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ABSTRACT

Title of Thesis: Elementary Hadamard Difference Sets
John F. Dillon, Doctor of Philosophy, 1974

Thesis directed by: Professor James C. Owings, Jr.

This paper is primarily a study of difference sets in elementary
abelian 2-groups. It is, however, somewhat wider in scope and includes
an exposition of the fundamental notions relating to the more general

topics of difference sets and the Fourier analysis of Boolean functions.

A (v,k,A,n)-difference set with v=4n, called a Hadamard difference

set, necessarily has parameters of the form

(v,k,A,n) = (4N%, 2N2-N, N2-N, N2) or (4N?, 2N%+N, N2+N, N?).

Every (nontrivial) difference set with v a power of 2 is Hadamard.

A partial spread for a group G of order M? is a family of pairwise

disjoint (except for 0) subgroups of order M.

THEOREM 1. Let {H,, Hy, ..., Hr} be a partial spread for G.

D = (k)Hi)\{O} (resp. E = k)Hi) is a difference set if and only if G has

order 4N? and r = N (resp. N+1). These difference sets are Hadamard

with parameters

(4N2, 2N2-N, N2-N, N2) and (4N2%, 2N2+N, N2+N, N2), respectively.

We call the difference sets D and E partial spread difference sets of

types PS(—) and PS(+), respectively.



THEOREM 2. a) The groups

2m
Zq, 22 ®Z, & Zq, Z6 @ Z6’ Z‘+ (] Zu, and Z2 , m > 1,

all have PSU? difference sets. b) ALL but the first three of

these groups have PS(+) difference sets. c¢) No other abelian

group has a partial spread difference set.

As a special case of our construction we obtain the family of difference

sets in elementary abelian 2-groups given by

THEOREM 3. The points (resp. nonzero points) lying on any

-1 —
g7 A (resp. o™ 1) lines through the origin constitute a difference

set in the affine plane L ® L, L = GF(2™).

P. Kesava Menon and R. J. Turyn have shown that the set of zeros

of the quadratic form

Ea Tt T hR s ¥ e T RA

over 22 constitutes a difference set in Zim. We show that Turyn's
"other" elementary difference set is equivalent to a partial spread
difference set (given by Theorem 3) while Kesava Menon's "other"
difference set is equivalent to the quadratic set which is itself a
partial spread difference set (not given by Theorem 3) precisely when

m=l or m is even.

More generally, we define a Pall partition for a quadratic form

over a field F to be a partition of the zeros of the form into pairwise
disjoint (except for 0) maximal isotropic (singular if char F=2) F-linear

subspaces.



THEOREM 4. a) There exists a Pall partition for every nonsingular

quadratic form over GF(Zr), except for those equivalent to

Wm = Xle+1 & XZXm+2 + e F XmXZm

with m>1 odd, in which case no such partition exists. b) If m>1 is odd,

then there does not exist a Pall partition for ¥ over any field whatsoever.

The second part of this theorem generalizes a recent result of L. Couvillon.

It has been shown by J. A. Maiorana and R. L. McFarland, independently,

that the quadratic difference set associated with the form

Yy =XX + X X + oe T XX

m 17wt 2 mt+2 i m 2m
2
on sz may be generalized by replacing Tm by a function on
Z, ® Z, of the form

£(X,Y) = n(X) - ¥ + g(X),

; m . .
where 1© is an arbitrary permutation of Z, and g dis an arbitrary
function from Z? to Z,. We call this family of difference sets

FAMILY M.

: 2 :
THEOREM 5. For m>3 there exist difference sets in sz which

are not equivalent to any difference set in FAMILY M.

We obtain this result and others on inequivalence by employing certain
affine invariants which we develop here and which are useful in the

more general study of Boolean functions.
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CHAPTER I
INTRODUCTION

Among the most beautiful of all combinatorial objects is the
difference set, which is, at first blush, but a subset of a group
with a certain peculiar property — namely, that all nonidentity
group elements may be represented in the same number of ways as a
difference of two elements of that subset. A closer examination,
however, bares the equivalent property that the translates of that
subset by all the group elements constitute a symmetric balanced
incomplete block design, known also as a (v,k,A)-configuration. Unlike
many designs, those arising from a difference set have the desirable
property of being completely determined by a single block (and the
group which contains it). For this reason difference sets play a

major role in the design of experiments [10].

Another oft exploited feature of a difference set is its
characteristic function (and variations thereof) which is defined
on the group and takes the value 1 on the difference set and O off
the difference set. The autocorrelation function has just two levels,
being uniformly small on the nonidentity elements of the group;
consequently difference sets find much use in signal analysis and

design [25].

Since any two translates of the characteristic function differ
in the same number of places, these functions may be used as codewords
in an error-correcting code. In certain cases functions corresponding
to difference sets can be adjoined to a simple code to produce a much

larger code with a relatively small loss in error-correcting power [3].



These applications may be considered as exploitations of the
incidence matrix of the design of the difference set. It sometimes
happens that the incidence matrix, with its 0's replaced by -1's, is
Hadamard. This opens up another world of applications. We refer the

interested reader to [26] for a comprehensive survey of Hadamard matrices.

The k-subset D of the (not necessarily abelian, but denoted
additively) group G of order v 1is called a (v,k,\,n)-difference
set if every nonidentity element of G may be represented in exactly
A ways as the difference of two elements of D. The parameter n is
defined to be equal to k-A. If D 1is such a set then for any
automorphism o of G and any element g of G, the set Du+g
is also a difference set with the same parameters. Two difference sets
which are related in this way are said to be equivalent. In particular,
if Da+g = D, the (nonidentity) automorphism o of G is called a
multiplier of the difference set D. A multiplier which, for some
integer t, maps each element g of G to tg, is called a numerical
multiplier. The multipliers of a difference set D in G constitute
a subgroup of the automorphism group of G and equivalent difference
sets have isomorphic multiplier groups; equivalent cyclic difference
sets have the same multipliers. H. B. Mann and R. L. McFarland [14]
have shown that every multiplier of a difference set must fix some
translate of that difference set. A very powerful theorem due to
Marshall Hall, Jr. and several generalizations [15] provide multipliers
for difference sets in a variety of groups. These multipliers, together
with the result of Mann and McFarland, may then be used to establish

the existence or nonexistence of a difference set (in the given group)



with specified parameters or to test the equivalence of two difference
sets in the same group. Unfortunately, all of the multipliers produced
by these theorems are numerical multipliers — there is no general
"™Multiplier Theorem" for difference sets in groups which have no

(nontrivial) numerical automorphisms.

Such groups include the elementary abelian 2-groups. The lack
of a multiplier theorem for these groups may be one of the reasons that
they have been largely ignored as a source of difference sets. In 1955
R. H. Bruck [4] gave an example of a (16,6,2,4)-difference set in the
group Z;. The early 60's saw a brief shower of attention given these
groups. In 1960 P. Kesava Menon [18] gave a construction which yields

for each m > 1 a difference set with parameters

m-1 m—-1 m-1

-2, 4

m-1]

(*)  (v,k,A,m) = (4", 2-4 2" 4h

in the elementary group Z%m . In 1962 Kesava Menon [19] showed that

any (v,k,A,n)-difference set with v=4n must have parameters of the form
(**%)  (v,k,A,n) = (4N2, 2N2-N, N2-N, N2) or (4N?, 2N24N, N2+N, N2).

He observed that such differemce sets D; in a group G; and D,

in a group G, can be combined to produce a difference set of this

type in the direct sum G, ® G,. In particular, the trivial (singleton)
difference set in Kq = Z% may be used to produce via this process a
(nontrivial) difference set in any group KT. In 1965 R. J. Turyn [24]
observed that the (fl)-incidence matrix of a difference set with parameters
of the form (*%*) is a Hadamard matrix and the composition theorem of

Menon is a direct consequence of the fact that the Kronecker product

of Hadamard matrices is again Hadamard. Consequently, such sets are



now called Hadamard difference sets. Turyn also gave a new construction
which provides another difference set in each group Z;m. Also in 1965
H. B. Mann [13] showed that any nontrivial (v,k,A)-configuration (and,
in particular, any difference set) having v a power of 2 must have
parameters of the form (**). Thus a difference set can exist in a
2-group only if it has square order, and any difference set (or its

s 2m
complement) in Z, must have parameters (*).

In unpublished work (completed in 1966 but only recently submitted
for publication) O. S. Rothaus [22] generalized the Menon-Turyn construction
and obtained, for each m>2, a "large" number of pairwise inequivalent
difference sets in sz. This construction was further generalized
by J. A. Maiorana (also unpublished) around 1969. 1In 1973 R. L. McFarland
[16] gave a very general construction for difference sets in certain
non-cyclic groups. This construction applies to the groups Zim, in
which case the difference sets produced are equivalent to those obtained
by Maiorana. We thus accord to this family of difference sets the name
FAMILY M. It is a truly remarkable fact that every elementary Hadamard
difference set known (before now!) is equivalent to one in FAMILY M.

Indeed, in [16] McFarland asks if every difference set in Zim is

equivalent to one given by his construction.

This thesis provides a negative answer to McFarland's question.
Indeed, our main result (Chapter 5) is a new construction which produces,
for each mw>3, a "large" number of pairwise inequivalent difference sets

2m

in 22 "most" of which are not equivalent to any difference set in

FAMILY M.



This paper is primarily a study of difference sets in elementary
abelian 2-groups. It is, however, somewhat wider in scope and includes
an exposition of the fundamental notions relating to the more general

topics of difference sets and Boolean functions.

Chapter 2 contains a rather general discussion of difference sets
and their incidence matrices with the emphasis being on Hadamard difference
sets. 1In the last section of Chapter 2 we introduce the (complex)
group algebra and its Fourier transform and derive quickly the useful
characterizations of a difference set in terms of its "autocorrelation"

and its Fourier transform.

We are mainly concerned with difference sets in elementary abelian
2-groups (which may be regarded as finite dimensional vector spaces
over GF(2)), the characteristic functions of which may be regarded as
certain strangely behaved Boolean functions. As a matter of fact, many
properties of these difference sets are most easily discussed in the
language of Boolean functions and polynomials. For example, the Fourier
transform is a natural consideration in this setting. Also, two
difference sets are equivalent precisely when their associated
polynomials are equivalent under the action induced by the affine group
on their variables. Thus, certain affine invariants (e.g. "degree')
may be associated with each difference set. Chapter 3 is a general
discussion of Boolean functions and their transforms. In sections
2 and 3 we develop the polynomial and Fourier transforms of a Boolean
function, making explicit the Kronecker product nature of both of them.
This last consideration is important because it permits via "Fast

Fourier Transform' techniques (given in the introduction of Chapter 3)



the actual computation of these transforms. In the last section of
chapter 3 we introduce some new, more discriminating, affine invariants
which are useful when the obvious ones fail. Indeed, it is this class
of invariants which demonstrates the richness of our new family of

difference sets.

In chapter 4 we define a Pall partition for a quadratic form

over a field F to be a partition of the zeros of the form into
pairwise disjoint (except for 0) maximal isotropic (singular if char F=2)
subspaces. We prove that there exists a Pall partition for every

; : r "
nonsingular quadratic form over GF(2 ), except for those equivalent to

= -+ o
Wm Xlxm+1 XZXm+2 + o+ XmXZm

with m>1 odd. Further, if m>1 is odd, there does not exist a
Pall partition for Wm over any field whatsoever. This last result
generalizes a recent theorem of L. Couvillon [5]. We demonstrate in
chapter 6 the intimate connection between these forms over GF(2) and
difference sets.

Chapter 5 contains the main results of this paper. We define

a partial spread for a group G of order M2 to be a family of

pairwise disjoint (except for identity) subgroups of order M. We
prove that the elements (resp. nonidentity elements) in the union of a
partial spread of cardinality r constitute a difference set in G if
and only if G has order 4N%? and r = N+l (resp. N). These difference
sets are Hadamard with parameters (4N2, IN24N, N24N, N2) and

(4N2, 2N2-N, N2-N, N2) respectively.



that there are that many more which must be taken into account before
we can determine just how many inequivalent ones there are. We hope
that our present survey may arouse the interest of others in pursuing

the fascinating charms of elementary Hadamard difference sets.



CHAPTER II

DIFFERENCE SETS AND THEIR INCIDENCE MATRICES

1. Introduction.

In this chapter we present a brief but rather comprehensive
review of the fundamental notions concerning difference sets, the
emphasis being on those aspects which shall concern us in later chapters.
In particular, we include the basic results on Hadamard difference sets:
the theorem of P. Kesava Menon to the effect that a (v,k,\,n)-difference
set with v=4n must have the so-called "Hadamard parameters', and the
theorem of H. B. Mann to the effect that any (v,k,\,n)-difference set
with v a power of 2 must be Hadamard; i.e. must have v=4n. We
point out that Mann's proof also shows that there does not exist a
(vyky,A\)—configuration with v=2pr, p an odd prime. We incorporate
this result in our statement of Mann's theorem. We also include a
discussion of multipliers of difference sets and point out one of the
difficulties encountered in studying difference sets in elementary

abelian 2-groups.

The incidence matrix occupies a preeminent position in
section 2. 1In section 3 we present the (complex) group algebra which
is particularly well-suited to the study of difference sets. We
introduce, for abelian groups, the "Fourier transform" on the algebra
which leads immediately to the very useful characterization of

difference sets in terms of group characters.

We refer the reader to [2] and [10] for more details on difference
sets and to [15] for an excellent treatment of the (integral) group

ring and its relation to difference sets.

9
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25 Fundamental notions.

Let G be an arbitrary group of order v and let D be a

k-subset of G. Here we denote the group operation additively.

DEFINITION. D 1is a (v,k,),n)-difference set in G if for

every nonzero element g in G the equation

has exactly A solutions (di’dj) with di and dj in D.

The parameter n is defined to be k-A (for convenience).

Since each of the v-1 nonzero elements of G occurs A
times among the k(k-1) nonzero differences of elements of D, the
parameters of a difference set must satisfy the fundamental relation

given by

REMARK 2.2.1. A(v-1) = k(k-1)

Every group of order v>1 contains difference sets with the

parameters

|<
|>
=]

k

v 0 0 0
v v v O
v 1 0 1
v v-1v-2 1

These difference sets are regarded as trivial; their consideration

may be avoided by requiring that the parameter n be greater than one.
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DEFINITION. The incidence matrix associated with the subset D

is the v x v (0,1)-matrix [D] whose (g,h)th entry is 1 whenever

g-h 1is an element of D; i.e.

N

1 if g-heD

[D](g,h) = ‘ﬁ; .
Y,O otherwise

(here we assume some fixed order on the elements of G).

We then have the

REMARK 2.2.2. D is a (v,k,\,n)-difference set if and only if

the incidence matrix [D] satisfies

[D][D]” = nI + AJ,

where J is the v x v matrix with all entries 1.

PROOF. The (g,h)th entry of [D][D]” is the number of translates

D + £ containing both g and h. But for elements di and dj in D,
g=di+£ and h=dj+£ for some LeGé&% g-h = di—dj,
and the assertion follows immediately. qed.

We note here that Remark 2.2.2 shows that the translates
{Dtg : geG} of a difference set D constitute a (v,k,))-configuration;
i.e. an arrangement of v distinct objects into Vv blocks such that
each block contains k objects and each pair of distinct objects
appear together in A blocks (equivalently, each pair of distinct

blocks intersect in A objects) [10].

R WO QP 7 7 R T e B el e ———
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We may now establish quite easily the

REMARK 2.2.3. If D is

o

(v,k,A,n)-difference set in G,

I

then its complement D = G\D is

|

(v,v=k,v-2k+\,n)-difference set

in G.

Il

PROOF.  [D][D]” = (J-[D]) (J-[D1") = J?-[D]J-J[D] +[D][D]"

vJ - 2kJ + (I + AJ)

nl + (v - 2k + A) J. ged.

This result allows us to assume without loss of generality that k < v/2.

While the incidence matrix [D] of a subset D is a very useful
tool, it is sometimes more convenient to employ a matrix whose entries

are *].
DEFINITION. [D*¥] = J - 2[D].
This definition together with Remark 2.2.2 yields

REMARK 2.2.4 D is a (v,k,A,n)-difference set iff

[D#][D*] = 4nl + (v-4n)J.

DEFINITION. The v x v matrix H 1is called a Hadamard matrix
if its entries are *1 and it is orthogonal; i.e. HH” = vI.

We note here for future reference the obvious

REMARK 2.2.5.  The(#l)-matrix H is Hadamard iff HH™ 1is

scalar (i.e. of the form c¢I for some constant c).



Collecting our foregoing observations we arrive at the very

important

THEOREM 2.2.6. D 1is 2 (v,k,Ar,n)-difference set with

v=4n if any gglz_ggl[D*] is a Hadamard matrix.

In light of this last result we have the natural

DEFINITION. é;(v,k,k,n)iéiEEEEEEEE.EEE.EEEEV v=4n 1is

called EAHadamard difference set.

The Hadamard condition essentially determines the size of

such a difference set in any group; P. Kesava Mepon [19] was the

first to note the rather surprising

REMARK 2.2.7. A Hadamard difference set has parameters

of the form

2 2
(v, 0,m) = (482, 285N PN, N?) or (4NZ, 2NPHN, NPHN, N)

PROOF. The fundamental relations n = k-A and

kik-1) = A(v=-1), together with the Hadamard condition Vv = 4n,

imply

k(k-1) - A(-1) = k2-k- (k-n) (4n-1)

o
]

k?-4nk + n(4n-1)

I

(k—Zn)2 - 1.

Il

Hence, k = 2n @ , and the assertion follows.

ged.

13
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The corollary that a Hadamard difference set can exist only in

a group of square order is actually a special case of the more general

REMARK 2.2.8.  If there exists a (v,k,\,n)-difference set D

with v even, then n 1is a square.

PROOF. If D is a (v,k,A,n)-difference set, then
[D][D]” = nI + AJ,

from which it follows quite easily that

(det [D])2 = det ([D][D]?) = k2’ 1,

and the result is immediate. qed.

The same proof establishes this resu.t for an arbitrary (v,k,\)-configuration

or symmetric balanced incomplete block design; the general result was

obtained by Schutzenberger [23] and Bruck and Ryser [10] independently.
Another general result which provides a restriction on parameters

is the following remarkable theorem due to H. B. Mann [13].

THEOREM 2.2.9.  If there exists a nontrivial (v,k,\)-configuration

with v a power of 2, then (v,k,A) = (4511, 2.48-25, 45-25) or
(45%1, 2.45428, 45+25).
Glenn F. Stahly (private communication) has observed that Mann's proof

actually establishes the following more general

THEOREM 2.2.10. If there exists a nontrivial (v,k,A)-configuration

with k < v/2 and v of the form me, p prime, then

(v,kyA) (45T1 ) 2.45-28 45-28) for some s.



is even, n=k-) must be a square which we

PROOF. Since Vv

write as
n = pzsn%’ (nls P) = L.

k(k-1) may then be expressed as

]

The fundamental equation A (v-1)

(*) ZApm = k% - pzsn% .

m M,
Now n <k < v/2=> p?°|p = p?8|K? = pS|k; so we may write

It follows that ps divides Aj; we write
A =D Al
Equation (*) then becomes

2
1

1

2psklpm pzsk% - p2%n

or

(*%) 2)\1Pm—s = (kl_nl)(klml)'
N m-S odn, < 2k, < 2p° . Thus, if

ow kl_nl & kl <p and 1y 1 P s hus, 1 p does
not divide ky-ny we must have
_ _m-S
ko, = P
and k-0 = 2Xy >

from which it follo

kl—nl, then p mus

On the other hand, if p does divide

ws that p=2.

t divide (k1+n1)—(kl—n1) = 2n1 and since (p,n1)=l

15
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again we must have p=2. Thus, in any event, p=2 and n is odd.

1
Now from (**) and the inequalities following (**) we see that

2.ZIII—S

divides the product of (k;-n;) and (k,+n;), the larger of
which is smaller than 2'2mrs. Thus, each of these factors is even

and, since n; is odd, no power of 2 greater than 2 can divide

them both. It follows that

m-s
k1+n1 = 2
and kl—n1 = ZAl s
which imply
tn = 40g-0)2% = 202k -24)2° = 2272 = 2 = v qed.

We single out for future reference the

is a nontrivial difference set (with k < v/2)

COROLLARY. If D

in the group G of order Zm, then D is a Hadamard difference set with

parameters of the form

b e et = (AT, gea®a®, 450, 4Py,

In particular, m must be even.

If D is a particular difference set in the group G, it is
easy to obtain from D many other difference sets. Indeed, we have

the easily verified

REMARK 2.2.11. If D is a (v,k,x,n)-difference set in the

group G, then for all geG and all automorphisms o of G the sets
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D+g = {d+g : deD}

and

o

D" = {d : deD}

are also (v,k,A,n)-difference sets in G.

This remark motivates the following

DEFINITION. The difference sets D; and Dy in the group G

are said to be equivalent if there exists an automorphism o of G

such that

o
() D/ =D, +g

for some ¢ in G. In particular, if (%) holds with D2 =D = Dl

then the group automorphism o is said to be a multiplier of D.

A multiplier of the form

t ;
o :g>g , t an integer,

is called a numerical multiplier.

H. B. Mann and R. L. McFarland [14] have shown that every multiplier
of a difference set must fix at least one translate of that difference
set. Indeed, if P and Q denote the permutation matrices effecting
the action of the automorphism o on the points and blocks of the

associated design, then

P[p}Q”" = [D]
or

[p]™" P[D] = q .
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Thus, the matrices P and Q are similar and it is not very hard to
see that P and Q must be similar (i.e. conjugate) permutations.
It follows that the permutations induced on the points and blocks of
the design must have the same cycle structure. In particular, since
a group automorphism always has a fixed point (the identity), a
multiplier of a difference set must also fix at least one block (translate).
In fact, the number of translates fixed by a multiplier must be the

order of a subgroup of G and hence a divisor of v. We thus have

REMARK 2.2.12. A multiplier o of a difference set D in G

permutes the tramslates of D according to a permutation with the same

cycle structure as the permutation induced on the points of G by o.

In particular, the number of translates fixed by o divides the order

of G.

The multipliers of a difference set D in G constitute a subgroup

M(D) of the automorphism group of G. Equivalent difference sets have

isomorphic multiplier groups; indeed, if
o
D1 = D2 + g,

then M(Dl) = aM(Dz)a—l. To illustrate the equivalence of difference

sets we prove

REMARK 2.2.13.  Every (16,6,2,4)-difference set in G = Zi

is equivalent to

p = {0000, 1000, 0100, 0010, 0001, 1111}.
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PROOF. If D is a (16,6,2,4)-difference set in G = Z; we
may (by translating D if necessary) assume that D contains 0000.
Next, since every element of G appears as a difference of two elements
of D, D must contain a basis for G which we may (by applying an
automorphism, if necessary) assume is the unit basis 1000, 0100, 0010,
0001. The differences among these five elements already account for
the two representations of each element of G containing either one
or two 1's., Thus, the only choice for the sixth element of D is
1111, and it is clear that the resulting set D 1is indeed a difference

set with the asserted parameters. qed.

This (16,6,2,4)-difference set, the best known example of a
noncyclic difference set, was given by Bruck [4 ] in the first paper
to treat difference sets in general groups. McFarland [17] has observed
that the (16,6,2,4)-difference set in Z; has multiplier group of
order 720. McFarland also observes [15] that, if D 1is such a difference
set, there exists a group automorphism B such that D and DB
have different (although isomorphic) multiplier groups (this situation
cannot arise for cyclic groups since they have abelian automorphism
groups). A difference set D in G that is fixed under the multiplier
o must be the union of orbits in G determined by o (the orbit
containing the element g is the set {g, go, ga?, ...}). Thus, the
existence of multipliers facilitates the investigation of a difference
set. A very powerful theorem due to Marshall Hall, Jr. and several
generalizations [15] provide multipliers for difference sets in a

variety of groups; however, all multipliers given by these theorems

are numerical multipliers; there is no general theorem which provides
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nonnumerical multipliers for difference sets in groups which have
nonnumerical automorphisms. In particular, there is no general
"Multiplier Theorem" for difference sets in elementary abelian 2-groups

(such groups have no nontrivial numerical automorphisms).

3. The Group Algebra.

Let G be an arbitrary finite group which we denote multiplicatively.

The group algebra €[G] of G over the field of complex numbers C

is comprised of all formal sums
A = Z a g, a eC,

with addition being defined component-wise; i.e.,
a + b = a +b
and multiplication being defined by "convolution"; i.e.

Q agg>(2 b,8) = ¥

abgh=)1{ ) ab lg.
g g g,h & = s

g hk=g

Under these definitions C€[G] is an associative ring with unity which
is commutative precisely when the group G is abelian. Indeed
defining scalar multiplication by oA = z (o ag)g, we see that C[G]
is a C-algebra with basis consisting of the "sums"

c = z c

h, geG,
& heG

g,h

whose coefficients are all 0 except for the coefficient on g which

is 1. Clearly, the map g > Cg is an isomorphism of G into the
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multiplicative structure of C[G]; we therefore identify Cg with g
and consider G to be the basis for C[G]. In particular, for any
subset S of G we use the same notation, S, to denote the element

of C€[G] which is the sum of the elements of S. 1 denotes the
identity of G and the unity of C[CG]; for each aeC we denote simply
by o the element of C€[G] all of whose coefficients are 0 except
the coefficient on 1 which is «. For any element A = Z agg in

(t)

C[G] and any integer t, we denote by A the element given by

t

(E) _
) ag -

A

The group ring [G] is the subring of C[G] consisting of all elements

with rational integer coefficients.

The group ring 2Z[G] (and more generally C€[G]) is particularly
well suited to the study of difference sets. If G has order v and
D is a k-subset of G, then D is a (v,k,A,n)-difference set if each
nonidentity element g 1in G has exactly A representations of the
form didgl, with di and dj in D. But this is equivalent to saying

that, in the group ring Z[G],

<L) = o + ac.

This is a very useful characterization of difference sets and will be

used in later chapters.

Now suppose that G is abelian so that it is isomorphic to its
character group; i.e., the group of homomorphisms from G into the
multiplicative group of complex v*th roots of unity, where v* is

the exponent of G. It is easy to see that any character yx of G
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can be extended (linearly) to an algebra homomorphism on all of €[G];

i.e.
x () agg) =) 4 x(g) .

In particular, x maps Z[G] homomorphically onto the ring of integers
in the cyclotomic field Q(exp2mi/v*). Moreover, the orthogonality of

group characters permits a Fourier analysis in C€[G]. For any

in C€[G] we define its (unnormalized) Fourier transform A by
A=) Xy Wg-

Then the effect of the mapping

on €[G] is to transform it isomorphically into the algebra of
complex-valued functions on G with component addition and multiplication.

~

The coefficients of A are obtained from its transform A by

-1
v ag = g Xh(g A), for all geG.

Now let us reconsider the difference set D din G which satisfies

in Z[G] the equation
(*) DD "/ =n + AG.

For any character ¥ of G we have from (%)

o~

(¥%) lx@)|? = {

k? = n + Av if x is principal

n if x mnot principal.



Moreover (**) is equivalent to (*). Thus, we have

REMARK 2.3.1. Let D be a subset of the group

following are equivalent:

1) D is a difference set in G;

25 50" = e ig the eronp ring Z[C].

If G is abelian, 1) and 2) are equivalent to

3) |x(D)[2 = n for all nonprincipal characters

G.

X

Then the

23



CHAPTER III

BOOLEAN FUNCTIONS AND THEIR TRANSFORMS

1. 1Introduction.

Let F denote the finite field with two elements.

DEFINITION. A Boolean function is a function from some

finit : . 14 .
e dimensional F-linear space into F.

For concreteness we shall assume here that our functions have domain

the space F®  of binary m-tuples. We recognize however that the

fundamental notions developed in this chapter apply equally well to

any isomorphic space, and in the following chapters we shall find it

various direct sums of finite

convenient to consider domains which are

fields of characteristic 2. Formally, we may always choose a basis

for the space and thereby reduce the domain to the space of m-tuples;
the best procedure to follow

as a matter of fact, this 1s usually

when it becomes necessary to carry out computations of the type

discussed in this chapter.

Let F  denote the F-linear space of all functions from F
m

7@ are in 1-1

unctions Fm on

each function being associated

into F. It is clear that the f

m
correspondence with the subsets of F,

with that subset of which it is the characteristic oY indicator function.

extensive use of this correspondence.

In later chapters we shall make

We shall characterize difference sets in the elementary abelian 2-groups

istic functions and Fourier transforms

m .
F in terms of thelr character

veral representations of a given subset

thereof. Thus we shall have sS€

24
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of T as a function on Fm; namely, the truth-table of the characteristic
function (whose values may be interpreted as being real or as being in F),
the polynomial in m coordinatevariables which when evaluated on F“ is
equal to the characteristic function (mod 2), and the Fourier transform

of the real-valued characteristic function. It is most natural to

associate with a given subset its truth-table function. We shall call

the other functions the polynomial transform and the Fourier transform.

The next two sections contain a brief exposition of these important
transforms. We stress the Kronecker product nature of both of them. In
section 4 we consider the Boolean functions Fm under the (induced)
action of the general affine group acting on Fm. We develop here a
new class of "easily computed" affine invariants which we use later to

demonstrate the inequivalence of certain difference sets.

The results of this chapter are certainly not limited to the
study of difference sets. They apply equally well in the general analysis
of Boolean functions, switching theory and binary error-correcting codes.

The interested reader is referred to [12] for more details.

We have stated the importance of the polynomial and Fourier transforms
of a Boolean function. In analyzing such functions it becomes necessary
to compute these transforms. We shall see in the next two sections
that each of these transforms on Fm is given by a 2™ x 2™ matrix.
The work involved in effecting a transformation by such a matrix might
well be prohibitive were it not for one saving factor — each is the
m~fold Kronecker product of a 2 x 2 matrix. Thus, standard "Fast
Fourier Transform'" techniques apply and our transforms are seen to

be easily computed. At the heart of any such FFT algorithm lies a

factorization of a "complicated" matrix into a product of "simple" matrices.



26

Multiplication by the complicated matrix is then effected by multiplying
successively by the various simple factors. These ideas are so important

and of such wide applicability that we present here the general results.

Let F be an arbitrary field and let M be the set of all
matrices which have finitely many rows and columns and whose entries are
elements of F. Let zZ denote the ordered set {0, 1, 2, ..., n-1}

with the usual order, and let Z x Z X see X Z denote the Cartesian
n n n
1 2 N
product of the Zn 's, endowed with the lexicographic order. The
i
correspondence

%) tl(nzn3 s nN) + tz(ngnu —_— nN) + ... + tN~1(nN) + tN > (tl’tZ’ o

is an order isomorphism between the ordered sets Zn . nN and
1My oo

2. K Zn X ... X Z . The rows (resp. columns) of a matrix with
1 2

D)y ... D TOWS (resp. columns) may be indexed by either of these sets

and the correspondence (*) enables us to change from one indexing system

to the other. For any matrices A and B in M the Kronecker product

of A by B, denoted by A ® B, is given by

- =
aOOB aOlB eEke anB reks
alOB allB . aljB .
A ®B = 4 i .
a OB ilB & alJB e

More formally, if A (resp. B) has m, TOWS and n, columns (resp.

my rows and nB columns) then the Kronecker product A ® B is the

matrix with mAmB rows and nAmA columns such that
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A® B ((r,t), (s,u)) = A(r,s) B(t,u)

for all (r,t) € Zm X Z and (s,u) € Zn X Zn .
A "B A B

® 1is an associative binary operation on M, and if for each i,

l<4 £ N, Ai is an m, X D, matrix in M, then the Kronecker

product A; ® A, ® ... 8 AN is given by
_ N
Al ® A2 @ oo ® AN ((rl’rz’ o0 0y rN),(Sl’SZ’ LS ) SN)) - igl Ai(ri,si)

for all (rl,r « 55 rN) e 7 x Z X oo X 2 and

my m, ™y

In particular, if A is any

2,

(s_,s . X % waw o G
1’ 2, ooy SN) € an an

mxn matrix in M we may form the Kronecker product of A with itself

. . N : ;
N times and obtain the matriX @ A whose entries are given by

N - ., &

®A ((r;,T,s «==> r)s (8,285 wer» sip) = il ry984)
£ N d (8,8 S.)E ZN We sometim
or all (rl’rz’ as ey rN) € Zm an 1, 23 o0y N n- es

N
in place of Ay ® A, ® ... ® AN and iﬂ Ai in

N
use the notation © Ai sl

i=1
1
place of A1A2 gieTe AN.

The following properties of the Kronecker product are classical.

REMARK 3.1.1. 1) (A®B)" = A“® B”;
ii) AB ® CD = (A®C) (BOD) ;

1ii) (A@B)—l = A—l ® B—l, A, B nonsingular .

These properties are easily generalized to
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N
REMARK 3.1.2. 1) ( ® A" = 8 A

iii) @ A.)_1 =0 A:l, A.'s nonsingular.
i i i

Let I denote the nxn 1dent1ty matrix. Part ii) of Remark 3.1.2,

together with the obvious fact that ® I =1 , now yields
ny myny « .My

the well-known

FACTORIZATION THEOREM 3.1.3. For each i, 1 <1i <N,

let A, be an m, X D, matrix. Then
e A i s ERSST

N
= I A, ©1 sl .
A, ® Ay ® ... ® A= T, ( i, e By 1 m my )

COROLLARY. For any nXn matrix A
N N
g4 = 1 (L, 94 ® InN—i)'

While this last result is a Very offective factorization of a Kronecker

Nth power, it is a remarkable fact that such a matrix is also a matrix

th
N~ power.

FACTORIZATION THEOREM 3.1.4. For any DXn matrix A

-y

~ 18 A(0,*)

0 A(l:')
® A =

L_ I @ A(n—l’.)«

U Ll T identity matrix and A(i,") demotes
where the

Ehg_ith row of A.
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This result was first given by I. J. Good; it follows directly from the
previous corollary on observing that the N factors given there form
a cycle under a similarity transformation by a permutation matrix of

order N.

The final result we present here enables us to effect a
transformation of a high dimensional space by means of several transformations

of lower dimensional spaces.

BOX THEOREM 3.1.5. Let A and B be square matrices in M

of dimensions m, X m, and m, X Mg, respectively. Let 0 denote the

operator which transforms the m,m, x 1 matrix (column vector) C into

the m, X my matrix CD defined by

CD(i,j) = Climgj) 0<i<m, 0<j<m

A’ B’
Then

[aes)c]d = acls-.

This result is equivalent to the equation

A®B = (A®T_ )(I_ 8B),
By T

a special case of Factorization Theorem 3.1.3. It will be used
extensively in chapter 6, where it makes transparent certain

constructions of difference sets in noncyclic groups.



2. Polynomial transform.

Just as the functions in Fm may be regarded as subsets of F",
so, too, the vectors in Fm may be regarded as subsets of the m-set
{1, 2, 35 uuey m}s each vector % = (Vis Vs coes vm) corresponds to
the set of indices which index those coordinates of v containing its

1's (i.e. the set {i : vi=l}). This identification then induces

on F" the following natural (partial) order which we call the inclusion

order.
DEFINITION. For any vectors Vv = (V;, Vy, -+ Vm) and
u = (up, up, veos w) din F' we say that v is contained in u

(and write vcu) if v, <u; for all i, 1<1ic<m

We may now prove a rather pretty inversion theorem which is a

special case of "Mobius inversion in a partially ordered set' [10].

THEOREM 3.2.1. Let f and g be functions from F' to F

and let F" be partially ordered by the inclusion order ¢ . Then the

following are equivalent:

(I) £(v) = ) g, for all veF",
ucv
(I1) g(v) = ) f£(u), for all veF .

ucv

30
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PROOF. Applying (I) to the right side of (II) we obtain

} fw = } Y s = )] g = ] 317 ) = gl

ucv ucv wCu woucv WEV

the final equality a consequence of F having characteristic 2.
Thus, (I) implies (II) and interchanging f and g shows that (II)

implies (I). qed.

We now establish the important

THEOREM 3.2.2.

a) To each function f : F' > F there corresponds a unique

m

function g : F - F such that f is given by the polynomial

v, V 2 Vm
X)) = z = g(V)XV = X N g (v) X11X2 cee X3
veF veF

b) The function g is given by

gly) = Z f(u), for all veFm;
ucv

c) With the functions f and g of part a) associate the

vectors
Ee B0 Bls @), ey EF-1307
and g = (g(0), g(1), g(2), ..., g2"-1))~
where the integers 0, 1, 2, ..., 2™-1 are used as a

convenient means to denote their binary representations.

Then f= Umg and g = Umf

Co
where U = dn 110 .
L m Ll 1
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PROOF. If £ dis any function from i into F it is clear

(by Lagrange interpolation) that f is given by the polynomial

m

Y f(w) m (X, + v, + 1)
m i=1 ¢ 18 1
veF

which can then be put into the form

v

) g(v) X
veFm :

v
1, B m
By s

: m
It is then easy to see that for all veF we have
f(v) = ) glu).
ucv
But then our inversion theorem 3.2.1 gives b) and at the same time
"uniqueness" in a). New let U~ be the matrix effecting the linear

transformation from f to g; i.e.
m »
(0D E(L)s «ses BE@ LY = U (F@)s Q)5 «osy T2 -1I)".

Then Um is clearly the incidence matrix of the partial order relation

m . " . m
C on F; i.e. U is indexed by the vectors in F  and
m

- 1 d8fF wey

]

Um(v,u)

e s
/

. 0 otherwise

Now clearly U, = {i ij ; and by the definition of C

U (v,u) = 1& uev

u, <v, forall i, 1 <i <mnm
Al 7 i — i [— s

2 I U ) 1
N | ey ) .
iy "1ty



33

m
Thus Um(v,u) = ill Ul(vi,ui)

and it follows that Um is the Kronecker product ®1n Ul' qed.

The vectors f and g of part c) may be called the "truth-table'" and
"polynomial" representations of the function £. Since the matrix U
effecting this transform is an involution, the same algorithm may be

used to obtain the polynomial from the truth-table as is used to obtain
the truth-table from the polynomial. The factorization theorems 3.1.3 & 4

yield algorithms which permit rapid computation of this transform.

Thus each function £ in Fm is given by a polynomial
£(X) = £(X, X,, ..., X ). We shall usually identify the function £

with the polynomial £(X).

DEFINITION. The degree of a nonzero function f is the

degree of its associated polynomial £(X). We say that the zero

function has degree -1.

DEFINITION. The functions f£(X) and g(X) on F'  are called

linearly (resp. affinely) equivalent if there exists a nonsingular

linear (resp. affine) transformation T of the variables X, Xps ooes Xm

such that

g(X) = (X5 Xps +ovs X)) = £(XT, X,T, ... X T) = £(XT).

We note for future reference the well-known

REMARK 3.2.3. Affinely equivalent functions have the same

cardinality and the same degree.




B Fourier -Hadamard transform.

DEFINITION. With each function f : Fm + F we associate the

real-valued function

£5 1 FU oo {£1}

defined by f*(X) = (—l)f(x). Thus f* is equal to the composition

of f with the unique isomorphism between the additive group F and

the multiplicative group of (complex) square-roots of unity.

REMARK 2.3.1. For each veFm, let v'x denote the linear

VeX

function I viXi' The real functions (-1) , veFm, are precisel

m
the group characters of F .

It is familiar that the orthogonality of group characters permits a
Fourier theory for abelian groups. In the present setting we have the

important

THEOREM 3.3.1. Let C denote the field of complex numbers.

a) To each function h : F' > C there corresponds

a unique function h s Fm -+ C such that

) =} h@EnTE .
veFm

b) The function h : F' - C is given by

Mhx) =} hw) DY

veFl

c) With the functions h and h of part a) associate the

"truth-tables"

h = (1(0), h(l), ..., h(2™1))~

(h(0), h@), ..., h2™1))" .

and ﬁ

34
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Then we have

h==8h and 2"h = H h,
m e m

where H is the mth elementary Hadamard matrix given by

H=[11]andH=®H
-] m

PROOF. Let Mm be the Zm X 2m matrix whose rows and columns

are indexed by the lexicographically ordered vectors in F" and whose

s o

. [
(u,v)th entry is (—]_)u V. Then M, = }1 1

1 -1
Lo

M fye) = T = T = 7 DY e TR o )
5 i=1 i=p + 11

H1 and, for all u, vaFm,

]

Thus, Mm = H the mth elementary Hadamard matrix. The relations between
the functions h and h in a) and b) can then be expressed in terms of

Hm and the truth-tables of h and ﬁ as:

o

=}
o
o
v
~
=

1]
i
j=p

— 1 :
But H ! = — Hm so that a” and b~ are obviously equivalent. qed.
2

The transform h - h is formally known as the "discrete m-dimensional

Fourier Transform mod 2"; because of its relationship to the Hadamard
matrix (part c)) it is now usually called simply the Hadamard Transform
or the Fourier-Hadamard Transform. The name "Walsh Transform" is also

quite popular in engineering circles.
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If the function h is of the form f* for some Boolean function
f, we write f in place of f* and call f the Fourier transform of

f (as well as f*). We now note the important

REMARK 3.3.2. If h(X) = g(XT+a) for some vector a in P

and some nonsingular F-linear transformation T of the variables

Xl’ XZ’ et Xm’ then

h® = 1Dy,

where L” = T !, In particular, linearly (resp. affinely) equivalent

Boolean functions have the same (resp. same in absolute value) Fourier

sgectrum.

PROOF. If h(X) = g(XT+a), then

h(x) = Y h@ELDT* =] gvrda) (-1DVF
v v
- § gl T T )
v

-1 -1
eds B 1B oy O 1R
v

and the assertion is obtained by observing that for any vector u

(uT—l)'X = uT !X” = (uT_IX')‘=X(T—1)’u’ = (X(T_l)’)'u. qed.

DEFINITION. With each function h : F© > C we associate the

2™ x 2™ matrix [h] whose (u,v)th entry is h(utv).
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i ~ ~ 2
THEOREM 3.3.3.  H_[h]H * = 2" diag (h(0), H(1), ..., A(2™1)).

PROOF. The (u,v)th entry of the matrix on the left is

1

1 1
oM >

Z Hm(u,S)h(S+t)Hm(t9V) . oM

=

; h (w) g Hm(u,s)Hm(s+w,v)

iﬁ g h(W)Hm(W,V) Z Hm(u,s)Hm(v,s)

.

{:Zmﬁ(v) if u=v

0 otherwise ged.

COROLLARY. Let fﬁ] denote the complex conjugate of [h].

Hm[h]fﬁ]H;l = 4™ diag (a2, |hw 2, ..., |h2™1)]2).

Our next result has been called by Lechner [12] the "Poisson

Summation Theorem'.

THEOREM 3.3.4. Let h be an arbitrary complex-valued function

m A : .
on F  and let h be its Fourier-transform. Let S be an arbitrary

subspace of F' and let S* be the dual of S (i.e.

St = {veF" : v.s=0 for all seS}. Then

I nee) =295 ¥ fw)

seS teSt
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PROOF. J h(s) = )} {J AELY = § a@ 1) 1V

se$S seS veFm veFm seS

dim S Z

veSt

2 h(v) . qed.

COROLLARY. For any Boolean function f : o F,

Y ofk(u) = 21Vl DG

ucv ucv

The final result of this section is a special case of the Box

Theorem of Chapter 1.

THEOREM 3.3.5. Let h be any complex-valued function on F.

Then for all integers a, 0 < a < m,

40 -y wlw ,
a m—a

where hU (resp. ) is the 22 x 2™? patrix whose rows and columns

; " a m-a
are indexed by the lexicographically ordered vectors in F and F

and whose (u,v)th entry is h(u,v) (resp. ﬁ(u,v)).

4, Affine invariants for Boolean functions.

Let F denote the finite field GF(2) and let Vm denote the
m—-dimensional F-linear space of m-tuples over F. Let Fm denote the
F-algebra of functions from V  to F. Each such function has a
unique representation as a reduced (i.e. no variable appears to a power
greater than one) polynomial f£(X) = £(X;, X,, ..., Xm) in the m

coordinate variables, and we find it convenient to identify the function
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Let Am denote the group of all nonsingular

f with its polynomial £(X).

affi 4 .
ne transformations A of V.- Am induces on Fm a group (also

denoted by Am) of trapnsformations given by

A : £(X) > £(XA) for all feFm .

The orbits of Fm under the action of Am then define an equivalence

relation on Fm; we say that two functions £ and 8 in Fm are

affinely equivalent if they lie in the same Am—orbit; i.e. if there

exists a nonsingular affine transformation A of Vg such that
he study of Boolean functions

g(X) = £(xa). A fundamental problem in t

§ and g in F

en functions 0

is that of determining whether tWO giv

are equivalent or inequivalent.

into some fixed but arbitrary set

Let P be a mapping of Fm
S. We shall call P an affine invariant if p 1is constant on the

equivalence classes of F . The affine ipvariant P is called complete
m
if it takes different values On different equivalence classes. We apply

1" to an affine ipvariant that ig "easily"

the fuzzy adjective 'usefu
computed; for example, the complete affine invariant which maps a
nitely not & useful one.

function to its equivalence class is defi

There are several well-known affine invariants for the Boolean

functions F . Since 2 nonsingular affine transformatiOn of variables
m

Preserves both the degree and the number of zeros of 2 Boolean function,

the maps

degree of £

i

£ > 8(f)

-1
cardinality of £ [1]

!

and £+ C(£)



40

are both useful affine invariants which map Fm into Z. A less
obvious but now classical and extremely useful affine invariant is the
"power spectrum" of a function f; i.e. the multi-set {]f(v)l : veVm},
where f denotes the Fourier-Hadamard transform of f. Thus, the
power spectrum is the absolute values of the Fourier spectrum. For
many purposes these three affine invariants — cardinality, degree,
and power spectrum — are sufficient to determine the inequivalence of
two inequivalent functions. However, in the study of bent functions,
which (as we shall see in the next chapter) are the characteristic
functions of difference sets, these invariants are almost worthless.
For all bent functions have exactly the same (constant) power spectrum.
Furthermore, there are only two cardinalities possible for bent functions

2m=1

m._l
on V :
n - namely 2 2

and we usually restrict our attention

(by considering complements if necessary) to those having the smaller
cardinality. Thus, if we wish to check two bent functions £ and g

for inequivalence, all we have left at our disposal is the degree criterion.
If the functions in question happen to have the same degree we are lost.

We need a more discriminating test function. We now proceed to fill

that need.

Let f be an arbitrary function in Fm' For any subspace S

of Vm we define the derivative of f with respect to S, denoted fS’

by

gk = ) E(Xts) .
seS
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We say that fS is an e-dimensional derivative if the subspace S has

dimension e. If the l-dimensional subspace S contains the nonzero

vector s, than we denote the derivative by fS and call this derivative
fS(X) = £f(X) + £(X+s)

3imply the directional derivative of f in the direction s.

We now make a simple observation which has far-reaching

consequences.

THEOREM 3.4.1.  For any function f din F = let D, (£)

denote the multi-set of all e-dimensional derivatives of f. If

f and g in Fm are affinely equivalent, then Oe(f) and De(g)

are affinely equivalent. Indeed, if the nonsingular affine transformation

A (operating on Fm) maps f onto g then it also maps De(f) onto

De(g)-

PROOF. Suppose that g(X) = f(XA) = f(XLt+a)
where L is a nonsingular linear transformation of Ln and a 1s some
fixed vector in Vm. Let S be an arbitrary e-dimensional subspace

of V . Then
m

g (X) = Y g(xt+s) = )} f(XL + sL + a) = £ (XA).

SL
seS seS

Since the map S = SL is a permutation of the family of all e-dimensional

subspace S of Vm’ the result follows. ged.
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COROLLARY. If P is any affine invariant for Fm, then

£ +~P{De(f)}

is also an affine invariant for Fm.

A consequence worth stating explicitly is the

THEOREM 3.4.2.  For any function f in Fm let De(f) denote

the multi-set of all e-dimensional derivatives of f. Suppose that

f and g in Fm are affinely equivalent. Then it must be true that

1) D (6)} =ciD (&)} ;

2) G{De(f)} G{De(g)} :
3) ps{D (£)} = Ps{D (&)} ,

where C, &, and PS denote the "cardinality", 'degree', and ""power

spectrum” affine invariants, respectively.

We note that 6(f) and PS(f) are trivially obtained from the
polynomial representation of f and the Fourier transform of f,
respectively; and both the polynomial and Fourier transforms are easily
computed from the truth-table of f via familiar fast transform
algorithms. Furthermore, the directional derivatives of a function
f are also easily computed (via "fast" algorithms) from the truth-table
of f; and the invariant C{Dl(f)} may be obtained directly from the

Fourier transform of f wvia the convolution theorem.
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is comprised of just f itself and

When e=0 the set De(f)

our invariants given by Theorem 3.4.2 are simply the classical invariants
C, 6§, and PS. Our invariants with e>0 will prove to be extremely

useful in the sequel.
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CHAPTER IV

PALL PARTITIONS FOR QUADRATIC FORMS

1. Introduction.

Gordon Pall [21] has introduced the fruitful notion of partitioning
the zeros of a nonsingular quadratic Zorm over a field F into pairwise
disjoint (except for 0) maximal isotropic subspaces. These subspaces
are all of the same dimension, called the index of the form [1]. We
shall call such a partition P a Pall partition of the associated quadric;
we also say that P is a Pall partition for the quadratic form. Pall

exhibited such partitions for the forms

= . ~ 9 = 2 . F 2
Tn izl Xan+i (equivalent to izl (X5 Xn+i) if char # 2)

over formally real fields for n = 1, 2, 4, 8 and for the form

2 2 2 v2
Xl gk X2 & X3 = Ku

over any finite field GF(p), p an odd prime. Pall's student L. Couvillon
[ 5] showed that a Pall partition exists for Wz over any field, while
if n is odd and greater than 1 then there does not exist a Pall
partition for ?n over any field which is formally real or finite of

odd characteristic. Couvillon also erhibited a Pall partition for the
form

XX +#XX =+ X
1 2 3 4

2
-
]

over GF(2).

L

T e el
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In this chapter we settle completely the question of the existence
of a Pall partition for any nonsingular quadratic form over a finite
field of characteristic 2. If F = GF(q), q a power of 2, then a
classical result of Dickson [ 8] guarantees that any nonsingular m-ary
quadratic form Q(X) = QX Xys wees Xm) over F is equivalent (under
some nonsingular F-linear transformation of variables) to one of the

canonical forms

" = XX + % + ...+ X
& wn Xl n+1 2Xn+2 nXZn
I1. o =y + aX2 + X X+ ax?

n n—1 n n 2n 2n

if m = 2n, or

Yy 3

L Ph n 2n+1

if m= 2n + 1.
For forms of Type II o may be chosen to be any nonzero element of F
which makes the polynomial az?+z+a irreducible over F (equivalently,
o has trace 1 with respect to the extension F over GF(2)). The forms
of Types I, II, and III have index n, n-1, and n respectively [ 91, and
the associated quadrics have cardinalities 1 + (qn_1+l)(qn-l),
1 & (qn+l)(qn_l—l), and q2n=l + (qn+1)(qn—l), respectively. Thus
the cardinality of a nonsingular quadric over F determines its canonical

form.

It turns out that Couvillon's result on the nonexistence of a
Pall partition for the forms Wn with n>l odd remains true over the
fields GF(ZN) (in fact, it's true over any field!). 1In every other case,

however, a Pall partition does exist. We can therefore state the
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THEOREM 4.1.1. There exists a Pall partition for every nonsingular

quadratic form over GF(ZN), except those equivalent to

= -+ + e
Wn X1Xn+1 X2Xn+2 o XnXZn

with n>1 odd in which case no such partition exists.

In the next two sections we exhibit Pall partitions for forms of

Types II and III. The most interesting case, Type I, is treated in
sections 4 and 5. In section 4 we exhibit a Pall partition for those
forms of Type I with n even. In the special case of F = GF(2) our
construction is very closely related to a recent result of A. M. Kerdock
in the theory of error-correcting codes [11]. Our results also show
that the quadric associated with ¥ on F20, F = GF(2), belongs to

the family of "partial spread" difference sets which are discussed in
the next chapter. Furthermore, our construction for difference sets
comprising our FAMILY H of the last chapter was in fact suggested by

our Pall partition of the forms of Type II.

In the last section we generalize the result of Couvillon by
showing in an extremely simple manner that for n>1 odd there does

not exist a Pall partition for the form Wn over any field whatsoever.

Caveat lector: Given a quadratic form Q on an F-linear space

V, we say that a subspace WcV is isotropic if Q(W) = {0}. This
definition is equivalent to the usual one [1] if char F # 2. Dieudonné

[9] uses the term "singular'.
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2is A Pall partition for forms of Type II.

The nonsingular quadratic forms of Type II over F = GF(q),

N . .
q = 2, are equivalent to the canoncial form

? =X X + + ... F + o0X2 + X X+ ax?
n 1"+l X2Xn+2 Xn—1X2n—1 0LXn n 2n on

where o 1is any nonzero element of F which makes the polynomial
0z2+z+o  irreducible over F (equivalently, o has trace 1 with respect
to the extension F over GF(2)). This form has index n-1 and the
associated quadric has cardinality 1 + (qn+l)(qn-1—l). Thus, any
Pall partition of the quadric must be comprised of qn+l pairwise

"disjoint" F-linear subspaces of dimension n-1.

Now let L = GF(qn) be the degree n extension of F and
2
let K = GF(q ™) be the quadratic extension of L. Let Q: K-> L

be the map given by

s (x3H
Q(X) = rL/F )

where TrL/F{-} denotes the trace with respect to the extension L/F; i.e.

Then Q is a quadratic map on the 2n-dimensional F-linear space K and

-1
Q has 1+ (qn+l)(qn -1) =zeros on K.
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NOTE. Formally, for any basis Bl’ Bz’ Srfer an for K over F,
the map Q is given by the polynomial
n n
g%l = q
Q(X) = Q(ZX;B.) = TrL/F{(ZXiBi) } z(TrL/F{Bi Bj})xix_j
which is a quadratic form in the coordinate variables Xl’ Xz’ = i X2n'
Alternatively, we may simply observe that Q satisfies the quadratic
criteria [1 ]:
1) Q(ox) = a?Q(X), o€ 3
2) QX+Y) - Q(X) - Q(Y) bilinear on K %K s
Thus, Q is equivalent tO 0, and it suffices to exhibit a Pall partition
to do.

for Q. But this is very easy

If S denotes the kernel of the trace Try,p ©F L, then S is

invariant under the map

z 2%
qQ vanishes O each of the (n-1)-dimensional

and it is clear that
n th
o is any (4 +1) root of

F-linear subspaces 85 of K where

unity in K; i.e. for any SeS

Ty o 2} = (Tr ,isD*= 0.
Q(6s) = TrL/F{(GS)q } = Ty pls y = (T pts)

ant (except for 0) since their nonzero

These qn+l subspaces are disjoi

qn+1 distinct multiplicative cosets of

elements are subsets of the
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L*¥ = IN{0} in k* = ®K\{0}. Tt follows that for any primitive (qn+l)th

root of unity 6 the spaces

t ; g
P={68S:0<t i_qn} constitute a Pall partition for Q.

3. A Pall partition for form of Type III.

The nonsingular quadratic forms of Type III over F = GF(q),

N i
q = 27, are equivalent to the canonical form

2= 2
= + + saa T XX + X
pn X1Xn+1 XZXn+2 n 2n 2n+1

which has index n and whose associated quadric has cardinality
2n n n o
q =1+ (q+1)(q -1). Thus, any Pall partition for such a form

must be comprised of qn+l pairwise "disjoint" F-linear subspaces of

dimension n.

Now the quadratic map
B 2
Q(X,Y,2) TrL/F{XY} + Z

n
on the (2n+l)-dimensional F-linear space V=L® L ® F, L = GF(q ),

clearly has q2n zeros. Furthermore, the linear map

Q(X+a, Y+b, Z+tc) - Q(X,Y,Z) - Q(a,b,c) F{bX+aY}

TrL/

vanishes identically on V precisely when a = 0 = b, so that Q has
defect 1 and is therefore nonsingular. Thus, the forms of Type ILIL are

equivalent to Q and it suffices to exhibit a Pall partition of its



zeros. The family P consisting of the subspaces

and

Y

Il

a?x; 7 = TrL F{aX}, ael,

/

is easily seen to have all the necessary properties.

4. A Pall partition for forms of Type I, n even.

The nonsingular quadratic forms of Type I over F = GF(q),

N
g = 2, are equivalent to the canonical form

= + s FX X
Wn X1Xn+1 4 XZXn+2 n 2n

which has index n and whose associated quadric has cardinality

1 + (qn_l+1)(qn—l). Thus, any Pall partition of the quadric must

be comprised of qn—1+l pairwise "disjoint" F-linear subspaces of
dimension n. We shall show in the next section that such a partition
cannot exist if n>l is odd. Thus, we shall assume here that n is

even.

The quadratic map Q given by
Q(X,x,Y,y) = TrM/F{XY} + xy
s n-1
on the 2n-dimensional F-linear space M ® F® M ® F, M = GF(q "),

has 1 + (qn_1+l)(qn—l) zeros, so that ¥ = 1s equivalent to Q

and it suffices to exhibit a Pall partition for the zeros of Q.

50
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THEOREM 4.4.1.  For each %€M, let L be the endomorphism of

V=MOTF given hz

Lu(X’X) = (02X + ot{aX} + ox, t{aX}),

mn

where T TrM/F’ the trace with

respect to the extension M/F, and let
p Lo the extension and let

Sa be the subspace of Vev BiXEE_EX
SOL 5 {(X’X:Y9y) : (Y,Y) = LOL(X,X)}-
n—-1
Then the q  "+1 subspaces
Soo = {(X’X’Y’Y) X =0 = X}; S(x s OeM

constitute a Pall partition for the quadratic form

Q(X’X’Y9Y) = t{XY} + Xy on Vev.

PROOF. It is clear that Q wvanishes on each of these subspaces
and that they all have dimension n. Thus we need only show that they
are pairwise "disjoint". The subspace S, 1is certainly disjoint from
each of the subspaces Sa’ aeM, so it suffices to show that the subspaces

. . . . . "
S are pairwise "disjoint".
)

To this end we suppose that the point (X,x,Y,y) lies in both

s, and SB’ o # B; i.e.

(02X + at{aX} + ax, t{aX}) = (g2x + Bt{BX} + Bx, t{pX}).



52

Then equating second coordinates yields
t{oX} = t{BX},
while equating first coordinates yields
(a+B) ((a+B)X + t{aX} + x) = 0
or (since o # B)
(*) (o+B)X = t{aX} + x.

Since the right side of (*) is an element of F, so must be the left side.

Furthermore, since n-1, the degree of M over F, is odd we may write
(a+B8)X = t{(a+B)X} = O.

Thus, X = 0 which implies by (*) that x = 0. Hence, Sa and SB do

indeed intersect only in the zero vector and our proof is complete. qed.

5. A nonexistence theorem.

Consider the quadratic form

Y = + X X + e >
“ Xlxn+1 2 nto XnXZn’ n>1 odd,

over an arbitrary field F. Again the index is n so that a Pall partition
certainly must contain at least three subspaces (the maximal isotropic
subspaces X, =X = ... =X =0 and X =X = .,..=X =20

1 n n+

2 it n+2 2n

do not account for all the zeros of Wn). The nonexistence of a Pall
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partition will follow from the following generalization of Couvillon's

theorem.

THEOREM 4.5.1. For odd n there does not exist a family of

three pairwise "disjoint" n-dimensional subspaces of per on which

Wn vanishes.

PROOF. Consider the equivalent form

QX,Y) = X%, + XY, + ... + XY

n " _— e
on F" ®F", and suppose that Q vanishes on the pairwise "disjoint"

subspaces A, B, and C. By Witt's Theorem [9 ] we may assume that A is
the subspace X = 0. Since B and C are disjoint from A, they must

be given by
9} 113
B = {(X,XLB) : XeF }; C= {(X,XLC) s XeF 1,

where LB and LC are n xn matrices over F. Since B and C are

disjoint, LC - LB is nonsingular. But B and C isotropic implies

that the forms

XLBX and XLCX

vanish identically on Fn, so that LB and LC are skew-symmetric

(with O diagonal). Thus, LC = LB is a nonsingular skew-symmetric

matrix of order n. It follows that n must be even. ged.
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COROLLARY. There does not exist a Pall partition for any

nonsingular quadratic form over GF(ZN) which iﬁugi Type I with n>1

odd.

This corollary, together with the results of sections 2, 3, and

4, completes the proof of our theorem stated in the introduction.



CHAPTER V

PARTTAL SPREADS AND HADAMARD DIFFERENCE SETS

1. Introduction.

It seems quite reasonable to try to construct a difference
Set in a group by fitting together some large pieces which behave
well, individually and in pairs. An obvious choice is to pick
Pieces which are subgroups. To insure that they behave well in
pairs we might require that any two of these subgroups generate
the whole group. But surely mustn't such a naive approach come
to nought? Surprisingly, the answer is, '"No!'. This simple

idea leads to a very rich family of Hadamard difference sets.

In section 2 we formalize our ideas sketched above and
determine the conditions necessary for the existence of such a
difference set. 1In section 3 we find all abelian groups which
meet the conditions — but for some small exceptions these are
precisely the elementary abelian 2-groups. In section 4 we show
that the elementary 2-groups contain an enormous number of these
difference sets and we exhibit several classes of them. These

new difference sets are examined more closely in the next chapter.
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erence sets.

2.  Partial spreads and Hadamard diff

¢ is a group of square order Vv

We now suppose that = M?.
In this section we use multiplicatiVe notation for the group operation

and we do not assume that G is abelian. We define a partial spread

amily of pairwise disjoint (except for 1) subgroups

1led the components of the part

(so that every

for G tobeaft
ial

of order M. These subgroups are ¢a
ning M+ 1 components

spread. A partial spread contai

n exactly one component) 1s called simply

element g # 1 of G isi

logy is consistent with that used in the theory

a spread. This termino
e the group G is an even—dimensional

of finite translation planes [20] wher

Vector space over a finite field.

Now let

H:Hl, Hz, "',HN

G, and for i, 1 < i <N, let Hg denote the

be a partial spread for
Then, employing the no

tation of
set of nonidentity elements of Hi-

the group ring Z[G], we have the easy

REMARK 5.2.1. For all 1,J» 1< 1, j <N,

1+ (M=2)H; if 1=]

H'k H* = { . e
i ] - - g, if i
L] 1+ G- Hy HJ )

s in the union of the partial

Let D be the set of ponidentity element

spread H; i.e.
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Then, using Remark 5.2.1, we obtain

pCDp = p2 = (] B¥}?

2
%~ + ) H¥ HY
g L gk T

J {1+(e2)H S y {1+c-H;-H}
i i3

1

N+(M-2) B, T N(N-1) (14G) - 2 (N-1) B,

N2 + N(N-1)G + (M-2N) JH, -

]

precisely when M=2N, in

Thus, D is a (nontrivial) difference set

which case D has parameters

k(k—l)_ 2 = 2
v=M2=4N?, k=N (M-1)=2N*-N, A= =o=NA-N, n N2.

tructed in this way are Hadamard.

Consequently, all difference sets cons

Suppose that the partial spread fl can be oxtended to a partial

tion of apother component HN+1' Let E be

spread H” by the adjunc

. oy ]
the union of all components in H"; 1.e-

E=D+Hy

Then for all i, 1 < i < N> W€ have

= 1,
HE = 67 e AN+ d

@+ HN+1)2

=
~
1
—
~
=
|
=
N
Il

2
D2 + DHyy, * Hep D T N

1l
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2
p? + g {H Hgp * By HE} + Mg,

2
D% + 2; {c - HN+1} + ME

D2 + 2NG + (M - 2N) Hgy,

Il

N+1

N2 + NQWL)G + (1 - 2N) J H -
i=1

Thus .
a ’ ;
, again, we see that E is a difference set precisely when

M= . 2
2N; this set has parameters

=2_. —
v=M2=4N?, k=N (1) =2 A=Eé§ill=N2+N, n=N%.

Wes .
ummarize the above results in the

THEOREM 5.2.2. Let Hi» Hy, »2°2 H gg_g,partial spread

for G. Then
D = (LJHi)\{l} (resp. D = L)Hi)

£ G has order 4N? and r=N

if

ifference sets are Hadamard with Qarameters

(resp. r = N+1). These d
oNZ4+N, NZHN, N2), respectively.

—_

2
(4N2, 2N2-N, N?-N, N2) and (4N?,

ce sets are fixed by the "inverse"

We
note here that these differen

is map may not be an aqutomorphism.

ma .

Pping on G even though th
C ;
Onsequently, the (t1)-incidence matrix [D*]s defined by

~f LE xy_leD
[D*] (x’y) =
Ly otherwise 5

matrix with constant diagonal.

is
a regular, symmetric Hadamard
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em 5.2.2 partial spread

We call the difference sets of Theor

y 2N>-N (resp- 2N%4N) are said
()

difference sets; those of cardinalit

'Ps(—) (resp. PS(+))- Clearly’ any PS set contains

-)
PS sets, obtained by deleting 2a component. However, not every

-
PS ) set can be extended to oneé of type PS(+). Also, while the

difference sets of types PS(‘) and PS(+) have complementary

parameters (i.e. each type has the parameters of the complement of
the +) i i the compl
other type), not every PS set is equivalent to e complement

of a PS(_) set. Examples given in the next section attest these

assertions.

ence sets.

3. Groups having partial s read differ
which have partial

We now proceed toO determine a1l abelian groups

spread difference sets. FOT the remainder of this chapter we use€
additive notation for all groups. We assume G 18 abelian of order
4N2; we seek those groups G which have a partial gpread of cardinality
N or N+l. Equivalently, W€ seek those groups of order 4N%2  which
have either N or N+l pairwise ngisjoint" subgroups of order 2N.

When N=1 the group G, of order 4, must be either the cyclic
group, denoted Z,, OF the Klein 4-group which we (following Turyn [24])
denote be k,. K, has three (pairwise disjoint) subgroups of order 2,

er 2. Thus, Ky,

has a unique subgroup of ord

contains difference

while 7

N
has a unique PS ¥,

(=) and ps()  yhile Zy

sets of both types FPS
are singletons or complements

difference set. Of courseé, all of these sets

of singletons, and are therefore trivial.



In the case N=2 G has order 4N%=16. If G has two disjoint

subgroups of order 4, say H; and H,, then

where each of H1 and H2 may be either Zq or Ku.

K, ® K,, K,  Z,, and 2, @ Z

n 4 n

all have difference sets of type PS(~). If G contains a third
subgroup H, disjoint from both H, and H,, then clearly

G=Hl€9 H2=H1€9 H3=H2€B Hy

and it follows that Hy, Hy, and Hy are all isomorphic. Thus, we

may write

G=Ha&H

where H is either K, or Z,; and, in either case,

L
H; = {(0,h):hel}, H, = {(h,0):hell}, Hy = {(h,h) :heH}

is a partial spread of cardinality 3 = N+l. Thus, for N=2
K, ®K,, z, ®2,, and K, & 7, all have PS(_) difference sets, while

only the first two of these groups have a PS(+) difference set.

In the case N=3 a group G o° order 4N2=36 which contains

two disjoint subgroups of order 6 can only be

G=2. 872

6 6*

which does have a partial spread of N=3 components; namely,

60
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):XEZG},

{(0,X):XeZg {(X,0):XeZg}, (X

t : : :
he nonzero elements in the union of which do consequently constitute

a (36,15,6,9)-difference get in G- Since G = 26(9 Zg has only three
elements of order 2, G cannot have a partial spread with N+1=4

components.

We have so far determined all groups of order 4N%, N < 3,

which have PS difference sets: go that we may more easily investigate

velop a very useful characterization

the question for larger N We now de
of partial spreads having at least three components. Again, these ideas

are an obvious extension of well-known results in the theory of finite

translation planes [20]-

Suppose that

H Hl’ H,» Hys w#2s Hoyo
is a partial spread for ¢ containing r+2>3 components. It is
clear that
= @ H,
G Hi 3

H. are isomorphic

for all i#j, and it follows that all components
to the same group, saY H. Thus, G 1is jsomorphic tO g @H and there
of G onto H®H which takes the partial

exi , .
xists an isomorphism ¢
o of H@®H, and, in particular,

spread H of G onto a partial spread H
takes the two components Hpoi) and H_ .o of H onto
o . } d Hd' = {(h,O):hEH}-
4® = {(0,h)rheH} and Freo

oy i



We shall identify G with its image H @ H and relabel the components
of the partial spread, so that we may assume without loss of generality

that G = H® H has the partial spread

H:H_, Hy, H

O’ l’ LA | r
where H_ = {(0,X):XeH} and H; = {(X,0) :XeH}.

Now consider any component Hi’ i > 1, and let (X;,Y;) and
(X,,Y,) be elements of H,. Then H,, being a group, contains

(XZ_Xl’ Y2—Y1). Since

H, N H, = {(0,0)} = H; " H,
it is clear that

X, = X,&9Y, =Y,

In other words, there exists a permutation oy of H such that

st
I

{(X,Xai):XeH}.
Furthermore, since, for all X,,X, in H, the element
(X, 4Ky, (X 4K)0) - (Xp.Xp0.) - (X),X,0,)
= (0, (X#K)ay - X0y ~ Xy0y)
belongs to Hi’ it follows that
(X1+X2)oci = Xlai + Xzai;

thus oy is in fact an automorphism of H. Since, for any ity,

the components Hi and Hj intersect only in (0,0), the corresponding

62



e on any nonzero

cannot take the same valu

a ]
utomorphisms o, and O,
1 J

e
lement of H. Thus, the endomorphisms ai—aj of H given by

ui—aj : X > (Xdi) - (de)

ar
e also automorphisms of H. We thus have the

THEOREM 5.3.1. Let H be an abelian group and let
Gps Gps tt?

b
be automorphisms of H with the property that no two take the same

va
vValue on any nonzero element of H- Let

Ho: o, Hys By o0 H_

be the family of subgroups of G=1H o H given by

= {(X,Xai):Xeﬂ}, 1<izsr.

H_ = {(0,X):XeH}; Hy = ((%,0):Xet}; By

G. Further, any Partial spread for

G of cardinality r+2 is equivalent under some automorphism of

T .
L EE_E_Eartial sgread for
G to

4 partial spread of this type:

gXAaBplzing iﬁAnecessarz the automorphism

REMARK 5.3.2-

-1
(x,7) + (XY0% )
g G we may obtain ?’_@.W Partial Eread for G 1n which o(,l

i : ;
is the identity automorphism: B8 other automorphishs i’

i ints.
fixed pol

22157

u
Iust then have no nonzero
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1 the group H need not

part of Theorem 5.3-

NOTE: In the first

b .
e abelian. Indeed, if we take g to be the symmetric group s, we

obtain for the group G = Sg ® S, the partial spread

{€0,%) :Xes,}, [(X,0):XeSg)> {(X,X) :XeSg )}
t ‘ . ) A
he nonidentity elements in whose union constitute 2 (36,15,6,9)-difference
set in G.
groups G

We are now in a position to determine the abelian
of order 4N2, N>3, which have a partial spread of cardinality N (and
We first show that such

consequently a partial spread difference set) -

a group must be a 2-group-

gg_order 4N?, N>3,

THEOREM 5.3.3. Lﬁ_;hg_abelian group ©

m-1
has a partial spread gﬁ_cardinality N =2 for some M > 3.

, then

with m>1 and Nj odd. Then G,

PROOF. Put N = zm'—lN1

of order 4N?=22T N%, has 92m-1 elements of order a power of 2;

2N=2mN1 has 2m—l elements of order a

whi
hile any subgroup of order
1 spread for

¢ can have at most

power of 2. It follows that @ partia

g
components.
If G has a partial spread with N components We must have

szlNl = N §_2m+1.

The only solutions to this inequality are

Nl =3 = N3 m=1,

which violates our hypothesis P N, and
qed .

Ry * 1; m arbitrary:



D

65

. m
gg'abellan group gﬁ_order 4%, > 2a

-1 i .
Then G has a partial spread gﬁ_cardinalitz 2" only if G is

THEOREM 5.3.4. Let G Dbe

elementary.

that G = H @ H, where H is a subgroup

PROOF. We may assume

of order 2" isomorphic tO each component of the partial spread.
Zm—l—Z automorphisms

According to our Theorem 5.3.1 there must exist
of H with the property that no twoO of these automorphisms agree on
any nonzero element of H- In particular, for any element © in H
of order 2, the 2m’1-2 automorphisms of H map O to 2m—1_2

oup H must contain at least

distinct elements of order 2. Thus, the 8T

o1
-2 elements of order 2.

But suppose that

=
3
N
=>]
N
D

Then each direct gummand

ya, = M-
and 1

wh :
e B 1,1 5855
tire grou H contains
Zzai has a unique element of order 2 and the en group
Precisely 25_1 elements of order 2. We thus have
Zm— 1—2 £ Zs‘l’
which implies that only the following tWO possibilities exist:
m-2
Ccase I. g=m-1 and B¥ 2y &z,
e
case T1. s=m  and e
We complete our proof by showing that Case 1 cannot occur. According
automorphisms which fix

m"l—3 > l

to our Remark 5.3.2 H must have
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DO nonzero element of H. We show that

—2
H=1z2 02

has no such automorphism. For let a be a generator of Zq. Any

automorphism o of H must map (a2,0) to an element of one of the forms
(a,b) or (-a,b)

e m—2 ; 5
where b is in Z2 . But, in either case, o maps (2a,0) onto

2(a,0) = (2a,2b) = (2a,0). Thus, every automorphism of z, & 22_2

has a (nonzero) fixed point and Case I is impossible. qed.

In the next section we exhibit partial spreads of cardinality

m—1 o
2 and 2" 1+l for all elementary abelian groups G = sz. We

2

may thus combine the results of sections 3 and 4 and state the

THEOREM 5.3.5 a) The groups

m
Zys Zo ®Zoy D Zy; Zg @ Zes Zy @ Zy; and Zz > m > 1,

all have PS(—) difference sets. b) All but the first three of these

ps(+)

groups have

difference sets. c) No other abelian group has a

partial spread difference set.

4.  Elementary abelian 2-groups.

In this section we restrict our attention to elementary abelian

2 2m
- to be Z2 ,

2-groups. We usually take such a group G of order 2
but it is sometimes convenient to regard G as one or another of

several (2m)-dimensional linear spaces over the field of two elements.

We have seen in chapter 2 that a difference set in G must have parameters
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(v,k,A,m) = (48%, JN2-N, N2-N, N?) or (4NZ, 2NZHN, N2HN, N?)
E

wher _ o1
e N=2 . Thus the cardinality of a difference set in G completely

dete-rm' .
ines its parameters. We also saw in Chapter 2 that the subset D

of . :
G 1is a difference set if and only 1E

x (D) = *N

for .
all nonprincipal characters X of G.

Recall that a Eartial spread for Zim is a collection of pairwise
disjoi
joint (except for 0) subgroups of order 2", A partial spread
(Xe) e . m
ntaining 2 +1 components is called simply 2 spread.

our construction theorem

We restate here, for the group Zim,
eorem 5.2.2). We give here a

fo :
r partial spread difference sets (Th

uses the group character characterization

dif
ferent (shorter) proof which

& .
f difference sets.

——TEY T zzm and let A and B be partial
g

Spreads for G of cardinality N and N1 respectively, N =

Then the sets

D= A\ {0} and E= U B
(kéA}>\\ BeB

parameters
IN24N, N24N, N2), respectively.

are . n
are difference sets in G with

and (4N,




PROOF. We have D = \J4 ax, Ax = A\{0}.

For
any subgroup S of G let § denote the subgroup of characters
Then for any

of . .
G which induce the principal character on i

i s
nprincipal character X of G

N(-1) if K for all AcA

x(D) = )x(A%) ={;
(N—l)(—l) + (2N-1) = N otherwise.

Th
us, x(D) = #N for all nonprincipal characters X of G and it

fol
lows that D 1is a difference set:

E = DyB. Then for any

Now suppose that B _Ay (B}, so that

nonprinci
nprincipal character X of G

1’ vy 1f B
x(B) = x(@) + x(B) = »
| b2y = N if xeB

qed.

Sin
c : : ’
e D is a difference set, sO 18 E.

tial spread difference sets D and E

We shall say that the par
pg() and PS

y N or N+l Hadamard partial

+ .
of Theorem 5.4.1 are of tyPe€ ( ), respectlvely. We

ds of cardinalit

sh

all call partial spred
Spreads (since they give rise toO Hadamard difference cets). Thus, in
) difference sets in G a1l we need do

or
der to obtain (partial spread
known result

is find some Hadamard partial spreads. The following well-
. 2m
shows that Hadamard part und in 2, -
nstitute

REMARK 5.4.2. The M1 lines _t,h,rggg_h_t,hsg_g_igﬂ co
m
2 spread for the affine plane L&L, L= GF(2)-




consists of all points (X,Y)
b

PROOF. The affine plane L ®L

As an additive group it is isomorphic to

e is a set of points (X,Y) determined

with X and Y in L.
m
zZ'¥272,. A 1ine in the plan

b .
y an equation of the form

b, bel

=
Il

nX+b, m,beL.

Il

The 11
lines through the origin aTe€ those with b=0, i.e.

L :X=0
L. ¢ XY= mX, meL.

Th
ugy L, = {(O,Y):YEL} and L = {(X,mX):XeL}, mel .

It i
is clear that these lines are all isomorphic to 1, as additive
of order 2m.

(0,0))

gro
ups so that they are indeed subgroups of L@L
es intersect only in the origin (i.e.

T
hat any two of these 1in
qed.

1s obvious.

Combining Theorem 5.4.1 with Remark 5.4.2, we arrive at the

vVery important
THEOREM 5.4.3. Ihe point® (resp- 2925929.2922£é) lying on 3ny
Mﬁl‘ the Origin fOrm _?'_ dm/_g‘r_e—gg% ____SQt :L._I_l the

2m_ 1+l m—1
(resp. 2 ) lines

B
affine plane L& L, L = GF (2™ -

We observe here that the PS(+) difference sets given by Theorem
5.4.3 are precisely the complements of the PS(—) sets given by the
theorem. We shall see in the next chapter, however, that there exist

ps(H)

€ equivalent to the complement of

difference sets which are no




w in the next chapter that for

(=
any PS ) difference set. We also sho

m> 3 . 3 == .
3 there are many pairwlse inequivalent PS( ) gifference sets in

z2m

, - This contrasts sharply with

EE_EgAeguivalence, exactly

THEOREM 5.4.4. For m < 3 there is,

G m
Dog B8 ) difference set in Zi .

PROOF. The result 18 trivial for m=1, while for m=2 we have

) that the (16,6,2,4) difference set in

already seen (Remark 2.2.13

L .
Zz is unique. Thus we need consider only m=3.

Let {H_, Hp» Hy» H,} be 2 partial spread for G = Zg
which we regard as H ®H, H= Zg. By Theorem 5.3.1 we may assume that

= {(X,X):XeH}, Hy = { (X,Xa) :XeH}

H_ = {(0,x):xei}, Hy = {(60):XeRb

where o is an automorphism of H with 10 nonzero fixed point. Thus,
: . = 73
o is a nonsingular Zz—linear transformatlon of H~= Zz.

s transformation, so that

Let L be the matrix effecting thi

i = {(X,XL):XeH}-

1. has minimum polynomial either

Si ;
ince o has no fixed point,
ying if necessary

the automorphism

(%, 01 * {13/

has rational canonical

of G, we may assume the former case. Thus L
form
1
CcC = 1 1 .




Then

Let L = S—lc
s for some nonsingular matrix S

{(X,XL):XeH}

fus]
1l

Il

{(x,%S~'CS):XeH}

{(xs,xcs):XeH},

an
d the automorphism

X,Y) - s, Y87

of ¢ =
=H & . .
H then takes the partial spread into the "canonical" partial

Spread

0 =
» = 1(0,X):XeH}, Hj = {x,0) :Xet}, Hy = ((0,5) sXel}, Hy = ((0XC) et

ad difference sets which we

There is another family of partial spre

Recall (from that chapter)

have
a
lready encountered in chapter 4.

that
a Pall partition for @ quadratic form

0 = Qs Kpr o0 XY

ig a partition of the zeros of the form into pairwise

over g £5
eld F
We proved (Theorem

1 isotropic subspaces-

disjoi
joint (except for 0) maxima
n exists for ever

v nonsingular quadratic form

4.1
.1) that such a partitic

GF(a)

except for those

Over & . %
a finite field F = of characteristic 25

equivalent to

Yy = ..+ XX
m X1Xm+1 ¥ XZXm+2 Xnom
wi

th m>1 odd. Thus, whenever [ ig even (or m=1) the
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‘ m-1 " 2
14 (q +l)(qm—l) zeros of Wm on F n may be partitioned into

m—1
q

e I : . 2m
L pairwise "disjoint" m-dimensional subspaces of F ™. These

Subg . : ; 2m
Subspaceg clearly constitute a partial spread for F ; and if (and

Only if) g=2 this partial spread is Hadamard. Thus, we have

THEOREM 5.4.5. The zeros of the quadratic form

¥ =X X + + e F
m Kl'm+1 X2Xm+2 XmXZm

Over n 7 W . .
over F = GF(2) corstitute a partial spread difference set of type

Pg<+> . 2m :
in il and only if m=1 or m is even.
! ) 2m
We note here the interesting fact [20] that a spread for Zz -

S ) - .
CQuivalent to a Veblen-Wedderburn system with additive group 42- Our

diffa . . : : i
fference sers given in Theorem 5.4.3 arise from the special case in

WRAGH e V-W systen is a field. But any other system will do as well.

REMARK 5.4.6.  Every V-W system with additive group Z,

Slves PS(—) difference sets in ZZ ® ZZ = Z;m- The

Tise to

m—=1

SSPE&Smgpcs of thesa difference sets are of type PS(+)-




CHAPTER VI

DIFFERENCE SETS IN ELEMENTARY ABELIAN 2-GROUPS

I
Introduction.

Thi : : .
his chapter is a survey of difference sets in elementary
a Boolean function

abeli
an 2-groups. We begin with the idea of

whOSe_ F
(6] i o .
urier transform has constant magnitude. Following

Rothg
u
s [22] we call such functions bent functions. In section 2

ns are precisely the characteristic

We .
qu

ickly show that the bent functio
difference sets and

£ these difference

func .
ti
ons of elementary Hadamard go on to derive

quite .
painlessly all of the familiar properties ©
Setsg

> along with some others perhaps not SO familiar.

h account of all the known

In section 3 we give 2 thoroug

Constructions for bent functions (elementary Hadamard difference
Sets). We take particular care to relate the various families toO
One another and we endeavor toO point out any equivalences of which
Ve are awyare. We also give exampleSOf inequivalences which demonstrate

that
s o .
ome families do not contail others.

ocal point of the entire paper:

This chapter serves as the £
esults stripped of

EV e
r g
Y other chapter is represented here — its T

truth about el

ementary Hadamard difference

thei
r »
generality to reveal some

Sets.
The terminology and potation follows that of earlier chapters,
e — Y
XCept that here we denote by \) the spaceé of m—-tuples over F = GF(2).
m

it takes

Also i 1anced if
We say that a Boolean function £ Voo © F is bal2i=—

the
values 0 and 1 equally often.

73
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Do Bent functions.

DEFINITION. The Boolean function f : Vm -+ F is bent if its

Fourier coefficients are all of the same magnitude; i.e. lflz

constant.
We may immediately establish the
THEOREM 6.2.1. f is bent iff [f*] is Hadamard.
PROOF. By the corollary to Theorem 3.3.3 we have
_[£%]2H-) = 4 daiag (JEO) |2, [ED2, ..., [FQ™-DID.

Thus, £ 1is bent¢:£>Hm[f*]2H;1 is scalar

G::g[f*]z is scalar
&D e is Hadamard,
the last equivalence being a consequence of Remark 2.2.5. qed.

Now if we regard the Boolean function f as the characteristic
function of the set D = £ '[1], then the matrices [f] and [f*] coincide
with the incidence matrix [D] and its associate [D*], respectively.

Theorems 2.2.6 and 6.2.1 then combine to yield

-1 ]
THEOREM 6.2.2. £ is bent iff D = f [1] is a Hadamard difference

set in V .
me—= =

Recall that the (directional) derivative of f in the direction

v 1is given by

fv(X) = f(x+v) + £(X).



Itj_
s now easy to establish the following very useful characterization
firs .

t noticed by D. Lieberman (private communication) who proved it in

a v .
astly different manner.

THEOREM 6.2.3. £ 4is bent iff fV gg_balanced for all Vv 40,

PROOF. We have [£*] = ((-l)f(u+v))» Thu$

f is bent&y [£*] 1is Hadamard

&) (—1)f(“+w)+f("+w) .o forall uwt¥
w

&f is balanced gor Ll WY # 0. qed.
utv

entary results consequent

We now pause to collect several elem

to .
First the general equation

f being bent on V_-
m

= A~ ~ 2 M 2
H[£x][Fx] B = 4 dias (E@ 2, [E@QI% Heas iR

of :
the corollary to Theorem 3.3.3 becomes for bent function®

A A m— 2
I = o™ giag (JEO@I% He IR 122" 15>
Which 1
ch implies immediately the
the Fouriel coefficients

is bent on Vs

—m/Z.

REMARK 6.2.4. If f

of £ ar
are all equal to * Z
i : :onal numbers
lnCe he Fourier coefficients Of a Boolean functhﬂ are ratloﬂ N

the i
Preceding remark implies

i only i
REMARK 6.2.5. Bent functions exist on Vm LY, =
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We may restate Remark 6.2.4 as
REMARK 6.2.6.  The function
£ ¢ Vo™ F
1s bent iff there exists a function
6 2 Vo m F
Such that f = lﬁ,ﬁ*' In this case, f{ is also bent and f = lﬁ £*.
2 e e e 2
£

We shall refer to the bent function ¢ as the "Fourier transform” of

There is thus a natural pairing of bent functions expressed by

REMARK 6.2.7. The "Fourier transform' of a bent function

is bent.
Remark 3.3.2 now implies for bent functions
REMARK 6.2.7. If f£,, f, are bent on V,, with

£,(X) = £, (XT+a)

linear transformation T Of

£ : :
for some a in V,, and some nonsingular F-

variables then
f,(XT7) = §, (X) + a-X.

Thus, linearly equivalent bent functions have "Fourier transforms"

which are themselves lineaglz'eqpivalent. Affinely equivalent bent

1 ] .
functions have "Fourier transforms' of the same degree.




Next, if we let Nv denote the number of zeros of the function

+ v.
£(X) v-X on V2m’ we have

f(u)+v-u om

2™ E(v) = ¥ (-1) =N - "N ) =N -2

or N = 2-4 + 2+4

It then follows that

REMARK 6.2.8. f : V2m -+ F 1is bent iff £(X) + v-X has
gl ¢ & Pl eros for all v in V

om’

We note that if g(X) = £(X) + v-X, then g(X) %(X+v); thus,

if £(X) is bent, then £(X) + v:X is bent for all v in V.
Since, by Theorem 6.2.2, f is bent iff £ '[1] (and £ '[0]) is a
Hadamard difference set, all of the foregoing remarks are trivial

consequences of the corollary to Mann's Theorem2.2.10. Finally, we

note that if
veX
X = (-1)

is a nomprincipal character of V, (i.e. v # 0), then for any

: >
f : V2m F

f(u)+v-u

22" () = ¥ (-1 = x(£710]) - x (£ 1)) = —2x (£ L)
u

We then have the

REMARK 6.2.9. . £ : V, > F is bent iff

X (£ ) = ¢ 2™°0

for all nonprincipal group characters X of V, .




We now collect the various characterizations of bent functions

in the

THEOREM 6.2.10. The following are equivalent:

1) f : V2m + F 1is bent;

2) f(v) = £(1/2") for all v in V_;

2m

3) £(X) + v-x has 2:4™1 4 2™ geros for all v in V05

.
b

4) fV(X) = f(X+v) + £(X) 1is balanced for all nonzero v in V

2m

5) [f*] = (f*(utv)) is Hadamard;

6) f-l[l] is a (Hadamard) difference set in L

2y x(E Ly = & g

for all nonprincipal characters X of Vo

The Poisson summation Theorem 3.3.4 may be combined with

Theorem 3.2.2 to yield information about the degree of a bent function.

Let £ &N -+~ F Dbe bent
2m

and let § : V by be such that

Thus, the Boolean function { is also bent and has Fourier transform

8 t—3 1—- f* .



By Theorem 3.3.4 we have

5y T fr(e) = 8RS § B = 2T gx(e)

seS sest seSt
for any subspace S of VZ . We now write
2m
fx = 1 - 2f
and §% = 1 - 24,

where we interpret £ and § as functions taking the real values

and 1. Equation (*) then becomes

z £la) = zm—l(zdim.S—m_l) + 2dim S—m Z ) FEa)s

seS seS

We restate this fruitful result in the

THEOREM 6.2.11. Let f and {§ be bent functions on V2m

such that 2"E = 4* (equivalently, ZnZ = f*). Then, interpreting

f and { as real-valued functions, we have

2 im S- dim S-
z £(s) = 2™ 1(2d1m S B3y + 2 im S-m Z §(s)
seS sest

for any subspace S of V2 .
— - m

COROLLARY. For any Vv in Vzm’

Y f(u) = zm'l(zl"l'm-l) s 2lvimm Y f).
ucv ucv

This last result has several important consequences.

THEOREM 6.2.12. If m is greater than 1, a bent function on

V2m has degree at most m.

79
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PRO v. V
OF. TLet f£(X) =2 g(MX 10 2 ... x, 2" be bent.
1 2 2m

Accord .
ing to Theorem 3.2.2 the monomial

v, V v
v
¥ =x'x?... % i
2 2m

is
Present i
t in the polynomial £(X¥) if and only if J f(w) is add.
ucv

But ¢
he
corollary to Theorem 6.2.11 assures us that

V£ = 2™ |v|-m_ |v|-m
ucv ) 2 (2 1) + 2 ugj} 6(11)
Lf
m>1
2 — IV|>m, the right gide of this equation is even. Thus,
f(u :
ucy ) is even and £(X) does not contain the monomial
qed.

v, V v
2 2m

X' = X
X,” -+ o

£V -~ F }g_bent ’j_degree m,

REMARK 6.2.13. If -
t e
&IL its "F .
T —lﬂ{EEEE_EEZEEigggQ" § is also of degree m.
r result. By the corollary

B
S0P We prove a slightly stronge

tOT
heorem 6.2.11 we have

] of@ = L_ 6@

ucv ucv
’ v
m monomial X

& z f(u) is odd

ucv

Gy
N Z f(u) is odd
ucv

; v
e m monomlal X . qed.

P
&) (X) contains the degre
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REMARK 6.2.14. £ £:V, > F is bent, then
o m L R

= . T ,
IsNg 1[1]| - odim s-1 _ 2m—1 + 2dlm S-m 5104 [11]

£ ;
°T all subspaces S of Vv .

2m
PROOF. This is just a restatement of Remark 6.2.11.
COROLLARY. If dim S > m, then
dim S-1 m-1 - dim S-1 m-1
2 - 2" < Isnetal 2 2 + 2™

COROLLARY . Let the difference set D in V2m contain the

Subw ,
“space s of V,,- Then dim S <m. If dim § = m, then D gconta’ns

b
=ACtly half the points of each proper coset of S 1in V2m' Hence,
D] < ,om b Sl

PROOF. We have for any subspace T of V2m

dim T-1 m—1

[TNp| = 2 _ Bl 4 pdin T ning|,

Whey .
€ § is the difference set corresponding to the "Fourier transform"

°L D, 1 smTsw
— N,

ai " . .
im T-1 5 2m L 2dlm T

ITND| < 2

Wit

h equality only if dim T = m. Thus D contains the subspace S
only . :

Y if § has dimension at most m. The proof of the second assertion

q
“Ontaipned in the proof of the




T
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REMAR

K 6.2.15. Let E be2 gubset of V containing
= be a subset 2= Tom —

g and let p = E\S. Then E 1is 2

the

m-di 3

=& m-dimensional subspace
is a (pontrivial)

(n0nt £
rivi .
2Ontrivial) difference set if and only if D

a4
Siiference set.
as the direct sum

PRO ;
OF. We interpret the space V2m

ying an automoxrphism if necessary)

V &
n?®V

and assume (by appl
i 3.3.5 of chapter 3.

m

that
S =
0® me We use the BOX Theore
nding tO

L
et eD . dD . .
s be the 2 X% 2 (il}matrices correspo
e Char . ~
aD acteristic functions of E and D and let € and
be £
he matrices corresponding tO the associated Fourier transforms.
Then
n ~0 -
a0y !
m jul
and ™0 -n dE
jin
Now eD 0
and d differ only in the first row where e is constant
=,
and g9 0.1 [, 5=
d~ is constant 1. gince the rows of € Hm and d Hy
O 0 we seeé that

dre th
e =
Fourier transforms of the rows of € and d

0

m and d Hr;l diffe 0,0)—-position Where the former
t if and only

(resp- d) is ben

1. Now €
urier transfor

and the latter
ms of

1f ¢t
e . -
columns of eD Hm1 (resp- dU Hml) are Fo
BOOl
e .
an functions. Furthermore, in that casé the first column must
hav
2 0's 4 .
s in all but the first rov: The result 18 then clear: ged.

,,
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If we have bent functions on the spaces v, and Vn’ we may

construct bent functions on Vm+T1 according to the

REMARK 6.2.16. Let f and g be Boolean functions on V

and Vn’ respectively. Let h : V . + F be defined by

h(X,Y) = £(X) + g(¥).

Then h is bent iff £ and g are bent.

PROOF. We have [h*] = [f*] ® [g*], and the assertion follows
from the fact that a Kronmecker product of matrices is Hadamard if and

only if the individual factors are Hadamard. qed.

Functions of the type constructed in Remark 6.2.16 are rather

uninteresting because they may be "decomposed" into simpler functioms.

DEFINITION. The Boolean function f(X) f(X,, X

. Xm)

1 —2°

is decomposable §§_15_1§_linearlz_eqpivalent to a sum of functions

in disjoint sets of variables; i.e. there exists a nonsingular linear

transformation T of the variables Xl’ Koy vees Xm such that

E(XT) = (X, X X) +h(EX 5, X ooy X)

2, ° a3 r+2’

for some r, 1 < r < m.

As an example of a decomposable function we consider the elementary

symmetric function of degree 2 in four variables; i.e.

ER) = £(X), Xy, X5, X)) = XXy + XXy XX+ XX, + KX, F XK,
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The transformas-ion

X, > X

transforpg £(X) into
£ (XT) = X1X2 + (X3XL{. -+ X3+ Xq) = g(Xl ,Xz) + h(X3 9Xq);
thus,

f(X) is decomposable.

The next result provides a means for recognizing sSOme

inde~ ; 3
Ndecomposable bent functions.

REMARK 6.2.17. For m>2, every bent function of degree m O

v s
om 1S indecomposable.

PROOF.  Let the bent fumction £(X;, X5 .-, X, ) of degree m

be linearly equivalent to

e < r < m-l.
g(Xl, XZ’ % 5975 er) +h(X2r+1, X2r+2’ ] sz)’ 1__ —

Since the degree of a polynomial is invariant under a nonsingular linear
transformation of its variables, one of these addends, say g, must have
degree m. By Remark 6.2.16 g is bent, and by Theorem 6.2.12 g has

degree at most r (unless r=l, in which case g has degree 2). Since

B has degree m which is greater than r, we must have r=1 and m=2.  qed.



3. Families of bent functions.

The simplest bent function of all is the function

f(X,Y) = XY

in two variables. This is a "trival" bent function which vanishes
on all of V, except on the single point (1,1) where it takes the

value 1. The (f1)-matrix corresponding to £ is

i |

P4 1 9wl
1 1 -1 1
[f?’»‘] =
1 -1 1 1
ol B b ol

This matrix, being a circulix, may be interpreted as the incidence
matrix of a "trivial" difference set in the cyclic group Z,. In
fact, [f*] is the only (up to permutation and complementation of rows
and columns) known Hadamard circulix, and it has been conjectured
that no larger one exists. The conjecture has been verified [2 ]

for matrices of order up to 12,100. This trivial bent function in
two variables yields via Remark 6.2.16 the simplest general family
of bent functions; this result was discovered independently by

P. Kesava Menon [19] and R. J. Turyn [24] around 1960.

FAMILY Q.  £(X,Y) = X-Y = X,¥, + X,¥, + ... + X ¥ is bent on L

“«~

Indeed, as both Kesava Menon and Turyn have observed, the matrix

[f*] corresponding to a function in FAMILY Q may be interpreted as

the incidence matrix of a Hadamard difference set in any group of
order 4" which is the direct sum of m groups of order 4 (each of

which may be either cyclic or the Klein 4-group) .
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We observe that the bent function
f(X,Y) = X-Y

of FAMILY Q is a nondefective quadratic form on V2m. A classical result
of Dickson [8] states that every quadratic polynomial in n Boolean

variables X X “ e X_n is affinely equivalent to a polynomial of

1> “2?

the form

R T AR At

where 1 < k < n/2 and a,beF with ab=0. But it is clear that such
a polynomial defines a bent function on Vn if and only if n = 2k
(in which case a=0). Thus, the quadratic bent functions on V, = are

m

precisely the nondefective forms and their complements. We have

REMARK 6.3.1. Every quadratic bent function on V2m is

equivalent (up to complementation) to the canonical nondefective form

X-Y. Thus, X-Y is the "only" quadratic bent function on Voo

The o™ x Zm(il)—matrix f*[J whose (u,v)th entry is f£*(u,v)

is given by
0 , u-v
£x° = (£%(u,v)) = (1" ),

which is precisely the elementary Hadamard matrix H . By the Box

Theorem 3.3.5, the Fourier transform f of f is given by

T
m m



ms : .
Thus, the functions f* and 2 f are identical, and we have

REMARK 6.3.2. The canonical quadratic bent function X'Y of

FAMILY Q is its own "Fourier transform".

In an earlier paper [18] submitted for publication in 1958

P. Kesava Menon established

REMARK 6.3.3. The set D of all vectors containing a number

of 1's congruent to 2 or 3 (mod 4) is a difference set in Vzm.

Let

5,00 = L XX
1<i<j<2m

denote the elementary symmetric function of degree 2 on V2m' Then for

all v din V_, Sz(v) is congruent (mod 2) to the binomial coefficient

(i)

which is odd precisely when |v| = 2 or 3 (mod 4). Thus, SZ(X) is the
characteristic function of Kesava Menon's set D and Remark 6.3.3 is

equivalent to

REMARK 6.3.4. The elementary symmetric function of degree 2

is a bent function on V2m°

The truth of both Remarks is implied by the more general
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REMARK 6.3.5. Let T be the linear transformation of the n

Boolean variables X, X, ..., Xn given by
- X .. +X .+ ) X,
,5 2d4=1 21-1 i>2i g
T .
NKy vyt A
. j>2i J

Then the elementary symmetric function of degree 2 in X,, X,, «.., X

12

is transformed via

iﬂf Xoim1 7 Ty

\{ if 4 18 odd or 2i-l-n
Xy TR

A {

{ s +1

[ %211 TGy

{ if i 1is even and 2i-1#n
i

. Xzi > T(Xzi)+l

G(X) = XX, + XX, + ... + X, X if n=2t20,2 (mod 8)
or n=2t+1=1,5 (mod 8)
) G(X) +1 if ©=2t=4,6 (mod 8)
into )
. i
G(X) + X2t+1 if o=2t 1=3 (mod 8)
s i =2t+1= .
G(X) + X, ., F 1 if n=2t+1=7 (mod 8)

We omit the straightforward proof of this Remark.

COROLLARY. Kesava Menon's difference sets (bent functions)

given in FAMILY Q and Remark 6.3.3 are equivalent.
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In his 1966 paper Rothaus [22] generalized the quadratic bent

function to

F : : &
AMILY R, g(x,y) = XY + g(0), g arbifraty, =2 bent o8 Vo

PROOF. In this case
f*D = AH
m

vhere A = diag (g#(0), g*(1)s v+ Jr(2-1)). Thus, by £he BT Theg el

334
0 . g gyt
m m
=HA .
m
Sin, . follows. qed.
ce this matrix has entries *ls the assertlon
of

COROLLARY. The "Fourier transforn”

x-Y + g(X)

Il

F(X,T)

is  $(X,Y) = x.Y + g(¥)-

"
: rms
npourier transfori®
Fouriel

COROLLARY.  FAMILY R bent functions D2

of
\\‘Ehg-§§ﬁgldegree.

Sin
Ce g(X) is an arbitrary

We haVe the



Also, since affinely equivalent functions have the same degree

we have the

REMARK 6.3.7. The functions

I
>
.

£, (X,Y) =

£,(X,Y) = X-Y + X X,X,

£, (X,Y) = X-Y + X, XXX,

£(X,Y) = XY + XXX %, X

are pairwise inequivalent bent functions on V2m'

The next family, a natural generalization of Rothaus' FAMILY R,
was discovered independently by J. A. Maiorana (private communication)

and R. L. McFarland [16].

FAMILY M. £(X,Y) = m(X)+Y + g(X), g arbitrary and w an arbitrary

ermutation of V , is bent on V__.
periyrarion 08 Y =2 = Ton

PROOF. Let P be the 2m X 2m permutation matrix such that
P(X,m(X)) = 1 for all xeV ; and let A be the diagonal matrix

diag (g%(0), g*(1), ..., g%(2"=1)). Then

f*D = APHm >

so that, by the Box Theorem 3.3.5, f has Fourier transform

H AP.
m

Since this matrix has entries %1, the assertion follows. qed.
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There are several different proofs for this last result; the beautiful
proof presented here which graphically illustrates the constant
magnitude of the Fourier coefficients is due to D. P. Cargo (private

communication).

COROLLARY. The "Fourier transform" of

f(X,Y) mT(X)-Y + g(X)
is

X~ l(Y) + g™ 1()).

We note here the useful characterization of permutations on

¥ (also given by Maiorana).
REMARK 6.3.7. The function

T o X > (PI(X)’ PZ(X)’ We e Pm(X))

is a permutation of Vm if and only if for every nonzero vector

e in VIn the function

cem = e.P.(X) + e, P, (X) + ... + e P (X
is balan(:ed on V .

PROOF. For each v in Vm let Gw(v) be the number of vectors
u such that 7(u)=v. Then the excess of 0's over 1's of the function
e*T may be written

B ()= ) 6MMEDLTT,

veV
m



from which we see that the function BTr is the (unnormalized)

Hadamard transform of Gﬂ. Thus, m 1is a permutation
= GTr is the constant 1 function
(= B is the function 2™§
N P 0,X

(==> e-m is balanced for all e#0.

Fourier-

qed.

We now demonstrate that FAMILY M is truly a generalization of

FAMILY R. First we observe

REMARK 6.3.8. Let f be bent on V, =~ and let § be its

"Fourier transform".

a) If m<5, then f and { have the same degree;

b) For any m>5, £ and { need not have the same degree.

PROOF. We have already proved that a bent function of degree 2

or of degree m must have a "Fourier transform" of the same degree.

This establishes part a).

Now suppose that m=5 and consider the function on
V10 = Ve & Ve given by
f(X,Y) = 1(X) Y

where

T\'(X) g (Xl + X2X3, X2 e qusa X37 Xq: XS)'

Then f(X,Y) has "Fourier transform"
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6(X,Y) = X"IT—]'(Y)
where
Sl = & F XX Ly x X, X EEs X X
1 2%3 ghy 50 T2 yi5? T3’ u’Xs)'
Thug
s £ has d
e P
for gree 3 while f§ has degree 4. This establishes part b)
m=5: th
> e
— same example may be extended to 2D arbitrary m>5 by
ng V= i
=V .
o m 5 ® Vm—s and defining T to be the identity permutation
component V
—_— qed.
Sinc
e these examples aré in FAMILY M we have
COROL
equi LARY. FAMILY M contains pent functions which are not
\HN£ZE£EE_
t
to any bent function in FAMILY R.
ions

rence sets corresponding to the bent funct

Th p

in e family of diffe
Y M4

is actually a special case of 2 very

Obtai
ned
recently by R. L. McFarland [16]-

dditive group oL

E be (the 2
., H s

of g4
=L di :
\mwg S+1. o — "
ver the finite€ field GF(q)-
e P
2’ b1 r

T =
(qs+1_l)/(
q-1), be the hXEerElanes in E, and let ©1°
Let K be 22 arbitraty (not necessarily

be apy
elements of E-
, eees By be any * digtinct

THEOREM 6.3.9. Let

abelq
of order T+l and let Kp» k
S = 1 2
denote the =—=— in the

&l
~=lents
, of K. Let C, =H;* e, hkg) GEBRES
% o i i i’ 1
Sum =
G = @K which cont®ns the element O
Then D = €,V C,V yc, is2 gifference set 10 ¢ with parameter®
2 . e ® r /’— -
g+l 5
S+1“l s q -’l =l q ‘l 25
[/"]’ q —r ]’ q )'
q-1

+ 1], 4
q—l
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Though the proof of McFarland's theorem is elementary, we shall prove
only the following special case, which yields to a simple generalization

of our proof of FAMILY M.

m .
COROLLARY.  Let G = Z, ® K be the direct sum of the elementary
m

abelian group Z? and the arbitrary abelian group K of order 2

For any subset D of G let gg denote the 2™ x 2™ (+1)-matrix

D .
whose (X,Y)th entry is -1 if (X,Y) is in D. If the matrix &p satisfies

1]
gD = HmPA,

with A a diagonal matrix with diagonal entries *1 and P a permutation

matrix, then the corresponding subset D 1is a difference set in G.

PROOF. The matrix FG effecting the Fourier tramnsform on G is

equal to the Kronecker product
L @m er)
ym - m K

where FK is the group character table for K. By the Box Theorem 3.3.5

the Fourier transform of the "characteristic function" gp is given by

~ D 1
gD m

0
Hoep Fx

= — PA)F

= — PAF_ .
sz K

1 ;
Since each entry of this matrix has absolute value el the assertion

follows. qed.
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We ob
serve .
sets { that taking K tO be cyclic yields difference
n

the group G = Zm o7 ] i
Bastion of 5 2 - which has exponent o™ — within 2

of t

he upper bound given by 2 theorem of Turyn [24].
We now
come i

to the important family of bent functions corresponding

ucted in chapter Vs

to
the
partia
: 1 spread difference sets constr
ection 4

Let . i
Let Hy, Hps --*2 H2m~1 Eg_m—dlmen51onal ggpsgaces of

F
AMiry pg (=)
v
2n 2uch that
1

HinHj={O}’lii<jf_2m—’

and let

H* = .
i p \ {0}, 1=
and the characteristic

Th
=)
\E D__
U H* 7 o
i LS&W&E}B 2m

fu
Net s
——Ction of p i
is a bent function o0 Vorr'

F
AMILy pg(+)
. The union of 20¥ 2m31+1 pairwise "disjoint" m—dimensional

Sub
\\S@ Of V .
== "2m lé_g,difference get in VZm.

transform" gf_(the characteristic

teristic functiol of)

fu
\nct-
g M2 (the charac
transforle:

REMA
RK 6.3.10. The "Fouriel
L)Hi. Thus

FaM
ILy p
S i
is closed under the LaliZ of Fourier
The -)
next result shows that all bent pumetions oF paMILY PS
ndecomposable.

(and
ma
Ny of those of FAMILY pg()y are
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PROOF. By applying (if necessary) a nonsingular linear

transformation of V2m we may assume that

H

Il

g {(v,O)eVZm : veVm}

and

s
Il

{(O,V)EVZm S veVm} .

Then by Theorem 3.2.2 the characteristic function of D =L)H§ contains

the monomials XIXZ SYere Xm and Xm+1Xm+2 cee sz. qed.

We observe that if E 1is a PS(+) difference set which is the union of
a nonmaximal partial spread (i.e. one which can be extended by adjunction
of another m—dimensional subspace) then the same argument applied to the
complement E of E shows that E, and hence E, has degree T. That

this need not be the case is shown by

s "
THEOREM 6.3.12. If m 1is even, then FAMILY PS( ) contains

"the" quadratic bent function.

PROOF. We showed in Chapter &4 that, whenever m is even, the

quadratic form

= 4+ ... + XX
wm X1Xm+1 o X2Xm+2 m 2m

over any finite field F = GF(q), q a power of 2, has a Pall partition.
) ) m-1 -
Equivalently, the set Q of zeros of ?m is the union of q ~+1 pairwise
m . ;
"disjoint" m-dimensional subspaces of ™. Thus, Q is the union of a
partial spread containing qm_l+l components. The special case q=2 then
- L. 8
shows that Q is a difference set in PS( ) uhose characteristic function

is the (complement of the) canonical quadratic Wm on V2m . qed.
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COROLLARY . Not every bent function in FAMILY PS(+) is equivalent

to the complement of a bent function in FAMILY PS(_).

We now restrict our attention to the subfamily of FAMILY PS
obtained (in accordance with Theorem 5.4.3) from the affine plane

over GF(2™). For this subfamily, every PS(+) set is the complement

of a PS(-) set.

FAMILY PS/ap. The nonzero points lying on any 2™ 1 1ines through

the origin constitute a difference set in the affine plane L @L,

L = GF(Zm). The bent functions (i.e. characteristic functions)

corresponding to these difference sets are equivalent to functions

of the form
gMll=o,
£(X,Y) = t{n(X ¥¥is

where t{+} is the trace with respect to L/F and m: L > L is any

function for which t{m(z)} 1is a balanced function on L which vanishes

at 0 (in particular, m may be taken to be any permutation fixing 0).

PROOF. We need only verify the assertion about the characteristic

polynomial £(X,Y).

If our difference set D consists of the nonzero points on

the Zm—l lines

L Ty swee L _ 4
2 2m 1

1’
We may assume (since GL(2,2m) is doubly transitive on the 2™+1 lines

through the origin in L ®1L) that neither of the lines X=0 and Y=0

is among the Li's. Suppose Li = {(X,aiX):XeL}, 1 < i f_Zm_l.



Let S be the subset of L containing the Zm“1 elements which have
trace 1 with respect to L/F. Let w be any permutation of L which
fixes 0 and maps A = {aj, az, ..., a2m~1} onto S. Put

£(X,Y) = t{n(x2"~2Y)}.

Then £(X,Y) = 16— t{r(x2"-2y)} = 1

N
/
3
s
<
NE!
1
N
<
N
™
wn

=

AS

Thus, f(X,Y) is precisely the characteristic fumction of D. It is

not necessary to use a permutation for the map w; any map m with

n1[S]=A will do as well. qed.

COROLLARY. For any integer d, (d,Zm—l)=l,

m
£(X,Y) = t{x2 —1-dyd}

m
is a bent function on L & L, L = GF(2").

Note that for d = 1 we get the function

£(X,Y) = t{x2"-2y}

98

which is also in FAMILY M, the permutation of that representation being

the permutation of L which fixes 0

its multiplicative inverse.

This particular bent function has appeared in the literature in

disguise. In his remarkable paper [24] of 1965 R. J. Turyn gave the

following result.

and maps each nonzero element to



REMARK 6.3.13. Let G be the direct sum L & L, where

L = GF(2m). Then the subset

D = {(m1+m2, mym,) : ml,mzeL}

+2™ 1 4™ 1y _difference set in G.

PROOF. The set D 1is precisely the set of points of the

affine plane L ® L 1lying on the lines

Y = mX + m?, meL.

Thus, D

il
g5C

G 2
k}J( { (X, mX+m?)}

= U U {(X, m¥+m?) }
X m

= (08 L) xkaio Wi, mX+m2) })

= (0 ® L) ngo Wi, (m24m)x2) 1),

which is equivalent under the automorphism
(X,Y) » (X%,Y)
to the set of points lying on the lines

X=0

and Y (m?+m)X, meL.

But the map m > m24m 1is a 2-1 (F-linear) mapping of L onto the
kernel of the trace map t : L » F and we see that Turyn's "second

bent function" is equivalent to the set of zeros of

FLEY) = r{x2"-2y}
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100
on L ® L. This bent function is the simplest member of FAMILY PS/ap,
obtained by taking the map m to be the identity map. qed.

REMARK 6.3.14. Turyn's "second bent function" is in FAMILY M
and FAMILY PS.
REMARK 6.3.15. All difference sets in FAMILY PS/ap are fixed
under the multipliers
(X,Y) ~ (aX,aY), aecL* = L\{0}.
Thus, the multiplier group of any difference set equivalent to one in
FAMILY PS/ap must contain an element of order 2"-1.
We now consider a different description of the difference sets
in FAMILY PS/ap. Let K be a quadratic extension of L and let w
be an element in K\L. Then the (additive group) isomorphism
(X,Y) ~—>>X+Yw
consisting

carries the spread for L @ L

K = L(w)

between L & L and
K consisting of

of the lines through the origin onto the spread for

the subspaces
= = = B2 = p2h
Hy = L, Hy = 6L, Hy = 0L, ---» HZm 8- L

The sets of nonzero elements

where 6 1is a (2m+l)th root of unity in K.

H* = Hi\{O}, 0<i<2",

are precisely the (multiplicative) cosets of L* in K¥*.
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Thus, we have the alternative description

FAMILY PS/ap (cyclotomic form). The union of any 2™ cosets of

m
1* = (K%)2 H1 in K* is a difference set in K = GF(4"). These

difference sets are fixed by the (multipliers) automorphisms

X - aX, aeL*.

The bent functions corresponding to these difference sets are of the

form

m
g(XZ _1),

where g : K+ F is any function satisfying 1) g(0)=0 and ii) g(h)=1

2m—l

for exactly elements of H, K* = L*H.

We consider an example of this construction. We take m=4 so that
K = GF(28).
It is easy to see that the trace map
t(Z) = TrK/F{Z}

takes the value 1 on exactly 8 elements of H; indeed, the element 1
has trace 0 and the set H\{1} is the union of exactly two conjugate
classes on which T(Z) must take different values (if 6 generates H,
the elements ei(1+e), 1< i< 8, form a basis for K over F so

that T{Gl} # {61} for some i.)
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Thus, we have the

EXAMPLE 6.3.16. The function

£(X) = t{x15}

is a bent function on K = GF(28).

REMARK 6.3.17. The bent function in EXAMPLE 6.3.16 is not

affinely equivalent to any bent function in FAMILY M.

PROOF. We first observe that any FAMILY M bent function
m(X)-Y + g(X)

on V2m = Vm & Vm has the property that any derivative with respect to

a 2-dimensional subspace of 0 @ Vm must vanish identically on V2m' From
our results on affine invariants obtained in Chapter 3, it follows that

any bent function on V2m which is equivalent to one in FAMILY M

must have the property that for some m-dimensional subspace W of

V2m the derivative with respect to every 2-dimensional subspace of W
must be identically zero on V2

m.

We now consider our example
£(X) = t{x!°}

on K = GF(28). We shall show that, contrary to the behavior of
FAMILY M bent functious, no 2-dimensional derivative of £(X) can
vanish. For let a,b be distinct nonzero elements of K. The

derivative of f with respect to the space spanned by a and b is
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g(X) = £(X) + f(X+a) + £(X+b) + £ (Xtatb)
= o{x!5 + (X+a)l5 + (X+b)15 + (X+atb)!®}.
12
= ¥ t{[al®t + bISTE + (atb)!57F] X"}
t=1
= 8 + 12 4 10 9
t{C X"} + tiCc X b+ oole X b+ ricgX ¥a
where Cg = [a7+b7+(a+b) 7] + [a11+b11+(a+b)11]2 + [a13+b13+(a+b)13]4+
[altbl4+(atb) 1] 8
2 L
C,, = [a® +(a+b)®] + (29424 (ab)?] + [a'?+b 24+ (atb)1?]
2
Gy = [a%+54(atp)®] + [a!%4b "+ (atb) "]
Cy = [aB+b®+(ath)®].

Now g(X) vanishes identically if and only if

Cy = C

8 12 = C19 = Cg = 0.
In particular, g(X) vanishes only when

0 =C, = [a®+%+(at)®]

[a3+b3+(a+b)3]2.

[ab(atb)]?.

Sipce a and b were assumed to be distinct and nonzero, we see

that g(X) cannot be the zero function. qed.
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This example thus establishes the

THEOREM 6.3.18. There exist bent functions in FAMILY PS
which are not equivalent to any bent function in FAMILY M.

COROLLARY. For all m > 3 there exist bent functions on
V2m which are not equivalent to any bent function in FAMILY M.

PROOF. Consider V2m as the direct sum V8 @ V2m—8'
The bent function g(X,Y) = £f(X) + q(Y), with f equivalent to our
EXAMPLE 6.3.16 on V8 and q the quadratic on Vém—8’ will do the

qed.

job.

We point out here that several years ago K. D. Lerche (private

communication) posed the question of whether elementary-2 difference

sets could be constructed by cyclotomy in K = GF(22m) — more
2-1 pyltiplicative cosets of the

specifically as the union of
Lerche (with the

m
subgroup of eth powers in K%, with e = 2 * 1.

help of a computer) had found such sets for m = 3.

m .
Our FAMILY PS/ap settles completely the case e = 2'+l; here
powers is precisely the multiplicative group L#

the subgroup of e
and any choice of cosets yields a difference

L = ¢F(2™
Such a difference

of the subfield
is not so happily resolved.

set. The case e = 7 -1

set has characteristic function

G : K~ F

given by

c®) = gx2 ),



L
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where

satisfies

i) g(0)=0, and ii) g is balanced.

We have already encountered (in Chapter 4) an example of such a

bent function; we restate the result as

REMARK 6.3.19. If K has degree 2 over L which has

degree m over F = GF(2), then the function

_ 24
£(X) = TrL/F{X }

is a quadratic bent function on K.

PROOF. For any nonzero 6 in K the derivative of f with

respect to 6 1is given by

Il

24 2041
fe (X) TrL/F{ (X+6) + X }

m m
2" 4+ 92 x} + £(6
TrL/F{GX 9% X} (8)

TrL/F{e?-mx} + £(8),

which, being a nonconstant (affine) linear function, is balanced on K.

Equivalently, we may observe that the map

£(XHY) + £(X) + £(Y)

B(X,Y)

{xsz}

TrK/F

is a nondegenerate bilinear form on K x K so that f(X) 1is a

nondefective quadratic on K. qed.
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It is useful here to note the connection between the Fourier-
Hadamard transform and Singer difference sets [10]. If £ is any
function to F = GF(2) from = GF(Zm), the Fourier transform

s

£ dis given by

m z o
2T £(X) = ) £2(D) 1} (K,

this sum being taken over all Y in L. If £(0) = 0 then it is

straightforward to verify that for any X # 0
2™ £(X) = 4A(X) - 2|f]

where |f| denotes the cardinality of f and A(X) is the number of

Y in L satisfying f(Y) =1= F{XY}. Alternatively, if we let

TL/

A denote the Zm—l—subset of L* given by

4 = {Xel# F{X} = 1},

: TL/

we may observe that for all =xeL* A(X) is precisely the coefficient
= s

on X in the element f( l)A of the group ring Z[L*]. Then 2 £(0)

2™ - 2|f|; and, if we let (f) denote the restriction of f to L%,

we have Zm(%) = 4f(—1)A - 2|f|L* in Z[L*]. The set A is a

Singer difference set in the cyclic group L*; it has parameters

- -2 -2
(2m4l, 2m l, 2m " 2m )

so that

in the group ring Z[L*].
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Now let K be the quadratic extension of L and let D be

the corresponding Singer difference set in K¥; i.e.
= X . =
D = {ZeK* : TK/F{Z} il
Let E be the 2"-subset of K* given by

E = {YeKk* : (Y) = 1}

T}/L

and let H be the subgroup of K¥* such that K* = L*H. Then it is
not hard to verify that D = AE and EH = 2AH in Z[K*]. A subset

G of K* comprised of 2™ 1 cosets of H may be represented as

G =gH din Z[K*] where g 1is a 2mrl—subset of L*. By the preceding

observations it follows that G is bent iff

where f is again a 2™ ! _subset of L*; indeed, fH is the "Fourier

transform" of G = gH. But now we may write

¢ Vp = Py = @) @p) = 261 %8,
which implies

g1 p2 o 9B 25 4 2™ sy,
Multiplying this last equation by A(-l),we obtain

g(—1)A = 21
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We are thus able to characterize this second class of cyclotomic

bent functions as follows.

+
FAMILY C . Let g be a balanced function from L = GF (2™ to

F = GF(2) which vanishes at 0. Let G be the function on K = GF(22m)

given by

G(z) = g(z2™71).

Then G 1is bent iff there exists a balanced function

h ¢: L%

such that

hey) = g(x™h)

for all YeL*, where

™ E(Y) = ¥ £x(x) Trx,  {¥X}

/¥
XeL

for all Yel.

Remark 6.3.19 shows that FAMILY ¢t contains "the" quadratic bent function

which arises from a linear g (if g(X) = Tr F{aX}, the corresponding

L/

h is h(X) = Tr {a_1X}). We know of no other bent function of this

L/F

type; we thus pose the

+ :
QUESTION. Does FAMILY C  contain a bent function of degree

greater than 2? Equivalently, do there exist nonlinear functions

g, h : L > F satisfying 1) g(0)=0=h(0); ii) £(0)=0=h(0), and

~ ~ _‘1
iii) g(X)=h(X ") for all XeL*?
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Notice that the difference set which is the set of zeros of the

quadratic function

£(R) = Try {x2"H}

L/

on K = GF(2?M) can be expressed as the union of e N} pairwise

"disjoint" subgroups of order Zmrl; namely, the Pall partition

P:S, 6S, 623, ..., 62°S,

where 06 1s a primitive (2m+l)th root of unity in K* and S is

the kernel of TrL on L. This suggests a method by which we may

/F

be able to obtain other difference sets.

REMARK 6.3.20. Let Hy, Hy, ..., H2m+1 be pairwise "disjoint"

(m-1)-dimensional subspaces of Zim} Then D =\JHi is a difference

set in Zim iff every hyperplane of Zim contains exactly one H,

or exactly three Hi's.

PROOF. In the group ring notation we have

e * C I
D=1+) Hey By = Hi\{O}-

2m
Then, for any nonprincipal character x of Z,,

x(@) =1+ } x(H]

]

14 620751y + (-0 1)

s

where t is the number of Hi's contained in the hyperplane corresponding
to ¥ (i.e. the hyperplane on which x is the principal character). The

result is then clear. qed.
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Now consider the spread for the affine plane L ©® L,

L= GF(Zm), given by the lines
X =0; Y = mX, mel.

For each of these m-dimensional spaces, we choose an (m-1)-dimensional

subspace; in particular, suppose we pick the subspaces
B = {(0,Y):t{Y}=0}; Hm = {(X,mX) :1{p (m)X}=0}, meL.

It is not hard to verify that these subspaces meet the conditions of
Remark 6.3.20 as long as the map p:L~»L satisfies 1) p(z) does not
vanish; ii) p(z)+z is one-to-one; iii) p(z)+B(z) is two-to-one for all

g#1 in L. The resulting set is then the set of zeros of the function
£(X,Y) = t{Y+Xo (x2"-2Y) }
on L ® L. We restate this result as

FAMILY H. Let o : L >~ L be a permutation such that o(z)+z does

not vanish on L and o(z)+fz 1is two-to-one for every BeL*. Then the

points in the subspaces H_={(0,Y) :t{Y}=0}, Hm={ (X,mX) :t{ (0 (m)+m)X}=0},meL,

m " .
constitute a difference set in L ® L, L = GF(2). This set 1s the set

of zeros of the function

£(X,Y) = t{Yy + XO(XZm_ZY)}.

We remark that choosing o(z) = zzn_r+6, with (r,n)=1 and © not in the

= r_
range of it Ty yields the bent function f(X,Y) = t{oX+y+x2 1y}

which has degree r and is also in FAMILY M.
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The final "family" we present here is actually a characterization

of bent functions having a certain restricted polynomial form. In his

beautiful paper [22] of 1966 Rothaus included the

FAMTLY 0°. If A, B, C, and A+ B+ C are all bent functions on

vV , then
2m

£(X,y,2) = A(X)B(X) + A(X)C(X) + B(X)C(X) + [A)+B(X) ]y + [AX)+C(X)]ztyz

is a bent function on V .
== = 222 Vomb

At the end of his paper [22] Rothaus stated without proof the

REMARK 6.3.21. The bent function in FAMILY 0” is the most

general bent function of the form

£(X,y,z) = R(X) + S(X)y + T(X)z + yz.

We shall now present another characterization of the above class of
bent functions; a curious property of the Hadamard transform will then
be used to establish FAMILY 0” and Remark 6.3.21. In what follows we
employ several typographical shortcuts. First we use é to denote
the complement g+l of the function g. Secondly, we suppress the
variable X in functions which depend only on X ; the capital letters

A, B, C, R, S, T denote such functions. Finally, we use g as an

alternative to g to denote the Fourier transform of g.

FAMILY 0. £(X,y,z) = R+ Sy + Tz + yz is bemt on V, ., if and

only if R + ST, R + ST, R + ST, and R + ST are all bent on V, .
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PROOF. We regard V as the direct sum V2m () V2 and

2m+2

~

use the "Box Theorem'" (Theorem 3.3.5). Letting f"‘[:I (resp. fD)
denote the 22M x 4 mnatrix whose rows and columns are indexed by
the lexicographically orders vectors in V9m and V2 and whose

(u,v)th entry is f*(u,v) (resp. fu,v)), we may write

Al

£ = u! £%0
2m

!,
2

The columns of f*I:l correspond to the functions

f.,= £(X,0,0) = R

00
£y = £f(X,0,1) =R+ T
fi10 = f(X,1,0) =R+ S
£, = f(X,1,1) =R+S+ T+ 1,

so that the columns of HE; f*U

0

the columns of f#* ; i.e.

are simply the Fourier transforms of

- | *D = 3 2 2 e
HZm £ [f £ £ f

It follows that
~ ~ ~ A + A
0(x,y,2) = £(Epp(0 + (D £, + DY £ + DI E ).

But it is easily seen that if Sz(xl,xz,x3) = x%, t XX + XX,
and A, B, C are arbitrary Boolean functions on Vn then the composite

function S, (A,B,C) has Fourier transform

[SZ(A,B,C)]A = -[A% B +C - (B0 1.

N =



A

Thus, we have

Bonot SV B B B (B B B Y6

which may be expressed in terms of R, S, and T by

%D

The assertion

We now

REMARK

= %[(R+ST)”, (R+ST) ", (R+ST)", (R+ST)"].

of the theorem is now obvious. ged.

observe a curious property of Boolean functions.

6. 3,22 Let a, b, ¢ be arbitrary Boolean functions

on V . Then
n

there exist unique functions A, B, C such that

AB + AC + BC

AB + AC + BC

AB + AC + BC.

Indeed, the functions A, B, C are given by

PROOF.

(a”,b",

where H =

ab + ac + be

ab + ac + be

ab + ac + bc.

Taking Fourier transforms, we need

¢, (athb+e)”) = (A",B7,C", (A+B+C) )H,

e
il e
B
e

But (since H is involutory) this is equivalent to

(&°,B

c”, (A+B+C) ") = (a”,b",c", (atb+c) )H. qed.

00’f01’



We may use this result to establish Rothaus'Remark 6.3.21.

According to FAMILY O the most general bent function of the form

£(X,y,2) = R(X) + s(X)y + T(X)z + yz

is the function for which

+ f
OOfOI f00 10 E f01f10

+ £ + £
00 01 f00 10 01f10

A+B+C = £ f + 00f10 = g f01f10

are all bent, where

£40 = R
fg = R+ T
£,,=R+S

But by Remark 6.3.22 we have

so that

£y, = AB + AC + BC
fo, = AB + AC + BC = foq
£, = AB + AC + BC = fyg

R, S, and T are given by

AB + AC + BC

=
1l

+A+C

+ A + B,
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It follows that the most general bent function of the form

£(Xs5¥v,2) R+ Sy + Tz +yz on V is, indeed, given by

2m+2

f(X,y,2) AB + AC + BC + (A+B)y + (A+C)z + yz, where A, B, C,

and A+B+C are all bent on V2m

Note that, if A, B, C, and A+B+C are all bent on VZm’

we have immediately that the "box"
[g*] = 2™[A",B ,C ", (A+B+CHL) "]

represents a bent function on V2 . Indeed, transforming the

mt2

columns of [g*] yields
[A%,B*, C*%, (A+B+C+1)*]

every row of which is necessarily a bent function on V2. 0Of course,
these bent functions are just the "Fourier transforms" of the bent

functions in FAMILY 0. Thus, we have
FAMILY 5 s If A,B,C, and A+B+C are bent on V2m, then
g(X,y,2) = a(X)yz + bX)yz + c(X)yz + d(X)yz

is bent on V , where a,b,c, and d are the "Fourier transforms"

2m+2.

of A,B,C, and A+B+C+1l, respectively. These bent functions are the

"Fourier transforms" of those in FAMILY 0.
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