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In this dissertation, we explore the use of pursuit interactions as a building

block for collective behavior, primarily in the context of constant bearing (CB)

cyclic pursuit. Pursuit phenomena are observed throughout the natural environment

and also play an important role in technological contexts, such as missile-aircraft

encounters and interactions between unmanned vehicles. While pursuit is typically

regarded as adversarial, we demonstrate that pursuit interactions within a cyclic

pursuit framework give rise to seemingly coordinated group maneuvers.

We model a system of agents (e.g. birds, vehicles) as particles tracing out

curves in the plane, and illustrate reduction to the shape space of relative positions

and velocities. Introducing the CB pursuit strategy and associated pursuit law, we

consider the case for which agent i pursues agent i + 1 (modulo n) with the CB

pursuit law. After deriving closed-loop cyclic pursuit dynamics, we demonstrate

asymptotic convergence to an invariant submanifold (corresponding to each agent

attaining the CB pursuit strategy), and proceed by analysis of the reduced dynamics



restricted to the submanifold. For the general setting, we derive existence conditions

for relative equilibria (circling and rectilinear) as well as for system trajectories

which preserve the shape of the collective (up to similarity), which we refer to as

pure shape equilibria. For two illustrative low-dimensional cases, we provide a more

comprehensive analysis, deriving explicit trajectory solutions for the two-particle

“mutual pursuit” case, and detailing the stability properties of three-particle relative

equilibria and pure shape equilibria. For the three-particle case, we show that a

particular choice of CB pursuit parameters gives rise to remarkable almost-periodic

trajectories in the physical space. We also extend our study to consider CB pursuit

in three dimensions, deriving a feedback law for executing the CB pursuit strategy,

and providing a detailed analysis of the two-particle mutual pursuit case.

We complete the work by considering evasive strategies to counter the motion

camouflage (MC) pursuit law. After demonstrating that a stochastically steering

evader is unable to thwart the MC pursuit strategy, we propose a (deterministic)

feedback law for the evader and demonstrate the existence of circling equilibria for

the closed-loop pursuer-evader dynamics.
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Chapter 1

Introduction

1.1 Background

Nature abounds with the phenomenon of pursuit and evasion. In some in-

stances pursuit and evasion is a matter of survival, as the predator seeks to capture

its next meal and the quarry attempts to avoid such a fate by maneuver, stealth,

or defense. In some cases, pursuit and evasion is part of a mating ritual in which

reproduction, not sustenance, is the pursuer’s goal. And in other cases, pursuit and

evasion is simply a part of animal play behavior, often serving as a training ground

for more perilous encounters.

Pursuit also plays a significant role in the vehicular setting, as in military

encounters between planes and missiles or between adversarial unmanned vehicles.

This context presents compelling reasons to develop control strategies which opti-

mize certain aspects of the pursuit-evasion encounter. For instance, a pursuer may

want to minimize capture time or steering requirements (i.e. fuel expenditure); an

evader may seek to maneuver in such a way as to maximize time to capture (or

1



evade capture altogether) or to maximize the effective coverage area of some type

of defensive weapon.

The study of pursuit and evasion has fascinated mathematicians for centuries.

While the study of pursuit may date as far back as Leonardo Da Vinci, it was the

French hydrographer and mathematician Pierre Bouguer (1698-1758) who ignited

modern interest in the subject by solving for the “pursuit curve” traced out by a

naval vessel pursuing an evader which flees in a straight line[2]. Interest in the sub-

ject continued as various mathematicians proposed variations on this theme, mostly

focused on deriving pursuit curves for more complex evader trajectories. While most

of these problems could best be described as pursuer-pursuee engagements, a rather

original game-theoretic approach was developed by Isaacs in the 1960’s, which ad-

dressed adversarial pursuer-evader encounters[23]. This differential games approach

described “optimal” strategies for each player as well as the curves traced out under

optimal play. Military applications have also driven the development of an extensive

literature on missile guidance in a pursuit-evasion context [51, 44].

In considering a control-theoretic study of pursuit, it is important to distin-

guish between pursuit strategies and the particular feedback control laws used to

execute those strategies. Pursuit strategies are specifications of a desired geome-

try for the encounter, usually expressed in terms of relative velocities, headings,

and ranges. These strategies then lend themselves to the construction of pursuit

manifolds which are characterized by the specified geometry, and the effectiveness

of an associated pursuit law can then be assessed in terms of the properties of

the associated pursuit manifold (such as invariance, accessibility, stability) under

2



the closed-loop system dynamics. In [57], the authors describe the classical pursuit

(CP) strategy and the constant bearing (CB) pursuit strategy, and derive biologically

plausible CP and CB pursuit laws (in the plane) which serve as a basis for much of

the work in this thesis. The CP strategy corresponds to our most intuitive notion

of pursuit, and prescribes that the pursuer should always move directly toward the

current position of the evader. The CB strategy extends CP by prescribing a fixed,

possibly non-zero angular offset between the pursuer’s heading and the direction

to the evader. We present a more precise definition of these strategies and associ-

ated pursuit laws in section 2.3. The motion camouflage (MC) pursuit strategy is

a stealthy pursuit strategy observed in nature, in which the pursuer attempts to

maneuver so as to minimize the perceived relative motion from the standpoint of

the pursuee. A pursuit law for attainment of the MC strategy is developed in [27]

and figures prominently in chapters 5 and 6.

Though pursuit is often thought of as a competitive or adversarial phenomenon,

we will demonstrate that pursuit can also serve as a building block for collective be-

havior. The last twenty years has seen a surge of research interest in the analysis

and synthesis of collective behavior, in biological fields as well as in engineering.

With regards to analysis, researchers have attempted to identify the mechanisms

underlying various exhibits of collective behavior observed in nature, such as the

remarkable flocking maneuvers of starlings [13], the schooling behaviors exhibited

in marine environments [45], and the swarming of insects such as locusts [9]. Typ-

ically, it is hypothesized that relatively simple local interactions between nearest

neighbors (with respect to some metric) are responsible for generating the observed
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emergent global behavior. As an example, Bruckstein showed that a trail of ants

can iteratively straighten a path between an anthill and a food source by the simple

strategy of following directly toward the immediate leader ant on the path [7].

In regards to synthesis of collective behavior, researchers in the controls and

robotics communities have developed a number of methods for designing and imple-

menting “cooperative control” [43, 32, 25, 24]. With applications including search

and rescue, military surveillance, highway automation, and air traffic control, co-

operative control provides a promising approach to developing robust and scalable

solutions.

A major contribution of this thesis is to demonstrate that relatively simple uni-

directional CB pursuit interactions executed in a cyclic pursuit framework give rise

to a remarkably rich display of group trajectories, supporting the claim that pursuit

can serve as an effective building block for collective behavior. Cyclic pursuit refers

to the phenomenon in which agent i pursues agent i + 1, modulo n, where n de-

notes the total number of agents. On one hand, our study falls primarily under the

analytical approach to collective behavior, as we consider the closed-loop dynamics

associated with a cyclic CB pursuit system and employ tools of symmetry, reduc-

tion, and nonlinear analysis to characterize the existence and stability properties of

particular emergent behaviors such as relative equilibria and shape-preserving spiral

motions. On the other hand, cyclic CB pursuit presents the designer with n CB

angle parameters which can be used to select a desired steady-state system behavior,

and therefore our work also provides a tool for synthesizing collective behavior.

Original studies of cyclic pursuit were driven primarily by mathematical cu-

4



riosity, beginning with the question Edouard Lucas posed in 1877, which asked what

trajectories would be traced out by three “dogs” which started at the vertices of an

equilateral triangle and pursued one another at a constant speed. (See [50] for a his-

torical summary of the cyclic pursuit problem.) From Brocard’s original answer (the

dogs trace out logarithmic spirals and meet at a common point) to the variations

that have been proposed (three dogs – or “bugs” – on a non-equilateral triangle,

n bugs on a regular polygon, etc.), the problem has traced out its own interesting

history [30, 50, 8]. More recently, there has been a growing interest in the occurrence

of network motifs in biological systems (e.g. gene regulation, food webs, etc.), of

which the cycle motif (or feedback motif ) serves as an example [38, 58, 1]. One such

illustration of the cycle motif is provided by [12], where the authors demonstrate

that the cycle motif can be used at the biomolecular level to engineer an oscilla-

tory network, which they term the repressilator. A current discussion surrounding

network motifs centers on the question of whether the characterization of network

architecture in terms of the statistical description of motif occurrence can truly pro-

vide significant insights into system behavior apart from an understanding of the

relevant parameters and dynamics which govern the interactions across the network

[22]. Thus it is of interest that in the current work a single motif (the cycle motif)

gives rise to a wide array of diverse system behaviors, strongly dependent on the

choice of CB angle parameters.

More recent work on cyclic pursuit from a control-theoretic perspective has

been spurred by an interest in synthesizing collective behavior for a group of au-

tonomous agents. An initial formulation in terms of linear dynamics was presented

5



by Lin, Broucke and Francis in [33]. Marshall, Broucke and Francis then presented

a subsequent formulation in terms of wheeled vehicles (modeled as kinematic unicy-

cles) engaged in cyclic (classical) pursuit, with steering control governed by linear

feedback on the heading error[36]. The authors classified the possible equilibrium

formations (which are all regular polygons) and provided a local stability analysis

based on linearization of the relative dynamics. In [37], the same authors extended

their analysis to the case where vehicle speeds were also variable and governed by

linear feedback on the intervehicle range, once again characterizing the stability of

equilibrium formations in terms of the ratio of the two control gains (i.e. speed

and steering). In [52], Sinha and Ghose generalized these results to heterogeneous

formations of agents with differing speeds and controller gains. A novel hierarchical

approach to cyclic pursuit was also presented by Smith, Broucke and Francis in [53],

in which subgroups of agents engaged in cyclic pursuit within group, pursue other

subgroups in a cyclic fashion.

While the previous references all dealt with cyclic classical pursuit, Pavone and

Frazzoli introduced a formulation of cyclic constant bearing pursuit in [46], in which

Hilare-type mobile robots employ CB pursuit with a common CB angle parameter.

After using output feedback linearization about a “hand” position to transform the

system into normal form, the authors prove global stability of certain equilibrium

formations. Ramirez-Riberos, Pavone and Frazzoli also present a three-dimensional

formulation of cyclic CB pursuit in terms of single-integrator and double-integrator

linear dynamics in [47].
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1.2 Overview

Chapter 2 begins with a general development of our framework for modeling

n particles (agents) interacting in the plane, in terms of the natural Frenet frame

equations as well as the corresponding Lie group formulation. We then outline a

symmetry reduction to the 3n − 3 dimensional shape space, the space of relative

positions and velocities, and present a particular parametrization of the shape space

in terms of 3n scalar variables with three algebraic constraint equations. Having

described the general formulation, we proceed by prescribing a particular pursuit

strategy (CB pursuit), a pursuit law (2.60), and a pursuit graph (cycle), which

combine to yield the cyclic CB pursuit dynamics (2.61) that form the basis for the

subsequent analysis. Key results are then presented in Propositions 2.3.2, 2.4.1,

and 2.4.2, where we first prove asymptotic convergence to an invariant subman-

ifold and then derive existence conditions for relative equilibria and “pure shape

equilibria” in terms of the reduced dynamics on the submanifold.

In chapter 3, we present a characterization and stability analysis for two illu-

minating low-dimensional cases: the n = 2 “mutual pursuit” case, and three-particle

cyclic CB pursuit. These low-dimensional examples permit tractable analysis while

providing helpful insights into the behavior of cyclic pursuit systems. In the two-

particle case, a change of variables renders the shape dynamics integrable, and we

derive closed-form expressions which describe system evolution on the full shape

space. We also solve the reconstruction problem on the invariant submanifold by

deriving a closed-form expression for the motion of the center of mass. In the three-
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particle case, a further reduction to two-dimensional “pure shape” dynamics enables

phase portrait analysis and a subsequent characterization of stability properties for

rectilinear equilibria, circling equilibria, and “pure shape equilibria” on the invariant

submanifold. In the course of studying three-particle rectilinear equilibria, we show

that a particular choice of constant bearing angle parameters results in a conser-

vative system, with corresponding trajectories in the physical space which display

remarkable quasi-periodic precessing behavior. The chapter ends with a full char-

acterization of the three-particle symmetric case, in which each agent employs the

CB pursuit law with the same CB angle parameter α.

In chapter 4, we extend the concept of the constant bearing pursuit strategy to

the three-dimensional setting, and propose a new three-dimensional CB pursuit law

for executing the strategy. The three-dimensional CB pursuit strategy is fundamen-

tally different from the planar strategy, in that the planar strategy prescribes both

a constant bearing angular offset and a particular direction (i.e. counterclockwise),

while the 3-D strategy prescribes only the angular offset. In the context of cyclic

CB pursuit, we prove asymptotic convergence to an invariant submanifold and de-

rive the associated reduced dynamics (4.21) on the submanifold. We then provide

a complete characterization of the two-particle mutual CB pursuit system, deriv-

ing closed-form expressions for the particle trajectories in R3, and present existence

conditions for relative equilibria for the general n-particle case.

Chapter 5 signals a shift from examining cyclic pursuit to studying pursuit

in its more traditional adversarial setting. Here we consider motion camouflage in

the stochastic setting, considering the case for which the evader employs a stochas-
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tic steering process[14]. After reviewing a mathematical formulation for motion

camouflage and an associated feedback law (from [27]), we then develop the asso-

ciated stochastic differential equations (SDEs) for the system with stochastically

steering evader, and prove a proposition (5.3.2) concerning accessibility of motion

camouflage (for the pursuer) under appropriate assumptions. This result, which

is analogous to the finite-time accessibility result from the deterministic case (see

Proposition 3.3 in [27]), demonstrates that the motion camouflage pursuit law proves

effective even when the evader uses a randomized steering control. We complete the

chapter by considering families of admissible stochastic evader controls, and present

a method (based on Poisson counters) for emulating the “run-and-tumble” stochas-

tic steering process of bacterial chemotaxis.

Having demonstrated certain aspects of the effectiveness of the motion camou-

flage pursuit law, we turn in chapter 6 to the question of how an evader might best

counter the strategy. A proposed cost function provides the intuition for deriving

a suitable “Anti-MC” feedback law for the evader, which is designed to increase

pursuer-evader separation and force rotation of the “baseline vector” which relates

the pursuer and evader positions. The rest of the chapter is spent analyzing the

closed-loop “MC vs. Anti-MC” pursuer-evader dynamics, which yield both recti-

linear and circling relative equilibria. We present existence conditions and stability

characterization for the relative equilibria, and demonstrate that asymptotically sta-

ble circling equilibria exist even in some cases for which the pursuer has a speed

advantage and a higher control gain. Since circling equilibria can be viewed as a

“stand-off” condition and thus advantageous to the evader, we suggest that the

9



“Anti-MC” evasion law may serve as an effective counter-strategy to motion cam-

ouflage pursuit.

1.3 Preliminaries

1.3.1 Notions of invariance

Here we define several notions of invariance that will be used in this thesis.

The first notion of invariance is used in section 2.2.2 in the context of reduction

from the state space to the “shape space”, and can be found in [35].

Definition 1.3.1 Given a Lie group G, let Lg : G −→ G, h 7−→ g · h denote the

left translation by g, for any g, h ∈ G, and let ThLg : ThG −→ TghG denote the

linearization of the translation map Lg. Then a vector fieldX on G is a left-invariant

vector field if

(ThLg)(X(h)) = X(gh) (1.1)

for every h ∈ G. If a vector field is defined in terms of a feedback control law u(t),

we say that the control law is G-invariant if it renders the closed-loop vector field

left-invariant.

The following notion of invariance figures prominently in the description of

the CB Pursuit Manifold in section 2.3.

Definition 1.3.2 Given a manifold M and a vector field X on M , we say that the

manifold M is invariant under the vector field X if X is tangent to M .
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This definition implies that trajectories of the dynamics ṁ = X(m) which start on

M at time t0 will remain on M for all times t > t0.

1.3.2 Rotations and rigid motions in the plane

Throughout this thesis we will work with rotations and rigid motions in the

plane. For any θ ∈ [0, 2π), we let R(θ) denote the 2× 2 rotation matrix defined by

R(θ) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 , (1.2)

which acts on two-vectors by rotating them counter-clockwise in the plane through

an angle of θ radians. One can readily verify that the group of 2×2 rotation matrices

is isomorphic to SO(2), abelian (but SO(n) is not abelian for n > 2), and satisfies

the following properties:

R(θ1)R(θ2) = R(θ1 + θ2), (1.3)

R−1(θ) = RT (θ) = R(−θ), (1.4)

R(θ ± π) = −R(θ), (1.5)

|R(θ)a| = |a| , ∀a ∈ R2, (1.6)

R(θ) +R(−θ) = 2 cos(θ)1. (1.7)
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(The proof of properties (1.3)-(1.7) follows in a straightforward fashion from (1.2).)

In addition, the following are equivalent:

i. The null space of the matrix [R(2θ)− I] is nontrivial,

ii. R(2θ) = I

iii. sin(θ) = 0. (1.8)

(The proof of (1.8) is given in appendix A.) If the rotation angle θ = θ(t) is time-

varying, then the derivative of the corresponding rotation matrix is given by

d

dt

(
R(θ)

)
=

d

dt

 cos(θ) − sin(θ)

sin(θ) cos(θ)



= θ̇

 − sin(θ) − cos(θ)

cos(θ) − sin(θ)



= θ̇

 cos(θ + π/2) − sin(θ + π/2)

sin(θ + π/2) cos(θ + π/2)


= θ̇R(θ + π/2). (1.9)

It is frequently necessary to use the counterclockwise rotation by π/2 radians,

and therefore for any a ∈ R2 we define the notation

a⊥ , R(π/2)a. (1.10)

Application of (1.3), (1.4), and (1.5) yields the inner product identity (for any
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a,b ∈ R2)

a⊥ · b = aTRT (π/2)b = aTR(−π/2)b = aTR(π/2− π)b = −aTR(π/2)b = −a · b⊥.

(1.11)

The rigid motion group SE(2) describes rotations and translations in the

plane, with elements of the form

hi =

 Bi qi

0 0 1

 , (1.12)

where Bi ∈ SO(2) and qi ∈ R2. For h1, h2, . . . , hk ∈ SE(2), we let
∏k

i=1 hi =

h1h2 · · ·hk denote the ordered product of SE(2) elements, which simplifies to

k∏
i=1

hi =


∏k

j=1Bj q1 +
∑k−1

i=1

(∏i
j=1Bj

)
qi+1

0 0 1

 , k ≥ 2. (1.13)

(See appendix A for a proof of (1.13).)
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Chapter 2

Planar cyclic CB pursuit for n agents

2.1 Introduction

We begin our discussion of cyclic pursuit1 by formulating a model to describe

the movement of n agents interacting in the plane. Previous work on cyclic pursuit,

such as that presented in [33, 53], was based on a single-integrator model

ṙi = ui, i = 1, 2, . . . , n, (2.1)

where the vector ri denotes the position (in the plane) of agent i, and ui is a velocity

control. Cyclic (classical) pursuit can then be implemented with controls of the

form ui = k(ri+1− ri), where k is a positive control gain and un = k(r1− rn). This

formulation yields linear closed-loop dynamics characterized by a circulant matrix,

and it can be shown (see [36]) that the centroid of the formation is stationary and all

agents converge to the centroid. Since “rendezvous” is not always a desired outcome,

variations on the control law (such as ui = k[(ri+1 + ci)− ri] for some ci ∈ R2, as in

1The work in chapters 2 and 3 was originally developed with Justh and Krishnaprasad and

presented in [15, 17].
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[33]) are used to cause convergence to a desired formation. A version of cyclic CB

pursuit (with common pursuit angles) is also implemented in the single-integrator

model in [46].

Nonlinear models such as the kinematic unicycle model or the related Hilare-

type mobile robot model were used in the cyclic pursuit analysis of [36] and [46]

respectively. These models are related to our formulation (see section 2.2.1), but

the constant bearing pursuit law that we employ (see section 2.3) is quite different

from the control laws used in either of these referenced works. We will provide a

more detailed comparison in section 2.3.1.

2.2 Modeling interactions

2.2.1 Description of the state space

We describe the movement of agents in our system as unit-mass particles

tracing out twice continuously-differentiable curves in R2, deriving our dynamics

from the natural Frenet frame equations (see, e.g., [25] for details). As depicted in

figure 2.1, we let ri denote the position of the ith particle (with respect to a fixed

inertial frame), xi denote the unit tangent vector to the curve, and yi the unit

vector normal to xi (i.e., yi = x⊥i ). An n-agent system then evolves according to
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the particle dynamics given by

ṙi = νixi,

ẋi = νiyiui,

ẏi = −νixiui, i = 1, 2, . . . , n, (2.2)

Note that νi, the speed of particle i, could possibly be given by a time-varying

function, but in chapters 2 and 3 we assume that it is constant and equal to 1. Our

controls, ui, can be viewed as curvature controls or steering controls in the planar

setting. We also define the “baseline vectors” ri,i+1 by ri,i+1 = ri−ri+1, i = 1, 2, ..., n

(interpreted modulo n throughout this work).

System (2.2) evolves on the manifold Mstate defined by

Mstate =
{

(r1,x1,y1, . . . , rn,xn,yn) ∈ R6n
∣∣∣ ri 6= ri+1,

|xi| = 1, yi = x⊥i , i = 1, 2, . . . , n
}
. (2.3)

Note that we have only disallowed “sequential collocation”, i.e. the state manifold

does not include states for which ri = ri+1. This means that we restrict our analysis

away from the point of actual capture/rendezvous, allowing well-posedness of the

feedback laws of section 2.3 and in chapter 5.
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Figure 2.1: Illustration of particle positions and corresponding natural Frenet

frames for three particles in the plane.

2.2.2 Reduction from state space to shape space

We can also provide an equivalent representation of the state space in terms

of the rigid motion group G = SE(2) by defining gi ∈ SE(2) as

gi =

 xi yi ri

0 0 1

 , (2.4)

and therefore our system can be thought of as evolving on the cartesian product of

n copies of the Lie group SE(2), i.e.

Mstate =
{

(g1, g2, . . . , gn) ∈ SE(2)× SE(2)× · · · × SE(2)︸ ︷︷ ︸
n times

∣∣∣
gie3 6= gi+1e3, i = 1, 2, . . . , n

}
, (2.5)

where e3 = (0 0 1)T . This takes the form of a G-snake (see [31]) with the addi-

tional prohibition on sequential colocation. Our dynamics in terms of the Lie group
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formulation can then be expressed as

ġi = giξi = gi(A1 + A2ui), (2.6)

where ξi ∈ se(2), the Lie algebra of SE(2), and

A1 =


0 0 1

0 0 0

0 0 0

 , A2 =


0 −1 0

1 0 0

0 0 0

 (2.7)

generate the Lie algebra under bracketing.

In anticipation of implementing a cyclic pursuit framework (i.e. agent i pursues

agent i+ 1 modulo n), it is necessary to define the target of agent n’s pursuit. We

do this by introducing an additional element gn+1 ∈ SE(2) to our system state and

imposing the constraint gn+1 = g1. Therefore we have the equivalent representation

of Mstate given by

Mstate =
{

(g1, g2, . . . , gn, gn+1) ∈ SE(2)× SE(2)× · · · × SE(2)︸ ︷︷ ︸
n+1 times

∣∣∣ gn+1 = g1;

gie3 6= gi+1e3, i = 1, 2, . . . , n+ 1
}
. (2.8)

In this sense, we can think of our system as a G-snake which “bites its tail”.

We are interested in steering laws ui which leave our system dynam-

ics (2.2) invariant under the action of the special Euclidean group SE(2),

in the sense described by Definition 1.3.1. (Particular pursuit laws of

this form will be discussed in section 2.3 and chapter 5.) Steering laws of

this type (and the resultant closed-loop dynamics) permit reduction to the shape
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space, a (3n − 3)-dimensional quotient manifold Mstate/SE(2) of relative positions

and velocities of the agents. We can parametrize the shape space with n elements

of SE(2) by defining g̃i ∈ SE(2) as

g̃i = g−1
i gi+1 =


xi · xi+1 xi · yi+1 −xi · ri,i+1

xi+1 · yi yi · yi+1 −yi · ri,i+1

0 0 1

 , i = 1, 2, . . . , n. (2.9)

The state space constraint gn+1 = g1 can be exhibited in the shape space represen-

tation as

n∏
i=1

g̃i = 1, (2.10)

where the product notation is understood to imply the ordered multiplication of

the group elements, i.e.
∏n

i=1 g̃i = g̃1g̃1 . . . g̃n. We can therefore represent the shape

space (which we denote as Mshape) as

Mshape , Mstate/SE(2) =
{

(g̃1, g̃2, . . . , g̃n) ∈ SE(2)× SE(2)× · · · × SE(2)︸ ︷︷ ︸
n times

∣∣∣
n∏
i=1

g̃i = 1; (g̃i)
2
13 + (g̃i)

2
23 6= 0, i = 1, 2, . . . , n

}
,

(2.11)

where the two-digit subscripts indicate indices of matrix elements.

It can be shown (see [25]) that for each i, g̃i satisfies the dynamics

˙̃gi = g̃iξ̃i, (2.12)

where

ξ̃i = ξi+1 − Adg̃−1
i
ξi = ξi+1 − g̃−1

i ξig̃i. (2.13)
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Proposition 2.2.1. The constraint
∏n

i=1 g̃i = 1 is preserved by the shape dynamics

(2.12).

Proof: Making use of (2.12) and (2.13), we have

d

dt

(
n∏
i=1

g̃i

)
= ˙̃g1

(
n∏
j=2

g̃j

)
+

(
n−1∏
j=1

g̃j

)
˙̃gn +

n−1∑
i=2

[(
i−1∏
j=1

g̃j

)
˙̃gi

(
n∏

j=i+1

g̃j

)]

= g̃1ξ̃1

(
n∏
j=2

g̃j

)
+

(
n−1∏
j=1

g̃j

)
g̃nξ̃n +

n−1∑
i=2

[(
i−1∏
j=1

g̃j

)
g̃iξ̃i

(
n∏

j=i+1

g̃j

)]

= g̃1

[
ξ2 − g̃−1

1 ξ1g̃1

]( n∏
j=2

g̃j

)
+

(
n−1∏
j=1

g̃j

)
g̃n
[
ξ1 − g̃−1

n ξng̃n
]

+
n−1∑
i=2

[(
i−1∏
j=1

g̃j

)
g̃i
[
ξi+1 − g̃−1

i ξig̃i
]( n∏

j=i+1

g̃j

)]

= g̃1ξ2

(
n∏
j=2

g̃j

)
− ξ1

(
n∏
j=1

g̃j

)
+

(
n∏
j=1

g̃j

)
ξ1 −

(
n−1∏
j=1

g̃j

)
ξng̃n

+
n−1∑
i=2

[(
i∏

j=1

g̃j

)
ξi+1

(
n∏

j=i+1

g̃j

)
−

(
i−1∏
j=1

g̃j

)
ξi

(
n∏
j=i

g̃j

)]
.

(2.14)

Pairwise cancellation of terms in the summation leaves us with

d

dt

(
n∏
i=1

g̃i

)
= g̃1ξ2

(
n∏
j=2

g̃j

)
− ξ1

(
n∏
j=1

g̃j

)
+

(
n∏
j=1

g̃j

)
ξ1 −

(
n−1∏
j=1

g̃j

)
ξng̃n

+

(
n−1∏
j=1

g̃j

)
ξng̃n − g̃1ξ2

(
n∏
j=2

g̃j

)

=

(
n∏
j=1

g̃j

)
ξ1 − ξ1

(
n∏
j=1

g̃j

)
, (2.15)

and therefore (
∏n

i=1 g̃i) = 1 is an equilibrium point for the d
dt

(
∏n

i=1 g̃i) dynamics.

Remark 2.2.2 As a result of Proposition 2.2.1, we can analyze the system

˙̃gi, i = 1, 2, . . . , n as a full 3n-dimensional system of unconstrained dynamics with

the closure constraint (2.10) viewed as a constraint on the initial conditions.
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Figure 2.2: Illustration of the shape variables used to parametrize the shape space

Mshape.

2.2.3 A scalar parametrization of the shape space

The following proposition prescribes a system of shape variables for parametriza-

tion of Mshape.

Proposition 2.2.3. If we define κi, θi ∈ [0, 2π) and ρi ∈ R+ by

R(κi)xi ·
ri,i+1

|ri,i+1|
= −1, (2.16)

R(θi)xi ·
ri−1,i

|ri−1,i|
= 1, (2.17)

ρi = |ri,i+1| , i = 1, 2, . . . , n, (2.18)

(see figure 2.2), then Mshape can be parametrized by {(κi, θi, ρi), i = 1, 2, . . . , n},

subject to ρi > 0, i = 1, 2, . . . , n and the constraint equations

R

(
n∑
i=1

(π + κi − θi)

)
= 1, (2.19)

n∑
i=1

ρiR

(
i∑

j=1

(π + κj − θj)

)
= 0. (2.20)
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Prior to proving Proposition 2.2.3, we will state and prove the following

lemma which is applicable to sums of SO(2) elements.

Lemma 2.2.4. Let a, b ∈ R and let X1, X2 be real-valued two-by-two matrices of

the form

Xi =

 xi −yi

yi xi

 , i = 1, 2. (2.21)

Then the matrix aX1 + bX2 is singular if and only if it is the zero matrix.

Proof of Lemma 2.2.4: Observe that

det (aX1 + bX2) = det

 ax1 + bx2 −(ay1 + by2)

ay1 + by2 ax1 + bx2


= (ax1 + bx2)

2 + (ay1 + by2)
2, (2.22)

and therefore aX1 + bX2 is singular if and only if ax1 + bx2 = 0 and ay1 + by2 = 0,

i.e. if and only if aX1 + bX2 = 0.

Proof of Proposition 2.2.3: Since xi is a unit vector, (2.16)-(2.17) implies that

R(κi)xi = − ri,i+1

|ri,i+1|
,

R(θi)xi =
ri−1,i

|ri−1,i|
, (2.23)
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and therefore

cos(κi) = R(κi)xi · xi = − ri,i+1

|ri,i+1|
· xi,

sin(κi) = R(κi)xi · x⊥i = − ri,i+1

|ri,i+1|
· yi,

cos(θi) = R(θi)xi · xi =
ri−1,i

|ri−1,i|
· xi,

sin(θi) = R(θi)xi · x⊥i =
ri−1,i

|ri−1,i|
· yi. (2.24)

Thus

xi · xi+1 =

(
xi ·

ri,i+1

|ri,i+1|

)(
xi+1 ·

ri,i+1

|ri,i+1|

)
+

(
xi ·

ri,i+1

|ri,i+1|
⊥
)(

xi+1 ·
ri,i+1

|ri,i+1|
⊥
)

=

(
xi ·

ri,i+1

|ri,i+1|

)(
xi+1 ·

ri,i+1

|ri,i+1|

)
+

(
yi ·

ri,i+1

|ri,i+1|

)(
yi+1 ·

ri,i+1

|ri,i+1|

)
= − cos(κi) cos(θi+1)− sin(κi) sin(θi+1)

= − cos(κi − θi+1)

= cos(π + κi − θi+1) (2.25)

and

yi · xi+1 =

(
yi ·

ri,i+1

|ri,i+1|

)(
xi+1 ·

ri,i+1

|ri,i+1|

)
+

(
yi ·

ri,i+1

|ri,i+1|
⊥
)(

xi+1 ·
ri,i+1

|ri,i+1|
⊥
)

=

(
yi ·

ri,i+1

|ri,i+1|

)(
xi+1 ·

ri,i+1

|ri,i+1|

)
−
(
xi ·

ri,i+1

|ri,i+1|

)(
yi+1 ·

ri,i+1

|ri,i+1|

)
= − sin(κi) cos(θi+1) + cos(κi) sin(θi+1)

= − sin(κi − θi+1)

= sin(π + κi − θi+1), (2.26)

and therefore by (2.9) our g̃i matrices can be expressed in terms of the new scalar
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shape variables as

g̃i =


cos(π + κi − θi+1) − sin(π + κi − θi+1) ρi cos(κi)

sin(π + κi − θi+1) cos(π + κi − θi+1) ρi sin(κi)

0 0 1



=

 R(π + κi − θi+1) ρiR(κi)e1

0 0 1

 , (2.27)

where e1 = (1 0)T . Thus g̃i 7→ (κi, θi+1, ρi), and consequently we can parametrize

Mshape in terms of the scalar shape variables as long as we define the appropriate

corresponding form of the closure constraint (2.10). We proceed as follows.

Observe that (2.10) is equivalent to the condition g̃ng̃1 . . . g̃n−1 = 1. Letting

Bi = R(π + κi − θi+1) and qi = ρiR(κi)e1, by (1.13) and (2.27) we have

g̃n

n−1∏
i=1

g̃i =

 Bn qn

0 0 1



∏n−1

j=1 Bj q1 +
∑n−2

i=1

(∏i
j=1Bj

)
qi+1

0 0 1



=


∏n

j=1Bj qn +Bnq1 +Bn

∑n−2
i=1

(∏i
j=1Bj

)
qi+1

0 0 1

 . (2.28)

Noting that

Bnq1 = ρ1R(π + κn − θ1)R(κ1)e1 = ρ1R(π + κ1 − θ1)R(κn)e1 (2.29)
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and, by application of (1.3),

Bn

n−2∑
i=1

(
i∏

j=1

Bj

)
qi+1 = R(π + κn − θ1)

n−2∑
i=1

R

(
i∑

j=1

π + κj − θj+1

)
ρi+1R(κi+1)e1

=
n−2∑
i=1

ρi+1R(κn)R

(
π + κi+1 − θ1 +

i∑
j=1

(π + κj − θj+1)

)
e1

=
n−2∑
i=1

ρi+1R

(
i+1∑
j=1

π + κj − θj

)
R(κn)e1

=
n−1∑
i=2

ρiR

(
i∑

j=1

π + κj − θj

)
R(κn)e1, (2.30)

we can express the (1, 2) element of (2.28) as

qn +Bnq1 +Bn

n−2∑
i=1

(
i∏

j=1

Bj

)
qi+1

= ρnR(κn)e1 + ρ1R(π + κ1 − θ1)R(κn)e1 +
n−1∑
i=2

ρiR

(
i∑

j=1

π + κj − θj

)
R(κn)e1

=

[
ρn1+

n−1∑
i=1

ρiR

(
i∑

j=1

(π + κj − θj)

)]
R(κn)e1. (2.31)

Thus (2.28) simplifies to R
(∑n

j=1(π + κj−1 − θj)
) [

ρn1+
∑n−1

i=1 ρiR
(∑i

j=1(π + κj − θj)
)]
R(κn)e1

0 0 1

 ,

(2.32)

and our closure constraint (2.10) requires

R

(
n∑
j=1

(π + κj−1 − θj)

)
= 1, (2.33)[

ρn1+
n−1∑
i=1

ρiR

(
i∑

j=1

(π + κj − θj)

)]
R(κn)e1 = 0. (2.34)

Hence (2.19) follows directly from (2.33), since our convention regarding summation

of indices modulo n implies
∑n

j=1 κj−1 =
∑n

j=1 κj. Furthermore, (2.20) follows from
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(2.34) by application of Lemma 2.2.4 (note that R(κn)e1 6= 0) and by substituting

in the expression for 1 from (2.33).

Remark 2.2.5 It is useful to note that (2.23) implies

xi = −R(−κi)
ri,i+1

|ri,i+1|

= − 1

ρi
R(−κi)(ri − ri+1), i = 1, 2, . . . , n, (2.35)

and

xi = R(−θi)
ri−1,i

|ri−1,i|

=
1

ρi−1

R(−θi)(ri−1 − ri), i = 1, 2, . . . , n. (2.36)

2.2.4 Derivation of shape dynamics

We can derive the κi, θi, ρi shape dynamics as follows. First, we make the

preliminary calculation

d

dt

(
ri,i+1

|ri,i+1|

)
=

1

|ri,i+1|

[
ṙi,i+1 −

(
ṙi,i+1 ·

ri,i+1

|ri,i+1|

)
ri,i+1

|ri,i+1|

]
=

1

|ri,i+1|

(
ṙi,i+1 ·

ri,i+1

|ri,i+1|
⊥
)

ri,i+1

|ri,i+1|
⊥

= − 1

|ri,i+1|

[
(yi − yi+1) ·

ri,i+1

|ri,i+1|

]
ri,i+1

|ri,i+1|
⊥

=
1

ρi
[sin(κi) + sin(θi+1)]

ri,i+1

|ri,i+1|
⊥
, (2.37)
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which will prove useful in the following calculations. Note that (2.16) and (2.17)

imply that

R(κi)yi ·
ri,i+1

|ri,i+1|
= 0, (2.38)

R(θi)yi ·
ri−1,i

|ri−1,i|
= 0, i = 1, 2, . . . , n, (2.39)

and differentiating both sides of (2.38) by means of (1.9) yields

0 =
d

dt
(R(κi)yi) ·

ri,i+1

|ri,i+1|
+R(κi)yi ·

d

dt

(
ri,i+1

|ri,i+1|

)
=
(
κ̇iR(κi + π/2)yi − uiR(κi)xi

)
· ri,i+1

|ri,i+1|

+
1

ρi
[sin(κi) + sin(θi+1)]R(κi)yi ·

ri,i+1

|ri,i+1|
⊥

=
(
−κ̇iR(κi)xi − uiR(κi)xi

)
· ri,i+1

|ri,i+1|

− 1

ρi
[sin(κi) + sin(θi+1)]R(κi)y

⊥
i ·

ri,i+1

|ri,i+1|

=
(
−κ̇i − ui +

1

ρi
[sin(κi) + sin(θi+1)]

)
R(κi)xi ·

ri,i+1

|ri,i+1|
. (2.40)

By (2.16) we have R(κi)xi · ri,i+1

|ri,i+1| = −1, and therefore (2.40) implies

κ̇i = −ui +
1

ρi
[sin(κi) + sin(θi+1)] . (2.41)
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Similarly, differentiating both sides of (2.39) yields

0 =
d

dt
(R(θi)yi) ·

ri−1,i

|ri−1,i|
+R(θi)yi ·

d

dt

(
ri−1,i

|ri−1,i|

)
=
(
θ̇iR(θi + π/2)yi − uiR(θi)xi

)
· ri−1,i

|ri−1,i|

+
1

ρi−1

[sin(κi−1) + sin(θi)]R(θi)yi ·
ri−1,i

|ri−1,i|
⊥

=
(
−θ̇iR(θi)xi − uiR(θi)xi

)
· ri−1,i

|ri−1,i|

− 1

ρi−1

[sin(κi−1) + sin(θi)]R(θi)y
⊥
i ·

ri−1,i

|ri−1,i|

=
(
−θ̇i − ui +

1

ρi−1

[sin(κi−1) + sin(θi)]
)
R(θi)xi ·

ri−1,i

|ri−1,i|
, (2.42)

from which it follows that

θ̇i = −ui +
1

ρi−1

[sin(κi−1) + sin(θi)] . (2.43)

Finally, we calculate the derivative of ρi by

ρ̇i =
d

dt
|ri,i+1|

= ṙi,i+1 ·
ri,i+1

|ri,i+1|

= (xi − xi+1) ·
ri,i+1

|ri,i+1|

= − cos(κi)− cos(θi+1). (2.44)

In summary, for any SE(2) invariant control law ui, the associated shape dynamics

on Mshape are given by

κ̇i = −ui +
1

ρi
[sin(κi) + sin(θi+1)] ,

θ̇i = −ui +
1

ρi−1

[sin(κi−1) + sin(θi)] ,

ρ̇i = − cos(κi)− cos(θi+1), i = 1, 2, . . . , n (2.45)
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with initial conditions subject to the closure constraints (2.19) and (2.20).

2.2.5 The global scaling action

Proposition 2.2.3 implies that Mshape ⊂ T2n×Rn is a differentiable manifold

of dimension 3n − 3, where T2n denotes the 2n-torus. We define M̃shape ⊂ Mshape

by

M̃shape =

{
(κ1, θ1, ρ̃1, . . . , κn, θn, ρ̃n) ∈Mshape

∣∣∣ρ̃1 ≡ 1; ρ̃2, . . . , ρ̃n ∈ R+

}
, (2.46)

and note that M̃shape is a (3n− 4)-dimensional submanifold of Mshape. Also, we let

the (smooth) map Ψ : Mshape −→ M̃shape be defined by

Ψ(κ1, θ1, ρ1, . . . , κn, θn, ρn) =

((
κ1, θ1,

ρ1

ρ1

)
,

(
κ2, θ2,

ρ2

ρ1

)
. . . ,

(
κ1, θ1,

ρn
ρ1

))
.

(2.47)

Then letting G = (R+,×), we define the global scaling action of G on Mshape by

Φ : G×Mshape −→Mshape(
ξ, (κ1, θ1, ρ1, . . . , κn, θn, ρn)

)
7−→ (κ1, θ1, ξρ1, . . . , κn, θn, ξρn), (2.48)

and note that

M̃shape
∼= Mshape/G. (2.49)

Note that G acts freely on Mshape, since ∀m ∈ Mshape, Φ(ξ,m) = m ⇐⇒ ξ = 1,

which is the identity element in G. Also, given any m, m̄ ∈ Mshape, with m =
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(κ1, θ1, ρ1, . . . , κn, θn, ρn) and m̄ = (κ̄1, θ̄1, ρ̄1, . . . , κ̄n, θ̄n, ρ̄n), we have

Ψ(m) = Ψ(m̄) ⇐⇒ κi = κ̄i, θi = θ̄i,
ρi
ρ1

=
ρ̄i
ρ̄1

, i = 1, 2, . . . , n

⇐⇒ Φ

(
ρ̄1

ρ1

,m

)
= m̄. (2.50)

In fact, we can show that the bundle (Mshape,Ψ, M̃shape, G) is a trivial principle

bundle2 with structure group G = R+, since the mapping γ : M̃shape −→ Mshape

defined by

γ(ρ̃1, κ̃1, θ̃1, . . . , ρ̃n, κ̃n, θ̃n) = (1, κ̃1, θ̃1, . . . , ρ̃n, κ̃n, θ̃n) (2.51)

is a cross-section of the bundle (i.e. Ψ◦γ is the identity diffeomorphism on M̃shape).

Thus

Mshape
∼= G× M̃shape, (2.52)

with the explicit isomorphism

(κ1, θ1, ρ1, . . . , κn, θn, ρn) 7−→
(
ρ1, (κ1, θ1, ρ̃1, . . . , κn, θn, ρ̃n)

)
, (2.53)

where ρ̃i = ρi/ρ1.

One can demonstrate that G is not a symmetry group for our shape dynamics

(2.45), but in section 2.4.2 we describe an important role for the group action in a

related context.

2See, for instance, [21] for a discussion of principal bundles and cross sections.
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2.2.6 Concepts of “shape”

Throughout our analysis, we encounter several different concepts of “shape”.

In section 2.2.2, we defined Mshape = Mstate/SE(2) as the “shape space”, the space

on which concepts of global rotation and translation of the collective have been

quotiented out. In section 2.2.5 we go a step further by quotienting out differences

which are due to dilations of the particle formation, so that points in M̃shape =

Mshape/G correspond to particular shapes apart from any concept of scale. Following

the convention in [59], we will refer to this concept of “shape without size” as “pure

shape”. This concept of shape corresponds to our intuitive geometric sense of shape

and is often associated with Kendall[28].

2.3 Constant bearing pursuit

We wish to consider the particular context of n-agent cyclic pursuit systems

(i.e. agent i pursues agent i+ 1 modulo n) in which each agent employs a constant

bearing (CB) pursuit strategy. The CB pursuit strategy extends the concept of

classical pursuit (i.e. “always move directly towards the current location of the

target”) by prescribing a fixed, possibly non-zero angle αi between the pursuer’s

heading and the current location of the target, as depicted in figure 2.3. Note that

for purposes of our analysis in this work, we do not constrain αi to be acute but

permit the full range of values αi ∈ [0, 2π).
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Figure 2.3: Illustration of the constant bearing (CB) pursuit strategy (agent i

pursuing agent i+ 1), which prescribes a fixed, possibly non-zero angle αi between

the pursuer’s heading and the current location of the target.

In terms of our original state variables, if we define the cost function

Λi , R(αi)xi ·
ri,i+1

|ri,i+1|
, (2.54)

then we say agent i has attained CB pursuit of agent i+ 1 if Λi = −1. (Here R(αi)

is the rotation matrix defined in (1.2).) Noting that

R(αi)xi = (R(αi)xi · xi)xi + (R(αi)xi · yi)yi

= cos(αi)xi + sin(αi)yi, (2.55)

we can describe Λi in terms of our shape variables by

Λi = cos(αi)xi ·
ri,i+1

|ri,i+1|
+ sin(αi)yi ·

ri,i+1

|ri,i+1|

= − cos(αi) cos(κi)− sin(αi) sin(κi)

= − cos(κi − αi), (2.56)

from which it is clear that

Λi = −1 ⇐⇒ κi = αi. (2.57)
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For an n-agent cyclic pursuit system in which each agent i employs the CB pursuit

strategy with regard to agent i+ 1 (modulo n), we define the (2n− 3)-dimensional

CB pursuit manifold MCB(ααα) ⊂Mshape by

MCB(ααα) =
{

(κ1, θ1, ρ1, . . . , κn, θn, ρn) ∈Mshape | Λi = −1, i = 1, 2, . . . , n
}
, (2.58)

where ααα = (α1, α2, . . . , αn).

A feedback law designed to attain the CB pursuit strategy was developed in

[57], taking the form

uCB(αi) = −µi
(
R(αi)yi ·

ri,i+1

|ri,i+1|

)
− 1

|ri,i+1|

(
ri,i+1

|ri,i+1|
· ṙ⊥i,i+1

)
, (2.59)

where µi > 0 is a control gain. The corresponding shape variable formulation is

given by

uCB(αi) = −µi
(
R(αi)yi ·

ri,i+1

|ri,i+1|

)
− 1

|ri,i+1|

(
ri,i+1

|ri,i+1|
· ṙ⊥i,i+1

)
= −µi

[
(− sin(αi)xi + cos(αi)yi) ·

ri,i+1

|ri,i+1|

]
− 1

|ri,i+1|

(
ri,i+1

|ri,i+1|
· (yi − yi+1)

)
= −µi [sin(αi) cos(κi)− cos(αi) sin(κi)] +

1

ρi
[sin(κi) + sin(θi+1)]

= µi sin(κi − αi) +
1

ρi
[sin(κi) + sin(θi+1)] . (2.60)

Remark 2.3.1 By (2.57), we observe that the first term of the pursuit law (2.60)

is identically zero once CB pursuit has been attained (i.e. Λi = −1), so that only

the second term (in which the CB parameter αi does not explicitly appear) remains.

However, one should note that attainment of CB pursuit implies κi ≡ αi, and

therefore the remaining second term will take the form 1
ρi

[sin(αi) + sin(θi+1)].
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If every agent uses a pursuit law of the form (2.60), then by substitution into

(2.45) we have the closed-loop cyclic CB pursuit dynamics

κ̇i = −µi sin(κi − αi),

θ̇i = −µi sin(κi − αi) +
1

ρi−1

[sin(κi−1) + sin(θi)]−
1

ρi
[sin(κi) + sin(θi+1)] ,

ρ̇i = − cos(κi)− cos(θi+1), i = 1, 2, . . . , n, (2.61)

with initial conditions subject to the constraint equations given by (2.19) and (2.20).

One should note that the prohibition on sequential colocation (i.e. ρi > 0) is not

necessarily enforced by these dynamics, thus (2.61) define incomplete vector fields

on Mshape.

The following proposition describes certain properties of the submanifoldMCB(ααα)

under the shape dynamics (2.61).

Proposition 2.3.2. The CB pursuit manifold MCB(ααα) ⊂Mshape is invariant under

the dynamics (2.61), in the sense of Definition 1.3.2. Furthermore, if γ(t) =(
κ1(t), θ1(t), ρ1(t), . . . , κn(t), θn(t), ρn(t)

)
∈ Mshape is a trajectory of (2.61) which

does not have finite escape time (i.e. ρi(t) > 0 for every finite t ≥ 0), and Λi(0) 6=

1, i = 1, 2, . . . , n, then

Λi(t) −→ −1 as t −→∞, i = 1, 2, . . . , n, (2.62)

i.e. γ(t) converges asymptotically to MCB(ααα).

Proof. By (2.56) and (2.61) we have

Λ̇i = κ̇i sin(κi − αi) = −µi sin2(κi − αi) = −µi
(
1− Λ2

i

)
, i = 1, 2, . . . , n, (2.63)
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and thus MCB(ααα) is invariant under (2.61). In fact, (2.63) implies that Λi(0) =

±1 =⇒ Λi(t) = ±1, ∀t ≥ 0. We then assume Λi(0) 6= ±1 and, as in [57], write

(2.63) as

dΛi

1− Λ2
i

= −µidt. (2.64)

Integrating both sides of (2.64) yields∫ Λi

Λi(0)

dΛ̃i

1− Λ̃2
i

= −µi
∫ t

0

dt̃ = −µit, (2.65)

and since∫ Λi

Λi(0)

dΛ̃i

1− Λ̃2
i

=

∫ Λi

Λi(0)

d
(
tanh−1(Λ̃i)

)
= tanh−1(Λi)− tanh−1

(
Λi(0)

)
, (2.66)

we have

Λi(t) = tanh
(
tanh−1

(
Λi(0)

)
− µit

)
, i = 1, 2, . . . , n. (2.67)

Thus, since tanh(·) is a monotone increasing function, we have Λi(t) −→ −1 as

t −→∞.

We can formulate reduced dynamics on MCB(ααα) by substituting κi ≡ αi into

(2.61) to arrive at

θ̇i =
1

ρi−1

[sin(αi−1) + sin(θi)]−
1

ρi
[sin(αi) + sin(θi+1)] ,

ρ̇i = − [cos(αi) + cos(θi+1)] , i = 1, 2, . . . , n, (2.68)

with the initial conditions subject to the constraints

R

(
n∑
i=1

(π + αi − θi)

)
= 1, (2.69)

n∑
i=1

ρiR

(
i∑

j=1

(π + αj − θj)

)
= 0. (2.70)
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2.3.1 Comparison to previous work on cyclic pursuit

Having developed our cyclic CB pursuit framework, we pause to compare

this formulation with previous work on cyclic pursuit. In [36], Marshall, Broucke

and Francis use the kinematic unicycle model (which is mathematically equivalent

to our model under unit speed assumption) and then propose an analogous shape

variable parametrization. (The shape variables in [36] can be related to our variables

by (αi, βi, ri) = (κi, θi+1 − κi, ρi).) Their control law, which attempts to execute

the classical pursuit strategy, can be expressed in terms of our shape variables by

ui = µiκi, where µi > 0 is a control gain. Though ideal cyclic classical pursuit

results in eventual rendezvous of all agents, the non-ideal nature of this control law

results in closed-loop cyclic pursuit dynamics for which there exist locally stable

circling equilibria. These equilibrium formations are equilateral, with inter-agent

separations governed (inversely) by the control gain k.

In [46], Pavone and Frazzoli use the Hilare-type mobile robot model, which

can be viewed as a dynamical extension of the kinematic unicycle. They do not

use shape variables, but in order to deal with the nonholonomic constraint, they

define a “hand position” on the robot which is located on the robot centerline (but

not on the wheel axis). Since the hand position (denoted by the vector hi) does

not lie on the wheel axis, it is not subject to the nonholonomic constraint, and
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output feedback linearization yields the dynamics ḧi = νννi, where νννi is viewed as

the control input. In order to drive the hand velocity ḣi to a desired CB state (i.e.

ḣi = R(α)(hi+1−hi), where α is a common CB pursuit angle), the authors propose

a CB pursuit law given by νννi = µi

(
R(α)(hi+1−hi)− ḣi

)
+R(α)(ḣi+1− ḣi), where

µi > 0 is a control gain. Implementing this control in a cyclic pursuit framework

results in either rendezvous to a point, evenly spaced circling formations, or evenly

spaced logarithmic spirals, depending on the value of α.

While the model we have presented in section 2.2.1 is mathematically equiva-

lent to the kinematic unicycle model, there are significant distinctions between our

work and that presented in [36, 46]. In constrast to [36], our control law (2.60)

executes CB pursuit as well as CP, and results in closed-loop cyclic pursuit dynam-

ics which render the CB pursuit manifold invariant and attractive (Proposition

2.3.2). In [36], circling equilibria exist (off of the CP pursuit manifold) because

the agents never quite attain the CP strategy; in our work, we will demonstrate

in section 2.4.1 that relative equilibria exist on the CB pursuit manifold, precisely

because each agent does attain the CB strategy. The work in [46] introduces cyclic

CB pursuit but only deals with the symmetric case, i.e. αi = α, i = 1, 2, . . . , n.

Also, the nonholonomic constraints are circumvented by linearizing about a “hand”

position to obtain more tractable double-integrator dynamics, while our work deals

directly with the nonholonomic constraints which are inherent to the model.
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2.4 Existence conditions for special solutions

2.4.1 Analysis of relative equilibria

Equilibria of the reduced dynamics (2.68) correspond to relative equilibria of

the full system dynamics (2.2). As is demonstrated in [25], system dynamics of the

form (2.2) permit only two types of relative equilibria: rectilinear and circling. For a

rectilinear relative equilibrium, all the particle velocities are aligned (i.e. xi ·xi+1 =

1, i = 1, 2, . . . , n) and u1 = u2 = · · · = un = 0. For a circling relative equilibrium,

the particles travel on a common closed circular trajectory separated by fixed chordal

distances, with u1 = u2 = · · · = un = 1
rc
6= 0, where rc is the radius of the circular

orbit.

The following proposition states necessary and sufficient conditions (in terms

of the αi CB parameters) for existence of relative equilibria on MCB(ααα).

Proposition 2.4.1. Consider an n-particle cyclic CB pursuit system evolving on

MCB(ααα) according to the shape dynamics (2.68) parametrized by {α1, α2, . . . , αn}.

1. A rectilinear relative equilibrium exists if and only if there exists a set of con-

stants {σ1, σ2, . . . , σn} such that σi > 0, i = 1, 2, . . . , n, and

n∑
i=1

σie
j(αi) = 0, (2.71)

(where j =
√
−1), in which case the corresponding equilibrium angles θ̂i and

equilibrium side lengths ρ̂i are given by

θ̂i = π + αi−1, ρ̂i = σi, i = 1, 2, . . . , n. (2.72)
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2. A circling relative equilibrium exists if and only if

i sin(αi−1) sin(αi) > 0, i = 1, 2, . . . , n, (2.73)

ii sin

(
n∑
i=1

αi

)
= 0, (2.74)

in which case the corresponding equilibrium angles θ̂i and equilibrium side ra-

tios ρ̂i

ρ̂i−1
are given by

θ̂i = π − αi−1,
ρ̂i
ρ̂i−1

=
sin(αi)

sin(αi−1)
, i = 1, 2, . . . , n. (2.75)

Proof: A relative equilibrium exists if and only if there exists a choice of

{θ1, ρ1, θ2, ρ2, . . . , θn, ρn} which satisfies the closure constraint equations (2.69) and

(2.70), and for which θ̇i = 0, ρ̇i = 0, i = 1, 2, . . . , n. From (2.68) we have3

ρ̇i = 0 ⇐⇒ cos(αi) + cos(θi+1) = 0, i = 1, 2, . . . , n

θ̇i = 0 ⇐⇒


sin(αi) + sin(θi+1) = 0, i = 1, 2, . . . , n, or

sin(αi) + sin(θi+1) 6= 0, ρi

ρi−1
= sin(αi)+sin(θi+1)

sin(αi−1)+sin(θi)
> 0, i = 1, 2, . . . , n,

(2.76)

3To see that these are the only possibilities, let γi , 1
ρi

[sin(αi) + sin(θi+1)] so that θ̇i = γi−1−γi.

Then θ̇i = 0, i = 1, 2, . . . , n if and only if γi−1 = γi, i = 1, 2, . . . , n. Therefore, if there exists

k ∈ {1, 2, . . . , n} such that γk = 0 and it holds that θ̇i = 0, i = 1, 2, . . . , n, then we must have

γi = 0, i = 1, 2, . . . , n.
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which, taken together, yields

ρ̇i = θ̇i = 0 ⇐⇒


θi+1 = π + αi, i = 1, 2, . . . , n, or

θi+1 = π − αi, sin(αi) 6= 0, ρi

ρi−1
= sin(αi)

sin(αi−1)
> 0, i = 1, 2, . . . , n,

(2.77)

where the condition sin(αi)
sin(αi−1)

> 0, i = 1, 2, . . . , n (or, equivalently, sin(αi−1) sin(αi) >

0, i = 1, 2, . . . , n) is necessary to enforce our prohibition on sequential colocation

(i.e. ρi > 0, i = 1, 2, . . . , n).

We can associate the two cases in (2.77) to our two types of relative equilibria

as follows. First, substituting the MCB(ααα) constraint (i.e. κi ≡ αi) and θi+1 = π+αi

into (2.25), we have

xi · xi+1 = cos(π + αi − (π + αi)) = 1, i = 1, 2, . . . , n, (2.78)

from which we conclude that the first case in (2.77) corresponds to a rectilinear

equilibrium. We claim that the second case in (2.77) corresponds to a circling

equilibrium, i.e. we claim the conditions in the second case imply that there exists

a point rcc ∈ R2 (the circumcenter) such that

1. |rcc − ri| = |rcc − ri−1| , i = 1, 2, . . . , n (i.e., all particles are equidistant from

the circumcenter),

2. xi · (rcc− ri) = 0, i = 1, 2, . . . , n (i.e., each particle’s velocity vector is perpen-

dicular to the associated radial vector), and

3.
(
x⊥i · (rcc − ri−1)

)(
x⊥i−1 · (rcc − ri)

)
> 0, i = 1, 2, . . . , n (i.e. all particles are

moving in the same direction, CCW or CW, around the circle).
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As is demonstrated in appendix B, if the second case in (2.77) holds, then

ri +
ρi

2 sin(αi)
x⊥i = ri−1 +

ρi−1

2 sin(αi−1)
x⊥i−1, i = 1, 2, . . . , n, (2.79)

and therefore the assignment

rcc , ri +
ρi

2 sin(αi)
x⊥i , i = 1, 2, . . . , n (2.80)

is consistent for all i ∈ {1, 2, . . . , n}. By (2.77) we also have

ρi
sin(αi)

=
ρi−1

sin(αi−1)
, i = 1, 2, . . . , n, (2.81)

and therefore (2.80) implies

|rcc − ri| =
1

2

∣∣∣∣ ρi
sin(αi)

∣∣∣∣ =
1

2

∣∣∣∣ ρi−1

sin(αi−1)

∣∣∣∣ = |rcc − ri−1| , i = 1, 2, . . . , n, (2.82)

establishing that all particles are equidistant from rcc. It follows from (2.80) that

xi · (rcc − ri) = 0, i = 1, 2, . . . , n, and

(
x⊥i · (rcc − ri−1)

)(
x⊥i−1 · (rcc − ri)

)
=

(
ρi

2 sin(αi)

)(
ρi−1

2 sin(αi−1)

)
=

ρ2
i

4 sin2(αi)
> 0,

(2.83)

where we have made use of (2.81). Therefore we have established that the second

case in (2.77) corresponds to a circling equilibrium.

Recall that θi and ρi must satisfy the constraint equations (2.69) and (2.70),

and therefore we must check the assignments in (2.77) against the constraint equa-

tions to determine whether additional conditions must be imposed on the αi pa-

rameters to guarantee existence of each type of relative equilibria. Beginning with

the rectilinear equilibrium, we substitute θi+1 = π + αi into the left-hand side of
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(2.69) and observe that the constraint holds without additional conditions on the

αi parameters. Substituting θi+1 = π + αi into the left-hand side of (2.70), we have

n∑
i=1

ρiR

(
i∑

j=1

(π + αj − θj)

)
=

n∑
i=1

ρiR

(
i∑

j=1

(αj − αj−1)

)

=
n∑
i=1

ρiR (αi − αn)

= R (−αn)
n∑
i=1

ρiR (αi) , (2.84)

and therefore (2.70) holds if and only if

n∑
i=1

ρiR (αi) = 0. (2.85)

Our rectilinear existence condition (2.71) then follows from (2.85).

In the case of the circling equilibrium, we first substitute the expressions from

the second case from (2.77) into the left-hand side of (2.69) and arrive at

R

(
n∑
i=1

(π + αi − θi)

)
= R

(
n∑
i=1

(αi + αi−1)

)

= R

(
2

n∑
i=1

αi

)
. (2.86)

By (1.8) we have

R

(
2

n∑
i=1

αi

)
= 1⇐⇒ sin

(
n∑
i=1

αi

)
= 0, (2.87)

which establishes (2.74). We then test our θi, ρi assignments from (2.77) against

the remaining closure constraint equation by substituting θi+1 = π − αi and ρi

ρi−1
=
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sin(αi)
sin(αi−1)

into the left-hand side of (2.70), which yields

n∑
i=1

ρiR

(
i∑

j=1

(π + αj − θj)

)
= ρn

n∑
i=1

ρi
ρn
R

(
i∑

j=1

(π + αj − θj)

)

= ρn

n∑
i=1

sin(αi)

sin(αn)
R

(
i∑

j=1

(π + αj − (π − αj−1))

)

=
ρn

sin(αn)

n∑
i=1

sin(αi)R

(
i∑

j=1

(αj + αj−1)

)
. (2.88)

In appendix B we show that

sin(αn)1+
n−1∑
i=1

sin(αi)R

(
i∑

j=1

(αj + αj−1)

)
= sin

(
n∑
i=1

αi

)
R

(
n−1∑
i=1

αi

)
, (2.89)

and therefore (making use of (2.69)) we can express (2.88) as

ρn
sin(αn)

[
sin

(
n∑
i=1

αi

)
R

(
n−1∑
i=1

αi

)]
. (2.90)

Since this quantity is equal to zero (by application of (2.87)), our second closure

constraint equation holds without requiring any additional conditions on the αi

parameters.

2.4.2 Pure shape dynamics

In section 2.2.5 we demonstrated that Mshape
∼= G × M̃shape, where G =

(R+,×), with the explicit isomorphism

(κ1, θ1, ρ1, . . . , κn, θn, ρn) 7−→
(
ρ1, (κ1, θ1, ρ̃1, . . . , κn, θn, ρ̃n)

)
, (2.91)

for

ρ̃i = ρi/ρ1. (2.92)
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Recalling that MCB(ααα) is a submanifold of Mshape, we define

M̃CB(ααα) =

{
(θ1, ρ̃1, . . . , θn, ρ̃n) ∈MCB(ααα)

∣∣∣ρ̃1 ≡ 1; ρ̃2, . . . , ρ̃n ∈ R+

}
, (2.93)

and by an analogous process we have MCB(ααα)
∼= G× M̃CB(ααα), with

(θ1, ρ1, . . . , θn, ρn) 7−→
(
ρ1, (θ1, ρ̃1, . . . , θn, ρ̃n)

)
(2.94)

and ρ̃i defined by (2.92). The corresponding closure constraints for this alternative

parametrization of MCB(ααα) are given by (2.69) and

n∑
i=1

ρ̃iR

(
i∑

j=1

(π + αj − θj)

)
= 0. (2.95)

Our dynamics (2.68) can also be formulated in terms of this alternative parametriza-

tion as follows. First, observe that

˙̃ρi =
ρ̇i
ρ1

− ρiρ̇1

ρ2
1

=
1

ρ1

(ρ̇i − ρ̃iρ̇1)

=
1

ρ1

(
− [cos(αi) + cos(θi+1)] + ρ̃i [cos(α1) + cos(θ2)]

)
, i = 1, 2, . . . , n, (2.96)

and therefore (2.68) can be expressed as

ρ̇1 = − [cos(α1) + cos(θ2)] ,

θ̇i =
1

ρ1

(
1

ρ̃i−1

[sin(αi−1) + sin(θi)]−
1

ρ̃i
[sin(αi) + sin(θi+1)]

)
,

˙̃ρi =
1

ρ1

(
− [cos(αi) + cos(θi+1)] + ρ̃i [cos(α1) + cos(θ2)]

)
, i = 1, 2, . . . , n. (2.97)

(Note that this includes the trivial equation ˙̃ρ1 ≡ 0.)
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Observe that the dynamics (2.97) can not be decomposed into self-contained

sub-systems. However, by the change of variables

λ = ln(ρ1), (2.98)

we have

λ̇ = −e−λ [cos(α1) + cos(θ2)] ,

θ̇i = e−λ
(

1

ρ̃i−1

[sin(αi−1) + sin(θi)]−
1

ρ̃i
[sin(αi) + sin(θi+1)]

)
,

˙̃ρi = e−λ
(
− [cos(αi) + cos(θi+1)] + ρ̃i [cos(α1) + cos(θ2)]

)
, i = 1, 2, . . . , n. (2.99)

We then introduce the time-scaling

τ =

∫ t

0

e−λ(σ)dσ, (2.100)

noting that dτ = e−λ(t)dt and therefore

dλ

dτ
=

dλ

e−λ(t)dt
= eλ(t)λ̇;

dθi
dτ

=
dθi

e−λ(t)dt
= eλ(t)θ̇i;

dρ̃i
dτ

=
dρ̃i

e−λ(t)dt
= eλ(t) ˙̃ρi.

(2.101)

Then using the prime notation to denote differentiation with respect to τ , we have

λ
′
= − [cos(α1) + cos(θ2)] , (2.102)

θ
′

i =
1

ρ̃i−1

[sin(αi−1) + sin(θi)]−
1

ρ̃i
[sin(αi) + sin(θi+1)] , (2.103)

ρ̃
′

i = − [cos(αi) + cos(θi+1)] + ρ̃i [cos(α2) + cos(θ2)] , i = 1, 2, . . . , n, (2.104)

and (2.103)-(2.104) form a self-contained sub-system which we refer to as the pure

shape dynamics.
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2.4.3 Pure shape equilibria

In section 2.4.1 we analyzed the possible equilibria for the reduced dynamics

(2.68), which correspond to relative equilibria for the full system dynamics (2.2). In

this section we consider the possible equilibria for the pure shape dynamics (2.103)-

(2.104), which correspond to system trajectories which preserve pure shape, as de-

picted in figure 2.4. We refer to these types of system trajectories as pure shape

equilibria, and note that circling and rectilinear equilibria are actually special cases

of pure shape equilibria.

The following proposition states necessary and sufficient conditions for exis-

tence of pure shape equilibria, in terms of the αi parameters and an angular quantity

τk. (Note that the physical significance of the angle τk defined in the statement of

the proposition will be discussed in Remark 2.4.5.)

Proposition 2.4.2. Pure shape equilibria exist if and only if the conditions of

Proposition 2.4.1 are met or there exists an integer k ∈ {0, 1, 2, . . . , n− 1} such

that

sin (αi − τk) sin (αi−1 − τk) > 0, i = 1, 2, . . . , n, (2.105)

for τk ,
(∑n

i=1
αi

n

)
− k

n
π. If (2.105) holds for a particular value of k, then the

corresponding equilibrium values for θi and ρ̃i are given by

θ̂
(k)
i = π − αi−1 + 2τk,

ˆ̃ρ
(k)
i =

sin (αi − τk)

sin (α1 − τk)
. (2.106)
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(a) (b)

(c) (d)

Figure 2.4: These figures illustrate the planar trajectories which correspond to

the four types of pure shape equilibria, including spirals (figure 2.4a), expan-

sion/contraction without rotation (figure 2.4b), circling equilibria (figure 2.4c), and

rectilinear equilibria (figure 2.4d).
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Proof: Observe that equilibria for (2.103)-(2.104) exist if and only if there exists a

choice of {θ1, ρ̃1, θ2, ρ̃2, . . . , θn, ρ̃n}, with ρ̃1 ≡ 1, which satisfies the closure constraint

equations (2.69) and (2.95), and for which θ
′
i = 0, ρ̃

′
i = 0, i = 1, 2, . . . , n. From

(2.103)-(2.104), we observe that4

θ
′

i = 0 ⇐⇒


(Aa) sin(αi) + sin(θi+1) = 0, i = 1, 2, . . . , n, or

(Ab) sin(αi) + sin(θi+1) 6= 0, ρ̃i

ρ̃i−1
= sin(αi)+sin(θi+1)

sin(αi−1)+sin(θi)
> 0, i = 1, 2, . . . , n

ρ̃
′

i = 0 ⇐⇒


(Ba) cos(αi) + cos(θi+1) = 0, i = 1, 2, . . . , n, or

(Bb) cos(αi) + cos(θi+1) 6= 0, ρ̃i = cos(αi)+cos(θi+1)
cos(α1)+cos(θ2)

> 0, i = 1, 2, . . . , n,

(2.107)

and therefore the four possible cases corresponding to θ
′
i = 0, ρ̃

′
i = 0, i = 1, 2, . . . , n

are described by the four possible combinations of an element from the first pair of

constraints (Aa and Ab) with an element from the second pair of constraints (Ba

and Bb). From section 2.4.1 it is relatively straightforward to show that (Aa,Ba)

corresponds to rectilinear relative equilibria and (Ab,Ba) corresponds to circling

relative equilibria. We are left to investigate the (Aa,Bb) and (Ab,Bb) cases. We’ll

begin with the latter.

4Note that if cos(αj)+cos(θj+1) = 0 for some j = 2, . . . , n, then ρ̃
′

j = 0 =⇒ cos(α1)+cos(θ2) =

0. This in turn implies ρ̃
′

i = − [cos(αi) + cos(θi+1)] , i = 1, 2, . . . , n, and equilibria conditions then

require cos(αi) + cos(θi+1) = 0, i = 1, 2, . . . , n. The same type of reasoning can be applied to the

θ
′

i dynamics as well.
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First, observe from (2.92) that ρ̃i

ρ̃i−1
= ρi

ρi−1
and

ρ̃i =
cos(αi) + cos(θi+1)

cos(α1) + cos(θ2)
, i = 1, 2, . . . , n

⇐⇒ ρi
ρi−1

=
cos(αi) + cos(θi+1)

cos(αi−1) + cos(θi)
, i = 1, 2, . . . , n, (2.108)

and therefore if constraint (Ab) and (Bb) both hold, we have

sin(αi) + sin(θi+1)

sin(αi−1) + sin(θi)
=

cos(αi) + cos(θi+1)

cos(αi−1) + cos(θi)
, i = 1, 2, . . . , n. (2.109)

Employing appropriate sum-to-product trigonometric identities, the condition

given by (2.109) can be expressed as

sin
(
αi+θi+1

2

)
cos
(
αi−θi+1

2

)
sin
(
αi−1+θi

2

)
cos
(
αi−1−θi

2

) =
cos
(
αi+θi+1

2

)
cos
(
αi−θi+1

2

)
cos
(
αi−1+θi

2

)
cos
(
αi−1−θi

2

) , i = 1, 2, . . . , n, (2.110)

which can be simplified to

sin

(
αi + θi+1

2

)
cos

(
αi−1 + θi

2

)
− cos

(
αi + θi+1

2

)
sin

(
αi−1 + θi

2

)
= 0 (2.111)

(for i = 1, 2, . . . , n) and subsequently

sin

(
αi + θi+1 − αi−1 − θi

2

)
= 0, i = 1, 2, . . . , n. (2.112)

This holds if and only if

(αi + θi+1)− (αi−1 + θi) = 0, i = 1, 2, . . . , n, (2.113)

i.e., if and only if the quantity αi−1 + θi is the same for any value of i. Therefore we

define

ψ = αi−1 + θi, i = 1, 2, . . . , n (2.114)
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an angular quantity that has no dependence on i.

Our candidate equilibrium values must satisfy the closure constraints, and

therefore we substitute (2.114) into the closure constraints (2.69) and (2.95) to check

for constraints on the αi parameters. We begin with the angular closure constraint

(2.69), substituting (2.114) to obtain

1 = R

(
n∑
j=1

(π + αj − θj)

)

= R

(
n∑
j=1

(π + αj + αj−1 − ψ)

)

= R

(
n (π − ψ) + 2

n∑
j=1

αj

)
. (2.115)

Before proceeding, we define the angle quantity ᾱ ∈ [0, 2π) by

ᾱ ,
1

n

n∑
i=1

αi, (2.116)

with the convention that we do not remove integer multiples of 2π from the sum-

mation prior to division by n. Note that an equivalent (and less notationally am-

biguous) expression for ᾱ can be given by

ᾱ ,
n∑
i=1

αi
n
, (2.117)

with no required convention concerning the handling of integer multiples of 2π since

αi

n
∈
[
0, 2π

n

)
. Observe that

R(nᾱ) = R

(
n∑
j=1

αj

)
, (2.118)
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and therefore (2.115) can be expressed as

1 = R

(
n (π − ψ) + 2(nᾱ)

)

= R

(
n

(
π − ψ + 2ᾱ

))
(2.119)

which holds if and only if the argument in the inner set of parentheses is equivalent

to one of the n roots of unity. There are therefore n possible solutions for ψ,

corresponding to

π − ψ + 2ᾱ =
2kπ

n
, k = 0, 1, . . . , n− 1, (2.120)

with addition understood to be carried out modulo 2π. Introducing the superscript

k to explicitly denote the association with a particular root of unity , we have

ψ(k) =

(
n− 2k

n

)
π + 2ᾱ, k = 0, 1, . . . , n− 1, (2.121)

and therefore by (2.114) the associated θi values for a particular value of k (denoted

as θ
(k)
i ) are given by

θ
(k)
i =

(
n− 2k

n

)
π − αi−1 + 2ᾱ, i = 1, 2, . . . , n. (2.122)

To summarize our efforts to this point, we can state that the angular closure con-

straint given by (2.69) and the equilibrium conditions given by the (Ab,Bb) pair

from (2.107) can be simultaneously satisfied if and only if every θi takes the form

θi = θ
(k)
i for a particular k ∈ {0, 1, 2, . . . , n− 1}.

By applying the previously used sum-to-product trigonometric identities to
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constraint (Bb) from (2.107), we obtain

ρ̃i =
cos(αi) + cos(θi+1)

cos(α1) + cos(θ2)

=
cos
(
αi+θi+1

2

)
cos
(
αi−θi+1

2

)
cos
(
α1+θ2

2

)
cos
(
α1−θ2

2

)
=

cos
(
αi+θi+1

2

)
cos
(
αi+αi−(αi+θi+1)

2

)
cos
(
α1+θ2

2

)
cos
(
α1+α1−(α1+θ2)

2

)
=

cos
(
ψ
2

)
cos
(
αi − ψ

2

)
cos
(
ψ
2

)
cos
(
α1 − ψ

2

)
=

cos
(
αi − ψ

2

)
cos
(
α1 − ψ

2

) . (2.123)

Then substituting in ψ = ψ(k), we have

ρ̃
(k)
i =

cos
(
αi − ᾱ+ k

n
π − π

2

)
cos
(
α1 − ᾱ+ k

n
π − π

2

)
=

sin
(
αi − ᾱ+ k

n
π
)

sin
(
α1 − ᾱ+ k

n
π
) . (2.124)

As will be further explained in Remark 2.4.5, the quantity −(ψ(k) − π)/2

has an appealing geometric property, and therefore we denote

τk , −(ψ(k) − π)/2 = ᾱ− k

n
π, (2.125)

as in the statement of the proposition. Then in terms of τk our expressions in (2.122)

and (2.124) can be written as

θ
(k)
i = π − αi−1 + 2τk, i = 1, 2, . . . , n,

ρ̃
(k)
i =

sin (αi − τk)

sin (α1 − τk)
, i = 1, 2, . . . , n. (2.126)

Since ρ̃
(k)
i must be strictly positive for every i = 1, 2, . . . , n, we incur an additional

condition which the αi parameters must satisfy, namely sin (αi − τk) sin (αi−1 − τk) >
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0, i = 1, 2, . . . , n, as stated in the proposition.

Lastly, we must also show that the expressions for θ
(k)
i and ρ̃

(k)
i given by (2.126)

satisfy the remaining closure constraint. Substituting (2.126) into the left-hand side

of (2.95), we obtain

n∑
i=1

ρ̃
(k)
i R

(
i∑

j=1

(π + αj − θ
(k)
i )

)
=

n∑
i=1

sin (αi − τk)

sin (α1 − τk)
R

(
i∑

j=1

(αj + αj−1 − 2τk)

)

=
1

sin (α1 − τk)

n∑
i=1

sin (αi − τk)R

(
i∑

j=1

(αj − τk) + (αj−1 − τk)

)
. (2.127)

Since (2.127) is similar in form to (2.88) (with αi − τk taking the place of αi), we

can make use of analogous calculations to express (2.127) as

1

sin(α1 − τk)

[
sin

(
n∑
i=1

(αi − τk)

)
R

(
n−1∑
i=1

(αi − τk)

)]
. (2.128)

Observe that

sin

(
n∑
i=1

(αi − τk)

)
= sin

(
n∑
i=1

(
αi − ᾱ+

k

n
π

))

= sin

((
n∑
i=1

αi

)
− nᾱ+ kπ

)

= sin (kπ) , (2.129)

and therefore (2.128) is equal to the zero matrix, i.e. the remaining closure constraint

is satisfied without requiring any additional conditions on the αi parameters.

In summary, the closure constraints given by (2.69) and (2.95) and the equi-

librium constraints given by the (Ab,Bb) pair from (2.107) can be simultaneously

satisfied if and only if there exists an integer k ∈ {0, 1, 2, . . . , n− 1} such that the

condition sin (αi − τk) sin (αi−1 − τk) > 0, i = 1, 2, . . . , n is satisfied. If a particular
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value of k satisfies this condition, then the corresponding equilibrium values of θi

and ρ̃i are given by (2.126).

To complete the proof, we will demonstrate that solutions corresponding to

the final constraint pair (Aa,Bb) from (2.107) are actually a subset of the solutions

already described (i.e. those associated with the (Ab,Bb) constraint pair). We begin

by observing that if constraint (Aa) holds, we must have cos(αi) + cos(θi+1) = 0 or

cos(αi) − cos(θi+1) = 0. Since the former is ruled out by constraint (Bb), then we

must have cos(αi)− cos(θi+1) = 0, which along with constraint (Aa) gives us

θi = −αi−1. (2.130)

Substituting this definition into the side ratio definition given by constraint (Bb),

we have

ρ̃i =
cos(αi) + cos(θi+1)

cos(α1) + cos(θ2)

=
cos(αi) + cos(−αi)
cos(α1) + cos(−α1)

=
cos(αi)

cos(α1)
, (2.131)

and therefore we require

cos(αi) cos(α1) > 0, i = 1, 2, . . . , n. (2.132)
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Substitution of (2.130) into our angular closure constraint (2.69) gives us

1 = R

(
n∑
i=1

(π + αi − θi)

)
= R

(
n∑
i=1

(π + αi + αi−1)

)

= R

(
nπ + 2

n∑
i=1

αi

)

=


R (π + 2

∑n
i=1 αi) , for n odd

R (2
∑n

i=1 αi) , for n even

, (2.133)

which holds if and only if
R (
∑n

i=1 αi) = R
(
π
2

)
or R

(
3π
2

)
, for n odd

R (
∑n

i=1 αi) = R (0) or R (π) , for n even

, (2.134)

or, equivalently, 
cos (

∑n
i=1 αi) = 0, for n odd

sin (
∑n

i=1 αi) = 0, for n even

. (2.135)

Then substituting (2.130) and (2.131) into the left side of our remaining closure

constraint (2.95), we have

n∑
i=1

ρ̃iR

(
i∑

j=1

(π + αj − θj)

)
=

n∑
i=1

cos(αi)

cos(α1)
R

(
i∑

j=1

(π + αj + αj−1)

)

=
1

cos(α1)

n∑
i=1

cos(αi)R

(
i∑

j=1

(π + αj + αj−1)

)
,

(2.136)

and a calculation detailed in appendix B demonstrates that this is equivalent to
1

cos(α1)

[
cos (

∑n
i=1 αi)R

(∑n−1
i=1 αi

)]
, for n odd

− 1
cos(α1)

[
sin (

∑n
i=1 αi)R

(
π
2

+
∑n−1

i=1 αi
)]
, for n even.

(2.137)
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By (2.135) these expressions are equal to zero in both cases (i.e. for n odd or even),

and therefore the second closure constraint holds without additional conditions on

the αi parameters.

It would therefore appear that (2.132) and (2.135) describe additional equilib-

rium existence conditions which are not included in the previously described con-

ditions associated with the (Ab,Bb) constraint pair. However, we claim that if

{α1, α2, . . . , αn} satisfy (2.132) and (2.135), then there exists k ∈ {0, 1, 2, . . . , n− 1}

such that

sin (αi − τk) sin (αi−1 − τk) > 0, i = 1, 2, . . . , n, (2.138)

and therefore proposition (2.4.2) is complete as stated. To show this, we first recall

from (2.118) that R(nᾱ) = R
(∑n

j=1 αj

)
and therefore if (2.135) holds (equivalently,

if (2.133) holds) we have

R (2nᾱ) =


R (π) , for n odd

1, for n even

. (2.139)

Therefore, if (2.135) holds, then ᾱ must take the form

ᾱ =


π
2n

+ `
(
π
n

)
, for n odd

`
(
π
n

)
, for n even

, (2.140)

with ` ∈ {0, 1, 2, . . . , 2n− 1} given by the actual value of the quantity
∑n

j=1 αj.

Then choosing k ∈ {0, 1, 2, . . . , n− 1} by

k =


`+

(
n+1

2

)
(mod n), for n odd

`+
(
n
2

)
(mod n), for n even

, (2.141)
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we observe that substitution of (2.140) and (2.141) into (2.125) yields τk = ±π/2.

For such a choice of k, we have

sin (αi − τk) sin (αi−1 − τk) = cos (αi) cos (αi−1) , i = 1, 2, . . . , n, (2.142)

and since cos(αi) cos(αi−1) > 0, i = 1, 2, . . . , n (by (2.132)), we see that (2.138)

holds.

Remark 2.4.3 The four constraint pairs (Aa,Ba), (Aa,Bb), (Ab,Ba), (Ab,Bb) from

the proof of Proposition 2.4.2 correspond to four types of pure shape equilibria,

as depicted in figure 2.4. (Aa,Ba) corresponds to rectilinear equilibria, (Ab,Ba)

corresponds to circling equilibria, (Ab,Bb) corresponds to spirals, and (Aa,Bb) cor-

responds to pure expansion (or contraction) without rotation.

The following corollary to Proposition 2.4.2 establishes that the planar trac-

jetories corresponding to pure shape equilibria (with the exception of rectilinear

equilibria) are cyclic (i.e. circumscribable).

Corollary 2.4.4. If condition (2.105) holds, then the formations described by (2.106)

are cyclic (i.e. circumscribable). The circumcenter of the associated circumcircle is

located at

rcc = ri +
ρi

2 sin(αi − τk)
R
(
τk +

π

2

)
xi, i = 1, 2, . . . , n, (2.143)

and the radius is given by

rc , |rcc − ri| =
ρi

2 |sin(αi − τk)|
, i = 1, 2, . . . , n. (2.144)
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Proof: The proof is analogous to that presented in the second case in Proposition

2.4.1 and hinges on demonstrating that the formulation of the circumcenter rcc

given by (2.143) is in fact consistent for all i ∈ {1, 2, . . . , n}. In other words, we

must show that[
ri−1 +

ρi−1

2 sin(αi−1 − τk)
R
(
τk +

π

2

)
xi−1

]
−
[
ri +

ρi
2 sin(αi − τk)

R
(
τk +

π

2

)
xi

]
= 0

(2.145)

for i = 1, 2, . . . , n. First, by (2.35) (with κi ≡ αi) and (2.36), we have

xi =
1

ρi−1

R(−θi)(ri−1 − ri), i = 1, 2, . . . , n, (2.146)

and

xi−1 = − 1

ρi−1

R(−αi−1)(ri−1 − ri), i = 1, 2, . . . , n, (2.147)

and substitution into the left-hand side of (2.145) yields[
ri−1 +

ρi−1

2 sin(αi−1 − τk)
R
(
τk +

π

2

)(
− 1

ρi−1

R(−αi−1)(ri−1 − ri)

)]
−
[
ri +

ρi
2 sin(αi − τk)

R
(
τk +

π

2

)( 1

ρi−1

R(−θi)(ri−1 − ri)

)]
= (ri−1 − ri)−

1

2 sin(αi−1 − τk)
R
(
τk +

π

2
− αi−1

)
(ri−1 − ri)

−
(

ρi
ρi−1

)
1

2 sin(αi − τk)
R
(
τk +

π

2
− θi

)
(ri−1 − ri). (2.148)

Then by substituting the values for θi and ρi

ρi−1
= ρ̃i

ρ̃i−1
given by (2.106), we can

further simplify (2.148) to{
1− 1

2 sin(αi−1 − τk)
R
(
τk +

π

2
− αi−1

)
−
(

sin(αi − τk)

sin(αi−1 − τk)

)
1

2 sin(αi − τk)
R
(
τk +

π

2
− (π − αi−1 + 2τk)

)}
(ri−1 − ri)

(2.149)
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which yields{
1− 1

2 sin(αi−1 − τk)

[
R
(
τk +

π

2
− αi−1

)
+R

(
−τk −

π

2
+ αi−1

)]}
(ri−1 − ri).

(2.150)

Application of (1.7) to (2.150) yields{
1− 1

2 sin(αi−1 − τk)
2 cos

(
τk +

π

2
− αi−1

)
1

}
(ri−1 − ri), (2.151)

and we then employ the trigonometric identity cos
(
π
2
− φ
)

= sin(φ) to establish

(2.145).

Therefore (2.143) is in fact consistent for all i ∈ {1, 2, . . . , n}, and consequently

|rcc − ri| =
1

2

∣∣∣∣ ρi
sin(αi − τk)

∣∣∣∣ , i = 1, 2, . . . , n. (2.152)

By (2.106) we have ρi

ρi−1
= sin(αi−τk)

sin(αi−1−τk)
, i = 1, 2, . . . , n, and therefore

ρi
sin(αi − τk)

=
ρi−1

sin(αi−1 − τk)
, i = 1, 2, . . . , n. (2.153)

It follows from (2.152) and (2.153) that

|rcc − r1| = |rcc − r2| = · · · = |rcc − rn| , (2.154)

from which (2.144) follows directly.

Remark 2.4.5 By (2.143) and (2.144) we have

rcc − ri
|rcc − ri|

= sgn (sin(αi − τk))R
(
τk +

π

2

)
xi, (2.155)

from which we obtain

R (τk)xi =


R
(
−π

2

)
rcc−ri

|rcc−ri| , for sin(αi − τk) > 0

R
(
π
2

)
rcc−ri

|rcc−ri| , for sin(αi − τk) < 0

. (2.156)
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Since rcc−ri

|rcc−ri| is the unit vector pointing in the direction from particle ri towards

the circumcenter, we see that the angle τk represents a common angular deviation

between xi and a unit vector tangent to the circumcircle at ri. (Whether the unit

tangent vector points in a CW or CCW direction depends on the sign of sin(αi−τk).)

This is illustrated in figure 2.5a and 2.5b for the case when sin(αi − τk) > 0.

From (2.155) we can characterize the spiraling motions in terms of growth (ex-

pansion vs. contraction) and direction of rotation (clockwise vs. counterclockwise).

As is clear from figures 2.5a and 2.5b, we will have expansion if rcc−ri

|rcc−ri| · xi < 0 and

contraction if rcc−ri

|rcc−ri| · xi > 0. Observe from (2.155) that

rcc − ri
|rcc − ri|

· xi = sgn (sin(αi − τk))

(
R
(
τk +

π

2

)
xi

)
· xi

= sgn (sin(αi − τk)) cos
(
τk +

π

2

)
= − sgn (sin(αi − τk)) sin (τk) , i = 1, 2, . . . , n, (2.157)

which yields the same value for every i. Therefore, defining the expansion coefficient

γααα,k , sgn
(
sin(α1 − τk)

)
sin (τk) , (2.158)

we have

Expansion ⇐⇒ γααα,k > 0, Contraction ⇐⇒ γααα,k < 0. (2.159)

For γααα,k = 0 we have a circling equilibrium (i.e. neither expanding nor contracting).

Also, note that
(

rcc−ri

|rcc−ri|

)⊥
always points in a CW direction (regardless of
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(a) (b)

Figure 2.5: These figures depict representative counter-clockwise (figure 2.5a) and

clockwise (figure 2.5b) spirals and demonstrate the significance of the angle τ .

whether the direction of rotational motion is CW or CCW), and(
rcc − ri
|rcc − ri|

)⊥
· xi =

(
R
(π

2

)( rcc − ri
|rcc − ri|

))
· xi

= sgn (sin(αi − τk))

(
R
(π

2

)
R
(
τk +

π

2

)
xi

)
· xi

= sgn (sin(αi − τk)) cos (τk + π)

= − sgn (sin(αi − τk)) cos (τk) , i = 1, 2, . . . , n. (2.160)

Since (2.160) yields the same value for every i, we define the rotation coefficient

βααα,k , sgn
(
sin(α1 − τk)

)
cos (τk) , (2.161)

for which we have

CCW rotation ⇐⇒ βααα,k > 0, CW rotation ⇐⇒ βααα,k < 0. (2.162)
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For βααα,k = 0, the formation experiences pure expansion (or contraction) without

rotation, as in figure 2.4b.

Remark 2.4.6 It is important to note from Proposition 2.4.2 that multiple

pure shape equilibria can exist for a particular choice of ααα = (α1, α2, . . . , αn).

This is best understood by considering the symmetric case, presented in section 2.4.4,

where α1 = α2 = . . . = αn. For this case, we show that there always exists exactly

n−1 unique pure shape equilibria, as illustrated in figure 2.6 for the particular case

α1 = α2 = α3 = α4 = α5 = π/2.

2.4.4 Analysis of the symmetric case α1 = α2 = · · · = αn

For the symmetric case α1 = α2 = · · · = αn = α ∈ [0, 2π), we can apply the

results of the previous sections to fully characterize existence of relative equilibria

and pure shape equilibria in terms of the single parameter α. First, substitution of

α1 = α2 = · · · = αn = α into the rectilinear equilibrium existence condition (2.71)

from Proposition 2.4.1 implies that rectilinear equilibria exist if and only if there

exists {σ1, σ2, . . . , σn} such that σi > 0, i = 1, 2, . . . , n and ejα (
∑n

i=1 σi) = 0. Since

this latter condition requires at least one of the σi to be nonpositive, we conclude

that the symmetric case admits no rectilinear equilibria.

As for circling equilibria, we note that the first existence condition (2.73) of
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Proposition 2.4.1 requires

sin(αi−1) sin(αi) = sin2(α) > 0, (2.163)

which holds as long as α 6= 0, π. Then since the second existence condition (2.74)

requires

0 = sin

(
n∑
i=1

αi

)
= sin (nα) , (2.164)

we conclude that circling equilibria exist if and only if α = `π/n, for ` = 1, 2, . . . , n−

1, n + 1, . . . , 2n − 1. If such circling equilibria exist, then by (2.75) we have the

equilibrium values θ̂i = π − α = (n − `)π/n and ρ̂i/ρ̂i−1 = 1, i.e. the equilibrium

shape is equilateral.

To address the existence of pure shape equilibria for the symmetric case, we

apply Proposition 2.4.2, first noting that

τk =

(
n∑
i=1

αi
n

)
− k

n
π = α− k

n
π. (2.165)

Thus sin (αi − τk) = sin (α− (α− kπ/n)) = sin (kπ/n) for every i = 1, 2, . . . , n, and

pure shape equilibria exist if and only if there exists k ∈ {0, 1, 2, . . . , n− 1} such

that

sin (αi − τk) sin (αi−1 − τk) = sin2 (kπ/n) > 0. (2.166)

Since (2.166) holds for k = 1, 2, . . . , n − 1, we have established that the symmetric

case always admits exactly n − 1 pure shape equilibria (identified by their cor-

responding k-value). Furthermore, since sin(α − τk) = sin (kπ/n) > 0 for every

k = 1, 2, . . . , n− 1, substitution of (2.165) into (2.158) and (2.161) yields

γααα,k = sin (α− kπ/n) , βααα,k = cos (α− kπ/n) . (2.167)
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At equilibrium, we have θ̂
(k)
i = π − α + 2τk = α + (n − 2k)π/n and ρ̂

(k)
i /ρ̂

(k)
i−1 = 1,

i.e. the equilibrium shapes are equilateral in this case as well.

We summarize these results with the following proposition.

Proposition 2.4.7. Consider an n-particle cyclic CB pursuit system evolving on

MCB(ααα) according to the shape dynamics (2.68) parametrized by {α1, α2, . . . , αn},

where α1 = α2 = · · · = αn = α ∈ [0, 2π). The following statements hold:

1. No rectilinear equilibria exist;

2. Circling equilibria exist if and only if α = `π/n, for ` = 1, 2, . . . , n − 1, n +

1, . . . , 2n− 1, in which case the equilibrium values satisfy

θ̂i = (n− `)π/n, ρ̂i/ρ̂i−1 = 1, i = 1, 2, . . . , n; (2.168)

3. There exist exactly n − 1 unique pure shape equilibria, each identified with a

unique value of k ∈ {1, 2, . . . , n− 1}. The equilibrium values satisfy

θ̂
(k)
i = α+ (n− 2k)π/n, ρ̂

(k)
i /ρ̂

(k)
i−1 = 1, i = 1, 2, . . . , n, (2.169)

and the expansion and rotation coefficients describing the evolution of the cor-

responding trajectories in the physical space are given by

γααα,k = sin (α− kπ/n) , βααα,k = cos (α− kπ/n) . (2.170)

Proof. Follows from the preceding discussion.

Remark 2.4.8 The behavior of these n−1 symmetric pure shape equilibria is best

understood by considering low-dimensional cases, such as the three-particle case

which we present in section 3.7.1.
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Remark 2.4.9 If a circling equilibrium exists for the symmetric case (i.e. α = `π/n,

for ` = 1, 2, . . . , n − 1, n + 1, . . . , 2n − 1), then we can show that it corresponds to

one of the n − 1 pure shape equilibria. First, if ` ∈ {1, 2, . . . , n− 1}, then letting

k = ` in (2.169), we have

θ̂
(`)
i = `π/n+ (n− 2`)π/n = (n− `)π/n, i = 1, 2, . . . , n, (2.171)

which corresponds with the equilibrium circling values given by (2.168). If ` ∈

{n+ 1, n+ 2, . . . , 2n− 1}, then letting k = `− n yields

θ̂
(`−n)
i = `π/n+

(
n− 2(`− n)

)
π/n = (n− `)π/n+ 2n(π/n) = (n− `)π/n,

(2.172)

for i = 1, 2, . . . , n, which again corresponds with (2.168).

In figure 2.6, we display trajectories corresponding to the four unique pure

shape equilibria which exist for the particular case n = 5, αi = π/2. Observe that

both outward spirals (top figures) and inward spirals (bottom figures) are possible,

with initial conditions dictating system behavior.
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Figure 2.6: This figure illustrates the four unique pure shape equilibria which exist

for the particular case α1 = α2 = α3 = α4 = α5 = π/2. In each figure, initial

conditions were chosen such that the particle formation started in one of the pure

shape equilibrium configurations.
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Chapter 3

Low-dimensional planar cases: mutual CB pursuit

and three-particle cyclic CB pursuit

3.1 Introduction

In chapter 2, we developed a framework for analyzing n-agent cyclic CB pur-

suit systems and presented some general results which apply for any value of n,

most notably the convergence to the invariant submanifold MCB(ααα) (presented in

Proposition 2.3.2) and the characterization of existence conditions for special so-

lutions such as relative equilibria and pure shape equilibria (Propositions 2.4.1

and 2.4.2). While stability analysis for these special solutions proves very diffi-

cult for arbitrary n, in this chapter we demonstrate that the low-dimensional cases

(n = 2 and n = 3) yield a body of rich (and sometimes surprising) results.

For the n = 2 “mutual pursuit” case, we demonstrate in section 3.2 that the

shape dynamics are integrable, and we derive closed-form solutions for the system

evolution on the full shape space Mshape. (See Proposition 3.2.1.) We then con-

sider the reduced dynamics restricted to the CB pursuit manifold MCB(α1,α2) and
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derive closed-form solutions for reconstruction of the corresponding trajectories in

the physical space. Of interest is the comparison of the current work on mutual CB

pursuit with the analysis of mutual motion camouflage pursuit in [39]. In particular,

we note that the mutual motion camouflage dynamics in [39] are conservative and

give rise to periodic trajectories, while the mutual CB pursuit system is dissipa-

tive and results in convergence to the invariant manifold MCB(α1,α2), on which the

reduced dynamics are one-dimensional and linear in the time variable.

In sections 3.3 through 3.7 we consider the n = 3 case, first deriving two-

dimensional pure shape dynamics (by means of a rescaling of the time variable)

which enables phase portrait analysis and stability characterization for the recti-

linear equilibria (section 3.5), circling equilibria (section 3.6), and shape-preserving

pure shape equilibria (section 3.7). In the course of analyzing three-particle recti-

linear equilibria, we demonstrate that a particular choice of parameters results in

periodic orbits in the two-dimensional space of pure shape, corresponding to re-

markable precessing motions of the three-body system in the full physical space.

(See section 3.5.3.) The techniques of reduction and symmetry which we employ

here have parallels in recent work on periodic orbits in the Newtonian three-body

problem. (See, for instance, [10], [42], and [6].) However, the present context of

unit-mass particles interacting through unidirectional pursuit laws is significantly

different from the context of celestial mechanics governed by gravitational forces,

which provides the foundation of the analysis in the referenced work.
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3.2 Mutual CB pursuit (n = 2)

3.2.1 Integrable shape dynamics

For the n = 2 case, Mshape is three-dimensional and our closure constraint

equations (2.19) and (2.20) can be easily solved to yield an explicit three variable

parametrization. First, substitution of (2.19) into (2.20) results in

ρ1R(π + κ1 − θ1) + ρ21 = 0, (3.1)

which can be expanded into

ρ1 cos(π + κ1 − θ1) + ρ2 = 0,

ρ1 sin(π + κ1 − θ1) = 0. (3.2)

Since ρ1 and ρ2 must be positive, the second equation in (3.2) requires sin(π+ κ1−

θ1) = 0, and it follows that the only valid solution for the pair of equations in (3.2)

is given by θ1 = κ1 with ρ1 = ρ2. Then by substitution back into (2.19), we have

θ1 = κ1, θ2 = κ2, ρ1 = ρ2 = ρ, (3.3)

and by (2.61), our mutual CB pursuit dynamics are given by

κ̇1 = −µ1 sin(κ1 − α1),

κ̇2 = −µ2 sin(κ2 − α2),

ρ̇ = − cos(κ1)− cos(κ2), (3.4)

with no constraints aside from ρ > 0. In fact, we will demonstrate in the following

analysis that these shape dynamics can be integrated to obtain closed-form solutions.
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Noting that the κ̇i dynamics can be reformulated as

κ̇i = −µi sin
(
κi − αi

2
+
κi − αi

2

)
= −2µi sin

(
κi − αi

2

)
cos

(
κi − αi

2

)
, i = 1, 2,

(3.5)

we define the change of variables

χi , tan

(
κi − αi

2

)
, i = 1, 2, (3.6)

which is valid for κi 6= αi + π. (In fact, κi = αi + π is an equilibrium point for the

κ̇i dynamics, and therefore it is sufficient to require κi(0) 6= αi + π to ensure that

(3.6) is well-defined.) Then differentiating (3.6), we have

χ̇i = sec2

(
κi − αi

2

)(
κ̇i
2

)
= −µi sec2

(
κi − αi

2

)
sin

(
κi − αi

2

)
cos

(
κi − αi

2

)
= −µi tan

(
κi − αi

2

)
= −µiχi, i = 1, 2, (3.7)

and therefore

χi(t) = χi(0)e
−µit, i = 1, 2, (3.8)

where χi(0) = tan
(

1
2
(κi(0)− αi)

)
. Then expressing our results in terms of the

original variables, we have (for i = 1, 2)

κi(t) =


αi + 2 arctan (Cie

−µit) for Ci = tan
(

1
2
(κ0

i − αi)
)
, κi(0) = κ0

i 6= αi + π,

αi + π for κi(0) = αi + π.

(3.9)
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Substituting (3.9) into the ρ̇ dynamics from (3.4), we have

ρ̇(t) = −
2∑
i=1

cos
(
αi + 2 arctan

(
Cie

−µit
))

= −
2∑
i=1

[
cos(αi) cos

(
2 arctan

(
Cie

−µit
))
− sin(αi) sin

(
2 arctan

(
Cie

−µit
))]

,

(3.10)

and by applying standard double-angle trigonometric identities, we note that

cos
(
2 arctan

(
Cie

−µit
))

=
1− tan2

(
arctan (Cie

−µit)
)

1 + tan2
(
arctan (Cie−µit)

) =
1− (Cie

−µit)
2

1 + (Cie−µit)2 ,

sin
(
2 arctan

(
Cie

−µit
))

=
2 tan

(
arctan (Cie

−µit)
)

1 + tan2
(
arctan (Cie−µit)

) =
2Cie

−µit

1 + (Cie−µit)2 . (3.11)

Substituting (3.11) into (3.10) and integrating both sides yields

ρ(t) = ρ(0)−
2∑
i=1

[
cos(αi)

∫ t

0

1− (Cie
−µiσ)

2

1 + (Cie−µiσ)2dσ − sin(αi)

∫ t

0

2Cie
−µiσ

1 + (Cie−µiσ)2dσ

]
,

(3.12)

and integrating by substitution (with u = Cie
−µiσ, du = −µiCie−µiσdσ = −µiudσ)

results in

ρ(t) = ρ(0)−
2∑
i=1

[
cos(αi)

∫ Cie
−µit

Ci

1− u2

1 + u2

(
− du

µiu

)

− sin(αi)

∫ Cie
−µit

Ci

2u

1 + u2

(
− du

µiu

)]

= ρ(0) +
2∑
i=1

1

µi

[
cos(αi)

∫ Cie
−µit

Ci

1− u2

u(1 + u2)
du− sin(αi)

∫ Cie
−µit

Ci

2

1 + u2
du

]

= ρ(0) +
2∑
i=1

1

µi

[
cos(αi) ln

(
u

1 + u2

)∣∣∣∣Cie
−µit

Ci

− 2 sin(αi) arctan(u)

∣∣∣∣Cie
−µit

Ci

]
.

(3.13)
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Then noting that

ln

(
u

1 + u2

)∣∣∣∣Cie
−µit

Ci

= ln

(
Cie

−µit

1 + (Cie−µit)2

)
− ln

(
Ci

1 + C2
i

)
= ln

(
e−µit

Ci (1 + C2
i )

Ci
(
1 + (Cie−µit)2)

)

= −µit+ ln

(
1 + C2

i

1 + C2
i e

−2µit

)
,

and

arctan(u)

∣∣∣∣Cie
−µit

Ci

= arctan
(
Cie

−µit
)
− arctan (Ci) = arctan

(
Ci (e

−µit − 1)

1 + C2
i e

−µit

)
,

we can state the closed-form solution in terms of the following proposition.

Proposition 3.2.1. The mutual CB pursuit shape dynamics (3.4) are integrable

and yield the closed-form solutions

κi(t) = αi + 2 arctan
(
Cie

−µit
)
, i = 1, 2, (3.14)

ρ(t) = ρ(0)− [cos(α1) + cos(α2)] t

+
2∑
i=1

1

µi

[
cos(αi) ln

(
1 + C2

i

1 + C2
i e

−2µit

)
− 2 sin(αi) arctan

(
Ci (e

−µit − 1)

1 + C2
i e

−µit

)]
,

(3.15)

for κi(0) = κ0
i 6= αi + π, Ci = tan

(
1
2
(κ0

i − αi)
)
, ρ(0) = ρ0 > 0, and t < tc, where tc

is the minimum time such that ρ(tc) = 0, with tc = ∞ if ρ(t) > 0 for all finite t.

For κi(0) = αi + π, it holds that κi(t) ≡ αi + π, i = 1, 2, and ρ(t) = ρ0 +

[cos(α1) + cos(α2)] t for t < tc, where tc = ρ0/[cos(α1) + cos(α2)] for cos(α1) +

cos(α2) < 0 and tc = ∞ else.

Proof. The proof follows from the previous discussion, with the additional assump-

tion t < tc required to enforce our non-collision hypothesis.
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Remark 3.2.2 For κi(0) 6= αi + π, Proposition 3.2.1 implies that κi(t) −→ αi

as t −→ ∞, i.e. the system asymptotically approaches the CB Pursuit Manifold

MCB(α1,α2). This also follows from the general result stated in Proposition 2.3.2.

Remark 3.2.3 For the general n-particle case, the same process detailed here can

be used to integrate the κ̇i dynamics from (2.61), yielding analagous closed-form

solutions for κi. However, unlike the two-particle case, the ρ̇i dynamics can not be

subsequently integrated due to their dependence on the θi variables.

3.2.2 Center of mass trajectory

While the previous section considered the system evolution on the entire shape

space, we now restrict our attention to the submanifold MCB(α1,α2). This approach

enables a straightforward reconstruction of the corresponding particle trajectories

in the plane, by deriving closed-form solutions for both the baseline vector

r , r1 − r2 (3.16)

and the center of mass z , 1
2
(r1 + r2).

Since |r| = ρ, and on MCB(α1,α2) we have κ1 ≡ α1 and κ2 ≡ α2, substitution

into (3.15) yields

|r(t)| = ρ(t) = ρ0 − η+t, (3.17)

where we have defined

η+ , cos(α1) + cos(α2). (3.18)
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Note that if η+ > 0, then (3.17) implies that there will be collision in finite time,

and therefore we restrict our analysis to t < tc, where

tc =


ρ0/η+ for η+ > 0

∞ for η+ ≤ 0.

(3.19)

Observe that (2.24) provides the MCB(α1,α2) relations

x1 ·
r

|r|
= − cos(α1), y1 ·

r

|r|
= − sin(α1),

x2 ·
r

|r|
= cos(α2), y2 ·

r

|r|
= sin(α2). (3.20)

We proceed by deriving a closed-form solution for the evolution of the baseline vector

r. First, we observe that

d

dt

(
r

|r|

)
=

1

|r|2

[
ṙ |r| − r

d (|r|)
dt

]
=

1

|r|

[
ṙ−

(
ṙ · r

|r|

)
r

|r|

]
=

1

|r|

(
ṙ · r

⊥

|r|

)
r⊥

|r|
, (3.21)

where the last step follows from the decomposition of ṙ in the basis vectors r
|r| and

r⊥

|r| . By (2.2) we have ṙ = x1 − x2 and ṙ⊥ = y1 − y2, and therefore application of
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(1.11) and (3.20) to (3.21) yields

d

dt

(
r

|r|

)
=

1

|r|

(
(x1 − x2) ·

r⊥

|r|

)
r⊥

|r|

=
1

ρ

(
−(y1 − y2) ·

r

|r|

)
R
(π

2

) r

|r|

=
1

ρ0 − η+t

(
sin(α1) + sin(α2)

) 0 −1

1 0

 r

|r|

=

 0 − ω+

ρ0−η+t

ω+

ρ0−η+t 0

 r

|r|
, (3.22)

where we have defined

ω+ , sin(α1) + sin(α2). (3.23)

If η+ = 0, then (3.22) is a linear time-invariant system with transition matrix

exp

 0 −ω+

ρ0
t

ω+

ρ0
t 0

 =

 cos
(
ω+

ρ0
t
)
− sin

(
ω+

ρ0
t
)

sin
(
ω+

ρ0
t
)

cos
(
ω+

ρ0
t
)
 = R

(
ω+

ρ0

t

)
. (3.24)

For η+ 6= 0, similar calculations yield the transition matrix for the linear time-

varying system which is given by

R

(∫ t

0

ω+

ρ0 − η+σ
dσ

)
= R

(
−ω+

η+

ln (ρ0 − η+σ)

∣∣∣∣t
0

)
= R

(
−ω+

η+

ln

(
ρ0 − η+t

ρ0

))
.

(3.25)

Therefore by (3.17), (3.22), (3.24) and (3.25), we have an explicit solution for the

evolution of the baseline vector r given by

r(t) =


ρ0−η+t
ρ0

R

(
−ω+

η+
ln
(
ρ0−η+t
ρ0

))
r0 for η+ 6= 0

R
(
ω+

ρ0
t
)

r0 for η+ = 0,

for r(0) = r0, ρ0 = |r0| , t < tc, (3.26)
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where tc is defined by (3.19).

In the following proposition we complete the reconstruction problem by char-

acterizing the trajectory of the center of mass in terms of the parameters

ω+ , sin(α1) + sin(α2), ω− , sin(α1)− sin(α2),

η+ , cos(α1) + cos(α2), η− , cos(α1)− cos(α2), (3.27)

which satisfy the identity

ω+ω− = sin2(α1)− sin2(α2) = − cos2(α1) + cos2(α2) = −η+η−. (3.28)

Proposition 3.2.4. Consider a two-particle mutual CB pursuit system operating

on MCB(α1,α2) according to the dynamics (2.2) with νi = 1 and ui given by (2.59).

Let the initial conditions be given by ri(0) = r0
i and xi(0) = x0

i , i = 1, 2. Define the

change of coordinates r̃i , ri − rc, where rc is given by

rc ,


z0 − σ0

(
r(0)
|r(0)|

)⊥
for ω+ 6= 0,

0 for ω+ = 0,

(3.29)

with z0 = 1
2
(r0

1 + r0
2) and σ0 = ρ0

2

(
η−
ω+

)
. Then the trajectory of the center of mass

z , 1
2
(r1 + r2) can be given in the new coordinates z̃ = z− rc by the following:

(i) if ω+ = 0, then z̃(t) = z̃0 +
1

2

(
x0

1 + x0
2

)
t,

(ii) if ω+ 6= 0 but η+ = 0, then z̃(t) = R

(
ω+

ρ0

t

)
z̃0,

(iii) if ω+ and η+ are both nonzero, then

z̃(t) =

(
ρ0 − η+t

ρ0

)
R

(
−ω+

η+

ln

(
ρ0 − η+t

ρ0

))
z̃0, (3.30)
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for t < tc, where tc is defined by (3.19).

Proof. Figure 3.1 depicts representative trajectories for each of the cases described

in Proposition 3.2.4 and proves helpful in illustrating the proof. On MCB(α1,α2), it

follows from (3.20) that x1(t) = −R(−α1)
r(t)
|r(t)| and x2(t) = R(−α2)

r(t)
|r(t)| . Therefore

if ω+ = 0, then by (3.26) we have r(t)
|r(t)| ≡

r0

|r0| and hence xi(t) ≡ x0
i . Thus ˙̃z(t) =

1
2
(x0

1 + x0
2), from which the first claim of the proposition follows.

For ω+ 6= 0, we will demonstrate that the center of mass follows either a

circling or spiraling trajectory1 centered on the point rc. We can resolve z̃ into

component vectors as

z̃ =

(
z̃ · r

|r|

)
r

|r|
+

(
z̃ · r

⊥

|r|

)
r⊥

|r|
, (3.31)

and the main thrust of the proof is to demonstrate that the first term is identically

zero, (i.e. we have chosen the shifted coordinates such that z̃ is always orthogonal

to r
|r|), and to derive a suitable form for the second term. We proceed by defining

γ , z̃ · r

|r|
, σ , z̃ · r

⊥

|r|
, (3.32)

noting that

σ(0) = z̃(0) ·
(

r(0)

|r(0)|

)⊥
= (z(0)− rc) ·

(
r(0)

|r(0)|

)⊥
= σ0,

γ(0) = z̃(0) · r(0)

|r(0)|
= (z(0)− rc) ·

r(0)

|r(0)|
= σ0

(
r0

|r0|

)⊥
· r0

|r0|
= 0, (3.33)

where σ0 is defined in the statement of the proposition. Then making use of (3.20)

1For the special case where η− , cos(α1)− cos(α2) = 0, we have σ(t) ≡ 0, and in this case the

radius of rotation is zero (i.e., the center of mass is fixed).
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(a) Rectilinear equilibrium (ω+ = 0; η+ = 0)

 

 

(b) Linear trajectories (ω+ = 0; η+ < 0)

 

 

*

(c) Circling equilibrium (ω+ 6= 0; η+ = 0)

 

 

*

(d) Expanding spiral (ω+ 6= 0; η+ < 0)

Figure 3.1: These figures illustrate representative trajectories for each of the cases

discussed in Proposition 3.2.4. The thicker trajectories denote the movement of

r1(t) (solid) and r2(t) (dashed), and the thinner solid trajectory denotes the center

of mass z(t). Note that the point rc has been chosen such that z̃(t) = z(t) − rc is

always orthogonal to r(t) = r1(t)− r2(t).
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and (3.22), we take the derivatives of σ and γ to obtain

σ̇ =

(
˙̃z · r

⊥

|r|

)
+ z̃ ·

(
d

dt

(
r

|r|

))⊥
=

1

2

(
(x1 + x2) ·

r⊥

|r|

)
+ z̃ ·

((
ω+

ρ0 − η+t

)
r⊥

|r|

)⊥

= −1

2

(
(y1 + y2) ·

r

|r|

)
−
(

ω+

ρ0 − η+t

)(
z̃ · r

|r|

)
=
ω−
2
−
(

ω+

ρ0 − η+t

)
γ (3.34)

and

γ̇ =

(
˙̃z · r

|r|

)
+ z̃ ·

(
d

dt

(
r

|r|

))

=
1

2

(
(x1 + x2) ·

r

|r|

)
+ z̃ ·

((
ω+

ρ0 − η+t

)
r⊥

|r|

)

= −η−
2

+

(
ω+

ρ0 − η+t

)
σ. (3.35)

Then differentiating (3.35), we have

γ̈ =

(
ω+η+

(ρ0 − η+t)2

)
σ +

(
ω+

ρ0 − η+t

)
σ̇

=

(
η+

ρ0 − η+t

)(
ω+

ρ0 − η+t

)
σ +

(
ω+

ρ0 − η+t

)(ω−
2

)
−
(

ω+

ρ0 − η+t

)2

γ

=

(
η+

ρ0 − η+t

)(
γ̇ +

η−
2

)
+

(
ω+

ρ0 − η+t

)(ω−
2

)
−
(

ω+

ρ0 − η+t

)2

γ

=

(
η+

ρ0 − η+t

)
γ̇ −

(
ω+

ρ0 − η+t

)2

γ, (3.36)

where the last step follows by application of (3.28). By (3.33) and (3.35) we have

γ(0) = 0 and γ̇(0) = −η−
2

+
(
ω+

ρ0

)
σ0 = 0, and thus (3.36) implies γ ≡ 0. Hence

(3.31) simplifies to

z̃ = σ
r⊥

|r|
, (3.37)
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and (3.34) becomes

σ̇ =
ω−
2
. (3.38)

By (3.33) we have σ(0) = σ0, and therefore integrating (3.38) yields

σ(t) = σ0 +
(ω−

2

)
t

=
1

2

(
ρ0

(
η−
ω+

)
+ (ω−)t

)
=

1

2ω+

(ρ0η− + (ω+ω−)t)

=
1

2ω+

(ρ0η− − (η+η−)t)

=
η−
2ω+

(ρ0 − η+t)

=
σ0

ρ0

ρ(t), (3.39)

where we have made use of (3.17) and (3.28). To complete the proof, we substitute

(3.26) and (3.39) into (3.37) to obtain

z̃ =
σ0

ρ0

r⊥

=


ρ0−η+t
ρ0

R

(
−ω+

η+
ln
(
ρ0−η+t
ρ0

))
σ0

ρ0
r⊥0 for η+ 6= 0

R
(
ω+

ρ0
t
)
σ0

ρ0
r⊥0 for η+ = 0,

=


ρ0−η+t
ρ0

R

(
−ω+

η+
ln
(
ρ0−η+t
ρ0

))
z̃0 for η+ 6= 0

R
(
ω+

ρ0
t
)

z̃0 for η+ = 0.

(3.40)

Remark 3.2.5 Observe that the trajectories of the individual agents can be recon-
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structed from (3.26) and (3.30) by

r̃1 = z̃ +
1

2
r and r̃2 = z̃− 1

2
r. (3.41)

We can provide physical interpretations of the three cases in Proposition 3.2.4 as

follows. In the first case (i.e. ω+ = 0), the baseline vector r does not rotate, and

the agents (and the center of mass) follow linear trajectories2. The case where both

ω+ = 0 and η+ = 0 corresponds to a rectilinear equilibrium. The second case in

Proposition 3.2.4 (ω+ 6= 0, η+ = 0) corresponds to a circling equilibrium, and the

last case (ω+ 6= 0, η+ 6= 0) corresponds to a pure shape equilibrium with spiraling

out (for η+ < 0) or spiraling in (for η+ > 0). For the circling equilibria and pure

shape equilibria, we note that η− = 0 =⇒ σ0 = 0 =⇒ z̃0 = 0 =⇒ z̃ ≡ 0, i.e. if

η− = 0 then the center of mass is fixed at its initial position.

3.3 Three-particle pure shape dynamics

In section 2.4.2 we described the (2n − 4)-dimensional manifold M̃CB(ααα) and

the associated (time-scaled) pure shape dynamics given by (2.103)-(2.104). In this

section we focus on the n = 3 case, making use of constraint equations to explicitly

demonstrate the reduction to two-dimensional pure shape dynamics on M̃CB(α1,α2,α3),

a process which is illustrated in figure 3.2. Rather than beginning with the dynamics

in (2.103)-(2.104), we choose to start directly from the original MCB(α1,α2,α3) dynam-

ics (2.68) and use an approach analogous to that in section 2.4.2. For convenience,

2In the special cases α1 = α2 = 0 and α1 = α2 = π, the agents follow linear trajectories but

the center of mass is fixed.
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we restate the MCB(α1,α2,α3) dynamics here,

θ̇i =
sin(αi−1) + sin(θi)

ρi−1

− sin(αi) + sin(θi+1)

ρi
,

ρ̇i = − [cos(αi) + cos(θi+1)] , i = 1, 2, 3, (3.42)

recalling the governing constraint equations

R

(
3∑
i=1

(π + αi − θi)

)
= 1, (3.43)

3∑
i=1

ρiR

(
i∑

j=1

(π + αj − θj)

)
= 0. (3.44)

As a first step, we eliminate θ1, θ3, and ρ3 by means of (3.43) and (3.44), so that we

can explicitly describe our shape dynamics in terms of only θ2, ρ1, and ρ2. We first

note that (3.43) implies

3∑
i=1

(π + αi − θi) = 0, (3.45)

and therefore θ1 = π + α1 + α2 + α3 − θ2 − θ3. Then substitution into (3.44) yields

0 = ρ1R(π + α1 − θ1) + ρ2R(α1 + α2 − θ1 − θ2) + ρ31

= ρ1R(−α2 − α3 + θ2 + θ3) + ρ2R(π − α3 + θ3) + ρ31

= R(θ3)

[
ρ1R(θ2 − α2 − α3) + ρ2R(π − α3) + ρ3R(−θ3)

]
, (3.46)

and since elements of SO(2) are nonsingular (i.e. R(θ3) is nonsingular), the term in

brackets must be the zero matrix. Writing this component-wise gives us

ρ3 sin(θ3) = ρ1 sin(θ2 − α2 − α3) + ρ2 sin(α3),

ρ3 cos(θ3) = −ρ1 cos(θ2 − α2 − α3) + ρ2 cos(α3). (3.47)
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By summing the square of each equation in (3.47), we have

ρ2
3 = ρ2

1 + 2ρ1ρ2

(
sin(θ2 − α2 − α3) sin(α3)− cos(θ2 − α2 − α3) cos(α3)

)
+ ρ2

2

= ρ2
1 − 2ρ1ρ2 cos(θ2 − α2) + ρ2

2

= ρ2
1

[
1− 2

(
ρ2

ρ1

)
cos(θ2 − α2) +

(
ρ2

ρ1

)2
]
, (3.48)

which, by the strict positivity of ρ3, yields

ρ3 = ρ1P (ρ1, ρ2, θ2), (3.49)

where P (ρ1, ρ2, θ2) ,

√(
ρ2
ρ1

)2

− 2
(
ρ2
ρ1

)
cos(θ2 − α2) + 1. We restrict our analysis

to Mshape (i.e. no sequential colocation), and thus we forbid ρ1 = ρ2 with θ2 = α2,

which is the only condition under which P (ρ1, ρ2, θ2) = 0. Then substituting (3.47)

and (3.49) into (3.42), we have an equivalent representation of our three-particle

shape dynamics on MCB(α1,α2,α3), given by

θ̇2 =
1

ρ1

[sin(α1) + sin(θ2)]−
1

ρ2

[
sin(α2) +

sin(θ2 − α2 − α3) + ρ2
ρ1

sin(α3)

P (ρ1, ρ2, θ2)

]
,

ρ̇1 = − cos(α1)− cos(θ2),

ρ̇2 = − cos(α2)−
− cos(θ2 − α2 − α3) + ρ2

ρ1
cos(α3)

P (ρ1, ρ2, θ2)
. (3.50)

These dynamics are subject only to the strict positivity constraints on ρ1, ρ2, and

P (ρ1, ρ2, θ2).

Letting

λ̃ , ln (ρ2/ρ1) (3.51)

and denoting

P ,
√
e2λ̃ − 2eλ̃ cos(θ2 − α2) + 1, (3.52)
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we have

˙̃λ =
1(
ρ2
ρ1

) {( 1

ρ1

)[(
−ρ2

ρ1

)
ρ̇1 + ρ̇2

]}

=
1

eλ̃ρ1

{
eλ̃
(
cos(α1) + cos(θ2)

)
− cos(α2) +

1

P

(
cos(θ2 − α2 − α3)− eλ̃ cos(α3)

)}

=
1

eλ̃ρ1P

{
P
[
eλ̃
(
cos(α1) + cos(θ2)

)
− cos(α2)

]
+ cos(θ2 − α2 − α3)− eλ̃ cos(α3)

}
,

(3.53)

and

θ̇2 =
1

eλ̃ρ1P

{
P
[
eλ̃
(
sin(α1) + sin(θ2)

)
− sin(α2)

]
− sin(θ2 − α2 − α3)− eλ̃ sin(α3)

}
,

(3.54)

with ρ̇1 defined as in (3.50). We then introduce a scaling of the time variable3

τ ,
∫ t

0

1

eλ̃(σ)ρ1(σ)P (σ)
dσ, (3.55)

so that

dθ2

dτ
=
dθ2

dt

dt

dτ
= θ̇2e

λ̃(t)ρ1(t)P (t). (3.56)

(Note that an analogous statement holds for dλ̃
dτ

and dρ1
dτ

.) Letting the prime su-

perscript denote differentiation with respect to the scaled time variable τ , we then

3This time scaling is analogous to that in (2.100) but takes a slightly different form. The re-use

of τ and the prime superscript (in (3.57)-(3.59)) is a slight abuse of notation but should be clear

from the context.
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Figure 3.2: This figure illustrates the process by which we reduce a 3n-dimensional

system to a (2n − 4)-dimensional system by means of symmetry, geometry, and

algebraic constraints. In each figure, the labeled variables are the quantities which

are free to vary. Note that in the step from Mshape to MCB(ααα) the dotted κi angles

are replaced by solid black curves, indicating that κi ≡ αi on MCB(ααα) while θi angles

remain free to vary.

have

θ
′

2 = P
[
eλ̃
(
sin(α1) + sin(θ2)

)
− sin(α2)

]
− sin(θ2 − α2 − α3)− eλ̃ sin(α3), (3.57)

λ̃
′
= P

[
eλ̃
(
cos(α1) + cos(θ2)

)
− cos(α2)

]
+ cos(θ2 − α2 − α3)− eλ̃ cos(α3), (3.58)

ρ
′

1 = −eλ̃ρ1P [cos(α1) + cos(θ2)] . (3.59)

As was discussed in section 2.4.2, the time-scaling renders (3.57) and (3.58)

as a self-contained system in
{
θ2, λ̃

}
, describing the pure shape evolution on the

punctured cylinder

M̃CB(α1,α2,α3)
∼= S1 ×R− {(α2, 0)} . (3.60)
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(As discussed previously, the deletion of the point {(α2, 0)} is necessary to maintain

our prohibition on sequential colocation, but it is not enforced by the dynamics

(3.57) and (3.58).)

Figure 3.2 provides a summary of the reduction process in the specific context

of the three-particle case. In the three-particle case, this final reduction to a two-

dimensional system greatly facilitates an analysis of system stability properties,

since it permits techniques of phase plane analysis. In what follows, we use the two-

dimensional dynamics (3.57)-(3.58) to analyze the stability properties of rectilinear,

circling, and spiraling equilibria.

3.4 Linearization of the
{
θ2, λ̃

}
three-particle pure shape

dynamics

A portion of our stability analysis for the three-particle case depends on the

linearization of the
{
θ2, λ̃

}
dynamics (3.57)-(3.58), and therefore we present the

general form of the Jacobian matrix here.

First, we note from (3.52) that

∂P

∂θ2

=
1

2P

(
2eλ̃ sin(θ2 − α2)

)
=
eλ̃

P
sin(θ2 − α2),

∂P

∂λ̃
=

1

2P

(
2e2λ̃ − 2eλ̃ cos(θ2 − α2)

)
=
eλ̃

P

(
eλ̃ − cos(θ2 − α2)

)
. (3.61)

Then denoting x ,
(
θ2, λ̃

)T
and

g1(θ2, λ̃) , θ
′

2,

g2(θ2, λ̃) , λ̃
′
, (3.62)
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our Jacobian matrix is given by

(
∂g

∂x

)
=

 ∂g1
∂θ2

∂g1
∂λ̃

∂g2
∂θ2

∂g2
∂λ̃

 , (3.63)

with the elements given by (see appendix C for details):

∂g1

∂θ2

=
1

P

{
e3λ̃ cos(θ2) + e2λ̃

(
sin(θ2 − α2) [sin(α1) + sin(θ2)]− 2 cos(θ2 − α2) cos(θ2)

)
+ eλ̃

(
cos(θ2)− sin(θ2 − α2) sin(α2)

)
− P cos(θ2 − α2 − α3)

}
, (3.64)

∂g1

∂λ̃
=
eλ̃

P

{
2e2λ̃ [sin(α1) + sin(θ2)]− eλ̃

(
sin(α2) + 3 cos(θ2 − α2) [sin(α1) + sin(θ2)]

)
+ cos(θ2 − α2) sin(α2) + [sin(α1) + sin(θ2)]− P sin(α3)

}
, (3.65)

∂g2

∂θ2

=
1

P

{
−e3λ̃ sin(θ2) + e2λ̃

(
sin(θ2 − α2) [cos(α1) + cos(θ2)] + 2 cos(θ2 − α2) sin(θ2)

)
− eλ̃

(
sin(θ2) + sin(θ2 − α2) cos(α2)

)
− P sin(θ2 − α2 − α3)

}
, (3.66)

∂g2

∂λ̃
=
eλ̃

P

{
2e2λ̃ [cos(α1) + cos(θ2)]− eλ̃

(
cos(α2) + 3 cos(θ2 − α2) [cos(α1) + cos(θ2)]

)
+ cos(θ2 − α2) cos(α2) + [cos(α1) + cos(θ2)]− P cos(α3)

}
. (3.67)

3.5 Stability analysis for three-particle rectilinear equilibria

In section 2.4.1 we derived existence conditions for rectilinear equilibria on

MCB(ααα), as well as descriptions of the equilibrium values for θi and ρi. In the three-

particle case, we can fully classify the possible types of rectilinear equilibria and

state an explicit form for the equilibrium side lengths. (We state the proposition in

terms of the equilibrium values for the original ρi variables, but the result can be

readily expressed in terms of the pure shape variables as well.)
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Proposition 3.5.1. The three-particle MCB(α1,α2,α3) dynamics (3.42) permit two

types of rectilinear equilibria, characterized by

• Type 1: αk = αk+1 = αk+2 + π, for some k ∈ {1, 2, 3},

• Type 2: sin(αi−1 − αi) sin(αi − αi+1) > 0, i = 1, 2, 3.

The equilibrium side lengths (ρ̂i) for each type of rectilinear equilibria are charac-

terized by

• Type 1: ρ̂k + ρ̂k+1 = ρ̂k+2, where the indices correspond to those in the Type 1

definition,

• Type 2: ρ̂2
ρ̂1

= sin(α3−α1)
sin(α2−α3)

, ρ̂3
ρ̂1

= sin(α1−α2)
sin(α2−α3)

.

Proof. Suppose that sin(αk − αk+1) = 0 for some k ∈ {1, 2, 3}. Then it holds that

either αk = αk+1 or αk = π+αk+1. If αk = αk+1, then substituting into (2.71) (with

σi = ρ̂i) we have

ρ̂k+2e
jαk+2 = −(ρ̂k + ρ̂k+1)e

jαk+1 , (3.68)

and since ρ̂i > 0, a rectilinear equilibrium exists only if

αk+2 = π + αk+1, ρ̂k+2 = ρ̂k + ρ̂k+1. (3.69)

Alternatively, if αk = π + αk+1, then the constraint (2.71) yields

ρ̂k+2e
jαk+2 = (ρ̂k − ρ̂k+1)e

jαk+1 , (3.70)
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in which case a rectilinear equilibrium exists if either

αk+2 = αk+1, ρ̂k+2 = ρ̂k − ρ̂k+1, (3.71)

or

αk+2 = π + αk+1, ρ̂k+2 = ρ̂k+1 − ρ̂k, (3.72)

with ρ̂k and ρ̂k+1 chosen such that ρ̂k+2 > 0. Hence, we have demonstrated that

sin(α1 − α2) = 0 ⇐⇒ sin(α2 − α3) = 0 ⇐⇒ sin(α3 − α1) = 0 (3.73)

and that the Type 1 definition satisfies rectilinear equilibrium existence conditions

with the ρ̂i assignments described in the statement of the proposition.

Now suppose sin(αi − αi+1) 6= 0, i = 1, 2, 3. Then rectilinear equilibrium

existence conditions (i.e. (2.71)) require

ρ̂2

ρ̂1

ejα2 +
ρ̂3

ρ̂1

ejα3 = −ejα1 , (3.74)

which can be expanded and represented in matrix form as sin(α2) sin(α3)

cos(α2) cos(α3)


 ρ̂2

ρ̂1

ρ̂3
ρ̂1

 = −

 sin(α1)

cos(α1)

 . (3.75)

Noting that

det

 sin(α2) sin(α3)

cos(α2) cos(α3)

 = sin(α2) cos(α3)− sin(α3) cos(α2) = sin(α2 − α3) 6= 0,

(3.76)
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we can solve (3.75) to obtain ρ̂2
ρ̂1

ρ̂3
ρ̂1

 = −
(

1

sin(α2 − α3)

) cos(α3) − sin(α3)

− cos(α2) sin(α2)


 sin(α1)

cos(α1)



= −
(

1

sin(α2 − α3)

) sin(α1 − α3)

sin(α2 − α1)



=

 sin(α3−α1)
sin(α2−α3)

sin(α1−α2)
sin(α2−α3)

 . (3.77)

Since ρ̂i

ρ̂i−1
must be positive (and the denominators must be non-zero), rectilinear

equilibria exist only if the Type 2 condition is satisfied.

Proposition 3.5.2. All Type 2 rectilinear equilibria are unstable.

Proof. We establish the claim by demonstrating that the Jacobian associated with

the linearization of the pure shape dynamics (3.57)-(3.58) about any Type 2 recti-

linear equilibrium must have an eigenvalue with positive real part. By (3.49), (3.51),

Proposition 2.4.1, and Proposition 3.5.1, the equilibrium values for θ2, e
λ̃, and

P (at a Type 2 rectilinear equilibrium) are given by

θ2 = π + α1, eλ̃ =
sin(α3 − α1)

sin(α2 − α3)
, P =

sin(α1 − α2)

sin(α2 − α3)
. (3.78)

By substitution of these values into (3.63)-(3.67) and subsequent simplifications

detailed in appendix C, we have the Jacobian for Type 2 rectilinear equilibria

(
∂g

∂x

)
rect

=

 ∂g1
∂θ2

∂g1
∂λ̃

∂g2
∂θ2

∂g2
∂λ̃

 , (3.79)
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where

∂g1

∂θ2

=
− cos(α1) sin(α3 − α1) sin(α1 − α2) + cos(α2) sin2(α2 − α3) cos(α3 − α1)

sin2(α2 − α3)
,

∂g1

∂λ̃
= cos(α2) sin(α3 − α1),

∂g2

∂θ2

=
sin(α1) sin(α3 − α1) sin(α1 − α2)− sin(α2) sin2(α2 − α3) cos(α3 − α1)

sin2(α2 − α3)
,

∂g2

∂λ̃
= − sin(α2) sin(α3 − α1). (3.80)

The determinant of (3.79) is given by

det

(
∂g

∂x

)
rect

=
sin(α3 − α1)

sin2(α2 − α3)

(
sin(α2) cos(α1) sin(α3 − α1) sin(α1 − α2)

− sin(α2) cos(α2) sin2(α2 − α3) cos(α3 − α1)

− sin(α1) cos(α2) sin(α3 − α1) sin(α1 − α2)

+ sin(α2) cos(α2) sin2(α2 − α3) cos(α3 − α1)

)
=

sin(α3 − α1)

sin2(α2 − α3)

(
− sin(α3 − α1) sin(α1 − α2)

[
sin(α1) cos(α2)

− sin(α2) cos(α1)
])

=
− sin2(α1 − α2) sin2(α3 − α1)

sin2(α2 − α3)
, (3.81)

which is strictly negative. Since the eigenvalues of a two-by-two matrix A are given

by

λ =
1

2

(
tr(A)±

√
tr2(A)− 4det(A)

)
, (3.82)

and the determinant of (3.79) is strictly negative, it must hold that the eigenvalues

of (3.79) are real, and that one is positive and one is negative. Therefore all Type

2 rectilinear equilibria are unstable.
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The rest of this section is devoted to analyzing Type 1 rectilinear equilibria.

In working with Type 1 rectilinear equilibria, we assume without loss of generality

that α1 = α2 = α = π + α3 for some α ∈ [0, 2π). We investigate stability properties

of such rectilinear equlibria on MCB(α,α,π+α) by considering their projections onto

the submanifold M̃CB(α,α,π+α) defined in (3.60).

By substitution of α1 = α2 = α = π + α3 into (3.57)-(3.58), we arrive at

θ
′

2 = P
[
eλ̃
(
sin(α) + sin(θ2)

)
− sin(α)

]
− sin(θ2 − 2α+ π) + eλ̃ sin(α),

λ̃
′
= P

[
eλ̃
(
cos(α) + cos(θ2)

)
− cos(α)

]
+ cos(θ2 − 2α+ π) + eλ̃ cos(α), (3.83)

where P =
√
e2λ̃ − 2eλ̃ cos(θ2 − α) + 1. From (2.72) we have the equilibrium value

for θ2, given by θ̂2 = π + α1 = π + α, and we therefore define an angular error

variable

φ , θ2 − θ̂2 = θ2 − π − α, (3.84)

so that φ = 0 ⇐⇒ θ2 = θ̂2. (See figure 3.3.) Denoting

P ,
√
e2λ̃ + 2eλ̃ cos(φ) + 1, (3.85)

we can formulate
{
φ, λ̃

}
dynamics as

φ
′
= P

[
eλ̃
(
sin(α)− sin(φ+ α)

)
− sin(α)

]
− sin(φ− α) + eλ̃ sin(α),

λ̃
′
= P

[
eλ̃
(
cos(α)− cos(φ+ α)

)
− cos(α)

]
+ cos(φ− α) + eλ̃ cos(α). (3.86)

These dynamics evolve on a manifold (punctured cylinder) which is diffeomorphic to

M̃CB(α,α,π+α) as defined in (3.60), and therefore we will consider the
{
φ, λ̃

}
dynamics
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Figure 3.3: Depiction of the
{
φ, λ̃

}
variables. Note that φ = 0 at a Type 1

rectilinear equilibrium.

as evolving on M̃CB(α,α,π+α). (The excluded point in terms of the
{
φ, λ̃

}
variables

is given by φ = π, λ̃ = 0.)

It should be noted that the only equilibria which exist for these pure shape

dynamics (3.86) correspond to Type 1 rectilinear equilibria (for the full dynamics).

This is explicitly demonstrated by the following proposition.

Proposition 3.5.3. The equilibria for the dynamics (3.86) are given by the set

M̃α =
{

(φ, λ̃) ∈ M̃CB(α,α,π+α)

∣∣∣ φ = 0
}

(3.87)

Proof. First note that

P (0, λ̃) =
√
e2λ̃ + 2eλ̃ + 1 = eλ̃ + 1, (3.88)

from which it follows by straightforward calculation that φ
′
(0, λ̃) = 0 = λ̃

′
(0, λ̃). To
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prove necessity, we suppose that a relative equilibrium exists, i.e. φ
′
= 0 = λ̃

′
. Then

0 = − cos(α)φ
′
+ sin(α)λ̃

′

= Peλ̃ [cos(α) sin(φ+ α)− sin(α) cos(φ+ α)]

+ [cos(α) sin(φ− α) + sin(α) cos(φ− α)]

=
(
Peλ̃ + 1

)
sin(φ). (3.89)

Since P and eλ̃ are strictly positive, we must have sin(φ) = 0, i.e. φ = 0 or π.

Having already verified that φ = 0 corresponds to a relative equilibrium, we check

φ = π by observing that

P (π, λ̃) =
√
e2λ̃ − 2eλ̃ + 1 = eλ̃ − 1 (3.90)

and substituting into (3.86) to get

φ
′
(π, λ̃) = 2 sin(α)eλ̃(eλ̃ − 1)

λ̃
′
(π, λ̃) = 2 cos(α)eλ̃(eλ̃ − 1). (3.91)

Since the point (φ, λ̃) = (π, 0) is excluded from M̃CB(α,α,π+α), we have demonstrated

that it is not possible for both equations in (3.91) to be zero, and therefore φ = π

can not correspond to a relative equilibrium.

Remark 3.5.4 Observe that M̃α denotes a continuum of equilibria for the dynamics

given by (3.86), corresponding to a continuum of Type 1 rectilinear equilibria for

the full system.

Although we typically have considered α as a fixed parameter, in the ensuing

discussion it will sometimes prove helpful to view φ
′

and λ̃
′

as functions of three
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variables α, φ, and λ̃, defining

φ
′
= g1(α, φ, λ̃) , P

[
eλ̃
(
sin(α)− sin(φ+ α)

)
− sin(α)

]
− sin(φ− α) + eλ̃ sin(α),

λ̃
′
= g2(α, φ, λ̃) , P

[
eλ̃
(
cos(α)− cos(φ+ α)

)
− cos(α)

]
+ cos(φ− α) + eλ̃ cos(α).

(3.92)

Before proceeding with our stability analysis, we state the following proposi-

tion regarding a particular property of the vector field (3.86) in the vicinity of the

set M̃α.

Proposition 3.5.5. Let φ ∈ (0, π) ∪ (π, 2π) so that

F (α, φ, λ̃) ,
∂φ

∂λ̃
=
g1(α, φ, λ̃)

g2(α, φ, λ̃)
(3.93)

is well-defined. Then for any fixed α ∈ [0, 2π) and λ̃0 ∈ R,

lim
φ→0

F (α, φ, λ̃0) = −cos(α)

sin(α)
. (3.94)

Proof. In Proposition 3.5.3 we proved that g1(α, 0, λ̃0) = g2(α, 0, λ̃0) = 0 for any

α ∈ [0, 2π) and any λ̃0 ∈ R, and therefore we can apply L’Hôpital’s rule to the limit

calculation in (3.94). From (3.85) we have

∂P

∂φ
=

1

2P
(−2 sin(φ)eλ̃0) = −e

λ̃0

P
sin(φ), (3.95)

and therefore

∂g1(α, φ, λ̃0)

∂φ
=

(
−e

λ̃0

P
sin(φ)

)[
eλ̃0

(
sin(α)− sin(φ+ α)

)
− sin(α)

]
+ P

(
−eλ̃0 cos(φ+ α)

)
− cos(φ− α) (3.96)
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and

∂g2(α, φ, λ̃0)

∂φ
=

(
−e

λ̃0

P
sin(φ)

)[
eλ̃0

(
cos(α)− cos(φ+ α)

)
− cos(α)

]
+ P

(
eλ̃0 sin(φ+ α)

)
− sin(φ− α) (3.97)

Then, making use of (3.88), our limit calculation becomes

lim
φ→0

g1(α, φ, λ̃0)

g2(α, φ, λ̃0)
= lim

φ→0

∂g1(α,φ,λ̃0)
∂φ

∂g2(α,φ,λ̃0)
∂φ

=
−
(
eλ̃0 + 1

)
eλ̃0 cos(α)− cos(α)(

eλ̃0 + 1
)
eλ̃0 sin(α) + sin(α)

=
− cos(α)

((
eλ̃0 + 1

)
eλ̃0 + 1

)
sin(α)

((
eλ̃0 + 1

)
eλ̃0 + 1

)
= −cos(α)

sin(α)
. (3.98)

3.5.1 Analysis of the α = 0 case for Type 1 rectilinear equi-

libria

For the α = 0 case, our dynamics (3.86) simplify to

φ
′
= − sin(φ)

(
Peλ̃ + 1

)
,

λ̃
′
= P

[
eλ̃
(
1− cos(φ)

)
− 1
]

+ cos(φ) + eλ̃. (3.99)

Defining

H0(φ, λ̃) , −1− cos(φ), (3.100)

we have

H
′

0 = − sin2(φ)
(
Peλ̃ + 1

)
= H0(H0 + 2)

(
Peλ̃ + 1

)
, (3.101)
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from which it is apparent that the submanifolds defined respectively by H0 = 0 and

H0 = −2 are both invariant under the dynamics (3.99), in the sense of Definition

1.3.2. Noting thatH0 = −2 ⇐⇒ φ = 0, we see that the latter invariant submanifold

corresponds to our set of rectilinear equilibria M̃0 from (3.87). We define the other

invariant submanifold as

∆ =
{

(φ, λ̃) ∈ M̃CB(0,0,π)

∣∣∣ H0 = 0
}

=
{

(φ, λ̃) ∈ M̃CB(0,0,π)

∣∣∣ φ = π
}
, (3.102)

noting that the one-dimensional reduced dynamics on ∆ are characterized by λ̃
′
=

2eλ̃
(
eλ̃ − 1

)
, i.e. all trajectories on ∆ move away from the point λ̃ = 0. These two

invariant manifolds (and representative particle formations on Mstate) are depicted

in the phase portrait4 for the α = 0 case, in figure 3.4. Since φ ∈ S1 and therefore

φ = 0 is identified with φ = 2π, the phase portrait should be viewed as a punctured

cylinder which has been cut along the set M̃0 and unwrapped.

The following proposition summarizes the stability analysis for the α = 0 case,

demonstrating that ∆ is unstable and M̃0 is attractive on all but a thin subset of

M̃CB(0,0,π).

Proposition 3.5.6. Let M̃CB(0,0,π), M̃0 and ∆ be defined as in (3.60), (3.87) and

(3.102) respectively. Any trajectory of (3.99) starting in the set

M̃CB(0,0,π) −∆ (3.103)

4All phase portraits were created with the pplane tool for MATLAB, available at

http://www.math.rice.edu/∼dfield/.
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Figure 3.4: Depiction of the
{
φ, λ̃

}
phase portrait for the α = 0 case, which

should be viewed as a (punctured) cylinder which has been cut along the set M̃0

and unwrapped. Also depicted are representative particle formations (from the full

physical space) which correspond to each of the invariant submanifolds M̃0 and ∆.
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converges asymptotically to M̃0.

Proof. Let H0 be defined as in (3.100), and define

Ωε
0 =

{
(φ, λ̃) ∈ M̃CB(0,0,π)

∣∣∣ H0 ≤ −ε
}
, (3.104)

where ε satisfies 0 < ε ≤ 2. Note that Ωε
0 is closed and positively invariant under

the dynamics (3.99). From (3.101), it is clear that H
′
0 ≤ 0 on Ωε

0 with H
′
0 = 0 on

Ωε
0 if and only if H0 = −2, which corresponds to the invariant set M̃0. Though Ωε

0

is not bounded as a set, we claim that every trajectory of (3.99) which starts in Ωε
0

is bounded. To prove this claim, we argue by contradiction. If such a trajectory

were unbounded, then it must become unbounded in λ̃ (since it cannot cross M̃0 or

∆). Since there are no equilibrium points contained in Ωε
0 except for the set M̃0,

and H
′
0 < 0 on Ωε

0 − M̃0, it must be that the trajectory asymptotically approaches

the set M̃0 while becoming unbounded in the direction λ̃ = +∞ or λ̃ = −∞.

However, by Proposition 3.5.5 it holds that limφ→0
∂φ

∂λ̃
= −∞, and therefore M̃0

can not serve as an asymptote for the trajectory. Hence, the trajectory must be

bounded, and therefore by Birkhoff’s theorem the ω-limit set is nonempty, compact

and invariant. Asymptotic convergence to M̃0 follows as in the steps in the proof

of LaSalle’s Invariance Principle [29]. Finally, since ε can be arbitrarily small, it

follows that the region of convergence is given by M̃CB(0,0,π) −∆.
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Figure 3.5: This figure displays the (λ̃, φ) phase portrait for α = π/3, representing

the α ∈ (0, π/2) ∪ (3π/2, 2π) case. The phase portrait should be viewed as an

unwrapped punctured cylinder, so that φ = 0 is identified with φ = 2π. The set of

rectilinear equilibria is denoted as M̃α, and the set Ωα = Ω+
α ∪ M̃α ∪ Ω−

α is the set

on which we demonstrate boundedness of trajectories and convergence to M̃α.

3.5.2 Analysis of the α ∈ (0, π/2) ∪ (3π/2, 2π) case for Type 1

rectilinear equilibria

For α ∈ (0, π/2)∪ (3π/2, 2π), our dynamics are as stated in (3.86). The phase

portrait (as displayed in figure 3.5 for α = π/3) suggests that most trajectories con-

verge asymptotically to the equilibrium set M̃α, a result which we prove analytically

for trajectories starting in a particular set. We begin by characterizing the sign of

φ
′
and λ̃

′
on various regions.
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Proposition 3.5.7. Let

φ
′
= g1(α, φ, λ̃) , P

[
eλ̃
(
sin(α)− sin(φ+ α)

)
− sin(α)

]
− sin(φ− α) + eλ̃ sin(α),

λ̃
′
= g2(α, φ, λ̃) , P

[
eλ̃
(
cos(α)− cos(φ+ α)

)
− cos(α)

]
+ cos(φ− α) + eλ̃ cos(α),

(3.105)

and define the sets

Ω+
α+ =

{
(α, φ, λ̃) ∈ (0, π/2)× M̃CB(α,α,π+α)

∣∣∣
sin(φ) > 0, cos(φ) ≥ max [cos(α), sin(α)]

}
,

Ω−
α+ =

{
(α, φ, λ̃) ∈ (0, π/2)× M̃CB(α,α,π+α)

∣∣∣
sin(φ) < 0, cos(φ) ≥ max [cos(α), sin(α)]

}
. (3.106)

Then on Ω+
α+ it holds that g1(α, φ, λ̃) < 0 and g2(α, φ, λ̃) > 0, and on Ω−

α+ it holds

that g1(α, φ, λ̃) > 0 and g2(α, φ, λ̃) < 0.

Proof. The proof of Proposition 3.5.7 is provided in appendix C.

The following corollary extends our results to the case α ∈ (3π/2, 2π).

Corollary 3.5.8. Define g1 and g2 as in (3.105) and define the sets

Ω+
α− =

{
(α, φ, λ̃) ∈ (3π/2, 2π)× M̃CB(α,α,π+α)

∣∣∣
sin(φ) > 0, cos(φ) ≥ max [cos(α),− sin(α)]

}
,

Ω−
α− =

{
(α, φ, λ̃) ∈ (3π/2, 2π)× M̃CB(α,α,π+α)

∣∣∣
sin(φ) < 0, cos(φ) ≥ max [cos(α),− sin(α)]

}
. (3.107)

Then on Ω+
α− it holds that g1(α, φ, λ̃) < 0 and g2(α, φ, λ̃) < 0, and on Ω−

α− it holds

that g1(α, φ, λ̃) > 0 and g2(α, φ, λ̃) > 0.
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Proof. First, recalling that P (−φ, λ̃) = P (φ, λ̃), we note that for any (α, φ, λ̃) ∈

[0, 2π)× M̃CB(α,α,π+α) it holds that

g1(−α,−φ, λ̃) = P
[
eλ̃
(
sin(−α)− sin(−φ− α)

)
− sin(−α)

]
− sin(−φ+ α) + eλ̃ sin(−α)

= −
{
P
[
eλ̃
(
sin(α)− sin(φ+ α)

)
− sin(α)

]
− sin(φ− α) + eλ̃ sin(α)

}
= −g1(α, φ, λ̃), (3.108)

and

g2(−α,−φ, λ̃) = P
[
eλ̃
(
cos(−α)− cos(−φ− α)

)
− cos(−α)

]
+ cos(−φ+ α) + eλ̃ cos(−α)

= P
[
eλ̃
(
cos(α)− cos(φ+ α)

)
− cos(α)

]
+ cos(φ− α) + eλ̃ cos(α)

= g2(α, φ, λ̃). (3.109)

Then defining α̃ = −α and φ̃ = −φ, and making use of Proposition 3.5.7
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as well as our definitions of Ω+
α+ and Ω−

α+ from (3.106), we have

(α, φ, λ̃) ∈ Ω+
α− =⇒ sin(α) < 0, cos(α) > 0, sin(φ) > 0,

cos(φ) ≥ max [cos(α),− sin(α)]

=⇒ sin(−α̃) < 0, cos(−α̃) > 0, sin(−φ̃) > 0, cos(−φ̃) ≥ max [cos(−α̃),− sin(−α̃)]

=⇒ sin(α̃) > 0, cos(α̃) > 0, sin(φ̃) < 0, cos(φ̃) ≥ max [cos(α̃), sin(α̃)]

=⇒ (α̃, φ̃, λ̃) ∈ Ω−
α̃+

=⇒ g1(α̃, φ̃, λ̃) > 0, g2(α̃, φ̃, λ̃) < 0

=⇒ g1(−α,−φ, λ̃) > 0, g2(−α,−φ, λ̃) < 0

=⇒ −g1(α, φ, λ̃) > 0, g2(α, φ, λ̃) < 0

=⇒ g1(α, φ, λ̃) < 0, g2(α, φ, λ̃) < 0. (3.110)

(Note that we have also used (3.108) and (3.109).) Similarly, we have

(α, φ, λ̃) ∈ Ω−
α− =⇒ sin(α) < 0, cos(α) > 0, sin(φ) < 0,

cos(φ) ≥ max [cos(α),− sin(α)]

=⇒ sin(−α̃) < 0, cos(−α̃) > 0, sin(−φ̃) < 0, cos(−φ̃) ≥ max [cos(−α̃),− sin(−α̃)]

=⇒ sin(α̃) > 0, cos(α̃) > 0, sin(φ̃) > 0, cos(φ̃) ≥ max [cos(α̃), sin(α̃)]

=⇒ (α̃, φ̃, λ̃) ∈ Ω+
α̃+

=⇒ g1(α̃, φ̃, λ̃) < 0, g2(α̃, φ̃, λ̃) > 0

=⇒ −g1(α, φ, λ̃) < 0, g2(α, φ, λ̃) > 0

=⇒ g1(α, φ, λ̃) > 0, g2(α, φ, λ̃) > 0. (3.111)
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Based on the previous results, we state and prove the following proposition

concerning boundedness of trajectories.

Proposition 3.5.9. For any fixed α ∈ (0, π/2) ∪ (3π/2, 2π), we define

Ωα =

{
(φ, λ̃) ∈ M̃CB(α,α,π+α)

∣∣∣ cos(φ) ≥ max
[
cos(α), |sin(α)|

]}
. (3.112)

Every trajectory of the system (3.105) which starts in Ωα is bounded.

Proof. First, observe that if we make use (3.106) and (3.107) to define

Ω+
α , Ω+

α− ∪ Ω+
α+ ,

Ω−
α , Ω−

α− ∪ Ω−
α+ , (3.113)

then Ωα = Ω+
α ∪ M̃α ∪ Ω−

α (with M̃α as defined in (3.87)), as depicted in figure 3.5.

Per Proposition 3.5.3, M̃α is the set which contains all of the equilibrium points

for the dynamics (3.105), and hence there are no equilibria contained in the sets Ω+
α

and Ω−
α . Clearly Ωα is a closed set, and by applying the results of Proposition

3.5.7 and Corollary 3.5.8 on the boundary of Ωα, one can show that Ωα is also

positively invariant under the dynamics (3.105).

We proceed by contradiction. Suppose a trajectory starting in Ωα is un-

bounded. Since M̃α is a set of equilibria (and hence all trajectories in M̃α are by

definition bounded), the trajectory must start in Ω+
α ∪Ω−

α . Without loss of general-

ity, we assume the trajectory starts in Ω+
α . By Proposition 3.5.7 and Corollary

3.5.8, we have φ
′
< 0 on Ω+

α with λ̃
′
monotonic, and therefore it must be that the

trajectory asymptotically approaches the set M̃α while becoming unbounded in the
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direction λ̃ = +∞ or λ̃ = −∞. However, by Proposition 3.5.5 we have

lim
φ→0

∂φ

∂λ̃
= −cos(α)

sin(α)
6= 0, (3.114)

and therefore M̃α can not serve as an asymptote for the trajectory. Hence, the

trajectory must be bounded.

Theorem 3.5.10. Let α ∈ (0, π/2) ∪ (3π/2, 2π) and define Ωα as in (3.112) and

M̃α as in (3.87). Every trajectory of (3.105) starting in Ωα converges asymptotically

to M̃α.

Proof. Letting V = − cos(φ), we have V
′

= φ
′
sin(φ). Then by the results of

Proposition 3.5.3, Proposition 3.5.7, and Corollary 3.5.8 we have V
′ ≤ 0

on Ωα with V
′

= 0 if and only if (φ, λ̃) ∈ M̃α. By Proposition 3.5.9 it holds

that Ωα is closed and positively invariant under the dynamics (3.105), and every

trajectory starting in Ωα is bounded. Therefore by Birkhoff’s theorem the ω-limit

set is nonempty, compact and invariant, and asymptotic convergence to M̃α follows

as in the steps in the proof of LaSalle’s Invariance Principle [29].

3.5.3 Analysis of the α = π
2 case for Type 1 rectilinear equi-

libria

Substitution of α = π/2 into the dynamics (3.86) yields

φ
′
= P

[
eλ̃
(
1− cos(φ)

)
− 1
]

+ cos(φ) + eλ̃,

λ̃
′
= sin(φ)

(
Peλ̃ + 1

)
. (3.115)
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The phase portrait (displayed in figure 3.6) reveals some remarkable properties of the

trajectories of these dynamics. Analogous to previous cases, the set M̃π/2 consists of

a continuum of equilibria which correspond to Type 1 rectilinear equilibria for the

full dynamics, but unlike the previous cases, there is no set on which trajectories

converge asymptotically to M̃π/2. Rather, all trajectories that do not start on M̃π/2

exhibit periodic behavior in the
{
φ, λ̃

}
space, depicted in the phase portrait as

counter-clockwise closed orbits. (Analogous clockwise orbits appear in the α = 3π/2

case.) The corresponding particle trajectories in the plane display precession, as

illustrated in figure 3.7. The analysis proceeds as follows.

In the following discussion, we will often employ the change of variables

δ , cos(φ) (3.116)

where
{
δ, λ̃
}

evolve on the space

Dδ,λ̃ = [−1, 1]×R− {(−1, 0)} . (3.117)

Associated dynamics are given by

δ
′
= − sin(φ)φ

′

= − sgn(sin(φ))(
√

1− δ2)
(
P
(
eλ̃ − δeλ̃ − 1

)
+
(
eλ̃ + δ

))
,

λ̃
′
= sgn(sin(φ))(

√
1− δ2)

(
Peλ̃ + 1

)
, (3.118)

where sgn(·) is the signum function and we denote P ,
√
e2λ̃ + 2δeλ̃ + 1. As written,

these dynamics are not self-contained because of the sign ambiguity, but by dividing
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Figure 3.6: Depiction of the
{
φ, λ̃

}
phase portrait for the α = π/2 case. Analogous

to previous cases, the set M̃π/2 consists of a continuum of rectilinear equilibria.

However, in this case the phase portrait shows that all trajectories not starting on

M̃π/2 are in fact periodic in the
{
φ, λ̃

}
phase space. Note that the set Φ = Φ+∪Φ−

corresponds to the nullcline (φ
′

= 0), and the set ΣF = Σ+
F ∪ Σ−

F corresponds to

the nullcline (λ̃
′
= 0), which is also the fixed-point set for the reverser F defined in

Proposition 3.5.14.
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(a) (b)

(c) (d)

Figure 3.7: These MATLAB plots illustrate 3-particle motions in the plane for

different initial conditions arising in the α = π/2 case. The associated phase space

i.e. (φ, λ̃) trajectories are periodic, and result in the precessing behavior in physical

space depicted here.
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the two equations we have

dδ

dλ̃
=
−
(
P
(
eλ̃ − δeλ̃ − 1

)
+
(
eλ̃ + δ

))
Peλ̃ + 1

, (3.119)

with the second derivative (see appendix C for derivation) given by

d2δ

dλ̃2
=

−eλ̃

P
(
Peλ̃ + 1

)2
{
P
(
e2λ̃ + 2δeλ̃ + 2

)
− e3λ̃ + e2λ̃(2− 5δ)

+ eλ̃(−6δ2 + 3δ − 1) + (1− 3δ)

}
. (3.120)

The following proposition establishes sign definiteness of d2δ
dλ̃2 on a particular

region, which will prove helpful in the subsequent analysis.

Proposition 3.5.11. d2δ
dλ̃2 < 0 on the set

{
(δ, λ̃) ∈ Dδ,λ̃

∣∣∣ δ ∈ [1/25, 1)
}
.

Proof. The proof is provided in appendix C.

We proceed with our analysis of the α = π/2 case, using the notion of reversible

dynamics as in [39].

Definition 3.5.12 (Involution). A diffeomorphism F : M −→ M from a manifold

M to itself is said to be an involution if F 6= idM , the identity diffeomorphism, and

F 2 = idM , i.e. F (F (m)) = m,∀m ∈M .

Definition 3.5.13 (F-reversibility). A vector field X defined over a manifold M

is said to be F-reversible if there exists an involution F such that F∗(X) = −X,

i.e. F maps orbits of X to orbits of X, reversing the time parametrization. Here

(F∗(X))(m) = (DF )F−1(m)X(F−1(m)) ∀m ∈ M is the push-forward of F . We call

F the reverser of X.

109



Proposition 3.5.14. The vector field defined by (3.115) is F-reversible, with re-

verser F (φ, λ̃) = (−φ, λ̃).

Proof. Identifying the vector field from (3.115) as X(φ, λ̃), we have X1(φ, λ̃) = φ
′

and X2(φ, λ̃) = λ̃
′
. Observe from (3.85) that P (−φ, λ̃) = P (φ, λ̃), and hence direct

calculation from (3.115) establishes that X1(−φ, λ̃) = X1(φ, λ̃) and X2(−φ, λ̃) =

−X2(φ, λ̃). Therefore,

(F∗(X))(φ, λ̃) = (DF )(−φ,λ̃)X(−φ, λ̃)

=

 −1 0

0 1


 X1(φ, λ̃)

−X2(φ, λ̃)


= −X(φ, λ̃), (3.121)

which establishes the claim.

Proposition 3.5.14 leads us to the following theorem of Birkhoff [4].

Theorem 3.5.15. (G.D. Birkhoff). Let X be an F-reversible vector field on M

and ΣF the fixed-point set of the reverser F . If an orbit of X through a point of ΣF

intersects ΣF in another point, then it is periodic.

For the fixed point set ΣF =
{

(φ, λ̃) : φ = π
}

of our reverser F (defined in

Proposition 3.5.14), in order to employ Birkhoff’s theorem to show all trajectories

(not starting on M̃π/2) are periodic, we must show that all trajectories intersect ΣF

twice. (Note that here ΣF is also the nullcline (λ̃
′
= 0).) First we demonstrate that
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our nullclines partition the phase space into four regions. We start by defining

Φ+ ,
{(
φ, λ̃

)
∈ M̃CB(α,α,π+α)

∣∣φ′ = 0; sin(φ) > 0
}
,

Φ− ,
{(
φ, λ̃

)
∈ M̃CB(α,α,π+α)

∣∣φ′ = 0; sin(φ) < 0
}
, (3.122)

so that Φ , Φ+ ∪ Φ− represents the nullcline (φ
′
= 0). Similarly, we define

Σ+
F ,

{(
φ, λ̃

)
∈ M̃CB(α,α,π+α)

∣∣λ̃′ = 0; λ̃ > 0
}
,

Σ−
F ,

{(
φ, λ̃

)
∈ M̃CB(α,α,π+α)

∣∣λ̃′ = 0; λ̃ < 0
}
, (3.123)

so that ΣF = Σ+
F ∪ Σ−

F .

Proposition 3.5.16. The nullclines Φ = Φ+ ∪Φ− and ΣF = Σ+
F ∪Σ−

F partition the

phase portrait for the dynamics (3.115) into four regions (as depicted in figure 3.6)

defined by

• region I, with borders Φ−, Σ+
F , and M̃π/2;

• region II, with borders Φ−, Σ−
F , and M̃π/2;

• region III, with borders Φ+, Σ−
F , and M̃π/2;

• region IV, with borders Φ+, Σ+
F , and M̃π/2.

Furthermore, the sign of the dynamics (3.115) is characterized by

• region I: φ
′
> 0, λ̃

′
< 0;

• region II: φ
′
< 0, λ̃

′
< 0;

• region III: φ
′
< 0, λ̃

′
> 0;
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• region IV: φ
′
> 0, λ̃

′
> 0.

Proof. Analytical computation of the nullcline Φ proves difficult, but we establish

Proposition 3.5.16 by a combination of analytical methods and phase plane com-

putation tools.

We denote

φ
′
= g1(δ, ρ̃) ,

(√
ρ̃2 + 2δρ̃+ 1

)
(ρ̃− 1− δρ̃) + (ρ̃+ δ), (3.124)

employing the notation δ , cos(φ) and ρ̃ , eλ̃, and characterize Φ by considering

the quantity

G1(δ, ρ̃) = g1(δ, ρ̃)
[(√

ρ̃2 + 2δρ̃+ 1
)

(ρ̃− 1− δρ̃)− (ρ̃+ δ)
]

=
[(√

ρ̃2 + 2δρ̃+ 1
)

(ρ̃− 1− δρ̃) + (ρ̃+ δ)
]
×[(√

ρ̃2 + 2δρ̃+ 1
)

(ρ̃− 1− δρ̃)− (ρ̃+ δ)
]

= (ρ̃2 + 2δρ̃+ 1)
(
ρ̃(1− δ)− 1

)2

− (ρ̃+ δ)2

= (ρ̃2 + 2δρ̃+ 1)
(
ρ̃2(1− δ)2 − 2ρ̃(1− δ) + 1

)
− ρ̃2 − 2δρ̃− δ2

= (ρ̃2 + 2δρ̃+ 1)
(
ρ̃2(1− δ)2 − 2ρ̃(1− δ)

)
+ (1− δ2)

= (1− δ)
[
(ρ̃2 + 2δρ̃+ 1)

(
ρ̃2(1− δ)− 2ρ̃

)
+ (1 + δ)

]
= (1− δ)

[
(1− δ)ρ̃4 − 2(δ2 − δ + 1)ρ̃3 + (1− 5δ)ρ̃2 − 2ρ̃+ (1 + δ)

]
.

(3.125)

Since g1(δ, ρ̃) is a factor of G1(δ, ρ̃), we note that the set of all roots of g1(δ, ρ̃) is

contained in the set of all roots of G1(δ, ρ̃). Therefore we can determine candidate

roots for g1(δ, ρ̃) by considering the roots of G1(δ, ρ̃), which is more amenable to

analysis.
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In order to characterize Φ, we state and prove the following facts.

1. For any δ ∈ (−1, 1), it holds that g1(δ, 1) > 0. We establish this claim by

analyzing the roots of the related expression G1(δ, 1). Fixing ρ̃ = 1 we have

G1(δ, 1) = (1− δ)(−2δ2 − 3δ − 1)

= 2(δ − 1)(δ + 1)

(
δ +

1

2

)
, (3.126)

and hence the roots of G1(δ, 1) are δ = 1,−1,−1
2
. Therefore in the interval

δ ∈ (−1, 1), δ = −1
2

is the only candidate root for g1(δ, 1). However, direct

substitution yields

g1

(
−1

2
, 1

)
=

(√
2 + 2

(
−1

2

))(
1

2

)
+ (1− 1

2
) = 1 6= 0, (3.127)

and therefore we can conclude that there does not exist δ ∈ (−1, 1) satisfying

g1(δ, 1) = 0. Since g1(δ, 1) is continuous in δ, the Intermediate Value Theorem

states that the image of g1(δ, 1) must be an interval. Since zero is not included

in that interval, g1(δ, 1) must be either strictly positive or strictly negative for

all values of δ ∈ (−1, 1), and since, for example, g1(0, 1) > 0, our claim is

established.

2. Let ρ̃0 be the one real root satisfying ρ̃3
0 + 2ρ̃2

0 + ρ̃0 − 1 = 0, i.e. ρ̃0 ≈ .4656.
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Then for any δ ∈ (−1, 1), it holds that g1(δ, ρ̃0) < 0. First, observe that

G1(δ, ρ̃0) = (1− δ)
[
(−2ρ̃3

0)δ
2 + (−ρ̃4

0 + 2ρ̃3
0 − 5ρ̃2

0 + 1)δ

+ (ρ̃4
0 − 2ρ̃3

0 + ρ̃2
0 − 2ρ̃0 + 1)

]
= (1− δ)

{
(−2ρ̃3

0)δ
2 + δ

[
(−ρ̃4

0 + 4ρ̃3
0 − ρ̃2

0 + 2ρ̃0 − 1)

− 2(ρ̃3
0 + 2ρ̃2

0 + ρ̃0 − 1)
]

+ (ρ̃4
0 − 2ρ̃3

0 + ρ̃2
0 − 2ρ̃0 + 1)

}
= (1− δ)

{
(−2ρ̃3

0)δ
2 + (−ρ̃4

0 + 4ρ̃3
0 − ρ̃2

0 + 2ρ̃0 − 1)δ

+ (ρ̃4
0 − 2ρ̃3

0 + ρ̃2
0 − 2ρ̃0 + 1)

}
= (1− δ)(δ − 1)

(
(−2ρ̃3

0)δ − (ρ̃4
0 − 2ρ̃3

0 + ρ̃2
0 − 2ρ̃0 + 1)

)
= (1− δ)2

(
2ρ̃3

0δ + (ρ̃4
0 − 2ρ̃3

0 + ρ̃2
0 − 2ρ̃0 + 1)

)
, (3.128)

i.e. the roots of G1(δ, ρ̃0) are δ = 1, 1
2ρ̃30

(ρ̃4
0− 2ρ̃3

0 + ρ̃2
0− 2ρ̃0 + 1). Denoting the

second root as δ0, one can verify that g1(δ0, ρ̃0) 6= 0, and therefore g1(δ0, ρ̃0) has

no roots in the interval δ ∈ (−1, 1). Again, by application of the Intermediate

Value Theorem we conclude that g1(δ, ρ̃0) must be either strictly positive or

strictly negative, and by direct calculation one can readily verify that in fact

g1(δ, ρ̃0) < 0 for any δ ∈ (−1, 1).

3. For any δ ∈ (−1, 1) there exists ρ̃ ∈ (ρ̃0, 1) such that g1(δ, ρ̃) = 0. This claim

follows from the previous two claims by invoking the continuity of g1(δ, ρ̃) and

the Intermediate Value Theorem.

4. For any δ ∈ (−1, 1), there must be an odd number of distinct values of ρ̃

satisfying g1(δ, ρ̃) = 0. Observe that for any fixed value of δ ∈ (−1, 1), we
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have

lim
ρ̃→0

g1(δ, ρ̃) = −1 + δ < 0 (3.129)

and

lim
ρ̃→+∞

g1(δ, ρ̃) = lim
ρ̃→+∞

(√
ρ̃2 + 2δρ̃+ 1

)
(ρ̃(1− δ)− 1) + (ρ̃+ δ) = +∞

(3.130)

since ρ̃(1− δ)− 1 > 0 for ρ̃ > 1/(1− δ). Therefore as ρ̃ goes from 0 to positive

infinity, g1(δ, ρ̃) experiences a sign change from negative to positive, hence

there must be an odd number of distinct values of ρ̃ satisfying g1(δ, ρ̃) = 0.

5. For any δ ∈ (−1, 1), there must be either 0, 2, or 4 values of ρ̃ satisfying

G1(δ, ρ̃) = 0. Since G1(δ, ρ̃) is a fourth-order polynomial in ρ̃ with real coeffi-

cients, any complex roots must appear in complex conjugate pairs. Therefore

there must be an even number of real roots.

Claim (3) establishes that for any δ ∈ (−1, 1) there exists ρ̃ ∈ (ρ̃0, 1) such that

g1(δ, ρ̃) = 0. High-precision numerical computation of the nullcline Φ demonstrates

that for any δ ∈ (−1, 1) there is in fact a unique ρ̃ such that g1(δ, ρ̃) = 0, i.e. Φ

consists of a single (continuous) branch of roots and partitions the phase space into

two parts, as depicted in figure 3.6. Thus φ
′
changes sign exactly one time as λ̃ is

varied from −∞ to ∞, and by claims (1) and (2) we conclude that φ
′
< 0 to the left

of the nullcline Φ and φ
′
> 0 to the right of the nullcline. The rest of the proposition

follows readily from the definition of Σ.
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We now state the following theorem.

Theorem 3.5.17. Every trajectory of the system (3.115) which starts on the set

M̃CB(π
2
,π
2
, 3π

2
) − M̃π/2 is periodic.

Proof. Based on the characterization of the phase space provided by Proposition

3.5.16, we proceed with the application of the Birkhoff theorem by (a) first showing

that trajectories starting on Σ+
F must reach Φ−, and (b) showing that a trajectory

starting on Φ− must reach Σ−
F . (Refer to figure 3.6.) First, observe that any tra-

jectory starting on Σ+
F must enter into region I, since φ

′
> 0 and λ̃′ = 0 on Σ+

F . In

region I we have φ
′
> 0 and λ̃

′
< 0, and therefore the trajectory must either reach

Φ− or asymptotically approach one of the equilibrium points in the set M̃π/2. We

will prove that the latter case is not possible, i.e. that no point in the portion of

M̃π/2 which borders region I can be a limit point for a trajectory of (3.115) which

starts from Σ+
F .

The foregoing analysis is simplified by working in terms of δ , cos(φ) rather

than φ itself. Suppose there is a point (δ, λ̃) = (1, λ̃∗) ∈ M̃π/2 which is a limit

point for a trajectory which starts from Σ+
F . If we define λ̃0 as the value of λ̃ at

the point where Φ− meets the set M̃π/2 (i.e. λ̃0 = ln(ρ̃0), where ρ̃0 is as defined in

the statement above (3.128)), then our candidate limit point should satisfy λ̃∗ ≥ λ̃0.
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Then, as is illustrated in figures 3.8a and 3.8b, the trajectory must enter the set5

Ψ =

{
(δ, λ̃) ∈ Dδ,λ̃

∣∣∣ λ̃∗ < λ̃ ≤ λ̃∗ + 1, 1/25 ≤ δ < 1

}
, (3.131)

either entering Ψ by way of the boundary on the right-hand side, which we denote

as

∂ΨR =

{
(δ, λ̃) ∈ Ψ

∣∣∣ λ̃ = λ̃∗ + 1

}
(3.132)

or through the lower boundary, which we denote as

∂ΨL =

{
(δ, λ̃) ∈ Ψ

∣∣∣ δ = 1/25

}
. (3.133)

(The first case is depicted in figure 3.8a, and the second case is depicted in figure

3.8b.) It follows directly from Proposition 3.5.11 and Proposition 3.5.16 that

∂δ
∂λ̃

(δ, λ̃) < 0 and ∂2δ
∂λ̃2 (δ, λ̃) < 0 for any (δ, λ̃) ∈ Ψ, with ∂δ

∂λ̃
(δ, λ̃) and ∂2δ

∂λ̃2 (δ, λ̃) defined

by (3.119) and (3.120) respectively. We’ll deal separately with the two families of

trajectories, those which pass through ∂ΨR and those which pass through ∂ΨL.

We first address the trajectories which pass through ∂ΨR. We start by defining

the function fδ : [1/25, 1) −→ R by

fδ(δ) = δ +
(
λ̃∗ − (λ̃∗ + 1)

)∂δ
∂λ̃

(δ, λ̃∗ + 1)

= δ +
P
(
e(λ̃

∗+1) − δe(λ̃
∗+1) − 1

)
+ e(λ̃

∗+1) + δ

Pe(λ̃∗+1) + 1
, (3.134)

where P = P (δ, λ̃∗ + 1) =
√
e2(λ̃∗+1) + 2δe(λ̃∗+1) + 1. Clearly fδ takes the form of

some type of first-order approximation, a statement which we will make more precise

5As will become clear later in the proof, we define Ψ in this fashion (in particular, setting

δ ≥ 1/25) so that we can employ Proposition 3.5.11.
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(a)

(b)

Figure 3.8: These figures illustrate generic trajectories in region I near a candidate

limit point (φ = 2π, λ̃ = λ̃∗), passing through either ∂ΨR (figure 3.8a) or ∂ΨL (figure

3.8b). As is depicted, every trajectory which enters the set Ψ is bounded away from

the candidate limit point (φ = 2π, λ̃ = λ̃∗).
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later. First we prove that fδ(δ) < 1 for every δ ∈ [1/25, 1). Observe that

1− fδ(δ) = 1− δ −
P
(
e(λ̃

∗+1) − δe(λ̃
∗+1) − 1

)
+ e(λ̃

∗+1) + δ

Pe(λ̃∗+1) + 1

=
1

Pe(λ̃∗+1) + 1

{
(1− δ)

(
Pe(λ̃

∗+1) + 1
)

−
(
Pe(λ̃

∗+1)(1− δ)− P + e(λ̃
∗+1) + δ

)}
=

1

Pe(λ̃∗+1) + 1

{
P +

(
−e(λ̃∗+1) + 1− 2δ

)}
, (3.135)

and therefore we can establish our claim by demonstrating that the term in braces

is positive. Since we want to prove this for arbitrary values of λ̃∗ ∈ [λ̃0,∞), we will

temporarily view λ̃∗ as a variable, defining g : [1/25, 1)× [λ̃0,∞) −→ R by

g(δ, λ̃∗) , P +
(
−e(λ̃∗+1) + 1− 2δ

)
. (3.136)

We then proceed by considering the related quantity

G(δ, λ̃∗) = g(δ, λ̃∗)
[
P −

(
−e(λ̃∗+1) + 1− 2δ

)]
=
[
P +

(
−e(λ̃∗+1) + 1− 2δ

)] [
P −

(
−e(λ̃∗+1) + 1− 2δ

)]
= P 2 −

(
−e(λ̃∗+1) + 1− 2δ

)2

=
(
e2(λ̃∗+1) + 2δe(λ̃

∗+1) + 1
)
−
(
e2(λ̃

∗+1) − 2e(λ̃
∗+1)(1− 2δ) + (1− 2δ)2

)
= e(λ̃

∗+1) (2− 2δ) + 1−
(
1− 4δ + 4δ2

)
= 2 (1− δ)

(
e(λ̃

∗+1) + 2δ
)
. (3.137)

Clearly G(δ, λ̃∗) 6= 0 on [1/25, 1)× [λ̃0,∞), and therefore g(δ, λ̃∗) 6= 0 on [1/25, 1)×

[λ̃0,∞). Then since g is a continuous function on a connected subset of R2, by

the Intermediate Value Theorem it must hold that the image of g is an interval

which does not contain zero, i.e. it is either strictly positive or strictly negative. We
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can verify that it is in fact positive by checking, for example, the sign of g(1/2, 0).

Therefore fδ(δ) < 1 for every δ ∈ [1/25, 1) and for every λ̃∗ ∈ [λ̃0,∞).

Since ∂δ
∂λ̃

(δ, λ̃) < 0 and ∂2δ
∂λ̃2 (δ, λ̃) < 0 for any (δ, λ̃) ∈ Ψ, we can view the

portion of a trajectory that lies in Ψ as a concave function δ(λ̃) defined on the

interval (λ̃∗, λ̃∗ + c] for some 0 < c ≤ 1. (Note that c = 1 for trajectories which

pass through ∂ΨR and c ≤ 1 for trajectories which pass through ∂ΨL.) Then

fδ, as defined in (3.134), maps every trajectory δ(λ̃) passing through ∂ΨR to the

corresponding first-order approximation of δ(λ̃∗). Since these trajectory functions

are each concave, each function δ(λ̃) must lie below all of its tangents, i.e.

δ(λ̃∗) < fδ(δ(λ̃
∗ + 1)) < 1, (3.138)

where the latter inequality was established above. Therefore all trajectories which

pass through ∂ΨR are bounded away from the proposed limit point.

We address the trajectories which pass through ∂ΨL by comparing them to

the trajectory which passes through the point at the intersection of ∂ΨL and ∂ΨR,

i.e. the bottom right-hand corner of Ψ where δ = 1/25 and λ̃ = λ̃∗ + 1. We define

the function fλ̃ : (λ̃∗, λ̃∗ + 1] −→ R by

fλ̃(λ̃) = 1/25 + (λ̃∗ − λ̃)
∂δ

∂λ̃
(1/25, λ̃), (3.139)

which maps every trajectory δ(λ̃) passing through ∂ΨL to the corresponding first

order approximation of δ(λ̃∗). In this case, we claim that fλ̃(λ̃) ≤ fλ̃(λ̃
∗ + 1) for

every λ̃ ∈ (λ̃∗, λ̃∗ + 1]. We establish the claim as follows. First, for any (δ, λ̃) ∈ ∂ΨL
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we have ∂δ
∂λ̃

(δ, λ̃) < 0 and ∂
∂λ̃

(
∂δ
∂λ̃

(δ, λ̃)
)
< 0, and therefore

∂δ

∂λ̃
(1/25, λ̃∗ + 1) ≤ ∂δ

∂λ̃
(1/25, λ̃) < 0, ∀λ̃ ∈ (λ̃∗, λ̃∗ + 1]. (3.140)

Hence

fλ̃(λ̃)− fλ̃(λ̃
∗ + 1) = (λ̃∗ − λ̃)

∂δ

∂λ̃
(1/25, λ̃)−

(
λ̃∗ − (λ̃∗ + 1)

)∂δ
∂λ̃

(1/25, λ̃∗ + 1)

= (λ̃∗ − λ̃)
∂δ

∂λ̃
(1/25, λ̃) +

∂δ

∂λ̃
(1/25, λ̃∗ + 1)

≤ (λ̃∗ − λ̃+ 1)
∂δ

∂λ̃
(1/25, λ̃)

≤ 0, (3.141)

which establishes the claim. Observe that fλ̃(λ̃
∗ + 1) = fδ(1/25), and we have

already established that fδ(1/25) < 1. Therefore, for every trajectory δ(λ̃) which

passes through ∂ΨL, we have

δ(λ̃∗) < fλ̃(λ̃) ≤ fλ̃(λ̃
∗ + 1) < 1, (3.142)

where the first inequality follows from the concavity of the δ(λ̃) trajectories. (See

figure 3.8b.) Hence, these trajectories are also bounded away from the proposed

limit point, and since all steps of our proof hold for arbitrary values of λ̃∗ ∈ R, we

have demonstrated that no point in the portion of M̃π/2 which borders region I can

serve as a limit point for a trajectory which starts from Σ+
F .

We have established that every trajectory which starts on Σ+
F must reach Φ−.

Since λ̃
′
< 0 on Φ−, the trajectory must continue into region II. As previously noted,

there are no equilibria in the interior of region II, and on region II we have φ
′
< 0

and λ̃
′
< 0. In the proof of Proposition 3.5.16 we demonstrated that if (φ, λ̃) ∈ Φ
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then λ̃ < 0, and therefore trajectories in region II may not asymptotically approach

the excluded point at (φ = π, λ̃ = 0) as a limit point. Therefore, all trajectories

must either reach Σ−
F or move towards λ̃ = −∞ along a horizontal asymptote. If

such an asymptote existed, then φ
′
= 0 on the asymptote itself. However, we have

already established that φ
′
< 0 on all of region II and can also readily show that

φ
′
< 0 on Σ−

F , and therefore there cannot exist such a horizontal asymptote which

would prevent trajectories from reaching Σ−
F . It follows by Theorem 3.5.15 that

every trajectory is periodic.

3.5.4 Analysis of the α ∈ (π/2, 3π/2) case for Type 1 rectilin-

ear equilibria

For α ∈ (π/2, 3π/2), our dynamics are as stated in (3.86). The phase portrait,

displayed in figure 3.9, reveals that the equilibria of M̃α are unstable in this case. We

can formally prove instability of the equilibria in M̃α by observing that linearization

of the dynamics (3.86) about an equilibrium point (0, λ̃0) ∈ M̃α yields the Jacobian

matrix

(
e2λ̃0 + eλ̃0 + 1

) − cos(α) 0

sin(α) 0

 , (3.143)

which has an eigenvalue at −
(
e2λ̃0 + eλ̃0 + 1

)
cos(α) > 0 (for α ∈ (π/2, 3π/2)).

Generic trajectories on M̃CB(α,α,π+α) tend to spiral in towards the excluded point

φ = π, λ̃ = 0, which implies that ρ3/ρ1 −→ 0.
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Figure 3.9: Depiction of the
{
φ, λ̃

}
phase portrait for α = 2π/3, representing

the α ∈ (π/2, 3π/2) case. Here the equilibria of M̃α are unstable, and trajectories

asymptotically approach φ = π, λ̃ = 0, i.e. ρ3/ρ1 −→ 0.
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3.6 Stability analysis for three-particle circling equilibria

In section 2.4.1 we derived existence conditions for circling equilibria onMCB(ααα)

and provided descriptions of the equilibrium values for θi and ρi (see Proposition

2.4.1). It should be noted from (2.75) that the equilibrium values for the side

lengths ρ̂i are expressed in terms of their ratios as opposed to their absolute values,

describing a continuum of circling equilibria rather than an isolated equilibrium

point. Recall from section 2.4.2 that MCB(ααα)
∼= R+ × M̃CB(ααα), with the projection

function Ψ : MCB(ααα) −→ M̃CB(ααα) defined by

Ψ(θ1, ρ1, θ2, ρ2 . . . , θn, ρn) =

(
θ1,

ρ1

ρ1

, θ2,
ρ2

ρ1

. . . , θn,
ρn
ρ1

)
, (3.144)

and therefore the continuum of circling equilibria is actually a fiber Ψ−1(m) over a

particular m ∈ M̃CB(ααα).

For the three-particle case, we developed an alternative parametrization for

MCB(α1,α2,α3) and M̃CB(α1,α2,α3) in section 3.3 in terms of (θ2, λ̃, ρ1), for which the

corresponding projection function is given by

Ψ(θ2, λ̃, ρ1) = (θ2, λ̃). (3.145)

We let X denote the vector field defined by (3.57)-(3.58)-(3.59) and X̃ denote the

projected vector field (3.57)-(3.58). If a point (θ2, λ̃) ∈ M̃CB(α1,α2,α3) is an equi-

librium point for the projected vector field X̃, then the manifold Ψ−1(θ2, λ̃) ∈

MCB(α1,α2,α3) is invariant under the vector field X. If α1, α2, α3 satisfy the circling

equilibrium existence conditions of Proposition 2.4.1, then making use of (2.75),
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we define

Mcirc , Ψ−1

(
π − α1, ln

(
sin(α2)

sin(α1)

))
. (3.146)

We can discuss stability properties of these types of invariant manifolds in

terms of the stability of the projected point. Analogous to Definition 5.1.1 in [56],

we make the following definition:

Definition 3.6.1 Let (θ2, λ̃) ∈ M̃CB(α1,α2,α3) be an equilibrium point for the pro-

jected vector field X̃. Then Ψ−1(θ2, λ̃) ∈ MCB(α1,α2,α3) is a (asymptotically) stable

invariant submanifold with respect to the vector field X if (θ2, λ̃) is a (asymptoti-

cally) stable equilibrium point for the projected vector field X̃.

Stability of three-particle circling equilibria is characterized by the following

theorem. (We also restate the existence conditions for the sake of completeness and

clarity.)

Theorem 3.6.2. Given a three-particle cyclic CB pursuit system evolving on the

manifold MCB(α1,α2,α3) according to the shape dynamics (2.68), a circling relative

equilibrium exists if and only if

i. sin(αi−1) sin(αi) > 0, i = 1, 2, 3,

ii. sin

(
3∑
i=1

αi

)
= 0. (3.147)

Moreover, the stability of such three-particle circling equilibria can be characterized

as follows:
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1. if cos
(∑3

i=1 αi
)

= 1, then any associated circling equilibrium is unstable;

2. if cos
(∑3

i=1 αi
)

= −1, then Mcirc is an asymptotically stable invariant sub-

manifold, in the sense of Definition 3.6.1.

Proof. The existence conditions are simply re-stated from Proposition 2.4.1. We

prove the stability claims by analysis of the linearization of the
{
θ2, λ̃

}
dynamics

(3.57)-(3.58). Substituting the equilibrium values from (2.75) into (3.64), (3.65),

(3.66) and (3.67), we have the following form for the Jacobian6:

(
∂g

∂x

)
circ

=


sin2(α1+α2)−sin(α1) sin(α2) cos(α1) cos(α2)

cos(
∑3

i=1 αi) sin2(α1)

− sin(α2)

(
sin(α1+α2)+sin(α2) cos(α1)

)
cos(

∑3
i=1 αi) sin(α1)

sin(α2)

(
sin(α1+α2)+sin(α1) cos(α2)

)
cos(

∑3
i=1 αi) sin(α1)

cos
(∑3

i=1 αi
)
sin2(α2)

 .
(3.148)

Since cos2
(∑3

i=1 αi
)

= 1, we can express the determinant as

det

(
∂g

∂x

)
circ

=
sin2(α2)

sin2(α1)

(
sin2(α1 + α2)− sin(α1) sin(α2) cos(α1) cos(α2)

)
+

sin2(α2)

sin2(α1)

(
sin2(α1 + α2) + sin(α1) sin(α2) cos(α1) cos(α2)

+ sin(α1 + α2)
(
sin(α1) cos(α2) + cos(α1) sin(α2)

))
=

3 sin2(α2) sin2(α1 + α2)

sin2(α1)
, (3.149)

and the eigenvalues of
(
∂g
∂x

)
circ

take the form

λ =
1

2

[(
∂g

∂x

)
11

+

(
∂g

∂x

)
22

]
± 1

2

√[(
∂g

∂x

)
11

+

(
∂g

∂x

)
22

]2

− 4 det

(
∂g

∂x

)
circ

,

(3.150)

6See appendix C.
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where the two-digit subscripts indicate indices of matrix elements. Observe from

(3.149) that det
(
∂g
∂x

)
circ

> 0 (since sin(αi) 6= 0 and sin(α1 + α2) 6= 0), and therefore

if the eigenvalues are real, they must have the same sign. It follows that

sgn
(
Re(λ)

)
= sgn

((
∂g

∂x

)
11

+

(
∂g

∂x

)
22

)

= sgn

(
1

cos
(∑3

i=1 αi
)
sin2(α1)

(
sin2(α1 + α2)

− sin(α1) sin(α2) cos(α1) cos(α2) + sin2(α1) sin2(α2)
))

= sgn

(
1

cos
(∑3

i=1 αi
)
sin2(α1)

(
sin2(α1 + α2)

− sin(α1) sin(α2)
(
cos(α1) cos(α2)− sin(α1) sin(α2)

)))

= sgn

(
1− cos2(α1 + α2)− sin(α1) sin(α2) cos(α1 + α2)

cos
(∑3

i=1 αi
)
sin2(α1)

)

= sgn

(
1− cos(α1 + α2)

(
cos(α1 + α2) + sin(α1) sin(α2)

)
cos
(∑3

i=1 αi
)
sin2(α1)

)

= sgn

(
1− cos(α1 + α2) cos(α1) cos(α2)

cos
(∑3

i=1 αi
)
sin2(α1)

)

= sgn

(
cos

(
3∑
i=1

αi

))
. (3.151)

(The last equality follows from the fact that sin(αi) 6= 0 and therefore cos(α1 +

α2) cos(α1) cos(α2) < 1.) The claims of the proof then follow from (3.151).
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3.7 Stability analysis for three-particle pure shape equilib-

ria

In section Proposition 2.4.2 we determined existence conditions for a type

of system trajectory which we called “pure shape equilibria”. These system trajec-

tories correspond to equilibria for the dynamics (2.103)-(2.104) and include circling

equilibria as a special case. Analogous to the approach in section 3.6, we define

Mk , Ψ−1
(
θ̂2,

ˆ̃λ
)

= Ψ−1

(
π − α1 + 2τk, ln

(
sin(α2 − τk)

sin(α1 − τk)

))
, (3.152)

where Ψ is the projection function defined by (3.145). Stability properties for three-

particle pure shape equilibria are characterized by the following theorem7. As with

the circling case, we include the (restated) existence conditions for the sake of com-

pleteness and clarity.

Theorem 3.7.1. Given a three-particle cyclic CB pursuit system evolving on the

manifold MCB(α1,α2,α3) according to the shape dynamics (2.68), a pure shape equilib-

rium exists if and only if there exists an integer k ∈ {0, 1, 2} such that

sin (αi − τk) sin (αi−1 − τk) > 0, i = 1, 2, 3, (3.153)

for

τk ,

(
3∑
i=1

αi
3

)
− kπ

3
. (3.154)

7Rectilinear relative equilibria are also included in Proposition 2.4.2 but are not considered

here, since we have already analyzed the stability properties of rectilinear equilibria in section 3.5.
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Moreover, the stability of such pure shape equilibria can be characterized in terms of

the stability coefficient

Φααα,k ,
3∑
i=1

sin (αi − τk) sin (αi+1 − τk) cos (αi+2 − 2τk) (3.155)

as follows:

1. if Φααα,k < 0, then any associated pure shape equilibrium is unstable;

2. if Φααα,k > 0, then Mk is an asymptotically stable invariant submanifold.

Proof. Substituting the equilibrium values for θi and ρ̃i = ρi

ρ1
(from (2.106)) into

(3.64), (3.65), (3.66) and (3.67), we demonstrate in appendix C that the evaluated

Jacobian takes the form

(
∂g

∂x

)
PS

=

 cos(τk)D+sin(τk)CS1

cos(kπ) sin2(α1−τk)

sin(α2−τk)
(
− cos(τk)S2+sin(τk)C

)
cos(kπ) sin(α1−τk)

cos(τk)CS1−sin(τk)D

cos(kπ) sin2(α1−τk)

sin(α2−τk)
(
cos(τk)C+sin(τk)S2

)
cos(kπ) sin(α1−τk)

 , (3.156)

where

S1 = sin(α1 + α2 − 2τk) + sin(α1 − τk) cos(α2 − τk),

S2 = sin(α1 + α2 − 2τk) + sin(α2 − τk) cos(α1 − τk),

C = sin(α1 − τk) sin(α2 − τk),

D = sin2(α1 + α2 − 2τk)− sin(α1 − τk) sin(α2 − τk) cos(α1 − τk) cos(α2 − τk).

(3.157)
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Note that cos2(kπ) = 1, and therefore the determinant is given by

det

(
∂g

∂x

)
PS

=

(
sin(α2 − τk)

sin3(α1 − τk)

)[
cos2(τk)CD + cos(τk) sin(τk)(S2D + C2S1)

+ sin2(τk)CS1S2

]
−
(

sin(α2 − τk)

sin3(α1 − τk)

)[
− cos2(τk)CS1S2 + cos(τk) sin(τk)(S2D + C2S1)

− sin2(τk)CD
]

=
sin(α2 − τk)

sin3(α1 − τk)

[
cos2(τk)C(D + S1S2) + sin2(τk)C(D + S1S2)

]
=

sin(α2 − τk)

sin3(α1 − τk)

(
sin(α1 − τk) sin(α2 − τk)

)
(D + S1S2)

=
sin2(α2 − τk)

sin2(α1 − τk)
(D + S1S2). (3.158)

We can further simplify by observing that

D + S1S2 = sin2(α1 + α2 − 2τk)− sin(α1 − τk) sin(α2 − τk) cos(α1 − τk) cos(α2 − τk)

+ sin2(α1 + α2 − 2τk) + sin(α1 + α2 − 2τk)
[
sin(α1 − τk) cos(α2 − τk)

+ sin(α2 − τk) cos(α1 − τk)
]

+ sin(α1 − τk) sin(α2 − τk) cos(α1 − τk) cos(α2 − τk)

= 3 sin2(α1 + α2 − 2τk), (3.159)

and therefore

det

(
∂g

∂x

)
PS

=
3 sin2(α2 − τk) sin2(α1 + α2 − 2τk)

sin2(α1 − τk)
. (3.160)

The eigenvalues of
(
∂g
∂x

)
PS

take the form

λ =
1

2

[(
∂g

∂x

)
11

+

(
∂g

∂x

)
22

]
± 1

2

√[(
∂g

∂x

)
11

+

(
∂g

∂x

)
22

]2

− 4 det

(
∂g

∂x

)
PS

,

(3.161)
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(where the two-digit subscripts indicate indices of matrix elements), and since

det
(
∂g
∂x

)
PS

≥ 0, it follows that the real parts of the eigenvalues both have the

same sign, given by

sgn
(
Re(λ)

)
= sgn

((
∂g

∂x

)
11

+

(
∂g

∂x

)
22

)
. (3.162)

Defining

Φ̃ααα,k ,

(
∂g

∂x

)
11

+

(
∂g

∂x

)
22

, (3.163)

we observe that

Φ̃ααα,k =
cos(τk)D + sin(τk)CS1

cos(kπ) sin2(α1 − τk)
+

sin(α2 − τk)
(
cos(τk)C + sin(τk)S2

)
cos(kπ) sin(α1 − τk)

=
1

cos(kπ) sin2(α1 − τk)

[
cos(τk)D + sin(τk)CS1

+ sin(α1 − τk) sin(α2 − τk)
(
cos(τk)C + sin(τk)S2

)]
=

1

cos(kπ) sin2(α1 − τk)

[
cos(τk)D + sin(τk)CS1 + C

(
cos(τk)C + sin(τk)S2

)]
=

1

cos(kπ) sin2(α1 − τk)

[
cos(τk)

(
D + C2

)
+ sin(τk)C

(
S1 + S2

)]
. (3.164)

To further simplify, we note that

cos2(α1 + α2 − 2τk) =
(
cos(α1 − τk) cos(α2 − τk)− sin(α1 − τk) sin(α2 − τk)

)2

= cos2(α1 − τk) cos2(α2 − τk) + sin2(α1 − τk) sin2(α2 − τk)

− 2 cos(α1 − τk) cos(α2 − τk) sin(α1 − τk) sin(α2 − τk),

(3.165)
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and therefore

D + C2 = sin2(α1 + α2 − 2τk)− sin(α1 − τk) sin(α2 − τk) cos(α1 − τk) cos(α2 − τk)

+ sin2(α1 − τk) sin2(α2 − τk)

= sin2(α1 + α2 − 2τk)− sin(α1 − τk) sin(α2 − τk) cos(α1 − τk) cos(α2 − τk)

+ cos2(α1 + α2 − 2τk)−
[
cos2(α1 − τk) cos2(α2 − τk)

− 2 cos(α1 − τk) cos(α2 − τk) sin(α1 − τk) sin(α2 − τk)
]

= 1− cos2(α1 − τk) cos2(α2 − τk)

+ cos(α1 − τk) cos(α2 − τk) sin(α1 − τk) sin(α2 − τk)

= 1− cos(α1 − τk) cos(α2 − τk)
[
cos(α1 − τk) cos(α2 − τk)

− sin(α1 − τk) sin(α2 − τk)
]

= 1− cos(α1 − τk) cos(α2 − τk) cos(α1 + α2 − 2τk). (3.166)

We also have

S1 + S2 = 2 sin(α1 + α2 − 2τk) + sin(α1 − τk) cos(α2 − τk) + sin(α2 − τk) cos(α1 − τk)

= 3 sin(α1 + α2 − 2τk), (3.167)

and observing from (3.154) that

α1 + α2 − 2τk =

(
3∑
i=1

αi

)
− 3τk − (α3 − τk)

=

(
3∑
i=1

αi

)
−

[(
3∑
i=1

αi

)
− kπ

]
− (α3 − τk)

= kπ − (α3 − τk), (3.168)
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we see that (3.164) can be expressed as

Φ̃ααα,k =

[
cos(τk)

(
1− cos(α1 − τk) cos(α2 − τk) cos(α1 + α2 − 2τk)

)
+ 3 sin(τk) sin(α1 − τk) sin(α2 − τk) sin(α1 + α2 − 2τk)

]
1

cos(kπ) sin2(α1 − τk)

=

[
cos(τk)

(
1− cos(α1 − τk) cos(α2 − τk) cos

(
kπ − (α3 − τk)

))
+ 3 sin(τk) sin(α1 − τk) sin(α2 − τk) sin

(
kπ − (α3 − τk)

)] 1

cos(kπ) sin2(α1 − τk)

=

[
cos(τk)

(
1− cos(kπ) cos(α1 − τk) cos(α2 − τk) cos(α3 − τk)

)
− 3 cos(kπ) sin(τk) sin(α1 − τk) sin(α2 − τk) sin(α3 − τk)

]
1

cos(kπ) sin2(α1 − τk)

=
1

sin2(α1 − τk)

[
cos(τk)

(
cos(kπ)− cos(α1 − τk) cos(α2 − τk) cos(α3 − τk)

)
− 3 sin(τk) sin(α1 − τk) sin(α2 − τk) sin(α3 − τk)

]
. (3.169)

We can further simplify by noting from (3.154) that

cos(kπ) = cos

((
3∑
i=1

αi

)
− 3τk

)

= cos

(
3∑
i=1

(αi − τk)

)

= cos(α1 − τk) cos(α2 − τk + α3 − τk)− sin(α1 − τk) sin(α2 − τk + α3 − τk)

= cos(α1 − τk) [cos(α2 − τk) cos(α3 − τk)− sin(α2 − τk) sin(α3 − τk)]

− sin(α1 − τk) [sin(α2 − τk) cos(α3 − τk) + cos(α2 − τk) sin(α3 − τk)] ,

(3.170)
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and hence (3.169) becomes

Φ̃ααα,k =
1

sin2(α1 − τk)

{
cos(τk)

[
− cos(α1 − τk) sin(α2 − τk) sin(α3 − τk)

− sin(α1 − τk) sin(α2 − τk) cos(α3 − τk)

− sin(α1 − τk) cos(α2 − τk) sin(α3 − τk)
]

− 3 sin(τk) sin(α1 − τk) sin(α2 − τk) sin(α3 − τk)

}
=

−1

sin2(α1 − τk)

{
sin(α2 − τk) sin(α3 − τk)

[
cos(τk) cos(α1 − τk)

+ sin(τk) sin(α1 − τk)
]

+ sin(α1 − τk) sin(α2 − τk)
[
cos(τk) cos(α3 − τk) + sin(τk) sin(α3 − τk)

]
+ sin(α1 − τk) sin(α3 − τk)

[
cos(τk) cos(α2 − τk) + sin(τk) sin(α2 − τk)

]}
=

−1

sin2(α1 − τk)

{
sin(α2 − τk) sin(α3 − τk) cos(α1 − 2τk)

+ sin(α1 − τk) sin(α2 − τk) cos(α3 − 2τk)

+ sin(α1 − τk) sin(α3 − τk) cos(α2 − 2τk)

}
=

−1

sin2(α1 − τk)

{
3∑
i=1

sin (αi − τk) sin (αi+1 − τk) cos (αi+2 − 2τk)

}
. (3.171)

Thus the eigenvalues of the linearization matrix satisfy

sgn
(
Re(λ)

)
= sgn

(
Φ̃ααα,k

)
= sgn

(
−1

sin2(α1 − τk)

{
3∑
i=1

sin (αi − τk) sin (αi+1 − τk) cos (αi+2 − 2τk)

})

= − sgn

(
3∑
i=1

sin (αi − τk) sin (αi+1 − τk) cos (αi+2 − 2τk)

)

= − sgn(Φααα,k), (3.172)

where Φααα,k is as defined in (3.155). For Φααα,k < 0, both eigenvalues are in the right-
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half plane and the equilibrium shape is unstable. For Φααα,k > 0, both eigenvalues are

in the left-half plane, and the invariant submanifold Mk is asymptotically stable in

the sense defined in section 3.6.

Remark 3.7.2 The stability criterion for pure shape equilibria can be related to

the associated equilibrium shape as follows. Observe from (3.171) that

Φ̃ααα,k = − cos(α1 − 2τk)

(
sin(α2 − τk)

sin(α1 − τk)

)(
sin(α3 − τk)

sin(α1 − τk)

)
− cos(α2 − 2τk)

(
sin(α3 − τk)

sin(α1 − τk)

)
− cos(α3 − 2τk)

(
sin(α2 − τk)

sin(α1 − τk)

)
= cos(π − α1 + 2τk)

(
sin(α2 − τk)

sin(α1 − τk)

)(
sin(α3 − τk)

sin(α1 − τk)

)
+ cos(π − α2 + 2τk)

(
sin(α3 − τk)

sin(α1 − τk)

)
+ cos(π − α3 + 2τk)

(
sin(α2 − τk)

sin(α1 − τk)

)
,

(3.173)

and substituting the equilibrium values given in (2.106), we have

Φ̃ααα,k = cos
(
θ̂

(k)
2

)( ρ̂(k)
2

ρ̂
(k)
1

)(
ρ̂

(k)
3

ρ̂
(k)
1

)
+ cos

(
θ̂

(k)
3

)( ρ̂(k)
3

ρ̂
(k)
1

)
+ cos

(
θ̂

(k)
1

)( ρ̂(k)
2

ρ̂
(k)
1

)
.

(3.174)

3.7.1 Symmetric case: α1 = α2 = α3

For the three-particle symmetric case α1 = α2 = α3 = α ∈ [0, 2π), Proposi-

tion 2.4.7 implies that circling equilibria exist if and only if α = π
3
, 2π

3
, 4π

3
, or 5π

3
,

and by Theorem 3.6.2, the α = 2π
3
, 4π

3
equilibria are unstable and the α = π

3
, 5π

3

equilibria are asymptotically stable.

Proposition 2.4.7 implies that for any value of α, there always exist exactly

two pure shape equilibria, which we identify with k = 1 and k = 2. In figure 3.10,
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Figure 3.10: Depiction of the two pure shape equilibria which exist for the case

α1 = α2 = α3 = π
2
.

we depict the two pure shape equilibria which exist for the case α1 = α2 = α3 = π
2
.

Note that the pure shape equilibria correspond to equilateral triangle formations

in the physical space, with equilibrium values for the k = 1 and k = 2 pure shape

equilibria given (respectively) by

θ̂
(1)
i = α+ π/3, i = 1, 2, . . . , n,

θ̂
(2)
i = α− π/3, i = 1, 2, . . . , n. (3.175)

(These equilibrium values follow directly from Proposition 2.4.7, which applies

specifically to the symmetric case.)

Stability properties of the pure shape equilibria can be characterized by ap-

plication of Theorem 3.7.1. Substituting α1 = α2 = α3 = α into (3.154) yields

τk = α− kπ/3, and therefore our stability coefficient (3.155) simplifies to

Φααα,k = 3 sin2 (α− τk) cos (α− 2τk) = 3 sin2 (kπ/3) cos (−α+ 2kπ/3) . (3.176)
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Since we are interested only in the sign of Φααα,k, we can characterize stability in terms

of the normalized stability coefficient

Φα,k =
Φααα,k

3 sin2 (kπ/3)
= cos (α− 2kπ/3) . (3.177)

We observe that Φα,1 = 0 for α = π/6, 7π/6 and Φα,2 = 0 for α = 5π/6, 11π/6,

and substitution into (3.160) and (3.161) demonstrates that the eigenvalues of the

linearization about the corresponding pure shape equilibrium in each of these critical

cases are given by λ = ±(3/2)j. Phase portrait analysis suggests that the critical

cases associated with α = π/6 and α = 11π/6 are in fact asymptotically stable and

that those associated with α = 5π/6 and α = 7π/6 are unstable.

In figure 3.11 we display the normalized stability coefficients (Φα,1, Φα,2), as

well as the expansion coefficients (γααα,1, γααα,2) and rotation coefficients (βααα,1, βααα,2)

from Proposition 2.4.7. These figures provide a graphical characterization of

the stability, expansion, and rotation properties of the planar formations corre-

sponding to the two unique pure shape equilibria which exist for every value of

α, and they are best understood by choosing a particular value of α and consid-

ering the corresponding “slice” across the three graphs. From the top graph, we

note that for α ∈ (5π/6, 7π/6) (region III), both pure shape equilibria are asymp-

totically stable, while α ∈ [0, π/6) ∪ (11π/6, 2π] (regions I and V) implies that

both are unstable. We also note that the zero crossings in the middle graph cor-

respond to circling equilibria, and the zero crossings in the bottom graph corre-

spond to pure expansion/contraction without rotation. Lastly, by comparing the

top graph with the middle graph, one observes that stability properties do not
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seem to directly correlate with expansion characteristics, since we observe unsta-

ble/expanding, unstable/contracting, asymptotically stable/expanding, and asymp-

totically stable/contracting combinations. However, we find it interesting that in

the cases where an expanding pure shape equilibrium coexists with a contracting

pure shape equilibrium (i.e. for α ∈ (π/3, 2π/3)∪ (4π/3, 5π/3)) (regions II and IV),

the expanding solution is always asymptotically stable and the contracting solution

is unstable.
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Figure 3.11: As discussed in section 3.7.1, for a three-particle cyclic CB pursuit

system with α1 = α2 = α3 = α, there always exists two unique pure shape equilibria.

For every value of α, these figures characterize the stability, expansion, and rotation

properties of the planar formations corresponding to those two pure shape equilibria.

For example, if α = π/2 as in figure 3.10, both of the particle formations rotate in

a CCW direction, one expanding and the other contracting, and the expanding

formation is asymptotically stable while the contracting formation is unstable.
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Chapter 4

Constant Bearing pursuit in three dimensions

4.1 Introduction

In this chapter we extend our analysis of cyclic CB pursuit to three-dimensional

space1, for which we envision possible technological applications such as collective

control of “flocks” of UAV’s. The CB pursuit strategy is particularly interesting

because it is observed in nature, specifically in the high speed stoop behavior of the

peregrine falcon diving from great heights to hunt prey ([55],[34]). Using natural

Frenet frames to develop a model for describing particles tracing out curves in R3,

we propose a definition for the three-dimensional CB pursuit strategy and derive

a novel control law (4.15) to execute the strategy. Note that the 3-D case does

not readily yield a useful parametrization of the shape space, so we carry out our

analysis with the state space (vector) variables defined in section 4.2.

Similar to the planar CB pursuit law, the three-dimensional pursuit law in-

volves both a relative bearing error and a term related to the motion camouflage

law in [48]. In Proposition 4.3.7 we prove that the 3-D analogue of the CB pur-

1This work was originally developed with Justh and Krishnaprasad and presented in [16].
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suit manifold is invariant and attractive under the closed-loop cyclic CB pursuit

dynamics, with reduced dynamics on the manifold given by (4.21). Section 4.4 is

devoted to the special case of n = 2 (i.e. mutual CB pursuit), in analogy with

3-D mutual motion camouflage (MMC) investigated in [40]. This case reveals the

presence of conservation laws leading to explicit integrability of the dynamics, a

key contribution of this chapter. The chapter ends with conditions for existence

of rectilinear and planar circling relative equilibrium motions for n-agent cyclic CB

pursuit dynamics.

The most relevant previous work on three-dimensional cyclic CB pursuit is

found in [47], in which Ramirez-Riberos, et al., use a double-integrator model of the

form r̈i = ui, where ri ∈ R3 is the position of the ith agent and ui is an acceleration

control. The authors consider control laws of the form

ui = kdRz(α)(ri+1 − ri) +Rz(α)(ṙi+1 − ṙi)− kckdri − (kc + kd)ṙi, kd ∈ R+, kc ∈ R,

(4.1)

where Rz(α) ∈ SO(3) is the rotation2 by α about the z axis (0, 0, 1)T , given by

Rz(α) =


cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1

 , (4.2)

2In [47] the authors use the form given by (4.2), which represents clockwise rotation by α radians

in the plane. By a small abuse of notation, we use Rz(α) in appendix D (see (D.5)) to represent

the corresponding counterclockwise in the plane.
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as well as the “generalized cyclic-pursuit control law”

ui = k1R
2
z(α)

(
(ri+2 − ri+1)− (ri+1 − ri)

)
+ k2Rz(α)(ṙi+1 − ṙi), k1, k2 ∈ R. (4.3)

In contrast, our model (4.4) constrains the control forces to be gyroscopic so that

the speed of each particle remains constant, i.e. r̈i = ui = uiyi + vizi, where

yi and zi lie in the plane normal to the velocity ṙi, and ui, vi are scalar curvature

controls. (Constant speed assumptions are appropriate for certain vehicles and birds

which require a minimum forward speed in order to stay aloft.) Also, we define a

fundamentally different notion of three-dimensional CB pursuit (Definition 4.3.2),

which is more natural and does not require a notion of a common reference axis (i.e.,

the z-axis (0, 0, 1)T ), and we permit diversity of CB pursuit angle parameters.

4.2 Modeling pursuit interactions in three dimensions

Analogous to the discussion in section 2.2.1, we model a system of agents mov-

ing in three-dimensional space as unit-mass particles tracing out twice continuously-

differentiable curves, with system dynamics derived from the natural Frenet frame

equations. (See, for example, [26] for details.) As in figure 4.1, the state of the ith

particle (i.e. agent) with respect to a fixed inertial frame is denoted by the position

vector ri and the respective natural Frenet frames (xi,yi, zi). If we constrain the

agents to move at unit speed, then the dynamics of a system of n agents can be
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described by

ṙi = xi,

ẋi = uiyi + vizi,

ẏi = −uixi,

żi = −vixi, i = 1, 2, . . . , n, (4.4)

where ui and vi are the natural curvatures viewed as controls, and are required to

be SE(3)-invariant (in the sense of Definition 1.3.1). As in the planar case, we

define the baseline vector ri,i+1 = ri − ri+1, with addition in the indices interpreted

as modulo n, and prohibit “sequential colocation” (i.e. we assume |ri,i+1| > 0 for all

t). Explicitly, we let the state space

Mstate =
{

(r1,x1,y1, z1, . . . , rn,xn,yn, zn) | ri 6= ri+1, i = 1, 2, . . . , n
}
, (4.5)

where it is understood that ri ∈ R3 and that {xi,yi, zi} are orthonormal vectors in

R3 for each i.

In contrast to the planar case, in this chapter we will deal exclusively with

the system dynamics on the full state manifold Mstate (and on an analogous ver-

sion of the CB pursuit manifold, viewed as a submanifold of Mstate) in terms of

the vector variables ri,xi,yi, and zi. We take this approach because the shape

space Mstate/SE(3) does not readily yield an advantageous scalar parametrization

analogous to the κi, θi, ρi variables (see section 2.2.3) for the planar case.
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Figure 4.1: Illustration of particle positions and corresponding natural Frenet

frames for three particles interacting in three-dimensional space.

4.3 Pursuit strategies and steering laws in three dimensions

As described in chapters 1 and 2, steering laws for the execution of planar

pursuit strategies have been developed for classical pursuit and constant bearing

pursuit [57] as well as motion camouflage pursuit [27]. A three-dimensional version

of the motion camouflage pursuit law was also developed in [48]. Here we derive

pursuit laws for the execution of classical pursuit and constant bearing pursuit

strategies in R3.

4.3.1 Classical Pursuit

The classical pursuit strategy specifies that the pursuer should always move

directly towards the current location of the pursuee. As in the planar case (see

section 2.3), we define our cost function by

ΛCP
i = xi ·

ri,i+1

|ri,i+1|
, (4.6)
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noting that ΛCP
i ∈ [−1, 1] and ΛCP

i = −1 corresponds to attainment of the CP

strategy. With the following notation

x̄i , xi ·
ri,i+1

|ri,i+1|
, ȳi , yi ·

ri,i+1

|ri,i+1|
, z̄i , zi ·

ri,i+1

|ri,i+1|
, (4.7)

we have,

Proposition 4.3.1. Consider a two-particle system in which (u2, v2) are arbitrary

(but continuous and bounded) and (u1, v1) are prescribed by

u1 = −µ1ȳ1 −
1

|r|

[
z1 ·

(
ṙ× r

|r|

)]
v1 = −µ1z̄1 +

1

|r|

[
y1 ·

(
ṙ× r

|r|

)]
, (4.8)

where µ1 > 0 is a control gain and r , r1−r2. Then under the closed-loop dynamics

(4.4), Λ̇CP
1 ≤ 0 with Λ̇CP

1 = 0 if and only if ΛCP
1 = ±1.

Proof. We proceed by differentiating ΛCP
1 along trajectories of the closed loop dy-

namics. First, note that

d

dt

(
r

|r|

)
=

w

|r|
, (4.9)

where w, the transverse component of the relative velocity, is defined by

w = ṙ−
(
ṙ · r

|r|

)
r

|r|
=

r

|r|
×
(
ṙ× r

|r|

)
. (4.10)
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(See [48] and [57].) Then differentiating ΛCP
1 , we have

Λ̇CP
1 = ẋ1 ·

r

|r|
+ x1 ·

d

dt

(
r

|r|

)
= u1ȳ1 + v1z̄1 +

1

|r|
(x1 ·w)

=

{
−µ1ȳ1 −

1

|r|

[
z1 ·

(
ṙ× r

|r|

)]}
ȳ1

+

{
−µ1z̄1 +

1

|r|

[
y1 ·

(
ṙ× r

|r|

)]}
z̄1 +

1

|r|
(x1 ·w)

= −µ1ȳ
2
1 − µ1z̄

2
1 +

1

|r|
(x1 ·w)− 1

|r|

{[
z1 ·

(
ṙ× r

|r|

)]
ȳ1 − z̄1

[
y1 ·

(
ṙ× r

|r|

)]}
.

(4.11)

By writing out the full expressions for ȳ1 and z̄1 and applying the identity (a× b) ·

(c× d) = (a · c)(b · d)− (a · d)(b · c) for arbitrary vectors a,b, c,d, we then have

Λ̇CP
1 = −µ1

(
1− x̄2

1

)
+

1

|r|
(x1 ·w)− 1

|r|

{
(z1 × y1) ·

[(
ṙ× r

|r|

)
× r

|r|

]}

= −µ1

(
1−

(
ΛCP

1

)2)
+

1

|r|
(x1 ·w)− 1

|r|

{
−x1 ·

[
− r

|r|
×
(
ṙ× r

|r|

)]}

= −µ1

(
1−

(
ΛCP

1

)2)
, (4.12)

The claims of Proposition 4.3.1 readily follow from (4.12).

4.3.2 Definition of the Constant Bearing Pursuit strategy

In the planar case, the notion of constant bearing strategy simply extends

CP by specifying a fixed, possibly nonzero angle between pursuer heading and the

relative location of the target. The following specifies an extension of this idea to

three dimensions.
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Definition 4.3.2 (CB pursuit strategy) Given a two-particle system with dynamics

(4.4) and a parameter a1 ∈ [−1, 1], we say particle 1 has attained the CB(a1) pursuit

strategy if x1 · r
|r| = a1.

Remark 4.3.3 Given a scalar parameter a ∈ [−1, 1] and an arbitrary unit vector

q regarded as a point on the unit sphere S2, the set
{
y ∈ S2

∣∣∣ q · y = a
}

defines a

small circle (i.e. the intersection of a sphere with a plane that does not pass through

the center of the sphere)3. Since x1 and r
|r| are both unit vectors, we can think of

the CB(a1) pursuit strategy as prescribing a small circle centered around the point

r
|r| ∈ S

2. CB(a1) pursuit holds when x1 lies on that small circle.

Remark 4.3.4 Observe that this definition of the three-dimensional CB pursuit

strategy is fundamentally different from the planar version presented in section 2.3

(i.e. R(α)x1 · r
|r| = −1, where R(α)x1 is the vector x1 rotated counterclockwise in

the plane by the angle α) in that the planar version prescribed not only a constant

bearing angular offset but also a particular direction (i.e. counterclockwise) for the

offset. We can relate the CB strategy presented here to the planar strategy as follows.

Given unit vectors x1 and r
|r| in the plane and the two statements R(α)x1 · r

|r| = −1

and x1 · r
|r| = a, we seek to define the relationship between α and a. If we define

θ as the signed angle (CCW rotation positive) from x1 to r
|r| , then cos θ = a and

3More precisely, the set
{
y ∈ S2

∣∣∣ q · y = a
}

describes a small circle only if a 6= 0. For a = 0,

it defines a great circle.
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|θ − α| = π, i.e.

cos(θ − α) = cos θ cosα+ sin θ sinα = −1. (4.13)

This relationship holds only if (cosα, sinα) = −(cos θ, sin θ), and since cos θ = a

and sin θ = ±
√

1− a2, the two discrete possibilities are given by (cosα, sinα) =

(−a,∓
√

1− a2). Therefore the CB strategy of Definition 4.3.2 differs from the

planar strategy (presented in section 2.3) in that it allows for two discrete possi-

bilities for pursuit geometries as opposed to the single geometry prescribed by the

planar strategy.

We define a CB cost function4 for agent i by

Λi =
1

2

[(
xi ·

ri,i+1

|ri,i+1|

)
− ai

]2

=
1

2
(x̄i − ai)

2 , (4.14)

with 0 ≤ Λi ≤ max
[

1
2
(−1− ai)

2, 1
2
(1− ai)

2
]
. Then the CB pursuit strategy defined

above is equivalent to Λi = 0.

Remark 4.3.5 At first glance, it may appear that a viable alternative definition

for the three-dimensional CB pursuit strategy is obtained by letting Λ̃ , Bx1 ·

r
|r| , where B ∈ SO(3) (the rotation group in three dimensions), and then defining

the CB pursuit strategy by Λ̃ = −1. This definition is appealing since it is the

obvious extension of the previously mentioned planar CB pursuit strategy. However,

4This constitutes a small abuse of notation since we have already used Λi to refer to the planar

CB cost function in (2.54), but the context will make it readily apparent as to which quantity we

refer to.
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a few straightforward calculations reveal that Λ̃ is not invariant to rotations of the

coordinate frame (i.e. not SO(3)-invariant) and therefore all associated pursuit laws

will be inadmissible under our framework (unless B is the identity matrix).

4.3.3 A feedback law for CB Pursuit

Proposition 4.3.6. Consider a two-particle system in which (u2, v2) are arbitrary

(but continuous and bounded) and (u1, v1) are prescribed by

u1 = −µ1

(
x̄1 − a1

)
ȳ1 −

1

|r|

[
z1 ·

(
ṙ× r

|r|

)]
v1 = −µ1

(
x̄1 − a1

)
z̄1 +

1

|r|

[
y1 ·

(
ṙ× r

|r|

)]
, (4.15)

where µ1 > 0 is a control gain. Then under the closed-loop dynamics (4.4), Λ̇1 ≤ 0

with Λ̇1 = 0 if and only if Λ1 = 0 or x1 · r
|r| = ±1.

Proof. By a series of calculations analogous to the derivation of (4.12), it is possible

to show that

Λ̇1 = −µ1 (x̄1 − a1)
2 (1− x̄2

1

)
= −2µ1Λ1

(
1− x̄2

1

)
, (4.16)

from which the result follows.

4.3.4 An invariant submanifold for cyclic CB pursuit

As in the planar case, we define the submanifold of system states for which

each agent i pursues agent (i + 1) modulo n with a pursuit law of the form (4.15),
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and all agents have attained CB pursuit. Since Λi = 0 if and only if agent i has

attained CB pursuit of agent (i+ 1), we define the submanifold MCB(a) ⊂Mstate by

MCB(a) =
{

(r1,x1,y1, z1, . . . , rn,xn,yn, zn) ∈Mstate | Λi = 0, i = 1, 2, . . . , n
}
,

(4.17)

where a = {a1, a2, . . . , an}. It follows from an argument analogous to that in Propo-

sition 4.3.6 that MCB(a) is an invariant manifold under cyclic pursuit dynamics

(in the sense that the closed-loop vector field is tangent to the manifold). In the

following proposition we prove asymptotic convergence to MCB(a) under suitable

conditions.

Proposition 4.3.7. Consider the n-particle cyclic CB pursuit system governed by

the closed-loop dynamics (4.4) with curvature controls for the ith agent prescribed by

ui = −µi (x̄i − ai) ȳi −
1

|ri,i+1|

[
zi ·
(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

)]
vi = −µi (x̄i − ai) z̄i +

1

|ri,i+1|

[
yi ·

(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

)]
, (4.18)

where µi > 0 and we assume ai 6= ±1. Define the set

Ωε =
{(

r1,x1,y1, z1, . . . , rn,xn,yn, zn
)
∈Mstate

∣∣
Λi ≤ −ε+ min

[
1

2
(−1− ai)

2,
1

2
(1− ai)

2

]
, i = 1, 2, . . . , n

}
(4.19)

for 0 < ε � mini∈{1,2,...,n}
1
2
(±1 − ai)

2. Then any bounded trajectory starting in

Ωε which does not have finite escape time (i.e. ρi(t) > 0 for every finite t ≥ 0)

converges to MCB(a).
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Proof. Note that Ωε is closed (but not necessarily bounded) and excludes states

for which x̄i = ±1 for any i. Also, it follows from application of (4.16) (for each

i = 1, 2, . . . , n) that Ωε is positively invariant under (4.4). Making use of (4.14) we

define Λ =
∑n

i=1 Λi, observing from (4.16) that

Λ̇ = −2
n∑
i=1

µiΛi

(
1− x̄2

i

)
(4.20)

and therefore Λ̇ ≤ 0 on Ωε with Λ̇ = 0 on Ωε if and only if Λi = 0, i = 1, 2, . . . , n.

The hypothesis of boundedness of the trajectory ensures by Birkhoff’s theorem the

ω-limit set is nonempty, compact and invariant. Asymptotic convergence to MCB(a)

follows as in the steps in the proof of LaSalle’s Invariance Principle [29].

Note that on MCB(a) the terms of the controls (4.18) which involve the gains µi

are identically zero, and therefore we can formulate reduced (closed-loop) dynamics

on MCB(a) for i = 1, 2, . . . , n as

ṙi = xi,

ẋi =
−1

|ri,i+1|

[(
zi ·
(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

))
yi

−
(
yi ·

(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

))
zi

]

ẏi =
1

|ri,i+1|

[
zi ·
(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

)]
xi,

żi =
−1

|ri,i+1|

[
yi ·

(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

)]
xi. (4.21)

4.4 Mutual CB pursuit in three dimensions

As a first step towards understanding the behavior of our system under cyclic

CB pursuit, we analyze the two-particle “mutual CB pursuit” case. (This can be
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compared with the planar analysis of mutual CB pursuit presented in chapter 3 as

well as the analysis of three-dimensional “mutual motion camouflage” in [40].)

For analysis of two-particle systems in three dimensions, [26] demonstrates the

utility of considering the reduced system (r,x1,x2) evolving on R3×S2×S2, where

r , r1 − r2. Starting from (4.21), we derive the (r,x1,x2) dynamics on MCB(a) by

first computing

ẋ1 =
1

|r|

[
z1

((
ṙ× r

|r|

)
· y1

)
− y1

((
ṙ× r

|r|

)
· z1

)]
=

1

|r|

[(
ṙ× r

|r|

)
×
(
z1 × y1

)]
=

1

|r|

[
x1 ×

(
ṙ× r

|r|

)]
. (4.22)

Here we have made use of the so-called BAC-CAB identity.

Doing similar computations for particle 2, we arrive at

ṙ = x1 − x2,

ẋ1 =
1

|r|

[
x1 ×

(
ṙ× r

|r|

)]
=

1

|r|
(x1 × `) ,

ẋ2 =
1

|r|

[
x2 ×

(
ṙ× r

|r|

)]
=

1

|r|
(x2 × `) , (4.23)

with

` , ṙ× r

|r|
(4.24)

and initial conditions governed by the MCB(a) constraints.
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4.4.1 Explicit solutions for system behavior on MCB(a)

As an aid to intuition, we note that the dynamics of the baseline vector r can

be reformulated as

ṙ =

(
ṙ · r

|r|

)
r

|r|
+

[
ṙ−

(
ṙ · r

|r|

) r

|r|

]
=

(
ṙ · r

|r|

)
r

|r|
+

[
ṙ
( r

|r|
· r

|r|

)
− r

|r|

( r

|r|
· ṙ
)]

=

(
ṙ · r

|r|

)
r

|r|
+

r

|r|
×
(
ṙ× r

|r|

)
=

1

|r|

(
ṙ · r

|r|

)
r− 1

|r|

(
ṙ× r

|r|

)
× r. (4.25)

(See [48] for background and a similar approach.) The first term captures the

lengthening or shortening of the baseline vector r, and the second term is related to

the angular velocity of r (with r viewed as an extensible rod from the perspective of

particle 1). Addressing the former term, we first note that ṙ · r
|r| = d

dt
(|r|). Defining

ρ , |r|, we have

ρ̇ = (x1 − x2) ·
r

|r|
= a1 + a2, (4.26)

and obtain

ρ(t) = (a1 + a2) t+ ρ0, for ρ0 = |r(0)| . (4.27)

Turning to the second term in (4.25), we begin our analysis by demonstrating that

the vector cross product ` = ṙ× r
|r| is in fact a fixed vector. Noting that r

|r| · ` = 0
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and ṙ · ` = 0, we take the derivative to get

˙̀ =

[
(ẋ1 − ẋ2)×

r

|r|

]
+

[
ṙ× d

dt

( r

|r|

)]
=

1

|r|

[((
x1 − x2

)
× `
)
× r

|r|

]
+

[
ṙ× w

|r|

]
= − 1

|r|

[
r

|r|
×
(
ṙ× `

)]
+

1

|r|

[
ṙ×

( r

|r|
× `
)]

= − 1

|r|

[
ṙ
( r

|r|
· `
)
− `
(
ṙ · r

|r|

)]
+

1

|r|

[
r

|r|

(
ṙ · `

)
− `
(
ṙ · r

|r|

)]
= 0, (4.28)

where we have made use of (4.9). Substituting this result as well as our results from

(4.26) and (4.27) into (4.25), we can express our r dynamics as

ṙ(t) =
1

a+t+ ρ0

[
a+1− ˆ̀

]
r(t), (4.29)

where we denote a+ = a1 + a2 and make use of the operatorˆ: R3 −→ so(3) which

maps any 3-vector Γ = (Γ1,Γ2,Γ3) to a skew-symmetric matrix defined by

Γ̂ =


0 −Γ3 Γ2

Γ3 0 −Γ1

−Γ2 Γ1 0

 . (4.30)

Since a+1 and ˆ̀ commute, for a+ 6= 0 we can derive an explicit solution for r(t) by

r(t) = exp

(∫ t

0

a+

a+τ + ρ0

dτ

)
exp

(
−ˆ̀
∫ t

0

1

a+τ + ρ0

dτ

)
r(0)

= exp

(
ln(a+τ + ρ0)

∣∣∣t
0

)
exp

(
− 1

a+

ˆ̀ ln(a+τ + ρ0)
∣∣∣t
0

)
r(0)

=
a+t+ ρ0

ρ0

exp

(
− 1

a+

ˆ̀ ln

(
a+t+ ρ0

ρ0

))
r(0). (4.31)
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A straightforward calculation based on (4.29) easily yields the result for the a+ = 0

case, and we can therefore write our complete solution as

r(t) =


a+t+ρ0
ρ0

exp
(
− 1
a+

ˆ̀ ln
(
a+t+ρ0
ρ0

))
r0 for a+ 6= 0

exp
(
− 1
ρ0

ˆ̀t
)

r0 for a+ = 0,

for r(0) = r0, ρ0 = |r0| , xi(0) = x0
i , ` =

(
x0

1 − x0
2

)
× r0

|r0|
. (4.32)

Similarly, by analogous calculations from (4.23) we have (for i = 1, 2)

xi(t) =


exp

(
− 1
a+

ˆ̀ ln
(
a+t+ρ0
ρ0

))
x0
i for a+ 6= 0

exp
(
− 1
ρ0

ˆ̀t
)

x0
i for a+ = 0.

(4.33)

4.4.2 Center of mass trajectory

Prior to stating and proving a proposition concerning the motion of the center

of mass, we note the following calculation. Define Θ ∈ [−1, 1] as

Θ , (x1 × x2) ·
r

|r|
, (4.34)

the signed volume of the parallelepiped with edges x1,x2,
r
|r| . Then using the fact

that x1 × x2 = (x1 − x2)× x2 = ṙ× x2 and x1 × x2 = x1 × (x2 − x1) = x1 × (−ṙ),

one can show that

Θ = −x1 · ` = −x2 · `. (4.35)

By differentiating (4.35) along trajectories of (4.23), it follows readily that Θ is a

constant value on MCB(a).
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Proposition 4.4.1. Consider a two-particle system operating on MCB(a) according

to the closed-loop mutual CB pursuit dynamics (4.23) with initial conditions ri(0) =

r0
i and xi(0) = x0

i , i = 1, 2. Define the change of coordinates r̃i , ri − rc, where rc

is defined by

rc ,


z0 − σ0

(
r0

|r0| ×
`
|`|

)
for ` 6= 0,

0 for ` = 0,

(4.36)

with z0 = 1
2
(r0

1 + r0
2), σ0 = − a−

2|`|ρ0, a− , a1 − a2, and r0, ρ0, and ` as in (4.32).

Then the trajectory of the center of mass z , 1
2
(r1 + r2) can be given in the new

coordinates z̃ = z− rc by the following:

(i.) if ` = 0, then z̃(t) = z̃0 +
1

2

(
x0

1 + x0
2

)
t

(ii.) if ` 6= 0, but a− = 0, then z̃(t) = − Θ

|`|2
`t

(iii.) if ` 6= 0, a− 6= 0, but a+ = 0, then z̃(t) = exp

(
− 1

ρ0

ˆ̀t

)
z̃0 −

Θ

|`|2
`t

(iv.) if `, a− and a+ are all nonzero, then

z̃(t) = c(t) exp

(
− 1

a+

ˆ̀ ln (c(t))

)
z̃0 −

Θ

|`|2
`t, (4.37)

with a+ , a1 + a2, c(t) = a+t+ρ0
ρ0

, and t < tc, where tc = ρ0/(−a+) for a+ < 0, and

tc = ∞ otherwise.

Proof. We first note from (4.27) that if a+ < 0, then ρ(tc) = 0 for tc = ρ0/(−a+),

and therefore we assume t < tc, as stated in the proposition.

Assume ` 6= 0. We will demonstrate that the center of mass follows either a

circling, helical, or spiral trajectory centered on the point rc. We can resolve z̃ into
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component vectors as

z̃ =

(
z̃ · r

|r|

)
r

|r|
+

(
z̃ · `

|`|

)
`

|`|
+

[
z̃ ·
(

r

|r|
× `

|`|

)](
r

|r|
× `

|`|

)
. (4.38)

The main thrust of the proof is to demonstrate that the first term is identically zero,

the second term is linear in t, and that self-contained dynamics (and a resulting

closed-form solution) can be derived for the third term. We address the first term

by defining

γ ,

(
z̃ · r

|r|

)
(4.39)

and making use of (4.9)-(4.10) to obtain the derivatives

γ̇ =

(
1

2
(x1 + x2) ·

r

|r|

)
+

z̃

|r|
·
[
ṙ−

(
ṙ · r

|r|

)
r

|r|

]
=
a−
2

+
1

ρ

(
z̃ · (x1 − x2)− a+γ

)
, (4.40)

and

γ̈ =
−ρ̇
ρ2

(
z̃ · (x1 − x2)− a+γ

)
+

1

ρ

(
˙̃z · (x1 − x2) + z̃ · (ẋ1 − ẋ2)− a+γ̇

)
=
−a+

ρ2

(
z̃ · (x1 − x2)− a+γ

)
+

1

ρ

[
1

2
(x1 + x2) · (x1 − x2) + z̃ ·

(
1

ρ
(x1 − x2)×

(
ṙ× r

|r|

))
− a+γ̇

]
=
−a+

ρ2

(
z̃ · ṙ− a+γ

)
+

1

ρ2

[
z̃ ·
(
ṙ×

(
ṙ× r

|r|

))]
− a+

ρ
γ̇. (4.41)

Then since

z̃ ·
(
ṙ×

(
ṙ× r

|r|

))
= (z̃× ṙ) ·

(
ṙ× r

|r|

)
= (z̃ · ṙ)

(
ṙ · r

|r|

)
−
(
z̃ · r

|r|

)
(ṙ · ṙ) ,

(4.42)
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(4.41) simplifies to

γ̈ =
−a+

ρ2

(
z̃ · ṙ− a+γ

)
+

1

ρ2

[
(z̃ · ṙ) a+ − γ (ṙ · ṙ)

]
− a+

ρ
γ̇

=
a2

+ − |ṙ|
2

ρ2
γ − a+

ρ
γ̇. (4.43)

Initial values for γ and γ̇ are given by

γ(0) = (z(0)− rc) ·
r(0)

|r(0)|
= σ0

(
r0

|r0|
× `

|`|

)
· r0

|r0|
= 0,

γ̇(0) =
a−
2

+
1

ρ0

[
z̃(0) ·

(
x1(0)− x2(0)

)
− a+γ(0)

]
=
a−
2

+
σ0

ρ0

[(
r0

|r0|
× `

|`|

)
· ṙ(0)

]
=
a−
2
− a−

2 |`|

[(
ṙ(0)× r0

|r0|

)
· `

|`|

]
=
a−
2
− a−

2 |`|

[
` · `

|`|

]
= 0, (4.44)

and therefore (4.43) implies γ =
(
z̃ · r

|r|

)
≡ 0, i.e. (4.38) simplifies to

z̃ =

(
z̃ · `

|`|

)
`

|`|
+

[
z̃ ·
(

r

|r|
× `

|`|

)](
r

|r|
× `

|`|

)
. (4.45)

Now note that

d

dt

(
z̃ · `

|`|

)
=

1

2
(x1 + x2) ·

`

|`|
= − Θ

|`|
, (4.46)

and therefore integrating both sides yields

z̃(t) · `

|`|
= − Θ

|`|
t+ σ0

(
r0

|r0|
× `

|`|

)
· `

|`|
= − Θ

|`|
t. (4.47)

Therefore the first term in (4.45) is linear in t, and substitution of (4.47) into (4.45)

supplies the simplified expression

z̃ = − Θ

|`|
t+

[
z̃ ·
(

r

|r|
× `

|`|

)](
r

|r|
× `

|`|

)
. (4.48)

158



In order to simplify the last term, we let

σ , z̃ ·
(

r

|r|
× `

|`|

)
, (4.49)

observing that

σ(0) = σ0

(
r0

|r0|
× `

|`|

)
·
(

r0

|r0|
× `

|`|

)
= σ0, (4.50)

and define

z̄ =

[
z̃ ·
(

r

|r|
× `

|`|

)](
r

|r|
× `

|`|

)
= σ

(
r

|r|
× `

|`|

)
. (4.51)

By direct calculation (making use of (4.9)-(4.10) and (4.24)) we have

σ̇ = ˙̃z ·
(

r

|r|
× `

|`|

)
+ z̃ · 1

|r|

[(
r

|r|
× `

)
× `

|`|

]
=

x1 + x2

2 |`|
·
[

r

|r|
×
(
ṙ× r

|r|

)]
− z̃

|r|
·
[

r

|r|

(
` · `

|`|

)
− `

(
r

|r|
· `

|`|

)]
=

1

2 |`|

[(
x1 ×

r

|r|

)
·
(
ṙ× r

|r|

)
+

(
x2 ×

r

|r|

)
·
(
ṙ× r

|r|

)]
− z̃

|r|
·
(

r

|r|
|`|
)

=
1

2 |`|

[
x1 · ṙ−

(
x1 ·

r

|r|

)(
ṙ · r

|r|

)
+ x2 · ṙ−

(
x2 ·

r

|r|

)(
ṙ · r

|r|

)]
− |`|
|r|
γ

=
1

2 |`|

[
(x1 + x2) · ṙ− a1a+ + a2a+

]

= − 1

2 |`|
a−a+, (4.52)

and therefore

σ(t) = σ(0)− 1

2 |`|
a−a+t =

σ0

ρ0

(ρ0 + a+t) = − a−
2 |`|

ρ(t). (4.53)

If a− = 0, then the third term of (4.38) is identically zero and (4.47) yields the
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second claim of our proposition. If a− 6= 0, then differentiating (4.51) yields

˙̄z = σ̇

(
r

|r|
× `

|`|

)
+ σ

[
d

dt

(
r

|r|

)
× `

|`|

]
= − 1

2 |`|
a−a+

(
r

|r|
× `

|`|

)
+ σ

[
1

ρ

(
r

|r|
× `

)
× `

|`|

]
= − 1

2 |`|
a−a+

(
1

σ

)[
σ

(
r

|r|
× `

|`|

)]
+
σ

ρ

[
−
(

`

|`|
× r

|r|

)
× `

]
=
a+

ρ

[
σ

(
r

|r|
× `

|`|

)]
+

1

ρ

[
σ

(
r

|r|
× `

|`|

)
× `

]
=

1

ρ

[
a+1− ˆ̀

]
z̄, (4.54)

where we have made use of (4.9), (4.53) and the Jacobi identity. We recognize

(4.54) as the same form as (4.29), and therefore have the analogous closed-form

expression for z̄. The third and fourth claims of Proposition 4 then follow from

(4.48), (4.51), and (4.54), along with the fact that z̃(0) = z̄(0). Finally, if ` = 0, we

have xi(t) = x0
i (from (4.33)) and therefore ˙̃z(t) = 1

2
(x0

1 + x0
2), establishing the first

claim of the proposition.

Remark 4.4.2 System behavior can be classified in terms of the initial conditions,

parametrized by ` and Θ, and the parameters a+ and a−. The sign and magnitude of

` determine whether the baseline vector r will rotate (` 6= 0) as well as the direction

of rotation. Θ determines whether r,x1 and x2 will evolve in a common plane.

The parameter a+ determines the rate of change of the inter-particle distance, and

a− determines if the center of mass will rotate. Figure 4.2 displays some of the

possible system trajectories, including rectilinear and circling equilibria as well as

an expanding spiral.
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(a) Rectilinear equilibrium (` = 0) (b) Circling equilibrium (` 6= 0; a− 6= 0;

Θ = 0; a+ = 0)

(c) Expanding spiral (`, Θ, a−, a+ 6= 0)

Figure 4.2: These figures illustrate the various types of trajectories from Proposi-

tion 4.4.1 in terms of initial conditions (` and Θ) and parameter values (a+ and

a−).

4.5 Relative equilibria for the n-particle case

The analysis in [26] describes the possible types of relative equilibria for an

n-particle system evolving according to (4.4) with SE(3)-invariant controls. These

relative equilibria correspond to

1. rectilinear formations (i.e., all particles move in the same direction with arbi-
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trary relative positions),

2. circling formations (i.e., all particles move on circular orbits with a common

radius, in planes perpendicular to a common axis),

3. helical formations (i.e., all particles follow circular helices with the same radius,

pitch, axis, and axial direction of motion).

As in [26], we can express our dynamics (4.4) in terms of group variables g1, g2, . . . , gn ∈

G = SE(3) as the left-invariant system

ġi = giξi, i = 1, 2, . . . , n, (4.55)

where ξi ∈ g = the Lie algebra of G. Then shape variables can be defined by

g̃i = g−1
i gi+1, i = 1, 2, . . . , n, (4.56)

with corresponding dynamics

˙̃gi = g̃iξ̃i, i = 1, 2, . . . , n, (4.57)

where ξ̃i = ξi+1−Adg̃−1
i
ξi ∈ g. Relative equilibria for the full dynamics are equilibria

for the shape dynamics (4.57). In analogy to proposition (2.4.1) from the planar con-

text, we present the following propositions concerning existence of relative equilibria

for the general three-dimensional case.

Proposition 4.5.1. Given {a1, a2, . . . , an}, a relative equilibrium corresponding to

rectilinear motion on MCB(a) under closed-loop cyclic CB pursuit dynamics (4.21)

exists if and only if there exists a set of positive constants {σ1, σ2, . . . , σn} such that∑n
i=1 σiai = 0.
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Proposition 4.5.2. Given {a1, a2, . . . , an}, define {α1, α2, . . . , αn} ∈ (0, 2π) by

(cosαi, sinαi) = (−ai,
√

1− a2
i ). Then a planar circling relative equilibrium on

MCB(a) under closed-loop cyclic CB pursuit dynamics (4.21) exists if and only if

i. ai 6= ±1, i = 1, 2, . . . , n; ii. sin

(
n∑
i=1

αi

)
= 0. (4.58)

Proof of Propositions 5 and 6. The proof for each proposition relies on Proposi-

tion 2.4.1 and is sketched in appendix D. Note that the angle αi as defined in

Proposition 4.5.2 matches the notation from the planar context, as discussed in

section 4.3. (The choice of sinαi =
√

1− a2
i corresponds to CCW circling equilibria,

while choosing sinαi = −
√

1− a2
i refers to CW circling equilibria.) Also, note that

Proposition 4.5.2 addresses the existence of circling equilibria on a common plane

(rather than the more general definition of circling equilibria that permits multiple

planes perpendicular to a common axis), and therefore the proof is simplified by

assuming (without loss of generality) that the circling equilibrium evolves on the

horizontal plane.

Remark 4.5.3 Observe that the constraint of Proposition 4.5.1 is equivalent to

requiring that either ai = 0, i = 1, 2, . . . , n or that there exists j, k ∈ [1, 2, . . . , n]

such that ajak < 0. Also, observe that the condition in Proposition 4.5.1 is not

mutually exclusive with the conditions of Proposition 4.5.2, in contrast to the

analogous planar propositions stated in chapter 2.
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Chapter 5

Motion camouflage in a stochastic setting

5.1 Introduction and background

In chapters 2, 3 and 4, we have presented and analyzed a context in which

pursuit interactions give rise to collective behavior which could be employed for

cooperative maneuvering and control. In chapters 5 and 6, we turn to the more

traditional setting in which pursuit is viewed as an adversarial (i.e. non-cooperative)

phenomenon and the pursuee may employ evasive strategies. At the outset, we note

that pursuit-evasion encounters do not always focus exclusively on the question of

capture vs. escape. In fact, our analysis in both chapters 5 and 6 will focus on

the motion camouflage pursuit strategy which attempts to maximize “stealth” and

reduce pursuer “visibility” (in a sense that we will later make precise). Motion

camouflage is a pursuit strategy observed in nature which relies on minimizing the

perceived relative motion of the pursuer from the standpoint of the pursuee. This

strategy is particularly suited to encounters in which the pursuee relies on optic flow

sensing and does not typically detect looming cues, since the pursuer can conceal
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its approach by maneuvering so as to generate a trajectory which resembles that

of a stationary object in the optic flow. Srinivasan and Davey were the first to

postulate that an animal might use such a strategy to conceal its approach towards a

pursuee[54], and they found empirical evidence to support the claim in their analysis

of hoverfly flight data previously collected by Collett and Land[11]. The claim was

bolstered by further research which demonstrated that dragonflies appear to use

motion camouflage tactics in male-male territorial interactions[41]. Remarkably, it

has also been shown (Ghose, Horiuchi, Krishnaprasad and Moss[19]) that bats use a

strategy, known as constant absolute target direction (CATD), which is geometrically

indistinguishable from motion camouflage. In this context, it is demonstrated that

the pursuit strategy is nearly time-optimal in the sense that it minimizes time-to-

intercept under a piecewise linear approximation.

A mathematical characterization of motion camouflage was presented by Glendin-

ning in [20], in which the author derived differential equations for motion camouflage

and described the pursuit curves for some basic examples. In [27], Justh and Krish-

naprasad presented a biologically plausible feedback law for executing the motion

camouflage pursuit strategy in the planar setting and proved a proposition concern-

ing accessibility of the motion camouflage state in finite time. These results were

subsequently extended to the three dimensional case[48] and also shown to hold

when a sensorimotor delay was incorporated into the model[49]. Though this con-

trol law, known as the motion camouflage proportional guidance (MCPG) law, is

rooted in biology, it has also been shown that there exist close parallels to certain

proportional guidance schemes in the missile guidance literature[44, 51].
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In chapter 5, we relate the previous deterministic work on motion camouflage

in [27] to the stochastic setting, considering the impact of introducing evader controls

driven by random processes1. This stochastic analysis is pertinent to the biological

setting since there are many examples of organisms which appear to use stochastic

control processes, such as the “run-and-tumble” movement exhibited in bacterial

chemotaxis (see, e.g., [3]). Many species of bacteria use this type of stochastic

steering control, which (as will be demonstrated in the sequel) can be modeled as

a continuous time, finite state (CTFS) process driven by Poisson counters. In the

vehicular setting, there may also be possible applications in adversarial encounters

between unmanned vehicles in which one vehicle is equipped with an optical flow

sensor and the other vehicle makes use of some type of stochastic evasive maneuver.

We proceed by providing a background discussion of some of the fundamentals

of motion camouflage and the motion camouflage proportional guidance (MCPG)

feedback law derived in [27]. We then move to the stochastic setting to address

motion camouflage in the context of a stochastically steering evader, presenting the

main result of this chapter in Proposition 5.3.2, which serves as a stochastic ana-

logue to the motion camouflage accessibility result from the deterministic case (see

Proposition 3.3 in [27]). In order to highlight the connections to the deterministic

version, we present our analysis in terms of the full state dynamics (5.2) rather

than the shape variable description developed in section 2.2.3. (In chapter 6 we

will present a shape variable description of motion camouflage, which better suits

our analysis for that particular context.) We end the chapter by presenting some

1This work was originally developed with Justh and Krishnaprasad and presented in [14].
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specific forms of admissible stochastic controls (section 5.4) as well as simulation

results (section 5.5).

5.2 Motion camouflage model

5.2.1 System dynamics

We base our model on the state dynamics presented in section 2.2.1, substi-

tuting the subscript p for the pursuer and e for the evader rather than the numbered

indices used in the general model, by which we have the pursuer-evader dynamics

ṙp = νpxp ṙe = νexe

ẋp = νpypup ẋe = νeyeue

ẏp = −νpxpup ẏe = −νexeue. (5.1)

(The steering controls up and ue may be given by feedback laws or prescribed.) By

a straightforward rescaling of the time variable, we can always assume without loss

of generality that the pursuer moves at unit speed and the evader moves at speed

νe = ν > 0 (i.e., ν = νe/νp represents the ratio of the evader’s speed to the pursuer’s
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speed), and so our dynamics (5.1) can be represented as2

ṙp = xp ṙe = νxe

ẋp = ypup ẋe = νyeue

ẏp = −xpup ẏe = −νxeue. (5.2)

In this chapter we will always assume that ν < 1, i.e. the speed of the evader is

strictly less than that of the pursuer.

5.2.2 Definition of motion camouflage

In this work we focus on “motion camouflage with respect to infinity”, the

strategy in which the pursuer maneuvers in such a way that, from the point of view

of the evader, the pursuer always appears at the same bearing. This is described in

[27] as

rp = re + λr∞ (5.3)

where r∞ is a fixed unit vector and λ is a time-dependent scalar. We define the

“baseline vector” as the vector from the evader to the pursuer

r = rp − re, (5.4)

and |r| denotes the baseline length. Since we have restricted ourselves to the non-

collision case (i.e. |r| 6= 0), we can define w as the vector component of ṙ which is

2This formulation matches the pursuer-evader dynamics presented in [27]. In chapter 6 we will

present an alternative (but equivalent) formulation in which we assume the evader moves at unit

speed, and the pursuer’s speed is left to vary.
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transverse to r, i.e.

w = ṙ−
(

r

|r|
· ṙ
)

r

|r|
. (5.5)

It was demonstrated in [27] that the pursuit-evasion system (5.2) is in a state of

motion camouflage without collision on a given time interval iff w = 0 on that

interval.

5.2.3 Distance from motion camouflage

The function

Γ =
d
dt
|r|
|dr
dt
|

=

(
r

|r|
· ṙ

|ṙ|

)
(5.6)

describes how far the pursuer-evader system is from a state of motion camouflage [27,

48]. The system is in a state of motion camouflage when Γ = −1, which corresponds

to pure shortening of the baseline vector. (By contrast, Γ = 0 corresponds to pure

rotation of the baseline vector, and Γ = +1 corresponds to pure lengthening of the

baseline vector.) The difference Γ − (−1) > 0 is a measure of the distance of the

pursuer-evader system from a state of motion camouflage.

For (5.6) to be well defined, we must have |r| > 0 as well as |ṙ| > 0. The former

requirement is satisfied by assuming that |r| 6= 0 initially, and then analyzing the

engagement (for finite time) only until |r| reaches a value r0 > 0 [27, 48]. The latter

condition is ensured by the assumption that 0 < ν < 1, since |ṙ| ≥ 1− ν.
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5.2.4 Feedback law for motion camouflage

When there is no delay associated with incorporating sensory information, we

define our feedback law as

up = uMC = −µp
(

r

|r|
· ṙ⊥
)
, (5.7)

where µp > 0 is a gain parameter [27, 48]. However, if there is a delay τ in the

incorporation of sensory information, then we substitute up(t−τ) for up in equation

(5.2), as described in [49]. (In this work, we only consider the delay-free case.)

Observe that (5.7) is well defined since, by the discussion in the previous

subsection, |r| 6= 0 during the duration of our analysis.

The key results for the deterministic motion camouflage feedback system are

presented in [27, 48]. These results, particularly the planar result in [27], are the

inspiration for the calculations below in Section 5.3.

5.3 Stochastic evader analysis

5.3.1 SDE for Γ

Let us now suppose that up = uMC as in (5.7) and ue is not a deterministic

function of time, but is instead driven by a stochastic process (in a way we will

make precise later). Then r and ṙ are also stochastic processes, as is Γ given by

(5.6). Analogous to the calculation of Γ̇ given in [27], we can derive the following
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SDE (Stochastic Differential Equation) for Γ (see Remark 5.4.4):

dΓ=
|ṙ|
|r|

[
1

|ṙ|2

(
r

|r|
· ṙ⊥
)2
]
dt+

1

|ṙ|

[
1

|ṙ|2

(
r

|r|
· ṙ⊥
)]

(1− ν(xp · xe))updt

+
1

|ṙ|

[
1

|ṙ|2

(
r

|r|
· ṙ⊥
)]

(ν − (xp · xe))ν2uedt, (5.8)

which is supplemented by the SDE version of (5.2), all of which should be interpreted

as stochastic differential equations of the Itô type. Substituting (5.7) into (5.8) gives

(c.f., [27])

dΓ = −
[
µp
|ṙ|

(1− ν(xp · xe))−
|ṙ|
|r|

][
1

|ṙ|2

(
r

|r|
· ṙ⊥
)2
]
dt

+
1

|ṙ|

[
1

|ṙ|2

(
r

|r|
· ṙ⊥
)]

(ν − (xp · xe))ν2uedt. (5.9)

Noting that

1

|ṙ|2

(
r

|r|
· ṙ⊥
)2

= 1−
(

r

|r|
· ṙ

|ṙ|

)2

= 1− Γ2, (5.10)

and that 1− Γ2 ≥ 0, we conclude that

dΓ ≤ −(1− Γ2)

[
µp
|ṙ|

(1− ν(xp · xe))−
|ṙ|
|r|

]
dt

+
1

|ṙ|2
(
√

1− Γ2)

∣∣∣∣(ν − (xp · xe))ν2ue

∣∣∣∣dt. (5.11)

Futhermore, as in the deterministic analysis in [27], we have the following inequali-

ties:

|xp · xe| ≤ 1, and 1− ν ≤ |ṙ| ≤ 1 + ν, (5.12)

so that

dΓ ≤ −(1− Γ2)

[
µp

(
1− ν

1 + ν

)
− 1 + ν

|r|

]
dt+

ν2(1 + ν)

(1− ν)2

(√
1− Γ2

) ∣∣ue∣∣dt. (5.13)

171



For µp > 0, we can define constants r0 > 0 and c0 > 0 such that

µp =

(
1 + ν

1− ν

)(
1 + ν

r0
+ c0

)
, (5.14)

and thus

µp ≥
(

1 + ν

1− ν

)(
1 + ν

|r|
+ c0

)
, ∀|r| ≥ r0. (5.15)

We thus have

dΓ ≤ −(1− Γ2)c0dt+
ν2(1 + ν)

(1− ν)2

(√
1− Γ2

) ∣∣ue∣∣dt, (5.16)

for all |r| ≥ r0.

5.3.2 Bounds for E[Γ]

The next step is to take expected values of both sides of (5.16), which yields

d

dt
E[Γ] ≤ −c0E

[
1− Γ2

]
+
ν2(1 + ν)

(1− ν)2
E
[∣∣ue∣∣√1− Γ2

]
, (5.17)

provided |r| ≥ r0. By the Cauchy-Schwartz Inequality,

∣∣∣E [∣∣ue∣∣√1− Γ2
]∣∣∣ ≤√E [u2

e]
√
E [1− Γ2], (5.18)

from which it follows that

d

dt
E[Γ] ≤ −c0E

[
1− Γ2

]
+ c1

√
E [1− Γ2], (5.19)

provided |r| > r0. Here we’ve assumed that ue has a bounded second moment (i.e.

E[u2
e] ≤ u2

max for some constant umax > 0) and we’ve defined

c1 =
ν2(1 + ν)

(1− ν)2
umax > 0. (5.20)
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We can now show that, given 0 < ε << 1, we can choose c0 (and hence µp)

sufficiently large so as to ensure that dE[Γ]/dt ≤ 0 for E[1 − Γ2] > ε (provided

|r| > r0). In particular, choose c0 > c1/
√
ε. Then (5.19) becomes

d

dt
E[Γ] ≤ −E

[
1− Γ2

](
c0 −

c1√
E [1− Γ2]

)

≤ −E
[
1− Γ2

](
c0 −

c1√
ε

)
≤ −E

[
1− Γ2

]
c2

≤ −c2ε, (5.21)

where c2 = c0 − c1/
√
ε > 0, and provided |r| > r0. Now, (5.21) can be integrated

with respect to time to give

E[Γ] ≤ −c2εt+ E[Γ0], (5.22)

as long as E[1− Γ2] > ε, where Γ0 = Γ(0), and provided |r| > r0.

Because the initial positions rp(0) and re(0) are assumed to be deterministic

(even when ue is stochastic), it follows that |r(0)| is deterministic. For r0 < |r(0)|,

and using

|r(t)| ≥ |r(0)| − (1 + ν)t, (5.23)

we can conclude that the interval [0, T ), where

T =
|r(0)| − r0

1 + ν
> 0, (5.24)

is an interval of time over which we can guarantee that |r| > r0 (regardless of the

sample path of ue).

From the form of (5.22), it is clear that by choosing c2 sufficiently large, E[Γ]

can be driven to an arbitrary negative value at time T , but for the fact that (5.22)
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is only valid for E[1− Γ2] > ε. Indeed, for any η > 0 and

c2 >
1 + E[Γ0]

εT
+ η, (5.25)

by a contradiction argument, E[1− Γ2(t1)] ≤ ε must hold for some t1 ∈ [0, T ).

5.3.3 Statement of result

Analogously to [27], we define a notion of (finite-time) “accessibility” of the

motion camouflage state for the stochastic setting:

Definition 5.3.1 Given the system (5.2), interpreted as SDEs driven by random

processes up and ue having (piecewise) continuous sample paths, we say that “motion

camouflage is accessible in the mean in finite time” if for any ε > 0 there exists a

time t1 such that E[1− Γ2(t1)] ≤ ε.

Proposition 5.3.2. Consider the system (5.2), with control law (5.7), and Γ defined

by (5.6), with the following hypotheses:

(A1) 0 < ν < 1 (and ν is constant),

(A2) ue is a stochastic process with piecewise continuous sample paths and bounded

first and second moments (i.e. ∃ constant 0 < umax < ∞ such that ∀t ≥ 0,

E[u2
e] ≤ u2

max and |E[ue]| ≤ umax),

(A3) ue is of a form such that the matrix X = [xe ye] evolves on SO(2),

(A4) E[1− Γ2
0] > 0, where Γ0 = Γ(0), and
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(A5) |r(0)| > 0.

Then motion camouflage is accessible in the mean in finite time using high-gain

feedback (i.e., by choosing µp > 0 sufficiently large.)

Proof. The proof is along the lines of the proof of Proposition 3.3 in [27] for the

deterministic system.

Without loss of generality, we may assume that E[1− Γ2
0] > ε.

Choose r0 > 0 such that r0 < |r(0)|. Choose c2 > 0 sufficiently large so as to

satisfy

c2 >

(
1 + ν

|r(0)| − r0

)(
1 + E[Γ0]

ε

)
+ η, (5.26)

where η > 0, and choose c0 as

c0 = c2 +
1√
ε

(
ν2(1 + ν)

(1− ν)2
umax

)
. (5.27)

Then defining µp according to (5.14) ensures that E[1 − Γ2(t1)] ≤ ε for some t1 ∈

[0, T ), where T is given by (5.24).

Remark 5.3.3 Observe that Definition 5.3.1 does not distinguish between motion

camouflage with decreasing baseline distance (i.e., Γ = −1) and motion camouflage

with increasing baseline distance (i.e., Γ = +1). By contrast, the definition of finite-

time accessibility of motion camouflage given in [27] deals only with decreasing

baseline distance.
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Remark 5.3.4 Assumption (A3) equates to ensuring that the associated vector

equation evolves on a circle. This is discussed in the following section.

5.4 Admissible stochastic controls

In considering the possible families of stochastic processes that could serve as

controls for the evader, we can only select such controls that will cause the matrix

X = [xe ye] to evolve on SO(2), the special orthogonal group in two dimensions.

For a stochastic ue, (5.2) provides the stochastic differential equation

dXt = XtÂuedt, (5.28)

where Â is the skew-symmetric matrix defined by

Â =

 0 −ν

ν 0

 . (5.29)

Let x0 ∈ R2 and define xt by xTt = xT0Xt. Then we have

dxTt = xTt Âuedt =⇒ dxt = ÂTxtuedt. (5.30)

It can be shown (see, e.g., [5]) that Xt evolves on SO(2) if and only if (5.30) evolves

on a circle.

Proposition 5.4.1. Let the stochastic evader control ue be defined as follows:

dz = α(z, t)dt+ β(z, t)dW, z(0) = z0,

ue = z, (5.31)
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where z is a scalar stochastic process, W (·) is standard Brownian motion, α : R ×

[0,∞) → R and β : R × [0,∞) → R (and suitable technical hypotheses are met).

Then (5.28) evolves on SO(2).

Proof. Grouping (5.30) and (5.31) and dropping the time subscripts for simplicity,

we have

d

 x

z

 =

 ÂTxz

α(z)

 dt+

 0

β(z)

 dW. (5.32)

Let

y =

 x

z

 , f(y) =

 ÂTxz

α(z)

 , and g(y) =

 0

β(z)

 . (5.33)

Then (5.32) becomes

dy = f(y)dt+ g(y)dW. (5.34)

Letting ψ(y) = xTx and using Itô’s rule for differentiating, we have

d(xTx) = dψ(y)

=

[
∂ψ

∂t
+
∂ψ

∂y
· f +

1

2
tr

(
∂2ψ

∂y∂yT
ggT
)]

dt+

(
∂ψ

∂y
· g
)
dW

=

 2x

0

 ·
 ÂTxz

α(z)

 dt+
1

2
tr


 2 0

0 0


 0 0

0 β2(z)


 dt

+

 2x

0

 ·
 0

β(z)

 dW
= 2xT ÂTxzdt

= 0, (5.35)
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where the last step follows from the skew-symmetry of ÂT . Equation (5.35) implies

that xTx = xT0 x0 for all times t ≥ 0 (i.e., (5.30) evolves on a circle), and therefore

(5.28) evolves on SO(2).

Remark 5.4.2 A similar result can be proved for counter-driven stochastic controls

of the form

dz = α(z, t)dt+
m∑
i=1

βi(z, t)dNi, z(0) = z0,

ue = z, (5.36)

where Ni, i = 1, 2, ...,m are Poisson counters with rates λi. (Follow the previous

proof and use Itô’s rule for jump processes.)

We note the following specific possibilities for stochastic controls:

(a) Brownian motion. Letting α(z, t) = 0 and β(z, t) = 1 in (5.31) results in

dz = dW, z(0) = z0, ue = z, (5.37)

i.e., ue(·) = W (·). In this case, the steering control would be governed by sam-

ple paths of a Brownian motion process. However, this control does not satisfy

assumption (A2) of Proposition 5.3.2 and is therefore not admissible.

(b) Brownian motion with viscous damping. Let α(z, t) = −δz and β(z, t) = σ for

constants δ > 0 and σ ∈ R. Then (5.31) becomes

dz = −δzdt+ σdW, z(0) = z0, ue = z, (5.38)
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which is better known as the Langevin equation. This control satisfies both (A2)

and (A3) and is therefore admissible.

(c) “Run-and-tumble” (bacterial chemotaxis). In (5.36) let α(z, t) = 0 and define

the Poisson counter rates and coefficients as follows:

β1(z, t) =
1

2
z(z − 1),

β2(z, t) = −1

2
z(z + 1),

β3(z, t) = (z2 − 1),

β4(z, t) = −(z2 − 1),

λ1 = λ2 = λH ,

λ3 = λ4 = λL. (5.39)

Then (5.36) becomes

dz =
1

2
z(z − 1)dN1 −

1

2
z(z + 1)dN2 + (z2 − 1)dN3 − (z2 − 1)dN4,

z(0) = z0 ∈ {−1, 0, 1},

ue = z, (5.40)

and ue is a continuous time, finite state (CTFS) process taking values in the set

{−1, 0, 1}. Hence ue satisfies (A2) and (A3) and is admissible as a stochastic control

for the evader. We can approximate bacterial chemotaxis, the “run-and-tumble”

control used by certain types of bacteria to move towards food sources, by choosing

λH >> λL. Under this open-loop control, the evader will move primarily in straight

paths (ue = 0), making occasional random short-duration turns whenever Poisson
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counter N3 or N4 fires. This could also be implemented as a closed-loop control by

feeding state information (e.g. range to the pursuer) back to λH and λL.

Remark 5.4.3 Note that the control uedt = dW (i.e., ue ≈ “white noise”) is not a

permissible control for the evader, since a calculation similar to (5.35) yields

d(xTx) = xT ÂÂTxdt = ν2xT

 0 1

1 0

xdt, (5.41)

which is not necessarily zero, and therefore X = [xe ye] will not evolve on SO(2).

Remark 5.4.4 Under assumptions (A2) and (A3) referred to above (we are specif-

ically interested in ue processes such as (5.38) and (5.40)), it follows that for each

path of ue, the random differential equations (5.2) with control (5.7), have well-

defined local pathwise solutions away from collisional states rp = re. Applying Itô’s

rule to the ensemble process (5.2),(5.7) gives us (5.8).

5.5 Simulation Results

The following simulation results demonstrate the effectiveness of the pursuit

law (5.7) against an evader using a “run-and-tumble” steering control as described

previously, confirming the analytical results presented in section 5.3. Each simula-

tion is based on the same parameters but differs by the ratio of the Poisson counter

rates λL and λH . (Note also that each simulation was run for approximately 250

time units in steps of .1 time units, and the ratio of evader’s speed to pursuer’s speed
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was fixed at ν = .9.) Figure 5.1a shows the pursuer and evader trajectories for a

simulation in which the ratio between the counter rates is very large (λH = 40λL)

and therefore the evader makes fewer maneuvers. (The lighter lines connecting the

pursuer and evader at regular time intervals indicate the evolution of the baseline

vector r. If the system (5.2) is in a state of motion camouflage, these lines will

be parallel.) Figures 5.1b and 5.1c show the complete and transient behavior, re-

spectively, of the cost function Γ(t) given by (5.6). (Each graph shows the results

for both a smaller pursuit feedback gain µp as well as the results for a gain three

times larger.) Note that the cost function is driven close to the desired value of -1,

with intermittent spikes which correspond to momentary deviations away from the

motion camouflage state when the evader executes an abrupt turn.

The bottom row of 5.1 depicts results for a much smaller ratio of λH to λL

(i.e. higher probability of evader maneuvering). As demonstrated in figure 5.1d,

increased evader maneuvering induces more frequent steering requirements for the

pursuer, indicating that, while such an evasive control may not prevent capture, it

may introduce a high steering/attention cost on the pursuer. Note from figure 5.1e

that the highly erratic evader steering control results in frequent deviations from

motion camouflage. Figure 5.1f displays the initial transient behavior of Γ(t). In

the case of the larger value of µp, the initial behavior of Γ(t) is similar to that of

figure 5.1f since the pursuer is able to maneuver close to the motion camouflage

state prior to the evader’s first course change. For the smaller value of µp, the first

evader maneuver occurs while Γ(t) is still much larger than -1, thereby delaying

convergence to the motion camouflage state.
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: These figures depict the results of two motion camouflage pursuit scenar-

ios in which the evader uses the counter-driven “run-and-tumble” steering control

and the pursuer uses the feedback law given by (5.7). The top row of figures corre-

spond to a large ratio between counter rates (λH = 40λL) for the stochastic evader

steering process, while the bottom row of figures correspond to a much smaller ratio

(λH = 6.67λL). The first figure in each row depicts the trajectories of the pursuer

(solid dark line) and the evader (dashed dark line); the other figures depict respec-

tively the long-term and transient behavior of the cost function Γ(t). (The lighter

dashed lines correspond to a small value of µp while the darker solid lines correspond

to a value of µp which is three times larger.)
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Chapter 6

A deterministic evasion strategy to counter

motion camouflage pursuit

6.1 Introduction

In chapter 5, we introduced the motion camouflage pursuit strategy and asso-

ciated pursuit law (5.7), and proved a result concerning finite-time accessibility of

the motion camouflage state even in the case where the evader employs a stochastic

steering process. Combined with the results of the deterministic analysis in [27],

this analysis contributes to the evidence attesting to the effectiveness of the motion

camouflage pursuit law for executing the desired MC pursuit strategy.

In this chapter, we return to the deterministic setting and consider the question

of whether the evader can “defeat” the motion camouflage pursuit law by employing

an appropriate feedback control. Rather than focusing on accessibility of the motion

camouflage state for a high-gain pursuer (as in chapter 5), here we assume that the

pursuer’s control gain is finite, and for a family of evader feedback laws, we consider

the existence of circling equilibria (which can be viewed as a “stand-off” condition
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and thus favorable to the evader). This chapter also lays the groundwork for a

future game-theoretic study of pursuer-evader encounters which incorporate a pay-

off related to “visibility” of the pursuer.

We proceed by developing a shape variable formulation for motion camouflage

and then deriving an evasion law (6.18) which aims to maximize a novel payoff func-

tion. (See section 6.4.) We then analyze the resultant closed-loop shape dynamics

(the pursuer employing the motion camouflage pursuit law and the evader employ-

ing the evasion law (6.18)), first for the common speed case (section 6.5), and then

for the more general case in which one of the agents possesses a speed advantage

(section 6.6). We find that there exists a range of speed ratios and control gain

ratios for which circling relative equilibria exist and are asymptotically stable (see

Propositions 6.6.1 and 6.6.4), even in some cases where the pursuer has a speed

advantage as well as a control gain advantage (see Proposition 6.6.6.)

6.2 Two-particle shape dynamics

As in section 5.2, we start with the pursuer-evader system dynamics presented

in (5.1), but in a slight deviation1 from the formulation in chapter 5, we choose to

set νe ≡ 1 and let νp = ν̄ > 0, so that ν̄ represents the ratio of the pursuer’s speed

to the evader’s speed. (As discussed in section 5.2, this is equivalent to a scaling of

1In chapter 5, we found it important to match the notation from [27] in order to facilitate

comparison of the results. Such a comparison is not required in this chapter, and notational

clarity is enhanced in this context by referencing speeds and control gains in terms of the ratio of

pursuer to evader. Therefore we have used ν̄, which is equivalent to 1/ν.
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the time variable, and therefore we can proceed without loss of generality.) Then

the pursuer-evader dynamics are given by

ṙp = ν̄xp ṙe = xe

ẋp = ν̄ypup ẋe = yeue

ẏp = −ν̄xpup ẏe = −xeue, (6.1)

which hold for any SE(2)-invariant steering laws up and ue.

While the analysis in chapter 5 was conducted exclusively in terms of the

vector state variables (i.e. rp,xp,yp and re,xe,ye) in order to facilitate comparisons

with previous work in [27], in the current chapter we find it helpful to work with

the shape variable description. In a previous encounter with two-particle pursuit in

section 3.2 of chapter 3, we have already demonstrated that the two-particle shape

space can be parametrized without additional constraints in terms of κ1, κ2, and

ρ, as defined in Proposition 2.2.3 (with ρ1 = ρ2 = ρ). (Note that this result

held for any SE(2)-invariant control ui, not only for the CB pursuit law.) Though

the original derivation of shape dynamics presented in section 2.2.4 was based on

the unit speed assumption (i.e. νi = 1, i = 1, 2, . . . , n), it is not difficult to show

that analogous calculations yield the following two-particle shape dynamics (again

substituting the “p” and “e” notation for the numbered indices) corresponding to
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(6.1):

κ̇p = −ν̄up +
1

ρ
[ν̄ sin(κp) + sin(κe)] ,

κ̇e = −ue +
1

ρ
[ν̄ sin(κp) + sin(κe)] ,

ρ̇ = −ν̄ cos(κp)− cos(κe), (6.2)

subject only to ρ > 0.

It is of interest to relate the quantities ν̄ sin(κp) + sin(κe) and −ν̄ cos(κp) −

cos(κe) back to the dynamics of the baseline vector r , rp − re. In particular, we

note from (2.24) that

cos(κp) = −xp ·
r

|r|
, sin(κp) = −yp ·

r

|r|
,

cos(κe) = xe ·
r

|r|
, sin(κe) = ye ·

r

|r|
, (6.3)

and therefore

ν̄ sin(κp) + sin(κe) = − (ν̄yp − ye) ·
r

|r|
= (ν̄xp − xe) ·

r

|r|
⊥

= ṙ · r

|r|
⊥
, (6.4)

and

−ν̄ cos(κp)− cos(κe) = (ν̄xp − xe) ·
r

|r|
= ṙ · r

|r|
. (6.5)

Thus, defining

ω , ν̄ sin(κp) + sin(κe),

η , −ν̄ cos(κp)− cos(κe), (6.6)

we have the decomposition

ṙ = η
r

|r|
+ ω

r

|r|
⊥
, (6.7)
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and our shape dynamics (6.2) can be expressed as

κ̇p = −ν̄up +
ω

ρ
,

κ̇e = −ue +
ω

ρ
,

ρ̇ = η. (6.8)

6.3 Motion camouflage in terms of shape variables

To describe motion camouflage in terms of the shape variables, we first recall

from (5.6) the motion camouflage cost function given by

Γ =
r

|r|
· ṙ

|ṙ|
, (6.9)

where Γ = −1 corresponds to attainment of the motion camouflage strategy. Then

from (6.6) and (6.7), we have

|ṙ| =
√
η2 + ω2 =

√
ν̄2 + 2ν̄ cos(κp − κe) + 1, (6.10)

and therefore

Γ =
1

|ṙ|

(
ṙ · r

|r|

)
=

η√
η2 + ω2

. (6.11)

Since Γ is the dot product of unit vectors, it takes values in the interval [−1, 1], with

Γ = −1 ⇐⇒ ω = 0 and η < 0. (6.12)

The motion camouflage pursuit law for the pursuer, defined in (5.7), can then

be expressed in terms of the shape variables by

up = uMC , µpω = µp [ν̄ sin(κp) + sin(κe)] , (6.13)

where µp > 0 is a control gain.
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6.4 An evasion strategy designed to counter MC pursuit

We are interested in strategies that an evader may employ to counter the

motion camouflage pursuit law. Initially one may conjecture that the evader should

attempt to maximize the motion camouflage cost function (6.11), i.e., drive Γ to +1.

This strategy, best described as “motion camouflage evasion”, corresponds to ω = 0

(i.e. no rotation of the baseline vector) and η > 0 (i.e. increasing separation). While

such a strategy may prove successful as a stealthy evasion strategy against pursuers

which rely on relative motion for detection and tracking, numerical studies suggest

that it fares poorly against the motion camouflage pursuit law, typically resulting in

a tail-chase (and eventual capture for a slower evader). An evader may alternatively

attempt to drive Γ to zero, corresponding to pure rotation of the baseline vector

and a fixed pursuer-evader separation, but this strategy is not ideal because it does

not even attempt to increase the distance from the pursuer.

We hypothesize that the evader should attempt to maximize the increase of

pursuer-evader separation (i.e. drive η positive) while maximizing rotation of the

baseline vector (i.e. maximizing the absolute value of ω). Maximizing the rotation of

the baseline vector serves to both thwart the stealth aspect of the motion camouflage

pursuit strategy (i.e. it increases the “visibility” of the pursuer from the perspective

of the evader), and it may force additional costly steering for the pursuer. Such an

evasion strategy can be defined as maximization of a payoff function of the form

Lγ = η + γω2 = −
(
ν̄ cos(κp) + cos(κe)

)
+ γ
(
ν̄ sin(κp) + sin(κe)

)2

, (6.14)

where γ > 0 determines the relative priority of opening distance and maximizing
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baseline vector rotation. We observe that Lγ has a global minimum value of −(ν̄+1)

at the point κp = κe = 0, i.e. a collision course. The gradient of Lγ is given by

∇Lγ =

(
∂Lγ
∂κp

,
∂Lγ
∂κe

)
=
(
ν̄ [sin(κp) + 2γω cos(κp)] , sin(κe) + 2γω cos(κe)

)
,

(6.15)

by which one can show that if γ ≥ 1/2(ν̄ + 1), then Lγ reaches its maximum value

of 1
4γ

(
1 + 4γ2(ν̄ + 1)2

)
at κp = κe = ± cos−1

(
− 1

2γ(ν̄+1)

)
. This corresponds to

expanding spiral trajectories in the physical space if κp and κe are fixed at these

values. If γ < 1/2(ν̄+1), then the relative priority of escape (i.e. opening distance)

over baseline vector rotation is high enough that the payoff Lγ is maximized by

κp = κe = π, i.e. full retreat.

For simplicity, in this work we will choose γ = 1 and proceed with the payoff

function

L1 = η + ω2. (6.16)

We consider the behavior of this payoff function for arbitrary SE(2)-invariant steer-

ing controls up and ue, taking the derivative of (6.16) along trajectories of (6.8) to
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obtain

L̇1 = η̇ + 2ωω̇

= ν̄κ̇p sin(κp) + κ̇e sin(κe) + 2ω [ν̄κ̇p cos(κp) + κ̇e cos(κe)]

= ν̄κ̇p [sin(κp) + 2ω cos(κp)] + κ̇e [sin(κe) + 2ω cos(κe)]

= ν̄

(
−ν̄up +

ω

ρ

)
[sin(κp) + 2ω cos(κp)] +

(
−ue +

ω

ρ

)
[sin(κe) + 2ω cos(κe)]

= −ν̄2up [sin(κp) + 2ω cos(κp)]− ue [sin(κe) + 2ω cos(κe)]

+
ω

ρ
[ν̄ sin(κp) + 2ν̄ω cos(κp) + sin(κe) + 2ω cos(κe)]

= −ν̄2up [sin(κp) + 2ω cos(κp)]− ue [sin(κe) + 2ω cos(κe)] +
ω

ρ
(ω − 2ωη)

= −ν̄2up [sin(κp) + 2ω cos(κp)]− ue [sin(κe) + 2ω cos(κe)] +
ω2

ρ
(1− 2η) .

(6.17)

A game-theoretic study of pursuer-evader encounters with a pay-off function

of the form Lγ is the subject of future research. In the current setting, we assume

that the pursuer’s steering is governed by a pre-determined control law (such as

the motion camouflage pursuit law), and we choose ue to maximize (6.17). From

the form of (6.17), it seems apparent that no straightforward control law can be

chosen to assure L̇1 > 0 (particularly because the 1/ρ factor makes the third term

unbounded), but we proceed by choosing the relatively simple evasion law

ue = uAMC = −µe
(
sin(κe) + 2ω cos(κe)

)
, (6.18)

where µe > 0 is a control gain. (We dub this the Anti-MC Evasion Law, as it is

designed to counter the Motion Camouflage Pursuit Law (6.13).) Then substitution
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of (6.18) into (6.17) yields

L̇1 = −ν̄2up [sin(κp) + 2ω cos(κp)] + µe [sin(κe) + 2ω cos(κe)]
2 +

ω2

ρ
(1− 2η) ,

(6.19)

and the evader can employ high gain in an effort to increase L̇1.

Until now we have left the pursuer’s control law unspecified. As we are partic-

ularly interested in the case in which the pursuer employs the Motion Camouflage

Pursuit Law and the evader employs the Anti-MC Evasion Law, we substitute (6.13)

and (6.18) into (6.8) to obtain the closed-loop pursuer-evader dynamics

κ̇p = ω

(
−µpν̄ +

1

ρ

)
,

κ̇e = µe sin(κe) + ω

(
2µe cos(κe) +

1

ρ

)
,

ρ̇ = η. (6.20)

While it is difficult to make conclusive statements regarding the evolution of the

pay-off function L1 under (6.20), numerical studies illustrated by figure 6.1 suggest

the existence of interesting steady-state solutions such as rectilinear and circling

relative equilibria. The rest of this chapter will be spent in characterizing existence

conditions and stability properties for these relative equilibria, first for the common

speed case ν̄ = 1 and then for the general case.
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(a) Trajectories (pursuer is dashed line)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

 

 

(b) Pursuer-evader separation (ρ)
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(c) κe (solid) and κp (dashed)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

Γ

L
1

(d) Evader pay-off function L1 (solid) and pur-

suer cost function Γ (dashed)

Figure 6.1: These graphs depict an engagement in which the pursuer employs the

motion camouflage pursuit law (6.13) and the evader employs the anti-MC evasion

law (6.18), resulting in an apparent circling equilibrium. Control gains are related

by µp/µe = .5, and the speed ratio is ν̄ = 1.
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6.5 Relative equilibria for the common speed case ν̄ = 1

6.5.1 Existence conditions for common speed relative equi-

libria

For ν̄ = 1, a necessary condition for existence of relative equilibria is η = 0,

or equivalently

cos(κp) = − cos(κe), (6.21)

for which we require either κp = π + κe or κp = π − κe. We’ll begin by considering

the first case.

If κp = π + κe, then by substitution into (6.6) we have

ω = sin(κp) + sin(κe) = sin(π + κe) + sin(κe) = 0, (6.22)

and our pursuer-evader shape dynamics (6.20) become

κ̇p = 0,

κ̇e = µe sin(κe),

ρ̇ = 0. (6.23)

Therefore relative equilibria exist for the κp = π+κe case if and only if sin(κe) = 0,

i.e. if and only if (κp, κe) = (0, π) or (κp, κe) = (π, 0). These rectilinear equilibria

correspond to a “tail-chase” configuration with either the evader or the pursuer in

the lead, and we refer to them respectively as Type A rectilinear equilibria and Type

B rectilinear equilibria.
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Turning to the second case, we observe that for κp = π− κe, substitution into

(6.6) yields

ω = sin(κp) + sin(κe) = sin(π − κe) + sin(κe) = 2 sin(κe), (6.24)

and substituting into the κ̇p equation from (6.20), we have

κ̇p = ω

(
−µp +

1

ρ

)
= 2 sin(κe)

(
−µp +

1

ρ

)
. (6.25)

Note that if sin(κe) = 0, then sin(κp) = sin(π) = 0 and we have the rectilinear

equilibria previously analyzed. Therefore we assume sin(κe) 6= 0, and hence it is a

necessary condition for existence of relative equilibria (for this case) that

ρ =
1

µp
. (6.26)

Then substituting (6.24) and (6.26) into the κ̇e equation from (6.20), we have

κ̇e = µe sin(κe) + ω

(
2µe cos(κe) +

1

ρ

)
= µe sin(κe) + 2 sin(κe)

(
2µe cos(κe) + µp

)
= µe sin(κe)

(
1 + 4 cos(κe) + 2

µp
µe

)
. (6.27)

Denoting

µ̄ ,
µp
µe
, (6.28)

we observe that if a relative equilibrium exists, we must have

1 + 4 cos(κe) + 2µ̄ = 0,
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i.e.

cos(κe) = −1

4
(2µ̄+ 1). (6.29)

Since cos(κe) must take values in [−1, 1],we note that (6.29) is only valid for values

of µ̄ which satisfy

−1 ≤ −1

4
(2µ̄+ 1) ≤ 1. (6.30)

The second inequality always holds since µ̄ > 0, and the first inequality is satisfied

if and only if µ̄ ≤ 3
2
. If equality holds (i.e. µ̄ = 3

2
), then by (6.29) we have

cos(κe) = −1, which corresponds to the case (κp, κe) = (0, π), which is the Type

A rectilinear equilibrium we have previously analyzed. Thus we have shown that if

µ̄ < 3
2

then a relative equilibrium exists and is described by

κe = cos−1

(
−2µ̄− 1

4

)
,

κp = π − κe,

ρ =
1

µp
. (6.31)

By calculations analogous to those in the proof of Proposition 2.4.1, one can show

that at this relative equilibrium we have

rp +
ρ

2 sin(κp)
x⊥p = re +

ρ

2 sin(κe)
x⊥e , (6.32)

and that the point

rcc = rp +
ρ

2 sin(κp)
x⊥p = re +

ρ

2 sin(κe)
x⊥e (6.33)
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is equidistant from rp and re. Therefore this relative equilibrium is in fact a circling

equilibrium, with radius rc of the circumcircle given by

rc =
1

2

∣∣∣∣ ρ

sin(κe)

∣∣∣∣
=

1

2µp

(
1√

1− cos2(κe)

)

=
1

2µp

 1√
1−

(−2µ̄−1
4

)2


=
1

2µp

(
4√

16− (4µ̄2 + 4µ̄+ 1)

)

=
2

µp
√
−4µ̄2 − 4µ̄+ 15

. (6.34)

We summarize the existence conditions for common speed relative equilibria

with the following proposition.

Proposition 6.5.1. For the common speed case (ν̄ = 1), the existence of relative

equilibria (i.e. equilibria for (6.20)) can be characterized as follows:

1. Rectilinear relative equilibria always exist, characterized by the equilibrium val-

ues

(κ̂p, κ̂e) = (0, π) (Type A), and

(κ̂p, κ̂e) = (π, 0) (Type B), (6.35)

with the inter-particle distance ρ̂ arbitrary.

2. Circling relative equilibria exist if and only if µ̄ < 3/2, where µ̄ , µp

µe
. If they
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exist, circling equilibria are characterized by the equilibrium values

κ̂e = cos−1

(
−2µ̄− 1

4

)
,

κ̂p = π − κ̂e,

ρ̂ =
1

µp
. (6.36)

Proof. Follows from the previous discussion.

Remark 6.5.2 Note from (6.36) that κ̂e = cos−1
(−2µ̄−1

4

)
always has two solutions,

corresponding to CCW and CW circling equilibria.

Remark 6.5.3 It is of interest that the circling equilibria described by (6.36) have

prescribed equilibrium values for the inter-particle separation ρ = ρ̂ (and hence for

the radius of the circling orbit), even though both the pursuit law (6.13) and the

evasion law (6.18) involve only angular quantities. This can be contrasted with the

cyclic CB pursuit case of chapters 2 and 3, for which there existed a continuum of

circling equilibria without any prescribed equilibrium values for the ρi separations.
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6.5.2 Stability properties of common speed relative equilib-

ria

By calculations detailed in appendix D, we demonstrate that linearization of

the shape dynamics (6.20) about a point x = (κ̂p κ̂e ρ̂)
T yields the Jacobian matrix

(
∂f

∂x

)
=


ν̄ cos(κ̂p)

(
−µpν̄ + 1

ρ̂

)
cos(κ̂e)

(
−µpν̄ + 1

ρ̂

)
− ω
ρ̂2

ν̄ cos(κ̂p)
(
2µe cos(κ̂e) + 1

ρ̂

)
∂f2
∂κe

− ω
ρ̂2

ν̄ sin(κ̂p) sin(κ̂e) 0

 , (6.37)

where ∂f2
∂κe

= µe

(
cos(κ̂e)+2 cos2(κ̂e)−2ω sin(κ̂e)

)
+ cos(κ̂e)

ρ̂
and ω = ν̄ sin(κ̂p)+sin(κ̂e).

Note that (6.37) represents the general case for which ν̄ is not necessarily 1. We now

substitute ν̄ = 1 and evaluate (6.37) at the relative equilibria of Proposition 6.5.1.

At a Type A rectilinear equilibrium, we have (κ̂p, κ̂e) = (0, π) (and hence

ω = 0), and therefore substitution into the common speed version of (6.37) yields

(
∂f

∂x

)
A

=


−µp + 1

ρ̂
−
(
−µp + 1

ρ̂

)
0

−2µe + 1
ρ̂

µe − 1
ρ̂

0

0 0 0

 , (6.38)

where ρ̂ is arbitrary. There is clearly one zero eigenvalue and two (possibly) non-zero

eigenvalues associated with the two-by-two matrix in the upper left, which we will

denote as A. We can use the familiar formula for the characteristic polynomial of a
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two-by-two matrix to obtain

PA(λ) = λ2 − (µe − µp)λ+

[(
−µp +

1

ρ̂

)(
µe −

1

ρ̂

)
+

(
−µp +

1

ρ̂

)(
−2µe +

1

ρ̂

)]
= λ2 − (µe − µp)λ− µe

(
−µp +

1

ρ̂

)
, (6.39)

and thus we have

λ =
1

2

{
µe − µp ±

√
(µe − µp)2 + 4µe

(
−µp +

1

ρ̂

)}
. (6.40)

Observe that if µe > µp (i.e. µ̄ < 1) or if −µp + 1
ρ̂
> 0 (i.e. ρ̂ < 1/µp) then

at least one of the eigenvalues must have positive real part and the corresponding

equilibrium is unstable. Numerical studies suggest that there also exists a range of

µ̄ and ρ̂ values for which the Type A rectilinear equilibria are asymptotically sta-

ble, and an analytical study of the stability properties is the subject of ongoing work.

To evaluate Type B rectilinear equilibria, we substitute (κ̂p, κ̂e) = (π, 0) into

the common speed version of (6.37) to obtain

(
∂f

∂x

)
B

=


−
(
−µp + 1

ρ̂

)
−µp + 1

ρ̂
0

−
(
2µe + 1

ρ̂

)
3µe + 1

ρ̂
0

0 0 0

 , (6.41)

where ρ̂ is arbitrary. As before, there is one zero eigenvalue, and the characteristic

polynomial for the two-by-two matrix in the upper left (which we designate as B)

is given by

PB(λ) = λ2 − (3µe + µp)λ+

[
−
(
−µp +

1

ρ̂

)(
3µe +

1

ρ̂

)
+

(
−µp +

1

ρ̂

)(
2µe +

1

ρ̂

)]
= λ2 − (3µe + µp)λ− µe

(
−µp +

1

ρ̂

)
. (6.42)
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Thus the non-zero eigenvalues of
(
∂f
∂x

)
B

are given by

λ =
1

2

{
3µe + µp ±

√
(3µe + µp)2 + 4µe

(
−µp +

1

ρ̂

)}
, (6.43)

and since at least one of these eigenvalues must always be strictly positive, we con-

clude that Type B rectilinear equilibria are always unstable.

Finally, we evaluate the stability properties of our circling equilibria by first

substituting κ̂p = π − κ̂e and ρ̂ = 1
µp

into the common speed version of (6.37) to

obtain

(
∂f

∂x

)
circ

=


0 0 −2µ2

p sin(κ̂e)

− cos(κ̂e)
(
2µe cos(κ̂e) + µp

)
∂f2
∂κe

−2µ2
p sin(κ̂e)

sin(κ̂e) sin(κ̂e) 0

 , (6.44)

where κ̂e is given by (6.36) and

∂f2

∂κe
= µe

(
cos(κ̂e) + 2 cos2(κ̂e)− 2

(
sin(π − κ̂e) + sin(κ̂e)

)
sin(κ̂e)

)
+

cos(κ̂e)

ρ̂

= µe

(
cos(κ̂e) + 2 cos2(κ̂e)− 4 sin2(κ̂e)

)
+ µp cos(κ̂e)

= 6µe cos2(κ̂e) + (µe + µp) cos(κ̂e)− 4µe (6.45)

The characteristic polynomial is defined by

Pcirc(λ) = det


λ 0 2µ2

p sin(κ̂e)

cos(κ̂e) (2µe cos(κ̂e) + µp) λ− ∂f2
∂κe

2µ2
p sin(κ̂e)

− sin(κ̂e) − sin(κ̂e) λ

 , (6.46)
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and by cofactor expansion along the top row, we have

Pcirc(λ) = λ

[
λ2 − ∂f2

∂κe
λ+ 2µ2

p sin2(κ̂e)

]
+ 2µ2

p sin(κ̂e)

[
− sin(κ̂e) cos(κ̂e)

(
2µe cos(κ̂e) + µp

)
+ sin(κ̂e)λ− sin(κ̂e)

∂f2

∂κe

]
= λ3 − ∂f2

∂κe
λ2 + 4µ2

p sin2(κ̂e)λ

− 2µ2
p sin2(κ̂e)

[
cos(κ̂e)

(
2µe cos(κ̂e) + µp

)
+
∂f2

∂κe

]
= λ3 −

(
6µe cos2(κ̂e) + (µe + µp) cos(κ̂e)− 4µe

)
λ2 + 4µ2

p sin2(κ̂e)λ

− 2µ2
p sin2(κ̂e)

(
8µe cos2(κ̂e) + (µe + 2µp) cos(κ̂e)− 4µe

)
= λ3 − µe

(
6 cos2(κ̂e) + (1 + µ̄) cos(κ̂e)− 4

)
λ2 + 4µ2

p sin2(κ̂e)λ

− 4µeµ
2
p sin2(κ̂e)

(
4 cos2(κ̂e) +

1

2
(1 + 2µ̄) cos(κ̂e)− 2

)
= λ3 − µeΩλ

2 + 4µ2
p sin2(κ̂e)λ− 4µeµ

2
p sin2(κ̂e)Φ, (6.47)

where

Ω = 6 cos2(κ̂e) + (1 + µ̄) cos(κ̂e)− 4,

Φ = 4 cos2(κ̂e) +
1

2
(1 + 2µ̄) cos(κ̂e)− 2. (6.48)

Substitution of cos(κ̂e) = −2µ̄−1
4

(from (6.36)), then yields

Ω = 6

(
−2µ̄− 1

4

)2

+ (1 + µ̄)

(
−2µ̄− 1

4

)
− 4

=
3

8

(
4µ̄2 + 4µ̄+ 1

)
+

1

4

(
−2µ̄2 − 3µ̄− 1

)
− 4

=
1

8

(
12µ̄2 + 12µ̄+ 3− 4µ̄2 − 6µ̄− 2− 32

)
=

1

8

(
8µ̄2 + 6µ̄− 31

)
, (6.49)
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and

Φ = 4

(
−2µ̄− 1

4

)2

+
1

2
(1 + 2µ̄)

(
−2µ̄− 1

4

)
− 2

=
1

4

(
4µ̄2 + 4µ̄+ 1

)
+

1

8

(
−4µ̄2 − 4µ̄− 1

)
− 2

=
1

8

(
4µ̄2 + 4µ̄− 15

)
=

1

8

(
2µ̄− 3

)(
2µ̄+ 5

)
, (6.50)

and one can confirm that for µ̄ < 3/2 (which is required by Proposition 6.5.1 for

existence of circling equilibria), we have

Ω < 0 and Φ < 0. (6.51)

We also note that

sin2(κ̂e) = 1− cos2(κ̂e) =
1

16

(
16− (−2µ̄− 1)2)

= − 1

16

(
4µ̄2 + 4µ̄− 15

)
= −Φ

2
, (6.52)

and substitution into (6.47) yields

Pcirc(λ) = λ3 − µeΩλ
2 − 2µ2

pΦλ+ 2µeµ
2
pΦ

2. (6.53)

The Routh array associated with (6.53) is given by

λ3 1 −2µ2
pΦ

λ2 −µeΩ 2µeµ
2
pΦ

2

λ1 b

λ0 2µeµ
2
pΦ

2
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where

b = −
(

1

−µeΩ

)(
2µeµ

2
pΦ

2 − 2µeµ
2
pΩΦ

)
= 2µ2

p

(
Φ

Ω

)
(Φ− Ω) . (6.54)

Hence the first, second and fourth terms in the first column of the Routh array are

strictly positive, and it remains to analyze the sign of b. Since Φ and Ω are both

strictly negative, we have sgn(b) = sgn (Φ− Ω). Observe that

Φ− Ω =
1

8

(
2µ̄− 3

)(
2µ̄+ 5

)
− 1

8

(
8µ̄2 + 6µ̄− 31

)
=

1

8

((
4µ̄2 + 4µ̄− 15

)
− (8µ̄2 + 6µ̄− 31

))
= −1

8

(
4µ̄2 + 2µ̄− 16

)
> −1

8

(
4

(
3

2

)2

+ 2

(
3

2

)
− 16

)
> 0, (6.55)

and hence b > 0. Thus there are no sign changes in the first column of the Routh

array, and by the Routh-Hurwitz criterion we conclude that all the roots of (6.53)

have non-positive real part. In what follows, we demonstrate that in fact the roots

all have negative real parts, i.e. (6.44) does not have any pure imaginary eigenvalues.

Suppose λ = jγ for some2 γ 6= 0 ∈ R. Then from (6.53) we have

Pcirc(jγ) = −jγ3 + µeΩγ
2 − j2µ2

pΦγ + 2µeµ
2
pΦ

2, (6.56)

2Since the constant term in Pcirc(λ) is non-zero, we have already ruled out the possibility of

zero eigenvalues.
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and hence

Pcirc(jγ) = 0 ⇐⇒ γ3 + 2µ2
pΦγ = 0 and µeΩγ

2 + 2µeµ
2
pΦ

2 = 0

⇐⇒ γ2 = −2µ2
pΦ and µeΩγ

2 + 2µeµ
2
pΦ

2 = 0

⇐⇒ µeΩ
(
−2µ2

pΦ
)

+ 2µeµ
2
pΦ

2 = 0

⇐⇒ 2µeµ
2
pΦ (Φ− Ω) = 0. (6.57)

However, by (6.51) and (6.55) we have Φ (Φ− Ω) 6= 0, and therefore there are no

pure imaginary eigenvalues.

We summarize all stability results (and recap the existence conditions) for the

common speed case in the following proposition.

Proposition 6.5.4. For the common speed (ν̄ = 1) relative equilibria described in

Proposition 6.5.1, the following stability properties hold:

1. For all values of µ̄ > 0, Type A rectilinear equilibria exist.

• If µ̄ < 1, then all Type A rectilinear equilibria are unstable.

• If ρ̂ < 1
µp

, then the associated Type A rectilinear equilibrium is unstable.

2. For all values of µ̄ > 0, Type B rectilinear equilibria exist and are unstable.

3. For 0 < µ̄ < 3/2, circling equilibria exist and are asymptotically stable.

Proof. Follows from the previous discussion.
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6.6 Relative equilibria for the general case ν̄ 6= 1

6.6.1 Existence conditions for relative equilibria in the gen-

eral case

In this section, we assume ν̄ 6= 1 and derive existence conditions and stability

properties for relative equilibria. We first observe that a rectilinear equilibrium

requires |ṙ| = 0, and one can readily verify from (6.10) that this is possible if and

only if ν̄ = 1. Hence rectilinear equilibria do not exist for the ν̄ 6= 1 case3.

At a circling equilibrium we must have ω 6= 0, and therefore from (6.20) we

have

κ̇p = 0 ⇐⇒ ρ = ρ̂ =
1

µpν̄
. (6.59)

Then by substitution back into (6.20) we obtain

κ̇e = 0 ⇐⇒ µe sin(κe) + ω (2µe cos(κe) + µpν̄) = 0

⇐⇒ sin(κe) + ω
(
2 cos(κe) + µ̄ν̄

)
= 0

⇐⇒ sin(κe) +
(
ν̄ sin(κp) + sin(κe)

)(
2 cos(κe) + µ̄ν̄

)
= 0 (6.60)

3Though rectilinear equilibria do not exist for the ν̄ 6= 1 case, we note that the submanifold

M(0,π) =
{

(κp, κe, ρ) ∈Mshape

∣∣∣ κp = 0, κe = π
}

(6.58)

is invariant under the pursuer-evader dynamics (6.20), as are the related submanifolds M(π,0),

M(0,0), and M(π,π), which are defined analogously. An analysis of the stability properties of these

submanifolds is the subject of future work.
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and

ρ̇ = 0 ⇐⇒ ν̄ cos(κp) + cos(κe) = 0. (6.61)

Therefore equilibrium values κ̂p and κ̂e can be determined (in terms of µ̄ and ν̄) by

solving the set of equations

ν̄ cos(κ̂p) + cos(κ̂e) = 0, (6.62)

sin(κ̂e) +
(
ν̄ sin(κ̂p) + sin(κ̂e)

)(
2 cos(κ̂e) + µ̄ν̄

)
= 0. (6.63)

A closed-form solution for these equations has proven elusive, so we proceed as fol-

lows.

We first note that if sin(κ̂e) = 0sin(κ̂e) = 0sin(κ̂e) = 0, then (6.63) simplifies to

ν̄ sin(κ̂p)
(
2 cos(κ̂e) + µ̄ν̄

)
= 0, (6.64)

which holds if and only if sin(κ̂p) = 0 or µ̄ν̄ = −2 cos(κ̂e). If sin(κ̂p) = 0, then

ω = 0 and this can not be a circling equilibrium. Hence we assume sin(κ̂p) 6= 0, and

therefore (6.64) holds if and only if µ̄ν̄ = −2 cos(κ̂e), where cos(κ̂e) must be either

1 or −1 since sin(κ̂e) = 0. Since µ̄ν̄ > 0, we must have κ̂e = π and µ̄ν̄ = 2, and

substitution into (6.62) yields cos(κ̂p) = 1/ν̄, which is only valid for ν̄ > 1. Hence

for ν̄ > 1 and µ̄ν̄ = 2, there exists a circling equilibrium characterized by

κ̂e = π,

κ̂p = cos−1

(
1

ν̄

)
,

ρ̂ =
1

µpν̄
. (6.65)
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Now assume that sin(κ̂e) 6= 0sin(κ̂e) 6= 0sin(κ̂e) 6= 0. We define ψ ∈ R− {0} by

ψ ,
sin(κ̂e)

ω
=

sin(κ̂e)

ν̄ sin(κ̂p) + sin(κ̂e)
, (6.66)

and substituting ν̄ sin(κ̂p) + sin(κ̂e) = sin(κ̂e)/ψ into (6.63), we have

0 = sin(κ̂e) +
1

ψ
sin(κ̂e)

(
2 cos(κ̂e) + µ̄ν̄

)
= sin(κ̂e)

[
1 +

1

ψ

(
2 cos(κ̂e) + µ̄ν̄

)]
. (6.67)

Observe that (6.67) holds if and only if

cos(κ̂e) = −1

2
(ψ + µ̄ν̄) , (6.68)

which is well-defined if and only if

−2− µ̄ν̄ ≤ ψ ≤ 2− µ̄ν̄. (6.69)

By (6.62) we then have

cos(κ̂p) = −1

ν̄
cos(κ̂e) =

1

2ν̄
(ψ + µ̄ν̄) , (6.70)

and therefore we also require

−2ν̄ − µ̄ν̄ ≤ ψ ≤ 2ν̄ − µ̄ν̄. (6.71)

Combining (6.62), (6.66), and (6.68) yields the equilibrium equations

ν̄ cos(κ̂p) = − cos(κ̂e) =
1

2
(ψ + µ̄ν̄) , (6.72)

ν̄ sin(κ̂p) =

(
1− ψ

ψ

)
sin(κ̂e), (6.73)
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and we proceed by deriving conditions for existence of solutions (κ̂p, κ̂e) for the

system (6.72)-(6.73).

Observe (by squaring and summing (6.72) and (6.73)) that solutions for the

system exist if and only if

ν̄2 = cos2(κ̂e) +

(
1− ψ

ψ

)2

sin2(κ̂e)

= cos2(κ̂e)

(
1−

(
1− ψ

ψ

)2
)

+

(
1− ψ

ψ

)2

=
1

4
(ψ + µ̄ν̄)2

(
−1 + 2ψ

ψ2

)
+

(
1− 2ψ + ψ2

ψ2

)
=

1

4ψ2

[
4
(
1− 2ψ + ψ2

)
+
(
ψ2 + 2µ̄ν̄ψ + µ̄2ν̄2

)
(2ψ − 1)

]
=

1

4ψ2

[
2ψ3 + (3 + 4µ̄ν̄)ψ2 + (2µ̄2ν̄2 − 2µ̄ν̄ − 8)ψ + (4− µ̄2ν̄2)

]
, (6.74)

which holds if and only if

0 = 2ψ3 + (3 + 4µ̄ν̄ − 4ν̄2)ψ2 + 2(µ̄2ν̄2 − µ̄ν̄ − 4)ψ + (4− µ̄2ν̄2). (6.75)

Therefore solutions to the system (6.72)-(6.73) exist (and therefore circling equilibria

exist) if and only if a non-zero real-valued root of the polynomial

F (ψ) = 2ψ3 + (3 + 4µ̄ν̄ − 4ν̄2)ψ2 + 2(µ̄2ν̄2 − µ̄ν̄ − 4)ψ + (4− µ̄2ν̄2) (6.76)

satisfies (6.69) and (6.71), i.e.

−2− µ̄ν̄ ≤ ψ ≤ 2− µ̄ν̄, and (6.77)

−2ν̄ − µ̄ν̄ ≤ ψ ≤ 2ν̄ − µ̄ν̄. (6.78)

It is straightforward to show that the constraints in (6.77) are active for ν̄ > 1, and

the constraints in (6.78) are active for ν̄ < 1. (For ν̄ = 1, the constraints in (6.77)
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and (6.78) are equivalent.)

We summarize the existence conditions for circling equilibria in the following

proposition.

Proposition 6.6.1. For the general case (i.e. ν̄ not necessarily equal to 1), cir-

cling relative equlibria for the system (6.20) exist if and only if one of the following

conditions holds.

1. There exists a non-zero real-valued root ψ = ψ∗ of the polynomial

F (ψ) = 2ψ3 + (3 + 4µ̄ν̄ − 4ν̄2)ψ2 + 2(µ̄2ν̄2 − µ̄ν̄ − 4)ψ + (4− µ̄2ν̄2) (6.79)

which satisfies the constraints

−2− µ̄ν̄ ≤ ψ∗ ≤ 2− µ̄ν̄, for ν̄ > 1, and (6.80)

−2ν̄ − µ̄ν̄ ≤ ψ∗ ≤ 2ν̄ − µ̄ν̄, for 0 < ν̄ < 1. (6.81)

For every ψ∗ which satisfies the requirements above, the equilibrium values for

the corresponding pair of circling equilibria are characterized by

cos(κ̂e) = −1

2
(ψ∗ + µ̄ν̄) , (6.82)

cos(κ̂p) =
1

2ν̄
(ψ∗ + µ̄ν̄); sin(κ̂p) =

(
1− ψ∗

ν̄ψ∗

)
sin(κ̂e), (6.83)

ρ =
1

µpν̄
. (6.84)

Observe that (6.82) specifies two possible equilibrium values for κ̂e (correspond-

ing to CW and CCW circling equilibria), and (6.83) specifies exactly one cor-

responding value for κ̂p in each case.
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2. The parameters µ̄ and ν̄ satisfy µ̄ν̄ = 2 and ν̄ > 1. In this case, there exists a

pair of circling relative equilibria with equilibrium values given by

κ̂e = π,

κ̂p = ± cos−1

(
1

ν̄

)
,

ρ =
1

µpν̄
. (6.85)

Proof. Follows from the previous discussion.

Remark 6.6.2 Note that condition 1 and condition 2 of Proposition 6.6.1 are

not mutually exclusive. In fact, one can show that if µ̄ and ν̄ satisfy condition 2,

then there always exists ψ∗ which satisfies condition 1, i.e., there exists two pairs of

circling equilibria, one pair described by (6.82)-(6.84) and the other by (6.85).

Remark 6.6.3 We can demonstrate that the common speed case ν̄ = 1 (discussed

in section 6.5) in fact specializes from Proposition 6.6.1. For ν̄ = 1, we observe

that (6.79) simplifies to

F (ψ) = 2ψ3 + (4µ̄− 1)ψ2 + 2(µ̄2 − µ̄− 4)ψ + (4− µ̄2)

= (2ψ − 1)
(
ψ2 + 2µ̄ψ + (µ̄2 − 4)

)
= 2 (ψ − 1/2)

(
ψ + (µ̄+ 2)

)(
ψ + (µ̄− 2)

)
, (6.86)

and (6.80) and (6.81) require −2−µ̄ ≤ ψ∗ ≤ 2−µ̄. Then (6.86) has three roots given

by ψ∗ = 1/2,−2− µ̄, 2− µ̄, the first of which satisfies (6.80) if and only if µ̄ ≤ 3/2,

and the second two which always satisfy (6.80). (The case µ̄ = 3/2, ψ∗ = −7
2
, 1

2
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corresponds to the two rectilinear equilibria.) Substituting ν̄ = 1 and either ψ∗ =

−2 − µ̄ or ψ∗ = 2 − µ̄ into (6.82)-(6.84) yields the rectilinear equilibria described

by (6.35), and substituting ν̄ = 1 and ψ∗ = 1/2 into (6.82)-(6.84) yields the circling

equilibria described by (6.36).

6.6.2 Stability of circling relative equilibria for the general

case

Suppose condition 1 of Proposition 6.6.1 is satisfied, and therefore there

exists a circling equilibrium described by (6.82)-(6.84). As in the common speed

case, we analyze stability properties of this circling equilibrium by linearization of

the dynamics (6.20), starting from the general form of the Jacobian given by (6.37)

(as derived in appendix D). To evaluate (6.37) at the equilibrium values given by

(6.82)-(6.84), we first note that at equilibrium,

ω = ν̄ sin(κ̂p) + sin(κ̂e) =

[(
1− ψ∗

ψ∗

)
+ 1

]
sin(κ̂e) =

1

ψ∗
sin(κ̂e). (6.87)

Substitution of equilibrium values into the first element of the second row of (6.37)

yields

ν̄ cos(κ̂p)

(
2µe cos(κ̂e) +

1

ρ̂

)
= − cos(κ̂e) (2µe cos(κ̂e) + µpν̄)

= −µe cos(κ̂e) (2 cos(κ̂e) + µ̄ν̄)

= −µe
2

(ψ∗ + µ̄ν̄)ψ∗, (6.88)
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and therefore we have

(
∂f

∂x

)
circ

=


0 0 − µ2

e

ψ∗
µ̄2ν̄2 sin(κ̂e)

−µe

2
(ψ∗ + µ̄ν̄)ψ∗ ∂f2

∂κe
− µ2

e

ψ∗
µ̄2ν̄2 sin(κ̂e)(

1−ψ∗
ψ∗

)
sin(κ̂e) sin(κ̂e) 0

 , (6.89)

where

∂f2

∂κe
= µe

(
cos(κ̂e) + 2 cos2(κ̂e)− 2ω sin(κ̂e)

)
+

cos(κ̂e)

ρ̂

= µe

(
cos(κ̂e)(1 + µ̄ν̄) + 2 cos2(κ̂e)− 2(1/ψ∗) sin2(κ̂e)

)
=
µe
ψ∗

(
cos(κ̂e)(1 + µ̄ν̄)ψ∗ + 2 cos2(κ̂e)(ψ

∗ + 1)− 2
)

=
µe
ψ∗

(
−1

2
(ψ∗ + µ̄ν̄) (1 + µ̄ν̄)ψ∗ +

1

2
(ψ∗ + µ̄ν̄)2 (ψ∗ + 1)− 2

)
=

µe
2ψ∗

(
−(1 + µ̄ν̄)ψ∗

2 − µ̄ν̄(1 + µ̄ν̄)ψ∗ +
(
ψ∗

2

+ 2µ̄ν̄ψ∗ + µ̄2ν̄2
)

(ψ∗ + 1)− 4
)

=
µe
2ψ∗

(
ψ∗

3

+ µ̄ν̄ψ∗
2

+ µ̄ν̄ψ∗ + µ̄2ν̄2 − 4
)
. (6.90)

The characteristic polynomial is given by

Pcirc(λ) = det


λ 0 µ2

e

ψ∗
µ̄2ν̄2 sin(κ̂e)

µe

2
(ψ∗ + µ̄ν̄)ψ∗ λ− ∂f2

∂κe

µ2
e

ψ∗
µ̄2ν̄2 sin(κ̂e)

−
(

1−ψ∗
ψ∗

)
sin(κ̂e) − sin(κ̂e) λ

 , (6.91)
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and by cofactor expansion along the top row, we have

Pcirc(λ) = λ

(
λ2 − ∂f2

∂κe
λ+

µ2
e

ψ∗
µ̄2ν̄2 sin2(κ̂e)

)
+
µ2
e

ψ∗
µ̄2ν̄2 sin(κ̂e)

[
−µe

2
(ψ∗ + µ̄ν̄)ψ∗ sin(κ̂e)

+

(
1− ψ∗

ψ∗

)
sin(κ̂e)λ−

(
1− ψ∗

ψ∗

)
∂f2

∂κe
sin(κ̂e)

]

=

(
λ3 − ∂f2

∂κe
λ2 +

µ2
e

ψ∗
µ̄2ν̄2 sin2(κ̂e)λ

)
+
µ2
e

ψ∗
µ̄2ν̄2

(
1− ψ∗

ψ∗

)
sin2(κ̂e)λ

+
µ2
e

ψ∗
µ̄2ν̄2 sin(κ̂e)

(
− sin(κ̂e)

ψ∗

)[
µe
2

(ψ∗ + µ̄ν̄)ψ∗
2

+ (1− ψ∗)
∂f2

∂κe

]
.

(6.92)

Then substituting (6.90), we obtain

Pcirc(λ) = λ3 − µe
2ψ∗

(
ψ∗

3

+ µ̄ν̄ψ∗
2

+ µ̄ν̄ψ∗ + µ̄2ν̄2 − 4
)
λ2 +

µ2
e

ψ∗2
µ̄2ν̄2 sin2(κ̂e)λ

− µ2
e

ψ∗2
µ̄2ν̄2 sin2(κ̂e)

[
µe
2

(ψ∗ + µ̄ν̄)ψ∗
2

+
µe (1− ψ∗)

2ψ∗

(
ψ∗

3

+ µ̄ν̄ψ∗
2

+ µ̄ν̄ψ∗ + µ̄2ν̄2 − 4
)]

= λ3 − µe
2ψ∗

(
ψ∗

3

+ µ̄ν̄ψ∗
2

+ µ̄ν̄ψ∗ + µ̄2ν̄2 − 4
)
λ2 +

µ2
e

ψ∗2
µ̄2ν̄2 sin2(κ̂e)λ

− µ3
e

2ψ∗3
µ̄2ν̄2 sin2(κ̂e)

[
ψ∗

4

+ µ̄ν̄ψ∗
3

+ (1− ψ∗) (ψ∗
3

+ µ̄ν̄ψ∗
2

+ µ̄ν̄ψ∗ + µ̄2ν̄2 − 4)
]

= λ3 − µe
2ψ∗

Ωλ2 +
µ2
e

ψ∗2
µ̄2ν̄2 sin2(κ̂e)λ−

µ3
e

2ψ∗3
µ̄2ν̄2 sin2(κ̂e)Φ, (6.93)

where

Ω , ψ∗
3

+ µ̄ν̄ψ∗
2

+ µ̄ν̄ψ∗ + µ̄2ν̄2 − 4,

Φ , ψ∗
3

+ (4 + µ̄ν̄ − µ̄2ν̄2)ψ∗ + µ̄2ν̄2 − 4, (6.94)

and sin2(κ̂e) 6= 0 can be expressed explicitly in terms of µ̄, ν̄, and ψ∗ by (6.82).
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If we let

λ̃ ,

(
ψ∗

µe

)
λ, (6.95)

then we have

Pcirc(λ̃) =

(
µe
ψ∗

)3{
λ̃3 − 1

2
Ωλ̃2 + µ̄2ν̄2 sin2(κ̂e)λ̃−

1

2
µ̄2ν̄2 sin2(κ̂e)Φ

}
, (6.96)

and since µe > 0, we need only concern ourselves with the polynomial inside the

braces. Note that the cubic coefficient and the first order coefficient are always

positive, and therefore we make the initial observation that if Φ > 0, then by

Descartes’ sign rule we must have at least one positive real eigenvalue. Therefore

we conclude that Φ ≤ 0 is a necessary condition for stability.

We proceed by considering the Routh array associated with (6.96), given by

λ̃3 1 µ̄2ν̄2 sin2(κ̂e)

λ̃2 −1
2
Ω −1

2
µ̄2ν̄2 sin2(κ̂e)Φ

λ̃1 b

λ̃0 −1
2
µ̄2ν̄2 sin2(κ̂e)Φ

where

b = −
(

1

−1
2
Ω

)(
−1

2
µ̄2ν̄2 sin2(κ̂e)Φ +

1

2
Ωµ̄2ν̄2 sin2(κ̂e)

)
= µ̄2ν̄2 sin2(κ̂e)

(
1

Ω

)
(Ω− Φ) . (6.97)

We have already stated that Φ ≤ 0 is a necessary condition for stability, i.e. it is

necessary that the last term in the first column of the Routh array must be non-

negative. From (6.95) we note that sgn(Re(λ)) = sgn(ψ∗) sgn(Re(λ̃)), and hence
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stability requires ψ∗ > 0 and no sign changes4 in the first column of the Routh

array, i.e. Ω ≤ 0, b ≥ 0 (which requires Ω − Φ ≤ 0), and Φ ≤ 0. In fact, if Φ ≤ 0

and Ω− Φ ≤ 0, then it necessarily follows that Ω ≤ 0, and therefore we have

Re(λ) ≤ 0 ⇐⇒ ψ∗ > 0, Φ ≤ 0, and Ω− Φ ≤ 0. (6.98)

We first note from (6.80) that µ̄ν̄ < 2 is a necessary condition for ψ∗ > 0, and

therefore it is a necessary condition for Re(λ) ≤ 0. From (6.94), we have

Ω− Φ =
(
ψ∗

3

+ µ̄ν̄ψ∗
2

+ µ̄ν̄ψ∗ + µ̄2ν̄2 − 4
)
−
(
ψ∗

3

+ (4 + µ̄ν̄ − µ̄2ν̄2)ψ∗ + µ̄2ν̄2 − 4
)

= ψ∗
(
µ̄ν̄ψ∗ + (µ̄ν̄ + 2)(µ̄ν̄ − 2)

)
. (6.99)

Again making use of (6.80) we substitute 0 < ψ∗ ≤ 2− µ̄ν̄ into (6.99) to obtain

Ω− Φ ≤ ψ∗
(
µ̄ν̄(2− µ̄ν̄) + (µ̄ν̄ + 2)(µ̄ν̄ − 2)

)
≤ −2ψ∗(2− µ̄ν̄), (6.100)

and thus µ̄ν̄ < 2 is sufficient to ensure Ω− Φ < 0.

We can therefore summarize our stability characterization as follows.

Proposition 6.6.4. Suppose condition 1 of Proposition 6.6.1 is satisfied, i.e.

there exists ψ∗ 6= 0 such that

F (ψ∗) = 2ψ∗
3

+ (3 + 4µ̄ν̄ − 4ν̄2)ψ∗
2

+ 2(µ̄2ν̄2 − µ̄ν̄ − 4)ψ∗ + (4− µ̄2ν̄2) = 0,

(6.101)

4If ψ∗ < 0, then sgn(Re(λ)) = − sgn(Re(λ̃)), and stability would require three sign changes in

the first column of the Routh array (i.e. positive real parts for all λ̃). However, this is not possible,

since the first and last terms in the first column of the Routh array are positive.
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and

−2− µ̄ν̄ ≤ ψ∗ ≤ 2− µ̄ν̄, for ν̄ > 1, and

−2ν̄ − µ̄ν̄ ≤ ψ∗ ≤ 2ν̄ − µ̄ν̄, for 0 < ν̄ < 1.

Then the stability properties of the corresponding pair of circling equilibria described

by (6.82)-(6.84) can be characterized in terms of

Φ(ψ∗) , ψ∗
3

+ (4 + µ̄ν̄ − µ̄2ν̄2)ψ∗ + µ̄2ν̄2 − 4 (6.102)

as follows:

1. If µ̄ν̄ ≥ 2, the corresponding circling equilibria are unstable.

2. If µ̄ν̄ < 2, and ψ∗ < 0 or Φ(ψ∗) > 0, the corresponding circling equilibria are

unstable.

3. If µ̄ν̄ < 2, ψ∗ > 0 and Φ(ψ∗) < 0, the corresponding circling equilibria are

asymptotically stable.

Proof. The instability claims follow directly from the previous discussion, and there-

fore it remains to demonstrate asymptotic stability for the Φ < 0 case. By the

analysis presented in the section leading up to Proposition 6.6.4, we have already

established that if µ̄ν̄ < 2, ψ∗ > 0, and Φ < 0, then there are no sign changes

in the first column of the Routh array and therefore all eigenvalues of (6.96) have

non-positive real parts. It remains to demonstrate that our assumptions also imply
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that (6.96) has no pure imaginary eigenvalues. Observe from (6.96) that

Pcirc(jω) =

(
µe
ψ∗

)3{
(jω)3 − 1

2
Ω(jω)2 + µ̄2ν̄2 sin2(κ̂e)(jω)− 1

2
µ̄2ν̄2 sin2(κ̂e)Φ

}
=

(
µe
ψ∗

)3{
−jω3 +

1

2
Ωω2 + µ̄2ν̄2 sin2(κ̂e)(jω)− 1

2
µ̄2ν̄2 sin2(κ̂e)Φ

}
=

(
µe
ψ∗

)3{
1

2
Ωω2 − 1

2
µ̄2ν̄2 sin2(κ̂e)Φ− jω

(
ω2 − µ̄2ν̄2 sin2(κ̂e)

)}
,

(6.103)

and therefore

Pcirc(jω) = 0 ⇐⇒ ω2 − µ̄2ν̄2 sin2(κ̂e) = 0 and
1

2
Ωω2 − 1

2
µ̄2ν̄2 sin2(κ̂e)Φ = 0

⇐⇒ ω2 = µ̄2ν̄2 sin2(κ̂e) and Ω = Φ. (6.104)

However, this is not possible since Ω−Φ < 0 (by (6.100) and the assumption µ̄ν̄ <

2), and therefore (6.96) has no pure imaginary eigenvalues, i.e. the corresponding

circling equilibria are asymptotically stable.

Remark 6.6.5 The Jacobian matrix associated with the circling equilibria corre-

sponding to condition 2 of Proposition 6.6.1 has one strictly negative eigenvalue

and two pure imaginary eigenvalues. Stability analysis for these type of circling

equilibria is the subject of ongoing research.

6.6.3 Analysis of the special case ν̄ > 1, µ̄ν̄ = 3/2

Here we consider the particular case ν̄ > 1 and µ̄ν̄ = 3/2, applying Propo-

sitions 6.6.1 and 6.6.4 to prove the existence of asymptotically stable circling

equlibria. (In Remark 6.6.7, we explain why this case is of interest.) Substituting
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ν̄ > 1 and µ̄ν̄ = 3/2 into (6.79) yields

F (ψ) =
1

4

(
8ψ3 + 4(9− 4ν̄2)ψ2 − 26ψ + 7

)
, (6.105)

and by Proposition 6.6.1, circling equilibria exist if and only if there exists a real

root ψ = ψ∗ in the interval given by (6.80), i.e.

−7/2 ≤ ψ∗ ≤ 1/2. (6.106)

One method for determining the existence of polynomial roots in a particular interval

is provided by Sturm’s Theorem. (See, for instance, [18].) To employ Sturm’s

Theorem, we let a = 9 − 4ν̄2 and construct the Sturm sequence of polynomials

p0(ψ), p1(ψ), p2(ψ), p3(ψ) as follows:

p0(ψ) = 4F (ψ) = 8ψ3 + 4aψ2 − 26ψ + 7,

p1(ψ) = 4F
′
(ψ) = 24ψ2 + 8aψ − 26,

p2(ψ) = −rem(p0(ψ), p1(ψ)) =
1

9

(
156 + 4a2

)
ψ − 1

9

(
63 + 13a

)
,

p3(ψ) = −rem(p1(ψ), p2(ψ)) =

(
9

2 (39 + a2)2

)(
5− a

)(
28a2 − 29a+ 1493

)
,

(6.107)

where rem(f, g) denotes the remainder resulting from polynomial division of f by g.

Then letting V(ξ) denote the number of sign changes in the Sturm sequence evalu-

ated at ψ = ξ, Sturm’s Theorem states that the number of distinct roots of F (ψ)

contained in the interval (c, d), for c < d ∈ R, is given by V(c)− V(d). In our case

we are interested in the number of distinct roots of F (ψ) in the intervals (−7/2, 0)

and (0, 1/2), and by substitution into (6.107) we have the evaluated Sturm sequence
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(read left to right)

ψ p0(ψ) p1(ψ) p2(ψ) p3(ψ)

−7/2 −196(ν̄2 − 1) 16 (7ν̄2 + 1) −4
9
(56ν̄4 − 265ν̄2 + 465) p3

0 7 −26 4
9
(13ν̄2 − 45) p3

1/2 −4(ν̄2 − 1) −16 (ν̄2 − 1) 4
9
(ν̄2 − 1) (8ν̄2 − 15) p3

where p3(−7/2) = p3(0) = p3(1/2) = p3 > 0, since 5 − a = 4(ν̄2 − 1) and

28a2 − 29a + 1493 > 0 for any a ∈ R. Since ν̄ > 1, we have sign-definiteness

on all terms except for p2(0) and p2(1/2), and we summarize the sign variations in

the following table:

ψ p0(ψ) p1(ψ) p2(ψ) p3(ψ) V(ψ)

−7/2 − + − + 3

0 + − ? + 2

1/2 − − ? + 1

Reading the number of sign variations from left to right, we obtain the val-

ues for V(ψ) listed in the last column. (Note that we can determine the num-

ber of sign variations despite the sign ambiguity on p2(0) and p2(1/2).) Since

V(−7/2) − V(0) = 1 and V(0) − V(1/2) = 1, we have demonstrated that under

the constraints ν̄ > 1 and µ̄ν̄ = 3/2, (6.105) always has exactly one root in the
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interval −7/2 < ψ∗ < 0 and exactly one root in the interval 0 < ψ∗ < 1/2.

We summarize the existence and stability of circling equilibria for the ν̄ > 1,

µ̄ν̄ = 3/2 case in the following proposition.

Proposition 6.6.6. For any µ̄ and ν̄ satisfying ν̄ > 1 and µ̄ν̄ = 3/2, there exists

a unique ψ∗1 ∈ (−7/2, 0) and a unique ψ∗2 ∈ (0, 1/2) which satisfy condition 1 from

Proposition 6.6.1. The pair of circling equilibria associated with ψ∗1 are unstable,

and the pair of circling equilibria associated with ψ∗2 are asymptotically stable.

Proof. The fact that ψ∗1 and ψ∗2 exist and satisfy condition 1 of Proposition 6.6.1

follows from the previous discussion based on Sturm’s theorem. To demonstrate the

stability properties of these circling equilibria, we apply the results of Proposition

6.6.4. That the circling equilibria associated with ψ∗1 are unstable follows direcly

from the fact that ψ∗1 is negative. To determine the stability properties of the circling

equlibria associated with ψ∗2, we substitute µ̄ν̄ = 3/2 into (6.102) to obtain

Φ (ψ∗2) = ψ∗
3

2 +
13

4
ψ∗2 −

7

4

=
1

4
(2ψ∗2 − 1)

(
2ψ∗

2

2 + ψ∗2 + 7
)
. (6.108)

Hence, since 0 < ψ∗2 < 1/2, it follows that Φ < 0 and therefore the associated

circling equilibria are asymptotically stable.

Remark 6.6.7 Observe that Proposition 6.6.6 demonstrates the existence and

asymptotic stability of particular circling equilibria (a “stand-off” condition) even

in cases for which the pursuer has both a speed advantage (i.e. ν̄ > 1) and a control
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gain advantage (i.e. µ̄ > 1), so long as the speed ratio ν̄ and control gain ratio µ̄

satisfy µ̄ν̄ = 3/2. (For instance, ν̄ = 5/4 and µ̄ = 6/5 would satisfy the constraints.)

Hence, there exists a set of initial conditions in a neighborhood of these equilibrium

values such that a (moderately) disadvantaged evader can still force the circling

equilibrium stand-off condition. However, from (6.84) we note that the separation

at equilibrium is given by ρ = 1
µpν̄

, and therefore the pursuer can drive the separation

arbitrarily small by using high gain. Hence this evasion law may be most effective

when used against a pursuer whose control gain µp is bounded and relatively small.
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Chapter 7

Conclusions and directions for future research

The main point of this work has been to demonstrate that relatively simple

dyadic pursuit interactions can give rise to a diverse array of collective behaviors. In

chapter 2 we analyzed planar cyclic CB pursuit systems and characterized existence

of relative equilibria and pure shape equilibria. In chapter 3 we considered two low-

dimensional planar cases, deriving explicit trajectory solutions in the mutual pursuit

case, and providing an extensive stability analysis for the three-particle system. The

insight gained from analysis of these low-dimensional systems provides a glimpse into

the remarkable variety of collective behaviors attainable by cyclic CB pursuit, and

serves as a primary contribution of this work. In chapter 4 we developed the three-

dimensional version of CB pursuit, deriving a novel control law and considering the

closed-loop cyclic CB pursuit dynamics, primarily for the mutual pursuit case.

Throughout our analysis of cyclic CB pursuit, we have regarded the CB pursuit

parameters (αi in the planar setting; ai in the 3-D case) as fixed constants, and the

most interesting direction for future research involves time-dependent variation of

the CB pursuit parameters, either in a scheduled (i.e. open-loop) fashion or by means
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of feedback. Such time-variation of the pursuit parameters would introduce transient

behaviors as the collective converges to the “new” CB pursuit manifold, but the

effects of these transient behaviors could be minimized by varying the CB parameters

slowly, so that the CB pursuit manifold evolves on a slow time-scale. We also

hypothesize that periodic forcing of the CB parameters (and the induced periodic

shape changes for the collective) could possibly achieve a prescribed direction of

motion with respect to a fixed reference frame. Alternatively, feedback control of the

CB parameters could be used to stabilize a particular desired shape (e.g. a circling

equilibrium of a specified radius), which could be useful for applications such as

surveillance or environmental sensing, which require coverage of a particular area.

Such an approach is taken for a different type of model in [46], where the authors

define a feedback policy for the CB parameters which (under certain assumptions on

the initial conditions) ensures that the agents trace out a desired spiral formation.

In addition to varying the pursuit parameters, it would be interesting to con-

sider a dynamic pursuit graph which models reassignment of pursuit targets. Such

a pursuit graph could remain cyclic but occasionally prescribe a permuted agent

order for cyclic pursuit. In regards to 3-D cyclic CB pursuit, future work will focus

on determining stability properties of the three-particle case, and existence condi-

tions for non-planar relative equilibria in the n-particle setting, such as helices and

“stacked” circling equilibria.

In chapters 5 and 6 we considered the motion camouflage pursuit strategy and

analyzed possible evader strategies. While the stochastic steering strategy of chapter

5 proved unsuccessful in countering the MC pursuit strategy in the face of speed
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domination by the pursuer, the (deterministic) evasion law introduced in chapter

6 was capable of forcing a circling equilibrium (stand-off scenario) under certain

conditions. Future work includes stability analysis of the submanifolds referred to

in (6.58), derivation of a 3-D version of the planar Anti-MC Evasion Law (6.18),

and a game-theoretic study with regards to the pay-off function (6.16).
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Appendix A

Proof of rotation matrix identities

Proof of (1.8):

(i) =⇒ (ii)

Nontriviality of the null space of [R(2θ)− I] implies that ∃v 6= 0 ∈ R2 such that

[R(2θ)− I]v = 0, i.e. the matrix [R(2θ)− I] must be singular. Since

det|R(2θ)− I| = det

∣∣∣∣∣∣∣∣
 cos(2θ) − sin(2θ)

sin(2θ) cos(2θ)

−
 1 0

0 1


∣∣∣∣∣∣∣∣

= det

∣∣∣∣∣∣∣∣
cos(2θ)− 1 − sin(2θ)

sin(2θ) cos(2θ)− 1

∣∣∣∣∣∣∣∣
=
(
cos(2θ)− 1

)2

+
(
sin(2θ)

)2

,

we note that

det|R(2θ)− I| = 0 =⇒ cos(2θ) = 1 and sin(2θ) = 0,

from which (ii) follows.
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(ii) =⇒ (iii)

R(2θ) = I =⇒ cos(2θ) = 1 and sin(2θ) = 0

=⇒ cos2(θ)− sin2(θ) = 1 and 2 sin(θ) cos(θ) = 0

=⇒ sin(θ) = 0.

(iii) =⇒ (i)

sin(θ) = 0 =⇒ sin2(θ) = 0

=⇒ cos2(θ) = 1

=⇒ cos2(θ)− sin2(θ) = 1 and 2 sin(θ) cos(θ) = 0

=⇒ cos(2θ) = 1 and sin(2θ) = 0

=⇒ [R(2θ)− I] = 02×2

=⇒ Null {[R(2θ)− I]} = R2.

Proof of (1.13): We establish this identity by mathematical induction, first not-

ing that

2∏
i=1

hi =

 B1 q1

0 0 1


 B2 q2

0 0 1

 =

 B1B2 q1 +B1q2

0 0 1

 , (A.1)

which corresponds with (1.13). Then assuming that (1.13) holds for k, we observe
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that

k+1∏
i=1

hi =

(
k∏
i=1

hi

)
hk+1

=


∏k

j=1Bj q1 +
∑k−1

i=1

(∏i
j=1Bj

)
qi+1

0 0 1


 Bk+1 qk+1

0 0 1



=


∏k+1

j=1 Bj

(∏k
j=1Bj

)
qk+1 + q1 +

∑k−1
i=1

(∏i
j=1Bj

)
qi+1

0 0 1



=


∏k+1

j=1 Bj q1 +
∑k

i=1

(∏i
j=1Bj

)
qi+1

0 0 1

 , (A.2)

which completes the induction argument.
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Appendix B

Supplemental calculations for the proof of

Proposition 2.4.1

Proof of (2.79): To establish (2.79), we must demonstrate that

[
ri−1 +

ρi−1

2 sin(αi−1)
x⊥i−1

]
−
[
ri +

ρi
2 sin(αi)

x⊥i

]
= 0, i = 1, 2, . . . , n. (B.1)

First, by (2.35) (with κi ≡ αi) and (2.36), we have

xi−1 = − 1

ρi−1

R(−αi−1)(ri−1 − ri), i = 1, 2, . . . , n, (B.2)

and

xi =
1

ρi−1

R(−θi)(ri−1 − ri), i = 1, 2, . . . , n, (B.3)
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and substitution into the left-hand side of (B.1) yields

[
ri−1 +

ρi−1

2 sin(αi−1)
x⊥i−1

]
−
[
ri +

ρi
2 sin(αi)

x⊥i

]
=

[
ri−1 +

ρi−1

2 sin(αi−1)
R
(π

2

)(
− 1

ρi−1

R(−αi−1)(ri−1 − ri)

)]
−
[
ri +

ρi
2 sin(αi)

R
(π

2

)( 1

ρi−1

R(−θi)(ri−1 − ri)

)]
= (ri−1 − ri)−

1

2 sin(αi−1)
R
(π

2
− αi−1

)
(ri−1 − ri)

−
(

ρi
ρi−1

)
1

2 sin(αi)
R
(π

2
− θi

)
(ri−1 − ri). (B.4)

Then by substituting the equilibrium values for θi and ρi

ρi−1
given by the second case

of (2.77), we can further simplify (B.4) to{
1− 1

2 sin(αi−1)
R
(π

2
− αi−1

)
−
(

sin(αi)

sin(αi−1)

)
1

2 sin(αi)
R
(π

2
− (π − αi−1)

)}
(ri−1 − ri) (B.5)

which yields{
1− 1

2 sin(αi−1)

[
R
(π

2
− αi−1

)
+R

(
−π

2
+ αi−1

)]}
(ri−1 − ri). (B.6)

By employing (1.7) we simplify (B.6) to{
1− 1

2 sin(αi−1)
2 cos

(π
2
− αi−1

)
1

}
(ri−1 − ri), (B.7)

and application of the trigonometric identity cos
(
π
2
− φ
)

= sin(φ) then establishes

(B.1).

229



Proof of (2.89): Since

sin(αn)1+
n−1∑
i=1

sin(αi)R

(
i∑

j=1

(αj + αj−1)

)
=

sin(αn)1+
n−1∑
i=1

sin(αi)

 cos
(∑i

j=1 (αj + αj−1)
)
− sin

(∑i
j=1 (αj + αj−1)

)
sin
(∑i

j=1 (αj + αj−1)
)

cos
(∑i

j=1 (αj + αj−1)
)


(B.8)

we will establish (2.89) by proving that

n−1∑
i=1

sin(αi) sin

(
i∑

j=1

(αj + αj−1)

)
= sin

(
n∑
i=1

αi

)
sin

(
n−1∑
i=1

αi

)
,

sin(αn) +
n−1∑
i=1

sin(αi) cos

(
i∑

j=1

(αj + αj−1)

)
= sin

(
n∑
i=1

αi

)
cos

(
n−1∑
i=1

αi

)
. (B.9)

Our main strategy in dealing with the sin
(∑i

j=1 (αj + αj−1)
)

terms (and related

cosine terms) is to factor out sin (
∑n

i=1 αi) and cos (
∑n

i=1 αi) and then use trigono-

metric identities to simplify. As a first step, one can verify that

i∑
j=1

(αj + αj−1) =



∑n
j=1 αj −

∑n−1
k=i+1 αk, for i = 1

∑n
j=1 αj +

∑i−1
`=1 α` −

∑n−1
k=i+1 αk, for 2 ≤ i ≤ n− 2

∑n
j=1 αj +

∑i−1
`=1 α`, for i = n− 1.

(B.10)
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Making use of (B.10) and appropriate trigonometric identities, we have

n−1∑
i=1

sin(αi) sin

(
i∑

j=1

(αj + αj−1)

)
=

sin(α1)

[
sin

(
n∑
j=1

αj

)
cos

(
n−1∑
k=2

αk

)
− cos

(
n∑
j=1

αj

)
sin

(
n−1∑
k=2

αk

)]

+
n−2∑
i=2

sin(αi)

[
sin

(
n∑
j=1

αj

)
cos

(
i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

+ cos

(
n∑
j=1

αj

)
sin

(
i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)]

+ sin(αn−1)

[
sin

(
n∑
j=1

αj

)
cos

(
n−2∑
`=1

α`

)
+ cos

(
n∑
j=1

αj

)
sin

(
n−2∑
`=1

α`

)]
,

and by factoring out sin (
∑n

i=1 αi) and cos (
∑n

i=1 αi), we are left with

sin

(
n∑
j=1

αj

)[
sin(α1) cos

(
n−1∑
k=2

αk

)
+

n−2∑
i=2

sin(αi) cos

(
i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

+ sin(αn−1) cos

(
n−2∑
`=1

α`

)]

+ cos

(
n∑
j=1

αj

)[
− sin(α1) sin

(
n−1∑
k=2

αk

)
+

n−2∑
i=2

sin(αi) sin

(
i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

+ sin(αn−1) sin

(
n−2∑
`=1

α`

)]
. (B.11)

By application of the trigonometric product-to-sum identities

sin(θ) cos(φ) =
1

2
[sin(θ − φ) + sin(θ + φ)] ,

sin(θ) sin(φ) =
1

2
[cos(θ − φ)− cos(θ + φ)] , (B.12)
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we can express (B.11) as

1

2
sin

(
n∑
j=1

αj

){
sin

(
α1 −

n−1∑
k=2

αk

)
+ sin

(
n−1∑
k=1

αk

)

+
n−2∑
i=2

[
sin

(
−

i−1∑
`=1

α` +
n−1∑
k=i

αk

)
+ sin

(
i∑

`=1

α` −
n−1∑
k=i+1

αk

)]

+ sin

(
αn−1 −

n−2∑
`=1

α`

)
+ sin

(
n−1∑
`=1

α`

)}

+
1

2
cos

(
n∑
j=1

αj

){
− cos

(
α1 −

n−1∑
k=2

αk

)
+ cos

(
n−1∑
k=1

αk

)

+
n−2∑
i=2

[
cos

(
−

i−1∑
`=1

α` +
n−1∑
k=i

αk

)
− cos

(
i∑

`=1

α` −
n−1∑
k=i+1

αk

)]

+ cos

(
αn−1 −

n−2∑
`=1

α`

)
− cos

(
n−1∑
`=1

α`

)}
,

(B.13)

and since cos(−φ) = cos(φ) and sin(−φ) = − sin(φ), the interior summation (in

each case) reduces to two terms. This gives us

1

2
sin

(
n∑
j=1

αj

){
sin

(
α1 −

n−1∑
k=2

αk

)
+ sin

(
n−1∑
k=1

αk

)
+ sin

(
−α1 +

n−1∑
k=2

αk

)

+ sin

(
−αn−1 +

n−2∑
`=1

α`

)
+ sin

(
αn−1 −

n−2∑
`=1

α`

)
+ sin

(
n−1∑
`=1

α`

)}

+
1

2
cos

(
n∑
j=1

αj

){
− cos

(
α1 −

n−1∑
k=2

αk

)
+ cos

(
n−1∑
k=1

αk

)
+ cos

(
−α1 +

n−1∑
k=2

αk

)

− cos

(
−αn−1 +

n−2∑
`=1

α`

)
+ cos

(
αn−1 −

n−2∑
`=1

α`

)
− cos

(
n−1∑
`=1

α`

)}
,

(B.14)

and since the term enclosed in the second pair of braces sums to zero, our final

expression is

sin

(
n∑
i=1

αi

)
sin

(
n−1∑
i=1

αi

)
. (B.15)
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To establish the second equality in (B.9), we begin with

n−1∑
i=1

sin(αi) cos

(
i∑

j=1

(αj + αj−1)

)
=

sin(α1)

[
cos

(
n∑
j=1

αj

)
cos

(
n−1∑
k=2

αk

)
+ sin

(
n∑
j=1

αj

)
sin

(
n−1∑
k=2

αk

)]

+
n−2∑
i=2

sin(αi)

[
cos

(
n∑
j=1

αj

)
cos

(
i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

− sin

(
n∑
j=1

αj

)
sin

(
i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)]

+ sin(αn−1)

[
cos

(
n∑
j=1

αj

)
cos

(
n−2∑
`=1

α`

)
− sin

(
n∑
j=1

αj

)
sin

(
n−2∑
`=1

α`

)]
,

which yields

sin

(
n∑
j=1

αj

)[
sin(α1) sin

(
n−1∑
k=2

αk

)
−

n−2∑
i=2

sin(αi) sin

(
i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

− sin(αn−1) sin

(
n−2∑
`=1

α`

)]

+ cos

(
n∑
j=1

αj

)[
sin(α1) cos

(
n−1∑
k=2

αk

)
+

n−2∑
i=2

sin(αi) cos

(
i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

+ sin(αn−1) cos

(
n−2∑
`=1

α`

)]
. (B.16)

Observe that the bracketed terms are the same (with the exception of a sign

change in the first term) as those in (B.11), and therefore we can use the previously

established results to express (B.16) as

cos

(
n∑
i=1

αi

)
sin

(
n−1∑
i=1

αi

)
. (B.17)
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The second equality in (B.9) is then established by

sin(αn) +
n−1∑
i=1

sin(αi) cos

(
i∑

j=1

(αj + αj−1)

)

= sin(αn) + cos

(
n∑
i=1

αi

)
sin

(
−αn +

n∑
i=1

αi

)

= sin(αn) + cos

(
n∑
i=1

αi

)[
sin

(
n∑
i=1

αi

)
cos(αn)− cos

(
n∑
i=1

αi

)
sin(αn)

]

= sin(αn)

[
1− cos2

(
n∑
i=1

αi

)]
+ cos(αn) cos

(
n∑
i=1

αi

)
sin

(
n∑
i=1

αi

)

= sin(αn) sin2

(
n∑
i=1

αi

)
+ cos(αn) cos

(
n∑
i=1

αi

)
sin

(
n∑
i=1

αi

)

= sin

(
n∑
i=1

αi

)[
sin(αn) sin

(
n∑
i=1

αi

)
+ cos(αn) cos

(
n∑
i=1

αi

)]

= sin

(
n∑
i=1

αi

)
cos

(
n−1∑
i=1

αi

)
. (B.18)

Proof of (2.137): To establish the equivalence between (2.136) and (2.137), we

must demonstrate that for n odd,

n−1∑
i=1

cos(αi) sin

(
i∑

j=1

(π + αj + αj−1)

)
= cos

(
n∑
i=1

αi

)
sin

(
n−1∑
i=1

αi

)
,

cos(αn) +
n−1∑
i=1

cos(αi) cos

(
i∑

j=1

(π + αj + αj−1)

)
= cos

(
n∑
i=1

αi

)
cos

(
n−1∑
i=1

αi

)
,

(B.19)
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and for n even,

n−1∑
i=1

cos(αi) sin

(
i∑

j=1

(π + αj + αj−1)

)
= − sin

(
n∑
i=1

αi

)
sin

(
π

2
+

n−1∑
i=1

αi

)
,

cos(αn) +
n−1∑
i=1

cos(αi) cos

(
i∑

j=1

(π + αj + αj−1)

)
= − sin

(
n∑
i=1

αi

)
cos

(
π

2
+

n−1∑
i=1

αi

)
.

(B.20)

Our strategy follows the same lines as the previous proof, and we begin by expressing

the summation argument as

i∑
j=1

(π + αj + αj−1) =



π +
∑n

j=1 αj −
∑n−1

k=i+1 αk, for i = 1

iπ +
∑n

j=1 αj +
∑i−1

`=1 α` −
∑n−1

k=i+1 αk, for 2 ≤ i ≤ n− 2

(n− 1)π +
∑n

j=1 αj +
∑i−1

`=1 α`, for i = n− 1.

(B.21)

Then

n−1∑
i=1

cos(αi) sin

(
i∑

j=1

(π + αj + αj−1)

)
=

cos(α1)

[
sin

(
n∑
j=1

αj

)
cos

(
π −

n−1∑
k=2

αk

)
+ cos

(
n∑
j=1

αj

)
sin

(
π −

n−1∑
k=2

αk

)]

+
n−2∑
i=2

cos(αi)

[
sin

(
n∑
j=1

αj

)
cos

(
iπ +

i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

+ cos

(
n∑
j=1

αj

)
sin

(
iπ +

i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)]

+ cos(αn−1)

[
sin

(
n∑
j=1

αj

)
cos

(
(n− 1)π +

n−2∑
`=1

α`

)

+ cos

(
n∑
j=1

αj

)
sin

(
(n− 1)π +

n−2∑
`=1

α`

)]
,
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and by factoring out sin (
∑n

i=1 αi) and cos (
∑n

i=1 αi), we are left with

sin

(
n∑
j=1

αj

)[
cos(α1) cos

(
π −

n−1∑
k=2

αk

)

+
n−2∑
i=2

cos(αi) cos

(
iπ +

i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

+ cos(αn−1) cos

(
(n− 1)π +

n−2∑
`=1

α`

)]

+ cos

(
n∑
j=1

αj

)[
cos(α1) sin

(
π −

n−1∑
k=2

αk

)

+
n−2∑
i=2

cos(αi) sin

(
iπ +

i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

+ cos(αn−1) sin

(
(n− 1)π +

n−2∑
`=1

α`

)]
. (B.22)

Here we apply the trigonometric product-to-sum identities

cos(θ) cos(φ) =
1

2
[cos(θ + φ) + cos(θ − φ)] ,

cos(θ) sin(φ) =
1

2
[sin(θ + φ)− sin(θ − φ)] , (B.23)
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to arrive at

1

2
sin

(
n∑
j=1

αj

){
cos

(
π + α1 −

n−1∑
k=2

αk

)
+ cos

(
−π +

n−1∑
k=1

αk

)

+
n−2∑
i=2

[
cos

(
iπ +

i∑
`=1

α` −
n−1∑
k=i+1

αk

)
+ cos

(
−iπ −

i−1∑
`=1

α` +
n−1∑
k=i

αk

)]

+ cos

(
(n− 1)π +

n−1∑
`=1

α`

)
+ cos

(
αn−1 − (n− 1)π −

n−2∑
`=1

α`

)}

+
1

2
cos

(
n∑
j=1

αj

){
sin

(
π + α1 −

n−1∑
k=2

αk

)
− sin

(
−π +

n−1∑
k=1

αk

)

+
n−2∑
i=2

[
sin

(
iπ +

i∑
`=1

α` −
n−1∑
k=i+1

αk

)
− sin

(
−iπ −

i−1∑
`=1

α` +
n−1∑
k=i

αk

)]

+ sin

(
(n− 1)π +

n−1∑
`=1

α`

)
− sin

(
αn−1 − (n− 1)π −

n−2∑
`=1

α`

)}
,

(B.24)

or the equivalent expression

1

2
sin

(
n∑
j=1

αj

){
− cos

(
α1 −

n−1∑
k=2

αk

)
− cos

(
n−1∑
k=1

αk

)

+
n−2∑
i=2

[
(−1)i cos

(
i∑

`=1

α` −
n−1∑
k=i+1

αk

)
+ (−1)i cos

(
i−1∑
`=1

α` −
n−1∑
k=i

αk

)]

+ (−1)n−1 cos

(
n−1∑
`=1

α`

)
+ (−1)n−1 cos

(
αn−1 −

n−2∑
`=1

α`

)}

+
1

2
cos

(
n∑
j=1

αj

){
− sin

(
α1 −

n−1∑
k=2

αk

)
+ sin

(
n−1∑
k=1

αk

)

+
n−2∑
i=2

[
(−1)i sin

(
i∑

`=1

α` −
n−1∑
k=i+1

αk

)
+ (−1)i sin

(
i−1∑
`=1

α` −
n−1∑
k=i

αk

)]

+ (−1)n−1 sin

(
n−1∑
`=1

α`

)
+ (−1)n−1 sin

(
−αn−1 +

n−2∑
`=1

α`

)}
. (B.25)
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As before, the terms in brackets cancel pairwise yielding

1

2
sin

(
n∑
j=1

αj

){
− cos

(
α1 −

n−1∑
k=2

αk

)
− cos

(
n−1∑
k=1

αk

)
+ (−1)n−2 cos

(
−αn−1 +

n−2∑
`=1

α`

)

+ cos

(
α1 −

n−1∑
k=2

αk

)
+ (−1)n−1 cos

(
n−1∑
`=1

α`

)
+ (−1)n−1 cos

(
αn−1 −

n−2∑
`=1

α`

)}

+
1

2
cos

(
n∑
j=1

αj

){
− sin

(
α1 −

n−1∑
k=2

αk

)
+ sin

(
n−1∑
k=1

αk

)
+ (−1)n−2 sin

(
−αn−1 +

n−2∑
`=1

α`

)

+ sin

(
α1 −

n−1∑
k=2

αk

)
+ (−1)n−1 sin

(
n−1∑
`=1

α`

)
+ (−1)n−1 sin

(
−αn−1 +

n−2∑
`=1

α`

)}
,

(B.26)

and consequently

n−1∑
i=1

cos(αi) sin

(
i∑

j=1

(π + αj + αj−1)

)
=


cos (

∑n
i=1 αi) sin

(∑n−1
i=1 αi

)
, for n odd

− sin (
∑n

i=1 αi) cos
(∑n−1

i=1 αi
)
, for n even.

(B.27)

Turning to the second equality in (B.19) and (B.20), we begin with

n−1∑
i=1

cos(αi) cos

(
i∑

j=1

(π + αj + αj−1)

)
=

cos(α1)

[
cos

(
n∑
j=1

αj

)
cos

(
π −

n−1∑
k=2

αk

)
− sin

(
n∑
j=1

αj

)
sin

(
π −

n−1∑
k=2

αk

)]

+
n−2∑
i=2

cos(αi)

[
cos

(
n∑
j=1

αj

)
cos

(
iπ +

i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

− sin

(
n∑
j=1

αj

)
sin

(
iπ +

i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)]

+ cos(αn−1)

[
cos

(
n∑
j=1

αj

)
cos

(
(n− 1)π +

n−2∑
`=1

α`

)

− sin

(
n∑
j=1

αj

)
sin

(
(n− 1)π +

n−2∑
`=1

α`

)]
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and factor out sin (
∑n

i=1 αi) and cos (
∑n

i=1 αi) to obtain

sin

(
n∑
j=1

αj

)[
− cos(α1) sin

(
π −

n−1∑
k=2

αk

)

−
n−2∑
i=2

cos(αi) sin

(
iπ +

i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

− cos(αn−1) sin

(
(n− 1)π +

n−2∑
`=1

α`

)]

+ cos

(
n∑
j=1

αj

)[
cos(α1) cos

(
π −

n−1∑
k=2

αk

)

+
n−2∑
i=2

cos(αi) cos

(
iπ +

i−1∑
`=1

α` −
n−1∑
k=i+1

αk

)

+ cos(αn−1) cos

(
(n− 1)π +

n−2∑
`=1

α`

)]
. (B.28)

Again, the terms in brackets are familiar from (B.22), and we can make use of

previous results to obtain

n−1∑
i=1

cos(αi) cos

(
i∑

j=1

(π + αj + αj−1)

)
=


− sin (

∑n
i=1 αi) sin

(∑n−1
i=1 αi

)
, for n odd

− cos (
∑n

i=1 αi) cos
(∑n−1

i=1 αi
)
, for n even.

(B.29)
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Noting that, for n odd,

cos(αn) +
n−1∑
i=1

cos(αi) cos

(
i∑

j=1

(π + αj + αj−1)

)

= cos(αn)− sin

(
n∑
i=1

αi

)
sin

(
−αn +

n∑
i=1

αi

)

= cos(αn)− sin

(
n∑
i=1

αi

)[
sin

(
n∑
i=1

αi

)
cos(αn)− cos

(
n∑
i=1

αi

)
sin(αn)

]

= cos(αn)

[
1− sin2

(
n∑
i=1

αi

)]
+ sin(αn) cos

(
n∑
i=1

αi

)
sin

(
n∑
i=1

αi

)

= cos(αn) cos2

(
n∑
i=1

αi

)
+ sin(αn) cos

(
n∑
i=1

αi

)
sin

(
n∑
i=1

αi

)

= cos

(
n∑
i=1

αi

)[
cos(αn) cos

(
n∑
i=1

αi

)
+ sin(αn) sin

(
n∑
i=1

αi

)]

= cos

(
n∑
i=1

αi

)
cos

(
n−1∑
i=1

αi

)
, (B.30)

and for n even,

cos(αn) +
n−1∑
i=1

cos(αi) cos

(
i∑

j=1

(π + αj + αj−1)

)

= cos(αn)− cos

(
n∑
i=1

αi

)
cos

(
−αn +

n∑
i=1

αi

)

= cos(αn)− cos

(
n∑
i=1

αi

)[
cos

(
n∑
i=1

αi

)
cos(αn) + sin

(
n∑
i=1

αi

)
sin(αn)

]

= cos(αn)

[
1− cos2

(
n∑
i=1

αi

)]
− sin(αn) cos

(
n∑
i=1

αi

)
sin

(
n∑
i=1

αi

)

= cos(αn) sin2

(
n∑
i=1

αi

)
− sin(αn) cos

(
n∑
i=1

αi

)
sin

(
n∑
i=1

αi

)

= sin

(
n∑
i=1

αi

)[
cos(αn) sin

(
n∑
i=1

αi

)
− sin(αn) cos

(
n∑
i=1

αi

)]

= sin

(
n∑
i=1

αi

)
sin

(
n−1∑
i=1

αi

)
, (B.31)

we have (B.19) and (B.20) by application of trigonometric identities.
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Appendix C

Supplemental calculations for three-particle

planar cyclic CB pursuit analysis

Derivation of the elements for the general Jacobian matrix (3.64), (3.65),

(3.66) and (3.67):

Making use of 3.61, we calculate as follows:

∂g1

∂θ2

=
∂P

∂θ2

(
eλ̃ [sin(α1) + sin(θ2)]− sin(α2)

)
+ Peλ̃ cos(θ2)− cos(θ2 − α2 − α3)

=
eλ̃

P
sin(θ2 − α2)

(
eλ̃ [sin(α1) + sin(θ2)]− sin(α2)

)
+ Peλ̃ cos(θ2)− cos(θ2 − α2 − α3)

=
1

P

{
e2λ̃ sin(θ2 − α2) [sin(α1) + sin(θ2)]− eλ̃ sin(θ2 − α2) sin(α2)

+ P 2eλ̃ cos(θ2)− P cos(θ2 − α2 − α3)
}

=
1

P

{
e2λ̃ sin(θ2 − α2) [sin(α1) + sin(θ2)]− eλ̃ sin(θ2 − α2) sin(α2)

+
[
e2λ̃ − 2eλ̃ cos(θ2 − α2) + 1

]
eλ̃ cos(θ2)− P cos(θ2 − α2 − α3)

}
=

1

P

{
e3λ̃ cos(θ2) + e2λ̃

(
sin(θ2 − α2) [sin(α1) + sin(θ2)]− 2 cos(θ2 − α2) cos(θ2)

)
+ eλ̃

(
cos(θ2)− sin(θ2 − α2) sin(α2)

)
− P cos(θ2 − α2 − α3)

}
, (C.1)
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∂g1

∂λ̃
=
∂P

∂λ̃

(
eλ̃ [sin(α1) + sin(θ2)]− sin(α2)

)
+ Peλ̃ [sin(α1) + sin(θ2)]− eλ̃ sin(α3)

=
eλ̃

P

(
eλ̃ − cos(θ2 − α2)

)(
eλ̃ [sin(α1) + sin(θ2)]− sin(α2)

)
+ Peλ̃ [sin(α1) + sin(θ2)]− eλ̃ sin(α3)

=
eλ̃

P

{
e2λ̃ [sin(α1) + sin(θ2)]− eλ̃

(
sin(α2) + cos(θ2 − α2) [sin(α1) + sin(θ2)]

)
+ cos(θ2 − α2) sin(α2) + P 2 [sin(α1) + sin(θ2)]− P sin(α3)

}
=
eλ̃

P

{
e2λ̃ [sin(α1) + sin(θ2)]− eλ̃

(
sin(α2) + cos(θ2 − α2) [sin(α1) + sin(θ2)]

)
+ cos(θ2 − α2) sin(α2)

+
[
e2λ̃ − 2eλ̃ cos(θ2 − α2) + 1

]
[sin(α1) + sin(θ2)]− P sin(α3)

}
=
eλ̃

P

{
2e2λ̃ [sin(α1) + sin(θ2)]− eλ̃

(
sin(α2) + 3 cos(θ2 − α2) [sin(α1) + sin(θ2)]

)
+ cos(θ2 − α2) sin(α2) + [sin(α1) + sin(θ2)]− P sin(α3)

}
, (C.2)

∂g2

∂θ2

=
∂P

∂θ2

(
eλ̃ [cos(α1) + cos(θ2)]− cos(α2)

)
− Peλ̃ sin(θ2)− sin(θ2 − α2 − α3)

=
eλ̃

P
sin(θ2 − α2)

(
eλ̃ [cos(α1) + cos(θ2)]− cos(α2)

)
− Peλ̃ sin(θ2)− sin(θ2 − α2 − α3)

=
1

P

{
e2λ̃ sin(θ2 − α2) [cos(α1) + cos(θ2)]− eλ̃ sin(θ2 − α2) cos(α2)

− P 2eλ̃ sin(θ2)− P sin(θ2 − α2 − α3)
}

=
1

P

{
e2λ̃ sin(θ2 − α2) [cos(α1) + cos(θ2)]− eλ̃ sin(θ2 − α2) cos(α2)

−
[
e2λ̃ − 2eλ̃ cos(θ2 − α2) + 1

]
eλ̃ sin(θ2)− P sin(θ2 − α2 − α3)

}
=

1

P

{
−e3λ̃ sin(θ2) + e2λ̃

(
sin(θ2 − α2) [cos(α1) + cos(θ2)] + 2 cos(θ2 − α2) sin(θ2)

)
− eλ̃

(
sin(θ2) + sin(θ2 − α2) cos(α2)

)
− P sin(θ2 − α2 − α3)

}
, (C.3)
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∂g2

∂λ̃
=
∂P

∂λ̃

(
eλ̃ [cos(α1) + cos(θ2)]− cos(α2)

)
+ Peλ̃ [cos(α1) + cos(θ2)]− eλ̃ cos(α3)

=
eλ̃

P

(
eλ̃ − cos(θ2 − α2)

)(
eλ̃ [cos(α1) + cos(θ2)]− cos(α2)

)
+ Peλ̃ [cos(α1) + cos(θ2)]− eλ̃ cos(α3)

=
eλ̃

P

{
e2λ̃ [cos(α1) + cos(θ2)]− eλ̃

(
cos(α2) + cos(θ2 − α2) [cos(α1) + cos(θ2)]

)
+ cos(θ2 − α2) cos(α2) + P 2 [cos(α1) + cos(θ2)]− P cos(α3)

}
=
eλ̃

P

{
e2λ̃ [cos(α1) + cos(θ2)]− eλ̃

(
cos(α2) + cos(θ2 − α2) [cos(α1) + cos(θ2)]

)
+ cos(θ2 − α2) cos(α2)

+
[
e2λ̃ − 2eλ̃ cos(θ2 − α2) + 1

]
[cos(α1) + cos(θ2)]− P cos(α3)

}
=
eλ̃

P

{
2e2λ̃ [cos(α1) + cos(θ2)]− eλ̃

(
cos(α2) + 3 cos(θ2 − α2) [cos(α1) + cos(θ2)]

)
+ cos(θ2 − α2) cos(α2) + [cos(α1) + cos(θ2)]− P cos(α3)

}
. (C.4)

Derivation of the Type 2 rectilinear equilibrium Jacobian matrix (3.79):

By (3.49), (3.51) and Proposition 3.5.1, the equilibrium values for θ2, e
λ̃, and P

(at a Type 2 rectilinear equilibrium) are given by

θ2 = π + α1, eλ̃ =
sin(α3 − α1)

sin(α2 − α3)
, P =

sin(α1 − α2)

sin(α2 − α3)
. (C.5)

In anticipation of substituting these equilibrium values into the Jacobian matrix,
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we evaluate the following frequently appearing terms:

sin(θ2) = sin(π + α1) = − sin(α1),

cos(θ2) = cos(π + α1) = − cos(α1),

sin(θ2 − α2) = sin(π + α1 − α2) = − sin(α1 − α2),

cos(θ2 − α2) = cos(π + α1 − α2) = − cos(α1 − α2),

sin(θ2 − α2 − α3) = sin(π + α1 − α2 − α3) = − sin(α1 − α2 − α3),

cos(θ2 − α2 − α3) = cos(π + α1 − α2 − α3) = − cos(α1 − α2 − α3),

sin(α1) + sin(θ2) = 0, cos(α1) + cos(θ2) = 0. (C.6)

We also note the following simplification:

sin2(α3 − α1) + 2 sin(α3 − α1) sin(α2 − α3) cos(α1 − α2) + sin2(α2 − α3)

= sin2(α3 − α1) + 2 sin(α3 − α1) sin(α2 − α3) cos(α2 − α3 + α3 − α1) + sin2(α2 − α3)

= sin2(α3 − α1) + 2 sin(α3 − α1) sin(α2 − α3) cos(α2 − α3) cos(α3 − α1)

− 2 sin2(α3 − α1) sin2(α2 − α3) + sin2(α2 − α3)

= sin2(α3 − α1)
(
1− sin2(α2 − α3)

)
+ sin2(α2 − α3)

(
1− sin2(α3 − α1)

)
+ 2 sin(α3 − α1) sin(α2 − α3) cos(α2 − α3) cos(α3 − α1)

= sin2(α3 − α1) cos2(α2 − α3)) + sin2(α2 − α3) cos2(α3 − α1)

+ 2 sin(α3 − α1) sin(α2 − α3) cos(α2 − α3) cos(α3 − α1

=
(
sin(α3 − α1) cos(α2 − α3) + sin(α2 − α3)(α3 − α1)

)2

= sin2(α1 − α2). (C.7)

Then substituting into the elements of our Jacobian matrix, starting with (3.64),
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we have

∂g1

∂θ2

=

(
sin(α2 − α3)

sin(α1 − α2)

){(
sin(α3 − α1)

sin(α2 − α3)

)3

(− cos(α1))

+

(
sin(α3 − α1)

sin(α2 − α3)

)2 (
−2 cos(α1) cos(α1 − α2)

)
+

(
sin(α3 − α1)

sin(α2 − α3)

)(
− cos(α1) + sin(α1 − α2) sin(α2)

)
+

(
sin(α1 − α2)

sin(α2 − α3)

)
cos(α1 − α2 − α3)

}

=
1

sin(α1 − α2) sin2(α2 − α3)

{
− cos(α1) sin3(α3 − α1)

− 2 sin2(α3 − α1) sin(α2 − α3) cos(α1) cos(α1 − α2)

+ sin(α3 − α1) sin2(α2 − α3)
(
− cos(α1) + sin(α1 − α2) sin(α2)

)
+ sin(α1 − α2) sin2(α2 − α3) cos(α1 − α2 − α3)

}
=

1

sin(α1 − α2) sin2(α2 − α3)

{
− cos(α1) sin(α3 − α1)

[
sin2(α3 − α1)

+ 2 sin(α3 − α1) sin(α2 − α3) cos(α1 − α2) + sin2(α2 − α3)
]

+ sin(α1 − α2) sin2(α2 − α3)
[
sin(α3 − α1) sin(α2) + cos(α2 + α3 − α1)

]}
=

1

sin(α1 − α2) sin2(α2 − α3)

{
− cos(α1) sin(α3 − α1) sin2(α1 − α2)

+ sin(α1 − α2) sin2(α2 − α3)
[
sin(α3 − α1) sin(α2) + cos(α2) cos(α3 − α1)

− sin(α2) sin(α3 − α1)
]}

=
1

sin(α1 − α2) sin2(α2 − α3)

{
− cos(α1) sin(α3 − α1) sin2(α1 − α2)

+ sin(α1 − α2) sin2(α2 − α3) cos(α2) cos(α3 − α1)

}
=

1

sin2(α2 − α3)

{
− cos(α1) sin(α3 − α1) sin(α1 − α2)
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+ cos(α2) sin2(α2 − α3) cos(α3 − α1)

}
. (C.8)

Likewise, we substitute into (3.65) and simplify by

∂g1

∂λ̃
=

(
sin(α3 − α1)

sin(α1 − α2)

){
−
(

sin(α3 − α1)

sin(α2 − α3)

)
sin(α2)− cos(α1 − α2) sin(α2)

−
(

sin(α1 − α2)

sin(α2 − α3)

)
sin(α3)

}

=
− sin(α3 − α1)

sin(α1 − α2) sin(α2 − α3)

{
sin(α3 − α1) sin(α2)

+ sin(α2 − α3) cos(α1 − α2) sin(α2) + sin(α1 − α2) sin(α3)

}
=

− sin(α3 − α1)

sin(α1 − α2) sin(α2 − α3)

{
sin(α2)

[
sin(α3) cos(α1)− cos(α3) sin(α1)

]
+ sin(α3)

[
sin(α1) cos(α2)− cos(α1) sin(α2)

]
+ sin(α2 − α3) cos(α1 − α2) sin(α2)

}
=

− sin(α3 − α1)

sin(α1 − α2) sin(α2 − α3)

{
− sin(α1)

[
sin(α2) cos(α3)− cos(α2) sin(α3)

]
+ sin(α2 − α3) cos(α1 − α2) sin(α2)

}
=

sin(α3 − α1)

sin(α1 − α2)

{
sin(α1)− cos(α1 − α2) sin(α2)

}
=

sin(α3 − α1)

sin(α1 − α2)

{
sin(α1)− cos(α1) cos(α2) sin(α2)− sin(α1) sin2(α2)

}
=

sin(α3 − α1)

sin(α1 − α2)

{
sin(α1) cos2(α2)− cos(α1) cos(α2) sin(α2)

}
=

sin(α3 − α1)

sin(α1 − α2)

{
cos(α2)

[
sin(α1) cos(α2)− cos(α1) sin(α2)

]}
= cos(α2) sin(α3 − α1). (C.9)

Once again making use of (C.7), we can express ∂g2
∂θ2

as

∂g2

∂θ2

=

(
sin(α2 − α3)

sin(α1 − α2)

){(
sin(α3 − α1)

sin(α2 − α3)

)3

sin(α1)
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+ 2

(
sin(α3 − α1)

sin(α2 − α3)

)2

sin(α1) cos(α1 − α2)

+

(
sin(α3 − α1)

sin(α2 − α3)

)(
sin(α1) + sin(α1 − α2) cos(α2)

)
+

(
sin(α1 − α2)

sin(α2 − α3)

)
sin(α1 − α2 − α3)

}

=
1

sin(α1 − α2) sin2(α2 − α3)

{
sin(α1) sin3(α3 − α1)

+ 2 sin2(α3 − α1) sin(α2 − α3) sin(α1) cos(α1 − α2)

+ sin(α3 − α1) sin2(α2 − α3)
(
sin(α1) + sin(α1 − α2) cos(α2)

)
+ sin(α1 − α2) sin2(α2 − α3) sin(α1 − α2 − α3)

}
=

1

sin(α1 − α2) sin2(α2 − α3)

{
sin(α1) sin(α3 − α1)

[
sin2(α3 − α1)

+ 2 sin(α3 − α1) sin(α2 − α3) cos(α1 − α2) + sin2(α2 − α3)
]

+ sin(α1 − α2) sin2(α2 − α3)
[
sin(α3 − α1) cos(α2) + sin(α1 − α3 − α2)

]}
=

1

sin(α1 − α2) sin2(α2 − α3)

{
sin(α1) sin(α3 − α1) sin2(α1 − α2)

+ sin(α1 − α2) sin2(α2 − α3)
[
sin(α3 − α1) cos(α2)

+ sin(α1 − α3) cos(α2)− cos(α1 − α3) sin(α2)
]}

=
1

sin2(α2 − α3)

{
sin(α1) sin(α3 − α1) sin(α1 − α2)

− sin(α2) sin2(α2 − α3) cos(α3 − α1)

}
. (C.10)

Lastly, we have

∂g2

∂λ̃
=

(
sin(α3 − α1)

sin(α1 − α2)

){
−
(

sin(α3 − α1)

sin(α2 − α3)

)
cos(α2)− cos(α1 − α2) cos(α2)

−
(

sin(α1 − α2)

sin(α2 − α3)

)
cos(α3)

}

247



=
− sin(α3 − α1)

sin(α1 − α2) sin(α2 − α3)

{
sin(α3 − α1) cos(α2)

+ sin(α2 − α3) cos(α1 − α2) cos(α2) + sin(α1 − α2) cos(α3)

}
=

− sin(α3 − α1)

sin(α1 − α2) sin(α2 − α3)

{
cos(α2)

[
sin(α3) cos(α1)− cos(α3) sin(α1)

]
+ cos(α3)

[
sin(α1) cos(α2)− cos(α1) sin(α2)

]
+ sin(α2 − α3) cos(α1 − α2) cos(α2)

}
=

− sin(α3 − α1)

sin(α1 − α2) sin(α2 − α3)

{
− cos(α1)

[
sin(α2) cos(α3)− cos(α2) sin(α3)

]
+ sin(α2 − α3) cos(α1 − α2) cos(α2)

}
=

sin(α3 − α1)

sin(α1 − α2)

{
cos(α1)− cos(α1 − α2) cos(α2)

}
=

sin(α3 − α1)

sin(α1 − α2)

{
cos(α1)− cos(α1) cos2(α2)− sin(α1) sin(α2) cos(α2)

}
=

sin(α3 − α1)

sin(α1 − α2)

{
cos(α1) sin2(α2)− sin(α1) sin(α2) cos(α2)

}
=

sin(α3 − α1)

sin(α1 − α2)

{
− sin(α2)

[
sin(α1) cos(α2)− cos(α1) sin(α2)

]}
= − sin(α2) sin(α3 − α1). (C.11)

Proof of Proposition 3.5.7:

Proof. For notational simplicity, we denote ρ̃ , eλ̃ and

h1(α, φ) , sin(φ+ α)− sin(α),

h2(α, φ) , cos(φ+ α)− cos(α), (C.12)
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so that (3.105) can be expressed as

g1(α, φ, ρ̃) = −P [h1(α, φ)ρ̃+ sin(α)] + [ρ̃ sin(α)− sin(φ− α)] ,

g2(α, φ, ρ̃) = −P [h2(α, φ)ρ̃+ cos(α)] + [ρ̃ cos(α) + cos(φ− α)] . (C.13)

We then proceed by analyzing the related quantities

G1(α, φ, ρ̃) = g1(α, φ, ρ̃) (−P [h1(α, φ)ρ̃+ sin(α)]− [ρ̃ sin(α)− sin(φ− α)])

= (−P [h1(α, φ)ρ̃+ sin(α)] + [ρ̃ sin(α)− sin(φ− α)])×

(−P [h1(α, φ)ρ̃+ sin(α)]− [ρ̃ sin(α)− sin(φ− α)])

= P 2 [h1(α, φ)ρ̃+ sin(α)]2 − [ρ̃ sin(α)− sin(φ− α)]2

=
(
ρ̃2 + 2 cos(φ)ρ̃+ 1

) [
ρ̃2h2

1(α, φ) + 2ρ̃ sin(α)h1(α, φ) + sin2(α)
]

−
(
ρ̃2 sin2(α)− 2ρ̃ sin(α) sin(φ− α) + sin2(φ− α)

)
= ρ̃4h2

1(α, φ) + ρ̃3
[
2 sin(α)h1(α, φ) + 2 cos(φ)h2

1(α, φ)
]

+ ρ̃2
[
sin2(α) + h2

1(α, φ) + 4 sin(α) cos(φ)h1(α, φ)
]

+ ρ̃
[
2 sin2(α) cos(φ) + 2 sin(α)h1(α, φ)

]
+ sin2(α)−

(
ρ̃2 sin2(α)− 2ρ̃ sin(α) sin(φ− α) + sin2(φ− α)

)
= ρ̃4h2

1(α, φ) + ρ̃3
[
2 sin(α)h1(α, φ) + 2 cos(φ)h2

1(α, φ)
]

+ ρ̃2
[
h2

1(α, φ) + 4 sin(α) cos(φ)h1(α, φ)
]

+ ρ̃
[
2 sin2(α) cos(φ) + 2 sin(α)h1(α, φ) + 2 sin(α) sin(φ− α)

]
+
[
sin2(α)− sin2(φ− α)

]
= ρ̃4h2

1(α, φ) + 2ρ̃3h1(α, φ) [sin(α) + cos(φ)h1(α, φ)]

+ ρ̃2h1(α, φ) [h1(α, φ) + 4 sin(α) cos(φ)]
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+ 2ρ̃ sin(α) [sin(α) cos(φ) + h1(α, φ) + sin(φ− α)]

+
[
sin2(α)− sin2(φ− α)

]
, (C.14)

and

G2(α, φ, ρ̃) = g2(α, φ, ρ̃) (−P [h2(α, φ)ρ̃+ cos(α)]− [ρ̃ cos(α) + cos(φ− α)])

= (−P [h2(α, φ)ρ̃+ cos(α)] + [ρ̃ cos(α) + cos(φ− α)])×

(−P [h2(α, φ)ρ̃+ cos(α)]− [ρ̃ cos(α) + cos(φ− α)])

= P 2 [h2(α, φ)ρ̃+ cos(α)]2 − [ρ̃ cos(α) + cos(φ− α)]2

=
(
ρ̃2 + 2 cos(φ)ρ̃+ 1

) [
ρ̃2h2

2(α, φ) + 2ρ̃ cos(α)h2(α, φ) + cos2(α)
]

−
(
ρ̃2 cos2(α) + 2ρ̃ cos(α) cos(φ− α) + cos2(φ− α)

)
= ρ̃4h2

2(α, φ) + ρ̃3
[
2 cos(α)h2(α, φ) + 2 cos(φ)h2

2(α, φ)
]

+ ρ̃2
[
cos2(α) + h2

2(α, φ) + 4 cos(α) cos(φ)h2(α, φ)
]

+ ρ̃
[
2 cos2(α) cos(φ) + 2 cos(α)h2(α, φ)

]
+ cos2(α)−

(
ρ̃2 cos2(α) + 2ρ̃ cos(α) cos(φ− α) + cos2(φ− α)

)
= ρ̃4h2

2(α, φ) + ρ̃3
[
2 cos(α)h2(α, φ) + 2 cos(φ)h2

2(α, φ)
]

+ ρ̃2
[
h2

2(α, φ) + 4 cos(α) cos(φ)h2(α, φ)
]

+ ρ̃
[
2 cos2(α) cos(φ) + 2 cos(α)h2(α, φ)− 2 cos(α) cos(φ− α)

]
+
[
cos2(α)− cos2(φ− α)

]
= ρ̃4h2

2(α, φ) + 2ρ̃3h2(α, φ) [cos(α) + cos(φ)h2(α, φ)]

+ ρ̃2h2(α, φ) [h2(α, φ) + 4 cos(α) cos(φ)]

+ 2ρ̃ cos(α) [cos(α) cos(φ) + h2(α, φ)− cos(φ− α)]
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+
[
cos2(α)− cos2(φ− α)

]
. (C.15)

Viewing G1(α, φ, ρ̃) and G2(α, φ, ρ̃) as polynomials in ρ̃, we have

G1(α, φ, ρ̃) = a4(α, φ)ρ̃4 + a3(α, φ)ρ̃3 + a2(α, φ)ρ̃2 + a1(α, φ)ρ̃+ a0(α, φ), (C.16)

where

a4(α, φ) = h2
1(α, φ),

a3(α, φ) = 2h1(α, φ) [sin(α) + cos(φ)h1(α, φ)] ,

a2(α, φ) = h1(α, φ) [h1(α, φ) + 4 sin(α) cos(φ)] ,

a1(α, φ) = 2 sin(α) [sin(α) cos(φ) + h1(α, φ) + sin(φ− α)] ,

a0(α, φ) = sin2(α)− sin2(φ− α), (C.17)

as well as

G2(α, φ, ρ̃) = b4(α, φ)ρ̃4 + b3(α, φ)ρ̃3 + b2(α, φ)ρ̃2 + b1(α, φ)ρ̃+ b0(α, φ), (C.18)

where

b4(α, φ) = h2
2(α, φ),

b3(α, φ) = 2h2(α, φ) [cos(α) + cos(φ)h2(α, φ)] ,

b2(α, φ) = h2(α, φ) [h2(α, φ) + 4 cos(α) cos(φ)] ,

b1(α, φ) = 2 cos(α) [cos(α) cos(φ) + h2(α, φ)− cos(φ− α)] ,

b0(α, φ) = cos2(α)− cos2(φ− α). (C.19)

251



The proof proceeds by analyzing the sign of each of the ai(α, φ) and bi(α, φ) coeffi-

cient functions on Ω+
α+ and Ω−

α+ so that we can apply Descartes’ sign rule to both

G1 and G2.

Since on the interval [0, π/2] the sine function is monotone increasing and the

cosine function is monotone decreasing, we have

On Ω+
α+ : h1(α, φ) > 0, h2(α, φ) > 0,

On Ω−
α+ : h1(α, φ) < 0, h2(α, φ) > 0. (C.20)

Clearly a4(α, φ) > 0 and b4(α, φ) > 0 on both Ω+
α+ and Ω−

α+ , and therefore we

proceed by considering the remaining coefficients.

• a3(α, φ):

– On Ω+
α+ we have sin(α) > 0, cos(φ) > 0 and h1(α, φ) > 0, and therefore

a3(α, φ) > 0.

– For the analysis on Ω−
α+ , we express

a3(α, φ) = 2h1(α, φ)
{
sin(α) + cos(φ) [sin(φ+ α)− sin(α)]

}
(C.21)

and then consider the term in braces. Making use of the various bounds
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applicable on Ω−
α+ , we have

sin(α) + cos(φ) [sin(φ+ α)− sin(α)]

= sin(α) + cos(φ) [sin(φ) cos(α) + cos(φ) sin(α)− sin(α)]

= sin(α)
[
1 + cos2(φ)− cos(φ)

]
+ cos(φ) sin(φ) cos(α)

≥ sin(α)
[
1 + cos2(φ)− cos(φ)

]
− cos(φ) sin(α) cos(α)

≥ sin(α)
[
1 + cos2(φ)− cos(φ)

]
+ cos(φ) sin(α)(− cos(φ))

≥ sin(α) [1− cos(φ)]

≥ 0, (C.22)

and therefore since h1(α, φ) < 0 on Ω−
α+ , we have a3(α, φ) ≤ 0.

• a2(α, φ):

– On Ω+
α+ we have sin(α) > 0, cos(φ) > 0 and h1(α, φ) > 0, and therefore

a2(α, φ) > 0.

– On Ω−
α+ , we have

h1(α, φ) + 4 sin(α) cos(φ) = sin(φ+ α)− sin(α) + 4 sin(α) cos(φ)

= sin(φ) cos(α)− sin(α) + 5 sin(α) cos(φ)

≥ − sin(α) cos(α)− sin(α) + 5 sin(α) cos(α)

≥ sin(α) [4 cos(α)− 1] , (C.23)
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and

h1(α, φ) + 4 sin(α) cos(φ) = sin(φ) cos(α)− sin(α) + 5 sin(α) cos(φ)

≥ − cos2(α)− sin(α) + 5 sin2(α)

≥ (sin2(α)− 1)− sin(α) + 5 sin2(α)

≥ (2 sin(α)− 1) (3 sin(α) + 1) . (C.24)

Since (C.23) is positive for cos(α) > 1/4 and (C.24) is positive for

sin(α) > 1/2, one can verify that h1(α, φ) + 4 sin(α) cos(φ) ≥ 0 for

0 < α < π/2. Therefore a2(α, φ) ≤ 0 on Ω−
α+ .

• a1(α, φ): First, observe that

a1(α, φ) = 2 sin(α) [sin(α) cos(φ) + h1(α, φ) + sin(φ− α)]

= 2 sin(α) [sin(α) cos(φ)− sin(α) + sin(φ+ α) + sin(φ− α)]

= 2 sin(α)
[
sin(α) cos(φ)− sin(α) + sin(φ) cos(α) + cos(φ) sin(α)

+ sin(φ) cos(α)− cos(φ) sin(α)
]

= 2 sin(α) [sin(α) cos(φ)− sin(α) + 2 sin(φ) cos(α)] . (C.25)
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– On Ω+
α+ , we have

a1(α, φ) = 2 sin(α) [sin(α) cos(φ)− sin(α) + 2 sin(φ) cos(α)]

≥ 2 sin(α)
[
sin(α) cos(φ)− sin(α) + 2 sin2(φ)

]
≥ 2 sin(α)

[
sin(α) cos(φ)− sin(α) + 2− 2 cos2(φ)

]
≥ 2 sin(α)

(
1− cos(φ)

)(
2− sin(α) + 2 cos(φ)

)
≥ 2 sin(α)

(
1− cos(φ)

)(
2 + sin(α)

)
≥ 0. (C.26)

– On Ω−
α+ we have sin(α) > 0, cos(α) > 0, sin(φ) < 0, and cos(φ) < 1, and

therefore a1(α, φ) < 0.

• a0(α, φ): Since

a0(α, φ) = sin2(α)− sin2(φ− α)

= sin2(α)− sin2(α− φ) (C.27)

and sin2(·) is monotone increasing on the interval [0, π/2], it holds that a0(α, φ) >

0 on Ω+
α+ and a0(α, φ) < 0 on Ω−

α+ .

Similarly, we have the following for the coefficients listed in (C.19).

• b3(α, φ):

– On Ω−
α+ we have cos(α) > 0, cos(φ) > 0 and h2(α, φ) > 0, and therefore

b3(α, φ) > 0.
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– For the analysis on Ω+
α+ , we express

b3(α, φ) = 2h2(α, φ)
{
cos(α) + cos(φ) [cos(φ+ α)− cos(α)]

}
(C.28)

and then consider the term in braces. Making use of the various bounds

applicable on Ω+
α+ , we have

cos(α) + cos(φ) [cos(φ+ α)− cos(α)]

= cos(α) + cos(φ) [cos(φ) cos(α)− sin(φ) sin(α)− cos(α)]

= cos(α)
[
1 + cos2(φ)− cos(φ)

]
+ cos(φ) sin(α)(− sin(φ))

≥ cos(α)
[
1 + cos2(φ)− cos(φ)

]
+ cos(φ) sin(α)(− cos(α))

≥ cos(α)
[
1 + cos2(φ)− cos(φ)

]
+ cos(φ)(− cos(φ)) cos(α)

≥ cos(α) [1− cos(φ)]

≥ 0, (C.29)

and therefore since h2(α, φ) < 0 on Ω+
α+ , we have b3(α, φ) ≤ 0.

• b2(α, φ):

– On Ω−
α+ we have cos(α) > 0, cos(φ) > 0 and h2(α, φ) > 0, and therefore

b2(α, φ) > 0.

– On Ω+
α+ , we have

h2(α, φ) + 4 cos(α) cos(φ) = cos(φ+ α)− cos(α) + 4 cos(α) cos(φ)

= 5 cos(α) cos(φ)− sin(α) sin(φ)− cos(α)

≥ 5 cos(α) sin(α)− sin(α) cos(α)− cos(α)

≥ cos(α) [4 sin(α)− 1] , (C.30)
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and

h2(α, φ) + 4 cos(α) cos(φ) = cos(φ+ α)− cos(α) + 4 cos(α) cos(φ)

≥ 5 cos2(α)− sin2(α)− cos(α)

≥ 5 cos2(α)− (1− cos2(α))− cos(α)

≥ (2 cos(α)− 1) (3 cos(α) + 1) . (C.31)

Since (C.30) is positive for sin(α) > 1/4 and (C.31) is positive for cos(α) >

1/2, one can verify that h2(α, φ) + 4 cos(α) cos(φ) ≥ 0 for 0 < α < π/2.

Therefore b2(α, φ) ≤ 0 on Ω+
α+ .

• b1(α, φ): First, observe that

b1(α, φ) = 2 cos(α) [cos(α) cos(φ) + h2(α, φ)− cos(φ− α)]

= 2 cos(α) [cos(α) cos(φ)− cos(α) + cos(φ+ α)− cos(φ− α)]

= 2 cos(α)
[
cos(α) cos(φ)− cos(α) + cos(α) cos(φ)− sin(α) sin(φ)

− cos(α) cos(φ)− sin(α) sin(φ)
]

= 2 cos(α) [cos(α) cos(φ)− cos(α)− 2 sin(α) sin(φ)] . (C.32)

– On Ω−
α+ , we have −2 sin(φ) > 0 and sin(α) ≥ − sin(φ), and therefore

−2 sin(φ) sin(α) ≥ −2 sin(φ)(− sin(φ)) = 2 sin2(φ). Applying this bound
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to (C.32), we have

b1(α, φ) ≥ 2 cos(α)
[
cos(α) cos(φ)− cos(α) + 2 sin2(φ)

]
≥ 2 cos(α)

[
cos(α) cos(φ)− cos(α) + 2− 2 cos2(φ)

]
≥ 2 cos(α)

(
1− cos(φ)

)(
2− cos(α) + 2 cos(φ)

)
≥ 2 cos(α)

(
1− cos(φ)

)(
2 + cos(α)

)
≥ 0. (C.33)

– On Ω+
α+ , we have cos(α) > 0, cos(φ) < 1, sin(α) > 0, and sin(φ) > 0, and

therefore b1(α, φ) < 0.

• b0(α, φ): Since

b0(α, φ) = cos2(α)− cos2(φ− α)

= cos2(α)− cos2(α− φ) (C.34)

and cos2(·) is monotone decreasing on the interval [0, π/2], it holds that

b0(α, φ) > 0 on Ω−
α+ and b0(α, φ) < 0 on Ω+

α+ .

We can now apply Descartes’ sign rule to both G1 and G2 restricted to the

sets Ω+
α+ and Ω−

α+ .

• On Ω+
α+ :

– All ai(α, φ) coefficients are positive or zero, i.e. there are no sign varia-

tions between consecutive coefficients. Then according to the sign rule,

G1 (viewed as a polynomial in ρ̃) does not have any positive real roots

on Ω+
α+ . Therefore G1(α, φ, ρ̃) 6= 0 at all points (α, φ, ρ̃) ∈ Ω+

α+ .
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– All bi(α, φ) coefficients (with the exception of b4(α, φ)) are negative or

zero, i.e. there is exactly one sign variation between consecutive coeffi-

cients. Then according to the sign rule, G2 may have at most one positive

real root on Ω+
α+ . However, since G2 is a fourth-order polynomial with

all real coefficients, any complex roots must occur in complex conjugate

pairs and therefore there must be an even number of real roots. Therefore

G2 does not have any positive real roots on Ω+
α+ , i.e. G2(α, φ, ρ̃) 6= 0 at

all points (α, φ, ρ̃) ∈ Ω+
α+ .

• On Ω−
α+ :

– All ai(α, φ) coefficients (with the exception of a4(α, φ)) are negative or

zero, and by the same reasoning used above, we have G1(α, φ, ρ̃) 6= 0 at

all points (α, φ, ρ̃) ∈ Ω−
α+ .

– All bi(α, φ) coefficients are positive or zero, i.e. G2(α, φ, ρ̃) 6= 0 at all

points (α, φ, ρ̃) ∈ Ω−
α+ .

Recalling from (C.14) and (C.15) that g1(α, φ, ρ̃) is a factor of G1(α, φ, ρ̃) and

g2(α, φ, ρ̃) is a factor of G2(α, φ, ρ̃), we observe that the previous results must apply

to g1(α, φ, ρ̃) and g2(α, φ, ρ̃) as well, i.e.

g1(α, φ, ρ̃) 6= 0 and g2(α, φ, ρ̃) 6= 0 at all points (α, φ, ρ̃) ∈ Ω+
α+ ∪ Ω−

α+ . (C.35)

Finally, we note that Ω+
α+ and Ω−

α+ can each be viewed as connected subsets of R3,

and therefore they each have the Intermediate Value Property, i.e. any continuous

function f : Ω+
α+ −→ R (or f : Ω−

α+ −→ R) has an interval as its image. Since gi
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(for i = 1, 2) is continuous on both Ω+
α+ and Ω−

α+ , the image of gi : Ω+
α+ −→ R and

the image of gi : Ω−
α+ −→ R are both intervals which do not include the value 0 (by

the result of (C.35)). Therefore in each case the image is either entirely positive or

entirely negative. One can resolve the sign ambiguity by evaluating gi at any point

(α, φ, ρ̃) in the respective sets Ω+
α+ and Ω−

α+ . For example, we can evaluate g1 at the

point (π/4, π/12, 1) ∈ Ω+
α+ to get

g1(π/4, π/12, 1) = −
√

2 + 2 cos(π/12) sin(π/12 + π/4) + [sin(π/4)− sin(π/12− π/4)]

= −
√

2 + 2 cos(π/12) sin(π/3) + sin(π/4)− sin(−π/6)

= −
√

2 + 2 cos(π/12)(
√

3/2) + (
√

2/2) + (1/2)

= (1/2)
(
−
√

6 + 6 cos(π/12) +
√

2 + 1
)

< 0, (C.36)

establishing that g1(α, φ, ρ̃) < 0 on Ω+
α+ . By analogous calculations, one can verify

the remaining claims of the proposition.

Derivation of (3.120):

Note that

∂P

∂λ̃
=

1

2P
(2e2λ̃ + 2δeλ̃) =

eλ̃

P

(
eλ̃ + δ

)
, (C.37)

and therefore

d2δ

dλ̃2
=

−1(
Peλ̃ + 1

)2
{(

∂P

∂λ̃

(
eλ̃ − δeλ̃ − 1

)
+ P

(
eλ̃ − δeλ̃

)
+ eλ̃

)(
Peλ̃ + 1

)
+
(
P
(
eλ̃ − δeλ̃ − 1

)
+
(
eλ̃ + δ

))(∂P
∂λ̃

eλ̃ + Peλ̃
)}
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=
−1(

Peλ̃ + 1
)2
{(

eλ̃

P

(
eλ̃ + δ

) (
eλ̃ − δeλ̃ − 1

)
+ Peλ̃

(
1− δ

)
+ eλ̃

)(
Peλ̃ + 1

)
−
(
P
(
eλ̃ − δeλ̃ − 1

)
+
(
eλ̃ + δ

))(eλ̃
P

(
eλ̃ + δ

)
eλ̃ + Peλ̃

)}

=
−eλ̃

P
(
Peλ̃ + 1

)2
{((

eλ̃ + δ
)(

eλ̃ − δeλ̃ − 1
)

+ P 2(1− δ) + P

)(
Peλ̃ + 1

)
−
(
P
(
eλ̃ − δeλ̃ − 1

)
+
(
eλ̃ + δ

))(
eλ̃
(
eλ̃ + δ

)
+ P 2

)}

=
−eλ̃

P
(
Peλ̃ + 1

)2
{(

eλ̃ + δ
)(

eλ̃ − δeλ̃ − 1
)

+ P 3eλ̃(1− δ) + P 2
(
1− δ + eλ̃

)
+ P

(
1 + eλ̃

(
eλ̃ + δ

)(
eλ̃ − δeλ̃ − 1

))
−
(
P 3
(
eλ̃ − δeλ̃ − 1

)
+ P 2

(
eλ̃ + δ

)
+ Peλ̃

(
eλ̃ + δ

)(
eλ̃ − δeλ̃ − 1

)
+ eλ̃

(
eλ̃ + δ

)2
)}

=
−eλ̃

P
(
Peλ̃ + 1

)2
{
P 3 + P 2 (1− 2δ) + P

+
(
eλ̃ + δ

)(
eλ̃ − δeλ̃ − 1

)
− eλ̃

(
eλ̃ + δ

)2
}

=
−eλ̃

P
(
Peλ̃ + 1

)2
{(

e2λ̃ + 2δeλ̃ + 1
)

(P + 1− 2δ) + P

+
(
eλ̃ + δ

)(
−e2λ̃ + (1− 2δ)eλ̃ − 1

)}

=
−eλ̃

P
(
Peλ̃ + 1

)2
{
P
(
e2λ̃ + 2δeλ̃ + 2

)
+
(
e2λ̃ + 2δeλ̃ + 1

)
(1− 2δ)

− e3λ̃ + e2λ̃(1− 3δ) + eλ̃(−2δ2 + δ − 1)− δ

}

=
−eλ̃

P
(
Peλ̃ + 1

)2
{
P
(
e2λ̃ + 2δeλ̃ + 2

)
− e3λ̃ + e2λ̃(2− 5δ)

+ eλ̃(−6δ2 + 3δ − 1) + (1− 3δ)

}
. (C.38)
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Proof of Proposition 3.5.11:

Proof. Define the term in the braces from (3.120) as b : Dδ,λ̃ −→ R,

b(δ, λ̃) = P
(
e2λ̃ + 2δeλ̃ + 2

)
− e3λ̃ + e2λ̃(2− 5δ) + eλ̃(−6δ2 + 3δ − 1) + (1− 3δ),

(C.39)

so that

d2δ

dλ̃2
=

−eλ̃

P
(
Peλ̃ + 1

)2 b(δ, λ̃). (C.40)

We prove the proposition by demonstrating that b(δ, λ̃) > 0 on the set
{

(δ, λ̃) ∈

Dδ,λ̃

∣∣∣ δ ∈ [1/25, 1)
}

. To simplify notation in the ensuing analysis, we denote ρ̃ , eλ̃

so that

b(δ, ρ̃) = P
(
ρ̃2 + 2δρ̃+ 2

)
+
(
−ρ̃3 + ρ̃2(2− 5δ) + ρ̃(−6δ2 + 3δ − 1) + (1− 3δ)

)
,

(C.41)

i.e. b maps Dδ,ρ̃ −→ R where

Dδ,ρ̃ =
{
[−1, 1]×R+

}
− {(−1, 1)} . (C.42)

We proceed by analyzing the related expression

B(δ, ρ̃) = b(δ, ρ̃)

[
P
(
ρ̃2 + 2δρ̃+ 2

)
−
(
−ρ̃3 + ρ̃2(2− 5δ) + ρ̃(−6δ2 + 3δ − 1) + (1− 3δ)

)]
=
[
P
(
ρ̃2 + 2δρ̃+ 2

)
+
(
−ρ̃3 + ρ̃2(2− 5δ) + ρ̃(−6δ2 + 3δ − 1) + (1− 3δ)

)]
×[

P
(
ρ̃2 + 2δρ̃+ 2

)
−
(
−ρ̃3 + ρ̃2(2− 5δ) + ρ̃(−6δ2 + 3δ − 1) + (1− 3δ)

)]
= P 2

(
ρ̃2 + 2δρ̃+ 2

)2 − (−ρ̃3 + ρ̃2(2− 5δ) + ρ̃(−6δ2 + 3δ − 1) + (1− 3δ)
)2

.

(C.43)
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Upon substitution of P =
√

(ρ̃2 + 2δρ̃+ 1), the first term simplifies to

(
ρ̃2 + 2δρ̃+ 1

) (
ρ̃4 + 4δρ̃3 + 4

(
1 + δ2

)
ρ̃2 + 8δρ̃+ 4

)
= ρ̃6 + 6δρ̃5 + (12δ2 + 5)ρ̃4 + (8δ3 + 20δ)ρ̃3 + (20δ2 + 8)ρ̃2 + 16δρ̃+ 4, (C.44)

and the second term of (C.43) simplifies to

−
(
ρ̃6 + (10δ − 4)ρ̃5 + (37δ2 − 26δ + 6)ρ̃4 + (60δ3 − 54δ2 + 28δ − 6)ρ̃3

+ (36δ4 − 36δ3 + 51δ2 − 28δ + 5)ρ̃2

+ (36δ3 − 30δ2 + 12δ − 2)ρ̃+ (9δ2 − 6δ + 1)

)
. (C.45)

Therefore we can express (C.43) as

B(δ, ρ̃) = −(4δ − 4)ρ̃5 − (25δ2 − 26δ + 1)ρ̃4 − (52δ3 − 54δ2 + 8δ − 6)ρ̃3

− (36δ4 − 36δ3 + 31δ2 − 28δ − 3)ρ̃2 − (36δ3 − 30δ2 − 4δ − 2)ρ̃

− (9δ2 − 6δ − 3)

= (1− δ)
{

4ρ̃5 + (25δ − 1)ρ̃4 + (52δ2 − 2δ + 6)ρ̃3

+ (36δ3 + 31δ + 3)ρ̃2 + (36δ2 + 6δ + 2)ρ̃+ (9δ + 3)
}
. (C.46)

Considering the quantity in (C.46) as a polynomial in ρ̃ with coefficients parametrized

by δ, one can verify that for δ ∈ [1/25, 1) all the coefficients are non-negative and

therefore (by Descartes’ sign rule) the parametrized polynomial has no positive real

roots. Since any pair (δ, ρ̃) satisfying b(δ, ρ̃) = 0 must also satisfy B(δ, ρ̃) = 0, we

conclude that b(δ, ρ̃) 6= 0 on the set
{

(δ, ρ̃) ∈ Dδ,ρ̃

∣∣∣ δ ∈ [1/25, 1)
}

. Note that b is

a continuous function on a connected subset of R2, and therefore the Intermediate

Value Theorem applies (i.e. the image of b is an interval). We have already demon-

strated that zero is not included in the image when b is restricted to the smaller
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subset [1/25, 1) × R+, and therefore the image must be an interval that is entirely

positive or entirely negative. We resolve the ambiguity by testing a particular point

such as (δ = 1/2, ρ̃ = 1), demonstrating that b(1/2, 1) = 4
√

3 − 3 > 0. Therefore

b > 0 (and hence d2δ
dλ̃2 < 0) on the entire set

{
(δ, ρ̃) ∈ Dδ,ρ̃

∣∣∣ δ ∈ [1/25, 1)
}

.

Derivation of the circling equilibrium Jacobian matrix (3.148): This can

be derived directly by substituting (2.75) into the Jacobian matrix elements and

then simplifying through a sequence of trigonometric manipulations, analogous to

the calculations for the pure shape equilibrium linearization (3.156) detailed next in

this appendix. Since the calculations are similar, we will instead establish (3.148) by

demonstrating that it follows from (3.156) under the circling equilibrium existence

conditions.

If a circling equilibrium exists for the three-particle case, then {α1, α2, α3}

must satisfy sin
(∑3

i=1 αi
)

= 0 and sin(αi−1) sin(αi) > 0, i = 1, 2, 3. Since αi ∈

[0, 2π], i = 1, 2, 3, this is only possible if one of the following four cases holds:

• αi ∈ (0, π), i = 1, 2, 3, and
∑3

i=1 αi = π,

• αi ∈ (0, π), i = 1, 2, 3, and
∑3

i=1 αi = 2π,

• αi ∈ (π, 2π), i = 1, 2, 3, and
∑3

i=1 αi = 4π,

• αi ∈ (π, 2π), i = 1, 2, 3, and
∑3

i=1 αi = 5π.

From Remark 2.4.5, we note that circling equilibria are a special case of pure

shape equilibria for which sin(τk) = 0, and therefore if a three-particle circling

equilibrium exists, then there must exist k̂ ∈ {1, 2} such that sin(τk̂) = 0, where
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τk̂ = − k̂π
3

+ 1
3

∑3
i=1 αi. In the following table, we identify the value of k̂ for each of

the cases listed above:

∑3
i=1 αi k̂ τk̂ cos(k̂π) cos(τk̂) cos

(∑3
i=1 αi

)
αi ∈ (0, π), i = 1, 2, 3 π 1 0 −1 1 −1

αi ∈ (0, π), i = 1, 2, 3 2π 2 0 1 1 1

αi ∈ (π, 2π), i = 1, 2, 3 4π 1 π −1 −1 1

αi ∈ (π, 2π), i = 1, 2, 3 5π 2 π 1 −1 −1

The most significant observation here is that in every case cos(k̂π)/ cos(τk̂) =

cos
(∑3

i=1 αi
)
, and therefore we can substitute cos

(∑3
i=1 αi

)
as appropriate into

the elements of (3.156). Then since substitution of either τk = 0 or τk = π into

(3.157) yields

S1 = sin(α1 + α2) + sin(α1) cos(α2),

S2 = sin(α1 + α2) + sin(α2) cos(α1),

C = sin(α1) sin(α2),

D = sin2(α1 + α2)− sin(α1) sin(α2) cos(α1) cos(α2), (C.47)

it is apparent that (3.148) follows from (3.156).

Derivation of the pure shape equilibrium Jacobian matrix (3.156): By

Proposition 2.4.2 and (3.51), the equilibrium values for θ2 and eλ̃ (at a pure
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shape equilibrium) are given by

θ2 = π − α1 + 2τk, eλ̃ =
sin(α2 − τk)

sin(α1 − τk)
, (C.48)

and by (3.49) and Proposition 2.4.2, we have1

P =
sin(α3 − τk)

sin(α1 − τk)

=
sin
(
(α3 − 3τk) + 2τk

)
sin(α1 − τk)

=
sin
(
(kπ − α1 − α2

)
+ 2τk)

sin(α1 − τk)

=
− cos(kπ) sin(α1 + α2 − 2τk)

sin(α1 − τk)
. (C.49)

where

τk = −kπ
3

+
3∑
i=1

αi
3
. (C.50)

We also note the following useful simplification:

sin2(α2 − τk) + 2 cos(α1 + α2 − 2τk) sin(α1 − τk) sin(α2 − τk) + sin2(α1 − τk)

= sin2(α2 − τk) + 2 cos(α1 − τk) cos(α2 − τk) sin(α1 − τk) sin(α2 − τk)

− 2 sin2(α1 − τk) sin2(α2 − τk) + sin2(α1 − τk)

= sin2(α2 − τk)
(
1− sin2(α1 − τk)

)
+ sin2(α1 − τk)

(
1− sin2(α2 − τk)

)
+ 2 cos(α1 − τk) cos(α2 − τk) sin(α1 − τk) sin(α2 − τk)

= sin2(α2 − τk) cos2(α1 − τk) + sin2(α1 − τk) cos2(α2 − τk)

+ 2 cos(α1 − τk) cos(α2 − τk) sin(α1 − τk) sin(α2 − τk)

=
(
sin(α1 − τk) cos(α2 − τk) + cos(α1 − τk) sin(α2 − τk)

)2
= sin2(α1 + α2 − 2τk). (C.51)

1This can also be derived by direct substitution of (C.48) into (3.52).
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In anticipation of substituting (C.48) and (C.49) into the Jacobian matrix, we

note that the equilibrium values satisfy

sin(θ2) = sin(π − α1 + 2τk) = sin(α1 − 2τk),

cos(θ2) = cos(π − α1 + 2τk) = − cos(α1 − 2τk),

sin(θ2 − α2) = sin(π − α1 + 2τk − α2) = sin(α1 + α2 − 2τk),

cos(θ2 − α2) = cos(π − α1 + 2τk − α2) = − cos(α1 + α2 − 2τk),

α3 − τk = (α3 − 3τk) + 2τk =

(
α3 + kπ −

3∑
i=1

αi

)
+ 2τk = kπ − α1 − α2 + 2τk,

θ2 − α2 − α3 = π + 2τk −
3∑
i=1

αi =

(
π + 3τk −

3∑
i=1

αi

)
− τk = π(1− k)− τk,

(C.52)

from which it follows that

sin(α1) + sin(θ2) = sin
(
(α1 − τk) + τk

)
+ sin(α1 − τk) cos(τk)− cos(α1 − τk) sin(τk)

= 2 sin(α1 − τk) cos(τk),

cos(α1) + cos(θ2) = cos
(
(α1 − τk) + τk

)
− cos(α1 − τk) cos(τk)− sin(α1 − τk) sin(τk)

= −2 sin(α1 − τk) sin(τk),

sin(α3 − τk) = sin(kπ − α1 − α2 + 2τk) = − cos(kπ) sin(α1 + α2 − 2τk),

cos(α3 − τk) = cos(kπ − α1 − α2 + 2τk) = cos(kπ) cos(α1 + α2 − 2τk),

sin(θ2 − α2 − α3) = sin
(
π(1− k)− τk

)
= − cos

(
π(1− k)

)
sin(τk) = cos(kπ) sin(τk),

cos(θ2 − α2 − α3) = cos
(
π(1− k)− τk

)
= cos

(
π(1− k)

)
cos(τk) = − cos(kπ) cos(τk).

(C.53)

We then substitute into the elements of our Jacobian matrix, starting with
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(3.64), to obtain

∂g1

∂θ2

= K

{
−
(

sin(α2 − τk)

sin(α1 − τk)

)3

cos(α1 − 2τk)

+

(
sin(α2 − τk)

sin(α1 − τk)

)2 [
2 cos(τk) sin(α1 − τk) sin(α1 + α2 − 2τk)

− 2 cos(α1 + α2 − 2τk) cos(α1 − 2τk)
]

+

(
sin(α2 − τk)

sin(α1 − τk)

)[
− cos(α1 − 2τk)− sin(α2) sin(α1 + α2 − 2τk)

]
−
(

cos(kπ) sin(α1 + α2 − 2τk)

sin(α1 − τk)

)
cos(kπ) cos(τk)

}
, (C.54)

where

K =
1

P
=

− sin(α1 − τk)

cos(kπ) sin(α1 + α2 − 2τk)
. (C.55)

Then factoring out −1
sin3(α1−τk)

from the term in braces, and letting

K1 =

(
1

P

)(
−1

sin3(α1 − τk)

)
=

1

cos(kπ) sin2(α1 − τk) sin(α1 + α2 − 2τk)
, (C.56)

we have

∂g1

∂θ2

= K1

{
sin3(α2 − τk) cos(α1 − 2τk)

− 2 cos(τk) sin2(α1 − τk) sin2(α2 − τk) sin(α1 + α2 − 2τk)

+ 2 sin(α1 − τk) sin2(α2 − τk) cos(α1 + α2 − 2τk) cos(α1 − 2τk)

+ sin2(α1 − τk) sin(α2 − τk) cos(α1 − 2τk)

+ sin2(α1 − τk) sin(α2 − τk) sin(α2 − τk + τk) sin(α1 + α2 − 2τk)

+ sin2(α1 − τk) cos(τk) sin(α1 + α2 − 2τk)

}

= K1

{
sin(α2 − τk) cos(α1 − 2τk)

[
sin2(α2 − τk) + sin2(α1 − τk)
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+2 sin(α1 − τk) sin(α2 − τk) cos(α1 + α2 − 2τk)
]

+ sin2(α1 − τk) sin(α1 + α2 − 2τk)

[
−2 cos(τk) sin2(α2 − τk) + cos(τk)

+ sin(α2 − τk)
(
sin(α2 − τk) cos(τk) + cos(α2 − τk) sin(τk)

)]}
,

(C.57)

where we have used underlining to indicate terms which were grouped and simplified

in proceeding from the first equality to the second equality. We can apply (C.51) to

the term in the first set of brackets, and the second set of brackets simplifies to

− cos(τk) sin2(α2 − τk) + cos(τk) + sin(α2 − τk) cos(α2 − τk) sin(τk)

= cos(τk) cos2(α2 − τk) + sin(α2 − τk) cos(α2 − τk) sin(τk)

= cos(α2 − τk)
(
cos(α2 − τk) cos(τk) + sin(α2 − τk) sin(τk)

)
, (C.58)

and hence (C.57) simplifies to

∂g1

∂θ2

= K2

{
sin(α2 − τk) cos(α1 − 2τk) sin(α1 + α2 − 2τk)

+ sin2(α1 − τk) cos(α2 − τk)
(
cos(α2 − τk) cos(τk) + sin(α2 − τk) sin(τk)

)}
,

(C.59)

where we have factored out sin(α1 + α2 − 2τk) and defined

K2 = sin(α1 + α2 − 2τk)K1 =
1

cos(kπ) sin2(α1 − τk)
. (C.60)

We further simplify (C.59) by expanding cos(α1 − 2τk) and grouping coefficients of
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cos(τk) and sin(τk), arriving at

∂g1

∂θ2

= K2

{
sin(α2 − τk) sin(α1 + α2 − 2τk)

(
cos(α1 − τk) cos(τk) + sin(α1 − τk) sin(τk)

)
+ sin2(α1 − τk) cos(α2 − τk)

(
cos(α2 − τk) cos(τk) + sin(α2 − τk) sin(τk)

)}

= K2

{
cos(τk)

[
sin(α1 + α2 − 2τk) sin(α2 − τk) cos(α1 − τk)

+ sin2(α1 − τk) cos2(α2 − τk)
]

+ sin(τk) sin(α1 − τk) sin(α2 − τk)
[
sin(α1 + α2 − 2τk)

+ sin(α1 − τk) cos(α2 − τk)
]}

= K2

{
cos(τk)

[
sin2(α2 − τk) cos2(α1 − τk) + sin2(α1 − τk) cos2(α2 − τk)

+ sin(α1 − τk) sin(α2 − τk) cos(α1 − τk) cos(α2 − τk)
]

+ sin(τk) sin(α1 − τk) sin(α2 − τk)
[
sin(α1 + α2 − 2τk)

+ sin(α1 − τk) cos(α2 − τk)
]}

,

(C.61)

where we have progressed from the second to the third equality in (C.61) by ex-

panding sin(α1 + α2 − 2τk) and multiplying out. Then applying2 (C.51) to the first

bracket term and defining

D = sin2(α1 + α2 − 2τk)− sin(α1 − τk) sin(α2 − τk) cos(α1 − τk) cos(α2 − τk),

C = sin(α1 − τk) sin(α2 − τk),

S1 = sin(α1 + α2 − 2τk) + sin(α1 − τk) cos(α2 − τk), (C.62)

2This step is made clear by comparing the third equality in (C.51) with the first bracket term

of (C.61).
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we have

∂g1

∂θ2

=
cos(τk)D + sin(τk)CS1

cos(kπ) sin2(α1 − τk)
. (C.63)

Now to derive the (1, 2) element of the Jacobian matrix, we substitute (C.48),

(C.49), and the simplifying terms (C.52) and (C.53) into (3.65) to obtain

∂g1

∂λ̃
= L

{
4

(
sin(α2 − τk)

sin(α1 − τk)

)2

cos(τk) sin(α1 − τk)

−
(

sin(α2 − τk)

sin(α1 − τk)

)[
sin(α2)− 6 cos(τk) sin(α1 − τk) cos(α1 + α2 − 2τk)

]
− sin(α2) cos(α1 + α2 − 2τk) + 2 cos(τk) sin(α1 − τk)

+

(
cos(kπ) sin(α1 + α2 − 2τk)

sin(α1 − τk)

)
sin(α3)

}

=
L

sin(α1 − τk)

{
4 sin2(α2 − τk) cos(τk)

− sin(α2 − τk)
[
sin(α2)− 6 cos(τk) sin(α1 − τk) cos(α1 + α2 − 2τk)

]
− sin(α2) sin(α1 − τk) cos(α1 + α2 − 2τk) + 2 cos(τk) sin2(α1 − τk)

+ cos(kπ) sin(α1 + α2 − 2τk) sin(α3)

}
, (C.64)

where

L =
eλ̃

P
=

− sin(α2 − τk)

cos(kπ) sin(α1 + α2 − 2τk)
. (C.65)

Then using the expansion

sin(αi) = sin
(
(αi − τk) + τk

)
= sin(αi − τk) cos(τk) + cos(αi − τk) sin(τk) (C.66)
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for sin(α2) and sin(α3), we have

∂g1

∂λ̃
=

L

sin(α1 − τk)

{
4 sin2(α2 − τk) cos(τk) + 2 cos(τk) sin2(α1 − τk)

− sin(α2 − τk)
[
sin(α2 − τk) cos(τk) + cos(α2 − τk) sin(τk)

]
+ 6 cos(τk) sin(α1 − τk) sin(α2 − τk) cos(α1 + α2 − 2τk)

− sin(α1 − τk) cos(α1 + α2 − 2τk)
[
sin(α2 − τk) cos(τk) + cos(α2 − τk) sin(τk)

]
+ cos(kπ) sin(α1 + α2 − 2τk)

[
sin(α3 − τk) cos(τk) + cos(α3 − τk) sin(τk)

]}

=
L

sin(α1 − τk)

{
3 sin2(α2 − τk) cos(τk) + 2 cos(τk) sin2(α1 − τk)

− sin(α2 − τk) cos(α2 − τk) sin(τk)

+ 5 cos(τk) sin(α1 − τk) sin(α2 − τk) cos(α1 + α2 − 2τk)

− sin(α1 − τk) cos(α1 + α2 − 2τk) cos(α2 − τk) sin(τk)

− sin2(α1 + α2 − 2τk) cos(τk) + sin(α1 + α2 − 2τk) cos(α1 + α2 − 2τk) sin(τk)

}
,

(C.67)

where we have used the expanded forms of sin(α3−τk) and cos(α3−τk) from (C.53).

We proceed by first grouping coefficients of cos(τk) and sin(τk) and then expanding

cos(α1 + α2 − 2τk) terms, as follows:

∂g1

∂λ̃
=

L

sin(α1 − τk)

{
cos(τk)

[
3 sin2(α2 − τk) + 2 sin2(α1 − τk)

− sin2(α1 + α2 − 2τk) + 5 sin(α1 − τk) sin(α2 − τk) cos(α1 + α2 − 2τk)
]

− sin(τk)

[
sin(α2 − τk) cos(α2 − τk)− sin(α1 + α2 − 2τk) cos(α1 + α2 − 2τk)

+ cos(α2 − τk) sin(α1 − τk) cos(α1 + α2 − 2τk)

]}
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=
L

sin(α1 − τk)

{
cos(τk)

[(
3 sin2(α2 − τk) + 2 sin2(α1 − τk)

− sin2(α1 + α2 − 2τk)− 5 sin2(α1 − τk) sin2(α2 − τk)

+ 5 sin(α1 − τk) sin(α2 − τk) cos(α1 − τk) cos(α2 − τk)
)]

− sin(τk)

[
sin(α2 − τk) cos(α2 − τk)− sin(α1 + α2 − 2τk) cos(α1 + α2 − 2τk)

+ cos2(α2 − τk) cos(α1 − τk) sin(α1 − τk)

− cos(α2 − τk) sin2(α1 − τk) sin(α2 − τk)

]}

=
L

sin(α1 − τk)

{
cos(τk)

[
3 sin2(α2 − τk) cos2(α1 − τk) + 2 sin2(α1 − τk) cos2(α2 − τk)

+5 sin(α1 − τk) sin(α2 − τk) cos(α1 − τk) cos(α2 − τk)− sin2(α1 + α2 − 2τk)
]

− sin(τk)

[
− sin(α1 + α2 − 2τk) cos(α1 + α2 − 2τk)

+ cos2(α2 − τk) cos(α1 − τk) sin(α1 − τk)

+ cos(α2 − τk) cos2(α1 − τk) sin(α2 − τk)

]}
. (C.68)

Then noting that the first underlined term simplifies to

[
sin(α2 − τk) cos(α1 − τk) + sin(α1 − τk) cos(α2 − τk)

]
×[

3 sin(α2 − τk) cos(α1 − τk) + 2 sin(α1 − τk) cos(α2 − τk)
]

= sin(α1 + α2 − 2τk)
[
2 sin(α1 + α2 − 2τk) + sin(α2 − τk) cos(α1 − τk)

]
(C.69)

and the second underlined term simplifies to

cos(α1 − τk) cos(α2 − τk)
[
sin(α1 − τk) cos(α2 − τk) + sin(α2 − τk) cos(α1 − τk)

]
= cos(α1 − τk) cos(α2 − τk) sin(α1 + α2 − 2τk), (C.70)
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we have

∂g1

∂λ̃
=

L

sin(α1 − τk)

{
cos(τk) sin(α1 + α2 − 2τk)

[
sin(α1 + α2 − 2τk)

+ sin(α2 − τk) cos(α1 − τk)
]

− sin(τk)

[
− sin(α1 + α2 − 2τk) cos(α1 + α2 − 2τk)

+ cos(α1 − τk) cos(α2 − τk) sin(α1 + α2 − 2τk)

]}

=
L sin(α1 + α2 − 2τk)

sin(α1 − τk)

{
cos(τk)

[
sin(α1 + α2 − 2τk) + sin(α2 − τk) cos(α1 − τk)

]
+ sin(τk)

[
cos(α1 + α2 − 2τk)− cos(α1 − τk) cos(α2 − τk)

]}

=
− sin(α2 − τk)

cos(kπ) sin(α1 − τk)

(
cos(τk)S2 − sin(τk)C

)
, (C.71)

where

S2 = sin(α1 + α2 − 2τk) + sin(α2 − τk) cos(α1 − τk), (C.72)

and C is as defined in (C.62).

Substituting equilibrium values into the (2, 1) element of the Jacobian matrix,

given by (3.66), yields

∂g2

∂θ2

= K

{
−
(

sin(α2 − τk)

sin(α1 − τk)

)3

sin(α1 − 2τk)

+

(
sin(α2 − τk)

sin(α1 − τk)

)2 [
−2 sin(τk) sin(α1 − τk) sin(α1 + α2 − 2τk)

− 2 cos(α1 + α2 − 2τk) sin(α1 − 2τk)
]

−
(

sin(α2 − τk)

sin(α1 − τk)

)[
sin(α1 − 2τk) + cos(α2) sin(α1 + α2 − 2τk)

]
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+

(
cos(kπ) sin(α1 + α2 − 2τk)

sin(α1 − τk)

)
cos(kπ) sin(τk)

}
, (C.73)

where K is as defined by (C.55). Then factoring out −1
sin3(α1−τk)

from the term in

braces, and defining K1 as in (C.56), we have

∂g2

∂θ2

= K1

{
sin3(α2 − τk) sin(α1 − 2τk)

+ 2 sin(τk) sin2(α1 − τk) sin2(α2 − τk) sin(α1 + α2 − 2τk)

+ 2 sin(α1 − τk) sin2(α2 − τk) cos(α1 + α2 − 2τk) sin(α1 − 2τk)

+ sin2(α1 − τk) sin(α2 − τk) sin(α1 − 2τk)

+ sin2(α1 − τk) sin(α2 − τk) cos(α2 − τk + τk) sin(α1 + α2 − 2τk)

− sin2(α1 − τk) sin(τk) sin(α1 + α2 − 2τk)

}

= K1

{
sin(α2 − τk) sin(α1 − 2τk)

[
sin2(α2 − τk) + sin2(α1 − τk)

+2 sin(α1 − τk) sin(α2 − τk) cos(α1 + α2 − 2τk)
]

+ sin2(α1 − τk) sin(α1 + α2 − 2τk)

[
2 sin(τk) sin2(α2 − τk)− sin(τk)

+ sin(α2 − τk)
(
cos(α2 − τk) cos(τk)− sin(α2 − τk) sin(τk)

)]}
.

(C.74)

The term in the first set of brackets simplifies by application of (C.51), and the

second set of brackets simplifies to

sin(τk) sin2(α2 − τk)− sin(τk) + sin(α2 − τk) cos(α2 − τk) cos(τk)

= − sin(τk) cos2(α2 − τk) + sin(α2 − τk) cos(α2 − τk) cos(τk)

= cos(α2 − τk)
(
− cos(α2 − τk) sin(τk) + sin(α2 − τk) cos(τk)

)
, (C.75)

275



and hence (C.74) simplifies to

∂g2

∂θ2

= K2

{
sin(α2 − τk) sin(α1 − 2τk) sin(α1 + α2 − 2τk)

+ sin2(α1 − τk) cos(α2 − τk)
(
− cos(α2 − τk) sin(τk) + sin(α2 − τk) cos(τk)

)}
,

(C.76)

where we have factored out sin(α1 + α2 − 2τk) and defined K2 as in (C.60). Then

expanding the sin(α1 − 2τk) term and grouping coefficients of cos(τk) and sin(τk),

we have

∂g2

∂θ2

= K2

{
sin(α2 − τk) sin(α1 + α2 − 2τk)

(
sin(α1 − τk) cos(τk)− cos(α1 − τk) sin(τk)

)
+ sin2(α1 − τk) cos(α2 − τk)

(
− cos(α2 − τk) sin(τk) + sin(α2 − τk) cos(τk)

)}

= K2

{
cos(τk) sin(α1 − τk) sin(α2 − τk)

[
sin(α1 + α2 − 2τk)

+ sin(α1 − τk) cos(α2 − τk)
]

− sin(τk)
[
sin(α1 + α2 − 2τk) sin(α2 − τk) cos(α1 − τk)

+ sin2(α1 − τk) cos2(α2 − τk)
]}

,

(C.77)

and by comparison with the second equality in (C.61), we see that

∂g2

∂θ2

=
cos(τk)CS1 − sin(τk)D

cos(kπ) sin2(α1 − τk)
. (C.78)

We complete our Jacobian calculation by evaluating the (2, 2) element, given

by (3.67). Substituting (C.48), (C.49), and the simplifying terms (C.52) and (C.53)
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into (3.67), we have

∂g2

∂λ̃
= L

{
−4

(
sin(α2 − τk)

sin(α1 − τk)

)2

sin(τk) sin(α1 − τk)

−
(

sin(α2 − τk)

sin(α1 − τk)

)[
cos(α2) + 6 sin(τk) sin(α1 − τk) cos(α1 + α2 − 2τk)

]
− cos(α2) cos(α1 + α2 − 2τk)− 2 sin(τk) sin(α1 − τk)

+

(
cos(kπ) sin(α1 + α2 − 2τk)

sin(α1 − τk)

)
cos(α3)

}

=
−L

sin(α1 − τk)

{
4 sin2(α2 − τk) sin(τk)

+ sin(α2 − τk)
[
cos(α2) + 6 sin(τk) sin(α1 − τk) cos(α1 + α2 − 2τk)

]
+ cos(α2) sin(α1 − τk) cos(α1 + α2 − 2τk) + 2 sin(τk) sin2(α1 − τk)

− cos(kπ) sin(α1 + α2 − 2τk) cos(α3)

}
, (C.79)

where L is defined by (C.65). Applying the expansion

cos(αi) = cos
(
(αi − τk) + τk

)
= cos(αi − τk) cos(τk)− sin(αi − τk) sin(τk) (C.80)

to cos(α2) and cos(α3), we have

∂g2

∂λ̃
=

−L
sin(α1 − τk)

{
4 sin2(α2 − τk) sin(τk) + 2 sin(τk) sin2(α1 − τk)

+ sin(α2 − τk)
[
cos(α2 − τk) cos(τk)− sin(α2 − τk) sin(τk)

]
+ 6 sin(τk) sin(α1 − τk) sin(α2 − τk) cos(α1 + α2 − 2τk)

+ sin(α1 − τk) cos(α1 + α2 − 2τk)
[
cos(α2 − τk) cos(τk)− sin(α2 − τk) sin(τk)

]
− cos(kπ) sin(α1 + α2 − 2τk)

[
cos(α3 − τk) cos(τk)− sin(α3 − τk) sin(τk)

]}

=
−L

sin(α1 − τk)

{
3 sin2(α2 − τk) sin(τk) + 2 sin(τk) sin2(α1 − τk)
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+ sin(α2 − τk) cos(α2 − τk) cos(τk)

+ 5 sin(τk) sin(α1 − τk) sin(α2 − τk) cos(α1 + α2 − 2τk)

+ sin(α1 − τk) cos(α1 + α2 − 2τk) cos(α2 − τk) cos(τk)

− sin(α1 + α2 − 2τk) cos(α1 + α2 − 2τk) cos(τk)− sin2(α1 + α2 − 2τk) sin(τk)

}
,

(C.81)

where we have used the expanded forms of sin(α3−τk) and cos(α3−τk) from (C.53).

Grouping coefficients of cos(τk) and sin(τk), we have

∂g2

∂λ̃
=

−L
sin(α1 − τk)

{
sin(τk)

[
3 sin2(α2 − τk) + 2 sin2(α1 − τk)

+ 5 sin(α1 − τk) sin(α2 − τk) cos(α1 + α2 − 2τk)− sin2(α1 + α2 − 2τk)
]

+ cos(τk)

[
sin(α2 − τk) cos(α2 − τk)− sin(α1 + α2 − 2τk) cos(α1 + α2 − 2τk)

+ sin(α1 − τk) cos(α1 + α2 − 2τk) cos(α2 − τk)

]}
, (C.82)

and by comparison with the first equality in (C.68), it follows by analogy that

∂g2

∂λ̃
=

sin(α2 − τk)

cos(kπ) sin(α1 − τk)

(
cos(τk)C + sin(τk)S2

)
. (C.83)
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Appendix D

Supplemental calculations for chapter 4 analysis

of relative equilibria

Proof of Proposition 4.5.1:

Proof. (⇒) At a rectilinear relative equilibrium on MCB(a) we have ρi constant, i =

1, 2, ..., n, and therefore we can make the assignment σi = ρi = |ri,i+1|. Furthermore,

by definition of a rectilinear relative equilibrium, there exists a unit vector xcom such

that x1 = x2 = . . . = xn = xcom.

Note that the closure constraint

n∑
i=1

ri,i+1 = 0 (D.1)

always holds, implying that

0 = xcom ·
n∑
i=1

ri,i+1 =
n∑
i=1

xi · ri,i+1 =
n∑
i=1

|ri,i+1|
(
xi ·

ri,i+1

|ri,i+1|

)
=

n∑
i=1

σi ai, (D.2)

where the last equality follows from the definition of MCB(a).

(⇐) Assume that there exists a set of constants {σ1, σ2, . . . , σn} which satisfy the

conditions of Proposition 4.5.1. Then a rectilinear relative equilibrium can be
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constructed as follows:

1. Place r1 at the origin with the frame {x1,y1, z1} aligned with the coordinate

frame.

2. Assign the positions and velocities of the remaining n − 1 particles in an

iterative fashion by

xi = x1, i = 2, 3, . . . , n, (D.3)

ri+1 = ri + σiRz(αi)xi, i = 1, 2, . . . , n− 1, (D.4)

where αi is defined by (cosαi, sinαi) = (−ai,
√

1− a2
i ) and Rz(αi) is defined

by

Rz(αi) =


cos(αi) − sin(αi) 0

sin(αi) cos(αi) 0

0 0 1

 . (D.5)

We must show that our constructed state is on MCB(a) by demonstrating that

xi · ri,i+1

|ri,i+1| = ai, i = 1, 2, . . . , n. Using (D.4), we compute

xi ·
ri,i+1

|ri,i+1|
= xi ·

−σiRz(αi)xi
|σiRz(αi)xi|

= −xi ·Rz(αi)xi

= ai, i = 1, 2, . . . , n− 1. (D.6)

This shows that the first n− 1 particles are on MCB(a), and we must now show that

xn · rn,1

|rn,1| = an also.
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Summing up expressions (D.4), and substituting xi = x1 per (D.3), we have

rn =

(
n−1∑
i=1

σiRz(αi)

)
x1. (D.7)

Since r1 is at the origin, we have

xn ·
rn,1
|rn,1|

= xn ·
rn
|rn|

= x1 ·

(
1

σn

n−1∑
i=1

σiRz(αi)

)
x1 =

1

σn

n−1∑
i=1

(−σiai) = an, (D.8)

where the last step follows from the assumptions of the proposition. Therefore we

conclude that the state lies in MCB(a), and since xi = x1, i = 1, 2, . . . , n implies

that the state is at a rectilinear equilibrium, the proof is complete.

Proof of Proposition 4.5.2:

Proof. (⇒) Suppose a circling equilibrium exists on MCB(a) and is restricted to

a plane. By definition of MCB(a) we have xi · ri,i+1

|ri,i+1| = ai, i = 1, 2, . . . , n, and

without loss of generality, we assume that the circling equilibrium evolves in the

horizontal plane. In Remark 4.3.4 we demonstrated the relationship between

the planar CB strategy (defined in section 2.3) and the 3-D CB pursuit strat-

egy (Definition 4.3.2) restricted to the plane. In particular, we showed that

for i = 1, 2, . . . , n, if xi · ri,i+1

|ri,i+1| = ai in the plane, then there exists αi such that(
cos(αi), sin(αi)

)
=
(
−ai,±

√
1− a2

i

)
and Rz(αi)xi · ri,i+1

|ri,i+1| = −1. As discussed in

Remark 4.3.4, the 3-D CB strategy does not prescribe a particular sign for the

sin(αi), i.e., there are two discrete possibilities for each sin(αi). However, our previ-

ous analysis of planar circling equilibria in Proposition 2.4.1 demonstrates that all

the sin(αi) terms must have the same sign (i.e. sin(αi) =
√

1− a2
i , i = 1, 2, . . . , n,

or sin(αi) = −
√

1− a2
i , i = 1, 2, . . . , n), must all be nonzero (i.e. ai 6= ±1), and
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must satisfy sin (
∑n

i=1 αi) = 0.

(⇐) First, we observe that if all the vectors xi,yi,
ri,i+1

|ri,i+1| , i = 1, 2, . . . , n are coplanar

on MCB(a), then they remain coplanar. This follows from (4.21), since

żi =
−1

|ri,i+1|

[
yi ·

(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

)]
xi

=
−1

|ri,i+1|

[
yi ·

((
xi − xi+1

)
× ri,i+1

|ri,i+1|

)]
xi

= 0 (D.9)

if xi,yi,
ri,i+1

|ri,i+1| , i = 1, 2, . . . , n are all coplanar. Therefore, given {a1, a2, . . . , an}

satisfying the conditions of the proposition, we define αi as in the statement of the

proposition and construct our circling equilibrium in the horizontal plane as follows:

1. Place r1 on the horizontal axis with |r1| = rcom > 0 and assign the positions

of the remaining n− 1 particles by

ri = Rz

(
2
i−1∑
k=1

αk

)
r1, i = 2, 3, . . . , n. (D.10)

2. Specify the velocities by

xi = Rz

(π
2

) ri
|ri|

, i = 1, 2, . . . , n. (D.11)

Then by calculations analogous to the planar analysis already presented, one can

readily demonstrate that this represents a planar circling equilibrium.

282



Appendix E

Supplemental calculations for chapter 6 analysis

of relative equilibria

Derivation of (6.37): We first note that straightforward calculation yields

∂ω

∂κp
= ν̄ cos(κp),

∂ω

∂κe
= cos(κe),

∂ω

∂ρ
= 0

∂η

∂κp
= ν̄ sin(κp),

∂η

∂κe
= sin(κe),

∂η

∂ρ
= 0. (E.1)

Then defining

f1(κp, κe, ρ) , κ̇p = ω

(
−µpν̄ +

1

ρ

)
,

f2(κp, κe, ρ) , κ̇e = µe sin(κe) + ω

(
2µe cos(κe) +

1

ρ

)
,

f3(κp, κe, ρ) , ρ̇ = η, (E.2)

we have

∂f1

∂κp
=

(
∂ω

∂κp

)(
−µpν̄ +

1

ρ

)
= ν̄ cos(κp)

(
−µpν̄ +

1

ρ

)
,

∂f1

∂κe
=

(
∂ω

∂κe

)(
−µpν̄ +

1

ρ

)
= cos(κe)

(
−µpν̄ +

1

ρ

)
,

∂f1

∂ρ
= − ω

ρ2
,
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(E.3)

as well as

∂f2

∂κp
=

(
∂ω

∂κp

)(
2µe cos(κe) +

1

ρ

)
= ν̄ cos(κp)

(
2µe cos(κe) +

1

ρ

)
,

∂f2

∂κe
= µe cos(κe) +

(
∂ω

∂κe

)(
2µe cos(κe) +

1

ρ

)
+ ω (−2µe sin(κe))

= µe cos(κe) + cos(κe)

(
2µe cos(κe) +

1

ρ

)
− 2µeω sin(κe)

= µe

(
cos(κe) + 2 cos2(κe)− 2ω sin(κe)

)
+

cos(κe)

ρ

∂f2

∂ρ
= − ω

ρ2
,

(E.4)

and

∂f3

∂κp
=

(
∂η

∂κp

)
= ν̄ sin(κp),

∂f3

∂κe
=

(
∂η

∂κe

)
= sin(κe),

∂f3

∂ρ
= 0.

(E.5)

Thus the Jacobian matrix associated with the linearization of (6.20) is given

by

(
∂f

∂x

)
=


ν̄ cos(κp)

(
−µpν̄ + 1

ρ

)
cos(κe)

(
−µpν̄ + 1

ρ

)
− ω
ρ2

ν̄ cos(κp)
(
2µe cos(κe) + 1

ρ

)
∂f2
∂κe

− ω
ρ2

ν̄ sin(κp) sin(κe) 0

 , (E.6)

where ∂f2
∂κe

= µe

(
cos(κe) + 2 cos2(κe)− 2ω sin(κe)

)
+ cos(κe)

ρ
.
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