures to accurately estimate the reliability of such systems.  

Second, failures experienced in the testing may not represent those under the actual 

operational environment.  Reliability predicted through statistical extrapolation of 

such testing failure data is also questionable.  Third, SRGMs can be only applied in 
                                                 
1 Failure free software does not guarantee the software is 100% correct.  Defects could still exist in the software but are not 

exposed and converted to failures. 
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the late stages of development, i.e. after testing.  This is generally too late and is not 

able to provide real time feedback to requirements and design development and 

therefore could not assist in decision making in the early development stages.  

Other models use Bayesian Belief Network (BBN) as an analytical tool to assess 

reliability [7] by combining diverse sources of product and process information such 

as the number of latent defects, effectiveness of inspections and debug testing etc.  

However, approaches based on BBN use either published empirical data or subjective 

judgment for node probability quantification which is difficult to validate in 

numerical terms or even through qualitative relationships.  

Several researchers have proposed software reliability models specifically 

designed to handle safety critical software.  Schneidewind [8] developed an approach 

for reliability prediction which integrates software-safety criteria, risk analysis, 

reliability prediction and stopping rules for testing.  Unfortunately, this model still 

relies on the collection and selection of space shuttle failure data.  Miller proposed 

formulae which incorporate random testing results, input distribution and prior 

assumptions about the probability of failure for the cases when testing reveals no 

failures [9].  But how to partition the input space and how to estimate the prior failure 

probability distributions are the remaining problems.  A quantitative model using 

statistics of the extremes which can analyze rare events was proposed by Kaufman et 

al [10].  Statistics of the extremes is a statistical approach which allows analysis of 

cases where there is few or no failure data without assuming any prior distribution.  

Kaufman’s method has not been validated on real safety critical software.  Thomason 

[11] extended this model by incorporating the statistics of the extremes approach to a 
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Markov Chain model to capture the stochastic behavior of the software system.  

However, the method was not validated either.  

Other research efforts have focused on the development and/or study of metric-

based software reliability prediction models which capture the characteristics of 

software products through software engineering measures.  As addressed in [12], 

software metrics are essential not only to good software engineering practice, but also 

for the thorough understanding of software failure behavior and reliability prediction.  

Software characteristics, such as size and complexity can be used to predict the 

number or location of defects which themselves can be used to predict reliability [13].  

Zhang and Pham [14] identified and ranked 32 factors which affect software 

reliability based on results of a survey of 13 participating companies.  Lawrence 

Livermore National Laboratory [15] documents 78 software engineering measures2. 

IEEE [16] provides 39 measures which could be used to predict reliability of mission 

critical software systems.  Forty software engineering measures from either the LLNL 

report or IEEE 982.1 were systematically ranked with respect to their ability to 

predict software reliability using expert opinion elicitation [17][18].  

1.4 Approach  

This research focuses on proposing a software metric-based reliability prediction 

method.  The method starts with the measurement of a software metric.  The 

measurement results are then linked to three different types of defect characteristics: 

1) the number of defects remaining or 2) the number and the exact location of the 

remaining defects or 3) the number and the exact locations of defects in an earlier 

                                                 
2 In this research, software engineering measures are represented by software metrics. 
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version.  Three models, Musa’s exponential model [3], the PIE [19] model and a 

mixed Musa-PIE model, are used to link the three categories of defect characteristics 

with reliability using the operational profile.  Applying the PIE model requires 

mapping defects identified through inspection and/or testing to an Extended Finite 

State Machine (EFSM) model.  A procedure is defined to construct the EFSM model 

in a repeatable fashion. 

This software reliability prediction method is then applied to a safety-critical 

software used in the nuclear industry using eleven software metrics.  Reliability 

prediction results are compared with the real reliability assessed using operational 

failure data.  Experiences and lessons learned from the application are discussed.  

Possible extensions to the existing models as well as procedures for repeatable 

measurement and prediction are proposed.  The test coverage measure, which 

provides credible prediction results, is discussed in details and is refined to be able to 

take into consideration more realistic conditions, such as imperfect debugging and the 

use of multiple testing phases.   

1.5 Contents 

In Chapter 2, a systematic software metric-based reliability prediction method is 

presented.  By using this method, measurement results are connected to defect 

information that is then combined with the operational profile for reliability 

prediction.  An approach is presented for construction of the EFSM model which is a 

simple, convenient and effective method to model the software failure mechanism.  

The approach allows the mapping of the defects and the operational profile to the 
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constructed EFSM model so that the execution of the updated EFSM model 

(UEFSM) can be used to abstractly represent the faulty execution of the real software. 

An application of the proposed method based on eleven software metrics to a 

safety critical system is presented.  Results show that the metric-based prediction 

method can be applied to safety-critical software for reliability assessment, and the 

prediction results from four metrics are close to the reality.  Experiences and lessons 

learnt from the application are also discussed. 

In Chapter 3, the author introduces a first refinement of the reliability prediction 

method based on the Test Coverage metric which is among the top metrics providing 

best reliability prediction.  This refinement assesses the impact of newly introduced 

defects during the debugging process on reliability.  The newly introduced defects 

could be located non-uniformly around the fault being fixed and they may possibly 

display different propagation characteristics than the faults being fixed.  The 

refinement combines a fault taxonomy, code mutation and Bayesian statistics. 

In Chapter 4, a second refinement of the reliability prediction method based on 

the Test Coverage metric is described.  This refinement allows the description of 

software systems developed through multiple phases of functional testing.  Multi-

Phase functional testing is a common practice that is used in ultra-reliable software 

development to ensure that no known faults reside in the software to be delivered.  

This refinement is further extended to take advantage of auxiliary observations 

collected during the multi-phase testing and of the consequent process of analysis to 

refine the predictions made.  This refinement also describes software systems where 
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either the initial fault distribution is non-uniform with respect to location, or the 

repair/test and detection process favor certain locations.  

In Chapter 5, conclusions and directions for future research are provided. 

1.6 Summary of Contributions 

The contributions of the dissertation can be summarized as follows: 

1) The author identified the key components in the RePS theory, i.e. the M-D 

model, the D-R model and the Operational Profile.  With the successful 

identification of these key components, software metrics are connected to 

software reliability through the RePS theory.   

2) The author participated in the application of the eleven metric-based 

prediction methods to a safety critical system.  All the measurements rules, 

reliability prediction results and lessons learned are documented in a NUREG 

report [20].  The author conducted measurements for two metrics, assessed 

reliability based on the measurements results of five metrics.  The author also 

summarized the application results, summarized the application process for 

each metric-based RePS and identified the lessons learned. 

3) The author proposed a method for operational profile quantification for safety 

critical software and successfully applied this method to the software system 

under study.  

4) The author created a procedure for EFSM construction through which 

reliability prediction can be completed in a repeatable fashion.   

5) The author developed an approach for assessing the impact of imperfect repair 

on reliability by predicting repair fault propagation rates.  These rates can be 
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calculated as soon as primary faults are uncovered.  The method also provides 

possible locations and types for newly introduced faults from imperfect 

repairs.   

6) The author developed a method (based on test coverage) for defect and 

reliability prediction during late phases of the development life cycle which 

considers the fact that safety critical software typically undergoes a multi-

phase test process. 

7) Associated publications are: 

a. Application results of the RePS theory on a safety critical software 

were presented at the 5th American Nuclear Society International 

Topical Meeting on Nuclear Plant Instrumentation, Controls, and 

Human Machine Interface Technology (NPIC&HMIT) in 2006 

(coauthored with Carol Smidts). 

b. “Data Collection and Analysis for the Reliability Prediction and 

Estimation of a Safety Critical System” was published in the 

proceedings of the Reliability Analysis of System Failure Data 2007 

Workshop held by Microsoft Research (coauthored with Wende Kong 

and Carol Smidts) [21]. 

c. “Early Software Reliability Prediction Using Cause-Effect Graphing 

Analysis” was published in the Annual Reliability and Maintainability 

Symposium (RAMS) in 2007 (coauthored with Wende Kong and 

Carol Smidts) [22] . 
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d. “Lesson Learnt from the Application of Test Coverage RePS”, in the 

6th American Nuclear Society International Topical Meeting on 

NPIC&HMIT in 2009 (coauthored with Man Cheol Kim and Carol 

Smidts) [23]. 

e. “On the Use of Extended Finite State Machine Models for Software 

Fault Propagation and Software Reliability Estimation” was published 

in the 6th American Nuclear Society International Topical Meeting on 

NPIC&HMIT in 2009 (coauthored with Ming Li and Carol Smidts) 

[24]. 

f.  “A Reliability Prediction Method for Safety Critical Systems Based on 

Test Coverage” which describes the new Test Coverage RePS method 

was published at the 3rd International Conference on Reliability and 

Safety Engineering (INCRESE) in 2007 (coauthored with Wende 

Kong, Jun Dai and Carol Smidts) [25]. 

g. “Predicting the Types and Locations of Faults Introduced During an 

Imperfect Repair Process and their Impact on Reliability” was 

published in the International Journal of Systems Assurance 

Engineering and Management (IJSAEM) in March 2010, Springer 

Verlag (coauthored with Carol Smidts) [26]. 

h. “A Test Coverage-Based Model for Predicting Software Fault Content 

and Location” was published in Advanced Technologies for Software 

Reliability and Safety (ATSRS) in 2009 (coauthored with Carol 

Smidts) [27]. 
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i. “Predicting Residual Software Fault Content and their Location 

during Multi-Phase Functional Testing Using Test Coverage” was 

submitted to the International Journal of Reliability and Safety 

(coauthored with Carol Smidts). 
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Chapter 2: Metric-based Software Reliability Prediction 

Approach and its Application 

2.1 Metric-based Software Reliability Prediction Approach 

Software fails due to defects introduced during the development process.  As 

discussed in [17], software reliability is essentially determined by product 

characteristics and operational environment.  The reliability of a software system is 

therefore determined by the defects residing in the software and the ways in which the 

software is operated.  That is,  

 𝑅𝑆𝑊 = 𝑓{D, OP} (2.1) 

Where: 

 RSW is the reliability of the software, 

 D stands for the defects which are residing in the software and 

 OP is the operational profile.  

Figure 2.1 displays the metric-based software reliability prediction system 

(RePS) introduced to bridge the gap between a software metric and reliability.  

The construction of a RePS as shown in Figure 2.1 starts with the "Metric", 

which is also the "root" of a RePS.  “Support metrics” are identified to help connect 

the root metric to “Software defects” (i.e. software defects information) through a 

“Metric-Defect Model” (M-D Model) if necessary.  The "Defect-Reliability Model" 

(D-R Model) derives software reliability predictions (i.e. Reliability) using the 

“Software Defects” and the “Operational Profile”.  “Support metrics” may be also 
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required in D-R model to help the connection between “Software Defects” and 

“Reliability”.  

 
Figure 2.1 Metric-Based RePS 

Software metrics may be direct measurements of defects characteristics (such as 

a number of defects obtained through software quality assurance activities, e.g. 

formal inspection, peer review etc).  Software metrics can also be indirectly 

connected to the number of defects or other defect characteristics through empirical 

models.  For example, Gaffney [28] established that the number of defects remaining 

in the software could be expressed empirically as a function of the number of line of 

codes (where “lines of code” is an example root measure in Figure 2.1).   

Three categories of defect information can be derived from the M-D model: 

1) The number of defects estimated only; 

2) The number of defects found and the exact location of the defects;  



 14 
 

3) The estimated number of defects in the current version and the exact location 

of the defects found in an earlier version of the software. 

How each of the three categories of defects information is to be incorporated in an 

appropriate software reliability model for reliability quantification and how the OP 

should be constructed will be discussed in sections 2.2 through 2.6.  Section 2.7 

presents the results obtained from the application of the metric-based RePS method to 

a safety critical software used in the nuclear industry.  Section 2.8 introduces the Test 

Coverage – based RePS which will be the object of further refinements in Chapters 3-

4.  

2.2 D-R Model I: Reliability Prediction Model using only the Number of Defects 

When one only knows the number of defects, Musa’s exponential model for 

reliability prediction can be applied.  Musa [3] proposed the concept of fault exposure 

ratio K and its relation to λ, the failure rate and N, the number of defects remaining.  

That is 

 λ =
K
TL

N 
(2.2) 

Thus, the probability of success at time t is obtained using: 

 𝑅(𝑡) = e−λt = e
−K×N×t

TL�  (2.3) 

where 

 K Fault exposure ratio, in failure/defect. 

N Number of defects estimated using specific software metrics (the root 

metric and the support metrics of a RePS) and the M-D model for this 

RePS (whose outcome is N). 
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 TL Linear execution time of a system3, in second 

 t Execution time, in second. 

Since a priori knowledge of the defects' location and their impact on failure 

probability is not known, the average K value given in [3], which is 4.2E-7 

failure/defect, will be used.   

It should be noted that if only the number of defects is known, the use of Musa’s 

model is a natural choice since what can be obtained from the measurement is the 

number of defects at a specific time only.  No detailed defect characteristics, such as 

the location of the defects, how and when the defects are revealed, are available.  

Musa’s model provides a simple connection between the number of defects and 

reliability with the support of the empirical fault exposure ratio. 

A more advanced model which could account for the impact of the defects’ 

location on reliability is presented as follows. 

2.3 D-R Model II: Reliability Prediction Model using the Exact Locations of 

Defects 

When one knows the location of defects, the failure mechanism can be modeled 

explicitly using the Propagation, Infection and Execution (PIE) theory [19].  

According to the PIE theory, a defect will lead to a failure if it meets the following 

constraints: first, it needs to be triggered (executed), then the execution of this defect 

should modify the state of the execution, and finally the abnormal state-change 

should propagate to the output of the software and manifest itself as an abnormal 

output, in other words, as a failure.  The acronym PIE corresponds to the above three 

                                                 
3 TL is usually estimated as the ratio of the execution time and the software size on a single microprocessor basis. 
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program characteristics: the probability that a particular section of a program (termed 

“location”) is executed (execution and noted as E), the probability that the execution 

of such section affects the data state (infection and noted I), the probability that such 

an infection of the data state has an effect on program output (propagation and noted 

P).  Therefore the failure probability of the software (Pf) given that a specific location 

contains a defect is:  

 𝑃𝑓 = 𝑃 × 𝐼 × 𝐸 (2.4) 

Where  

P, I and E are evaluated for this particular defect and its location. 

Reliability can be estimated using the PIE model.  Indeed: 

 𝑅𝑆𝑊 = 1 − 𝑃𝑓 = 1 −� � 𝑃(𝑖) × 𝐼(𝑖) × 𝐸(𝑖)
𝑁

𝑖

𝑡 𝜏�

1
 (2.5) 

where 

𝑃(𝑖), 𝐼(𝑖), and 𝐸(𝑖) are the values of P, I and E for the ith defect respectively. 

τ is the average execution time per demand; 

t is the execution time 

𝑡/𝜏 is the average number of software executions; 

∮
𝑡 𝜏�
1  is defined to account for the accumulated failure probability due to the 

𝑡/𝜏 iterations (average number of software executions).  

In this thesis, we propose a simple, convenient, and effective method to solve 

equation (2.5) using an extended finite state machine model (EFSM) [29].  EFSMs 

describe a system's dynamic behavior using hierarchically arranged states and 

transitions.  A state describes a condition of the system; and the transition can 
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graphically describe the system's new state as the result of a triggering event.  

Detailed EFSM construction procedures will be presented in section 2.6. 

It should be noted that by using equation (2.5), we assume that all the defects are 

independently located in different I/O (input/output) paths.  If two or more defects are 

located in the same I/O path, using equation (2.5) is not accurate since it 

overestimates the probability of failure and therefore underestimates reliability.  This 

limitation has been overcome by using EFSM since EFSM is developed to reflect the 

actual execution of the software and handles dependent defects.  For example, the 

failure probability will not be double counted if two defects are located in the same 

I/O path.  The integral notation used in equation (2.5) is defined to be able to 

eliminate the dependency issues automatically. 

2.4 D-R Model III: Reliability Prediction Model using an Estimate of the Number 

of Defects in the Current Version and the Exact Locations of the Defects 

Found in an Earlier Version (mixed Musa-PIE model) 

When the defect information available falls in the third category, using Model I 

alone overlooks the available defect content information found in previous versions.  

In this case, both Model I and Model II need to be used.  More specifically, since the 

defect location in previous versions of the software is known, the PIE model can be 

used first to obtain a software-specific fault exposure ratio (υK) through the 

propagation of these known defects: 

 𝜈𝐾(𝑡) =
𝐾
𝑇𝐿
𝑡 (2.6) 
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υK(t) is an average value, and can be estimated analytically from the N’ known 

defects in an early version of the software using the PIE theory and the inverse of 

Musa’s model.  That is: 

 𝜈𝐾(𝑡) = −
1
𝑁′ 𝐿𝑛 �1 −� �� 𝑃(𝑖) × 𝐼(𝑖) × 𝐸(𝑖)

𝑁′

𝑖
�

𝑡 𝜏�

1
� (2.7) 

This new calculated υK will be much more accurate than the average K used in 

Model I.  Once the new fault exposure ratio is obtained, Model I is then used for 

reliability prediction knowing the number of defects remaining in the software.  We 

thus name this model as the Combinational Model (Model III).  The probability of 

failure simply becomes a function of the number of defects: 

 𝑃𝑓 = 1 − 𝑒−𝜈𝑘(𝑡)×𝑁 (2.8) 

2.5 Operational Profile 

The operational profile (OP) is a quantitative characterization of the way in 

which a system will be used [30].  It associates a set of probabilities to the program 

input space and therefore describes the behavior of the system.  The OP is 

traditionally evaluated by enumerating field inputs and evaluating their occurrence 

frequencies.  Expert opinion can also be used to estimate the hardware components-

related operational profile if field data is in limited availability.  Musa’s [30] 

recommended approach for identifying the environmental variables (i.e. those 

variables that might necessitate the program to respond in different ways) is to have 

several experienced system design engineers brainstorm a possible list.  Sandfoss [31] 

suggests that estimation of occurrence probabilities could be based on numbers 
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obtained from project documentation, engineering judgment, and system development 

experience. 

2.6 Extended Finite State Machine (EFSM) 

As specified in section 2.3, for D-R model II, the PIE concept [19] was 

introduced to describe the software failure mechanism if one knows the location of 

the defects.  D-R model III, introduced in section 2.4, also requires the use of the PIE 

concept to propagate the known defects in an early version of the software.  How to 

implement the PIE concept for reliability quantification is discussed in this section.  

In the original assessment method, P, I and E are quantified statistically using 

mutation [19].  This method, however, is neither able to combine the operational 

profile, nor able to consider defects that do not appear in the source code, such as 

requirements or design errors (e.g. “missing functions”).  Moreover, the large amount 

of mutants required hampers the practical implementation of the method to complex 

systems. 

In this section, a simple, convenient and effective method to solve this problem 

using an Extended Finite State Machine (EFSM) model [29] is proposed.  An EFSM 

describes a system’s dynamic behavior using hierarchically arranged states and 

transitions.  A state describes a condition of the system; and the transition visually 

describes the system’s new state as a result of a triggering event.  The operational 

profile of the software system is mapped into the model to analytically represent the 

probabilities of the system traversing each execution state.  More specifically, an 

EFSM is a septuple (Σ, Γ, S, T, P, V, OP), where: 
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• Σ is the set of input variables of the software.  These variables are crossing the 

boundary of the application. 

• Γ is the set of output variables of the software.  These variables are crossing 

the boundary of the application. 

• S is a finite non empty set of states.  A state usually corresponds to the real-

world condition of the system. 

• T is the set of transitions.  An event causes a change of state and this change 

of state is represented by a transition from one state to another. 

• P is the set of predicates, the truth value of the predicates is attached to the 

relevant transition, 

• V is the set of variables defined and used within the boundary of the 

application, and 

• OP is the set of probabilities of the input variables. 

The method proposed for assessing software reliability based on EFSM proceeds 

in five stages: 

1) Construct a high level EFSM based on the Software Requirement 

Specifications (SRS); 

2) Identify, record and classify the defects; 

3) Modify the high level EFSM by mapping the identified defects; 

4) Map the operational profile of the software to the appropriate variables (or 

transitions); 

5) Obtain the probability of failure by executing the modified EFSM. 
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As stated before, the failure probability can be assessed by calculating the 

product of the execution probability, the infection probability and the propagation 

probability.  The first three steps of the proposed method are used to construct the 

EFSM model and identify the infected states.  The execution probability can be 

determined through step 4) by mapping the operational profile to the EFSM.  The 

overall failure probability can be obtained through execution of the EFSM in step 5). 

Generally speaking, the proposed approach is based on constructing and refining the 

EFSM model.  Both construction and refinement steps are rule-based processes.  

Different rules for handling different requirement specifications and different types of 

defects are provided.  Thus, the approach is actually a Rule-based Model Refinement 

Process (RMRP).   

The advantages of this approach are: 1) it can avoid time and labor intensive 

mutation testing; 2) it can combine the operational profile which reflects the actual 

usage of the software system; 3) it allows assessment of the impact of requirements 

defects, e.g. “missing functions”, on software reliability; 4) tools are available for 

executing the constructed EFSM model.   

Each of the five steps is discussed in turn in the following subsections.  

2.6.1 Step 1: Construct of a High Level EFSM Based on the SRS 

This step is used to construct a high level EFSM (HLEFSM) based on the SRS.  

This step is independent of the defect identification process and corresponding results, 

i.e. the defects identified. 

The HLEFSM can be systematically constructed by mapping each occurrence of 

a function specification to a transition.  HLEFSM will be manually constructed based 
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on the SRS.  Figure 2.2 shows a typical prototype outline for SRS [32].  The general 

procedure to be followed for constructing a HLEFSM can be illustrated in Figure 2.3. 

3.Specific Requirements 
  3.1 Functional Requirements 
    3.1.1 Functional Requirement 1 
      3.1.1.1 Introduction 
      3.1.1.2 Inputs 
      3.1.1.3 Processing 
      3.1.1.4 Outputs  
    3.1.2 Functional Requirement 2 
    …… 
  3.2 External Interface Requirements 
    3.2.1 User Interfaces 
    3.2.2 Hardware Interfaces 
    3.2.3 Software Interfaces 

3.2.4 Communications Interfaces 
 3.3 Performance Requirements 
 3.4 Design Constraints 
    3.4.1 Standards Compliance 
    3.4.2 Hardware Limitations 
…… 
 3.5 Attributes 
    3.5.1 Security 
    3.5.2 Maintainability 
…… 
  3.6 Other Requirements 
    3.6.1 Data Base 
    3.6.2 Operations 
    3.6.3 Site Adaptation 

Figure 2.2 Typical Prototype Outline of SRS 

The general construction procedure includes: 

a) Study the SRS and focus on the Functional Requirements section, here section 

3.1.  It should be noted that there exists several other SRS prototypes [32].  

For those prototypes, one can still find a section similar to the Functional 

Requirements section which describes the functions of the software system. 

b) Create an ENTRY state and an EXIT state for the entire application; 
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Figure 2.3 SRS-Based High Level EFSM Construction 

c) Examine the first bulleted4 function f1 here denoted as 3.1.1; 

d) Define the corresponding states of the function f1 (normally it is the logically 

first function of the software system): the starting state 𝑆𝑖(𝑓1) : 𝑆𝑖(𝑓1) ∈ 𝑆 and 

the ending state 𝑆𝑜(𝑓1): 𝑆𝑜(𝑓1) ∈ 𝑆 of the function f1. 
                                                 
4 A bulleted function is a function explicitly documented using a bullet in the SRS document for distinguishing it from other 

functions. It should not be a function within a paragraph which will certainly contain multiple functions. 

START

Go to Functional Requirements Section (3.1)

Link the Beginning State and Ending State of
the function currently examined

Identify the variables

Examine function 3.1.1, the f irst bulleted
function

Create HLEFSM ENTRY and EXIT States

Link this Beginning state w ith the logically
previous state

Is this the
logically last

bulleted function?

Link the Ending state of this logically last
bulleted function w ith the EXIT State

END

Y
E

S
Y

e s

Examine the next function

Identify the Beginning State and Ending State
of the function currently examined

Is this the last
bulleted function? No

No
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e) Identify the following elements: 

i. Specify the input variables 𝑖𝑣(𝑓1) of function f1 based on section 

3.1.1.2 “Input”: ‘iv’ could be part of Σ or V or a combination of Σ and 

V.  

ii. Specify the predicates 𝑝(𝑓1).  Normally, the predicates can be found 

in section 3.1.1.1 “Introduction”. 

iii. Specify the output variables ov(f1) of function f1 based on section 

3.1.1.4 “Output”: ‘ov’ could also be part of Γ or V or a combination of 

Γ and V.   

iv. Specify the variables stored in Si(f1), denoted as ( )1iS fV , and the 

variables stored in So(f1), denoted as ( )1oS fV , since a state is the 

condition of a finite state machine at a certain time and is represented 

by a set of variables and their potential values.  It should be noted that 

not all of the variables stored in Si(f1) will be used by function f1, that 

is ( ) ( )
1 1iS fV iv f⊃ . The predicates also should be part of the variables 

stored in Si(f1) and ( ) ( )
1 1iS fV p f⊃ .  Those variables, denoted as 

nu(f1), which are neither used as the input variables nor used as the 

predicates of function f1 will remain the same and be part of the 

variables stored in the output. Thus ( )1 1 1 1( ) ( ) ( )
iS fV iv f p f n uf= ∪ ∪

and ( ) ( ) ( )
1 1 1oS fV ov f nu f= ∪ . 
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f) Link the beginning state and the ending state of function f1 by a transition, t1:

1t T∈ and t1 is the set of the function f1 and its associated predicates p(f1), 

1 1 1{ ( ), }t p f f= , pointing from starting state Si(f1) to the ending state So(f1). 

g) For function f1, link the starting state Si(f1) to the ENTRY state.  For function 

fj, link the starting state Si(fj) of to the ending state of the logically previous 

function fj-1.  The logical relationship between the functions should be 

specified in the “introduction” subsection of the description of the bulleted 

function.  The variables stored in the starting state of function fj, ( )i jS fV , 

should be the variables stored in the ending state of its logically previous 

function, ( )1o jS fV
−

plus some inputs from Σ.  That is ( ) ( )1i j o j
jS f S fV V v

−
= ∪ , 

where jv ⊂ ∑ .  

h) Iterate step d) to step g) for the next function until all the bulleted functions 

are represented in the HLEFSM.  It should be noted that the HLEFSM model 

should remain at a high level to minimize the construction effort.  Only the 

bulleted functions, i.e. 3.1.1, 3.1.2 etc shown in Figure 2.2, should be 

represented in this HLEFSM model.  There is no need at this point to further 

break down the bulleted functions and display their corresponding sub-

functions. 

i) Link the ending state of the logically last bulleted function to the EXIT state.  

Normally the logically last bulleted function will send out all required outputs 

and reset all variables to their initial values for the next round of processing.  
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Example 1: To better illustrate the above EFSM construction step, a paragraph 

excerpted from PACS (Personal Access Control System5) [33] SRS and its associated 

EFSM elements identifications are shown in Table 2.1.  

Table 2.1 EFSM Construction Step 1 for Example 1 

PACS SRS: 
Software will validate the entrant’s card data (SSN and last name).  If correct data, software will display 
“Enter PIN”. 
Function 1 Function f1: card validation function; 
• Starting State of the function Si(f1):card is awaiting for validation; 
• Ending state of the function So(f1):card has been validated; 
• Input variables iv(f1) = {SSN, Last name}; 
• Output variables ov(f1) = {card validation results}; 
• Predicates N/A 
• Variables stored in the starting state In this case, the variables stored in Si(f1) will all be used by 

function f1. That is, 
( )1 1( )

iS fV iv f=  

• Variables stored in the ending state ( )1 1( )
oS fV ov f=  

Function 2 Function f2: card validation results display function; 

• Starting State of the function Si(f2):card validation results are awaiting to be displayed; 
• Ending state of the function So(f2):card validation results have been displayed; 
• Input variables iv(f2) = {card validation results}; 
• Output variables ov(f2) = {“Enter PIN” displayed}; 
• Predicates p(f2) ={card data = correct}. 
• Variables stored in the starting state ( )2 2 2( ) ( )

iS fV iv f p f= ∪  

• Variables stored in the ending state ( )2 2( )
oS fV ov f=  

2.6.2 Step 2: Identify, Record and Classify the Defects 

This step is used to identify defects through software inspection or testing.  

Software defects can be uncovered by using different inspection and testing 

techniques [34] [35].  All the defects identified through inspection or testing should 

be recorded properly for further references and examinations.  Table 2.2 or similar 

table should be generated. 

                                                 
5 PACS is a system which provides privileged physical access to rooms/buildings, etc. The user needs to swipe his card and enter 

a four digit PIN. The application verifies this against a database and if authorized, provides access to the room/building by 
opening the gate. 
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Table 2.2 Example Table for Recording Identified Defects 

NO. Defect Description Defect Location Defect Type Variables/Functions Affected 
1     
2     
……     

The possible instances or further description of each field are shown in Table 

2.3.  In the Defect Description column, the inspector should provide a general 

description of the defect using plain English sentences; in the Defect Location 

column, one should record where the defect originated, i.e. either in the SRS, SDD or 

Code.  The module name or function name (associated to the location of the defect) 

should be provided as well.  The specific defect type should be documented in the 

Defect Type column of the table.  The exact affected variable/function should be 

specified in detail in the Variable/Functions Affected column of Table 2.2.  

Table 2.3 Possible Instances or Further Description for Each Field in Table 2.2 

Item Possible Instances of Each Field in Table 2.2 
Defect Description Plain English sentence.  
Defect Location SRS;  

Software Design Documents 
(SDD);  
Code 

Function name (if the defect is in 
SRS);  
Module name (if the defect is in SDD 
or code) 

Defect Type Missing function; Extra function; Incorrect function; Ambiguous 
function;  
Missing input; Extra input; Input with incorrect/ambiguous value; Input 
with incorrect/ambiguous type; Input with incorrect/ambiguous range; 
Missing output; Extra output; Output with incorrect/ambiguous value; 
Output with incorrect/ambiguous type; Output with incorrect/ambiguous 
range; 
Missing predicate; Extra predicate; Incorrect/ambiguous predicate. 

Variables/Functions 
Affected 

The exact name of the affected variables or functions given in the 
documents. 
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Using the same PACS SRS described in step 1 as an example, the following 

table should be generated: 

Table 2.4 Record of Identified Defects for Example 1 

NO. Defect Description Defect Location Defect 
Type 

Variables/Functions 
Affected 

1 This requirement specification 
does not specify the case 
where the data stored in the 
card is not correct.  

PACS SRS: Card 
validation results 
display function 

Missing 
predicate 

p(f2) ={card data = 
incorrect} 

2.6.3 Step 3: Modify the HLEFSM by Mapping the Identified Defects 

Once defects have been identified, they should be mapped into the HLEFSM and 

the infected states should be identified for later assessment of their final impacts.  The 

defect mapping process ultimately modifies the HLEFSM.  The modified EFSM 

obtained is therefore an octuple (Σ, Γ, S, T, P, V, OP, D) where D is the set of defects 

discovered through inspection. 

The defect mapping procedures are shown in Figure 2.4.  The following 

subsections will describe how to localize the defects in the HLEFSM and how to 

modify a HLEFSM and the low level EFSM (LLEFSM) obtained.  

2.6.3.1 Section a: Localize the defects in the HLEFSM: 

One needs to know the exact locations of the defects in order to modify the 

HLEFSM correctly.  The localization of the defects is based on tracing among the 

development documents: SRS, SDD and code which have been inspected.  Figure 2.5 

illustrates the detailed tracing procedures.  

2.6.3.2 Section b: Modify the HLEFSM: 
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START

Localize all the defects in SRS
(see section a)

END

Modify the low level EFSM by flagging
the faulty transition (see section c)

Examine defect #1

Split the corresponding high level EFSM
to a low level EFSM (see section c)

Is it a bulleted SRS
function defect?

No

Yes Modify the high level
EFSM by flagging
the faulty transition

(see section b)

Is it the last defect?

Ye
s

Examine the next
defect

No

 

Figure 2.4 General procedures for defect mapping 

The infected state should be identified during the EFSM modification process.  

The process of definition and identification of the infected state is discussed next.  If a 

defect found was directly related to a bulleted function, (i.e. the defect is a bulleted 

function level defect,) there is no need to split the HLEFSM.  A new state or 

transition should be created or certain variables within the transitions should be 

flagged to reflect the infections.  It should be mentioned that all the defects should be 

represented by a variable, i.e. variable d, and attached to the transitions. If d with the 

initial value of 0 is assigned to 1, it means there is a defect along with the transition.  

Thus, the attributes of the transition t have now changed from { , ( )}i i it p f iv=  to

{ , ( ), }i i i it p f iv d= . 
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START

Examine defect #1

END

No

Is it a bulleted SRS
function defect?

Is it a sub-function
level SRS defect?

Yes

Find the name of the
bulleted function which this

sub-function belongs to

Ye
s

No

The defect is a SDD or code defect

Examine the module name containing
the defect

Is this module a
bulleted function?

Yes

Go to the detailed SDD section to find
the description of the module

No

Is this module called
by a bulleted function?

Find the
name of the

bulleted
function

Yes

No

This module is called by a sub-function

Go to the detailed SDD section again to
find the description of the sub-function

Find the name of the bulleted function
this sub-function is called by

Mark that function for further EFSM
modification

Is it the last defect?

Ye
s

Examine the next
defect

No

Is it an entire extra
module/function?

No

Identify the input and output
of the extra module/function

Go to the detailed SDD section

Yes

Is the input the
output of an existing

module/function?

Are fb and fa
bulleted SRS

function?

Is the output the input
of another existing
module/function?

Ye
s

Yes

No

The Extra module is not related
to the software under study

No

The extra module/function is right
after the existing module/function (fb)

Ye
s

The extra module/function is right
before the existing module/function (fa)

The extra module/function
is located between fb and fa

The extra module/function is
located between fb and EXIT

No

Is it a SRS defect?

Yes

 

Figure 2.5 Flowchart for localizing the defects 

Using the defect mapping procedures, the original and the modified EFSM for 

example 1 is shown below: 
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Function f2: Validation Results Displaying 
Function

Function f1: Validate Card

So(f2): Card has 
been validated and 

“Enter PIN” is 
displayed

Si(f1): Card is 
awaiting 

validation

p(f2): Card data 
is correctSi(f2):Validation 

Results is awaiting 
to be displayed

So(f1):Card has 
been validated

t1= Validate 
Card Data

 

Figure 2.6 Original EFSM for Example 1 

Function f2: Validation Results Displaying 
Function

Function f1: Validate Card

Card has been 
validated and “Enter 

PIN” is displayed

Function that should 
associate with the 
missing predicate

d(t(f2))=1

Si(f1): Card is 
awaiting 

validation

p(f2):Card 
data is correct

p(f2):Card data 
is incorrect

Si(f2):Validation 
Results is awaiting 

to be displayed

So(f1):Card has 
been validated

t1= Validate 
Card Data

So(f2)

 

Figure 2.7 Modified EFSM for Example 1 

2.6.3.3 Section c: Split the HLEFSM to a LLEFSM and modify it: 

If a defect was not directly related to a bulleted function, the HLEFSM model 

should be decomposed to a lower level of modeling.  This is because a defect could 

be within a bulleted function while only part of the bulleted function is infected and 

will fail to perform adequately.  Thus, one needs to break down the bulleted function 

to the level where the defect can be represented directly6.   

                                                 
6 A defect can be represented directly if the variable/function/subfunction which contains the defect is visible in the model since 

the level of detail in the model reaches the variable/function/subfunction. 
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The general procedures for the construction of the HLEFSM are still valid for the 

construction of the LLEFSM.  However, special attention should be paid to the 

following issues: 

1) Function fi  has a hierarchical structure, i.e. it is the parent function of its n sub-

functions fij, j = 1, 2 …n.  These identified sub-functions are acting as child functions; 

2) The I/O connections between the child functions can be easily determined by 

following steps c) to f) of the general construction procedures for the bulleted 

functions (step 1) but applying it now to the “Processing” section of the bulleted 

function.  One should determine the interface between the child functions and their 

parent function by linking the beginning state Si(fi) of the parent function with the 

beginning state of its first child function Si(fi1) and linking the ending state So(fin) of 

the last child function with the ending state of its parent function So(fi) directly.  

3) The input and output of the child functions may not be only in the “input” and 

“output” section of their parent function.  The “processing” part also needs to be 

manually examined to identify the input and output of the child functions. 

2.6.4 Step 4: Map the OP to the Appropriate Variables (or Transitions) 

Generally, the operational profile is defined as {iv, OP(iv)} in EFSM, where iv is 

the set of input variables and OP(iv) is the set of probabilities of iv.  As a very 

important attribute of the EFSM, OP should be predetermined and then mapped into 

the EFSM constructed through steps 1 to 3.  If there is any predicate existing in the 

constructed EFSM, the probability of the execution of each branch needs to be 

determined since there are multiple subsequent states after the predicate.   
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If the predicate is only a function of the input variables from set Σ, which are 

crossing the boundary of the application, the probability of execution of each branch 

is usually determined by analyzing the operational data or can be found in various 

databases.   

If the predicate is a function of internal variables from set V, i.e. variables which 

are within the boundary of the application, the probability of execution of each branch 

can be calculated based on input variables from set Σ since the internal variables are 

actually functions of the input variables from set Σ.  For instance, consider the case 

where a predicate is determined by the value of an internal variable y which is a 

function of variable x ( ( )y f x= ).  Variable x is from set Σ whose OP is known either 

by analyzing operational data or by searching in databases.  Thus, the OP of variable 

y can be analytically calculated through function ( )y f x= .  If function f is a complex 

function, the input/output table as suggested in Garret [36] should be utilized to 

obtain the value of y based on which the execution probability of each branch can be 

determined.   

It should be mentioned that the mapping process does not entail as much work as 

one might think because the constructed EFSM is a compact version of the actual 

application since only defect related sections are modeled in detail.  Furthermore, for 

safety critical systems, the relationship between the internal variables and the 

variables crossing the boundary of the system is kept simple to reduce the calculation 

error.  

2.6.5 Step 5: Obtain the Failure Probability by Executing the Constructed EFSM 
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Application of the procedure described in Steps 1 to Step 4 yields the execution 

probability and the infected state.  As for the propagation probability, it is assumed to 

be equal to 1.  If a low level defect is detected, experimental methods such as fault 

injection can be utilized to assess the exact propagation probability.   

The failure probability can be obtained by executing the constructed EFSM.  The 

execution of the EFSM can be implemented using an automatic tool such as 

TestMaster [37].  TestMaster is a test design tool that uses the EFSM notation to 

model a system.  TestMaster and similar tools capture system dynamic internal and 

external behaviors by modeling a system through various states and transitions.  A 

state in a TestMaster model usually corresponds to the real-world condition of the 

system.  An event causes a change of state and is represented by a transition from one 

state to another.  TestMaster allows models to capture the history of the system and 

enables requirements-based finite state machine notation.  It also allows for the 

specification of the likelihood that events or transitions from a state will occur.  

Therefore, the operational profile can be easily integrated into the model.  Thus, the 

probability of failure from unresolved known defects can be assessed by simply 

executing the constructed TestMaster model.  

First, TestMaster will execute all the possible paths of the constructed EFSM 

model.  The paths which contain defect(s) can be recognized by TestMaster 

automatically.  Thus, the probability of execution of the ith path with defect(s) ipathp

can be calculated.  Then the probability of failure is: 

 i

i

f path
path

p p= ∑  (2.9) 
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where: 

 pf  is the probability of failure and  

 ipathp is the probability of execution of the ith path with defect(s). 

2.7 Application of the Metric-based RePS Theory  

Six of the forty metrics identified in [18] were applied to a small scale software, 

PACS, an automated Personnel entry/exit Access Control System [38] [39].  By 

“applied”, it is meant that the six metrics were used as root metrics and the 

corresponding RePSs were developed and used to predict the reliability of the system 

under study, i.e. PACS.  The predictions obtained were then compared to PACS’ 

operational reliability. PACS was developed industrially by one of the US leading 

defense contractors using the waterfall methodology and a CMM level 4 software 

development process.  PACS counts around 800 lines of code and was developed in 

C++.  The six selected metrics were "Mean time to failure (MTTF)", "Defect density 

(DD)", "Test coverage (TC)", "Requirements traceability (RT)", "Function point 

analysis (FP)" and "Bugs per line of code (BLOC)"7.  

In the research at the origin of this thesis, we applied eleven root metrics to a 

safety-critical software system used in the nuclear industry and assessed its reliability.  

The software selected, APP 8 , is a real-time safety-critical system.  It is a 

microprocessor-based digital implementation of one of the trip functions of a Reactor 

Protection System (RPS) used in the nuclear power industry.  The software system is 

based on a number of modules which include a “system software” and an “application 

                                                 
7  The units of these six metrics are: hours, defects per line of code, percentage, percentage, function point and defects 

respectively. 
8 Detailed APP information (development and testing documents) can not be provided since they are proprietary documents.  
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software”.  The “system” software monitors the status of the system hardware 

components through well defined diagnostics procedures and conducts the 

communications protocols.  The “application” software reads input signals from the 

plant and sends outputs that can be used to provide trips or actuations of safety 

system equipment, control a process, or provide alarms and indications.  The APP 

software was developed in ANSI C and is about 12,000 lines of executable code. 

The eleven root metrics are "Bugs per line of code" (BLOC), "Cause & effect 

graphing" (CEG), "Software capability maturity model" (CMM), "Completeness" 

(COM), "Cyclomatic complexity" (CC), "Defect density" (DD), "Fault days number" 

(FDN), "Function point analysis" (FP), "Requirement specification change request" 

(RSCR), "Requirements traceability" (RT) and "Test coverage" (TC).  Definitions of 

the eleven software metrics used for APP reliability prediction are presented in the 

Appendix A. 

A summary description of the eleven metrics is provided in section 2.7.1.  The 

generation of APP’s OP is presented in 2.7.2.  The reliability prediction results 

obtained using the eleven metric-based RePSs are displayed and analyzed in section 

2.7.3.  These predictions are validated by comparison to the "real" software reliability 

obtained from operational data & statistical inference.  Further discussions about the 

measurement process for the eleven metrics used in this research are provided in 

section 2.7.4.  The discussion includes an analysis of feasibility which takes into 

account the time, cost and other concerns such as special technology required to 

perform the measurements.  Conclusions are presented in section 2.7.5. 

2.7.1 Summary of the Measures and RePSs 



 37 
 

Different software metrics can be collected at different stages of the software 

development life-cycle (i.e. requirements, design, code and test) and measurements 

will be based on applicable software development products, i.e software requirements 

specifications (SRS), software design documents (SDD), software code (SCODE) etc.  

For instance, the BLOC measurement process can not be conducted until code is 

developed, thus the earliest phase at which BLOC becomes “applicable” is the end of 

the implementation phase.  Applicable phases (marked as “√”) for each measure 

studied are summarized in Table 2.5.  The earliest applicable phase (i.e. the phase for 

which measurement of a particular metric becomes meaningful) is marked with an 

additional symbol “*”. 

Table 2.5 Phases for which Metrics are Applicable  

Metrics 
Applicable Phases 

Requirements 
(RE) 

Design  
(DE) 

Implementation 
(IM) 

Testing  
(TE) 

Operation  
(OP) 

BLOC   √ * √ √ 
CEG √* √ √ √ √ 
CMM √* √ √ √ √ 
COM √* √ √ √ √ 

CC   √* √ √ 
DD   √* √ √ 

FDN √* √ √ √ √ 
FP √* √ √ √ √ 

RSCR √* √ √ √ √ 
RT  √* √ √ √ 
TC    √* √ 

It should be pointed out that all measurements are performed during APP’s 

operation phase.  Focus on the operation phase is driven by the time elapsed since 

delivery of the APP system and the consequent unavailability of important historical 

information which could have characterized the software development process.  For 

example, one can measure the FP count in the Requirements phase using an early 
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version of the SRS.  This would give us an estimate of reliability based on FP early in 

the development life-cycle.  Unfortunately, these early versions of APP’s SRS are no 

longer available.  The only SRS version available today is the final version, i.e., the 

version which was delivered at the end of the testing phase. 

As addressed in section 2.1, measurement results can be either directly linked to 

software defects through inspections and peer reviews or indirectly linked to software 

defects through empirical software engineering models.  The M-D models for each of 

the eleven root metrics are specified in Table 2.6.  Support metrics used for the M-D 

models are also identified in the right column of Table 2.6.  Detailed descriptions of 

the M-D models for each metric are provided in Appendix B. 

As shown in Table 2.7, the eleven metrics under study can be further divided into 

three groups corresponding to the three types of defect information defined in section 

2.1.  In the case of the first group of metrics, only the number of defects can be 

obtained.  Their location is unknown.  Metrics in the second group correspond to 

cases where actual defects are obtained through inspections or testing.  Thus, the 

exact location of the defects identified and their number is known.  The metrics in the 

third group have the combinational characteristics of the first two groups.  The exact 

location of defects detected in an earlier version is known and only the total number 

of defects in the current version can be predicted.  Support metrics are also identified 

for each D-R model. 
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Table 2.6 M-D Models for Each Root Metric 

Root 
Metrics 

M-D Model Support Metrics for M-D Model 

BLOC 
Gaffney’s empirical model [28] • The total number of modules 

• The code size ratio of a particular module 
• Severity level of the failures of interest 

CEG Rule-based Inspection  - 

CMM 

Correlation model relates CMM 
level with number of defects 
remaining based on empirical 
data [40] 

• The number of function points 
• Severity level of the failures of interest 

COM Rule-based Inspection  - 

CC 
Correlation model based on the 
Success Likelihood Index Method 
(SLIM) [41] [42] [43] 

• The number of modules whose CC belong to a 
certain pre-defined level 

• The total lines of code in the application 
DD Rule-based Inspection  - 

FDN 

Development process defects 
records and phase – based defect 
prediction method [44]  

• The phase within which a defect originated 
(determined for each defect)  

• The number of requested repairs that are fixed 
in a specific phase 

• The number of repairs requested in a specific 
phase 

• The number of function points 
• The length of each life cycle phase 
• Type9 of software systems 
• Severity level of the failures of interest 

FP 
Correlation model relates FP with 
number of defects remaining 
based on empirical data[45] 

• Severity level of the failures of interest  
• Type of software systems 

RSCR 
Correlation model based on the 
Success Likelihood Index Method 
(SLIM) [41][42][43] 

• The size of the changed source code 
corresponding to RSCR 

• The total lines of code in the application 
RT Rule-based Inspection  - 

TC 
Testing records and Malaiya’s 
model [46] 

• The number of defects found by test cases 
documented in the testing results. 

 

 

                                                 
9 The types of software systems are defined as End-user software, Management information system, Outsourced and contract 

software, Commercial software, System software and Military software.  Detailed definition of each type is provided in [45].  
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Table 2.7 Three Groups of Metrics 

Group I II III 

Model Model I Model II Model III 

Metrics BLOC CMM CC FP RSCR CEG COM DD RT FDN TC 

Support 
Metrics 

𝑇𝐿, τ τ  τ 

2.7.2 APP Operational Profile Generation 

The operational profile for APP is defined as a complete set of “plant inputs” and 

“infrastructure inputs”.  The set of “Plant inputs” consists of the reactor’s delta flux 

parameters which are being monitored by sensors.  The counterparts to "plant inputs" 

are "infrastructure inputs," which are used to determine the hardware (i.e. computer 

platform) and software health statuses.  Thus, APP’s OP is: 

 𝑂𝑃𝐴𝑃𝑃 = (𝑂𝑃𝑃𝐼 ,𝑂𝑃𝐼𝐼) (2.10) 

Where: 

 𝑂𝑃𝐴𝑃𝑃is the operational profile for APP; 

𝑂𝑃𝑃𝐼  is a subset of the operational profile which corresponds to the plant 

inputs; 

𝑂𝑃𝐼𝐼  is a subset of the operational profile which corresponds to the 

infrastructure inputs. 

Ideally the OP for plant inputs can be derived from the plant's operational data if 

this data set is complete.  By "complete", it is meant that data corresponding to both 

normal and abnormal conditions should be present in the data set.  In the case of APP, 

"normal data" corresponds to situations under which the reactor operates within the 

Barn-Shape given in Figure 2.8; "abnormal data" corresponds to situations such that 
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the data is outside the Barn-Shape.  If the power and delta flux pair falls out of the 

barn-shape, APP’s application software trips; otherwise it does not.  

 

Figure 2.8 Flux/Flow Delta Flux Trip Condition (Barn Shape)10 

We examined a data set which contains eleven years (1/1/96 to 1/1/06) worth of 

operational data collected (hour by hour) for one of the power plant’s channel11.  

There are altogether 88,418 distinct data records.  After eliminating 15,907 outage, 

missing and aberrant data, 72,511 data records are used for the assessment of 𝑂𝑃𝑃𝐼.  

The results are summarized in Table 2.8. 

 

                                                 
10 DF is the flux imbalance, P is the thermal power, TT is the maximum thermal power, B,1 B,2 B,3 B4 M1 and M2 are setpoints 

(coefficients). 
11 The power plant control logic is comprised of three independent control units.  Each unit contains 4 channels, each channel 
contains one APP safety module. 
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Table 2.8 APP’s Operational Profile-Plant Inputs (OPPI) 

Event Condition12 
Number 
of Data 
Records 

Probability 
(per 

demand) 
1 𝐷𝐹 < 𝐵1 2 9.8828E-10 
2 𝐵1 ≤ 𝐷𝐹 ≤ 𝐵2 and 𝑃 > (𝑀1)(𝐷𝐹) + [𝑇𝑇 − (𝑀1)(𝐵2)] 0 5.1134E-10 
3 𝑃 > 𝑇𝑇 7 3.4594E-9 
4 𝐵3 ≤ 𝐷𝐹 ≤ 𝐵4 and 𝑃 > (𝑀2)(𝐷𝐹) + [𝑇𝑇 − (𝑀2)(𝐵3)] 0 2.4725E-10 
5 𝐷𝐹 > 𝐵4 1 4.9414E-10 
6 Normal 72,501 0.9999999943 

The probability of occurrence of conditions 1, 3 and 5 can be estimated as the 

number of data records over the total number of operational data records.  No data 

records fall within the domains delineated by conditions 2 and 4.  A statistical 

extrapolation method was applied to generate estimates for the operational profile in 

these two regions.  The data sets which could be used to perform the extrapolation are 

those in the shaded area in Figure 2.8.  The number of data records in area 1 is forty 

five (45) and in area 2 is one (1).  A normal distribution is proved to fit the 45 data 

records corresponding to condition 213.  For condition 4, obviously, the fact that there 

exists only 1 data record in area 2 is not sufficient to perform a valid statistical 

extrapolation.  The maximum likelihood estimator, an unbiased estimator of the 

likelihood of occurrence of an event is given in [47] as 𝜆̂ = 𝑟
𝑇
 if we assume "r" event 

occurrences are observed in "T" hours of operating time.  A common solution to 

occurrence rate estimation when no event has been observed is to take one half as the 

numerator (r) [48].  Thus, the probability of occurrence of condition 4 can be roughly 

estimated as 0.5/72,511 = 6.9 x 10-6/hour (2.4725E-10/demand). 

                                                 
12 It should be noted that these conditions are mutually exclusive although they may not appear to be so since the software 

handles these events in sequence.  For instance, the software will first check whether Event 1 is satisfied.  If DF does not 
satisfy the condition, Event 2 is then triggered and the code checks whether DF and P satisfy the second condition. 

13 Use Shapiro-Wilk test. 
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The operational profile for the infrastructure inputs cannot be obtained from 

field data.  This is simply because 𝑂𝑃𝐼𝐼 is a function of the health status (i.e. normal 

conditions and in failure conditions) of related hardware components.  The failures of 

these hardware components are rare and hardly observed, sometimes even over their 

entire performance periods.  For 𝑂𝑃𝐼𝐼 quantification, first, the hardware-related OP 

events and the hardware component involved in such OP events should be identified.  

Then a quantitative fault tree technique can be used to assess the probability of such 

events.  This approach is further explained using the following example. The example 

refers to a PROM (Programmable Read-Only Memory) self-test carried out by APP’s 

system software. The EFSM which models the test is given in FigureFigure 2.9.   

 

Figure 2.9 An Example EFSM Model for a PROM self-test function in the APP 

system 

The events whose occurrence we are interested in are: Event 1 = “The “Test 

Results == 55H” ”, Event 2 = “The “Test Results == BBH” ”, and Event 3 = “The 

“Test Results == Anything Else” ”.  The probabilities of these events should be 

determined.  The PROM test compares the checksum of the PROM with a predefined 

value.  The value 55H will be written to a specific status address if the test passes or 

BBH if it fails.  Any value other than 55H or BBH is not expected but may occur if 
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the hardware components performing the writing operation (i.e. Random Access 

Memory, register, etc.) fail during the status writing operation. 

The following fault tree is constructed to quantify Event 2 = “The “Test Results 

== BBH””.   

 

Figure 2.10 Fault Tree for Event 2: PROM Test Status Flag is BBH 

The basic fault tree events need to be quantified.  The ideal solution is to obtain 

all failure rate data of the specific hardware components from the manufacturers.  

This approach normally does not work due to the proprietary nature of such 

information.  Some public databases, such as the RAC database [49], [50] and the 

Nuclear Regulation Commission (NRC) database [51] which provide generic failure 

rate data of a certain type of hardware component (i.e. the data can not be traced to a 

particular manufacturer or to the detailed specification of a particular hardware 

component), can be used for the probabilistic modeling of digital systems. 

In this application, NRC database was used to obtain the failure rates of the basic 

event.  The information required to quantify the fault tree illustrated in Figure 2.10 is 

listed in Table 2.9.  A same approach was taken for event 3 probability quantification.  
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The complete infrastructure inputs-related OP for the PROM test in Figure 2.9 is 

shown in Table 2.10. 

Table 2.9 Failure data information required to quantify Event 2 

Events 
Hardware 

Components Failure Rate 
(failure/demand) 

Resources Results 
(failure/demand) 

The 
probability of 
Event 2 = 
“PROM Test 
Status Flag is 
BBH” 

PROM 𝐹𝑅1 = 9.32 × 10−13 NUREG/CR-5750 𝐹𝑅 = �𝐹𝑅𝑖
= 7.23 × 10−11 

RAM 𝐹𝑅2 = 1.18 × 10−11 NUREG/CR-5750 
Read/Write 𝐹𝑅3 = 5.73 × 10−11 NUREG/CR-5750 
Register 𝐹𝑅4 = 2.19 × 10−12 NUREG/CR-5750 

Table 2.10 APP OP-Infrastructure Example Results 

No. Event  OP (per demand) 
1 PROM Test Status Flag is 55H P1 = 1 - P2 - P3 = 0.9999999998564 
2 PROM Test Status Flag is BBH P2 = 7.23E-11 
3 PROM Test Status Flag is neither 55H nor BBH P3 = 7.13E-11 

2.7.3 Application Results: Analysis 

APP’s actual reliability is assessed though analyzing the operational data.  It is 

known that three copies of APP have been deployed in a nuclear power plant and 

have been functioning for a total of 281 months.  APP operational failures have been 

documented in the Problem Records.  Each record mainly consists of a detailed 

problem description and a corresponding set of corrective actions.  Two out of the 

fourteen APP related records have been identified as being the result of APP 

software-related failures.  Therefore, the failure rate (failure/demand) of the APP 

software can be estimated as: 𝜆̂ = 𝑟
𝑇

× 𝜏 = 2
281×30×24×3600

× 0.129 = 3.542 × 10−10 per 

demand. 

The artifacts used, the number of defects found using each metric and the 

probability of failure based on each metric’s RePS are shown in Table 2.11.  The 
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prediction results are further compared with the actual assessment. The inaccuracy 

ratio (ρ) is defined to quantify the quality of the prediction: 

 𝜌(𝑅𝑒𝑃𝑆) =  �𝑙𝑜𝑔
𝑃𝑓(𝑅𝑒𝑃𝑆)

𝑃𝑓
� (2.11) 

where 

 ρ RePS is the inaccuracy ratio for a particular RePS; 

Pf is the probability of actual failure per demand obtained from APP 

operational data; 

Pf (RePS) is the probability of failure per demand predicted by the particular 

RePS. 

This definition implies that the lower the value of ρ(RePS), the better the 

prediction.  The last column of Table 2.11 provides the inaccuracy ratio for each of 

the eleven RePSs.   

Table 2.11 Reliability Prediction Results 

Group Root 
Metric 

Required 
Documents 

Number of 
Defects 

(Outcome of the 
M-D model) 

Probability of Failure 
(per demand) 

(Outcome of the D-R 
model) 

Inaccuracy 
Ratio 

I 

BLOC Code 14 8.43E-5 5.3764 
CMM SRS, SDD, Code 26 1.144E-4 5.5091 

CC Code 29 1.746E-4 5.6927 
FP SRS 10 6.02E-5 5.2303 

RSCR SRS, Code 12 7.22E-5 5.3095 

II 

CEG SRS, Code 1 6.732E-13 2.7243 
COM SRS, Code 1 6.683E-13 2.7211 
DD SRS, SDD, Code 4 2.312E-10 0.1853 
RT SRS, Code 5 3.280E-10 0.0334 

III 
FDN SRS, SDD, Code 1 6.45E-11 0.7397 

TC Code, Test Plan, 
Test Results 

9 5.805E-10 0.2146 

Generally speaking, reliability prediction based on RePSs constructed from the 

metrics in the first group is not good.  This is because the defects’ locations are 
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unknown and Musa’s exponential model is unable to model the exact software system 

structure.  For instance, during normal operation, two microprocessors work 

redundantly for safety concerns.  If either of the microprocessors calculates a trip 

condition, the APP system will send out a trip signal.  However, it may be very 

difficult to take into account the actual structure of the system in Musa's exponential 

model since it is difficult to separate the number of defects per processor and envision 

what type of failure might occur. 

In addition, Group I RePSs use an exponential reliability prediction model with a 

fault exposure ratio parameter set to 4.2x10-7.  This parameter always dominates the 

results despite possible variations in the number of defects.  This is evidenced by the 

small variation of the inaccuracy ratios observed for Group I RePSs.  The value of K 

is not suitable for current safety critical systems.  For instance, if one evaluates safety 

critical software reliability within a one-year period, the time t is roughly 3.15E7 

seconds.  For a real time system, the TL is normally below 1 second.  Further 

assuming there is only one fault remaining in the code, the reliability is calculated as: 

𝑅(𝑡) = e
−K×N×t

TL� = e−4.2×10−7×1×3.15×107
1� = 1.8 × 10−6  where we assume that 

the TL is less than 1 second.  This tells us that software with only one fault remaining 

definitely fails at the end of one year.  This conclusion contradicts what we have 

learnt from power plant field data. 

DD in Group II enforces the inspection of all documents (SRS, SDD and code) 

for all possible types of faults.  Application of this metric, however, requires more 

software engineering experience than that which is needed to implement measures 

like CEG, COM and RT whose inspection rules are relatively simple.   
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In the case of Test coverage, the fault exposure ratio, K, can be updated using 

the finite state machine models and defects found during testing.  The result is shown 

in the following table. 

Table 2.12 Fault Exposure Ratio Results 

 Fault Exposure Ratio 
Musa's K 4.2 x 10-7 
𝜐𝐾(𝜏) 4.5 x 10-12 

It is clear that the actual fault exposure ratio for APP is far less than 4.2 x 10-7.  It 

is proved again that Musa’s K is not suitable for safety critical systems.   

2.7.4 Discussion about the Measurement Process 

An estimate of the total time taken14 for reliability prediction based on each of 

the eleven root metrics is provided in Table 2.13.  The total time spent is further 

separated to account for the following five categories of effort: 

1) Effort category 1 covers the time spent for tool acquisition, comparison 

between possible tools and training to become familiar with the identified 

tools; 

2) Effort category 2 covers the time spent for the implementation of the M-D 

models: i.e. measurement of the root metric and of the support metrics; 

3) Effort category 3 covers the time spent for the implementation of the D-R 

models: e.g. construction of  the EFSM; 

4) Effort category 4 covers time spent for documentation; 

5) Effort category 5 covers other contributions. 

                                                 
14  All the measurements except the measurement of FP were performed by graduate students. The total time taken was 

approximately recorded by the students.  
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The time spent in each effort category is also provided in Table 2.13.  

Table 2.13 Total Time Spent for the Eleven RePSs 

Group Root 
Metric Total Time Spent Speed Effort Category (in days) 

1 2 3 4 5 

I 

BLOC   160 hrs (20 days) Fast 4 10 2 4 - 
CMM 120 hrs (15 days) Fast - 4 8 3 - 

CC 360 hrs (45 days) Medium 4 2 3 6 30 
FP 128 hrs (16 days) Fast - 7 5 4 - 

RSCR 360 hrs (45 days) Medium - 8 3 4 30 

II 

CEG 350 hrs (44 days) Medium 10 26 5 3 - 
COM 512 hrs (64 days) Medium 10 45 5 4 - 
DD 704 hrs (88 days) Slow 10 69 5 4 - 
RT 640 hrs (80 days) Slow 10 61 5 4 - 

III FDN 240 hrs (30 days) Fast - 16 8 6 - 
TC 904 hrs (113 days) Slow 10 30 15 4 54 

The speed is defined as follows: 

1) Fast − the set of measurements and calculations can be finished within 300 hours; 

2) Medium − the sets of measurements and calculations require at least 300 hours 

and no more than 600 hours; and 

3) Slow − the sets of measurements and calculations require more than 600 hours. 

Measurements and calculations related to BLOC, CMM, FDN, and FP RePSs can 

be completed quickly since there is no need to inspect the SRS, SDD, and Code.  

Measurements and calculations related to CEG, COM, CC, and RSCR require careful 

inspection of the SRS or the Code.  Thus they need more time.  Measurements related to 

DD and RT15 require inspection of all the related documents.  As a result, the RePSs 

measurement process for these two metrics is slow.   

For CC and RSCR, additional effort (30 days for each) was spent developing new 

correlation models linking CC and RSCR measurements to number of software defects.  

                                                 
15The effort devoted to RT measurement could have been improved with current traceability tools. 
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For the measurement of test coverage, since no defects were uncovered by the last 

set of test cases, 20 out of the 30 days of measurement effort were devoted to exploring 

earlier test plans and corresponding test results. In addition, much time was spent (54 

days) modifying the original test cases to adapt them to current simulation environments.  

In the absence of such compatibility problems, the measurements would have been 

completed significantly faster.   

Some measurements are also quite costly.  In Table 2.14, the required tools and 

corresponding cost for performing measurements related to the eleven RePSs are shown. 

Table 2.14 Cost of Supporting Tools 

Group Root Metric Required Tools Tool Cost 

I 

BLOC   RSM Software Free 
CMM CMM Formal Assessment $50,00016 

CC RSM Software Free 
FP FP Inspection $7,000 

RSCR N/A 0 

II 

CEG UMD Software 1 (CEGPT) $750 
COM TestMaster $50,000 
DD TestMaster $50,000 
RT TestMaster $50,000 

III 
FDN UMD Software 2 (FDNPT) $750 
TC TestMaster, Keil, IAR $51,220 

For three of these eleven RePSs, corresponding measurements have to be performed 

by experts.  The following table presents the related information. 

Table 2.15 Experts Required 

Metric Expert Training 
CMM CMM Authorized Lead Appraiser and 

Development Team 
SEI Formal Training 

DD Senior Software and System Engineer 10 Years Experience 
FP Function Point Analyzer and Development Team Function Point Training 

                                                 
16 If a company/organization is CMM certified, the cost related to CMM measurement will be zero. 
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2.7.5 Conclusions 

A panel of experts was invited to review and provide comments on the 

methodology and results presented in this research.  The following experts were 

contacted and invited to participate in the review.  

1) Dave N. Card, Fellow, Software Productivity Consortium 

2) J. Dennis Lawrence, Partner, Computer Dependability Associates, LLC 

3) Michael R. Lyu, Professor, Chinese University of Hong Kong 

4) Allen P. Nikora, Principal Member, Jet Propulsion Laboratory  

As an integral part of their review of [20] and based on the results of this 

research, the experts recommended a subset of the measures and corresponding 

RePSs for use.  The experts elected to recommend a measure if the inaccuracy ratio of 

its related RePS is less than 1.  Thus they recommended RT, DD, TC and FDN.   

FDN seems to be able to provide good prediction results.  However, the 

accuracy of FDN measurement heavily relies on the documentation which tracks 

defects throughout the development life cycle.  The quality of these documents is 

unknown.  Thus, if any of the other three metrics (RT, DD and TC) is available, FDN 

will not be recommended for use.   

As shown earlier in Table 2.13, DD, RT and TC are all very time-consuming.  

Rule-based inspections or peer reviews are required by DD and RT.  On the contrary, 

one should be able to conduct a reliability prediction based on the TC metric 

efficiently.  In the case of APP, the time required for the measurement and 

calculations related to TC was excessive.  This was due to the fact that significant 

time was wasted while modifying the original APP source code so that it could be 
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compiled successfully by current compilers.  In addition, for the measurement of TC, 

time was spent modifying the original test cases for the current simulation 

environments.  In the absence of compatibility problems, the measurements would 

have been completed much faster.   

Based on our findings and the expert’s recommendations, we conclude that the 

TC RePS is a good candidate for reliability prediction.  In the next section, the TC-

based RePS is described in details. 

2.8 Test Coverage Based RePS 

Test coverage is routinely used in industry to determine the level of 

completeness of the testing process.  In IEEE [16], Test coverage (TC) is defined as 

the percentage of requirement primitives implemented multiplied by the percentage of 

primitives executed during a set of tests.  A simple interpretation of test coverage can 

be expressed by the following formula: 

 𝑇𝐶% = �
𝐼𝐶
𝑅𝐶

� × �
𝑃𝑅𝑇
𝑇𝑃𝑃

� × 100 (2.12) 

Where:  

IC is the implemented capabilities; 

RC is the required capabilities; 

PPT is the tested program primitives and  

TPP is the total program primitives. 

In this research, it is assumed that all the requirements have been implemented 

and the tested program primitives are represented by the lines of code, the definition 

of test coverage then becomes:  
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 𝐶1 =
𝐿𝑂𝐶𝑇𝑒𝑠𝑡𝑒𝑑
𝐿𝑂𝐶𝑇𝑜𝑡𝑎𝑙

× 100% (2.13) 

Where:  

  C1 is test coverage obtained through testing. 

LOCTested is the number of lines of code that are being executed by the 

test data listed in the test plan. 

  LOCTotal is the total number of lines of code. 

The existence of a relationship between Test Coverage and reliability has been 

confirmed by many researchers.  Empirical studies have shown that defect 

detectability is correlated to test coverage [52] [53] [54].  Piwowarsky [55] predicts 

reliability based on the fact that the fault removal rate is a linear function of the code 

coverage.  Malaiya introduces a logarithmic model [46] that relates testing effort to 

test coverage and then estimates reliability using Musa’s [3] exponential model.  

Chen’s model [56] reduces the overestimation of the reliability prediction by 

Software Reliability Growth models by using coverage information collected during 

testing to extract only effective data from a given operational profile.  Gokhale et al. 

[57][58] propose a unified definition of TC and incorporate explicitly the time-

varying TC functions into the Enhanced Non-homogeneous Poisson Process 

(ENHPP) framework.  In their model, variation in the number of failures experienced 

is proportional to variation in coverage via a detection rate function which varies with 

time.  Pham and Zhang [59] revise the ENHPP reliability model by proposing S-

shaped TC functions and by considering imperfect repair while assuming repairs take 

place as soon as the failure is experienced.  Cai and Lyu [60] further integrate time 

and TC measurements together and present a hybrid reliability prediction model. 
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Among these proposed models, Malaiya’s model directly relates test coverage to 

defect coverage and uses Musa’s exponential model (described in section 2.2) to 

predict reliability.  Malaiya’s TC-based model is discussed next. 

Malaiya’s model calculates the number of defects remaining N from the number 

of defects found N0 and test coverage C1.  The defects in the software can be grouped 

into three categories with respect to the concept of test coverage: 1) Type 1 defects 

include known defects discovered by test cases.  These are located in the code 

covered; 2) Type 2 includes unknown defects located in the code covered; 3) Type 3 

includes unknown defects located in areas of the code which have not been covered 

(see Figure 2.11).  The number of defects remaining, N, calculated using Malaiya’s 

model includes both known defects (type 1) and unknown defects (type 2 and type 3). 

N0 corresponds to the type 1 defects.  N is obtained using the following equations: 

 𝑁 = 𝑁0 𝐶0⁄  (2.14) 

where: N0 The number of defects found by test cases provided in the test 

plan. 

 C0 The defect coverage, which is defined in [30] as the fraction of 

defects found by test cases given in the test plan.  

and 

 𝐶0 = 𝑎0 𝑙𝑛�1 + 𝑎1(𝑒𝑥𝑝(𝑎2𝐶1) − 1)� (2.15) 

where: a0, a1, a2 Coefficients which can be estimated from field data. 
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Figure 2.11 Defect Categories 

Once the total number of defects is obtained, D-R Model I described in section 

2.2 can be applied as 𝑅𝑇𝐶 = e
−K×N×t

TL� . 

As we can see from equation (2.14), Malaiya’s reliability prediction method is 

not valid if the number of defects found by test cases, N0, is zero.  It will lead to 

assessing N as equal to zero even when the test coverage is low which is meaningless.  

But for safety critical systems N0 is typically zero since the last version of the code 

should be failure free [61].  Other existing approaches all rely on the assumption that 

the number of defects found by test cases is not zero; otherwise their approaches are 

not applicable. 

Since the last version of a safety critical code should be failure free, there will 

definitely be multiple versions of this code.  Consider Figure 2.12 displaying the 

Code Not
Covered by Test

Cases

Code Covered
by Test Cases

Notes:            stands for the known defects found by testing in the testing covered code;
stands for the unknown defects in the testing covered code;

    stands for the unknown defects in the testing uncovered code;
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possible multiple versions of the source code and test plan for a safety critical system 

S.  

 

Figure 2.12 Multiple Versions of the Source Code and Test Plan 

Let us assume that zero defects were found in version n, Vn, by test plan TPn.  

While one can not as explained above use existing test coverage models for Vn , the 

models are applicable to earlier versions of the source code.  However, the direct 

usage for reliability prediction based on TC of a previous version TPn-1 of the test 

plan and source code Vn-1 is not accurate since the defects found in Vn-1 by TPn-1 will 

undergo a repair process which will modify these defects and the affected code.   

Direct usage of an earlier version of the source code to determine the number of 

defects remaining and that of the corresponding earlier version of the test plan to 

conduct the TC measurement and the reliability prediction introduces the following 

potential errors: 1) the prediction may be too conservative if the defects found are 

actually fixed; this is the most likely case; 2) the prediction may be overly optimistic 

if new defects are introduced during repair and not detected by the new test cases.  

These new defects could potentially be located on high probability paths and have the 

effect of drastically reducing reliability or on low probability paths and lead to more 

severe consequences than the original defects under repair.  Two refinements for the 

TC RePS are presented in Chapter 3 and Chapter 4.  They attempt to resolve issues 

VnVn-1V2V1

…...

TPnTPn-1TP2TP1

N0 Modifications
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associated to the use of test coverage (for reliability prediction) within a multi-phase 

functional testing process such as the one encountered in safety critical applications 

and the effects of non uniform repair.  
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Chapter 3: Predicting the Types and Locations of Faults 

Introduced During An Imperfect Repair Process and their 

Impact on Reliability 

This chapter is a verbatim reproduction of the paper “Predicting The Types and 

Locations of Faults Introduced During An Imperfect Repair Process and their Impact 

on Reliability” published in the International Journal of Systems Assurance 

Engineering and Management, Vol 1, Issue 1, pp 33-40, March 2010, Springer 

Verlag. 

Abstract 

Imperfect debugging of software development faults (called primary faults) will 

lead to the creation of new software faults denoted secondary faults.  Secondary faults 

are typically fewer in numbers than the initial primary faults and are introduced late 

in the testing phase.  As such it is unlikely that they will be observed during testing 

and their failure characteristics are unlikely to be assessed accurately.  This is an issue 

since they may possibly display different propagation characteristics than the primary 

faults that led to their creation.  In particular their location will be distributed non-

uniformly around the fault being fixed.  The paper proposes a methodology to assess 

the impact of secondary faults on reliability based on predicting their possible types 

and locations.  The methodology combines a fault taxonomy, code mutation and 

Bayesian statistics.  The methodology is applied to portions of the application 

software code of a nuclear reactor protection system.  The paper concludes with a 
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discussion on the integration of the results within existing Software Reliability 

Growth Models.  

Keywords: Software Reliability, Imperfect Debugging, Code Mutation 

3.1. Introduction 

In early software reliability growth models (SRGMs), such as the Jelinski-

Moranda (JM) [62] or the Goel-Okumoto (GO) model [63] it is assumed that once a 

fault is detected, it is removed instantaneously through repair and that no new fault is 

introduced.  This assumption reduces the complexity of the models greatly.  

However, it is not valid in real projects and is therefore not a reasonable assumption.  

It is possible that either the fault was not fixed or the fault was fixed, but a new fault 

was introduced during the repair process. In addition, the repair process may not be 

immediate. 

The assumption of perfect repair has been questioned by many researchers and 

some SRGMs have been proposed to remove this unrealistic assumption.  Goel [64] 

updates the hazard function in his original GO model by introducing an imperfect 

debugging probability; Ohba and Chou [65] model repair as a Markov process and 

update the JM model and the Littlewood model [66] by introducing an imperfect 

repair rate.  They also update the GO model using an error-reintroduction rate; 

Yamada et al [67] introduce a fault introduction rate to correct both the exponential 

fault-content function and the linear fault-content function; Zeephongsekul et al [68] 

further distinguish the original faults (primary faults) from the faults introduced by 

imperfect repair (secondary faults) and introduce different repair rates and detection 

rates for these two types of faults; Other researchers introduce time-dependent repair 
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rates to reflect the learning process during the testing phase[69] [70]; Gokhale [71] 

identifies  different repair policies and applies a rate-based simulation [4] technique to 

estimate the corresponding number of residual faults.  Other researchers propose 

more realistic SRGMs by removing the assumption of instantaneous repair and 

incorporating repair time [72] [73]. 

These various models point to the fact that: 1) New faults due to imperfect 

debugging (secondary faults) are much fewer in number than the original faults.  

Depending on the repair rate, the number of secondary faults introduced might be 5 to 

50 times less than the number of primary faults with an industry average of 14 [74] 

[75].  This phenomenon is most acute for safety critical systems and ultra reliable 

systems, developed using great care and which are characterized by high repair rates 

[75]; 2) Secondary faults are introduced late in the testing phase.  Indeed one will 

need to first experience the primary faults [76], then repair these thereby introducing 

a significant time delay especially if resources are limited [71]; 3) Secondary faults 

may have different fault propagation characteristics [76].  Due to 1) and 2), we will 

most likely be limited to observations of primary faults and the secondary fault 

process may not be understood accurately.  This may be an issue if the secondary 

fault introduced has a more significant impact than the primary fault being fixed, for 

instance, if it is located in a path with a high fault exposure rate17 or if the defect 

resides on a path of execution where it will have more severe consequences.  These 

facts argue for the separate study of secondary faults and their propagation 

characteristics.  

                                                 
17 Fault exposure rate is taken loosely here to mean the probability per unit of time that this particular fault becomes a failure. 
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This paper presents a methodology for predicting the fault propagation 

characteristics of residual secondary faults (i.e. faults that have not been detected 

through testing).  

The remainder of the paper is organized as follows: section 3.2 introduces a 

taxonomy of  debugging/repair errors; section 3.3 proposes a technique to model 

debugging/repair errors and the corresponding secondary faults and assess whether 

these secondary faults would survive the testing process; section 3.4 describes a 

method for assessing the probability of existence of these residual secondary faults; 

section 3.5 presents a method to assess the impact of these faults on reliability and 

their fault propagation characteristics.  An application of the proposed technique to a 

software system used in the nuclear industry is presented in section 3.6.  Section 3.7 

concludes the paper and discusses possible integration of the results into software 

reliability growth models. 

3.2. Repair Error Taxonomy  

To identify the types of secondary faults that can be created through an 

erroneous repair process, one should first have a well-defined repair error taxonomy 

which categorizes possible repair errors.  Each imperfect code repair is due to a 

human error taking place during the repair process18.  But what types of errors are 

possible?  Many researchers have attempted to answer this question and have 

developed corresponding taxonomies (see for instance [77] [78]).  These taxonomies 

were built to satisfy a wide range of underlying motivations (e.g., understanding root 

causes of programming mistakes, developing fault tolerance measures, or facilitating 

                                                 
18 We assume the repair errors have similar characteristics as the programming errors. 
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testing [79]) which have influenced the classification scheme.  In this paper, we 

classify errors with respect to their impact in terms of physical variations of the code 

since we are interested in the type and location of secondary faults.  The taxonomy 

used is shown in Table 3.1.  It consists of two levels of abstraction.  To the left is the 

most abstract level of the taxonomy which derives from James’ error taxonomy [80] 

and classifies errors in five broad categories from omission to blending (where 

blending is a mixture of the other four types of errors).  To the right are fourteen 

classes of errors obtained by applying each of the five abstract error classes to three 

different logical groupings of the code: entities (E), logical lines of code (L) and 

clusters of lines of code denoted cluster of multi-logical lines of code (M).  Entities, 

logical lines of code (LOC) and clusters of multi-logical lines of code correspond to 

various groupings of the code locations.  An “entity” includes the primitive concepts 

of the language such as variables, constants, operators and syntactic connectives (e.g. 

braces).  Entities form the base vocabulary of the programming language and as such 

correspond to the lowest grouping level.  A “logical LOC” refers to a computer 

“instruction”, but its specific definition is tied to specific computer languages.  In C-

like programming languages, a “logical LOC” is contained within two semicolons. 

Detailed logical LOC counting rules for a specific language can be found in the 2001 

CMU/SEI technical report [81].  This grouping is used to express the lowest level 

functions 19  found in a computer program such as initialization, input, input data 

                                                 
19 A “function” is a unit which performs a specific functionality.  The 2nd level proposed in this paper is applicable to functional 

languages such as C where the primary concept of the language is that of function.  For object oriented languages where the 
primary concept is that of object this second level of the taxonomy could be modified accordingly. 
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validation etc20 [82]. A “cluster of multi-logical LOC” is a set of coupled logical 

LOCs which implements a meaningful system action.  This corresponds to the next 

level of functional abstraction found in computer programs.  The determination of 

clustered LOCs is not an easy task, and, preliminary rules for partitioning source code 

into clustered LOCs have been devised by adopting the rules used in natural language 

partitioning [83] [84]. 

An index (from Cl1 to Cl14) is assigned to each of these fourteen error classes.  

Note that the blend errors are not fully enumerated.  Cl13 to Cl14 are two 

representative examples of the possible blend error classes.  

Table 3.1 Hierarchical Error Taxonomy to Capture the Physical Manifestations of 

Repair Errors 

1st Level Error 
Taxonomy 

2nd Level Error Taxonomy 

Omission Omission of a multi- logical LOC cluster (Cl1) 
Omission of a logical LOC (Cl5) 
Omission of an entity in a logical LOC (Cl9) 

Addition Addition of a multi- logical LOC cluster (Cl2) 
Addition of a logical LOC (Cl6) 
Addition of an entity in a logical LOC (Cl10) 

Misordering Misplacement of a multi- logical LOC cluster (Cl3) 
Misplacement of a logical LOC (Cl7) 
Misplacement of an entity within a logical LOC (Cl11) 

Misformation Using an incorrect multi- logical LOC cluster (Cl4) 
Using an incorrect logical LOC (Cl8) 
Using an incorrect entity within a logical LOC (Cl12) 

Blend Error Omission of an entity of a logical LOC and Misplacement of an entire 
logical LOC (Cl13) 
Misplacement of an entire logical LOC and Misplacement of an entity of a 
logical LOC (Cl14) 

…… 

                                                 
20 If a logical LOC contains a nested function call, it is still considered as a logical LOC and the nested function call itself is 

considered as an entity of the line. For instance, “a = f(b) +c;” is considered as one LOC even if “f(b)”  is implemented using 
multiple LOCs. “f(b)” is  an entity of this LOC. 
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3.3. Modeling Repair Error Types and Determining Whether They Remain in the 

Program   

The method which we will use to obtain the potential secondary fault types 

appearing as a result of repair errors and to assess whether they remain in the code 

after test uses code mutation.  Code mutation is a fault-based technique which 

attempts to represent the behavior of code subject to programmer errors by injecting 

faults in the code and observing the modified code behavior under various inputs.  

The injection of faults in the program is obtained through application of mutant 

operators (MO) to the program.  The resulting program is called a mutant program 

(MP).  In order to mimic all types of programmer errors, errors are introduced into a 

program by creating many versions of the program, each of which contains one error 

[85].  

Consider a particular code repair activity (see Figure 3.1), it can be either 

successful and lead to a perfectly modified code with probability “1-r”, or, be 

unsuccessful and lead to an imperfectly modified code with probability “r”.  

Systematic mutation of the portion of code being repaired will create a set of mutant 

programs within which the correct code should reside (in Figure 3.1, A3).   

By limiting code mutation to the portion of code being repaired, we mimic the 

non-uniformity of secondary fault location.  Secondary faults will indeed be restricted 

to the areas of the code being reworked.  More specifically, secondary faults can be 

located within places either physically or logically close to the code repair areas. 

Areas physically close to code repair areas are easily identifiable.  Areas logically 

close to the code repair areas can be determined by using techniques such as Program 
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Slicing (PS) or examining the Program Dependency Graph (PDG) which illustrates 

explicitly both the data and control dependence for each operation in a program.   
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Figure 3.1 Code Repair and Its Mutants 

During one specific attempt at repairing the code (i.e. one code repair), one or 

multiple repair errors can occur.  The types of errors that might occur were defined in 

Table 3.1 of Section 3.2.  If one assumes independence between errors, the 

probability of multiple errors occurring during one code repair activity is low.  We 

will thus assume that only one error occurs during each repair.  Therefore, all 2nd 

level error categories (i.e. the lowest abstraction level in Table 3.1) besides the “blend 

error” (which corresponds to a combination of multiple errors) should be modeled by 

applying corresponding mutant operators to reflect possible repair errors and obtain 

the related secondary faults. 

For each mutant program generated, test cases are run to check whether they can 

distinguish the mutant program from the modified code.  If they can, the mutant 
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program is defined as “killed”; otherwise, the mutant program is defined as “live” 

(see Figure 3.2).  Whenever the program is “killed”, test cases distinguish the mutant 

program from the modified program.  If there is indeed a defect in the modified code 

and the mutant is the correct program, test cases can detect it successfully.  In case of 

a “live” program, test cases cannot distinguish differences between the mutant 

program and the modified program.  If there is a defect in the modified code, the test 

cases cannot detect this fault.  Therefore a live mutant program indicates potential 

existence of secondary faults in the modified code which are undetected by the suite 

of tests. 
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Figure 3.2 Test Cases and Mutants 

3.4. Assessing the Probabilities of Different Types of Repair Errors  

Using the methods described in Sections 3.2 and 3.3, one can identify the live 

mutant programs (LMP) which correspond to possible undetected secondary faults 

spawned by repair errors.  These could lead to software failure.  But initially before 
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even assessing the impact these errors might have on reliability their probability of 

occurrence should be assessed.  

The probability of occurrence of a mutant program, MP, is the probability that a 

repair error will lead to a version of the program under study whose physical 

form/embodiment is identical to that of the particular mutant program of interest.  

The probabilities of occurrence of each repair error are not the same.  Certain 

types of errors are more likely to happen depending on developers’ programming 

characteristics.  A programmer may tend to make certain types of errors over other 

types of error.  The probabilities of occurrence of each repair error type can be 

determined using the following two sets of information: 1) the proportion of different 

types of repair errors.  This reflects the developers’ general preferences; 2) the total 

number of possible errors of each error type for a code segment under repair. There is 

a finite number of entities (E), logical lines of code (L) and multi-logical lines of code 

cluster (M) that repair errors can reside in.  These two sets of information will be 

evaluated in turns. 

Let us denote as θi the normalized proportion/percentages of errors that fall in the 

twelve error classes (Cl1 to Cl12) as given in Table 3.121. We have: ∑ 𝜃𝑖 = 112
𝑖=1 . 

The normalization process ensures independence of θi with code size and/or 

relative numbers of entities, lines of codes or clusters of multi-logical lines of code.  

This normalized proportion can be derived from error data collected from the 

following three sources of evidence (S1 to S3) ordered by increasing degree of 

relevance: S1: error data, either from operation, testing or development, collected on 

other software systems; S2:  error data collected during development of the software 
                                                 
21 Blend errors are not considered. 
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under study (excludes data collected during testing); and S3:  error data obtained 

during testing of the software under study. 

Once collected, error data from any of these sources should be classified into the 

error taxonomy defined in section 3.2 (Table 3.1).  Let us denote N1eT as the total 

number of errors from S1.  Among N1eT errors, there are N1ei (i=1 to 12) number of 

errors that fall in error classes Cl1 to Cl12. Similar notations can be applied to errors 

from sources S2 and S3.   

To obtain the normalized proportion θi, the maximum number of possible 

occurrences of a particular type of error in the programs used to collect the error data 

discussed needs to be assessed.  This number will be given by the number of 

occurrences of the semantic concept (violated by the error type) in the code22.  For 

instance, for the error class “omission of an entire cluster of multi-LOC”, the 

maximum number of opportunities is the total number of multi-LOC functions in the 

code.  For the error class “omission of an entity of a LOC”, the maximum number of 

opportunities is the total number of variables, constants, syntactic connectives such as 

parentheses and the nested functions in the code that served for data collection.  

For a particular program Pj, the total number of opportunities for occurrence of 

an error in each error class (Cli), Oij, is equal to the total number of semantic concepts 

underlying the class in the program.  That is:  
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where: 
                                                 
22 This argument may not be true for those repair operations with iterated modifications. However, this case can be neglected 

since the possibility of occurrence of this situation is rare.  
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NMj is the total number of clusters of multi-logical LOC in program Pj, 

NLj is the total number of logical LOCs in program Pj. 

NEj is the total number of entities in program Pj. 

If we have observed Neij (i=1 to 12) number of errors in error class Cli for a 

particular program Pj from one of the data sources (S1 to S3), and if m such programs 

are available, the normalized proportion of errors in error class Cli is: 
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Using Equation (3.2), one can easily transform the direct counts of errors into the 

normalized proportion, θi, which accurately represents the error proportion 

distribution for the error data from a particular source.  A Bayesian updating approach 

is applied to incorporate both historical/heritage repair data S1 (e.g. [86]) and project 

specific repair data (S2 and S3).  ζi
s (i=1,…,12 and s=1,2,3) are denoted to represent 

the proportion of the ith class of error in the sth error data source.  The Bayesian 

framework is selected over classical statistics because it can handle insufficient data; 

it can incorporate subjective data with objective data; and it can ease the parameter 

updating process if conjugate distributions can be used.  In this paper, we use the 
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Dirichlet-Multinomial prior-likelihood conjugate pair to update the parameters of the 

Dirichlet distribution as more data on proportions becomes available.  The formulas 

used to update the parameters of the prior and posterior Dirichlet distributions are 

shown in Table 3.2. 

Table 3.2 Parameters of the Prior and Posterior Distribution23 

Initial 
Prior 

(Unifor
m Prior) 

Evidence 
from S1 

→ 

Scaled 
Posterior 
(Prior For 

Next 
Update) 

Evidence 
from S2 

→ 

Scaled 
Posterior 
(Prior For 

Next Update) 

Evidence 
from S3 

→ 
Posterior 

γi = 1 ζi
1 

γi’= 1 + W1* 
N3eT * ζi

1 
ζi

2 
γi”= γi’+ W2* 

N3eT * ζi
2 

ζi
3 

γi’’’= γi”+ 
W3* N3eT * ζi

3 

The average proportion for each error class (which corresponds to the expected 

value of the Dirichlet distribution) is obtained using the parameters γi, calculated with 

the formulas provided in Table 3.2:   

 𝜃𝑖 = 𝐸(𝜗𝑖) =
𝛾𝑖

,,,

∑ 𝛾𝑖
,,,12

𝑖=1
 (3.3) 

Having obtained the average normalized proportion 𝜃𝑖, we move onto calculating 

the exact proportion for a specific piece of modified code segment (CS).  The exact 

proportion of each error class can be calculated with the known total number of 

opportunities.  This exact proportion, denoted as 𝜑𝐶𝑆𝑖, is no longer independent of 

code segment size and/or respective number of entities, lines of code or clusters of 

multi-lines of LOCs in CS.  The exact proportion of errors of type “i" is given by:  

                                                 
23 γ is a parameter of the Dirichlet distribution and ν is the variable. W1 W2 and W3 are weights assigned to sources of data S1, S2 

and S3 used to update the Dirichlet distribution. The weighting scheme selected ensures that the importance/weight of sources 
of data S1 and S2 does not exceed the importance of error data related to S3.  
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where: 

𝜑𝐶𝑆𝑖  is the exact proportion of the ith class of error for code repair CS; 

CS
MN , CS

LN and CS
EN  are the total number of multi-logical LOC clusters, logical 

LOCs and entities of CS respectively; 

θi is the average normalized proportion/percentages of errors that fall in the 

twelve error classes and ∑ 𝜃𝑖 = 112
𝑖=1 . 

Thus, the probability of occurrence of the kth live mutant program (corresponding 

to an error in the ith class of error) of a CS, 𝐿𝐶𝑆𝑘 , during repair can be determined by 

the proportion of the class of errors (𝜑𝐶𝑆𝑖) and the total number of possible MPs of 

this error class (NMPi) that can be generated for the modified CS.  That is:  

 𝐿𝐶𝑆𝑘 =
𝜑𝐶𝑆𝑖
𝑁𝑀𝑃𝑖

 (3.5) 

Here we assume uniform distribution between mutants which is a reasonable 

initial assumption since no evidence to the contrary is currently available.  

The total number of possible MPs (NMPi) can be readily obtained by multiplying 

the total number of opportunities (the total number of semantic concepts in CS) and 
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the total number of substitutions defined by the mutation rules for each opportunity24.  

For instance, for the error class (Cl12) “using an incorrect entity within a statement” 

class error, the total number of opportunities for using an incorrect variable is the 

total number of variables (Nv) in the modified code.  The number of possible 

substitutions would be the number of other variables (Nv’) defined in the program. 

Thus, the total number of MPs which can be generated for “using an incorrect 

variable” would be Nv*Nv’. 

3.5. Effect of Remaining Faults on Reliability 

Having defined in Section 3.2 a taxonomy of possible repair errors, in Section 

3.3 a method to replicate the form of these errors in code modifications and to 

determine whether they will remain in the code after test (i.e. identify LMP), having 

introduced a quantification framework in Section 3.4 which allows us to estimate the 

conditional probability of existence of a particular live mutant program LMP given a 

repair error, one should now determine the effect of this LMP on reliability.  The 

LMP as discussed earlier corresponds to the possible existence of an undetected 

secondary fault spawned through repair errors.  

The impact of the secondary faults largely depends on their location, their type, 

the architecture of the system and the operational profile.  The failure probability 

contribution due to each live mutant program can be estimated by applying the PIE 

[19] concept and using a Finite State Machine (FSM) model of the software system.  

                                                 
24 For error class “addition” and “misplacement”, multiple possible code injection locations, e.g. “before” or “after” or “within” 

places which are either physically or logically close to the code repair areas, are also counted when determining the total 
number of possible MPs.  
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Application of this technique allows us to identify the propagation characteristics of 

each potential remaining secondary faults spawned by repair errors.   

Once the FSM model is built and executed, the fault propagation rate of 

secondary faults created during repair of a code segment CS can be obtained using the 

following equation: 

 𝑏(𝐶𝑆) = �(𝑃(𝑓𝐶𝑆|𝐶𝑆𝑘) ∙ 𝐿𝐶𝑆𝑘)/𝜏𝐶𝑆𝑘

𝑛𝐶𝑆

𝑘=1

 (3.6) 

where 

𝑏(𝐶𝑆)   The fault propagation rate of secondary faults created during repair of 

a code segment CS. 

𝑃(𝑓𝐶𝑆|𝐶𝑆𝑘) The probability of failure due to a specific live mutant program 𝐿𝐶𝑆𝑘 of 

code segment CS. This probability is obtained by execution of the 

Finite State Machine for the particular mutant program; 

𝐿𝐶𝑆𝑘  The probability of occurrence of a specific kth live mutant program of 

code segment CS; 

nCS  The total number of live mutant programs for code segment CS. 

𝜏𝐶𝑆𝑘   The time required to execute a specific kth live mutant program of code 

segment CS under the operational profile. 

3.6. Application 

The methodology is now applied to an ultra-reliable software of about 12,000 

lines of executable code.  The software studied, APP, is a real-time microprocessor-

based digital implementation of one of the trip functions of a Reactor Protection 

System (RPS) used in the nuclear power industry.  The software is based on a number 
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of modules which include a “system software” and an “application software”.  The 

“system” software monitors the status of the system hardware components through 

well defined diagnostics procedures and conducts the communications protocols.  The 

“application” software reads input signals from the plant and sends outputs that can 

be used to provide trips or actuations of safety system equipment, control a process, 

or provide alarms and indications.  The APP software was developed in ANSI C 

language. In the following, results of the application of the proposed approach to the 

“application” software of APP are described.  

We apply the approach defined to three code repairs undertaken towards the end 

of APP’s testing phase.  By applying the code mutation technique to the three code 

repairs, a total of 1,969 MPs were generated among which there are 27 LMPs (see 

Table 3.3 for mutants generated for the first code modification CS1).  The probability 

of occurrence of the 27 identified LMPs was determined (see Table 3.4 and  

Table 3.5 for determination of the normalized and exact proportions respectively 

and Table 3.6 for the probability of occurrence of LMPs of CS1). 

The probability of failure corresponding to these 27 LMPs was obtained by 

mapping each of them into an FSM representing APP’s functionality.  Among the 27 

identified LMPs, 15 LMPs of CS1 and 8 LMPs of CS2 had the same propagation 

characteristics.  Their contribution to the probability of failure of the application was 

obtained as 7.08 × 10−10  per demand (the average duration of a demand is .082 
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seconds).  The remaining 4 LMPs of CS3 had a zero failure contribution since they 

had no impact on the trip function25.   

The fault propagation rate for each code repair can be obtained as:  

𝑏(𝐶𝑆1) = ∑
𝑃(𝑓𝐶𝑆1|𝐶𝑆1𝑘)∙𝐿𝐶𝑆1𝑘

𝜏𝐶𝑆1𝑘
=15

𝑘=1
15×�7.08×10−10�×�6.3×10−4�

0.082
= 8.16 × 10−11 per 

second and  

𝑏(𝐶𝑆2) = ∑
𝑃(𝑓𝐶𝑆2|𝐶𝑆2𝑘)∙𝐿𝐶𝑆2𝑘

𝜏𝐶𝑆2𝑘
=23

𝑘=16
8×�7.08×10−10�×�5.9×10−4�

0.082
= 4.07 × 10−11 per 

second. 

Table 3.3 Mutant Programs Generated for the Code Modification CS1 

Error Class Total MPs LMPs 
Cl1 3 0 
Cl2 3 0 
Cl3 66 0 
Cl4 0 0 
Cl5 4 0 
Cl6 30 0 
Cl7 20 0 
Cl8 4 0 
Cl9 2 0 
Cl10 2 0 
Cl11 0 0 
Cl12 438 15 

Total 572 15 

Table 3.4 Error Data from sources S1, S2 and S3 and corresponding updated value of 

the average Normalized Proportion 𝜃12 for Error Class Cl12. 

Error Class N1e12 𝜁112 N2e12 𝜁212 N3e12 𝜁312 𝜽𝟏𝟐 
Cl12 18 0.017 27 0.054 3 0.060 0.081 

 

                                                 
25 They have an impact on the display function, i.e. these failures could result in an incorrect display.  However, 

this function is not safety related. In this study, only type II failures are considered. This type of failure occurs 
when the system sends out a signal to trip the reactor while it should not. 
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Table 3.5 The Exact Error Class Proportions 𝜑𝐶𝑆𝑖 for APP’s Code Modification CS1 

derived from the Normalized Proportions 

Error 
Class 

Normalized Proportions CS1 

θ Number of 
Opportunities 

𝝋𝑪𝑺𝟏 

Cl1 0.298 1 2CS
MN =  

0.063 
Cl2 0.059 0.013 
Cl3 0.079 0.017 
Cl4 0.069 0.015 
Cl5 0.109 1 4CS

LN =  
0.046 

Cl6 0.053 0.023 
Cl7 0.05 0.021 
Cl8 0.053 0.022 
Cl9 0.05 1 32CS

EN =  
0.172 

Cl10 0.049 0.166 
Cl11 0.049 0.166 
Cl12 0.081 0.276 

Table 3.6 Determination of the Probability of Occurrence of APP’s Live MPs 

Code 
Modifications 

Error 
Class 

Number of 
Live MPs 

Probability of Occurrence 

CS1 Cl12 15 𝐿𝐶𝑆𝑘 =
𝜑𝐶𝑆𝑖
𝑁𝑀𝑃𝑖

= 0.276
438

= 6.3 × 10−4,𝑘 = 1, … ,15, 

3.7. Conclusions:  Integrating the Results of the Proposed Method  into the SRGMs 

The method presented in Sections 3.2 to 3.5 allows us to predict the fault 

propagation rate for residual secondary faults due to repair errors as they would 

appear in operation.  These rates can be calculated as soon as primary faults are 

uncovered. The method also provides possible locations and types for secondary 

faults.  Potential locations, types and rates can help further inform the testing 

processes and can help increase learning as well as detection.  The rates can also be 

used in conjunction with the number of residual secondary faults predicted by 

SRGMs to predict the contribution of secondary faults to reliability in operation. 
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When the testing environment reflects the operational environment, fault detection 

rates and fault propagation rates calculated by our method are identical and can be 

used to obtain a better assessment of the residual number of secondary faults.  Further 

research will focus on how to better integrate our research with existing SRGMs. 
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Chapter 4: Predicting Residual Software Fault Content and their 

Location during Multi-Phase Functional Testing Using Test 

Coverage  

This chapter is a verbatim reproduction of the paper “Predicting Residual 

Software Fault Content and their Location during Multi-Phase Functional Testing 

Using Test Coverage” submitted to the International Journal of Reliability and Safety. 

Abstract 

Multi-Phase functional testing is a common practice which is used in ultra-

reliable software development to ensure that no known faults reside in the software to 

be delivered.  In this paper, we present a new test coverage-based model which allows 

the description of software systems developed through multiple phases of functional 

testing.  This model is further extended: 1) to take advantage of auxiliary observations 

collected during the multi-phase testing and consequent analysis process to refine the 

predictions made; 2) to describe software systems where either the initial fault 

distribution is non-uniform with respect to location, or the repair and test and 

detection process favor certain locations.  

Keyword: Test Coverage, Multi-phase Testing, Imperfect Repair, Defect Location 

Prediction, Recursive Bayesian estimation 

4.1. Introduction  

Test coverage is an important measure used in software testing to reflect the 

degree to which the software has been tested.  The relationship between test coverage 



 79 
 

(TC) and defect coverage (i.e. percentage of defects identified through test) has been 

highlighted by many and number of research efforts have been devoted to linking test 

coverage to the number of faults remaining and number of failures experienced.  To 

cite only a few, Vouk[52] directly relates the number of detected faults and test 

coverage through a Weibull function.  Piwowarsky et al. [55] predicts reliability 

based on the fact that the fault removal rate is a linear function of the code coverage.  

Malaiya et al. introduces a logarithmic model [46] that relates testing effort to TC and 

then estimates reliability using Musa’s exponential model.  Malaiya et al. [87] also 

develop a logarithmic-exponential model which differs from his earlier model by 

considering the linear relations between defect coverage and TC once a certain TC 

level is achieved.  Gokhale et al. [57][58] propose a unified definition of TC and 

incorporate explicitly the time-varying TC functions into the Enhanced Non-

homogeneous Poisson Process (ENHPP) framework.  In their model, variation in the 

number of failures experienced is proportional to variation in coverage via a detection 

rate function which varies with time.  Pham and Zhang [59] revise the ENHPP 

reliability model by proposing S-shaped TC functions and by considering imperfect 

repair while assuming repairs take place as soon as the failure is experienced.  Cai 

and Lyu [60] further integrate time and TC measurements together and present a 

hybrid reliability prediction model.  

Existing models assume that functional testing is a continuous single phase 

process where the software is run through a single predefined series of tests.  For such 

cases the coverage function is a monotonically non-decreasing function of time as 

described in Figure 4.1a.  While this assumption is appropriate for a large class of 
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software development efforts, it fails to represent development efforts where 

functional testing is organized as a multi-phase process. In such case the software will 

undergo several series of functional tests and the coverage function will increase 

monotonically by phase while experiencing discontinuities between phases (see 

Figure 4.1b and Figure 4.1c).  Furthermore, repairs are not attempted as soon as 

failures are experienced but are deferred to the end of each phase.  This process will 

in particular be found in the case of ultra-reliable systems where one needs to ensure 

that the software will pass through an entire series of tests without experiencing faults 

(See Section B.3.1.12.4 of [61]; Section 5.4.2 of [88]; [20]).  This leads to the 

existence of at least two phases: one with faults, and one without faults.  

   

(a) (b) (c) 

Figure 4.1 Coverage is a continuous monotonic non-decreasing function of testing 

time (a); Coverage function for Multiple Phases of Functional Testing (b) (c) 

In addition, these models make the assumption that faults are distributed 

uniformly in the code.  There is no evidence that this might be true in practice (see for 

instance a recent study by [89]).  While the uniformity assumption may not be critical 

for most software systems and as such is a very useful assumption, it needs to be 

carefully examined for ultra-reliable systems which are more sensitive to the location 

of faults.  Location is indeed an important contributing factor in the severity of faults.   
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This paper proposes analytical expressions for the number of remaining faults 

and the fault location distribution which can be used for reliability prediction or to 

adjust testing efforts.  Section 4.2 lists key notations used in the paper.  In Section 4.3 

we derive expressions for failures experienced and faults remaining for a software 

system undergoing multiple phases of functional test before being declared ready for 

fielding and operation.  In Section 4.4 we extended the model presented in section II 

by incorporating auxiliary testing observations for key model parameters estimation.  

In Section 4.5, we account for the non-uniformity of the distribution of faults on fault 

sites.  We conclude with possible applications of the extensions presented (see 

Section 4.6). 

4.2. Notations 

ã 
Initial number of faults which exist in the code at the beginning of 

the first test phase 

ãP(0) Initial number of faults predicted at time 𝑡 = 0 

𝑚(𝑡) Number of faults experienced by time t 

∆𝑚𝑗(𝑡) Number of faults experienced between ti-1 and t where ti-1 ≤ t < ti 

∆𝑀𝑖
𝑃(0) 

Number of failures we expect to experience during testing phase i 

predicted at time 𝑡 = 0 

∆𝑀𝑖
𝐸 Total number of failures observed at the end of testing phase i 

∆𝑚𝑖_𝑛𝑒𝑤
𝐸 (𝑡𝑖∗) 

Observed number of new faults introduced during the repair process 

which takes place at the end of phase i 

∆𝑚𝑖_𝑛𝑟
𝐸 (𝑡𝑖∗) Observed number of faults which were not repaired during the repair 
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process which took place at the end of phase i 

𝑛𝑓𝑟𝑖(0) 
Number of faults remaining in the code at the end of testing phase i, 

predictions made at time 𝑡 = 0 

𝑛𝑓𝑟𝑖(..) 
The number of faults remaining in the code at the end of testing 

phase i, predictions made at time 𝑡 = 𝑡𝑖∗, 𝑡𝑖+ , … 

r Repair rate 

rP(0) Repair rate predicted at time 𝑡 = 0 

rP(..) Repair rate predicted at time 𝑡 = 0, 𝑡𝑖∗, 𝑡𝑖+, …  

γ New fault introduction rate given that a repair fault has occurred 

γP(0) 
New fault introduction rate (given that a repair fault has occurred) 

predicted at time 𝑡 = 0 

γP(..) 
New fault introduction rate predicted (given that a repair fault has 

occurred) at time 𝑡 = 0, 𝑡𝑖∗, 𝑡𝑖+, …  

𝐾 Fault detection probability 

𝐾𝑖 Fault detection probability during phase i 

𝐾𝑖
𝑃(..) 

Fault detection probability during  phase i predicted at time 𝑡 =

0, 𝑡𝑖∗, 𝑡𝑖+ 

𝑐𝑖(𝑡) Coverage function over  interval of time ti-1 and ti where ti-1 ≤ t < ti 

cU(i)  Upper bound for  the coverage in phase i 

cL(i)  Lower bound for the  coverage in phase i 

𝐶𝑖𝐸(𝑡) Actual coverage function for phase i 

𝐶𝑈
𝑃(0)(𝑖) Predicted (at time 𝑡 = 0) upper bound for the coverage in phase i 
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𝐶𝐿
𝑃(0)(𝑖) Predicted (at time 𝑡 = 0) lower bound for the coverage in phase i 

kD Number of failed repair attempts during the development process 

nD Number of repair attempts during the development process 

νD Number of newly introduced faults due to imperfect repair  

ci(L,t) Probability that a location is covered by time t in phase i.   

fi(L,t) Probability that a fault resides in location L at time t during phase i 

Ki(L,t) 
Probability that a fault residing in location L at time t during phase i 

is detected when the potential fault site is covered 

ki(L,L’) 
Conditional probability that given that a fault is introduced or is 

moved due to a repair at location L, it moves to L’ 

4.3. Number of Failures Experienced and Faults Remaining In the Case of Multiple 

Functional Test Phases 

For software systems such as ultra-reliable systems, a software component 

before being considered ready for release will need to undergo multiple phases of 

functional test.  In phase 1, a first test plan will be used which contains a first set of 

functional tests.  Failures are uncovered as testing progresses.  Corresponding fixes 

are made at the end of the test phase.  The modified code then undergoes another set 

of functional tests extract from a second test plan and so forth and so on.  There may 

of course be some overlap between consecutive test plans. In such case the evolution 

of coverage with time will cease to be a continuous monotonic non-decreasing 

function of time as assumed in the models of section 4.1 and instead will take the 

form given in Figure 4.1or Figure 4.1c.  Let us then try to express 𝑚(𝑡), the number 

of faults experienced by time t.  We will denote by ti-1 and ti respectively the 
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beginning and end of phase “i”; by ∆𝑚𝑗(𝑡) the number of faults experienced between 

ti-1 and t where ti-1 ≤ t < ti ; by 𝑎�, the initial number of faults which exist in the code at 

the onset of functional testing, i.e. at the beginning of the first test phase.   

Our assumptions are as follows: 1) Faults are uniformly distributed over all 

potential fault sites; 2) When a potential fault-site is covered, any fault present at that 

site is detected with probability K(t); 3) Repairs take place at the end of the phase and 

new faults may be introduced through repair errors.  The repair rate is r and the 

probability of fault introduction given that a repair error has occurred is γ; 4) 

Coverage is a continuous monotonic non-decreasing function of testing time per 

phase as displayed in Figure 4.1b or Figure 4.1c. 

Under those assumptions we obtain the following set of equations: 

 𝑑𝛥𝑚1(𝑡)
𝑑𝑡

=  ã K1(t) 
𝑑𝑐1(𝑡)
𝑑𝑡

 (4.1) 

for 0 ≤ t < t 1 where t1 is the end of the first phase, Δm1(0) = 0, and c1(t) is defined 

over 0 ≤ t < t1 and is the coverage function over that interval of time. 

 𝑑𝛥𝑚2(𝑡)
𝑑𝑡

= (ã − Δm1(t1) × r + Δm1(t1) × (1 − r) × γ)K2(t)
𝑑𝑐2(𝑡)
𝑑𝑡

 (4.2) 

for t1 ≤ t < t2 where t2 is the end of the second phase, Δm2(t1) = 0, and c2(t) is defined 

over t1 ≤ t < t2 and is the coverage function over that interval of time. 

 

𝑑𝛥𝑚3(𝑡)
𝑑𝑡

= ( ã − Δm1(t1) × r + Δm1(t1) × (1 − r) × γ) − Δm2(t2) × r

+ Δm2(t2) × (1 − r) × γ) K3(t) 
𝑑𝑐3(𝑡)
𝑑𝑡

 

(4.3) 

for t2 ≤ t < t3 where t3 is the end of the third phase, Δm3(t2) = 0, and c3(t) is defined 

over t2 ≤ t < t3 and is the coverage function over that interval of time. 

We rewrite 𝑑𝛥𝑚3(𝑡)
𝑑𝑡

 as:  
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𝑑�𝑚3(𝑡)
𝑑𝑡

=   �ã − �Δm1(t1) + Δm2(t2)�× r + �Δm1(t1) + Δm2(t2)�

× (1 − r) × γ� K3(t) 
𝑑𝑐3(𝑡)
𝑑𝑡

 

(4.4) 

So more generally we have: 

 
𝑑𝛥𝑚𝑖(𝑡)

𝑑𝑡
= �ã − r × �(Δmk

i−1

k=1

(tk) + (1 − r) × γ × �Δmk(tk)�)�Ki(t) 
𝑑𝑐𝑖(𝑡)
𝑑𝑡

 (4.5) 

for ti-1 ≤ t < ti where ti is the end of the ith phase, Δmi(ti-1) = 0, and ci(t) is defined over 

ti-1 ≤ t < ti and is the coverage function over that interval of time. 

If the different K’s are constant per phase, equation (4.5) can be integrated over 

each phase and we will obtain after integration: 

 

Δmi(t) = �ã− r × (�Δmk(tk))  + (1 − r) × γ
i−1

k=1

× ��Δmk(tk)
i−1

k=1

� �Ki �
𝑑𝑐𝑖(𝑡)
𝑑𝑡

𝑐𝑈(𝑖)

𝑐𝐿(𝑖)

𝑑𝑡 

(4.6) 

which is thus 

 
Δmi(t) = �ã − r × (�Δmk(tk)) + (1 − r) × γ

i−1

k=1

× ��Δmk(tk)
i−1

k=1

��Ki

× �cU(i)− cL(i)� 

(4.7) 

where cU(i) and cL(i) are respectively the upper and lower bounds of coverage for 

phase i.  

Example- Let us consider example software S.  S is undergoing three functional test 

phases.  Let us also assume that the upper and lower coverage values for each 
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functional test phase, as well as the number of defects found in each phase is given in 

Table 4.1.  

Table 4.1 Multiple Phase Test Profile for Software S 

Phases  1 2 3 
CL(i) 0 0 0 
CU(i) .5 .7 .95 
Number of faults found during Phase “i”  Functional Test 5 2 0 

This profile is representative of ultra-reliable systems which typically will 

achieve high levels of test coverage at the end of functional testing and are also 

characterized by no-defects found during the last functional test phase. Let us also 

assume that r =.9 and γ=.25.  Under those conditions the set of equations (4.7) 

becomes: 

ãK1 =  .1 

(ã − 4.375) × K2 = 0.028571 

(ã − 6.125) × K3 = 0 

The set of equations contains four unknowns and as such can not be solved 

without the help of an additional equation.  In particular one could use early 

prediction models to compute a value for ã as suggested in Gokhale [57].  The issue 

with using early prediction models is of course the large uncertainty in the estimate 

which can lead us to either overestimate or underestimate the number of faults.  Note 

also that the last equation leads to a situation where one can possibly make two 

different conclusions.  One is that ã = 6.125 (which we can interpret conservatively as 

being ã = 7) or K3 = 0 (i.e. the tests are not able to trigger failures and 

correspondingly reveal faults). 
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In the phase-based functional test expression defined by equation (4.7), one 

should also note that: 

 ã − r × (�Δmk(tk)) + (1 − r) × γ
i−1

k=1

× ��Δmk(tk)
i−1

k=1

� (4.8) 

is the number of faults remaining after i-1 phases of functional testing.  For system S 

and i - 1= n, this number is given by ã - 6.125. 

4.4. Extensions to Account for Auxiliary Observations and Continuously Refine the 

Predicted Fault Count   

For a multi-phase testing process with n phases, equations (4.7) and (4.8) 

provide the number of failures experienced in each phase and the number of faults 

remaining at the end of a phase respectively.  If predictions for the quantities, ã, r, γ, 

Ki, cU(i), cL(i) are available from the onset of the testing process, one can derive 

predictions for the number of failures experienced and number of faults found for all 

phases of testing (i=1 to n) at the onset of phase 1.  These early predictions may or 

may not be accurate.  However, as the testing progresses information becomes 

available which will allow us to correct our predictions.  The purpose of this section 

is to show which auxiliary observations become available during the multi-phase 

testing process and how these can be used to refine our predictions.  It should be 

noted that an "observation" is defined as information that one can collect through 

one's experience.  Mixing of model predictions and observations is referred to as 

model-data fusion (MDF).  Model-data fusion approaches allow the use of 

observations which are representatives of the "real world" to update the initial 
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prediction models which may be subjective and incomplete.  The updated models 

should therefore have stronger prediction ability.  

Current MDF research proposes four basic strategies to integrate available 

observations in the prediction process: sequential-intermittent assimilation (SIA), 

sequential-continuous assimilation (SCA), non sequential-intermittent assimilation 

(NSIA) and non sequential-continuous assimilation (NSCA) [90].  In order to 

continuously refine the predicted number of faults over multiple testing phases, 

sequential-intermittent assimilation (SIA) which considers observations made in a 

past period of time until the time of analysis, is applicable.  The typical SIA 

framework is depicted in Figure 4.2. 

 

Figure 4.2 Sequential-intermittent Assimilation Framework, excerpted from [90] 

Figure 4.3 depicts for a multi-phase testing process which follows the SIA 

framework illustrated in Figure 4.2: 1) the observations available during each testing 

phase, 2) the types of predictions one can make and 3) the time at which such 

predictions can be made as well as the parameters used for these predictions.   

While the framework and corresponding derivations are applicable and can be 

extended to any number of functional testing phases, n, the discussion in this paper is 

limited to a multi-phase testing process where n is equal to two.   
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Figure 4.3 Predictions and Observations made throughout the testing phases 

At the beginning of phase 1, i.e. t = 0, the only observations available pertain to 

the software development process.  These can help us derive predictions for ã 

[57][20][75] as well as a first set of predictions for r [74] and γ [75].  These 

predictions are denoted as: ãP(0), rP(0) and γP(0) respectively where the superscript P(0) 

denotes a prediction made at time “t = 0”.  From these predictions and equations (4.7) 

and (4.8) one derives the first set of predictions in Table 4.2  (i.e. predictions at t=0). 

In Table 4.2,  ∆𝑀1(2)
𝑃(0)stand for the number of failures we expect to experience during 

testing phase 1(2) predicted at time t=0 using equation (4.7), 𝑛𝑓𝑟1(0) (respectively 

𝑛𝑓𝑟2(0)) stand for predictions made at time t=0 of the number of faults remaining in 

the code at the end of testing phase 1 (respectively testing phase 2) obtained using 

equation (4.9).  During phase 1 testing, i.e. t ∈ (0, t1), one observes 1) software 

failures through testing and the total number of failures observed is ∆M1
E ; 2) the 

actual test coverage C1E(t) from which one can derive the upper and lower bounds of 

coverage achieved at the end of phase 1, CUE(1)  and CLE(1) . From those two 
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observations one derives the second set of predictions in Table 4.2 (i.e. predictions at 

t=t1).  Values of ∆M1
E, CUE(1), and CLE(1) used in combination with predictions of the 

number of faults remaining at the end of a phase allow updating of K1 and K2 as will 

be explained in section 4.4.2. 

One should note at this point that our MDF strategy further consists in updating 

parameters (such as r,  γ, K1, K2) when observations are available using a Bayesian 

framework (see the following sections 4.4.1 and 4.4.2. for a discussion of the 

Bayesian updating methodology) and replacing unknowns such as ∆𝑀1(2)
𝑃(..)  by their 

observed value ∆𝑀1(2)
𝐸  when they become available (see Table 4.2).  Choices such as 

these further characterize the MDF strategy followed beyond it being of the type SIA.  

For example, one could consider that observations may not truly reflect "reality" due 

to an imperfect "understanding" of the situation at hand and modify the MDF strategy 

accordingly by combining observations such as ∆M1
E and predictions such as ∆𝑀1(2)

𝑃(..) 

through a weighted scheme instead of replacing ∆𝑀1(2)
𝑃(..)  by ∆M1

E  when the latter 

becomes available.  

During the following post-testing analysis (PTA) period where t∈ (𝑡1, 𝑡1∗) , one 

will identify the faults which correspond to the failures experienced in the phase 1 

testing.  Thus, the observation during PTA is the total number of uncovered faults 

∆m1
E(t1∗). These faults were the result of software development errors.  Amongst these 

faults, some may be the result of repairs which took place during the development 

process and were not carried out properly.  These correspond to the additional 

observations: ∆m1_nr
E (t1∗ ) are faults which were not repaired although they should 
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have and ∆m1_new
E (t1∗) are new faults introduced during the repair process.  This 

information can be used to update the rates rP(0) and γP(0) and leads to the third update 

of our predictions in Table 4.2 (i.e. predictions at t = t1*).  A repair process is 

conducted after faults have been identified.  One will not observe the effect of such 

repair until the next testing phase.  Therefore, no new observation is available during 

phase 1 repair (which occurs for 𝑡 ∈ (𝑡1+, 𝑡1∗)).  As such predictions remain identical 

(see Table 4.2, predictions at t=t1
* and t= t1

+ are identical). 

During the phase 2 testing, i.e. t ∈ (t1+, t2), one observes the total number of 

software failures ∆M2
E  and test coverage C2E(t) .  The predictions are once again 

updated taking this information into consideration (see Table 4.2, predictions at t=t2).  

During the next PTA (which occurs for t ∈ (t2, t2∗  )) , two new observations besides 

∆m2
E(t2∗) are available and can be used to update the predictions.  These observations 

are: 1) the number of new faults introduced into the software due to bad repairs, 

∆m2_new
E (t2∗),  2) the number of faults that have not been repaired, ∆m2_nr

E (t2∗).  This 

information can be used to update the rates rP(t
1

*) and γP(t
1

*). 

Table 4.2 provides the set of high level equations used to update the unknowns 

 ∆𝑀1(2) , 𝑛𝑓𝑟1(0) and 𝑛𝑓𝑟2(0).  These equations involve parameters such as r, γ, K1 

and K2 who are also updated periodically as observations pertinent to these quantities 

become available.  We next examine a possible Bayesian updating framework for 

these parameters.  
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Table 4.2 Predictions made at different instants of time of a multi-phase testing 

process 

Time of 
Prediction 

Prediction Equation 

𝑡 = 0 ∆𝑀1
𝑃(0) = ∆𝑚1

𝑃(0)(ã𝑃(0),𝐾1
𝑃(0), 𝑟𝑃(0),𝛾𝑃(0), 𝑐𝑈

𝑃(0)(1), 𝑐𝐿
𝑃(0)(1)) 

∆𝑀2
𝑃(0) = ∆𝑚2

𝑃(0)(ã𝑃(0),𝐾2
𝑃(0), 𝑟𝑃(0),𝛾𝑃(0), 𝑐𝑈

𝑃(0)(2), 𝑐𝐿
𝑃(0)(2),∆𝑚1

𝑃(0))) 

𝑛𝑓𝑟1(0) = �ã𝑃(0) + (−𝑟𝑃(0) + �1 − 𝑟𝑃(0)� × 𝛾𝑃(0))

× ∆𝑚1
𝑃(0)(ã𝑃(0),𝐾1

𝑃(0), �𝑃(0), 𝛾𝑃(0), 𝑐𝑈
𝑃(0)(1), 𝑐𝐿

𝑃(0)(1)� 

𝑛𝑓𝑟2(0) = �ã𝑃(0) + (−𝑟𝑃(0) + �1 − 𝑟𝑃(0)� × 𝛾𝑃(0))

× �
∆𝑚1

𝑃(0)(ã𝑃(0),𝐾1
𝑃(0), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈

𝑃(0)(1), 𝑐𝐿
𝑃(0)(1))

+∆𝑚2
𝑃(0)(ã𝑃(0),𝐾2

𝑃(0), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈
𝑃(0)(2), 𝑐𝐿

𝑃(0)(2),∆𝑚1
𝑃(0))

�� 

𝑡 = 𝑡1 ∆𝑀1
𝐸 

∆𝑀2
𝑃(𝑡1) = ∆𝑚2

𝑃(𝑡1)(ã𝑃(0),𝐾2
𝑃(𝑡1), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈

𝑃(0)(2), 𝑐𝐿
𝑃(0)(2),∆𝑚1

𝑃(𝑡1))) 

𝑛𝑓𝑟1(𝑡1) = �ã𝑃(0) + (−𝑟𝑃(0) + �1 − 𝑟𝑃(0)� × 𝛾𝑃(0)) × ∆𝑚1
𝑃(𝑡1)(ã𝑃(0),𝐾1

𝑃(𝑡1), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈𝐸(1), 𝑐𝐿𝐸(1)� 

𝑛𝑓𝑟2(𝑡1) = �ã𝑃(0) + (−𝑟𝑃(0) + �1 − 𝑟𝑃(0)� × 𝛾𝑃(0))

× �
∆𝑚1

𝑃(𝑡1)(ã𝑃(0),𝐾1
𝑃(𝑡1), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈𝐸(1), 𝑐𝐿𝐸(1))

+∆𝑚2
𝑃(𝑡1)(ã𝑃(0),𝐾2

𝑃(𝑡1), 𝑟𝑃(0), 𝛾𝑃(0), 𝑐𝑈
𝑃(0)(2), 𝑐𝐿

𝑃(0)(2),∆𝑚1
𝑃(𝑡1))

�� 

𝑡 = 𝑡1∗ ∆𝑀1
𝐸 

∆𝑀2
𝑃(𝑡1∗) = ∆𝑚2

𝑃(𝑡1∗)(ã𝑃(0),𝐾2
𝑃(𝑡1∗), 𝑟𝑃(𝑡1∗  ), 𝛾𝑃(𝑡1∗  ), 𝑐𝑈

𝑃(0)(2), 𝑐𝐿
𝑃(0)(2),∆𝑚1

𝐸)) 
𝑛𝑓𝑟1(𝑡1∗) = �ã𝑃(0) + (−𝑟𝑃(𝑡1∗) + �1 − 𝑟𝑃(𝑡1∗)� × 𝛾𝑃(𝑡1∗)) × ∆𝑚1

𝐸� 

𝑛𝑓𝑟2(𝑡1∗) = �ã𝑃(0) + (−𝑟𝑃(𝑡1∗) + �1 − 𝑟𝑃(𝑡1∗)� × 𝛾𝑃(𝑡1∗))

× �∆𝑚1
𝐸+∆𝑚2

𝑃(𝑡1∗)(ã𝑃(0),𝐾2
𝑃(𝑡1∗), 𝑟𝑃(𝑡1∗), 𝛾𝑃(𝑡1∗), 𝑐𝑈

𝑃(0)(2), 𝑐𝐿
𝑃(0)(2),∆𝑚1

𝐸)�� 

𝑡 = 𝑡1+ Identical to 𝑡 = 𝑡1∗ 
𝑡 = 𝑡2 ∆𝑀1

𝐸  
∆𝑀2

𝐸 
𝑛𝑓𝑟1(𝑡2) = �ã𝑃(0) + (−𝑟𝑃(𝑡1∗) + �1 − 𝑟𝑃(𝑡1∗)� × 𝛾𝑃(𝑡1∗)) × ∆𝑚1

𝐸� 

𝑛𝑓𝑟2(𝑡2) = �ã𝑃(0) + (−𝑟𝑃(𝑡1∗) + �1 − 𝑟𝑃(𝑡1∗)� × 𝛾𝑃(𝑡1∗))

× � ∆𝑚1
𝐸+∆𝑚2

𝑃(𝑡2)(ã𝑃(0),𝐾2
𝑃(𝑡2), 𝑟𝑃(𝑡1∗), 𝛾𝑃(𝑡1∗), 𝑐𝑈𝐸(2), 𝑐𝐿𝐸(2),∆𝑚1

𝐸)�� 

𝑡 = 𝑡2∗ ∆𝑀1
𝐸 

∆𝑀2
𝐸 

𝑛𝑓𝑟1(𝑡2∗) = �ã𝑃(0) + (−𝑟𝑃(𝑡2∗) + �1 − 𝑟𝑃(𝑡2∗)� × 𝛾𝑃(𝑡2∗)) × ∆𝑚1
𝐸� 

𝑛𝑓𝑟2(𝑡2∗) = �ã𝑃(0) + �−𝑟𝑃(𝑡2∗) + �1 − 𝑟𝑃(𝑡2∗)� × 𝛾(𝑡2∗)� × (∆𝑚1
𝐸 + ∆𝑚2

𝐸�) 
𝑡 = 𝑡2+ Identical to 𝑡 = 𝑡2∗ 

4.4.1. Updating of the Repair and Fault Introduction Rates 



 93 
 

Let us examine how updating of the repair and fault introduction rate may be 

performed using a Bayesian updating approach. 

A Beta distribution ( ) ( )
( ) ( ) ( ) 11; , 1Beta r r r βαα β

α β
α β

−−Γ +
= −
Γ Γ

 is selected as prior 

distribution for the repair rate (r).  The Beta distribution is an appropriate choice for 

the representation of quantities which take values on the interval [0, 1] like the repair 

rate and allows modeling of a large range of behaviors through the distribution’s 

parameters α and β.  

It will be initially assumed that no prior information exists on the repair rate, a 

situation which is represented by a uniform distribution, a Beta distribution with α = 1 

and β = 1.  Different sources of evidence can then be used to update the prior: 1) 

Evidence on other software systems than the one currently tested (such as for instance 

Capers Jones’ compendium of industry data which shows that the percentage of 

perfect code modifications (rj) can vary from 40% to 99% [74] dependent upon the 

degree of formality of reviewing techniques and other factors), 2) Evidence related to 

development of the software system and which precedes the multi-phase testing if 

such evidence is available.  These two sources of evidence can be used to define rP(0).  

They should be cast in terms of repair attempts and corresponding repair 

successes/failures experienced in order to allow updating of the initial prior, i.e. the 

uniform distribution.  More specifically, the repair data needs to take the form “(k, n)” 

where n is the total number of repairs made and k is the number of imperfect repairs 

as a result of the repairs undertaken. 

The likelihood function used in the Bayesian updating process should 

characterize the repair process and gives the likelihood of observing the evidence 
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given the prior.  The repair process can be seen as a succession of independent repair 

attempts.  Each repair attempt can typically be described using the Binomial 

distribution 𝐵(𝑘,𝑛/�) = 𝐶𝑘𝑛𝑟𝑛−𝑘(1 − 𝑟)𝑘 which is the probability distribution of the 

number of "unsuccessful trials (here imperfect repair)" in n independent Bernoulli 

trials (n repairs), with the same probability of "failure", “1-r”.  

The posterior distribution obtained after each of the updating processes is also a 

Beta distribution with parameters α’ and β’ based on the fact that Beta, Binomial are 

conjugate pairs.  

Since the number of repair attempts at the origin of Jones’ data is unknown and 

this source of evidence should not be given more importance than the data collected 

on the system under study, the scaling method proposed in [91] is utilized.  Firstly, 

this scaling method assigns the same number of observations (here repair attempts) to 

each source of evidence.  Then, appropriate weights (w1r for Jones’ data and w2r for 

auxiliary observations during development) are assigned to these two sources of 

evidence.  Here, the number of observations is taken as nD which is the number of 

repair attempts during the development process, kD the number of failed repair 

attempts during the development process, and w2r is larger than w1r since 

development process data pertinent to the software under study should be given more 

importance than generic data related to industry averages. 

Once testing is initiated further observations become available such as 

∆m1_nr
E (t1∗ ),  ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗) ,  ∆m2_nr
E (t2∗) ,  ∆m2new

E (t2∗) and ∆𝑚1
𝐸 .  The first four 

observations correspond to repair errors which can be traced either to development or 

to repair attempts at the end of phase 1 and can be lumped with the kD failed repair 
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attempts.  As for ∆𝑚1
𝐸, it corresponds to new repair attempts at the end of phase 1 and 

can be lumped with the nD repair attempts.  Note that this particular choice, assumes 

that the repair process taking place during development and at the end of the testing 

process retains similar characteristics.  Note also that the scaling is revised as the 

number of opportunities for repair errors grows from nD to nD+ ∆𝑚1
𝐸 .  Table 4.3 

describes the multiple updates discussed.  

Table 4.3 Parameters of the Prior and Posterior Distributions for repair rate rP(...) 

 Initial Prior Evidence from 
Capers Jones 

Posterior 

1-rP(0) Uniform 
Distribution   
 

The percentage of 
perfect code 
modifications, r, from 
industrial data 
averages (i.e. Capers 
Jones) and kD out of nD  
repairs during the 
development process 
of the current software 
are imperfect  

a(0) = 1 +w1r* (1-rj)* nD + w2r kD 

β(0) = 1 + w1r*r* nD + w2r (nD – kD) 

1
− 𝑟𝑃(𝑡1∗) 

Beta 
Distribution 
for 1- rP(0) 

∆m1_nr
E (t1∗) and 

∆m1new
E (t1∗) 

 

a(t1
*) =  1 +w1r* (1- rj)* nD + w2r *(kD 

+∆𝑚1𝑛𝑒𝑤
𝐸 (𝑡1∗)+∆𝑚1𝑛𝑟

𝐸 (𝑡1∗)) 
β(t1

*) = 1 + w1* rj * nD + w2 (nD – 
kD+ ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗))) 

1
− 𝑟𝑃(𝑡2∗) 

Beta 
Distribution 
for 1- rP(t

1
*) 

∆m2_nr
E (t2∗), 

∆m2new
E (t2∗) and  

∆𝑚𝟏
𝑬 

a(t2
*) =  1 +w1r* (1- rj)*( nD +∆𝑚𝟏

𝑬)+ w2r 
*(kD +∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗) +

𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)+∆𝑚2_𝑛𝑟

𝐸 (𝑡2∗)) 
β(t2

*) = 1 + w1r* rj *( nD +∆𝑚𝟏
𝑬))+ w2r ((nD 

+∆𝑚𝟏
𝑬)– (kD+ ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗) +

∆𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)+∆𝑚2_𝑛𝑟

𝐸 (𝑡2∗))) 

The same Bayesian updating approach can be applied to the new fault 

introduction rate γ.  Industry averages data on the fault introduction rate such as the 

one found in [75] and denoted γj can serve to initially update the uniform distribution. 



 96 
 

This evidence is given a weight w1j.  Repair data collected during the development 

process “(νD, kD)” where νD number of newly introduced faults due to imperfect repair 

as a result of a repair process will serve as second source of evidence and is assigned 

a weight w2γ.  Finally further evidence collected during the multi-phase functional 

testing process is also used.  This evidence is also assigned weight w2γ (as it is 

assumed that repairs taking place during development process and at the end of each 

testing phase retain same characteristics.  This assumption can be easily modified if 

need by adding supplementary weights).  The evidence in question is: ∆m1_nr
E (t1∗), 

∆m1new
E (t1∗), ∆m2new

E (t2∗), ∆m2_nr
E (t2∗).  Table 4.4 shows the different updates for the 

parameters of the prior and posterior distributions for γ. 

Table 4.4 Parameters of the Prior and Posterior Distributions for the new fault 

introduction rate γP(…) 

 Initial Prior  Evidence  Posterior 

γP(0) Uniform 
Distribution 
 

 γ from Capers 
Jones and νD  out 
of kD failed 
repairs during the 
development 
process led to the 
introduction of 
new faults 

a(0) = 1 + w1γ * γj * kD + w2 γ * νD 

β(0) = 1 + w1γ *(1- γj )* kD + w2 γ *(kD – νD) 

 𝛾𝑃(𝑡1∗) Beta 
Distribution 
for γ P(0) 

∆m1_nr
E (t1∗) 

and  ∆m1new
E (t1∗) 

a(t1
*) =1 + w1 γ * γj *(kD +∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗))+ w2 γ *( 

νD+∆𝑚1𝑛𝑒𝑤
𝐸 (𝑡1∗)) 

β(t1
*) = 1 + w1 γ *(1- γj) *(kD +∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗))+ 

w2 γ *( (kD +∆𝑚1𝑛𝑒𝑤
𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟

𝐸 (𝑡1∗)) - ( νD+∆𝑚1𝑛𝑒𝑤
𝐸 (𝑡1∗))) 

𝛾𝑃(𝑡2∗) Beta 
Distribution 
for γ P(t

1
*) 

∆m2new
E (t2∗) and 

∆m2_nr
E (t2∗) 

a(t2
*) =  1 + w1 γ * γj *(kD+ ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗) +

∆𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)+∆𝑚2_𝑛𝑟

𝐸 (𝑡2∗))+ w2 γ *( 
νD+∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)) 

β(t2
*) = 1 + w1 γ *(1- γj) *(kD+ ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗) +

∆𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)+∆𝑚2_𝑛𝑟

𝐸 (𝑡2∗))+ w 2 γ 
*((kD+ ∆𝑚1𝑛𝑒𝑤

𝐸 (𝑡1∗)+∆𝑚1_𝑛𝑟
𝐸 (𝑡1∗) +

∆𝑚2𝑛𝑒𝑤
𝐸 (𝑡2∗)+∆𝑚2_𝑛𝑟

𝐸 (𝑡2∗))- ( νD+∆𝑚1𝑛𝑒𝑤
𝐸 (𝑡1∗)+∆𝑚2𝑛𝑒𝑤

𝐸 (𝑡2∗))) 
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4.4.2. Updating of the Fault Propagation Constant 

A fault propagation constant Ki (K1 and K2) is used within the multi-phase testing 

process to model the probability that when faults are covered they will lead to 

failures.  This probability depends on the faults remaining in the application and on 

the test cases used.  Values for Ki can be obtained experimentally using techniques 

such as fault seeding and determining a value of the propagation constants for the test 

cases under consideration or using the evidence obtained from the remaining faults 

and failures identified. 

In  
 
Table 4.2, we are concerned with: 𝐾1

𝑃(0) , 𝐾1
𝑃(𝑡1 ) , 𝐾2

𝑃(0) ,𝐾2
𝑃(𝑡1 ) ,𝐾2

𝑃(𝑡1∗  )  and 

 𝐾2
𝑃(𝑡2 ).  Since the K values are probabilities, they can also be represented using a 

Beta prior and the likelihood function can be initially assumed Binomial.  Each set of 

tests (within a phase) which covers a fault attempts to trigger a failure and this 

experiment can be seen (in first approximation) as independent of the triggering of 

another failure by another covered fault.   

Initially, if we exclude an experimental a priori determination of K1, no evidence 

is available and the prior is a Uniform distribution.  Evidence becomes available 

when the application is tested in phase 1 under the form of  ∆𝑀1
𝐸.  These failures are 

the direct result of triggering in average (and as a first approximation) (ã𝑃(0) ∗

(𝑐𝑈𝐸(1) − 𝑐𝐿𝐸(1)) possible covered faults.  Hence the update proposed in Table 4.5 for 

𝐾1
𝑃(𝑡1 ).  The weight assigned to this evidence is w1K1.   

A similar reasoning is applied for K2.  At time t=0, if we again preclude a 

possible experimental determination of K2, no evidence is available and the prior is a 



 98 
 

Uniform distribution.  Evidence on K1 (∆𝑀1
𝐸  which becomes available at the end of 

testing phase 1) is our first source of evidence.  It provides indirect information on the 

fault propagation characteristics of the application under test.  Hence we use it to 

update K2 and obtain 𝐾2
𝑃(𝑡1 ).  The weight assigned to this evidence is w1K2.   

Table 4.5 Parameters of the Prior and Posterior Distributions for 𝐾1
𝑃(..) 

Variable Initial Prior Evidence Posterior 

𝐾1
𝑃(0) Uniform None a(0) = 1 

β(0) = 1 

𝐾1
𝑃(𝑡1 ) 𝐾1

𝑃(0) ∆𝑀1
𝐸, 𝑐𝑈𝐸(1), 

𝑐𝐿𝐸(1) 
a(t1 ) = 1 +w1k1 ∆𝑀1

𝐸 
β(t1) = 1 + w1k1* (ã𝑃(0)*(𝑐𝑈𝐸(1) − 𝑐𝐿𝐸(1))-∆𝑀1

𝐸) 

The scaling factor applied is 𝑛𝑓𝑟1(𝑡1) ∗ (𝑐𝑈
𝑃(0)(2) − 𝑐𝐿

𝑃(0)(2)) since it represents 

the maximum number of failures which we will experience during phase 2 testing.  At 

t= t1*, nfr1 is updated and as such a new estimate of K2 is produced ,𝐾2
𝑃(𝑡1∗  ).   During 

phase 2 testing, new evidence in the form of ∆𝑀2
𝐸 failures becomes available.  The 

actual coverage (𝑐𝑈𝐸(2), 𝑐𝐿𝐸(2)) is also known.  K2 is updated with this new evidence 

which is this time directly pertinent to the test cases K2 characterizes and given a 

weight of w2K2 (where w2K2 is superior to w2K1).  Updates for K2 are described in Table 

4.6.   

Parameters α() and β() in Table 4.5 and Table 4.6 are the parameters of the 

respective Beta distributions.  It should be noted that since there is only one set of 

observations available for updating K1, weight w1K1 should be equal to 1.  
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Table 4.6 Parameters of the Prior and Posterior Distributions for 𝐾2
𝑃(..) 

Variable Initial Prior Evidence Posterior 

𝐾2
𝑃(0 ) Uniform 

Distribution 
None α (0)= 1 

β(0) = 1 

𝐾2
𝑃(𝑡1  ) 𝐾2

𝑃(0  ) ∆𝑀1
𝐸,𝑐𝑈𝐸(1), 

𝑐𝐿𝐸(1) 
a(t1  ) = 1 + w1k2 * ∆𝑀1

𝐸  * nfr1 (t1 )*(𝑐𝑈
𝑃(0)(2) −

𝑐𝐿
𝑃(0)(2)) 

β(t1 ) = 1 +w1k2 *(ã𝑃(0)*(𝑐𝑈𝐸(1) − 𝑐𝐿𝐸(1))-∆𝑀1
𝐸))) * 

nfr 1 (t1 )*(𝑐𝑈
𝑃(0)(2) − 𝑐𝐿

𝑃(0)(2)) 

𝐾2
𝑃(𝑡1

∗   )and 

𝐾2
𝑃(𝑡1

+  ) 

𝐾2
𝑃(𝑡1  ) ∆𝑚1

𝐸  a(t1
* ) = 1 +w1k2 * ∆𝑀1

𝐸 *nfr 1 (t1
* )*(𝑐𝑈

𝑃(0)(2) −
𝑐𝐿
𝑃(0)(2)) 

β(t1
* ) = 1 +  w1k2 *(ã𝑃(0)*(𝑐𝑈𝐸(1) − 𝑐𝐿𝐸(1))- 

∆𝑀1
𝐸))) * nfr 1 (t1

*)*(𝑐𝑈
𝑃(0)(2) − 𝑐𝐿

𝑃(0)(2)) 

𝐾2
𝑃(𝑡2   ) 𝐾2

𝑃(𝑡1
+  ) ∆𝑀2

𝐸,𝑐𝑈𝐸(2), 
𝑐𝐿�(2) 

a(t2 ) = 1 +(w1k2 *∆𝑀1
𝐸 + w2 * ∆𝑀2

𝐸) * nfr 1 (t2 ) 
*(𝑐𝑈𝐸(2) − 𝑐𝐿𝐸(2)) 
β(t2) = 1 +( w1k2*(ã𝑃(0)*(𝑐𝑈𝐸(1) − 𝑐𝐿𝐸(1))-∆𝑀1

𝐸)) 
 + w2k2 * nfr 1 (t2 )*(𝑐𝑈𝐸(2) − 𝑐𝐿𝐸(2))-∆𝑀2

𝐸)))  
*nfr 1 (t2 )*(𝑐𝑈𝐸(2) − 𝑐𝐿𝐸(2)) 

Example- 

The equations developed in paragraphs 4.4.1 and 4.4.2 were applied to a hypothetical 

software system SY.  The industry average data, weights, predicted values of test 

coverage made using a description of planned tests in the test plan and example 

observations are provided respectively in Table 4.7 - Table 4.10.  Three cases are 

considered.  The results obtained are given in Figure 4.4. 

Table 4.7 Industry Average Data Used in the Analysis of Software System SY 

Case # rj γj 
1-3 .9 .1 

Table 4.8 Weights Used in the Analysis of Software System SY 

Case # w1r w2r w1γ w2γ w1K1 w1K2 w2K2 
1-3 .25 .75 .25 .75 1 .25 .75 
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Table 4.9 Predictions Made for the Upper and Lower Bounds of Test Coverage Based 

on Information Available in the Test Plan 

Case # 𝒄𝑳
𝑷(𝟎)(𝟏) 𝒄𝑼

𝑷(𝟎)(𝟏) 𝒄𝑳
𝑷(𝟎)(𝟐) 𝒄𝑼

𝑷(𝟎)(𝟐) 
1-3 0 .5 0 .9 

Table 4.10 Observations Used in the Analysis of Software System SY 

Case 
# 

𝐭 ∈ (−∞,𝟎) 𝐭 ∈ (𝟎, 𝐭𝟏) 𝒕 ∈ (𝒕𝟏, 𝒕𝟏∗) 𝐭 ∈ (𝐭𝟏+, 𝐭𝟐) 𝐭 ∈ (𝐭𝟐, 𝐭𝟐∗  )) 
nd kd νd ∆M1

E 𝑐𝐿𝐸(1) 𝑐𝑈𝐸(1) ∆𝑚𝟏
𝑬 ∆m1_nr

E (t1∗) ∆m1new
E (t1∗) ∆M2

E 𝑐𝐿𝐸(2) 𝑐𝑈𝐸(2) ∆𝑚𝟐
𝑬 ∆m2_nr

E (t2∗) ∆m2new
E (t2∗) 

1 100 3 0 2 0 0.4 2 1 0 4 0 0.8 4 0 0 
2 100 3 0 1 0 0.4 1 1 0 2 0 0.8 2 0 0 
3 100 3 0 5 0 0.4 5 1 0 2 0 0.8 2 0 0 

  
(a)  Case 1 (b)  Case 2 

 
(c)  Case 3 

Figure 4.4 ∆𝑀1
𝑃(𝑡), ∆𝑀2

𝑃(𝑡),∆𝑀1
𝐸 ,∆𝑀2

𝐸 ,𝑛𝑓𝑟 1(𝑡)and 𝑛𝑓𝑟 2 (𝑡) for SY 

The figures clearly demonstrate the impact of observations on the number of 

faults remaining in phases 1 and 2.  Case 1 is a case where predicted behavior and 

observations match closely (i.e.∆M1
E and ∆M1

P are close and so are ∆M2
E and ∆M2

P).  

Only slight corrections are brought to the parameters and the predictions at time 0 are 
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close to the predictions at the end of phase 2.  On the other hand Case 2 and Case 3 

present situations that further and further deviate from the initial predictions.  The 

figure shows how these deviations are accounted for and corrected.  

4.5. Extensions in the Case of a Non-Uniform Distribution of Faults 

We will now focus on another extension of interest which considers the fact that 

faults may not be distributed uniformly over the different fault locations.  This is of 

particular importance in ultra-reliable systems because the location of a fault is a 

determinant factor in the severity of the associated failure.  As such it is necessary if 

possible to locate the position of the remaining faults.  We will establish the equations 

providing the number of failures experienced and the number of faults remaining for 

multiple test phases. 

Our assumptions have now become: 1) Faults are not uniformly distributed over 

all potential fault sites.  The probability that a fault resides in location L at time t 

during phase “i" is given by fi(L,t); 2)  When a potential fault-site is covered, any fault 

present at that site is detected with probability Ki(L,t) where “L” is the fault location 

and “i" is the functional test phase; 3) Repairs take place at the end of each phase.  

Repair activities are subject to errors.  The probability of a perfect repair which 

eliminates the original fault and does not introduce any new faults is ri for functional 

test phase “i”.  Different repair errors are considered: a) the fault is not corrected and 

remains in its initial location L, no new fault is introduced; b) a fault moves from its 

original location L to a new location L’; c) a fault remains in its original location L 

and a new fault is introduced in a new location L’.  To express these different cases 

we introduce: γi the conditional probability that a new fault is introduced during 
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functional test phase “i";  mi the conditional probability that a fault changes location; 

ki(L,L’) the conditional probability that given that a fault is introduced or is moved 

due to a repair at location L, it moves to L’; 4) Coverage is a continuous monotonic 

non-decreasing function of testing time per phase. 

Let us introduce additional notations for the coverage function.  We define by 

ci(L,t) the probability that a location is covered by time t in phase “i".  Ci(t) is the 

program coverage at time t during phase “i" and is given by: 

 Ci(t) = � ci(L, t)
S

        for ti−1  ≤  t <  𝑡𝑖  (4.10) 

where S is the set of software locations for software system S.  From there, one 

obtains the number of failures experienced since the beginning of phase “i” as: 

 Δmi(t + 𝑑𝑡) = Δmi(t) + ��ci(L, t + 𝑑𝑡) − ci(L, t)� × ã × fi(L, t) × Ki(L, t)
S

 (4.11) 

for ti-1 ≤ t < ti and where ã as before is the number of faults in the code at time t0= 0.  

Dividing by dt and taking the limit for dt going to zero, we obtain: 

 
𝑑𝛥𝑚𝑖(𝑡)

𝑑𝑡
= �

∂ci(L, t)
∂t

× ã × fi(L, t) × Ki(L, t)
S

 (4.12) 

for ti-1 ≤ t < ti . The number of failures experienced during a phase “i” is then given 

by: 

 �
𝑑𝛥𝑚𝑖(𝑡)

𝑑𝑡
𝑑𝑡

𝑡𝑖

𝑡𝑖−1
= � �

∂ci(L, t)
∂t

× ã × fi(L, t) × Ki(L, t)
S

𝑡𝑖

𝑡𝑖−1
𝑑𝑡 (4.13) 

The number of failures experienced due to a particular location over all n phases 

is: 

 ��
𝑑𝛥𝑚𝑖(𝐿, 𝑡)

𝑑𝑡
𝑑𝑡

𝑡𝑖

𝑡𝑖−1

𝑛

𝑖=1

= ��
∂ci(L, t)
∂t

× ã × fi(L, t) × Ki(L, t)
𝑡𝑖

𝑡𝑖−1
𝑑𝑡

𝑛

𝑖=1

 (4.14) 
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The number of faults in location L changes as a function of detection and repair.  

During the phase, the fault count does not change but faults are uncovered.  At the 

end of the phase, faults uncovered due to failures experienced are fixed.  Let us 

denote by ti+ the time at the end of phase “i” where repair is attempted, the 

probability that a fault still exists at time ti+ in location L is given by the following 

equation: 

 

f𝑖(L, ti +) = fi−1(L, ti−1 +) − ri × �
𝛿𝑐𝑖(𝐿, 𝑡)

𝛿𝑡
× f𝑖−1(L, ti−1 +) × Ki(L, t)𝑑𝑡

ti

ti−1

 

− (1 − ri) × (1 − γi)

× mi �
𝛿𝑐𝑖(𝐿, 𝑡)

𝛿𝑡
× f𝑖−1(L, ti−1 +) × Ki(L, t)𝑑𝑡

ti

ti−1

+ (1 − ri) × γi

× � � �
𝛿𝑐𝑖(𝐿′, 𝑡)

𝛿𝑡
× fi−1(L′, ti−1 +) × Ki(L′, t) × ki(L′, L)𝑑𝑡

ti

ti−1

�
L′≠L

+ (1 − ri) × (1 − γi) × mi

× � � �
𝛿𝑐𝑖(𝐿′, 𝑡)

𝛿𝑡
× fi−1(L′, ti−1+) × Ki(L′, t) × ki(L′, L)𝑑𝑡

ti

ti−1

�
L′≠L

 

(4.15) 

The first term corresponds to faults that were in L at the beginning of the phase, 

the second term corresponds to successful repair of faults detected through failures 

experienced, the third term corresponds to the attempted repair of a fault in L where 

the fault will be moved to some unknown location L’, the fourth term corresponds to 

the attempted repair of a fault at location L’ resulting in a new fault introduced in 

location L, and the fifth term to unsuccessful repairs in location L’ that resulted in the 

moving of the fault in L.  The number of faults remaining is given by: 
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 A(ti +) = � ã fi(L, ti +)
S

    with A(t0+)  =  ã. (4.16) 

Example- Let us consider an example software SX.  SX is undergoing two functional 

test phases.  Let us also assume that the upper and lower coverage values for each 

functional test phase are given in Table 4.11.  The case study considers 100,000 

different locations.  These could be different modules, lines of code, etc dependent 

upon the level of abstraction selected.  Values of the additional parameters are given 

in Table 4.12 to Table 4.14.  In this example we assume that Ki(L,t) is dependent 

upon the phase and the location but not upon time.   

Table 4.11 Multi-Phase Test Profile for Software SX 

Phases 1 2 
CL(i) 0 0 
CU(i) .67 1 

Table 4.12 Detection probabilities per location for the two phases for Software SX 

Case # (a) (b) 
K1(L) 0 for L= [12000, 21999] U [32000, 

41999] U [82000, 94999] 
.5 for all other values of L 

0 for L= [33000, 54999] U [82000, 
92999] 
.5 for all other values of L 

K2(L) .5 for all L in [0, 100000] .5 for all L in [0,100000] 

Table 4.13 ki(L’,L) for the two phases (i = 1,2) 

Case # For L’=1 For L’=2 to 99,999 For L’=100,000 
(a) ki(L’,L)=1 if L=2 

ki(L’,L)=0 otherwise 
ki(L’,L)=.5 if L’=L-1 or L’=L+1 
ki(L’,L)=0 otherwise 

ki(L’,L)=1 if L=99999 
ki(L’,L)=0 otherwise 

(b) ki(L’,L)=1 if L=2 
ki(L’,L)=0 otherwise 

ki(L’,L)=1 if L’=L-1  
ki(L’,L)=0 otherwise 

ki(L’,L)=1 if L=99999 
ki(L’,L)=0 otherwise 

Table 4.14 Remaining Parameters for SX 

Case # (a) (b) 

 
r1=r2 γ1=γ2 m1=m2 ã r1=r2 γ1 γ2 m1=m2 ã 

.9 .25 .2 3 .9 .4 .3 .2 3 
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Results are given in Figure 4.5.  The example shows the likely location of 

remaining defects and their distribution as well as the potential number of faults 

remaining.

 

Figure 4.5 Fault Location Distributions for SX 

4.6. Conclusions 

This paper presents a new test coverage-based model which allows the 

description of ultra reliable software systems developed through multiple phases of 

functional testing.  The paper establishes the equations governing the number of 

failures experienced and the number of faults remaining as a function of the multi-

phase test coverage function.  

This model is further extended: 1) to take advantage of auxiliary observations 

collected during the multi-phase testing and analysis process to refine the predictions 

made; 2) to describe software systems where either the initial fault distribution is non-

uniform with respect to location, or the repair and test and detection process favor 

certain locations.   

The first extension is based on a model-data fusion paradigm where parameters 

and unknowns are updated sequentially as and when information becomes available.  
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The example discussed in section 4.4 demonstrates that the model-data fusion 

framework proposed can be used to progressively and efficiently correct and refine 

the residual fault counts prediction if initial test-coverage based predictions deviate 

significantly from actual observations.  The second extension of the model deals with 

potential fault location predictions.  For ultra-reliable systems fault location 

information is of importance because the location of a fault determines how 

frequently it will be executed in operation and whether it will propagate.  As such 

location is primary in determining fault propagation characteristics and whether the 

fault will have a large impact or not.  The fault location distribution could be used in 

combination with mutation or modeling approaches to determine the fault 

propagation characteristics of the software in operation before it runs in the field.  

Such information is important for ultra-reliable systems which cannot be allowed to 

fail in the field and for which we will not be able to collect field data (failures in 

operation).  Location information can also be used to refine testing and target it 

towards high impact high likelihood faults if those exist.  In this paper the framework 

was applied to synthetic examples whose characteristics were chosen to be 

representative of real case studies.  Application of the framework to a system with 

100,000 locations shows that its computational complexity is limited, that results 

obtained for diverse sets of parameters display foreseeable trends, and that the tool 

developed can easily be expanded to handle more complex systems.  Through 

simulations such as those presented in section 4.5, one can observe the effect of 

different test strategies, of initial fault distributions, of repair and new fault 

introduction rates, of the number of functional test phases and determine how these 
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influence the final fault distributions.  The knowledge gained can be used to optimize 

testing and improve reliability.  Application of the models developed to an actual case 

study is not discussed in this paper and will be the object of future extensions.  This 

will in particular entail selection of adequate approaches for parameter estimation.  

The parameters should be identifiable using a combination of methods and tools such 

as: code coverage tools for c(L); early prediction methods [20] for f0(L); limited 

mutation for transfers of faults k(L’,L) [25]; field data for repair rates, fault 

introduction rates and K(L’) updated using information related to faults observed 

during the different phases. 
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Chapter 5: Summary and Future Research 

5.1 Summary 

This research focused on proposing a systematic software metric-based 

reliability prediction method.  The method started with the measurement of a metric.  

Measurement results are then linked to three different types of defect characteristics: 

1) the number of defects remaining or 2) the number and the exact locations of the 

defects found or 3) the number and the exact locations of defects found in an earlier 

version.  Three models, Musa’s exponential model, the PIE model and a mixed Musa-

PIE model, are used to link the three categories of defect characteristics with 

reliability using the operational profile.  

In order to implement the PIE model, an approach for construction of the EFSM 

model is presented.  The EFSM is used in most of the top ranked software metrics 

studied in this thesis to identify the fault propagation rates of faults.  The approach 

allows the mapping of the defects and the operational profile to the constructed 

EFSM model so that the execution of the updated EFSM model can be used to 

abstractly represent the faulty execution of the real software. 

This software reliability prediction method is then applied to a safety-critical 

software used in the nuclear industry using eleven metrics.  Reliability prediction 

results are compared with the real reliability assessed using operational failure data.  

Results show that reliability prediction based on DD, FDN, RT and TC are close to 

the operational reliability.  Experiences and lessons learned from the application are 

discussed.  
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Possible extensions to the existing models as well as procedures for repeatable 

measurement and prediction are proposed.   

The RePS built upon the test coverage measure provides credible prediction 

results and is refined to be able to take into consideration more realistic conditions, 

such as imperfect and non-uniformly distributed debugging and the use of multiple 

testing phases.  More specifically, Chapter 3 introduces a first refinement for TC 

RePS.  This refinement assesses the impact of newly introduced defects during the 

debugging process on reliability.  The newly introduced defects could be located non-

uniformly around the fault being fixed and they may possibly display different 

propagation characteristics than the faults being fixed.  Chapter 4 describes a second 

refinement for TC RePS.  This refinement allows the description of software systems 

developed through multiple phases of functional testing and takes advantage of 

auxiliary observations collected during the multi-phase testing and of the consequent 

process of analysis to refine the predictions made.  This refinement also describes 

software systems where either the initial fault distribution is non-uniform with respect 

to location, or the repair/test and detection process favor certain locations.   

5.2 Areas for Future Research 

This section discusses the follow-on issues raised as a consequence of 

performing this study. The issues are listed as follows: 

5.2.1 Defect Density Robustness 

Defect density RePS is one of the best RePSs.  The key step in this measurement 

is to identify defects in the products of each software development phase.  That is, to 

reveal defects in the SRS, SDD and the code.  The quality of results obtained using 
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this RePS is a function of the inspector’s detection efficiency.  More specifically, the 

question is “What is the relationship between the ability of on inspector to detect a 

defect and the fault exposure probability of this defect?”  Restated: “Is an inspector 

more likely to detect a defect with high exposure probability (probability of observing 

the failure is high) than with low exposure probability (probability of observing the 

failure is low) or reversely?  Or is his/her detection ability independent of the fault 

exposure probability of that defect?”  If the inspector mostly detects defects that have 

a small probability of occurrence then reliability assessments may be of low quality.  

If the inspector on the other hand detects defects that have a high likelihood of 

occurrence, then reliability estimation may be precise even if the defect detection 

efficiency is low. 

5.2.2 Issues with Repeatability and Scalability 

As has been clearly shown in section 2.7.4, the measurement process can be 

extremely time-consuming, error prone and highly dependent on the qualification of 

the inspectors involved.  A considerable amount of time may be spent in manually 

"parsing" the natural language SRS, SDD or even the code and the number and type 

of defects found may depend heavily on the inspectors.  Two solutions to these 

problems are possible: 1) Training and certification of inspectors; 2) Automation of 

the measurement process.  Automation can help improve the repeatability of the 

measurement process while assisting the analyst and thereby increasing review speed.  

Future research should examine each of these avenues and how they should be 

implemented. 

5.2.3 Issues with Common Cause Failures (CCF) 
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At this point, none of the RePSs considered include a measurement of common 

cause.  This may lead to an underestimation of the probability of failure at the 

software system level since we currently assume independence between the versions.  

This underestimation may be of several orders of magnitude.  For metrics such as CC, 

FP, BLOC and RSCR, a CCF correction factor will need to be investigated.  This 

factor would represent the fraction of CCF which will be observed.  For metrics such 

as DD and RT, the EFSM propagation technique will need to be modified to account 

for similar defects in multiple versions. 

5.2.4 Issues with Uncertainty 

Software reliability prediction is subject to uncertainty.  The sources of 

uncertainties in software reliability prediction can generally be divided into two main 

categories: measurement uncertainty and model uncertainty.  Measurement 

uncertainty can arise from inaccuracies in the methods and tools used to assess a 

quantity, from the artifact being measured, from the operator, and from other sources.  

Model uncertainty can stem from simplifications, assumptions and approximations, or 

from uncertainties in the values assumed by the model parameters.  Further research 

is needed in the area of identifying the uncertainty components in a measurement 

process, estimating the total uncertainty, and reducing the degree of uncertainty. 

5.2.5 Combining Measures 

A future research project could determine how to down-select to a smaller 

number of measures that can be combined and yield a more accurate reliability 

estimation than that produced by any one measure taken in isolation. 
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Appendix A. Eleven Software Metrics used in this Study 

1) Bugs per line of code (BLOC) 

The goal of this measure is to give a crude estimate of the number of faults in 

a program module per line of code.   

2) Cause & effect graphing (CEG) 

A CEG is a formal translation of natural-language specification into its input 

conditions and expected outputs.  The graph depicts a combinatorial logic 

network.  CEG aids in identifying requirements that are incomplete and 

ambiguous.  This measure explores the inputs and expected outputs of a 

program and identifies the ambiguities.  Once these ambiguities are 

eliminated, the specifications are considered complete and consistent.  The 

measure is computed as follows: 

𝐶𝐸% = 100 × �1 −
𝐴𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
𝐴𝑡𝑜𝑡

� 

Where:  

Aexisting is the number of ambiguities in a program remaining to be 

eliminated and 

Atot is the total number of ambiguities identified. 

3) Software capability maturity model (CMM) 

CMM is a framework that describes the key elements of an effective software 

process.  The goal of this measure is to describe the principles and practices 

underlying software-process maturity and to help software organizations 

improve the maturity of their software processes [16]:  
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𝐶𝑀𝑀 = 𝑖    𝑖 ∈ {1, 2, 3, 4, 5} 

4) Completeness (COM) 

The COM measure determines the completeness of the software requirements 

specifications (SRS).  This measure provides a systematic guideline to 

identify the incompleteness defects in SRS.  COM is the weighted sum of ten 

derivatives, D1 through D10 [16] [92]:  

𝐶𝑂𝑀 = �𝑤𝑖𝐷𝑖

10

𝑖=1

 

Where:  

COM is the completeness measure, 

wi is the weight of the ith derived measure, 

Di is the ith derived measure calculated from the primitive measures Bi 

(i = 1,…,18).  

5) Cyclomatic complexity (CC) 

This measure determines the structural complexity of a coded module.  The 

Cyclomatic Complexity (CC) of a module is the number of linearly 

independent paths through a module.  The cyclomatic complexity for the ith 

module is originally defined by McCabe [93] [94] as: 

𝐶𝐶𝑖 = 𝐸𝑖 − 𝑁𝑖 + 1 

Where:  

CCi : is the cyclomatic complexity measure of the ith module, 

Ei : is the number of edges of the ith module (program flows between 

nodes) 
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Ni : is the number of nodes of the ith module (sequential groups of 

program statements). 

6) Defect density (DD) 

Defect density is defined as the number of defects remaining divided by the 

number of lines of code in the software.  The defects are discovered by 

independent inspection.  Defect Density is given as: 

𝐷𝐷 =
∑ 𝐷𝑖𝐼
𝑖=1

𝐾𝑆�𝑂𝐶
 

Where:  

Di : is the number of unique defects detected during the design and 

code inspection and still remain in the code. 

KSLOC: is the number of source lines of code (LOC) in thousands.  

7) Fault days number (FDN) 

This measure represents the number of days that faults remain in the software 

system from introduction to removal.  The fault day measure evaluates the 

number of days between the time a fault is introduced into a system and until 

the point the fault is detected and removed [18] [95], such that:  

FDi = fouti−fini and 𝐹𝐷 = ∑ 𝐹𝐷𝑖𝐼
𝑖=1  

Where:  

FD : Fault-days for the total system; 

FDi : Fault-days for the ith fault; 

fini : Date at which the ith fault was introduced into the system; 

fouti : Date at which the ith
 fault was removed from the system; 

8) Function point analysis (FP) 
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Function Point is a measure designed to determine the functional size of the 

software.  The Function Point Counting Practices Manual is the definitive 

description of the Function Pointing Counting Standard.  The latest version is 

Release 4.2, which was published in 2004 [96]. 

9) Requirement specification change request (RSCR) 

RSCR is defined as the number of change requests that are made to the 

requirements specification.  This measure indicates the stability and/or growth 

of the functional requirements.  The requested changes are counted from the 

first release of the requirements specification document to the time when the 

product begins its operational life.  

RSCR =Σ(requested changes to the requirements specification) 

Where: 

The summation is taken all requirements change requests initiated 

during the software development life cycle. 

10) Requirements traceability (RT) 

According to IEEE [16], the requirements traceability measure aids in 

identifying requirements that are either missing from, or in addition to, the 

original requirements.  Requirements traceability is defined as:  

𝑅𝑇 =
𝑅1
𝑅2

× 100% 

Where:  

RT is the value of the measure requirements traceability, 

R1 is the number of requirements met by architecture, and 

R2 is the number of original requirements. 
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11) Test coverage (TC) 

As in IEEE [16], Test coverage (TC) is the percentage of requirement 

primitives implemented multiplied by the percentage of primitives executed 

during a set of tests.  A simple interpretation of test coverage can be expressed 

by the following formula: 

𝑇𝐶% = �
𝐼𝐶
𝑅𝐶

� × �
𝑃𝑅𝑇
𝑇𝑃𝑃

� × 100 

Where:  

IC is the implemented capabilities; 

RC is the required capabilities; 

PPT is the tested program primitives and  

TPP is the total program primitives.  
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Appendix B. The M-D Models for each of the Eleven RePSs 

1) Bugs per Line of code (BLOC) 

Gaffney [28] established that the number of defects remaining in the software 

(NG) could be expressed empirically as a function of the number of line of 

codes: 

𝑁𝐺 = ��4.2 + 0.0015�𝑆𝑖4
3

�
𝑀

𝑖=1

 

Where:  

i is the module index, 

M is the number of modules, and 

Si is the number of lines of code for the ith module. 

The next step is the partitioning of the defects based on their criticality.  Using 

Table B.1 from [45] for US Averages percentages for delivered defects by 

severity level and logarithmic interpolation, the percentages of delivered 

defects by severity level can be obtained.   

Table B.1 Percentages for Delivered Defects by Severity Level 

 
Severity 1 
(critical) 

Severity 2 
(significant) 

Severity 3 
(minor) 

Severity 4 
(cosmetic) 

Percentage of 
delivered defects 

0.0185 0.1206 0.3783 0.4826 

So the number of delivered defects of interest (N) can be obtained as: 

𝑁 = 𝑁𝐺 × 𝑆𝐿 

Where: 
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SL is the percentage of defects introduced at the severity level of 

interest with the value of 0.1391 (0.0185+0.1206). 

2) Cause & effect graphing (CEG) 

Defects are uncovered during the inspection of the SRS using measurement 

rules for CEG.  All the defects identified through inspection along with their 

descriptions, their locations and their types are recorded.  Detailed 

measurements rules are provided in [20]. 

3) Software capability maturity model (CMM) 

Historical industry data collected by Software Productivity Research Inc [40] 

links the CMM level to the number of defects per function points.  Table B.2 

presents this data. 

Table B.2 CMM Levels and Average Number of Defects per Function Point 

CMM level Average Defects/Function Point 
Defects for SEI CMM level 1 0.75 
Defects for SEI CMM level 2 0.44 
Defects for SEI CMM level 3 0.27 
Defects for SEI CMM level 4 0.14 
Defects for SEI CMM level 5 0.05 

Using Table B.1 from [45] for US Averages percentages for delivered defects 

by severity level and logarithmic interpolation, the percentages of delivered 

defects by severity level can be obtained.  

Therefore, the number of defects based on the measurement of CMM can be 

expressed as: 

𝑁 = 𝐷𝐶𝑀𝑀 × 𝑆𝐿 

Where: 

 DCMM is the total number of defects for a certain CMM level; 
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SL is the percentage of defects introduced at the severity level of 

interest with the value of 0.1391 (0.0185+0.1206). 

4) Completeness (COM) 

Defects are uncovered during the inspection of the SRS using measurement 

rules for COM.  All the defects identified through inspection along with their 

descriptions, their locations and their types are recorded.  Detailed 

measurements rules are provided in [20]. 

5) Cyclomatic complexity (CC) 

An empirical correlation was derived to relate cyclomatic complexity and 

number of defects.  The correlation is based on an experimental data set 

composed of system software applications developed by graduate students 

The empirical correlation was established by following the form proposed in 

[97]: 

𝑆𝐿𝐼𝐶𝐶 = 1 −�𝑓𝑖 × 𝑝𝑖%
9

𝑖=1

 

Where: 

SLICC : The SLI26 value of the cyclomatic complexity factor 

fi : Failure likelihood fi used for SLI1 calculations [97] 

pi : The percentage of modules whose cyclomatic complexity belong to 

the ith level, i = 1, 2, ..., 9. 

The number of defects predicted based on CC measurement results is: 

                                                 
26 SLI stands for Success Likelihood Index which is used to represent the likelihood of an error occurring in a particular situation 
depends on the combined effects of a relatively small number of performance influencing factors (PIFs).  SLI was used as an 
index which quantifies whether a particular environment will increase the human error probability or decrease it (with respect to 
a “normal situation”) [44].  SLICC is related to the likelihood that developers will err (i.e. introduce fault in the software product 
and/or fail to remove them) because of the cyclomatic complexity of the modules. 
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𝑁 = 0.036 × 𝑆𝐼𝑍𝐸 × (20)1−2𝑆𝐿𝐼𝑐𝑐  

where 

SIZE : the size of the delivered source code in terms of LOC (Line of 

Code) 

6) Defect density (DD) 

Defects are uncovered during the inspection of the SRS, SDD and code using 

measurement rules for DD.  All the defects identified through inspection along 

with their descriptions, their locations and their types are recorded.  Detailed 

measurements rules are provided in [20]. 

7) Fault days number (FDN) 

Based on the cumulative characteristic of the FDN metric and by using the 

concepts introduced in [44], one can show that FDN is related to μU(t) by the 

following equation: 

𝑑(𝐹𝐷𝑁)
𝑑𝑡

= 𝜇𝑈(𝑡) 

Where:  

 𝜇𝑈(𝑡): expected fault count at time t; 

This equation shows the direct relationship between the measured real FDN 

and the corresponding fault count.  The number of faults can be obtained 

using this equation once FDN is known (i.e. measured)..  However, the real 

FDN can not be obtained experimentally since not all the faults can be 

discovered during the inspection.  One can only obtain the apparent FDN, 

FDNA which corresponds to faults identified through the inspection process 

and removed through repair.  One can relate FDNA to FDN by: 
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𝑑(𝐹𝐷𝑁𝐴)
𝑑𝑡

= 𝛾(𝑡;𝜗𝜇𝐻, 𝑧𝑎, 𝜇𝑅) ∙
𝑑(𝐹𝐷𝑁)

𝑑𝑡
 

Where:  

𝛾(𝑡;𝜗𝜇𝐻 , 𝑧𝑎, 𝜇𝑅 , ) is a function of 𝜗𝜇𝐻, 𝑧𝑎, 𝜇𝑅, relates FDNA to FDN; 

𝜗 𝜇𝐻: estimate of fault introduction rate; 

𝑍𝑎: intensity function of per-fault detection; 

𝜇𝑅: expected change in fault count due to each repair. 

Therefore, one can still obtain the fault count based on the measured apparent 

FDN as shown by: 

𝜇𝑈(𝑡) =
𝑑(𝐹𝐷𝑁𝐴)

𝑑𝑡
∙

1
𝛾(𝑡;𝜗𝜇𝐻, 𝑧𝑎, 𝜇𝑅) 

8) Function point analysis (FP):  

Jones’ empirical industry data [45] links the FP to the number of defects per 

function point for different categories of applications.  Table B.3 (Table 3.46 

in [45]) provides the average numbers for delivered defects per function point 

for different types of software systems.  Logarithmic interpolation can then be 

used for number of defects quantification.  

Table B.3 Averages for Delivered Defects per Function Point (Extracted From [45]) 

Function 
Points 

End 
user MIS Outsource Commercial Systems Military Average 

1 0.05 0 0 0 0 0 0.01 
10 0.25 0.1 0.02 0.05 0.02 0.03 0.07 

100 1.05 0.4 0.18 0.2 0.1 0.22 0.39 
1000 0 0.85 0.59 0.4 0.36 0.47 0.56 

10000 0 1.5 0.83 0.6 0.49 0.68 0.84 
100000 0 2.54 1.3 0.9 0.8 0.94 1.33 

Average 0.45 0.9 0.48 0.36 0.29 0.39 0.53 
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Therefore, the number of defects based on the measurement of FP can be 

expressed as: 

𝑁 = 𝐷𝐹𝑃 × 𝑆𝐿 

Where: 

DFP is the total number of defects obtained from Jones’ data for a 

specific type of software system; 

SL is the percentage of defects introduced at the severity level of 

interest with the value of 0.1391 (0.0185+0.1206). 

9) Requirement specification change request (RSCR) 

To link requirements specification change requests to the reliability of a 

software system, a derived measure called REVL was used.  The measure is:  

𝑅𝐸𝑉𝐿 =
𝑆𝐼𝑍𝐸𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑑𝑢𝑒 𝑡𝑜 𝑅𝑆𝐶𝑅

𝑆𝐼𝑍𝐸𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
× 100% 

where 

REVL : measure of requirements evolution and volatility; 

SIZEchanged due to RSCR : size of changed source code corresponding to 

RSCR, in Kilo Line of Code (KLOC); 

SIZEdelivered : size of the delivered source code, in KLOC. 

SLI for the REVL, denoted by SLIRSCR, is estimated using the value of REVL, 

as shown in Table B.4. 

Table B.4 Rating Scale and SLI Estimation for REVL 

REVL 5% 20% 35% 50% 65% 80% 
Rating 
Levels 

Very low Low Nominal High Very High Extra High 

SLIRSCR 1 0.75 0.5 0.34 0.16 0 



 123 
 

The number of defects predicted based on RSCR measurement results is: 

𝑁 = 0.036 × 𝑆𝐼𝑍𝐸𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 × (20)1−2𝑆𝐿𝐼𝑅𝑆𝐶𝑅 

10) Requirements traceability (RT) 

Defects are uncovered during the inspection of the SRS, SDD and code using 

measurements rules for RT.  All the defects identified through inspection 

along with their descriptions, their locations and their types are recorded.  

Detailed measurements rules are provided in [20].  

11) Test coverage (TC) 

Malaiya et al. investigated the relationship between defect coverage, C0, and 

statement coverage, C1. In [46], the following relationship was proposed: 

𝐶0 = 𝑎0𝑙𝑛(1 + 𝑎1𝑒𝑎2𝐶1−1) 

where 

a0, a1, a2 are coefficients, and 

C1 is the statement coverage. 

The number of defects remaining in the software N is: 

𝑁 =
𝑁0
𝐶0

 

where 

N0 is the number of defects found by test cases provided in the test plan, 

C0 is the defect coverage. 
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