THESIS REPORT
Ph.D.

Hierarchical Task Network Planning:
Formalization, Analysis, and Implementation

by K. Erol
Advisors: D. Nau and J. Hendler

Ph.D. 96-4

IR

INSTITUTE FOR SYSTEMS RESEARCH!

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

Hierarchical Task Network Planning:
Formalization, Analysis,
and Implementation

Kutluhan Erol

Advisors
Drs. Dana Nau and James Hendler

University of Maryland
College Park, MD 20742

Abstract

Planning is a central activity in many areas including robotics, manufacturing, space
mission sequencing, and logistics. As the size and complexity of planning problems grow,
there is great economic pressure to automate this process in order to reduce the cost of
planning effort, and to improve the quality of produced plans.

Al planning research has focused on general-purpose planning systems which can process
the specifications of an application domain and generate solutions to planning problems in
that domain. Unfortunately, there is a big gap between theoretical and application oriented
work in Al planning. The theoretical work has been mostly based on state-based planning,
which has limited practical applications. The application-oriented work has been based on
hierarchical task network (HTN) planning, which lacks a theoretical foundation. As a result,
in spite of many years of research, building planning applications remains a formidable task.

The goal of this dissertation is to facilitate building reliable and effective planning appli-
cations. The methodology includes design of a mathematical framework for HTN planning,
analysis of this framework, development of provably correct algorithms based on this analy-
sis, and the implementation of these algorithms for further evaluation and exploration. The
representation, analyses, and algorithms described in this thesis will make it easier to apply
HTN planning techniques effectively and correctly to planning applications. The precise and
mathematical nature of the descriptions will also help teaching about HTN planning, will
clarify misconceptions in the literature, and will stimulate further research.

Contents

1

3

Introduction 1
1.1 Motivation e e 1
1.2 Research Issues e 4
1.3 Approach 4
1.3.1 Formalization 4
1.3.2 Analysis e 5
1.3.3 Implementation L. 5
1.4 Organization i 6
Related Work 7
2.1 The Early Years of ATl Planning 7
2.2 The Planning Systems in 1970’s L. 9
2.2.1 Planning Terminology, 10
2.2.2 Abstraction Hierarchies. o 000 10
2.2.3 Relaxation of the Linearity Assumption 11
2.2.4 Least Commitment 12
2.2.5 Task Networks and Task Decomposition 12
2.2.6 Filter Conditions o oo 13
2.2.7 Critics o v o e e e 14
2.3 Formalization and Analysis Efforts 000 15
2.3.1 The STRIPS Representation 16
2.3.2 State-based Planning Algorithms 19
2.3.3 Complexity Analyses o 22
2.3.4 Abstraction Hierarchies. 26
2.3.5 Partial-order versus Total-order Planning 27
2.3.6 Task Networks and Task Decomposition 28
2.4 DISCussion i e e e e e e e e e e e e e e e e 29
HTN Formalism 30
3.1 An Overview of HTN planning 30
3.2 Syntax for HTN Planning 33
3.3 Model-Theoretic Semantics e 37

3.4
3.5
3.6

3.3.1 Semantic Structure
3.3.2 Satisfaction
Operational Semantics
UMCP: A Provably Correct HTN Algorithm
Discussion e
3.6.1 Tasks and Task-decomposition
3.6.2 High-Level Effects

3.6.3 Conditions

Complexity of HTN Planning

4.1
4.2
4.3

Undecidability Results
Decidability and Complexity Results
Discussion

.....................................

Expressivity of HTN Planning

5.1

5.2

Expressivity Definitions for Planning
5.1.1 Complexity-based Expressivity
5.1.2 Model-Theoretic Expressivity
5.1.3 Operational Expressivity
Expressivity: HTNs versus STRIPS Representation
5.2.1 Transformations from STRIPSto HTNs
5.2.2 Complexity-based Expressivity Results
5.2.3 Model-Theoretic Expressivity Results
5.2.4 Operational Expressivity Results
5.2.5 Discussion of Expressivity Results

Algorithms used by the UMCP System

6.1

6.2
6.3

6.4
6.5
6.6

Refinement Search in UMCP
6.1.1 Properties of Refinement in UMCP
6.1.2 High-level Data Structures for UMCP
Task Expansion as Refinement
Constraint Refinement in UMCP
6.3.1 Overview of Constraint Refinement in UMCP
6.3.2 Constraint Selectionin UMCP
6.3.3 Constraint Enforcement in UMCP
6.3.4 Constraint Propagation in UMCP
6.3.5 Constraint Simplification Phase
6.3.6 Details of Constraint Evaluation and Enforcement
Domain-Specific Critics e
Selection of Refinement Strategy
The UMCP Architecture
6.6.1 Modules e

11

6.6.2 User Interface 87

6.7 DiIsCuSSIOn i L e e e e e e e e e e 88
Examples 91
7.1 Writing Domain Specifications, 91
7.2 Case Study 1: UM Translog Domain 95
7.2.1 Description 95
7.2.2 A Sample Problem in UM Translog Domain 102

7.3 Case Study 2: CNF Domain 117
7.3.1 Domain Specification for the CNF Domain 117
7.3.2 A Sample Problem 119
7.3.3 Solving the Sample Problem with UMCP 120
Conclusion 122
8.1 Research Contributions L. 122
8.2 Future Research Directions 124
8.2.1 Improving Performance of HTN Planning 124
8.2.2 Expanding Capabilities of HTN Planning 125
Proofs of Theorems 126
B UM-Translog Domain Specification 136
B.1 Symbol Declarations 136
B.2 Actions e e 137
B.3 Methods e e 141
B.4 A Sample Problem 151

i1

List of Figures

1.1
2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

5.1
3.2
3.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4

A General View of Domain-independent Planning 2
A sample blocks world problem. 17
Ataskmetwork 31
A (simplified) method for going from X toY. 31
The basic HTN Planning Procedure. 32
A decomposition of the the task network in Fig. 3.1 32
Graphical representation of a task network. 35
Formal representation of the task network of Fig. 3.5. 36
UMCP: Universal Method-Composition Planner 44
Graphical representation of a method for Transformation 1.. 61
A transformation from STRIPS to HTN Language 61
A second Transformation L L. 62
Form of Methods in Transformation 2. 62
High-level Refinement-Search in UMCP 68
Search Tree for a Satisfiability Problem 74
Constraint refinement for Satisfiability Problem 75
Data Flow Diagram of Constraint Refinement in UMCP 7
Constraint refinement in UMCP 78
Constraint Enforcement Diagram 80
Steps of Domain Specification in the HTN Language 92
Location Type Hierarchy 97
Top-level Task Hierarchy 101
Transport Paths o 102

v

List of Tables

2.1 Decidability of State-based Planning. 24
2.2 Complexity of Finite State-based planning. 24
2.3 Complexity of Propositional State-based planning. 24

4.1 Complexity of HT'N Planning

Chapter 1

Introduction

1.1 Motivation

Planning involves reasoning about actions in order to find a way of achieving desired behav-
iors. It is an essential component of human intelligence, and it has a wide range of applica-
tions in areas such as robotics, manufacturing, space mission sequencing, and logistics. The
size and complexity of these applications are rapidly growing beyond the capabilities of the
people responsible for planning. There is great economic pressure to automate this process
in order to reduce the cost of planning effort, and to improve the quality of produced plans.

Building one planning system for each application is not cost effective. Such a planning
system is of little use beyond its specific application domain. It is very difficult to maintain
and modify such a planning system as the requirements of the application change. Further-
more, building a reliable planning system is very demanding. Conventional programming
languages such as C or Pascal do not provide any support for implementing complex planning
applications.

Planning applications, although diverse in nature, share many common aspects. Thus,
it is feasible to build general-purpose planning systems which can process the specifications
of an application domain and generate solutions to planning problems in that domain. This
avenue of research is called domain-independent planning.

Figure 1.1 shows a general view of domain-independent planning. Application experts
prepare a specification of the application domain using a special planning language. Users of
the planning system prepare specifications of planning problems that need to be solved. A
general-purpose planning system, built by planning researchers, processes the specifications
and produces solutions to those problems.

Building domain-independent planning systems is very challenging. Such a system must
be practical. It must produce high quality solutions in a timely fashion, and it must meet
the demands of planning applications. Domain independent planning systems must also
have solid theoretical foundations. The language used for writing domain and problem
specifications must have a precise syntax and semantics. Without precise semantics, it
is very difficult, if not impossible, to develop correct and efficient algorithms for solving

domain
specification

problem
specificaton

I
Domain Independent prans

Planning System

Figure 1.1: A General View of Domain-independent Planning

problems written in that language. A precise syntax and semantics also facilitate writing
correct domain specifications. Application experts and users only need to learn the syntax
and semantics of the language without having to learn the implementation details of complex
planning systems. Furthermore, the language must be sufficiently expressive to represent the
domain information necessary to solve problems in a reasonably wide range of applications.

Unfortunately, the interaction between the theoretical work and the more pragmatic,
application oriented work on Al planning has been limited.

The theoretical work on domain-independent planning has been mostly on state-based
planning! that stemmed from STRIPS [24] planning system, with roots in situation calcu-
lus [47]. The state-based planning paradigm has been deeply investigated. The representa-
tion (i.e., the STRIPS language) has been precisely defined, and the flaws in its semantics
have been corrected [47, 45]. Many algorithms for finding plans have been developed and
investigated [60, 15, 46, 10, 41, 54]. The computational complexity of solving planning
problems represented in the STRIPS language has been studied in detail [12, 15, 22].

In spite of all this effort, state-based planning has been used mostly in the realm of simple
“toy” domains, which were designed for research purposes only. The limitations of the type
of information about an application domain that can be encoded in the STRIPS language,
the computational cost of finding solutions, and the inadequacy of the mechanisms designed
for building more efficient state-based planning systems prevent the transition to real world
applications.

The more pragmatic work on domain-independent planning has paid less attention to
formal foundations, and instead focused directly on building planning systems. Out of this
research avenue was born a number of planning systems such as HACKER [63], NOAH [59],
and NONLIN [64]. These systems established a new planning paradigm called hierarchical
task network(HTN) planning.

HTN planning introduced many powerful ideas such as tasks and task decomposition,
partial order planning, and least commitment. HTN planning systems showed much promise
in building planning applications. For example, DEVISER [69] was used to develop a proto-
type for Voyager spacecraft mission sequencing, and SIPE [72] was used to build a prototype
system for factory automation.

Unfortunately, HTN planning systems could not be developed to the level of successful
software products for planning applications. I contend this is due to the lack of an under-
lying theoretical foundation. HTN planning techniques are heuristic in nature, and rather
vaguely specified. Descriptions of these techniques are buried deep down in the implemen-
tation details of planning systems. As a result, HT'N techniques are understood very little,
and they cannot be reliably used to build planning applications. HTN planning techniques
are powerful, but they still need to be improved and extended in order to make them work
effectively in a wide range of applications. The lack of a precise understanding of HTN plan-

! As explained in Section 2.2.1, the terms “state-based planning” and “STRIPS-style planning” are inter-
changeably used to refer to planning techniques and algorithms which represent change in the world with
STRIPS operators, and which represent desired behaviors as attainment goals in the final state. Examples
are TWEAK, SNLP, and WARPLAN.

ning constructs impedes further research for improving them. Some of the ideas introduced
in HTN planning have been adapted to state-based planning and investigated within that
paradigm. However, the core ideas such as task networks and task decomposition, which
are largely responsible for the success of HTN planning systems over state based planning
systems, have been ignored as “efficiency hacks”.

1.2 Research Issues

As the complexity of planning applications increases, and the correctness and quality of pro-
duced plans become more and more critical, there is a greater need for using formal methods
to develop and analyze planning systems. In spite of three decades of research, building plan-
ning applications remains to be a formidable task. HTN planning techniques show promise
in terms of flexibility of representation and computational performance, however there are a
number of problems that need to be addressed:

e Existing HTN languages do not have a precise semantics. As a result, writing specifi-
cations for a planning problem using HTN constructs is so difficult that it is considered
an art rather than a science. Even when a specification is provided, there is no criteria
for verifying that it correctly represents the intended planning domain.

e HTN planning systems are not very reliable. They do not provide any guarantees
that the solutions they produce are correct, or that they can always find the solutions.
Furthermore, without a precise semantics that provides the definition for the set of
solutions to a given HTN problem, it is not possible to develop correct HTN planning
algorithms. Neither it is possible to evaluate existing algorithms for correctness.

e HTN planning systems usually find plans faster than state-based planning systems.
Nonetheless, the speed of HTN techniques must be significantly improved to work well
with real-world applications.

1.3 Approach

The focus of this dissertation is to correctly define, analyze, and explicate features of the
design of HTN planning systems. The goal of this research effort is to support the develop-
ment of efficient and correct HTN planning algorithms and to reduce the domain engineering
effort in correctly specifying application domains using HTN constructs. The approach for
reaching this goal has involved three stages: formalization, analysis and implementation.

1.3.1 Formalization

Formalization involves defining an HTN language together with the associated syntax and
semantics, as presented in Chapter 3. The semantics provide precise definitions of the mean-
ings of HTN constructs, and facilitates their correct use in writing domain specifications. The

4

semantics also provide a precise definition for the set of solutions to a given planning prob-
lem. This definition provides a criterion for developing correct HTN planning algorithms.
Chapter 3 contains the first provably correct HTN planning algorithm UMCP (Universal
Method Composition Planner).

This formal approach enforces the separation of the representation for planning problems
from the implementation details of particular planning systems that can process the repre-
sentation. It gives guidelines for planning researchers in developing correct HT'N planning
systems, and it reduces the domain engineering effort for preparing domain specifications
by isolating it from the idiosyncrasies of implementation. A mathematical model of HTN
planning also makes it amenable to the application of analytical tools.

1.3.2 Analysis

Analytical analyses can be very helpful in guiding the research efforts for finding efficient
planning algorithms. They bring a deeper understanding of the domain specification and
plan generation processes, and uncover the factors that influence the performance of HTN
planning systems. They also identify the bottlenecks and computational difficulties involved
in HTN planning.

Chapter 4 contains a complexity analysis which determines the computational cost of
solving HTN problems under various restrictions. This analysis reveals which aspects of the
HTN problems are difficult to handle, and where further research must be directed.

Analysis can also be helpful in discovering the similarities and differences among differ-
ent planning paradigms. A better understanding of the relationship between two planning
paradigms can facilitate adaptation of the results and techniques developed in one paradigm
to the other.

Chapter 5 contains several definitions of expressivity for planning languages, extending
the previous work on knowledge representation languages [5]. Based on these definitions,
the HTN language can be evaluated in terms of expressive power in comparison to the
STRIPS language, which is the de facto standard state-based planning language. This work
proves that the HTN language is strictly more expressive than the STRIPS language. It also
provides two polynomial transformations from the STRIPS language to the HT'N language.
These transformations are used to transfer several results developed in state-based planning
to HTN Planning.

1.3.3 Implementation

The analysis provides insights to the design of correct and efficient HTN planning algorithms.
Chapter 3 contains a provably correct but rather abstract HT'N planning algorithm called
UMCP. Based on the insights from the analysis results, correct and efficient algorithms are
designed for each step of the abstract UMCP algorithm. As presented in Chapter 6, these
algorithms have been implemented in the UMCP planning system for further exploration.
The UMCP system serves as a testbed for experimenting with search control and commitment

strategies in order to improve the performance of HTN planning systems.

1.4 Organization

The layout of this dissertation reflects the steps in the research approach. Chapter 2 exam-
ines the issues introduced in Section 1.2 and presents a historical perspective to planning.
Chapter 3 contains the definition of the HTN language and the associated semantics. This
chapter also presents the abstract UMCP algorithm, and its correctness proof. The com-
plexity analysis of HTN planning is discussed in Chapter 4. Chapter 5 presents several
definitions for the expressivity of planning languages. Using these definitions and the com-
plexity results from previous chapter, it investigates the similarities and differences between
state-based planning and HTN planning. Chapter 6 describes further refinements of the
UMCP algorithm, and present the implementation features of the resulting software archi-
tecture. Chapter 7 explains how to write specifications for a planning domain using the
HTN language. It contains several sample problem specifications, and descriptions of how
UMCP solves those problems. Finally, Chapter 8 provides a global perspective to the work
contained in this dissertation, and points to future research directions for extending and
improving the HTN paradigm.

Chapter 2
Related Work

This chapter presents a historical perspective to Al planning literature in order to provide
a context within which the contributions of this dissertation can be evaluated. It is by
no means intended as a comprehensive review of the literature, which can be found in the
collection of papers edited by Allen, Hendler, and Tate [2].

The first section of this chapter describes the roots of classical Al planning. The second
section contains a brief overview of some of the planning systems that evolved from these
roots. Section 3 discusses the theoretical work on planning. This section also presents the
attempts to formalize the ideas that emerged from implementations of planning systems.
Finally, Section 4 discusses where the work described in this dissertation fits in, and how it
relates to the recent and current research efforts.

2.1 The Early Years of Al Planning

The roots of classical Al planning lie in the discovery that first-order logic could be used
to represent change in the world, and hence automated first-order theorem provers could
be directly employed to solve planning problems. This discovery led to the development of
situation calculus [47]. The details of situation calculus can be found in most introductory
AT textbooks such as [52], but the general idea can be summarized as follows: atoms such
as p(z) that are normally used to represent static facts about the world are augmented by
an extra term as in p(z,s) to state that the predicate p is true of term z in situation s.
Actions are represented using function symbols in the following manner: let the function
symbol f, denote an action a. The situation resulting from executing action a in situation
s is represented by f,(s). The effects of executing an action are described by axioms. These
axioms usually read as “if these conditions are true in a situation s, then those conditions
will be true in the situation resulting from the execution of action a in s.” Desired behaviors
are represented as attainment goals, which are conditions (i.e., atoms) that are desired to be
true in the world.
The planning problems can be posed as

“Does there exist a situation which satisfies the goal conditions and which is also
reachable from the initial situation?”

Situation calculus allows the representation of context-dependent effects of actions. That
is, an action can have different effects depending on the situation it is executed in. In return
for this flexibility, situation calculus requires explicit axiomatization of all the conditions
that are not affected by each action, in addition to the conditions that are affected by it.
The axioms which describe the conditions that are not affected by a given action are called
frame azioms. Frame axioms are usually of the form

“Condition ¢ will be true in the situation resulting from executing action a at
situation s, if ¢ is already true in s, and action a does not make c false.”

Situation calculus requires a frame axiom for each action — condition pair. This gives
rise to the frame problem: huge numbers of axioms are necessary for describing even simple
toy planning domains. Another disadvantage of situation calculus is performance related:
general purpose theorem provers cannot exploit the structure of planning problems and thus
they are horrendously slow in solving planning problems.

Both the representation and the performance issues were addressed in the STRIPS plan-
ning system [24]. The frame problem was dealt with by the STRIPS assumption:

Executing an action does not change the truth value of a condition unless the
condition is one of the effects of the action.

This assumption is built into the STRIPS system, and hence, for each action only the
conditions it changes need to be specified. Each action is described as a STRIPS operator,
which consists of a precondition list, an add list, and a delete list. The precondition list
specifies the conditions under which the action is executable. The add list and delete list,
respectively, specify the conditions that are going to become true and those that are going
to become false in the state resulting from the action execution. Context-dependent effects
are not allowed. The syntax used for encoding operators, and their associated semantics will
be referred to as the STRIPS language.

The STRIPS algorithm uses precondition chaining for finding solutions to planning prob-
lems. STRIPS maintains a goal stack, which initially contains the goals in the planning
problem. At each iteration, STRIPS examines the goals on top of the stack, and chooses
an operator which has effects that match one or more goal conditions that are not true in
the current state. If the preconditions of the operator are satisfied in the current state, the
operator is applied to compute a new current state. Otherwise, the operator is added to
the working plan, and its preconditions are pushed onto the goal stack as new subgoals.
Whenever no operator has a matching effect with the goals on top of the goal stack, the
algorithm backtracks. The STRIPS algorithm is heavily influenced by GPS [51] (General
Problem Solver), whose operator choice is driven by minimizing the difference between the
current state and the goal state.

The STRIPS algorithm deals with conjunctive goals of the form G; A G5 as follows: First
find a plan that achieves GG; from the initial state, and then find a plan that achieves G5 from
the final state of the previous plan. If it happens that the second plan undid the first goal,
STRIPS tries to accomplish G, first, and then G4. This procedure works well as long as there
are no interactions among the subplans for the goals. However, even very simple planning
domains contain nonserializable goals. These are goals for which there is no solution unless
the plans for each goal are interleaved. The STRIPS system ignores nonserializable goals by
making the linearity assumption [63):

Subgoals are independent and thus can be sequentially achieved in an arbitrary
order.

The linearity assumption significantly simplifies devising algorithms for dealing with con-
junctive goals. While constructing a solution, such algorithms keep the plan steps (actions)
totally ordered, and new steps are added only to the beginning or to the end of the plan.
However, planning algorithms based on the linearity assumption may fail to find a solution,
even though there exists a solution. Thus they are not complete. A complete algorithm
always finds a solution, whenever there exists a solution.

The search space for the STRIPS language is large, because the number of possible states
is exponential in the number of atoms in the language. Even with the linearity assumption,

the STRIPS system could solve only very small planning problems in any reasonable amount
of time.

2.2 The Planning Systems in 1970’s

The development of the STRIPS system initiated a huge body of research. In the following
years many new planning systems were built. These systems tried to address the shortcom-
ings of the STRIPS system. Some of them focused on improving the performance, and some
of them focused on expanding the set of planning problems that can be correctly dealt with.
Embedded in those systems were many powerful ideas, some of which are listed below:

1. Abstraction hierarchies for improving performance,
2. Relaxation of the linearity assumption for dealing with nonserializable goals,
3. Task networks and task decomposition, for representing and solving complex problems,

4. Partial-order planning for improving performance and dealing with nonserializable
goals,

5. Least commitment strategies for improving performance,
6. Filter conditions for reducing the size of the search space,

7. “Critics” mechanism for dealing with interactions.

9

All of these planning techniques will be discussed in detail, following some clarifications
in the planning terminology.

2.2.1 Planning Terminology

There is some confusion in planning terminology, perhaps because several planning systems
have introduced multiple techniques to the planning field simultaneously. In this section,
I will define the meanings of several terms as they are used in this dissertation to prevent
misunderstandings.

Most planning systems work iteratively, incrementally constructing the final plan. The
incomplete plan at each iteration is called the working plan. Initially the working plan is
usually empty. Some planning systems, for convenience, choose to represent the initial state
and the goals as two special steps in the initial working plan.

A planning system that keeps the steps in the working plan totally ordered is called a
total-order planner. A planning system that keeps the steps in the working plan partially-
ordered is called a partial-order planner.

Any planning system that makes the linearity assumption is called a linear planner. A
planning system that does not rely on that assumption is called a nonlinear planner. The
linearity assumption was defined in Section 2.1.

Planning systems that use the STRIPS operators for representing actions and solve prob-
lems which involve finding a path from initial states to goal states are called state-based, or
STRIPS-style planners. It does not matter which techniques are used (total-order, partial or-
der, regression, etc.) for producing the plan. Thus according to this definition, STRIPS [24],
SNLP [46], and TWEAK [15] are state-based planners.

A planning system that represents planning problems as task networks, and uses task
decomposition to construct the final plan is called a hierarchical task network (HTN) planner.

Sometimes these terms are used with different meanings in the literature. The terms
“state-based” and “linear” are often used to refer to total-order planners. The term “non-
linear” is sometimes used to refer to partial-order or HTN planners. This type of usage is
misleading and thus it is avoided in this dissertation.

2.2.2 Abstraction Hierarchies

Abstraction hierarchies were introduced by Sacerdoti in 1974, in the ABSTRIPS system [60].
Their purpose is to cope with the huge size of the search space and to reduce planning time
by focusing the planning effort on the most critical parts of the problem first. Each condition
(i.e., predicate or proposition) in the planning domain is assigned a criticality level using
heuristic methods. Planning proceeds in levels, starting with the highest criticality level. At
each level, all the conditions with lower criticality levels are ignored as details. The plan
found in one level is used as a skeleton in finding a plan in the next lower level iteratively,
until the bottom level is reached, which produces the final plan.

10

Abstraction hierarchies are given that name because of the abstraction resulting from
ignoring some conditions, and the hierarchy consisting of the criticality levels. However,
like the variable-ordering heuristics found in the constraint satisfaction literature [25, 50],
abstraction hierarchies can also be perceived as a means of deciding which part of the problem
to work on next.

2.2.3 Relaxation of the Linearity Assumption

Planning algorithms based on the linearity assumption could not solve problems containing
nonserializable goals. As discussed earlier, subplans for nonserializable goals need to be
interleaved. The planning systems of 1970’s introduced several techniques for dealing with
nonserializable goals.

The HACKER [63] system was developed by Sussman in 1975 for manipulating a robot
arm. HACKER deals with interacting subgoals using the critics mechanism. This procedural
mechanism identifies and patches conflicts based on heuristic methods. HACKER stores
patches that worked well, to be used later in similar problems. Thus it can be considered as
the ancestor of case-based planning systems [42, 40]. A case-based planner stores solutions
to previous planning problems in a case-base, and solves each new planning problem by
adapting the solution of a similar old problem from the case-base.

Another way of dealing with nonserializable goals is to keep the plan steps totally ordered,
but to allow new steps to be inserted at any point in the plan. Warren [71] in 1974 and
Waldinger [70] in 1977 took this approach and used goal regression and action regression
techniques, respectively, for dealing with conjunctive goals. Their planning systems would
find a plan for the first subgoal, and then modify that plan by inserting new steps as necessary
to achieve the next subgoal without undoing the previously achieved subgoals.

HTN planning systems such as NOAH [59] and NONLIN [64] introduced partial-order
planning, which facilitates handling nonserializable goals. In partial order planning, the
decision regarding where a new step should be added in the working plan is deferred. Plan
steps are pairwise ordered only to the extend necessary to resolve conflicts. Thus, subplans
for goals can be freely interleaved.

Partial order planning requires significantly more complicated algorithms than total order
planning. The intermediate states in a plan cannot be constructed if the steps are not totally
ordered, and thus it becomes difficult to assess whether a condition is going to be true before
a given plan step. On the other hand, partial-order planning can provide gains in efficiency,
because the planner may not need to consider all possible orderings. The trade-off between
total-order versus partial-order planning has been studied extensively in the last several
years, albeit in the framework of state-based planning, instead of HTN planning. These
studies will be discussed in Section 2.3.5.

Planning systems that do not depend on the linearity assumption are called nonlinear
planners. Since most of the nonlinear planners have also been partial-order planners, the
term “nonlinear” is often incorrectly used to refer to partial-order planners, and sometimes
to refer to HT'N planners.

11

2.2.4 Least Commitment

Planning systems, while refining a partial solution into a final plan, make several types of
decisions: which actions to choose, how to order the steps in the plan, and how to (or how
not to) instantiate variables. The first generation of planning systems, usually made the
decisions regarding ordering and variables before the choice of actions. Such a planning
system would immediately order each new step inserted to the plan with respect to the
existing steps, and instantiate all the variables in the new step. All possible orderings and
variable instantiations would be explored in a depth-first manner. This results in a very
large branching factor, and it is rather inefficient for many planning problems.

In response to this situation, HTN planners such as NOAH [59] typically work by intro-
ducing ordering and variable binding restrictions only when necessary to resolve conflicts.
This kind of strategy has been called least commitment. Least commitment strategy may re-
duce amount of backtracking in a number of planning situations where a total-order planner
would try and backtrack from many possible orderings.

The MOLGEN [62] system developed by Stefik in 1981 further enhanced least commit-
ment for variable bindings. MOLGEN was designed to work in the area of experiment
planning for molecular biology. The choice of objects in those experiments are rather im-
portant. MOLGEN uses constraint-based techniques to guide the search in finding the right
variable instantiations for the objects.

The least-commitment strategies point to a more general problem of commitment: At
each iteration, a planning system can make several types of commitment decisions, including
variable bindings, orderings, and action selection. The order in which these commitments are
made has a large impact on the efficiency of a planning system, and the question becomes how
to choose the best type of commitment to make at each iteration. Any given commitment
strategy may be efficient in some application domains, and slow in some others. The approach
taken in this dissertation, as described in Section 6.3, is to provide a general commitment
mechanism which can be customized according to the needs of each planning application.

2.2.5 Task Networks and Task Decomposition

In the early planning systems, the emphasis was on states. Actions were viewed only as
a means for affecting state changes. HTN planning brought a very different perspective,
placing the emphasis on the activities to be planned for (i.e. the tasks) and the interactions
among them. Planning proceeded by decomposing each task into simpler tasks and resolving
the conflicts among tasks iteratively, until a conflict-free plan consisting of primitive tasks
could be found.

Task decomposition techniques were initially introduced in the NOAH [59] system devel-
oped by Sacerdoti in the mid-1970’s, and were enhanced in NONLIN [64] system designed
by Tate in 1977. NOAH represented planning problems as partially ordered lists of tasks
(hence the term “task network”). The information on how to decompose tasks was encoded
procedurally in the so called “soup code.” NOAH used an improved version of critics, a
heuristic procedural mechanism initially introduced by HACKER [63], to detect and resolve

12

interactions among tasks. Interactions were resolved mostly by placing ordering or variable
binding restrictions.

NONLIN replaced the procedural soup code of NOAH with opschemas, which declara-
tively represented how to decompose tasks. NONLIN also introduced two data structures
called the TOME (table of multiple effects) and the GOST (goal structure) for keeping track
of which tasks have a given effect, and also which tasks can influence a given condition. It
employed backtracking to recover from incorrect planning decisions. NOAH had no such
mechanism, and it would report failure in those cases.

In the following years, the DEVISER [69] system developed by Vere in 1983 extended the
NOAH and NONLIN systems to handle actions with durations and activities with temporal
constraints.

The work on HTN planning was further advanced by SIPE [73], developed by Wilkins
in 1983. SIPE emphasizes resource management and also the interactions with the user
of the planning system. SIPE employs a taxonomy for storing the features of objects in
the planning domain. The UMCP planning system, presented in Chapter 6, uses a similar
technique for representing the initial state of a planning problem.

The O-PLAN [17] system designed in 1991 by Currie and Tate further extended the
NONLIN framework to a more general plan creation and execution platform. O-PLAN
represents plans using several elaborate types of constraints. O-PLAN has introduced the
triangle model of activity to integrate automatic manipulation of plans with human interac-
tion and information acquisition. Recently this system was enhanced further resulting in a
system called O-PLAN2 [65].

Unlike state-based planners which rarely were used for practical applications, HTN plan-
ners met with considerable success in building applications. NOAH was applied to mechan-
ical engineers apprentice supervision, NONLIN was applied to electricity turbine overhaul,
DEVISER was applied to Voyager spacecraft mission sequencing, and SIPE was applied to
aircraft carrier mission planning [2].

2.2.6 Filter Conditions

Filter conditions were introduced in NONLIN [64] as a mechanism to reduce the size of the
search space by detecting and filtering out undesirable solutions in early stages of planning.
For example, consider a medical domain. Suppose a particular drug is administered only to
patients with high fever. We would want to eliminate those plans that attempt to increase
the temperature of the patient so that the drug can be administered. Furthermore, we would
like to save the time the planner spends in trying to establish the high fever predicate. Such a
condition is represented as a filter condition, instead of a precondition. If the filter condition
is not already true, NONLIN backtracks; it does not attempt to establish it.

Evaluating filter conditions is not a simple task, since in the early stages of planning, a
task network might not contain enough detail to determine whether a filter condition will be
true at a point in the task network. NONLIN took a conservative approach by evaluating
each filter condition as soon as it was introduced in a task network, and pruning those task

13

networks whose filter conditions were not determined to be necessarily true. This approach
reduces the search space considerably, but compromises completeness in situations where the
filter conditions are possibly but not necessarily true. The UMCP planning system imple-
mented as part of this dissertation takes a different approach that preserves completeness,
as discussed in Chapter 6.3.

2.2.7 Critics

Another important aspect of planning that is not addressed in current analytic efforts is the
general use of critics. Historically speaking, critics were introduced into NOAH [59] as a
procedural, heuristic mechanism to identify and deal with several kinds of interactions (not
just deleted preconditions) among tasks in a task network. After each task decomposition,
a set of critics are consulted so as to recognize interactions and resolve conflicts. This
approach provides a more general framework for detecting interactions than is available in
most STRIPS-style planners. Based in part on Sussman’s earlier work in HACKER [63],
Sacerdoti [59] identified three critics of general use:

o Resolve Conflicts. The conflicts handled by this critic, later referred to as “deleted-
condition” interactions, have received the bulk of the attention in the literature.

o Use existing objects. This critic dealt with resources, rather than temporal ordering
relations.

o Eliminate redundant preconditions. This critic identified and utilized opportunities by
recognizing cases where a goal task was achieved inadvertently while achieving another
task. When such opportunities were recognized, this critic would convert the already
achieved goal task into a “phantom” condition.

In addition to the interactions handled by these critics, a number of other situations that
can arise in planning have been identified in the literature:

e For his DEVISER system, Vere [69] has discussed temporal interactions between the
times at which actions must occur.! He has discussed temporal windowing and an
analysis thereof to eliminate possible reductions.

e Wilkins’ SIPE system [73] has added a number of different mechanisms for recognizing
resource interactions and for allowing user preferences to be considered when making
a choice between reductions.

e Yang, Nau, and Hendler [76] have introduced a general “action-precedence” interaction
that can be exploited in some planning situations.

1See also [18].

14

e Nau and Gupta [28] have identified “enabling-condition” interactions as the culprit
that makes finding optimal plans in the blocks-world domain to be NP-hard. Such
interactions arise when a side-effect of achieving one goal is to make it easier to achieve
another goal.

e To handle iteration in plans, Drummond [19] has proposed several extensions to the
procedural net, and an extension to Sacerdoti’s resolve-conflicts critic.

e A number of special-purpose “domain-dependent” planning systems have identified
interactions occurring only in the particular domain for which the system is being de-
veloped. Typically, special-purpose heuristics are introduced to exploit this knowledge.

As can be seen, the many interactions which need to be handled during planning go
beyond the (relatively) well-understood deleted-condition interaction. To handle these inter-
actions, implemented planning systems usually use critics or similar mechanisms. However,
these mechanisms are procedural and heuristic in nature. To reason about the properties
of such mechanisms, a general model of interactions and critics is clearly needed. One im-
portant aspect of such a model is that it can help, in part, to unify “domain-independent”
and “domain-dependent” planning systems: in many of the latter, the specialized knowledge
can be modeled as using a large set of special-purpose critics. The formal framework pre-
sented in this dissertation in Chapter 3 provides just such a model. Chapter 6.3 presents
a way of implementing domain-independent critics that preserves soundness, completeness,
and systematicity, based on that framework.

2.3 Formalization and Analysis Efforts

The 1980’s brought formal approaches to planning. The semantics of the STRIPS language
was freed of flaws [45] and brought to its current standard form as presented in Section 2.3.1.
A significant amount of research effort went into attempts at formalizing and analyzing the
ideas buried inside the implementation details of the systems summarized in Section 2.2.
Among those ideas, the abstraction hierarchies, the ways to relax the linearity assumption,
partial and total-order planning have been studied quite well. There has been some work on
filter conditions and commitment strategies, but the rest of these ideas have been studied
very little and mostly dismissed as mere “efficiency hacks.”

This section contains a brief overview of some of the work on formalization and analysis.
Note that almost all of these studies have been done in the framework of state-based planning,
although many of the ideas originated in the context of HT'N planning. Carrying those studies
back to the HTN framework is not a simple task, but it is significantly facilitated by the
work presented in this dissertation.

15

2.3.1 The STRIPS Representation

Most of the state-based planning systems use the STRIPS representation. HTN planning
systems also use variations of the STRIPS representation for describing the world and change
in the world. Thus a good understanding of the STRIPS representation is very important.

The STRIPS representation has gone through several changes. In the original STRIPS
planner [24], the planning operators’ precondition lists, add lists, and delete lists were allowed
to contain arbitrary well-formed formulas in first-order logic. However, there were a number
of problems with this formulation, such as the difficulty of providing a well-defined semantics
for it [45]. Thus, in subsequent work, researchers have placed several restrictions on the
nature of the planning operators [52]. Typically, the precondition lists, add lists and delete
lists contain only atoms, and the goal is a conjunct of ground or existentially quantified
atoms. This representation has become the de facto standard STRIPS representation, used
by most of the state-based planning systems [15, 46, 77]. The description of the STRIPS
representation below, which I developed jointly with Dr. Nau and Dr. Subrahmanian [22],
is in accordance with this formulation.

Definition 1 Let £ be any first-order language generated by finitely many constant symbols,
predicate symbols, and function symbols. Then a state is any finite set of ground atoms in

L.

Intuitively, a state tells us which ground atoms are currently true: if a ground atom A is in
state S, then A is true in state S, and if B ¢ S, then B is false in state S. Thus, a state is
simply an Herbrand interpretation for the language £, and hence each formula of first-order
logic is either satisfied or not satisfied in S according to the usual first-order logic definition
of satisfaction.

Definition 2 Let £ be an ordinary first-order language. Then a planning operator « is a
4-tuple < Name(a), Pre(a), Add(«a), Del(a) >, where

1. Name(«) is a syntactic expression of the form a(Xj, ..., X,) where each X is a variable

symbol of L;

2. Pre(c) is a finite set of literals, called the precondition list of o, whose variables are all
from the set {Xi,...,X,};

3. Add(e) and Del(a) are both finite sets of atoms (possibly non-ground) whose variables
are taken from the set {Xi,...,X,}. Add(e) is called the add list of a, and Del(«) is
called the delete list of .

Observe that negated atoms are allowed in the precondition list, but not in the add and
delete lists.

When defining a planning operator «, often Name(«) will be clear from context. In such
cases, the name will be omitted.

16

1
15

C e d
(a) initial configuration (b) goal configuration

Figure 2.1: A sample blocks world problem.

Definition 3 A first-order planning domain (or simply a planning domain) is a finite set of
planning operators O.

Definition 4 A goalis a conjunction of atoms which is existentially closed (i.e., the variables,
if any, are existentially quantified).

Definition 5 A planning problem instance is a triple P = (5o, O, G), where Sy is the initial
state, O is a planning domain, and G is a goal.

Example 2.3.1 (Blocks World) Suppose we want to talk about a blocks-world planning
domain in which there are five blocks a, b, ¢, d, e, along with the “stack”, “unstack”, “pickup”,
and “putdown” operators used by Nilsson [52]. Suppose the initial configuration is as shown
in Fig. 2.1(a), and the goal is to have b on c on d, as shown in Fig. 2.1(b). Then the language,
operators, planning domain, and planning problems are defined as follows:

1. The language £ will contain five constant symbols a,b,¢,d, e, each representing (in-
tuitively) the five blocks. £ will contain no function symbols, and will contain the

following predicate symbols: “handempty” will be a propositional symbol (i.e. a 0-ary

predicate symbol), “on” will be a binary predicate symbol, and “ontable”, “clear”, and

“holding” will be unary predicate symbols. In addition, there will be a supply of vari-
able symbols, say, X1, Xs,.... Note that operator names, such as “stack”, “unstack”,
etc., are not part of the language L.

2. The “unstack” operator will be the following 4-tuple:

Name(unstack) = unstack(X, Xs)
Pre(unstack) = {on(Xy, Xz),clear(X;), handempty()}
Del(unstack) = {on(Xy,X3),clear(X;),handempty()}
Add(unstack) = {clear(X3),holding(X;)}

The “stack”, “pickup”, and “putdown” operators are defined analogously.

17

o e A AR R R e T S N

Sy N

3. The planning problem will be (Sy, O, G), where Sy, O and G are as follows:

So

{clear(a), on(a, b),on(d, c), ontable(c), clear(d),
on(d, e), ontable(e), handempty() };

O = {stack,unstack, pickup, putdown}

G = {on(b,c),on(c,d)}.

Definition 6 Given an initial state Sp, and a set of operators O, let o be an operator in
O whose name is o(Xy,...,X,), and 8 be a substitution that assigns ground terms to each
Xi,1 €1 < n. Suppose that the following conditions hold for states S and S’

{Af0 : A is an atom in Pre(a)} C S;
{B6 : =B is a negated literal in Pre(a)} N S = 0;
5" = (S — (Del(a)d)) U (Add()8).

Then it is said that « is 0-ezecutable in state S, resulting in state S’. This is denoted

symbolically as

q

S == g

Definition 7 Given a planning problem instance P = (S, O, G), a plan that solves P is a

sequence o, .., a,0, of ground planning operators such that
0,9 ag,02 On,yln
50=>S1:>52"':>Sn (21)

and G is satisfied by S,, i.e. there exists a ground instance of GG that is true in S,. The
length of the above plan is n.

Given a planning problem instance, one might be interested in any plan that solves
this instance. Alternatively, one might be interested in the shortest plan that solves this
instance. Both of these existence and optimality questions are formally defined below as
decision problems:

Definition 8 PLAN EXISTENCE is the following problem:

Given a planning problem instance P = (So, O, G), does there exist a plan in P
that achieves G?

Definition 9 PLAN LENGTH is the following problem:

Given a planning problem instance P = (So, O, @) and an integer k encoded in
binary, does there exist a plan in P of length & or less that achieves G?7

13

2.3.2 State-based Planning Algorithms

Once the representation issues in the STRIPS language were resolved, a number of prov-
ably correct planning algorithms were developed. The most influential algorithms among
those have been TWEAK [15] by Chapman in 1987, SNLP [46] by McAllester in 1991, and
UCPOP [54] by Penberthy and Weld in 1992. This section contains a brief overview of these
planning algorithms.

2.3.2.1 TWEAK

TWEAK [15] is the first provably correct partial-order planning algorithm. It works with
incomplete plans, which are iteratively refined to a complete solution. An incomplete plan
in TWEAK consists of a set of plan steps. Each step is associated with an operator. Along
with the incomplete plan, TWEAK maintains a partial order graph on the steps, and a list of
noncodesignation constraints on the variables in the operators of the plan. Noncodesignation
constraints are of the form v # ¢, or v, # vy, stating that variable v cannot have value ¢, or
variables v; and vy cannot have the same value, respectively.

At the heart of the TWEAK algorithm lies a definition called the modal truth criterion
for evaluating a condition when the steps of the plan are only partially ordered. The modal
truth criterion is defined as follows: [15]

A proposition p is necessarily true in a situation s iff two conditions hold: there
is a situation ¢ equal or necessarily previous to s in which p is necessarily as-
serted; and for every step C possibly before s and every proposition ¢ possibly
codesignating with p which C' denies, there is a step W necessarily between C'
and s which asserts r, a proposition such that r and p codesignate whenever p
and g codesignate.

The modal truth criterion roughly has the following meaning: for a condition p to be
true at a target situation s, there must be some step t before it that necessarily asserts it,
and for any other step that may come between ¢ and s and falsify the condition, there is a
corresponding step W (referred to as a white night) that makes the condition true again.

Planning in TWEAK starts with a null incomplete plan that has an initial step that
asserts the conditions true in the initial state, and a final step that has the plan goals as
preconditions. At each iteration TWEAK evaluates each precondition of every step in the
plan using the modal truth criterion. If all the preconditions are necessarily true, then any
total ordering of the incomplete plan consistent with the partial order has a ground instance
consistent with the noncodesignation constraints on the variables.? Each such ground in-
stance is a solution to the planning problem. When TWEAK discovers that a precondition
is not necessarily true, it tries to make that condition true by adding a new step to the plan

?In order to ensure that there always exist a ground instantiation that satisfies the noncodesignation
constraints on variables, TWEAK assumes the application domain contains infinitely many constant symbols.
This assumption is relaxed in subsequent algorithms.

19

or finding an already existing step which has the desired effect (corresponding to the step ¢
in the modal truth criterion). The threats from any step C' which can deny the precondition
is resolved by placing ordering or variable binding restrictions.

In evaluating a condition, the modal truth criterion assumes that the preconditions of all
the other steps are satisfied. This does not cause a problem for TWEAK since it checks all
the preconditions before it halts with a solution. Kambhampati and Nau have investigated
this issue in depth and provided alternative definitions to the modal truth criterion [38].

In many ways TWEAK was an attempt at formalizing the ideas in the planners discussed
in Section 2.2. It was very successful at providing a formal framework for partial order
planning, and stimulated a lot of further research. However, it left out several important
ideas such as task networks and task decomposition, which are studied in this dissertation.

2.3.2.2 SNLP

SNLP(Systematic Nonlinear Planner) was developed by McAllester in 1990 [46], in an effort
to design an efficient, provably correct planning algorithm. There was already a sound and
complete planning algorithm TWEAK, described in the previous section; however, TWEAK
performs rather slowly on many planning problems.

One reason TWEAK performs rather slowly is that it does not protect the conditions it
has previously established. Not protecting those conditions saves the time in bookkeeping
for recording and checking previously established conditions. On the other hand, each time
TWEAK establishes a condition, there is a possibility it will undo a previously established
condition, which will need to be reestablished. Reestablishing that condition can likewise
undo some other previously established conditions.

As explained in Section 2.2, NONLIN employed specialized data-structures to record and
protect previously established conditions. The SNLP algorithm provided a formal version of
these, which have been called causal links.

The SNLP algorithm is fairly similar to the TWEAK algorithm. However, when a pre-
condition p of a step s is established using a step ¢, SNLP records a causal link < t,p,s >
, stating that p will remain true from the end of step ¢ till the beginning of step s. Step ¢
is called the establisher of condition p. All the steps in the plan are required not to threaten
the causal link. That is, each step is ordered either outside the interval between ¢ and s, or
its effects are made to noncodesignate with —p by adding noncodesignation constraints on
the variables. Every time a new step is inserted into the working plan, the same procedure
is applied to make sure the new step cannot threaten any of the causal links.

As a possible way for improving efliciency, SNLP introduced the concept of systematicity:

The set of solutions for the incomplete plans at every branch of the search tree
must be mutually disjoint.

Enforcing systematicity ensures each incomplete plan is investigated at most once, since
there cannot be multiple paths leading to any incomplete plan in the search space. Enforcing
systematicity in a partial planner is somewhat tricky, as there are many ways of obtaining

20

a given partial order. SNLP guarantees systematicity by utilizing positive threats: Given a
causal link < ¢,p,s >, SNLP protects it not only from steps that may deny p, but it also
protects it from other steps that may assert p. This results in a unique establisher for every
condition, and the set of solutions at alternative branches of the search tree are disjoint, as
the establishers will be different.

Initially it was believed that SNLP would always work faster than TWEAK, but problems
where TWEAK performs better were identified later. In situations with multiple candidate
steps that can serve as establishers, SNLP algorithm requires immediately committing to one
of the candidates. This commitment is sometimes premature, and thus a wrong candidate
may be selected which results in backtracking later on. SNLP also incurs significant overhead
while protecting the causal links. Tradeoffs between systematicity versus commitment were
investigated by Kambhampati in [36].

TWEAK and SNLP represent two opposite extremes in protecting none versus all of the
established conditions. In the following years, intermediate techniques, which protect only
some of the previously established conditions, were developed [56, 61, 34].

2.3.2.3 UCPOP

UCPOP [54] is another sound and complete planning algorithm. It was designed by Weld
and Henks in 1992. Rather than the STRIPS language, UCPOP is based on the ADL
language developed by Pednault [53] in his dissertation work. ADL is significantly more
complex than the STRIPS language, but in order to facilitate an efficient implementation,
it was considerably stripped down, and except for context-dependent effects (i.e., effects
that may take place depending on the input situation) and quantification over variables, the
underlying language of UCPOP is very similar to the STRIPS language.

The UCPOP algorithm is similar to the SNLP algorithm in the aspects of establishing
conditions using causal links and threat removal. In order to handle the context-dependent
effects and quantifiers, UCPOP uses secondary preconditions. Two types of secondary pre-
conditions are causation and preservation conditions. Causation conditions of an action a
with respect to a proposition p refer to the conditions that must be true before a is executed
so that a will assert p. Preservation conditions refer to the conditions that must be true
before a is executed so that @ will not make p false. Basically, the causation conditions
provide the information about the possible ways a step can establish a condition, and the

preservation conditions provide the information about the possible ways threats from a given
step can be removed.

2.3.2.4 A Generic Planning Algorithm

In addition to the planning algorithms described above, numerous other planning algorithms
have been devised for state-based planning. Thus it becomes important to make a compar-
ative analysis of these algorithms to see which algorithms are suitable for a given planning
application. To facilitate this comparison, Kambhampati, et. al. [37], have suggested a
generic planning algorithm into which the numerous planning algorithms can be cast.

21

TGS etz L MY YT xS €

—— ey

This generic algorithm is based on planning as refinement search: Most planning algo-
rithms work by refining incomplete plans to a final solution. Each incomplete plan stands
for the set of solutions it can be refined into. Thus planning becomes searching the space of
incomplete plans, pruning those whose set of solutions can be determined to be empty. Plan-
ning algorithms mostly differ in their refinement strategies only. Having a generic algorithm
allows researchers to compare and contrast these strategies and identify their features.

Kambhampati, et. al., cast several well-known planning algorithms, as well as hybrid
combinations of some planning algorithms into their generic algorithm. That way, they
could provide preliminary empirical evaluations of various refinement strategies in terms of
the structure of their search space, branching factors, overhead involved in performing each
type of refinement and the book keeping required.

Although the refinement strategies studied in this work are from state-based planning,
the framework itself is general enough to capture the basic properties of HTN planning
algorithms at a very abstract level. This work has influenced the high-level search algorithm
used by the UMCP system presented in Chapter 6. However, as explained in that chapter,
the refinement strategies for HTN planning are rather different.

2.3.3 Complexity Analyses

This section contains the complexity analyses of state-based planning. Complexity analyses
determine how much computational resources are required in the worst case for solving a
problem.

Decidable, or recursive problems are those that can be solved in finite time by some
algorithms. Semidecidable, or recursively enumerable problems are those for which there is
no algorithm that always terminates when the input problem has no solution. Semidecidable
problems are sometimes, informally referred to as undecidable problems.

2.3.3.1 Chapman’s Undecidability Results

In 1987, Chapman [15] did the first analysis of the decidability of state-based planning.
His results have been very influential in the planning community; however, there has been
a certain amount of confusion about what Chapman’s undecidability results actually say,
because some of his assumptions are embedded in his proofs. This confusion has been
clarified by Erol, et. al [22], as explained in this section.

Chapman’s first undecidability theorem ([15, pp. 370-371]) says that all Turing ma-
chines with their inputs may be encoded as planning problems in the TWEAK system, and
hence planning is undecidable. To prove this theorem, Chapman makes use of the following
assumptions:

1. the planning language is function-free;

2. “an infinite [but recursive| set of constants ¢; are used to represent the tape squares”

[15, p. 371];

22

3. the initial state is infinite (but recursive). In particular, “there must be countably
many successor propositions to encode the topology of the tape (and also countably
many contents propositions to make all but finitely many squares blank)” [15, p. 371].

This theorem is not particularly strong, considering that planning problems seldomly,
if ever, involve infinite initial states. In fact, in his discussion of the First Undecidability
Theorem [15, p. 344], Chapman says:

This result is weaker than it may appear ... the proof uses an infinite (though
recursive) initial state to model the connectivity of the tape. It may be that if
problems are restricted to have finite initial states, planning is decidable. (This
is not obviously true though. There are infinitely many constants, and an action
can in effect “gensym” one by referring to a variable in its post-conditions that
is not mentioned in its preconditions.)

The problem thus introduced was later solved, as will be presented in the following
section.

The statement of Chapman’s second undecidability theorem is that “planning is unde-
cidable even with a finite initial state if the action representation is extended to represent
actions whose effects are a function of their input situations” [15, p. 373].

The meaning of the phrase “effects are a function of their input situations” has caused
some confusion. Several researchers thought that Chapman meant operators with context-
dependent effects, but an examination the proof of Chapman’s theorem makes it clear he is
referring to operators that contain function symbols.

2.3.3.2 Complexity Results for STRIPS-style Planning

I have done a complexity analysis of STRIPS-style planning, in collaboration with Dr. Nau
and Dr. Subrahmanian [22]. That work serves to clarify some of Chapman’s results and
provides a rather comprehensive study of how the complexity of STRIPS-style planning varies
depending on a number of conditions. The results are summarized in the Tables 2.1, 2.2, and
2.3. Table 2.1 presents the cases where the planning language is allowed to have infinitely
many ground terms, either by allowing function symbols, or by allowing infinitely many
constant symbols. Table 2.2 presents the cases where the planning language is restricted
to contain finitely many ground terms (i.e., no function symbols, finitely many constant
symbols). Finally, Table 2.3 presents the cases where the language is further restricted to
be propositional (i.e., all predicates are of arity 0, and thus contain no variables). None of
the results in these tables are affected when the operators are allowed to contain context-
dependent effects.

The following is a brief explanation of the results in the complexity tables.

The decidability results are shown in Table 2.1. If function symbols are allowed, then
determining, in general, whether a plan exists is semidecidable. This is true even if we
have no delete lists and the precondition list of each operator contains at most one (non-
negated) atom. If no function symbols are allowed and only finitely many constant symbols

23

Table 2.1: Decidability of State-based Planning.

Allow Allow infi- | Allow infi- | Allow delete lists || Telling
function | nitely many | nite initial | and/or negated whether a
symbols? | constants? | states? preconditions? plan exists
yes yes/no yes/no yes/no/no? semidecidable
no no no” decidable
yes yes/no semidecidable
no yes no yes semidecidable
no decidable
no yes/no yes/no decidable

#No operator has more than one precondition.
TWith acyclicity and boundedness restrictions.

Table 2.2: Complexity of Finite State-based planning.

How are Allow | Allow ne- Telling Telling whether
the opera- | delete | gated pre- | whether a there is a plan
tors given? | lists? | conditions? || plan exists of length < k
given yes yes/no EXPSPACE-comp. | N-EXPTIME-comp.
in the yes N-EXPTIME-comp. | N-EXPTIME-comp.
input no no EXPTIME-comp. N-EXPTIME-comp.
no” PSPACE-complete | PSPACE-complete
yes yes/no PSPACE ° PSPACE °
fixed in yes NP ° NP ¢
advance no no P NP °
no® NLOGSPACE NP

PNo operator has more than one precondition.
SWith PSPACE- or NP-completeness for some sets of operators.

Table 2.3: Complexity of Propositional State-based planning.

How are Allow | Allow ne- Telling Telling whether
the opera- | delete | gated pre- | whether a there is a plan
tors given? | lists? | conditions? || plan exists of length < k
given yes yes/no PSPACE-complete® | PSPACE-complete
in the yes NP-complete’ NP-complete
input no no 1 NP-complete

no® /no” NLOGSPACE-comp. | NP-complete
fixed in yes/no | yes/no constant constant
advance time time

#No operator has more than one precondition.
‘Results due to Bylander [12].

24

are allowed, then plan existence is decidable, regardless of the presence or absence of delete
lists and /or negated preconditions.

Even when function symbols are present, plan existence is decidable if the planning
domains being considered have no deletion lists, no negated atoms occur in the precondition
list, and the domains satisfy certain acyclicity and boundedness properties.

Whether the planning operators are fixed in advance or given as part of the input, and
whether or not they are allowed to have context-dependent effects, does not influence these
results.

The complexity results are shown in Tables 2.2 and 2.3. When there are no function
symbols and only finitely many constant symbols (so that planning is decidable), the com-
putational complexity varies from constant time to EXPSPACE-complete, depending on the
following conditions:

e whether or not we allow delete lists and/or negative preconditions,
o whether or not we restrict the predicates to be propositional (i.e., 0-ary),
e whether we fix the planning operators in advance, or give them as part of the input.

The presence or absence of operators with context-dependent effects does not influence
these results.

This work solved an open problem formulated by Chapman in [15]: is planning decidable
when the language contains infinitely many constants but the initial state is finite. This
problem is decidable in the case where the planning operators have no negative preconditions
and no delete lists. If the planning operators are allowed to have negative preconditions
and/or delete lists, then the problem is semidecidable.

Chapman’s Second Undecidability Theorem states that “planning is undecidable even
with a finite initial situation if the action representation is extended to represent actions
whose effects are a function of their input situation” [15], i.e., if the language contains
function symbols and infinitely many constants. These results show that even with a number
of additional restrictions, planning is still undecidable.

This work has also provided equivalence theorems relating definite logic programs to
planning with positive, deletion-free operators. This equivalence facilitates transporting
many results from logic programming to planning.

Examination of the complexity results reveals several interesting properties:

1. Comparing the complexity of PLAN EXISTENCE in the propositional case (in which
all predicates are restricted to be 0-ary) with the datalog case (in which the pred-
icates may have constants or variables as arguments, but no function symbols) re-
veals a regular pattern. In most cases, the complexity in the datalog case is exactly
one level harder than the complexity in the corresponding propositional case. We
have EXPSPACE-complete versus PSPACE-complete, N-EXPTIME-complete versus NP-
complete, and EXPTIME-complete versus polynomial.

25

2. If delete lists are allowed, then PLAN EXISTENCE is EXPSPACE-complete but PLAN
LENGTH is only N-EXPTIME-complete. Normally, one would not expect PLAN LENGTH
to be easier than PLAN EXISTENCE. In this case, it happens because the length of a
plan can sometimes be doubly exponential in the length of the input. In PLAN LENGTH
we are given a bound k, encoded in binary, which confines us to plans of length at most
exponential in terms of the input. Hence in the worst case of PLAN LENGTH, finding
the plan is easier than in the worst case of PLAN EXISTENCE.

We do not observe the same anomaly in the propositional case, because the lengths
of the plans are at most exponential in the length of the input. Hence, giving an
exponential bound on the length of the plan does not reduce the complexity of PLAN
LENGTH. As a result, in the propositional case, both PLAN EXISTENCE and PLAN
LENGTH are PSPACE-complete.

3. When the operator set is fixed in advance, any operator whose predicates are not all
propositions can be mapped into a set of operators whose predicates are all propo-
sitions. Thus, planning with a fixed set of datalog operators has basically the same
complexity as planning with propositional operators that are given as part of the input.

4. PLAN LENGTH has the same complexity regardless of whether negated preconditions
are allowed. This is because what makes the problem hard is how to handle enabling-
condition interactions, i.e., how to choose operators that achieve several subgoals in
order to minimize the overall length of the plan [29], and this task remains equally
hard regardless of whether negated preconditions are allowed.

5. Delete lists are more powerful than negated preconditions. Thus, if the operators are
allowed to have delete lists, then whether or not they have negated preconditions has
no effect on the complexity.

Several other researchers have studied the complexity of STRIPS-style planning. Some of
Bylander’s results [12] have been displayed in Table 2.3 and indicated as such. Bylander has
also studied average-case complexity of propositional STRIPS-style planning under various
assumptions as can be found in [14]. Backstrom has done a complexity analysis of a planning
representation equivalent to STRIPS representation with similar results [8].

2.3.4 Abstraction Hierarchies

Abstraction hierarchies were originally introduced in the ABSTRIPS [60] system, as de-
scribed in Section 2.2. ABSTRIPS used heuristic methods in assigning criticality levels to
predicates, to determine which of those conditions the planner should try to accomplish first.

Knoblock [41] has developed an algorithm called ALPINE for assigning criticality levels
in such a way that during the planning process, establishing a condition (which possibly
requires adding new steps to the plan) cannot clobber the previously established conditions
with higher criticality levels. This property is called the ordered monotonicity property.

26

ALPINE assigns the criticality levels so that effects of any given action have the same
level, and are of same or higher level than the preconditions of the same action. Thus,
whenever a new action is inserted to the working plan to achieve a goal condition at that
criticality level, the action does not have any effects or preconditions with higher criticality
level than the current level. Hence the abstraction hierarchies generated by ALPINE have
the ordered monotonicity property. Knoblock’s experiments on several planning domains,
including “Towers of Hanoi,” has indicated that planning using such a hierarchy usually
reduces planning time. However, recently, Backstrom [7] has shown that there exist planning
problems for which abstraction hierarchies satisfying the ordered monotonicity property may
work poorly.

Yang has also worked extensively on abstraction hierarchies, collaborating with a number
of researchers. Together with Tenenberg and Woods, Yang has developed ABTWEAK [77],
a planning system that utilizes abstraction hierarchies like ABSTRIPS, but it uses TWEAK
instead of STRIPS as the underlying plan generator at each level. Yang and Bacchus have
identified several properties of abstraction hierarchies as potential indicators of how well
they would perform [6]. Particularly,they have identified the downward refinement property,
which basically states that any solution at an abstraction level can be refined to a final
solution, and thus no backtracking across abstraction levels is required. Yang and Bacchus
have also studied how the performance of planning systems using abstraction hierarchies
are influenced by protecting or not protecting the previously established conditions. Their
results indicate that usually, protecting conditions established at the previous level, but not
protecting the conditions established at the current level gives better performance.

Abstraction hierarchies, although related, are rather different from task decomposition
hierarchies. The similarity and differences among them are discussed in Section 3.6. In fact,
as presented in Section 6.5, the UMCP planning system utilizes both of these techniques at
the same time.

2.3.5 Partial-order versus Total-order Planning

The first Al planning systems were total order planners; that is, these planners immediately
ordered each new step added to a plan with respect to all the other steps. In the following
years, most of the planning systems, particularly HTN planning systems, were designed to
be partial order: Plan steps were kept partially ordered; new orderings were introduced only
to resolve conflicts among steps.

Planning systems that used partial ordering were usually faster than total-order planning
systems, but it was not clear whether that was due to using partial order, or to some other
feature.

In recent years, several comparative studies of partial order versus total order planning
have been done.

One of the first studies on partial versus total order planning was done by Minton et.
al. [49]. They designed two planners called TO and UA. TO is a total order planner, which
orders each new step in a plan with respect to all the other steps. UA is designed exactly like

27

TO, except that UA orders a new step only with respect to those steps that has a common
effect with the new step. All the steps that may interact are totally ordered in UA; thus it
makes more ordering commitments compared to other partial order planning systems. On
the other hand, since all interacting steps are ordered, any condition that is possibly true
in the plan is also necessarily true, which simplifies planning considerably. Minton, et. al.
have shown that UA’s search space is never bigger than that of TO, and in some cases it
can be exponentially smaller than that of TO.

Barrett and Weld have also studied partial order versus total order planning [10]. Their
intuition was that, in some planning problems, a partial order planner like SNLP[46] can
easily find the correct order to achieve subgoals while doing conflict resolution, where as a
total order planner may need to try many different orderings before finding the right one.
Thus, they introduced the concept of laboriously serializable goals. Only a few orderings
lead to a correct solution for this type of goal. Barrett and Weld designed several artificial
planning problems with laboriously serializable goals, and their experiment results corrob-
orate the intuition that partial-order planners perform better than total-order planners in
solving problems with this type of goals.

In response to this study, Veloso et. al. [68], has introduced the concept of linkability.
The degree of linkability in a problem refers to how much backtracking a causal link planner
such as SNLP needs to do on the problem, because it has committed to the wrong step to
establish a condition. They compare the performance of SNLP to PRODIGY [11], which is
a total-order planner, and show that SNLP performs much more slower than PRODIGY in
several problems where goals are laboriously linkable.

In recent years, several studies have been made on causal links, and the tradeoffs involved
in it [36, 56, 61, 34]. In general, preserving causal links reduces the redundancy in the
search space, but increases the branching factor (i.e., the number of ways of establishing a
condition). Using causal links may force the planner to commit to the wrong step as an
establisher, and cause backtracking,.

All these studies on partial versus total ordering has been done on state-based planners,
and for good reason. In the HTN framework, total order planning is very restrictive: it
prevents interleaving subtasks belonging to different tasks. This issue is discussed in detail
in Chapter 4.

2.3.6 Task Networks and Task Decomposition

Very few researchers have tried to integrate task decomposition to their models of planning.
Kambhampati and Yang [33, 74] provided the initial steps towards developing a formal model
of HTN planning, which the work described in this dissertation has extensively benefited
from. Barrett [9] and Young [78] have incorporated task decomposition techniques to their
planning systems as a tool for increasing the speed of state-based planning. The general idea
was to encapsulate heuristic fast ways of accomplishing conditions via task decompositions.
In that aspect, their approach is similar to that of MACROPS [23] developed by Fikes et.
al. which used predefined sequences of operators (i.e. macros) to provide shortcuts in the

23

search space.

2.4 Discussion

As presented throughout Section 2.3, extensive research effort has gone into formalizing and
analyzing the ideas embedded in planning systems. These studies provided a very good
understanding of state-based planning, but they did not cover many important aspects of
more application-oriented planning systems, particularly task decomposition and critics. As
I will explain in Chapter 3, the concepts of task networks and task decomposition bring a
totally new dimension to planning, with a more powerful and natural representation, and a
broader set of algorithmic concerns. This dissertation complements the previous studies by
formalizing and analyzing the HTN planning techniques, and by introducing new, provably
correct HTN planning algorithms.

The formal framework of HTN planning, presented in Chapter 3, is based on the ideas
embedded in NOAH, NONLIN and DEVISER planning systems, although many modifica-
tions and extensions have been necessary to make the formal framework consistent, coherent,
and comprehensive. This part of the dissertation is analogous to the work on the STRIPS
language to free it from semantic flaws [45].

The second part of the dissertation provides a complexity analysis of HTN planning to
give insight into the algorithmic difficulties and bottlenecks, analogous to the complexity
analyses on state-based planning, described in Section 2.3.3. This part also contains an
expressivity analysis of the HT'N language in comparison with the STRIPS language, which
proves that the HTN representation is strictly more powerful. This study is unique perhaps
because there have not been many planning languages formalized to sufficient detail to be
compared. In fact, part of this work involves developing the necessary mathematical tools
and definitions for comparing the expressivity of planning languages.

The remaining chapters of the dissertation have focused on developing provably correct,
efficient planning algorithms for HTN planning, which is in some ways analogous to what
Chapman [15] and McAllester [46] accomplished for state-based planning. First, an abstract,
but provably correct planning algorithm is developed. Then detailed algorithms are devised
for computing the steps of the abstract algorithm. This part of the work also involves
designing correct critics mechanisms for HTN planning, based on constraint satisfaction.
Causal links introduced in SNLP [46] are modeled as a special type of constraint; they are
employed for establishing conditions and preserving systematicity.

29

Chapter 3
HTN Formalism

This chapter presents the HTN formalism I have developed. The first section contains an
informal description of HTN planning, intended to give an intuitive feel for the formalism
presented in the subsequent sections. Section 3.2 describes the syntactic constructs of HT'N
planning. The next two sections present the model-theoretic and operational semantics for
these syntactic constructs. Section 3.5 presents a provably correct HTN planning algorithm.
Finally, Section 3.6 describes how various HTN concepts in previous HTN planning systems
are modelled in this framework.

3.1 An Overview of HTN planning

One of the motivations for HTN planning was to close the gap between STRIPS-style plan-
ning, and the operations-research techniques for project management and scheduling [64].
As a result, there are some similarities between HTN planning and STRIPS-style planning,
but also some significant differences.

HTN planning representations for actions and states of the world are similar to those
used in STRIPS-style planning®, which was described in Section 2.3.1. Thus, each state of
the world is represented by the set of atoms true in that state. Actions, which are called
primitive tasks in the HTN terminology, are represented using STRIPS-style operators.

The primary difference between HTN planners and STRIPS-style planners is in what
they plan for, and how they plan for it. In STRIPS-style planning, the objective is to find
a sequence of actions that will bring the world to a state that satisfies certain conditions or
“attainment goals.” Planning usually proceeds by finding operators that have the desired
effects, and by making the preconditions of those operators into subgoals. In contrast, HTN
planners search for plans that accomplish task networks, which can include things other than

!The terms “STRIPS-style planning” and “state-based planning” are interchangeably used to refer to
any planner (either total- or partial-order) in which the planning operators are STRIPS-style operators (i.e.,
operators consisting of three lists of atoms: a precondition list, an add list, and a delete list). These atoms
are normally assumed to contain no function symbols.

30

See a show

Go(D.C., Las Vegas) <: > Go(Las Vegas, D.C.)

Figure 3.1: A task network

Go(X,Y)
Y
Rent-car |— | Drive(X,Y)

Figure 3.2: A (simplified) method for going from X to Y.

just attainment goals; and they plan via task decomposition and conflict resolution, which
shall be explained shortly.

A task network is a collection of tasks that need to be carried out, together with con-
straints on the order in which tasks can be performed, the way variables are instantiated,
and what literals must be true before or after each task is performed. For example, Fig-
ure 3.1 contains a task network for a trip to Las Vegas. Unlike STRIPS-style planning, the
constraints may or may not contain conditions on what must be true in the final state.

A task network that contains only primitive tasks is called a primitive task network.
Such a network might occur, for example, in a scheduling problem. In this case, an HTN
planner would try to find a schedule (task ordering and variable bindings) that satisfies all
the constraints.

In the more general case, a task network can contain non-primitive tasks, which the
planner needs to figure out how to accomplish. Non-primitive tasks cannot be executed
directly, because they represent activities that may involve performing several other tasks.
For example the task of traveling to New York can be accomplished in several ways, such as
flying, driving or taking the train. Flying would involve tasks such as making reservations,
going to the airport, buying ticket, boarding the plane; and flying would only work if certain
conditions were satisfied, such as availability of tickets, being at the airport on time, having
enough money for the ticket, and so forth.

Ways of accomplishing non-primitive tasks are represented using constructs called meth-
ods. A method is a syntactic construct of the form («,d) where « is a non-primitive task,
and d is a task network. It states that one way to accomplish the task « is to achieve all
the tasks in the task network d without violating the constraints in d. Figure 3.2 presents a
(simplified) method for accomplishing Go(X,Y).

A number of different systems that use heuristic algorithms have been devised for HTN
planning [64, 69, 73], and several recent papers have tried to provide general descriptions of

31

st LR NI VIR FT LA

1. Input a planning problem P.

2. If P contains only primitive tasks, then
resolve the conflicts in P and return the result.
If the conflicts cannot be resolved, return failure.

Choose a non-primitive task ¢ in P.

Choose an expansion for ¢.

Replace t with the expansion.

Use critics to find the interactions among the tasks in P,
and suggest ways to handle them.

Apply one of the ways suggested in step 6.

8. Go to step 2.

O G W

=~

Figure 3.3: The basic HTN Planning Procedure.

Rent-car |—|drive(D.C., L.V.) < >‘, Go(L.V., D.C.)

Figure 3.4: A decomposition of the the task network in Fig. 3.1

these algorithms [74, 33]. Figure 3.3 presents the essence of these algorithms. As shown in
this figure, HTN planning works by expanding tasks and resolving conflicts iteratively, until
a conflict-free plan can be found that consists only of primitive tasks.

Fzpanding each non-primitive task (steps 3-5) is done by finding a method capable of
accomplishing the non-primitive task, and replacing the non-primitive task with the task
network produced by the method. For example, the task Go(D.C., Las Vegas) in the task
network of Figure 3.1 can be expanded using the method in Figure 3.2, producing the task
network in Figure 3.4.

The task network produced in Step 5 may contain conflicts caused by the interactions
among tasks. For example, in Figure 3.4, if we use up all our money in order to rent the
car, we may not be able to see a show. The job of finding and resolving such interactions is
performed by critics. As explained in Section 2.2.7, critics were introduced into NOAH [58]
to identify and deal with several kinds of interactions (not just deleted preconditions) among
the different networks used to reduce each non-primitive operator. This is reflected in Steps 6
and 7 of Figure 3.3: after each reduction, a set of critics is checked so as to recognize and
resolve interactions between this and any other reductions. Thus, critics provide a general
mechanism for detecting interactions early, so as to reduce the amount of backtracking.

32

Section 6.3 contains a detailed description of how to detect and resolve interactions in HTN
planning in such a way to preserve soundness, completeness, and systematicity.

In contrast to STRIPS-style attainment goals, task networks are much richer in structure.
Any sequence of actions for which the attainment goals are true in the final state constitute a
plan in the STRIPS paradigm. There is very little control over which actions can be used in
the plan, what must be true in the intermediate states, or in which order the goals must be
accomplished. This control can be exercised only by modeling the application domain at a
very fine granularity, duplicating many operators, and inventing many new preconditions for
them, on a per problem basis. On the other hand, HTN planning provides full control over the
actions in a plan: only those actions that appear in the methods for the task (and methods for
its subtasks) can be used. Restrictions on the task orderings or intermediate states can easily
be expressed using the HTN constraints. This expressivity of the HT'N constructs can be
very useful in many application domains. For example, consider an automated manufacturing
application. A process plan for producing a part usually involves many machining operations
with several constraints on the way these operations must be performed. Such a process plan
can be represented as a method. It may be possible to represent this domain in the STRIPS
paradigm; however, for a planner to be able to deduce the constraints from the domain
description, the domain must be modelled at an unnecessarily detailed level (possibly to
the level of physical interactions, and chemical processes), which makes it computationally
prohibitive and unfeasible.

3.2 Syntax for HTN Planning

A language £ for HT'N planning is a first-order language with some extensions.

Definition 10 The vocabulary of £ is a tuple (V,C, P, F,T, N), where V is an infinite set of
variable symbols, C is a finite set of constant symbols, P is a finite set of predicate symbols,
F' is a finite set of primitive-task symbols (denoting actions), T is a finite set of compound-
task symbols, and /V is an infinite set of symbols used for labeling tasks. All these sets of
symbols are mutually disjoint.

Note that the HTN language does not contain any function symbols. Function symbols
were introduced to planning in situation calculus to model actions. HTN planning uses
primitive tasks for this purpose. First order predicate logic includes function symbols, and
contains mechanisms for reasoning about them. However, planning systems seldom aspire to
reason about functions. More often it is the case that the interpretation of any function is
fixed and known in advance. Such a function can be modelled as a relation using a predicate
symbol, or by using procedural attachment (i.e., by providing a piece of code that actually
computes the function).

Note also that the set of constant symbols is restricted to be finite. Most planning
applications involve only a finite number of objects that can be identified and manipulated.
When the application involves infinite sets of objects such as numbers, these can be dealt

33

with more efficiently using procedural mechanisms instead of reasoning about them using
axiomatic approaches.

Most planning algorithms work with finitely many constants. TWEAK [15] is a particular
exception, which relies on the domain to contain infinitely many constant symbols in order
to operate correctly. As was discussed in Section 2.2, TWEAK assumes the set of constants
to be infinite so that a consistent ground instantiation of a partial plan can be computed
in polynomial time. If the set of possible values for each variable is finite, then finding a
consistent ground instantiation is NP-complete. However, the price for this reduction in a
single step is very dear: as presented in Section 2.3.3, allowing infinitely many constants
makes planning undecidable!

Definition 11 A state is a list of ground atoms.

The atoms appearing in that list are said to be true in that state and those that do not
appear are false in that state. Thus the notion of states in HTN planning is the same as in
state-based planning, which was presented in Section 2.3.1.

Definition 12 A primitive task has the form do[f(z1,...,z})], where f € F and x,..., 2%
are terms.

Primitive tasks in HTN planning correspond to actions in STRIPS-style planning. Effects
and preconditions of primitive tasks are declared using operators.

Definition 13 An operator has the form

[operator f(v1,...,vk)
wpre by, ..oy ly
:post U4, ..., 00
].
f is a primitive task symbol, and ly,...,1, are literals describing when f is executable.
l,..., Il are literals describing the effects of f, and vy,...,vx are the variable symbols

appearing in the literals.

Note that this syntax is slightly different from that of STRIPS operators presented in
Section 2.3.1. For syntactic convenience, atoms in the delete list are negated and merged
with the atoms in the add list into a single postcondition list.

Definition 14 A plan is a sequence of ground primitive tasks.

Up to this point, the syntax and the semantics of the constructs defined are very similar
to those in STRIPS-style planning, which was described in Section 2.3.1. The difference of
HTN planning is in what we plan for. STRIPS-style planners plan for “attainment goals”,
which are conditions that must be made true in the world. Any plan that makes those
conditions true in its final state is considered a valid solution, no matter which actions are
used or what the intermediate states contain. HTN planners search for plans that accomplish
more complex behaviors, which are denoted as tasks and task networks.

34

ny:

clear(v,)

achieve[clear(v;)]

na:

:on(vy,v3) | do[move(vy, vs, vq)]

Ng:
cleag(vs)

achieve[clear(v,)]

Figure 3.5: Graphical representation of a task network.

Definition 15 A goal task has the form achicve[l], where [is a literal. A compound task
has the form per form[t(zy,...,zt)], where t € T and z4,. ..,z are terms.

Both goal tasks and compound tasks are referred to as non-primitive tasks.

Definition 16 A task network has the form [(ny : 1) ...(np : am), @], where each o; is a

task;

each n; € N is a label for a; (to distinguish it from any other occurrences of «; in

the network); and ¢ is a boolean formula constructed from atomic HTN constraints. ¢ can
contain the usual logic connectives conjunction, disjunction, and negation.

HTN planning has a rather rich set of atomic constraint types:

Variable binding constraints are of the form (v1 = ¢), (v1 = v3). v1,v2 € V are variable
symbols, and ¢ € C' is a constant symbol.

Ordering constraints are usually of the form (n < n’) where n,n’ € N. As to be
described precisely in the semantics part, such an expression denotes that the task
labeled with n must finish before the task labeled with n' starts, thus all the subtasks
in the decomposition of n must precede all the subtasks in the decomposition of n’.

In the more general case, instead of individual node labels from N, ordering constraints
can contain node ezpressions of the form first[n;,nj,...] or last[n;,nj,...] to refer to
the task that starts first and to the task that ends last among a set of tasks, respectively.

State constraints are of the form (n, 1), ({,n), and (n,{,n’), where v,v’ € V, lis a literal,
¢ € C. n and n’ can be either node labels in IV, or they can be node expressions as was
described in the previous paragraph. Intuitively (this will be formalized in Chapter 3.2,
(n,0), (I,n) and (n,l,n') mean that [must be true in the state immediately after n,
immediately before n, and in all states between n and n’, respectively.

A special type of state constraint is (initially [). This constraint denotes that the
literal / must be true in the initial state.

As an example, Fig. 3.6 gives a formal representation of the task network shown in
Figure 3.5. In this blocks-world task network there are three tasks: clearing v, clearing v,,
and moving v; to ve. The task network also includes the constraints that moving v; must

35

K R Rt R RN N R A ek

[(n1 : achieve[clear(vi)])(na : achieve[clear(vy)])(ns : do[move(vy,v3, v2)])
(n1 < n3) A (ng < n3) A (n1, clear(vy), n3) A (ng, clear(va), n3)A
(on(vy,v3),n3) A =(v1 = v2) A =(v1 = v3) A ~(v2 = v3)]

Figure 3.6: Formal representation of the task network of Fig. 3.5.

be done last, that v; and v, must remain clear until v, is moved, that vy,v,, v3 are different
blocks, and that on(vi,v3) be true immediately before vy is moved. Note that on(vy,vs)
appears as a constraint, not as a goal task. The purpose of the constraint (on(vy,vs),ns) is
to ensure that v3 is bound to the block under v; immediately before the move. Representing
on(vy,v3) as a goal task would mean moving v; onto some block v3 before it is moved onto
vy, which is not what is intended.

Definition 17 A task network containing only primitive tasks is called a primitive task
network.

Definition 18 A method is a construct of the form (a,d) where « is a non-primitive task,
and d is a task network.

As defined formally in Section 3.2, this construct means that one way of accomplishing the
task « is to accomplish the task network d, i.e. to accomplish all the subtasks in the task
network without violating the constraint formula of the task network. For example, a blocks-
world method for achieving on (v, v2) would look like (achieve(on(vi,vs)), d), where d is the
task network in Fig. 3.6.

Every method for a goal task has the implicit constraint that the goal condition
must become true in the end. Every goal task also has an implicit method of the form
(achieve[l],[(n : do[f]),(I,n)]) which contains only one dummy primitive task f with no
effects, and the constraint that the goal [is true immediately before do[f]. Thus, if the goal
condition is already true, the goal task has an empty expansion.

Each primitive task has exactly one operator for it, where as a non-primitive task can
have an arbitrary number of methods.

Definition 19 A planning domain D is a pair (Op, Me), where Op is a list of operators,
and Me is a list of methods.

Definition 20 A planning problem instance P is a triple (d, I, D), where D is a planning
domain, I is the initial state, and d is the input task network to plan for.

solves(o,d, I) is a syntactic construct which is used to mean that ¢ is a plan for the task
network d at state I.

The language of P is the HTN language £ generated by the constant, predicate, and task
symbols appearing in P, along with an infinite set of variables and an infinite set of node

36

labels. Thus, the set of constants, predicates and tasks are all part of the input to an HTN
planner.

Next, let us define some restrictions on HTN-planning problems. P is primitive if the
input task network d contains only primitive tasks. This corresponds to the case where the
planner is used only for scheduling. P is regular if all the task networks in the methods and d
contain at most one non-primitive task, and that non-primitive task is ordered with respect
to all the other tasks in the network. Surprisingly, this class of HT'N-planning problems is
closely related to STRIPS-style planning, as we shall see in Chapter 5. P is propositional if
no variables are allowed. P is totally ordered if all the tasks in any task network are totally
ordered.

Definition 21 PLAN EXISTENCE is the following problem: given P = (d, I, D), is there a
plan that solves P?

3.3 Model-Theoretic Semantics

3.3.1 Semantic Structure

Definition 22 A semantic structure for HTN planning is a triple

M = <8M7fM7TM>

The subscript M is omitted whenever the model is clear from context. S, F, and 7 are
described below.

S = 2fall ground atoms} i the set of states. Each state in S is a set, consisting of the atoms
true in that state. Any atom not appearing in a state is considered to be false in that state.
A state corresponds to a “snapshot” instance of the world.

F 1 FxC*"xS — S is a partial function for interpreting the actions. Given a primitive
task symbol from F, with ground parameters from C, and an input state, F tells us which
state we would end up with, if we were to execute the action. For a given action, F might
be undefined for some input states, namely those for which the action is not executable.

Up to this point, the semantics for HTN planning coincides with the semantics for
STRIPS-style planning. Both involve states which are represented as sets of atoms, and
actions (i.e. primitive tasks) which map one state to another state.

HTN planning takes STRIPS-style planning one step further by introducing non-primitive
tasks, and task networks.

T : {ground non-primitive tasks} —s 2{ground primitive task networks} j5 5 fynction that maps
each non-primitive task o to a (not necessarily finite) set of ground primitive task networks
T (o). Each primitive task network d in 7 («) describes one way of accomplishing «.

There are two restrictions on the way 7 () interprets a goal task achieve[l]. First, [must
be true at the end of any task network in 7 (achieve[l]). Second, since an empty plan can be

37

used to accomplish a goal task if the goal literal is already true, 7 (achieve[l]) must contain
a task network consisting of a single dummy task with the constraint that [/ is true.

Modeling each non-primitive task as a set of primitive task networks may seem unneces-
sarily complicated at first. The straightforward alternative would be to model each task as
the set of plans that achieve that task. While this alternative would work well for the attain-
ment goals of STRIPS-style planning, such a model does not contain enough information for
the purpose of HTN planning. Ways of accomplishing non-primitive tasks cannot be identi-
fied by the conditions true in the final state. In HTN planning, each way of accomplishing
a task must contain two types of information:

1. The set of actions that must be executed to accomplish the task,

2. The constraints on the way these actions must be executed. This information is neces-
sary so that, when the planning problem involves accomplishing multiple tasks (most
planning problems do), the actions needed to accomplish each task can be correctly
combined together without any harmful interactions.

Both type of information is nicely encapsulated in a primitive task network.

A non-primitive task networks is modeled as a set of primitive task networks, similar to
the way non-primitive tasks are modeled. A model does not need to interpret a task network
directly, the interpretation of the task network can be constructed from the interpretations
of its constituent tasks. For this purpose, T is extended to 7 as follows:

e T(a) ={[(n: @), TRUE]}, if a is a ground primitive task. Thus, a ground primitive
task is mapped to a primitive task network containing only that primitive task.

T(a) = T(a), if « is a ground non-primitive task.

o T () = Ug is a ground instance of o 2 (&), if @ is a task containing variables.

T (d) = {d}, if d is a ground primitive task network.

Let d = [(n1 : @1)...(Nm : am), @] be a ground task network possibly containing
non-primitive tasks. Then

T(d) = {compose(dy, .. .,dm,8) | di € T(ci), 1 =1...m}.

This definition follows the intuition that the set of solutions to a task network consists
of combinations of the solutions to the tasks in that task network.

compose is defined as follows. Suppose, for : == 1..m

di = [(na = aq1) -+ (nik, = g,), i)

38

Then?

compose(dy,...,dy,d) = [(n11: c11) ... (Mmkys © Qe)s P1 A -+ - I A &),
where ¢’ is obtained from ¢ by making the following replacements:

— replace (n; < n;) with (last[na,...,ng] < first[n,... yNjk,]), since all tasks in
the decomposition of n; must precede all tasks in the decomposition of n;;

— replace ({,n;) with (I, first[n;,...,ni,]), since [needs to be true immediately
before the first task in the decomposition of n;;

— replace (n;, 1) with (last[n;,...,ny,], 1);
— replace (n;, 1, n;) with (last[na, ..., nu,], 1, firstng, ..., ng]);

— everywhere that n; appears in ¢ in a first[] or a last[] expression, replace it with
Thilge ooy nikl.

These replacements in the constraint formula of the original task network d are required
because the node labels in the constraint formula are not meaningful once the associated
tasks are expanded. Thus any references to those node labels must be properly replaced
with the node labels in the expansion.

® T(d) = U is a ground instance of a7 (d'), if d is a task network containing variables.

In subsequent sections and chapters, the bar in 7 is omitted, and only 7 is used instead.

3.3.2 Satisfaction

This section describes how syntactic expressions such as operators and methods take truth
values in a given model. We will use the phrases “...is true in model M” and .. .is satisfied
by model M” interchangeably.

A model M satisfies an operator o, if M interprets the primitive task associated with
the operator so that the primitive task is executable under the conditions specified in the
preconditions of the operator, and has the effects specified in the postconditions of the
operator. Thus:

Definition 23 An operator [operator f(vq,...,vx) :pre li... 1y, :post If ... 1] is satisfied by
a model M iff for any ground substitution 6 and any state s, Fas has the following properties,
where E,, E, are the sets of negative and positive literals in I}, ..., I’ respectively:

A)

o if 10,...,0,0 are true in s, then Fp(f,v10,...,v0,5) = (s — E,0) U E,¥;

e otherwise, Fa(f,v10,...,vi0,s) is undefined.

*The variables and node labels in each task network d; must be renamed (standardized) so that no
common variable or node label occurs.

39

Note that the definition of satisfaction for operators in the HTN paradigm and in the
STRIPS paradigm are very similar.
In order to relate tasks in a primitive task networks to plans, a mapping is required, as

defined below:

Definition 24 Let M be a model, d = [(ry : 1) (Rps :), @] be a ground primitive
task network, so be a state, and

o= (filCiry--sCky)y frm(Cmis-- s Crkm))
be a plan executable at so. Thus, s; = Fm(fi,cit,-..,Cik,Si-1) for ¢ = 1...m, which
are the intermediate states, are all well-defined. A matching © from d to o is defined to
be a one-to-one function from {1,...,m'} to {1,...,m} such that whenever 7(i) = j, o; =

dO[fj (le, PP ,Cij)]

Thus a matching provides a total ordering on the tasks.

Now, let us define the conditions under which a model M satisfies
solves(o,d, s), that is, the conditions under which o is a plan that accomplishes the task
network d starting at state s, in M. Let us first consider the case where d is primitive.

Definition 25 M satisfies solves(o,d,s) if m = m/, and there exists a one-to-one onto
matching 7 that makes the constraint formula ¢ true. The constraint formula is evaluated
as follows:

o (¢; = c;) is true, if ¢;, ¢; are the same constant symbols;

first{ni,n;,...] evaluates to min{x(2),7(5),...};

last[n;, n;, .. .| evaluates to maz{n (1), 7(j),...};

(n; < ny) is true if 7(z) < 7(j);
({,n;) is true if [holds in sx(i)-1;
e (n;,!) is true if [holds in sx(;);
o (n;,1,n;) is true if / holds for all s., 7(7) < e < 7(5);

e logical connectives =, A,V are evaluated as in propositional logic.

Definition 26 Let d be a task network, possibly containing non-primitive tasks. A model
M satisfies solves(a, d, s) if for some task network d' € Ty (d), M satisfies solves(o,d', s).

For a method («, d) to be satisfied by a given model, not only must any plan for d also be
a plan for «, but in addition, any plan for a task network ¢n containing d must be a plan for
the task network obtained from tn by replacing d with . To precisely explain this notion,
we introduce the following definition:

40

Definition 27 Given a model M, two sets of ground primitive task networks T'N and T N’,
TN is said to cover T N', iff for any state s, any plan o executable at s, and any d' € TN',
the following property holds:

Whenever there exists a matching = between d' and ¢ such that o at s satisfies
the constraint formula of d’, then there exists a d € T'N such that for some
matching 7’ with the same range as w, o at s makes the constraint formula of d
true.

Intuitively, a set of task networks T'N covers another set of task networks T'N’, if any

time part of a plan achieves a task network in T'N’, the same portion of the plan also achieves
a task network in T'N.

Definition 28 A method (o, d) is satisfied by a model M, iff Ty(a) covers Tp(d).

Thus, accomplishing d always accomplishes a, even in the presence of other tasks and
constraints. Definitions for covering and the satisfiability of methods are a bit complicated,
because the meaning of a task network not only involves a characterization of the plans that
solves it in isolation, but also in the presence of other tasks and constraints.

Definition 29 A model M satisfies a planning domain D = (Op, Me), if M satisfies all
operators in Op, and all methods in Me.

3.4 Operational Semantics

A plan o solves a planning problem P = (d, I, D) if any model that satisfies D also satisfies
solves(o,d, I). However, given a planning problem, how do we find plans that solve it?

Definition 30 Let d be a primitive task network containing only primitive tasks, and let [
be the initial state. A plan o is a completion of d at I, denoted by o € comp(d, I, D), if o
is executable (i.e. the preconditions of each action in o are satisfied) and o corresponds to
a total ordering of the primitive tasks in a ground instance of d that satisfies the constraint
formula of d. Satisfaction of the constraint formula was defined in the previous section. For
non-primitive task networks d, comp(d, I, D) is defined to be 0.

Definition 31 Let d be a non-primitive task network that contains a (non-primitive) node
(n: a). Let m = (¢/,d’) be a method, and 8 be the most general unifier of o and o/. We
define reduce(d, n, m) to be the task network obtained from df by replacing (n : «)§ with the
task nodes of d'#, modifying the constraint formula ¢ of d’'d into ¢’ (as we did for compose),
and combining with the constraint formula of d'6 with a conjunct.

We denote the set of reductions of d by red(d, I, D). Reductions correspond to task de-
composition. A plan o solves a primitive task network d at initial state I iff o € comp(d, I, D);

a plan o solves a non-primitive task network d at initial state I iff o solves some reduction
d' € red(d,1,D) at initial state I.

41

Definition 32 The set of plans sol(d, I, D) that solves a planning problem instance P =<
d,1,D > is defined iteratively as:

soli(d,1,D) = comp(d,I,D)
801n+1 (d, I, D) = SOln(d, I, D) U Ud’ETed(d,I,D) SOln(d/, I, D)
sol(d,I,D) = Un<wsoly(d,1,D)

Intuitively, sol,(d, I, D) is the set of plans that can be derived in n steps, and sol(d, I, D)
is the set of plans that can be derived in any finite number of steps.

Section 3.3 has presented a model-theoretic semantics for HTN planning, and this section
has presented an operational, fixed-point semantics that provides a procedural characteri-
zation of the set of solutions to planning problems. The next step is to show that the
model-theoretic semantics and operational semantics are equivalent, so that we can use the
model-theoretic semantics to get a precise understanding of HTN planning, and use the op-

erational semantics to build sound and complete planning systems. The following theorem
states that sol(d, I, D) is indeed the set of plans that solves (d, I, D).

Theorem 1 (Equivalence Theorem) Given a task network d, an initial state I, and a
plan o, o is in sol(d, I, D) if and only if any model that satisfies D also satisfies solves(c,d, I).

Proof. [—]. Since sol(d,I,D) is defined recursively in terms of completions and reduc-
tions, it suffices to show that

(a)Given any primitive task-network d, if o € comp(d, I, D), then any model that satisfy
D also satisfies solves(o,d, I),

(b) Given any model M which satisfies D, any two task networks d,d’ such that d' €
red(d, I, D), whenever M satisfies solves(a,d’, I), then it also satisfies solves(o,d, I).

(a). Assume o € comp(d, I, D). Then, o is a totally ordered ground instance of d that
makes the constraint formula true. Let M be any model that satisfies D. Because M satisfies
the operators, Fjs will project the intermediate states to be exactly the same as projected
in the completion. Furthermore, the constraint formula is evaluated in the same way both
for finding completions and for determining whether a model satisfies solves(e,d, I). Thus,
given a primitive task network d, and a model M that satisfies D, M satisfies solves(o,d, I)
iff o € comp(d, I, D).

(b). Let d' be in red(d,I,D). Then there exists a method m, and a task node n in d
such that d’ = reduce(d,n,m). Let M be a model that satisfies D, and also solves(o, d', I).

Without loss of generality, let’s assume d,m,d’ have the following forms:

d = [(’I’L1 : 011) . (nk : ak) (TL : O[), ¢]7
m= (o [(ad)... (n) 0,)
d = [(ny:a))...(nf:af) (na:on). . (et ar), ' N9

42

Since M satisfies solves(o,d’, I), there exists
d, € T(d),...,d; € T(d),dy € T(au),...,dr € T(ax) such that o is a plan for
compose(dy, ..., ds di,...,dg, ¢ A ¥).

Thus, there exists a matching = between o
and compose(dy,...,d;, di,...,dy,¢' A %), such that the constraint formula of
compose(dy, ..., d),v), which correspond to the portion of the task network correspond-
ing to the expansion of «, is satisfied. From this fact and that M satisfies the method m,
we conclude there exists a d” € T (a) and a matching 7’ such that o makes the constraint
formula of d” true.

Consider compose(dy,...,dx, d",4) € T(d). Construct a matching 7" by extending «’
to di,...,d; (taking the same value as x for those places). o satisfies ¢ and the constraints
of dyi,...,dy, d”. Thus M satisfies solves(o,d,I).

[«]. We will show that whenever o ¢ sol(d, I, D), there exists a model M that satisfies
D, but not solves(o,d, I).

Here is how we construct M =< §,F,7 >:

e S = 2{ground atoms}.

o F(f,c1-..,¢ck,8) = (s — N) U PO, whenever the operator for f is of the form
(f(v1,...,v8), lay ..., lx), where 0 is the substitution {c¢;/v;|1 < ¢ < k}, and N, P are
the sets of negative and positive literals in {ly,..., [}, respectively.

¢ T(a) = {d|d is a ground instance of a primitive task-network obtained from «a by a
finite number of reductions}, for any non-primitive task «.

When 7 is extended to cover task networks as defined in Section 3.2, we observe that
T(d) = {d'|d'is a ground instance of a primitive task-network obtained from d by a finite
number of reductions} for any task network d.

F is defined such that M satisfies all the operators in D. By definition of 7, whenever
d € red(d,1,D), T(d') C T(d). Thus T(d) covers 7 (d’) and M satisfies all the methods in
D.

Given a primitive task network d, and a model M that satisfies D, M satisfies
solves(o,d,I) iff o € comp(d, 1, D)

Let d be a primitive task network such that o ¢ sol(d,I,D). In that case, 0 ¢
comp(d, I, D), either. In part (a) of the proof, we showed that for any model that satis-
fies the operators, comp(d, I,D) is exactly the set of plans that solves the primitive task
network d. Thus we conclude M does not satisfy solves(o,d, I).

Consider the alternative where d is a non-primitive task network such that o ¢
sol(d, I, D). Assume M satisfies solves(o,d,I). Then there exists a primitive task network
d' € T(d) such that o is a plan for d’. From part (a) of the proof, ¢ must be in comp(d’, I, D).
However, since 7 (d) contains only primitive task networks that can be obtained by a finite
number of reductions from d, we conclude o € sol(d, I, D), which is a contradiction. [

43

procedure UMCP:
1. Input a planning problem P = (d, I, D).
2. if d is primitive, then
If comp(d, I,D) # B, return a member of it.
Otherwise return FAILURE.
Pick a non-primitive task node (n :) in d.
Nondeterministically choose a method m for a.
Set d := reduce(d,n,m).
Set ' := 7(d, I, D).
Nondeterministically set d := some element of I'.
Go to step 2.

P NS T w

Figure 3.7: UMCP: Universal Method-Composition Planner

3.5 UMCP: A Provably Correct HTIN Algorithm

Using the syntax and semantics developed in the previous section, the HTN planning
procedure presented in Figure 3.3 can be formalized. Figure 3.7 presents this planning
algorithm, called UMCP (for Universal Method-Composition Planner).

It should be clear that UMC P mimics the definition of sol(d, I, D), except for Steps 6
and 7 (which correspond to the critics). As discussed before, HTN planners typically use
their critics for detecting and resolving interactions among tasks (expressed as constraints)
in task networks at higher levels, before all subtasks have been reduced to primitive tasks.
By eliminating some task orderings and variable bindings that lead to dead ends, critics help
prune the search space. In UMCP, this job is performed by the critic function 7. 7 takes
as input an initial state I, a task network d, and a planning domain D; and produces as its
output a set of task networks I'. Each member of I is a candidate for resolving some® of
the conflicts in d. Several restrictions are required on 7 to make sure it preserves soundness,
completeness and systematicity:

1. If ' € 7(d, I, D) then sol(d',I,D) C sol(d, 1, D).
Thus, any plan for d’ must be a plan for d ensuring soundness.

2. f 0 € soly(d,I,D) for some k, then there exists d' € 7(d,I,D) such that o €
soly(d', 1,D).

Thus, whenever there is a plan for d, there is a plan for some member d’ of 7(d, I, D).
In addition, if the solution for d is no further than k expansions, so is the solution
for d’. The latter condition ensures that 7 does not create infinite loops by undoing
previous expansions.

31t might be impossible or too costly to resolve some conflicts at a given level, and thus handling those
conflicts can be postponed.

44

3. For any two different task networks di,d> € 7(d,I,D), it must be the case that
sol(dy, I, D) N sol(dsy, I,D) = 0.

Thus the set of solutions for each task network in 7(d, I, D) are disjoint, in order to
preserve systematicity. This condition does not need to be strictly enforced, as it does
not affect the correctness of the planning algorithm. However, enforcing it may make
the planning algorithm more efficient.

In contrast to the abundance of well understood STRIPS-style planning algorithms (such
as [24, 15, 46, 35]), HTN planning algorithms have typically not been proven to be sound
or complete. However, using the formalism presented in Sections 3.2 and 3.3, the soundness
and completeness of UMCP can be established.

The soundness and completeness results follow directly from the equivalence theorem us-
ing the fact that UMC P directly mimics sol(). The restrictions on the critic function ensure
that 7 does not introduce invalid solutions and that it does not eliminate valid solutions.

Theorem 2 (Soundness) Whenever UMCP returns a plan, it achieves the input task
network at the initial state with respect to all the models that satisfy the methods and the
operators.

Proof. Assume that on input P =< d,I,D >, UMCP halts in n iterations, and returns o.
Using induction on n, we prove that o € sol(d, I, D), and from the equivalence theorem we
conclude that any model that satisfies D also satisfies solves(o,d, I).

[Base case: n = 0.] d must be a primitive task network and o € comp(d, I,D). Thus,
o € sol(d,I,D).

[Induction Hypothesis] Assume for n < k if UMCP returns o in n iterations, then o €
sol(d, I, D).

Suppose on input P =< d,I,D > UMCP halts in n = k iterations. and returns ¢. Then
d is a non-primitive task network. Let di = reduce(d,n,m) be the value assigned to d at
step 5 of UMCPin the first iteration, and let d, € 7(dy, I, D) be the value assigned to d at
step 7 of UMCPin the first iteration.

On input P =< d;,I,D >, the planner halts in k& — 1 steps and returns . Thus, by
induction hypothesis, o € sol(ds, I, D). From restriction 1 on the critic function 7() and
from dy € 7(dy,1,D) we conclude o € sol(di,I,D). Since di € red(d,I,calD), from the
definition of sol() we conclude o € sol(d, I, D). |

Theorem 3 (Completeness) Whenever UMCP fails to find a plan, there is no plan that

achieves the input task network at the initial state with respect to all the models that satisfy
the methods and the operators.

45

[13

PO SN

4 = - o~

e e T

Proof. Assume o € sol(d,I,D). Let k be the minimum number of reductions needed to
derive o; i.e. 0 € solk41(d, I, D), but o ¢ soly(d, I, D). We show that there exists a sequence
of non-deterministic choices such that the UMCP halts in k iterations and returns a plan.

Proof by induction on k.

[Base case: k = 0.] In that case o € comp(d, I, D), and UMCP finds a plan in in step 2.

[Induction Hypothesis| Assume whenever the number of reductions needed to derive o is
less then j (i.e. k < j), there exists a sequence of non-deterministic choices for which UMCP
returns a plan in & iterations.

Let o € sol((d, I, D), and suppose it takes exactly j reductions to derive 0. Let (n : «) be
the node picked by UMCP in step 3 in the first iteration (Since this is not a non-deterministic
choice, the planner could pick any non-primitive node at that step.) Let m be the method
used for reducing (n :) in the derivation. Let di = reduce(d,n,m). reduce() is defined in
Section 3.2 such that the order of reductions does not matter; i.e. For a task network d that
contains two non-primitive tasks ny,ny with corresponding methods my, ms,

reduce(reduce(d,ny,m1),na,ma) and reduce(reduce(d, nay,ms), ny,my)

are equal modulo variable and node label names. Thus, since we obtained d; from d by
reducing n with the same method used in the derivation, we conclude o € sol;_1((d1, I, D).

As o € sol;_1((d1,1,D), by the second restriction on 7(), there exists dy € 7(dy,I,D)
such that o € sol;_1((dz, I, D). Let the planner non-deterministically choose d; to assign to
d at step 7 in the first iteration. By induction hypothesis, the planner will halt in 7 — 1 more
iterations and return a plan. [|

3.6 Discussion

The syntax and semantics defined in this chapter can be used to explain a number of issues
that are often discussed in the literature.

3.6.1 Tasks and Task-decomposition

There appears to be some general confusion about the nature and role of tasks in HTN
planning. This seems largely due to the fact that HT'N planning emerged, without a formal
description, in implemented planning systems [58, 64]. Many ideas introduced in HTN
planning (such as nonlinearity, partial order planning, etc.) were formalized only as they
were adapted to STRIPS-style planning, and only within that context [15, 46, 49, 16, 35]. The
following subsections discuss the view of tasks in this dissertation, and possible alternative
views.

3.6.1.1 A View of Tasks as Jobs

The formalism described in this chapter views tasks as activities we need to plan, jobs that
need to be accomplished. Each method tells us one way of achieving a task, and it also

46

tells us under which conditions that way is going to succeed (as expressed in the constraint
formula). The task decomposition refers to choosing a method for the task, and using it to
achieve the task. For example, possible methods for the task of traveling to a city might be
flying (under the condition that airports are not closed due to bad weather), taking the train
(under the condition that there is an available ticket), or renting a car (under the condition
that I have a driver’s license). Tasks and task networks provide a more natural and effective
way of representing planning problems than STRIPS-style attainment goals. Lansky [44]
has promoted this opinion for action-based planning in general.

3.6.1.2 A View of Tasks as Efficiency Hacks

One view of HTN planning totally discards compound tasks, and views methods for goal
tasks as heuristic information on how to go about achieving the goals (i.e., which operator to
use, in which order to achieve the preconditions of that operator). Although this is a perfectly
coherent view, it is rather restrictive and there is more to HTN planning, as demonstrated
in Chapter 5, where the expressivity results are presented.

3.6.1.3 A View of Tasks as Action Abstraction

Yang and Kambhampati [74, 33] have viewed tasks as high-level actions. High-level actions
have preconditions and effects, just as regular STRIPS operators; however, they can be
expanded into lower level actions. Planning proceeds iteratively: goals in the planning
problem are established using the highest-level actions first. Once the harmful interactions
among those actions are resolved by adding proper ordering and variable binding restrictions
and causal links, the actions in the working plan are expanded. The iteration is repeated
until all the actions are primitive and all the conflicts are resolved.

Each iteration of the procedure described above creates a layer of abstraction, in some
ways similar to the abstraction layers produced by ABSTRIPS [60]. Unlike the abstraction
hierarchies of ABSTRIPS, which are based on preconditions, this type of abstraction is based
on actions. ABSTRIPS can provide efliciency gains by reducing the number of precondi-
tions that need to be considered at each level; this type of action hierarchies can provide
efficiency gains by reducing the number of actions that need to be considered at each level.
Furthermore, the expansions may provide heuristic information as to how the preconditions
or subactions must be ordered.

This approach is appealing in many aspects; however, the distinction between high-level
actions and primitive actions are rather obscure and may cause confusion. Primitive actions
are atomic, and they always have the same effect on the world; high-level actions can be
decomposed into a number of primitive actions, and the effect of executing a high-level
action depends not only on the methods chosen for doing decompositions, but also on the
interleavings with other actions. For example, consider the task of “round-trip to New York”.
The amount of money I have got after the trip depends on whether I flew or took a train,
and also on my activities in New York (night clubs, etc).

47

TRy Y e

Good ABSTRIPS-style abstraction hierarchies can be automatically generated for state-
based planning problems, as was discussed in Section 2.3.4. However, because of the diffi-
culties described above, it is rather difficult to generate good action hierarchies for a given
state-based planning problem. In particular, abstraction hierarchies only influence the speed
of a planner, but action hierarchies can affect the correctness of a planner, in addition to its
efficiency.

Action hierarchy approach to planning may be considered as a more principled version
of the view of tasks and task decomposition as efficiency hacks. Both views are considerably
different from the view of HTN planning presented in this dissertation. Unlike high-level ac-
tions, tasks are not “executed” for their effects in the world, but they are ends in themselves.
In this aspect, tasks are more similar to STRIPS-style goals than STRIPS-style actions.

3.6.1.4 Task Decomposition and Abstraction Hierarchies

The basic idea in abstraction hierarchies is to tell a planning system which part of the
problem to work on at each iteration, more particularly, which preconditions to establish
and which preconditions to ignore at a given iteration. The same idea can also be applied
to HTN planning.

Recall our previous discussion that tasks are similar to goals in certain aspects. An HTN
planner, at each iteration, needs to decide which task to expand next. This corresponds to
Step 3 in the UMCP algorithm displayed in Figure 3.7. The choice of which task to expand
next can be made arbitrarily, but an intelligent choice will improve the performance of a
planning system significantly.

There is a clear need for algorithms that will process the domain specifications and
assign criticality levels to tasks in such a way to improve performance. There is already a
considerable body of work on generating good abstraction hierarchies in state-based planning,
as discussed in Section 2.3.4, which can form a starting point.

Chapter 5 shows that state-based planning problems are a special case of HTN problems.
That chapter also contains a polynomial transformation from state-based planning problems
to HTN problems which maps each predicate to a goal task. I conjecture that if a given
abstraction hierarchy works well in a state-based planning problem, the same criticality
assignment will work well on a translation of this problem to HTN framework. Since the
HTN framework is much more complex than state-based planning, the work on abstraction
hierarchies must be significantly extended to work well on all HTN planning problems.

3.6.1.5 Distinctions among Tasks and Attainment Goals

Here are some more examples to further clarify the distinctions among different types of tasks
and STRIPS-style goals. Building a house requires many other tasks to be performed (laying
the foundation, building the walls, etc.), thus it is a compound task. It is different from the
goal task of “having a house,” since buying a house would achieve this goal task, but not the
compound task of building a house (the agent must build it himself). As another example,
the compound task of making a round trip to New York cannot easily be expressed as a

48

single goal task, because the initial and final states would be the same. Goal tasks are very
similar to STRIPS-style goals. However, in STRIPS-style planning, any sequence of actions
that make the goal expression true is a valid plan, where as in HTN planning, only those
plans that can be derived via decompositions are considered as valid. This allows the user to
rule out certain undesirable sequences of actions that nonetheless make the goal expression
true. For example, consider the goal task of “being in New York”, and suppose the planner
is investigating the possibility of driving to accomplish this goal, and suppose that the agent
does not have a driver’s license. Even though learning how to drive and getting a driver’s
license might remedy the situation, the user can consider this solution unacceptable, and
while writing down the methods for be-in(INew York), add the constraint that the method
of driving succeeds only when the agent already has a driver’s license.

3.6.2 High-Level Effects

Typically, HTN planners allow one to attach “high-level” effects to subtasks in methods,
similar to the way we attach effects to primitive tasks using operators. Some HTN-planners
such as NONLIN assume that the high-level effects will be true immediately after the corre-
sponding subtasks, even if they are not asserted by any primitive tasks. This is problematic:
one can obtain the same sequence of primitive tasks with different tasks and methods, and
given high-level effects, the final state might depend on what particular task(s) the sequence
was intended for.

Yang [74] addresses this problem by attaching high-level effects to tasks directly using
operators. In addition, he requires that for each high-level effect [associated with a task o,
every decomposition of & must contain a subtask with the effect [, which is not clobbered
by any other subtask in the same decomposition. However, this solution does not preclude
the possibility that [might be clobbered by actions in the decompositions of other tasks.

In the framework presented in this dissertation, only primitive tasks can change the state
of the world; non-primitive tasks are not allowed to have direct effects. Instead, high-level
effects are represented as constraints of the form (n,l) so that the planner verifies those
effects to hold. Thus the previous problem can be avoided, but a planning system can still
benefit from guiding search with high-level effects (one of the primary reasons they are often
used in implemented planning systems).

Another concern is what happens to a high-level effect when the task it is associated
with gets expanded. The natural choice is to attach the high-level effect to the last task in
the expansion. However, the last task may be impossible to identify, if the task ordering in
the expansion is not sufficiently constrained. A similar problem arises when a task has a
condition that needs to be true before the task, and the task gets expanded. In that type of
situations, most planning systems take a rather arbitrary ad-hoc approach.

The framework introduced in this dissertation specifically contains the forms
first[ny,...,nk] and last[ny,...,ng] so that one can refer to the the first task that starts
and the last task that ends among a set of tasks, respectively. Section 3.3 gives a precise
description of how to modify the constraint formula at task expansion to correctly handle

49

AR K AL e vn T o

all types of constraints, including those that represent high-level effects.

3.6.3 Conditions

HTN planners often allow several types of conditions in methods. For instance NONLIN has
use-when, supervised, and unsupervised conditions.

Supervised conditions, similar to preconditions in STRIPS-style planning, are those that
the planner needs to accomplish, thus in our framework, they appear as goal nodes in task
networks. In the task network shown in Fig. 3.5, the conditions clear(vi) and clear(vz)
appear as goal tasks for that reason.

Unsupervised conditions are conditions that are needed for achieving a task but supposed
to be accomplished by some other part of the task network (or the initial state). For example,
a load(package,vehicle) task in a transport logistics domain would require the package and
vehicle to be at the same location, but it might be the responsibility of another task (e.g. a
vehicle dispatcher) to accomplish that condition. Thus, the load task must only verify the
condition to be true and it must not try to achieve the condition by task decompositions, or
insertions of new actions. In the HTN framework described in this dissertation, unsupervised
conditions are represented as state constraints so that an HTN planner will seek variable
bindings/task orderings that would make those conditions true, but it will not try to establish
those conditions by inserting new actions or doing task decompositions. NONLIN ignores
the unsupervised conditions until all tasks are expanded into primitive tasks, which is not
always an efficient strategy. On the other hand, the UMCP planning system presented in
Chapter 6 tries to process unsupervised conditions at higher levels (if possible to do so
without compromising correctness of the planner) to prune the search space.

HTN planners employ filter conditions (called use-when conditions in NONLIN) for decid-
ing which methods to try for a task expansion and reduce the branching factor by eliminating
irrelevant methods. For example consider the task of going to New York, and the method of
accomplishing it by driving. One condition necessary for this method to succeed is having
a driver’s license. Although a driver’s license can be obtained by learning how to drive and
going through the paperwork, the user of the planner might consider this unacceptable, and
in that case he would specify having a driver’s license not as a goal task but as a filter
condition , and the method of driving to New York would not be considered if the agent
does not have a driver’s license at the appropriate point in the plan.

In [16], Collins and Pryor state that filter conditions are ineffective. They argue that
filter conditions do not help pruning the search space for partial order planners, because
it is not possible to check whether they hold or not in an incomplete plan. They also
empirically demonstrate that ignoring the filter conditions until all the subgoals are achieved
is quite inefficient. Although their study of filter conditions is in the context of STRIPS
representation, to a large extend it also applies to HTN planning. NONLIN, for instance,
evaluates filter conditions as soon as they are encountered, and unless it can establish those
conditions to be necessarily true, it will backtrack. Thus, NONLIN sometimes backtracks
over filter conditions which would have been achieved by actions in later task expansions.

90

Bl T VR N T e BT b N T o USRS v

Hence NONLIN is not complete. Although it might not always be possible to determine
whether a filter condition is true in an incomplete plan, filter conditions can still be used to
prune the search space. Our framework represents filter conditions as state constraints and
planning algorithms based on this framework can employ constraint satisfaction/propagation
techniques to prune inconsistent task networks. For example if a task network contains the
filter condition (1,n), and also another constraint (ni, -/, ny), one can deduce that n should
be either before ny, or after ny. Furthermore, some filter conditions might not be affected by
the actions (e.g. conditions on the type of objects), and thus it suffices to check the initial
state to evaluate those. This kind of filter condition can also be very helpful in pruning the
search space.

Tate [65] also promotes the use of filter conditions, but suggests this must be done very
carefully to work efficiently, without compromising correctness.

In summary, the HI'N constraints provide a principled way of representing many kinds
of conditions, and UMCP employs techniques for using them effectively without sacrificing
soundness or completeness.

3.6.4 Critics and Constraints

One attractive feature of HTN systems is that by using various sorts of critics, they can
handle many different kinds of interactions, thus allowing the analysis of potential problems
in plans, and preventing later failure and backtracking. However, this mechanism has been
little explored in the formal literature, primarily due to the procedural nature of handling
interactions between subtasks.

The formalism described in this chapter has identified the conditions a critic function must
satisfy in order to preserve soundness, completeness and systematicity. These conditions has
provided the guidelines in devising correct critics mechanisms presented in Section 6.3.

Designing a correct critic mechanism is rather challenging. HTN planning provides a large
number of constraint types, and each type of constraint must be handled with care. The
challenge is compounded by the fact that critics most of the time deal with non-primitive
task networks; they would not be of much use otherwise. In evaluating a constraint, all
possible refinements of a task network must be considered, and preferably this must be done
without explicitly enumerating all of those possible refinements. Chapter 6 presents the
details of how UMCP planning system meets these challenges.

The constraint formula in a method for a task mostly serves to identify and resolve inter-
actions from other tasks; however,another important use of constraints is encoding control
information. When the user encodes a domain, it might be known in advance that certain
variable bindings, task orderings etc. lead to dead ends. These can be eliminated by posting
constraints (in methods) so that the planner does not waste time deriving this information.
This ability to encode known shortcuts and/or pitfalls was offered as a major motivation for
the move to procedural networks in NOAH [58].

51

Chapter 4

Complexity of HTN Planning

The HTN formalism presented in Chapter 3 makes it possible to analyze the complexity of
HTN planning under a number of conditions:

whether the tasks in task networks are required to be totally ordered,

whether variables are allowed,

whether domain specification is fixed in advance, or part of the input.

Whether non-primitive tasks are allowed, and whether they must be totally ordered
with respect to other tasks.

Table 4.1 contains a summary of this analysis. The theorem statements and discussions on
their implications appear in the following sections. The proofs of the theorems are presented
in the appendix.

4.1 Undecidability Results

It is easy to see that HTN planning problems can simulate any context-free grammar by
using primitive tasks to emulate terminal symbols, compound tasks to emulate non-terminal
symbols, and methods to encode grammar rules. More interesting is the fact that HTN plan-
ning problems can simulate any two context-free grammars, and constraints in the methods
can enforce the existence of a solution to the planning problem if and only if these two gram-
mars have a common string in their corresponding languages. Whether the intersection of
the languages of two context-free grammars is non-empty is a semi-decidable problem [32].
Thus:

Theorem 4 PLAN EXISTENCE is strictly semi-decidable, even if P is restricted to be propo-

sitional, and all the methods are restricted to be totally ordered and to contain at most two
tasks.

52

Table 4.1: Complexity of HI'N Planning

Must every
Restrictions on HTN be total- Are variables allowed?
non-primitive tasks || ly ordered? no yes

no Undecidable® Undecidable®?
none yes in EXPTIME; in DEXPTIME;

PSPACE-hard EXPSPACE-hard

“regularity” (<1
non-primitive task, || doesn’t PSPACE- EXPSPACE-
which must follow | matter complete complete”
all primitive tasks)
no non-primitive no NP-complete NP-complete
tasks yes Polynomial time | NP-complete

“Decidable with acyclicity restrictions.

AUndecidable even when the planning domain is fixed in advance.
7In PSPACE when the planning domain is fixed in advance, and
PSPACE-complete for some fixed planning domains.

This result might seem surprising at first, since the state space (i.e., the number and size
of states) is finite. If the planning problem were that of finding a path from the initial state
to a goal state (as in STRIPS-style planning), indeed it would be decidable, because, for that
problem, whenever there is a plan, there is also a plan that does not go through any state
twice, and thus only a finite number of plans need to be examined. On the other hand, HTN
planning can represent compound tasks accomplishing which might require going through
the same state many times, which explains this result.

Instead of encoding each context-free grammar rule as a separate method, it is possible
to encode these rules with predicates in the initial state, and to have a method containing
variables and constraints such that only those decompositions corresponding to the grammar
rules encoded in the initial state are allowed. Hence, even when the domain description (i.e.,
the set of operators and methods) is fixed in advance, it is possible to find planning domains
for which planning is undecidable, as stated in the following theorem:

Theorem 5 There are HTN planning domains that has only totally ordered methods each
with at most two tasks, for which PLAN EXISTENCE is strictly semi-decidable.
4.2 Decidability and Complexity Results

One way to make PLAN EXISTENCE decidable is to restrict the methods to be acyclic. In that
case, each task can be expanded up to only a finite depth, and thus the problem becomes
decidable. More formally, a k-level-mapping is defined to be a function level() from ground
instances of tasks to the set {0,..., k}, such that for any method that can expand a ground

53

task o to a task network containing a ground task o, level(a) > level(o/). Furthermore,
level(a) must be 0 for every primitive task a.

Intuitively, level() assigns levels to each ground task, and makes sure that tasks can be
expanded into only lower level tasks, establishing an acyclic hierarchy. In this case, any task
can be expanded to a depth of at most k. Therefore,

Theorem 6 PLAN EXISTENCE is decidable if P has a k-level-mapping for some integer k.

Examples of such planning domains can be found in manufacturing, where the product
is constructed by first constructing the components and then combining them together.

Another way to make PLAN EXISTENCE decidable is to restrict the interactions among
the tasks. Restricting the task networks to be totally ordered limits the interactions that
can occur between tasks. Tasks need to be achieved serially, one after the other; interleaving
subtasks for different tasks is not possible. Thus interactions between the tasks are limited
to the input and output state of the tasks, and the “protection intervals”, i.e the literals
that need to be preserved, which are represented by state constraints of the form (n,[,n’).
This constraint states that the literal [needs to remain true from the end of the task labeled
with n till the start of the task labeled with n'.

Under the above restrictions, it is possible to create a table with an entry for each
task, input/output state pair, and set of protected literals, that tells whether each task can
be accomplished starting at the corresponding input state and ending at the output state
without ever making the protected literals false. Using dynamic programming techniques, the
entries in the table can be computed in DOUBLE-EXPTIME, or in EXPTIME if the problem is
further restricted to be propositional. Chapter 5 presents several polynomial transformations
from STRIPS-style planning problems to totally ordered HTN planning problems. These
transformations can be combined with the complexity results on STRIPS-style planning
in [22, 12] to establish a lower bound on the complexity of totally-ordered HTN planning.
Thus:

Theorem 7 PLAN EXISTENCE is EXPSPACE-hard and in DOUBLE-EXPTIME if P is restricted
to be totally ordered. PLAN EXISTENCE is PSPACE-hard and in EXPTIME if P is further
restricted to be propositional.

Recall that in regular HTN planning problems, any task network —both the initial input
task network, and those we obtain by expansions— can contain at most one non-primitive
task. Thus, subtasks in the expansions of different tasks cannot be interleaved, which is
similar to what happens in Theorem 7. But in Theorem 7, there could be several non-
primitive tasks in a task network, and we needed to keep track of all of them (which is
why a table was used). If the planning problem is regular, we only need to keep track of a
single non-primitive task, its input/final states, and the protected literals. Since the size of a
state is at most exponential, the problem can be solved in exponential space. But even with
regularity and several other restrictions, it is still possible to reduce the EXPSPACE-complete
STRIPS-style planning problem (described in [22]) to the HTN planning. Thus:

o4

Theorem 8 PLAN EXISTENCE is EXPSPACE-complete if P is restricted to be regular. It is
still EXPSPACE-complete if P is further restricted to be totally ordered, with at most one
non-primitive task symbol in the planning language, and all task networks containing at
most two tasks.

When the problem is further restricted to be propositional, the complexity goes down
one level:

Theorem 9 PLAN EXISTENCE is PSPACE-complete if P is restricted to be regular and propo-
sitional. It is still PSPACE-complete if P is further restricted to be totally ordered, with at
most one non-primitive task symbol in the planning language, and all task networks con-
taining at most two tasks.

When the planning domain D is fixed in advance, the number of ground atoms and ground
tasks is polynomial in the length of the input to the planner, and thus the complexity of
planning with a fixed planning domain is no harder than the complexity of propositional
planning. It is proven in [22] that there exists STRIPS-style planning domains for which
planning is PSPACE-complete. Those domains can be transformed into regular HTN planning
domains for which planning is PSPACE-complete. Hence:

Theorem 10 If P is restricted to be regular and D is fixed in advance, then PLAN EXIS-
TENCE is in PSPACE. Furthermore, there exists fixed regular planning domains D for which
PLAN EXISTENCE is PSPACE-complete.

Suppose a planning problem is primitive, and either propositional or totally ordered.
Then the problem’s membership in NP is easy to see: nondeterministically guess a total
ordering and variable binding (obviously of polynomial size), and then check whether the
constraint formula on the task network is satisfied. Furthermore, unless the planning problem
is restricted to be both totally-ordered and propositional, the constraint language can be used
to represent the satisfiability problem, and thus the problem is NP-hard. Hence:

Theorem 11 PLAN EXISTENCE is NP-complete if P is restricted to be primitive, or primitive
and totally ordered, or primitive and propositional. However, PLAN EXISTENCE can be solved
in polynomial time if P is restricted to be primitive, totally ordered, and propositional.

4.3 Discussion

The complexity results on HTN planning have been summarized in Table 4.1. These results
show how the complexity of solving HTN planning problems depend on various factors. A
number of conclusions can be drawn from these results:

1. HTN planning is undecidable under even a very severe set of constraints. In particular,
it is undecidable even if no variables are allowed, as long as there is the possibility that
a task network can contain two non-primitive tasks without specifying the order in
which they must be performed.

%)

2. In general, what restrictions are put on the non-primitive tasks has a bigger effect
on complexity than whether or not we allow variables, or require tasks to be totally
ordered.

3. Placing restrictions either on non-primitive tasks or on the ordering of tasks makes
planning decidable. If either restriction is removed individually, planning remains
decidable, but removing both simultaneously makes planning undecidable.

4. If there are no restrictions on non-primitive tasks, then whether or not we require tasks
to be totally ordered has a bigger effect (namely, decidability vs. undecidability) than
whether or not we allow variables. But in the presence of restrictions on non-primitive
tasks, whether or not we allow variables has a bigger effect than whether or not we
require tasks to be totally ordered.

These results show that handling interactions among non-primitive tasks is the most
difficult part of HTN planning. In particular, if subtasks in the expansions for different
tasks can be interleaved, then planning is undecidable, even if no variables are allowed.
Limiting the interactions among tasks significantly reduces the complexity of planning. For
example, preventing subtask interleavings by restricting task networks to be totally ordered
makes HTN planning to EXPTIME. Limiting the interactions among subtasks by allowing at
most one non-primitive task in a task network further reduces the complexity to PSPACE.

Complexity results must be interpreted cautiously. They are worst-case results. For in-
stance, a problem is PSPACE-complete means that, any algorithm that solves this problem
correctly will consume memory polynomial in the size of the input for some problem in-
stances. Any given algorithm may consume much less memory for most problem instances.
These worst case results show the computational requirements for solving the hardest prob-
lem that can be represented in the HTN language. Most problems encountered by a planning
system may not be among those hardest problems. Nonetheless, complexity results provide
valuable insight into the structure of a problem and the associated algorithmic difficulties.
The complexity analysis of HTN planning has guided the algorithm development described
in Chapter 6.

1)

Chapter 5

Expressivity of HT'N Planning

Prior to the formalization of HTN planning described in Chapter 3, it was not clear what
kind of planning problems can be represented and solved via HTN planning. In particular,
it has long been a topic of debate whether HTN planning is merely an “efficiency hack”
over STRIPS-style planning, or HTN planning is actually more expressive. This chapter
addresses these question formally.

There is not a well established definition of expressivity for planning languages. It is
possible to define expressivity based on model-theoretic semantics, operational semantics,
and even on the computational complexity of problems that can be represented in the plan-
ning language. Section 5.1 presents definitions of expressivity for each of those three cases,
and Section 5.2 contains the theorems that HTN planning is strictly more expressive than
STRIPS-style planning according to all three of them.

5.1 Expressivity Definitions for Planning

5.1.1 Complexity-based Expressivity

One criterion for evaluating the expressivity of a language is the computational complexity
of solving problems represented in that language. One might ask: “How difficult are the
most difficult problems that can be represented in this language?” If the set of problems
that can be represented in a language £; belongs to a higher complexity class than the set
of problems that can be represented in another language £, then £; might be considered
more expressive than £,. As computational complexity is measured in terms of the size of
the input problem instance, it also means that £, is more concise than £,.

The theory of computational complexity [26] is based on transformations (also called
reductions) between sets of problem instances. A transformation 7 is a mapping from a set
of problem instances P; to a set of problem instances P, such that any problem p; € P, has
a solution iff 7(p;) also has a solution. Transformations are required to be computable in
polynomial time when the two classes of problems at hand are decidable; otherwise trans-
formations are simply required to be computable (i.e. computable in finite time on a Turing

37

LN I N .

machine).
The following is a definition for complexity-based expressivity, which uses the notion of
transformations:

Definition 33 (Complexity-based Expressivity) A planning language £; can be ex-
pressed by a planning language L, iff there exists a transformation from the set of problem
instances represented in £, to those that can be represented in L.

When a planning language £, can be expressed by a planning language £,, but not vice
versa, then L, is strictly more expressive than ;.

Transformations can also be considered as translations between planning languages.
Whenever there is a transformation from £; to L,, a planner for £, can solve problems
represented in £, by first translating them into £,.

5.1.2 Model-Theoretic Expressivity

Baader [5] has presented a model-theoretic definition of expressivity for knowledge represen-
tation languages. The following is a description of Baader’s definition of expressivity and
how it can be adapted for planning languages.

Baader’s notion of expressivity is based on the idea that if a language L; can be expressed
by another language L,, then for any set of sentences I'; in L1, there must be a corresponding
set of sentences 'y in Ly with the same meaning. Baader captures “the same meaning” by
requiring the two set of sentences to have the same set of semantic models. Because L,
might contain symbols not necessary for expressing Ly, and the name of the symbols used
must not make a difference, it suffices for the set of models for I'y and the set of models for
I'; be equivalent modulo a symbol translation function w.

More formally, given a function w from the set of symbols in Ly to the set of symbols in
L, two models M; and M, are defined to be equivalent module w, denoted as M; =* M,
iff for any symbol s in Ly, M;(s) = Mz(w(s)). In other words, for any symbol s € L1, s and
w(s) must have the same interpretation.

The equivalence between models can be extended to sets of models as follows: Two sets
of models M; and M, are equivalent modulo a symbol translation function w, denoted by
My =¥ M,, iff for any model M; € M, there exists a model M, € M, such that My =* M,
and for any model M, € M, there exists a model M; € M; such that My = M.

Definition 34 A knowledge representation language L; can be expressed by another knowl-
edge representation language Lo, iff there exists a function ¢ from the set of sentences in L,
to the set of sentences in L,, and a symbol translation function w from the set of symbols
in Ly to the set of symbols in L, such that for any set of sentences I' from L, the set of

models M; satisfying I and the set of models M, satisfying ¢(I') are equivalent modulo w,
le. M1 =Y Mz.

Although the internal structures of the models for planning languages and knowledge
representation languages are different, the same definition of expressivity can be used by
providing a definition for equivalence of HTN models:

98

Definition 35 Given two HTN models My, M; for two HTN languages £,, L4, and a symbol
translation function w from £ to Lo, My =¥ M, iff

1. For any ground primitive task «, any state s, and any ground literal [in Ly, [is true
in Fui(e, s) iff w(l) is true in Faa(w(a),w(s)).

2. For any ground non-primitive task « in £,

w(Tar(e)) covers Tyra(w(a)), and Tyra(w(a)) covers w(Tan(cr)).

This definition states that when two HTN models are equivalent (modulo a symbol trans-
lation function) then each primitive task symbol is interpreted to have the same effects re-
gardless of the model, and each compound task symbol is mapped to an equivalent set of
primitive task networks in each model. Recall that “covers” was defined in Section 3.3.

Model-theoretic expressivity for planning languages can be formally defined as follows:

Definition 36 (Model-theoretic Expressivity) A planning language L£; can be ex-
pressed by a planning language Lo, iff the following three conditions hold:

1. There exists a symbol translation function w from the set of symbols in £; to the set
of symbols in £,,

2. There exists a function ¥ from the set of sentences in £, to the set of sentences in L,

3. For any set of sentences I'; in £,, whenever M is the set of all models that satisfy I'y
and M, is the set of all models that satisfy ¢(I'y), it is the case that M; =* M,.

Thus, a planning language £, can be expressed by a planning language L, if for any set
of sentences in Ly, there is a corresponding set of sentences in £, with the same meaning
(according to model-theoretic semantics).

When a planning language £, can be expressed by a planning language £, but not vice
versa, then L, is strictly more expressive than £;.

Note that, unlike complexity-based expressivity, model-theoretic expressivity does not
put any restrictions on the computational cost of %, or on the size of the output of ¥ in
terms of its input size. This yields to a stronger definition of expressivity. If £; is more
expressive than £, according to the model-theoretic definition, it means there are concepts

representable in £; but not it Ly; it is not merely that the translation is computationally
expensive or unknown.

5.1.3 Operational Expressivity

One can argue that the meaning of a set of sentences in a language is captured better
by the set of minimal models, rather than the set of all models that satisfy that set of
sentences. After all, deductions are usually based on the set of minimal models; so is the set
of solutions to planning problems represented in HTN language. The definition for model-
theoretic expressivity can easily be modified to accommodate that:

39

TEREANTETE 4 gm—ra e

Definition 37 (Operational Expressivity) A planning language £, can be expressed by
a planning language L£,, iff the following three conditions hold:

1. There exists a symbol translation function w from the set of symbols in £; to the set
of symbols in L,

2. There exists a function v from the set of sentences in £; to the set of sentences in Lo,

3. For any set of sentences I'; in £y, whenever M; is the minimum model that satisfies
Iy, and M, is the minimum model that satisfies 1(T';), it is the case that My = M,.!

Note that item 3 in the definition refers to the minimum model, rather than the set of
all models, as in the definition of model-theoretic expressivity.

From the operational semantics point of view, this definition requires that for every
planning problem expressed in L, there exists a corresponding planning problem expressed
in L, and the set of solutions for both these problems are equivalent.

5.2 Expressivity: HTNs versus STRIPS Representa-
tion

Although HTNs are more flexible compared to STRIPS-style planning, it was generally
believed that anything that can be done in HTN planning can be also done in STRIPS-style
planning. Due to the lack of a formalism for HTN planning, such claims could not be proved
or disproved until now.

A comparison of HTN planning with STRIPS-style planning reveals that the HTN ap-
proach provides all the concepts (states, actions, goals) that STRIPS has. Conversely,
STRIPS-style planning lacks the concepts of constraints, compound tasks, task networks
and task decomposition. Thus, HTN planning must be more expressive. For example, con-
sider a compound task of making a round trip to New York. This task cannot easily be
expressed in state-based planing because the initial and final states would be the same. This
intuition is going to be substantiated in the following sections.

5.2.1 Transformations from STRIPS to HTNs

Any planning domain encoded as a set of STRIPS operators can be transformed into an HTN
planning domain, in low-order polynomial time. Figure 5.2 shows one such transformation.
This transformation follows the intuition that in order to make a literal true, one chooses an
operator that has the desired effect, achieves the preconditions of that operator, and then
executes it, as depicted in Figure 5.1. The HTN representation for the problem requires as
many operators as its STRIPS counterpart. In addition, it requires as many methods as
there are effects of operators. Thus the transformation is polynomial.

I This definition refers to the minimum model instead of minimal models because in the HTN language
the minimum model is unique modulo symbol names and “covering”, as described in Section 3.2

60

ny

achieve[pre;] prey
Ny

achieve[pre,]|
N :

achieve[preg] | p.Tek

Figure 5.1: Graphical representation of a method for Transformation 1.

Transformation 1
1. Input a STRIPS problem < O, I,G >, where O is a set of STRIPS
operators, I, G are sets of atoms representing the initial state and the goal.
2. For each operator o € O, declare a primitive task f, with the same
preconditions and effects as o.
3. For each effect [of each operator
o= [PRE : prej,pres,...,preg|[POST : li,l,,...,1,] declare a method as
depicted above in Figure 5.1:
(method [

[(nl : achieve[preq]) ..., (nk : achieve[preg])(n : do[f.]),

(ord nl n) A...(ord ng n)A
(between prey nl n) A ... (between preg ng n)]
4. Declare I as the initial state.
5. Let G = ¢1A,...,gr. Declare input task network d as

[((nl : achieve[g1]) ..., (nk : achieve[gk])(n : do[dummy]),

(ord nl n) A...(ord ng n) A (between g1 nl n) A ... (between gx ng n)])

Iigure 5.2: A transformation from STRIPS-style planning to HTN planning

61

Transformation 2
1. Input a STRIPS problem < O,1,G >, where O = {oy,...,0%} is a set of
STRIPS operators, I, G are sets of atoms representing the initial state and
the goal.
2. For each operator o € O, declare a primitive task f, with the same
preconditions and effects as o.
3. Declare another primitive task nothing with no preconditions or effects.
Declare a compound task t.
Declare (method t [(n : do[nothing]) T RUE])
For each primitive task f, declare

(method t [(nl: do[f,])(n2: performlt]) (ord ny n3)])
7. Let G = ¢1A, ..., gx. Declare input task network d as

[(n : per form][t]) (after g1 n) A (after ga n) A ...(after gx n)

AN

Figure 5.3: Another transformation from STRIPS-style planning to HTN planning.

t— €

t— folt
t— fo2t
t— fokt-

Figure 5.4: Form of Methods in Transformation 2.

Note that this transformation will exclude solutions that contain redundant actions (i.e.
actions that do not assert a goal or a precondition of some subsequent action). All STRIPS-
style planning systems that do precondition chaining (e.g. TWEAK [15], SNLP [46]) exclude
such solutions. Nonetheless, it is possible to define polynomial transformations such that any
sequence of actions for which the final state satisfies the goal is a valid solution. Figure 5.3
shows one such transformation.

This transformation introduces a compound task t. A close examination of Steps 5 and 6
in Figure 5.3 reveals that the methods for ¢ look like context-free grammar rules as depicted
in Figure 5.4.

Hence t can be expanded into any sequence of actions, provided that the preconditions
are satisfied in the intermediate states and the goal is satisfied in the final state.

Note that this transformation produces only regular HTN problems, which has exactly the
same complexity as STRIPS-style planning. Thus, just as restricting context-free grammars

62

to be right linear produces regular sets, restricting HTN methods to be regular produces
STRIPS-style planning.

5.2.2 Complexity-based Expressivity Results

As a consequence of the polynomial transformations from STRIPS-style planning to HTN
planning presented in the previous section, the following lemma can be stated:

Lemma 1 There exists a polynomial transformation i from the set of STRIPS-style plan-
ning problem instances to the set of HTN planning problem instances such that for any
STRIPS-style planning problem instance P, P has a solution iff (P) also has a solution.

The next question is whether there exists a transformation in the other direction, that is
whether it is possible to encode HTN planning problems as STRIPS-style planning problems.
From Theorem 4, HTN planning with no function symbols (and thus only finitely many
ground terms) is semi-decidable. Even if the domain description D is required to be fixed
in advance (i.e., not part of the input), Theorem 5 states that there are HTN planning
domains for which planning is semi-decidable. However, with no function symbols, STRIPS-

style planning is decidable, regardless of whether or not the planning domain? is fixed in
advance [22]. Thus:

Lemma 2 There does not exist a computable function ¢ from the set of HT'N planning
problem instances to the set of STRIPS-style planning problem instances such that for any
HTN-planning problem instance P, P has a solution iff 1)(P) also has a solution.?

From the definition of complexity-based expressivity and Lemmas 1 and 2, it immediately
follows that

Theorem 12 The HTN language is strictly more expressive than the STRIPS language with
respect to complezxity-based expressivity.

Showing whether a polynomial or computable transformation exists is one way of com-
paring the expressivity of two languages. The lack of a computable transformation from
HTN planning to STRIPS-style planning means that for some planning problems, the prob-
lem representation in STRIPS-style planning will be exponentially (or in some cases, even
infinitely!) larger than in HTN planning.

5.2.3 Model-Theoretic Expressivity Results

Before proceeding to compare HTN planning and STRIPS-style planning according to model-
theoretic expressivity, a formal semantics for STRIPS-style planning that is compatible with
the semantics for HTN planning is required.

2Since STRIPS-style planning does not include methods, a STRIPS-style planning domain is simply a
set of operators.

3This lemma uses the standard assumption that the STRIPS operators do not contain function symbols,
nor do the HTN operators.

63

Semantics for STRIPS

A semantic structure for STRIPS-style planning has the same form as a semantic structure
for HTN planning, with some restrictions. Thus it is a triple M = (Sm, Fur, Tur), where S
is the set of states, F interprets actions as state transitions, and 7 interprets non-primitive
tasks as sets of ground primitive task networks, with the following restrictions:

1. Since STRIPS representation lacks the notion of compound tasks, non-primitive tasks
consist of only goal tasks, and 7 is not defined for compound tasks.

2. In STRIPS-style planning, any executable sequence of actions that make the goals true
is a valid plan, thus, given any goal task achieve[l], T maps achieve[l] to the set of all
ground sequences of actions, each with the (implicit) constraint that / is true in the
final state.

It is fairly easy to show that the STRIPS language can be expressed by the HT'N language.
It suffices to present two functions % and w such that the corresponding translation preserves
the set of models.

Since the HTN language does not require any extra symbols for expressing the STRIPS
language, the symbol translation function w is defined to be the identity function. Thus the
HTN representation is going to use exactly the same set of constants, predicates, and actions
(primitive tasks) as its STRIPS counterpart.

Given a set of STRIPS-style operators I, here is how we define 3 (T'):

e 9(T") contains exactly the same set of operators as I'.

e For each goal task achieve[l] and each action f, ¢(I') contains the method

(achievell],[(n1 : do[f])(n2 : achievel[l]), (n1 < n2)])

Note that the construction of 1 is very similar to the methods defined for Transforma-
tion 2 shown in Figure 5.3.

Because there is an implicit method for each goal task stating it can be expanded to a
dummy task when the goal literal is already true, with the methods in (I'), any goal task
can be expanded to any sequence of actions. Such a sequence of actions would be a plan for
the goal task whenever all the actions are executable and the goal literal is true in the end of
the plan. Thus, the methods precisely reflect the restrictions on the models of STRIPS-style
planning, and as a result I' and %(I") have exactly the same set of models. Thus

Lemma 3 The STRIPS language can be expressed by the HTN language with respect to
model-theoretic expressivity.

The converse is not true. To prove that the STRIPS language is not as expressive as the
HTN language, I am going to construct an HTN planning domain I', and show that there

64

does not exist any STRIPS-style planning domain (i.e. set of STRIPS operators) with an
equivalent set of models.

Note that the set of plans for any STRIPS-style planning domain always forms a regular
set: One can define a finite automata with the same states as the STRIPS domain, with
state transitions corresponding to the actions, and the goal states in the STRIPS domain
would be designated as the final states in the automata. On the other hand, the set of
plans for an HTN planning domain can be any arbitrary context-free set, including those
context-free sets that are not regular. Given any context-free grammar, one can declare one
compound task symbol for each non-terminal of the grammar, one primitive task symbol for
each terminal of the grammar, and for each grammar rule of the form X — Y Z, one can
declare a method of the form (ax [(n1: ay)(n2 : az) (n1 < ny)]).

Given an HTN planning domain I' that corresponds to a context-free but not regular
grammar, I' will have a minimum model* M such that T3; will map compound task symbols
(which correspond to the non-terminal symbols of the grammar) to sets of totally ordered
primitive task networks (or equivalently, to context-free sets of strings from the terminal
symbols of the grammar). Since Tps maps compound tasks into context-free but not regular
sets, no STRIPS-style planning domain can have a model equivalent to M. Thus

Lemma 4 The HTN language cannot be expressed by the STRIPS language with respect to
model-theoretic expressivity.

Thus, from Lemma 3 and Lemma 4

Theorem 13 The HTN language is strictly more expressive than the STRIPS language with
respect to model-theoretic expressivity.

5.2.4 Operational Expressivity Results

Although the definition of expressivity based on operational semantics is quite different
from the definition of model-theoretic expressivity, it yields the same result: Since the set
of solutions to an HTN planning problem can be any context-free set, whereas the set of
solutions to a STRIPS-style planning problem always is a regular set, a proof similar to
that of Lemma 4 can be constructed to prove that HTN planning is strictly more expressive
according to this definition of expressivity. Thus,

Theorem 14 HTN planning is strictly more expressive than STRIPS-style planning accord-
ing to the definition of operational expressivity.

5.2.5 Discussion of Expressivity Results

The complexity-based expressivity results has shown that HTN constructs can represent
computationally more expensive problems than can be represented with STRIPS-operators.

“refer to the proof of Theorem 1 to see how to construct a minimum model

65

The modal-theoretic and operational expressivity results have shown that this is not only
due to the conciseness of the HTN languages but also due to the richness of the semantic
structure and the structure of the solutions to HTN planning problems.

The expressive power of HTN planning stems from two constructs:

1. Planning problems are in the form of task networks, rather than conjunctive attainment
goals,

2. Compound tasks specified by methods can represent complex planning jobs.

Task networks contain multiple tasks and a constraint formula, which makes it easy to
represent complex scheduling problems and provides flexibility—but if all tasks were either
primitive or goal (STRIPS-style) tasks, these could probably be expressed with STRIPS-
stye operators (albeit clumsily and using an exponential number of operators/predicates).
On the other hand, compound tasks and methods provide an abstract representation for
sets of primitive task networks, similar to the way non-terminal symbols provide an abstract
representation for sets of strings in context-free grammars. This allows representing planning
jobs that are too complicated to be encoded in STRIPS-representation.

66

Chapter 6

Algorithms used by the UMCP
System

In Section 3.5, I have presented a provably correct HTN planning algorithm called UMCP.
This chapter contains the elaboration of this abstract algorithm into the UMCP planning
system. Section 6.1 presents the high-level search algorithm and a conceptual view of the
data structures. Section 6.2 contains task expansion as a refinement method. Section 6.3
describes the constraint refinement algorithms, which function as the domain-independent
critics of the UMCP system, and Section 6.4 explains how procedural domain information
can be incorporated into UMCP as domain-specific critics. Finally, Section 6.7 provides a
global perspective to the algorithms.

The work described in this chapter is based on the formal framework presented in Chap-
ter 3, which provides a characterization of the set of solutions to a given HTN planning
problem. The complexity analysis of HTN planning presented in Chapters 4 has influenced
the design of these algorithms by pointing to the computational difficulties and bottlenecks
involved in HTN planning. These algorithms have also benefited from the expressivity re-
sults in Chapter 5, which uncovered the similarities and differences between STRIPS-style
planning and HTN planning. As a result, these algorithms could draw upon the huge body
of work on STRIPS-style planning, and contribute back to it.

6.1 Refinement Search in UMCP

One way of finding solutions to HTN planning problems is to generate all possible expansions
of the input task network to primitive task networks, then generate all possible ground
instances (assignment of constants to variables) and total orderings of those primitive task
networks and finally output those whose constraint formulae evaluate to true. However,
considering the size of the search space, it is more appropriate to try to take advantage of
the structure of the problem, and prune large chunks of the search space by eliminating in
advance some of the variable bindings, orderings or methods that would lead to dead-ends.
To accomplish this UMCP uses a branch-and-bound approach [39].

67

1. Input a planning problem P =< d,1,D >.
2. Initialize OPEN-LIST to contain only d.
3. If OPEN-LIST is empty, then
halt and return “NO SOLUTION.”
4. Pick and remove a task network ¢n from OPEN-LIST.
5. If tn is completely refined into a solution then
halt and return tn.
6. Pick a refinement strategy R for tn .
7. Apply R to tn and insert the resulting set of task
networks into OPEN-LIST.
8. Go to step 3.

Figure 6.1: High-level Refinement-Search in UMCP

A task network can be thought of as an implicit representation for the set of solutions
for that task network. UMCP works by refining a task network into a set of task networks,
whose sets of solutions together make up the set of solutions for the original task network.
Those task networks whose set of solutions are determined to be empty are filtered out. In
this aspect, UMCP nicely fits into the general refinement search framework described in [37].

Figure 6.1 contains a sketch of the high-level search algorithm of the UMCP system.
This algorithm is a deterministic version of the UMCP algorithm presented in Section 3.5.
Search is implemented by keeping an OPEN-LIST of task networks that are to be explored.
Step 5 checks whether tn is a solution node: if all tasks in tn are primitive, the constraint
formula consists of the atom TRUE, and the list of constraints that have been committed to
be made true but not yet made true is empty, then tn qualifies as a solution node.! All task
orderings and variable assignments consistent with the auxiliary data structures associated
with ¢n are plans for the original problem, and these plans can be easily enumerated. If in
is not a solution node, then it is refined by some refinement strategy R, and the resulting
task networks are inserted back into the OPEN-LIST. Note that a refinement strategy may
return an empty set of task networks, which means the given task network has no solution,
and thus it is pruned from the search space.

The non-deterministic UMCP algorithm described in Section 3.5 had steps for task ex-
pansion, applying critics, and also for finding completions. The deterministic version covers
all of these steps as refinement strategies. The three types of refinement strategies used in
UMCP are task expansion, constraint refinement, and user-specific critics.

Task expansion involves retrieving the set of methods associated with a non-primitive
task in ¢n, expanding tn by applying each method to the chosen task and returning the
resulting set of task networks.

!Constraints and the data structures will be discussed in detail shortly.

63

User-specific critics is one of the places where UMCP can be tailored for specific domains
by providing a domain-specific refinement strategy. UMCP can work without domain specific
critics, but if such a critic is available, it can be used to improve the performance of the
planner.

Constraint refinement is UMCP’s way of implementing domain-independent critics. It is
one of the most important and the most complicated parts of the UMCP algorithms.

6.1.1 Properties of Refinement in UMCP

All refinement strategies in UMCP are designed to preserve soundness, completeness, and
systematicity. The following is a list of conditions that need to be satisfied to preserve those
properties:

¢ Soundness: Any solution to any task network in R(¢n) is also a solution for ¢tn. Thus
refinement does not introduce invalid solutions.

o Completeness: Any solution for tn is also a solution for some task network in R(tn).
Thus refinement does not eliminate any valid solutions.

e Systematicity: The set of candidate solutions for each task network in R(¢n) are mu-
tually disjoint. Thus UMCP does not examine any candidate multiple times.

Of those three properties, soundness is the most important for most planning applications,
where the correctness of plans is critical.

Completeness means the planner can always find any solution that exists. Completeness
might be critical in cases where any solution, even a slightly incorrect solution is preferable to
no solution at all. Completeness may also affect the performance of a planner: An incomplete
planner may miss a simple solution and spend more time trying to find a complex one.

The utility of systematicity is more debatable. Systematicity avoids redundancy in the
search space, thus it was believed to improve the performance of planners; however, as
discussed in [35], enforcing systematicity may incur extra overhead in book keeping, which
can offset the reduction in the size of the search space. Enforcing systematicity in the
refinement algorithms used by UMCP does not seem to require significant overhead, but it
is a matter of further investigation and experimentation to verify this opinion.

6.1.2 High-level Data Structures for UMCP

This section provides a conceptual overview of the high-level data structures used by UMCP.

6.1.2.1 OPEN-LIST

UMCP uses OPEN-LIST for its high-level search, which is a well known data structure in
the search literature [39]. Each new generated node in the search space is inserted to OPEN-
LIST, until it is removed for further exploration. Several search strategies can be used in

69

deciding which node to pick and remove from OPEN-LIST at each iteration of the search.
The internal implementation of OPEN-LIST depends on this strategy. UMCP currently
provides the following search strategies:

e Breadth-first Search: The nodes are removed from the OPEN-LIST in the order
they are inserted: first in, first out.

e Depth-first Search: The nodes are removed from the OPEN-LIST in the reverse
order they are inserted: last in, first out.

o Best-first Search: The nodes in the OPEN-LIST are ranked using a heuristic eval-
uation function, and the one with the lowest rank is removed first. The evaluation
function is provided by the user; it contains domain-specific information to guide the
search. If for each node in the search space, the evaluation function always returns
a value less than or equal to the cost of the best solution that can be obtained from
that node, then UMCP will find the optimum solution. It is possible to define evalu-
ation functions based on the domain-independent features of the nodes (e.g., number
of non-primitive tasks).

6.1.2.2 Search Nodes

Each node in the search space is in the form of a task network, with additional data structures
to store plan decisions.

The three types of decisions in HTN planning are the choice of method for each non-
primitive task, the choice of constant to assign to each variable, and the orderings of tasks.
Of those three, the choice of method is directly reflected in the task network. When a task in
a task network is expanded using a given method, the tasks in the method are added to the
task list, and the constraint formula of the method is combined with the constraint formula
of the original task network with a conjunct. Auxiliary data structures are required for
recording the ordering and variable binding decisions. Thus, along with each task network,
UMCP keeps a list of possible values for each variable, and a partial order graph of task
nodes. Both of those structures will be referred to as commitment data structures, and the
act of restricting the possible value for a given variable, or restricting the possible orderings
of the tasks will be referred to as making commitments, or simply commitments.

Dealing with some constraints might not be possible at the current level of detail in a
task network. For example, consider a planning problem that involves travelling. John needs
to be in New York City by 5p.m. Until the task network representing the planning problem
is sufficiently refined, that is, the decisions regarding the mode of transportation (fly, drive,
take the train, etc.) and which flight or train to take are made, it is not possible for the
planner to enforce that John is indeed going to be in New York City by 5p.m., simply by
making more variable binding and ordering commitments. In those situations where it is
not possible to enforce a given constraint to become true by making more commitments, the
constraint is recorded in a list called the Promissory List (the list of constraints the planner
has committed to make true, but has not done so yet), until such time that the task network

70

is sufficiently refined to enforce the constraint via further commitments. The constraints
in the promissory list do not simply lie dormant until they are ripe for processing. They
influence the planning decisions. For instance, if the time schedule is tight, the planner might
choose flying over taking the train, although it is more expensive.

Each search node contains the following data:

e Task list: This is a list storing the tasks in the task network.

Constraint formula: It stores the constraint formula of the task network.

Partial-order Graph: It stores the ordering decisions on the tasks.

Possible-value list: This list has an entry for each variable, containing the set of
possible values (i.e. constant symbols) it can be instantiated to.

e Promissory List: This is the list of constraints the planner has committed to make
true in this node, but these constraints are not enforced yet, via the commitments
recorded in possible-value list and partial-order graph.

6.2 Task Expansion as Refinement

Task expansion involves retrieving the set of methods associated with a non-primitive task
« in tn, expanding tn by applying each method to the chosen task o and returning the
resulting set of task networks.

The set of task networks generated from task expansion was defined to be
red(tn,I,D) in the HTN formalism in Section 3.2, where I is the initial state, and D is
the domain description (i.e., the set of methods and the set of operators in the planning
domain). Section 3.2 has also precisely defined how to expand a task in a task network
tn using a method m, denoted by reduce(tn,n,m), where n is the label of the task being
expanded.

The definition of reduce(tn,n,m) is used to implement the task expansions. The imple-
mentation has additional steps to set the auxiliary data structures (i.e., the partial-order
graph, the possible value list, and the promissory list) of the newly generated task networks.
The values of the auxiliary data structures are copied from ¢n to the new task networks, and
then modified as follows:

e Partial-order graph: If a task was ordered before (respectively after) the expanded
task in the original task network, it must be ordered before (respectively after) all the
subtasks in the expansion.

e Possible-value list: An entry must be made in the possible-value list for each new
variable introduced by the expansion. Each new variable must have the set of all
constant symbols as the initial set of possible values.

71

o Promissory list: Section 3.2 describes how to modify a constraint that refers to the
label of the expanded task. These modifications, which are used for the constraint
formula, must also be applied to all the constraints in the promissory list.

The above description of task expansion strictly follows the semantics of HTN planning,
and thus preserves soundness and completeness. It also preserves systematicity to the extend
that if there are multiple ways to generate the same task network using a different set of
methods in expansions, then the generated task networks are considered distinct.

For example, if the same method is declared multiple times for a given task, then the list
of task networks generated by task expansion will have overlapping solutions. Although it is
possible to check whether two methods are equivalent modulo the names for variables and
node labels, it is computationally rather hard even to tell whether the two lists of tasks are
equivalent, let alone their constraint formulae. Even if no task has two equivalent methods,
it might still be possible to generate the same task network using different methods.

6.3 Constraint Refinement in UMCP

This section presents the constraint handling mechanisms in the UMCP system. These mech-
anisms serve as domain independent critics, and they are designed to preserve soundness,
completeness, and systematicity.

As was explained in Section 2.2.7, HTN planning systems [59, 64, 69] have used a mech-
anism called critics to deal with interactions. Critics helped prune the search space by
detecting dead ends in advance and by resolving many types of conflicts as soon as they
appeared. Due to the procedural, heuristic nature of critics, no guarantees could be made
on their correctness or performance. In fact there was no criterion of correctness that could
be used to evaluate a critic function.

The formal framework developed in Chapter 3 has provided a criterion for evaluating the
correctness of critics. Section 3.5 presents three conditions a critic function must satisfy in
order to preserve soundness, completeness, and systematicity, respectively. That Section also
contains a provably correct planning algorithm UMCP (shown in Figure 3.7). The UMCP
algorithm calls a critic function (Steps 6 and 7) at every iteration, with the assumption that
the critic function will satisfy the conditions for correctness. This section deals with ways of
implementing the critic function in such a way to satisfy the correctness conditions.

My approach to handling interactions in HTN planning is based on an insight given by
the complexity analysis presented in Chapter 4: Each task in a task network introduces a
number of primitive tasks as its descendants through expansions. Each task also introduces
a number of constraints through the methods used in those expansions. The interaction
among two tasks in a task network occur either because the constraints associated with one
task conflicts with the constraints of the other task, or a descendant primitive task of one
task has an effect that conflicts with the constraints associated with the other task. In brief,
the interactions are based on constraints and the influence of primitive tasks on constraints.
Thus interaction detection and conflict resolution can be viewed as a problem of constraint

72

satisfaction.
The following sections describe in detail how UMCP deals with constraints.

6.3.1 Overview of Constraint Refinement in UMCP

Constraint satisfaction in UMCP is complicated because HTN planning involves a rather rich
set of constraint types, and the constraint formula of a task network changes dynamically as
tasks are expanded. To provide a general view, constraint refinement techniques of UMCP
are first demonstrated on a simple problem of telling whether a given propositional formula
is satisfiable. Section 6.3.1.1 presents how to solve the satisfiability problem using refinement
search. Section 6.3.1.2 describes how this satisfiability algorithm can be extended to HTN
planning.

6.3.1.1 An Algorithm for the Satisfiability Problem
The satisfiability problem is defined as follows:

Given a propositional boolean formula ¢ constructed using the logical connectives
{A,V,—} from a set of propositions P = {py,ps,...,pr}, does there exists a truth
assignment 6 : P — {T, F'} such that ¢ evaluates to true?

The satisfiability problem can be solved using the following procedure: Each proposition
has two possible values, namely true and false. We choose a proposition from the formula,
and create two branches in the search tree. In one branch, the proposition is assigned value
true, and in the other, the value false. In each branch the proposition can be replaced with its
assignment, and the formula can be simplified accordingly. This procedure can be repeated
recursively on every branch, until the formula in one branch evaluates to true, in which case
the initial formula is satisfiable, or all branches terminate with value false, in which case the
formula is not satisfiable.

For example, consider the boolean formula

F = =py Apa A=ps V pi) A (—pa V —p3)

The corresponding search tree is depicted in Figure 6.2. The root of the search tree
is a node containing the formula ¢, and the truth assignment 6, which is initially empty.
Children of any node in the tree can be thought of as refinements of that node. Children
never modify the truth assignments of their parent node, they only add more assignments.
Any truth assignment that satisfies a node’s formula also satisfy that of its parent. Any
truth assignment that satisfies a node’s formula also satisfies the formula of exactly one
child. Thus, this type of refinement preserves soundness, completeness, and systematicity.

The refinement algorithm presented in Figure 6.3 describes the procedure for generating
the children of a given node in the search tree. This procedure has three phases: selection,
enforcement, simplification. Selection refers to choosing which proposition to work with first.
This choice determines the shape of the search tree, and it influences the number of nodes

73

¢:_'p1 /\(pz /\—|p3\/p1)/\(—-1p2\/—|p3)
0={}

N

O=F @ = p, A=p; A(—p, V—p;)
0={(p :7)} 0={(p,:F)}

N

¢ =—p, ¢p=F
0=1{(p,: P)p,:D)}| | 8=1(py: F)p, : F))

p=T

9={(P1 : F)(p, :T)(p, . F)}

o=F
O={(p,: F)(p, :T)(p;:T)}

Figure 6.2: Search Tree for a Satisfiability Problem

4

1. Input a node s =< ¢,0 >
2. [Selection] Pick a proposition p in ¢
3. [Enforcement] Create two children nodes:

51 =< ¢,{(p:True)}Ud >

sy =< ¢,{(p: False)}U b >
4. [Simplification] Simplify the constraint formula of each child node
based on its truth assignment. Qutput those nodes whose formula does
not evaluate to false.

Figure 6.3: Constraint refinement for Satisfiability Problem

that need to be explored. Enforcement refers to making further refinements to the previous
decisions by recording the new truth assignment in each child node. Simplification refers
to reevaluating and simplifying the formula on each branch based on the new refinements
recorded in truth assignments. Those nodes whose formula evaluate to false have no solution,
and thus they can be terminated.

One can think of several extensions to this algorithm. The formula may contain unit
clauses. A unit clause is a literal (i.e. a proposition or its negation), combined with the rest
of the formula with a conjunct. For instance, the literal —p; is a unit clause in the example
above. Only one branch needs to be created for a unit clause, because enforcing it to be
false will make the formula itself false. Thus it is a good idea to select unit clauses before
the others. If the constraint formula contains multiple unit clauses, it makes sense to select
all of them, and enforce them together to avoid doing simplification many times.

In order to support the extensions described in the paragraph above, the selection phase
must return a more general form. Hence, the selection step is modified to return a list of the
form

{ (lllllfl-")llm),
(laalaz - . . lomy)

(lkllk2 ey kallll) }

The enforcement phase, which receives this selection, creates k new nodes, and on " node
it enforces the literals L1l . . . lim/).

For example, selection may return a single list of unit clauses in the format {({1l2l5)}, or
it may return a two lists, one list containing a single literal, the other its negation such as

{(h), (=h)}-

The selection must have two properties:

5

g — o —— ——

e The selected lists of literals must be comprehensive to cover all possibilities and hence
preserve completeness.

e Each list of selected literals must be mutually inconsistent in the presence of previously
made decisions so that the set of solutions on each branch are mutually exclusive, and
systematicity is preserved.

Soundness is preserved by definition, as previously made truth assignments are not mod-
ified in the generated nodes.

A selection of the form {(l1),(=l1)} certainly satisfies both of the conditions above. This
selection covers all possibilities, as {; can have only two values, either true, or false. Further-
more these two values are contradictory, so there cannot be any common solutions in the
corresponding subtrees of the search space.

6.3.1.2 Phases of Constraint Refinement in UMCP

Task networks in HTN planning contain a boolean formula that must be satisfied, just like
the boolean satisfiability problem discussed in the previous section.

A constraint formula in a task network is quite more complicated than a propositional
formula; instead of propositions, the constraint formula is composed of several types of HTN
constraints on variable bindings, task orderings and conditions on intermediate states. Fur-
thermore, HTN constraints interact with one another. For example, making the variable
binding constraint (v = a) true, automatically makes (v = b) false. State constraints are
influenced by the ordering and effects of tasks in the task network. Nonetheless, the satisfi-
ability algorithm in Figure 6.3 can be extended for constraint refinement in HTN planning.

The data flow of constraint refinement in UMCP is shown in Figure 6.4. The constraint
selection module determines the constraints to work on. Based on this selection, the con-
straint enforcement module produces a set of task networks, each of which corresponds to
one way of enforcing the selected constraints. The resulting task networks are piped to the
constraint propagation module, which for each task network attempts to enforce the con-
straints in its promissory list. Those task networks are piped to the constraint simplification
module, which evaluates the constraint formula of each task network, and filters the task
networks whose formula evaluates to false.

The high-level algorithm for constraint refinement in UMCP is shown in Figure 6.5. This
algorithm is an extension of the algorithm in Figure 6.3 for boolean satisfiability.

The following sections describes the steps of constraint refinement in UMCP.

6.3.2 Constraint Selection in UMCP

Constraint selection involves deciding which constraints to work on. Given a task network,
constraint selection returns a set of constraint lists, which has the form

{ (en1c12-..),

(C21€22 ..)

76

i Constraint
“ P Selection

tnl, tn2.1

Constraint Constraint . | Constraint

tn | Enforcement | Propagation "| Evaluation

Figure 6.4: Data Flow Diagram of Constraint Refinement in UMCP

T v 4 VMBS P s

7

R e T T

o N SwemEeRIRTRT T Y S - L

1. Input a task network tn
2. [Constraint Selection]
Make a selection of the form
{(ci1c12...),(carco2-..) .. (cricha...)}
3. [Enforcement]
For i =1 to k do
Produce a task network for each way of adding more
commitments to tn to make (¢ii¢iz...) TRUE.
4. [Propagation]

For each task network produced at enforcement phase do:

Try to enforce every constraint in its promissory list to become true,
until none of the constraints remaining in the promissory list can be
enforced at the current level of detail in the task network.

5. [Simplification]

(a) Evaluate and simplify the constraint formula of each

task network produced at the propagation phase.

(b) Output those nodes whose formula does not evaluate to false.

Figure 6.5: Constraint refinement in UMCP

78

(ckick2.-) }

This selection tells the planning system to refine the task network into k branches. In
the first branch the task network is refined further by new commitments in such a way to
make all of the constraints (¢j1¢12 - . ., €1m) true. In general in branch 7, the planner enforces
the constraints (ci1ciz ..).

The soundness of the planning system is not affected by how the selection is made.
However, in order to preserve completeness, the selection must be such that any solution to
the original task network lies in at least one branch, and in order to preserve systematicity,
the selection must be such that any solution to the original task network lies in at most
one branch. As long as these restrictions are observed, constraint selection only affects the
performance of the system.

Many different strategies can be employed to make the constraint selection, and it is a
matter of further experimentation to find out which provides the best performance. The
strategy used by the current version of UMCP is explained below:

o If the constraint formula contains unit clauses, UMCP selects all of those. The unit
clauses are ordered so that simpler types of constraints are handled before more com-
plex ones: variable binding constraints first, initially constraints second, ordering con-
straints next, and the state constraints last.

e If the constraint formula does not contain unit clauses, UMCP chooses an arbitrary
constraint and its negation from the constraint formula.

e If the constraint formula is TRUE, then UMCP chooses a constraint and its negation,
in such a way that enforcing that constraint may simplify some of the constraints in
the promissory list.

o If the constraint formula is TRUE and the promissory list is empty, then constraint
refinement is not appropriate.

Note that this constraint selection strategy preserves soundness, completeness, and sys-
tematicity.

6.3.3 Constraint Enforcement in UMCP

For each type of constraint, UMCP has an algorithm to refine a task network and produce
a set of task networks for ways of making that constraint true. All possible ways of making
the constraint true are considered, to preserve completeness.

Details of these algorithms are described in Section 6.3.6. Constraint enforcement phase
uses these algorithms to produce its set of task networks according to the constraint selection,
as shown in Figure 6.6.

79

Enforce

Cim

Enforce

Cim

Enforce | {tn; t;n; ...} | Enforce
Cri o Ci2
Enforce | {tn; n; ...} | Enforce
Cy Cr2
Enforce Enforce
Crt o Ci2

.

Enforce

Cim’

set of enforced

task networks

Figure 6.6: Constraint Enforcement Diagram

80

Suppose the constraint selection returns a set of constraint lists of the form

{ (611612 .. .),

(carc22 - -)
(Cklck2 ..) }

Here is how constraint enforcement works on the first branch: It calls the enforcement
function associated with the type of constraint ¢;; to produce a set of task networks for all
possible ways of making ¢;; true. Each of the resulting task networks are further refined by
calling the enforcement function associated with ¢;2, and so on, until finally a set of task
networks are produced for each possible way of making all (¢i1¢12. . .) true.

The same procedure is applied to the rest of the branches, and the resulting task networks
are passed to the constraint propagation phase.

6.3.4 Constraint Propagation in UMCP

Recall the discussion in Section 6.1.2.2 about promissory list. Some constraints that go
through constraint enforcement phase cannot be made true by placing restrictions on task
orderings and variable bindings at the current level of detail in a task network. Those
constraints are merely recorded in the promissory list. The planner makes a promise to try
to establish these constraints in later iterations. Constraint propagation is the phase where
this is done.

Propagation phase receives a set of task networks from the constraint enforcement phase.
For each of these task networks, the promissory list is examined to see if any of the constraints
in it can be enforced at the current level of detail in the task network. Those task networks
with no such constraint are passed along to the simplification phase. If such a constraint is
found, that the constraint enforcement function associated with the type of that constraint
is performed. The task networks resulting from this constraint enforcement are piped back
to the constraint propagation phase.

6.3.5 Constraint Simplification Phase

Constraint simplification is the final phase of constraint refinement. UMCP contains evalua-
tion and simplification routines for every type of constraint, as described in the next section.
These routines are used to evaluate and simplify the constraint formulae of the task networks
produced by the propagation phase. For instance, if part of a conjunct evaluates to true,
that part is dropped, if it evaluates to false, the whole conjunct evaluates to false. Disjuncts
are treated analogously. Those task networks whose constraint formulae evaluate to false
are pruned. Remaining task networks are output as the product of constraint refinement.

81

o v e e e

Sometimes it might not be possible to evaluate a constraint with the current level of
detail present in a task network until further refinement. In such cases, evaluation routines
of UMCP returns either the constraint itself, or a simplified version of it.

6.3.6 Details of Constraint Evaluation and Enforcement

This section describes how constraint evaluation and enforcement is done for each type of
constraint. Enforcement always involves evaluating the constraint and it fails whenever the
constraint evaluates to false. This is omitted from the explanations below for brevity.

6.3.6.1 Variable Binding Constraints

Recall that, each task network contains a Possible value list, which contains the set of
possible values for each variable in the task network. Possible-value list is examined to
evaluate variable binding constraints, and possible values for variables are further restricted
to enforce variable binding constraints.

Promissory list may contain variable binding constraints, and thus it is used in the eval-
uation and enforcement of variable binding constraints. Only noncodesignation constraints
of the form not(v, = vs) are stored in the promissory list. This type of constraints cannot be
handled using the Possible value list, unless we instantiate one of the variables by creating
a new task network for each possible value it has. Rather than instantiating one of the
variables, this type of constraints are recorded in the promissory list, and they are enforced
when one of the variables get instantiated later on. The remaining types of variable binding
constraints can be represented using the Possible-value list, and are never recorded in the
promissory list.

Details for each form of variable binding constraint appears below.

Type: (v =a)

Evaluation: Return true if constant a is the only possible value for variable v; return false
if @ is not a possible value for v; return (v = a) otherwise.

Update: To make it true, set the possible value list for v to a, replace v with a throughout
the task network. To make it false, remove a from the possible value list for v. If v has only
one possible value left, then substitute that value for v throughout the task network. If v
appears in noncodesignation constraints in the promissory list, then do further refinements
to enforce those constraints.

Type: (v; = vq)

Evaluation: Return true if both v; and v, have the same one possible value; return false
if they do not have any common possible values or if negation of the constraint is in the
Promissory List; return the constraint itself otherwise.

Update: To make it true, set the possible value list for v» to the intersection of possible
values for v; and vy, set the possible value list for v; to ve, and replace v, with v, throughout
the task network. If the intersection has only one possible value, then instantiate both

82

variables to the value, and propagate the noncodesignation constraints in the promissory
list. To make it false, insert its negation in the Promissory List.

6.3.6.2 Ordering Constraints

Ordering constraints are handled by querying and modifying the partial order graph. They
are of the form (node-expression < node-expression).

A node-expression can be in either of the two forms: first[ni,ng,...,ng], or
last[ny, ng,...,ng]. Thus, a total of four types of ordering constraints need to be considered.?

Let A; = {ni,...,ni} be lists of node labels for ¢ = 0,1. Recall that first[Ao] and
last[Ag] refer to the node which is ordered to be the first and the last among the nodes in
the expansion of nodes {nos,...,nok}, respectively.

Let’s define O;, I; C A, as the nodes that are not ordered after (respectively before) any
node in AO U Al-

Let’s define B;, C; C A; as the nodes that are not ordered after (respectively before) some
node in A; and are not ordered after(respectively before) all nodes in A(i41) mod 2-

Type: (furst[Ao] < first[A])

Evaluation: Return true if Oy is empty; return false if Oy is empty; return (first[Op] <
first[O4]) otherwise.

Update: If Og contains a single primitive task put links from the node in Oy to each node
in O, in the partial order graph; otherwise insert (first[Og] < first[O;]) into the Promissory
List.

Type: (first[Ao] < last[A;])

Evaluation: Return false if By or C) is empty; return true if some node in B, is ordered
before one in Cf; otherwise return (first[Bo] < last[C}]).

Update: If both By and C; contain single primitive tasks, put a link between them,
otherwise insert (first[Bo] < last[C;]) into the Promissory List.

Evaluations and enforcements of (last[Aq] < first[Ai]) and (last[Ao] < last[A;]) are
done analogously.

6.3.6.3 State Constraints

The set of atoms in the initial state are stored in a discrimination tree for fast querying.
Negative literals need not be stored due to the closed world assumption. Note that “—
(initially {)” and “(initially =[)” have the same meaning.

Type: (initially [)

Evaluation: Return true if all ground instances of [that are consistent with possible values
lists in commitments are in initial state; return false if none of the ground instances of ! that
are consistent with possible values lists are in initial state.

2QOrdering constraints which contain negation or refer to single node labels can be converted to one of
those four forms.

83

U AT N

Update: To make it true (false) do the following: If [has only one variable, restrict that
variable to values for which [is true (false) in the initial state. If [contains k& > 1 variables,
for each combination of values for the first k—1 variables, output a task network by assigning
those variables the corresponding constants, and restricting the value of the last variable so
as to make [true (false) in the initial state. Combinations of values for which this is not
possible need not be considered. For example, in order to make (initially type[v,truck])
true in transport logistics domain, it suffices to restrict possible values for v to constants of
type truck.

The state constraints of the form (I,n) are evaluated and enforced by computing the
effectors. An effector of [/ is either (i) a primitive task with an effect that can unify with
[or —l, (ii) the initial state, (iii) a compound task whose expansion might contain such a
primitive task, or (iv) a committed-to state constraint that is stored in the Promissory List
whose literal can unify with [or —/. Those effectors that are ordered after n or shadowed by®
some other effector of [are ignored. If all effectors of { are positive then (I,n) is true, if all
are negative than it is false, otherwise it is unknown yet. Enforcement is delayed if some of
the positive effectors are compound tasks, and the constraint is recorded in the Promissory
List. Otherwise for each positive effector € a new task network is created where e is the
establisher of [with added constraints (protect I e n) A (protect -l e n)preventing any action
between e and n from denying or asserting [, respectively.

Evaluating and/or updating constraints of the form (n,!) is delayed until n refers to a
single primitive task symbol. In that case (n,[) evaluates to true if the action labeled by n
asserts [, it evaluates to false if that action denies I, otherwise it evaluates to (I, n).

Constraints of the form (n,l,n’) are converted to (n’ < n) V[(n =X n') A (n,]) A
(protect I n n')] and handled as such.

6.4 Domain-Specific Critics

Domain-specific critics is one of the places where domain-specific, procedural information
can be used to enhance the capabilities and performance of UMCP.

Given a planning application, it is desirable to be able to write a specification of it using
the declarative HI'N planning constructs, and let an HTN planner like UMCP process the
specification, and solve all the problems that arise in that application. Unfortunately, the
world is seldom so well behaved.

There are types of knowledge best encoded using procedural means. Even when all the
information related to a planning application can be declaratively specified, HTN planning
constructs might be ill-equipped to represent and process some of this information. For
example, consider planning applications involving automated manufacturing. A significant
portion of the information regarding tolerances, stress analysis and many other features is
very complex, and draws upon a huge body of research and experience in mechanical engi-

3An effector x shadows an effector y if x is ordered between y and n, and whenever an effect of y
codesignates with /, so does an effect of x.

84

neering. Even the declarative aspects of this type of applications usually involve geometrical
reasoning on solid models. On the other hand, there are many aspects of the problem that
can be handled via HTN constructs, such as scheduling tools and machines, interactions
among other resources and materials, choosing among process plans, etc.

One possible approach is to try to come up with more general planning paradigms that
can deal with more variety of information types compared to HTN planning; however, there
is a delicate balance: extending the expressive power of a declarative paradigm usually
makes it computationally more expensive, sometimes to the extend of rendering it useless.
In addition, there might already exist domain-specific techniques that handle many aspects
of the planning application effectively.

UMCP’s approach is to provide a way domain specific techniques can be incorporated to
the planner in order to increase the performance and the capabilities of the system. UMCP
provides an API for task networks and HTN refinement routines to facilitate integration
of other code. Domain specific critics can be fully automated, or it may involve a human
operator providing guidance to the system. There is no reason why other planning systems
based on different paradigms cannot be used as domain-specific critics. For example, using a
case based planning system that can learn how to “criticize” task networks in a given domain
working in tandem with UMCP may be very beneficial.

UMCP only expects the domain-specific critics to input a task network, and output a
set of task networks. It is the responsibility of the domain engineer to ensure that the
domain-specific critics satisfy the conditions for preserving soundness, completeness, and
systematicity.

6.5 Selection of Refinement Strategy

The previous sections have described the various refinement strategies at the disposal of
UMCP. As shown in Figure 6.1, The high-level UMCP algorithm picks a refinement strategy
at each iteration. This choice, which determines the part of the problem to focus on, has
a big impact on the efficiency of UMCP. Intuitively, one would first like to work first on
the most critical part, the part which is most likely to fail. For example, while planning
for a trip, one makes the flight arrangements before planning the trip to the airport so that
backtracking caused by planning for a trip to an airport with no suitable flights can be
avoided.

How to choose a refinement strategy at each iteration is called commitment stategies, as
was discussed in Section 2.2.4. UMCP supports this active area of research by providing a
testbed where different commitment strategies can be implemented and compared. UMCP
also provides a default commitment strategy as described below.

If the constraint formula of ¢n contains any unit clauses, UMCP chooses those clauses
for constraint refinement, as outlined in Section 6.3.2.

If the constraint formula of tn does not contain any unit clauses, then UMCP arbitrarily
picks an atomic constraint from the constraint formula and sends that constraint and its
negation to constraint refinement.

85

B T vy

37 . W

If the constraint formula is true, but ¢n has non-primitive tasks, then UMCP picks one
of these non-primitive tasks for task expansion. UMCP requires all the task symbols to
be declared in advance, and those declarations can optionally specify a criticality level for
each non-primitive task, analogous to the criticality assignments used by the ABSTRIPS
system [60]. That system was described in Section 2.2.2. UMCP chooses the non-primitive
task with the highest criticality level. Just as in ABSTRIPS, the criticality assignments
in UMCP, provide valuable guidance in focusing the attention of the planner to the most
critical part of the problem.

If the constraint formula is true and ¢n is primitive, then UMCP picks an atomic con-
straint (and its negation) for constraint refinement in such a way to simplify the auxiliary
constraints in the promissory list.

If the promissory list is empty, the constraint formula is true, and the task network
is primitive, then the task network has already been refined to a solution, and no further
refinement is necessary.

Notice that the default commitment strategy of UMCP never picks domain-specific critics,
as it cannot have any information about when such a critic is applicable, or how often it must
be invoked. When UMCP is customized for a domain and provided with a domain-specific
critic, the commitment strategy must be modified accordingly.

6.6 The UMCP Architecture

6.6.1 Modules

UMCP system has been implemented using Allegro Common Lisp on a Sparc Workstation.
It consists of several modules described below.

Search module contains the high-level refinement search routine of UMCP. Depth first
search, breadth-first search, and best-first search are also implemented in this module.

Heap module contains the implementation of a general purpose heap data structure
(courtesy of William Andersen). It is used by the best first search module.

Refinement module contains the functions for choosing the refinement strategy to apply at
a each iteration, and then invoking the appropriate module to apply the selected refinement
strategy.

User-critics module is to be provided by the user to contain domain specific information.
This information is used to improve the performance of UMCP.

Expansion module implements the task expansion.

Method module contains the functions for declaring, retrieving and instantiating meth-
ods.

Constraint module contains functions that implement the high-level algorithms for con-
straint refinement.

The following four modules contain the functions for evaluating and enforcing variable
binding, ordering, initial-state constraints respectively: vb-bindings, ord-constraints, ini-
tially, and state-constraints.

86

State constraints are rather complicated, and they require support from several other
modules described below.

Aux module contains the functions for establishing state constraints, and dealing with
auxiliary data structures in the task network.

Effectors module contains the routines which compute the necessary/possible contributors
or deniers to a given state constraint.

Poss-effects-table module does a preprocessing of the domain specification to determine
the set of predicates a given non-primitive task may influence.

Task network module define the structure of task networks, and the basic operations on
them. Several major components are delegated to other modules described below.

Formula module contains the functions on constraint formulae.

Partial-order graph module contains the functions for querying and modifying the task
orderings.

Poss-values module contains the functions for querying and modifying possible values for
each variable.

The promissory list, which contains the constraints that cannot be enforced right away,
is implemented using two modules

Disjoint module stores the noncodesignation constraints in the promissory list.

Promissory module stores the state constraints.

Symbol module contains the functions for defining the HTN language for an application.
Thus it contains the functions for declaring predicates, variables, and other types of symbols.

Util module contains miscellaneous support functions.

6.6.2 User Interface

The planner is invoked using the command (search-for-plan <tn>). At each iteration,
UMCP picks a task network from the openlist, chooses a refinement strategy, does the
refinement, and inserts the resulting task networks back to the openlist.

UMCP presents the task network to be refined to the user as follows:

A partial order graph is visually displayed to present the list of tasks, and also the
committed orderings. Primitive tasks are written in lowercase letters, and non-primitive
tasks are written in uppercase.

Remaining components of the task network are displayed textually:

e Name: UMCP names each task network it generates, by extending the name of the
parent task network with a “-” and the order of the task network among its siblings.

e Formula: is the constraint formula of the task network.

e Variables: presents the set of possible values for each variable. It is in the form of an
association list, where the keys are the variables in the task network.

e Disjoint variables: is an association list that for each variable contains the list of
variables it must noncodesignate.

87

B T T THI R

¢ Postponed ordering constraints: is a list of ordering constraints in the promissory list.

¢ Postponed state constraints: is an association list of state constraints in the promissory
list. It is indexed by the predicates.

¢ Refinement Strategy: shows which refinement strategy UMCP has chosen to refine the
current task network.

The user may override UMCP’s choice of refinement strategy and pick another one, and
instruct UMCP to refine the current task network. Alternatively, the user can give the “go”
command telling UMCP to run to completion.

6.7 Discussion

Causal links are used by POCL planners such as SNLP [46] to establish preconditions and
to detect threats. Causal links are also employed by UMCP in the form of special state
constraints stored in the Promissory List. SNLP’s threat removal process is similar to how
UMCP handles those special constraints in its constraint propagation phase.

[15] introduced the MTC (modal truth criterion) to tell whether a literal is true at
a given point in a partially-ordered plan. In order to evaluate state constraints, UMCP
uses an extended version of the MTC that also accounts for compound tasks. UMCP’s
extended MTC algorithm runs in quadratic time—and it is directly applicable for computing
Chapman’s MTC, for which the other known algorithms run in cubic time.

NOAH [58] employs its resolve conflicts critic to deal with deleted-condition interactions,
which are explicitly represented by state constraints in UMCP. The constraint refinement
techniques of UMCP guarantees these interactions will be handled without sacrificing sound-
ness or completeness.

UMCP evaluates each constraint before trying to make it true, and skips those constraints
that are already true, and hence it emulates NOAH’s eliminate redundant preconditions critic.

HTN planners often allow several types of conditions in methods. How to deal with those
conditions has been a topic of debate.

NONLIN [64] evaluates filter conditions as soon as they are encountered, using the QA
(Question Answering) mechanism. QA returns false unless it can verify those conditions to
be necessarily true, even if the conditions are possibly true. Thus, NONLIN often backtracks
over filter conditions which would have been achieved by actions in later task expansions or
by more ordering and variable binding commitments. As a result, NONLIN may fail to find
a solution when a solution exists, or may miss a short and simple solution and do much more
work to find a longer and more complicated solution.

At first glance, the problems such as these might seem to argue against the use of filter
conditions: at one extreme, using filter conditions immediately to prune the search space
sacrifices completeness, and at the other extreme, postponing their use until the plan is

88

complete (so as to preserve completeness) is inefficient.*

Although the above argument is partially correct, it ignores a third possibility that lies
between the two extremes. In general, to preserve completeness, a planner cannot use a
filter condition to prune the search space unless the filter condition evaluates to “necessarily
false”—but this does not necessarily require that the task network has been expanded into
a primitive and totally-ordered plan. Instead, UMCP simply records the filter conditions in
the Promissory List and prunes the task network only when one of them becomes necessarily
false.

More specifically, UMCP handles filter conditions and other constraints as follows:

e Some instances of variable binding, ordering, and state constraints can be dealt with
immediately. For example, conditions (e.g., an object’s type) that are not affected by
the actions are represented by constraints of the form (initially [). Such constraints
can be evaluated at any time by querying the initial state, and they can be committed
to by appropriately restricting the possible values for the variables in 1.5

e Those constraints that cannot be dealt with immediately are stored in the Promissory
List, and are processed in the constraint propagation phases.

Constraints in UMCP go through three stages: they first appear in constraint formula; then
possibly in the Promissory List if they cannot be dealt with at the time they are selected
in constraint selection phase; and finally they are reflected in restrictions on possible values
for variables and task orderings. This three-stage approach facilitates dealing with the
disjunctions in the constraint formula, and by postponing its processing of some types of
constraints, UMCP preserves completeness without sacrificing efficiency.

Dealing with numerous types of interactions is an important aspect of planning systems.
The work described in Chapter 3 has provided a formal framework for representing inter-
actions and conflicts via constraints, and in this paper we have introduced techniques for
constraint handling as a means for detecting interactions and resolving conflicts. Those tech-
niques preserve soundness, completeness, systematicity, and they have been implemented in
UMCP, an HTN planning system.

By instantiating the constraint selection strategy in different ways, various commitment
strategies discussed in the literature can be used by UMCP. For example, variable instanti-
ation can be done before anything else (as in NONLIN), all primitive tasks can be totally
ordered as soon as they appear in task networks, or task expansions can be deferred until all
conflicts have been resolved (least commitment). Currently, we are designing experiments
to empirically evaluate these techniques.

The constraint-handling mechanisms of the UMCP system provide the capabilities of
many domain-independent critics discussed in the literature, and UMCP’s user-specific crit-

4In fact, Collins and Pryor [16] have made a similar argument against filter conditions in the context of
planning with STRIPS-style operators.

SSIPE [72] uses a “sort hierarchy” for this purpose, the only difference in UMCP is that UMCP allows
arbitrary boolean formulae constructed from all types of constraints, instead of a conjunct of constraints as
in SIPE.

89

ics module can be used to incorporate domain-specific critics as well. The modular and
formal nature of UMCP makes it readily extensible. We are currently exploring ways of ex-
tending UMCP’s constraint-handling mechanism to handle numerical and complex temporal

constraints so that it can do deadline and resource management, and provide the capabilities
of other domain-independent critics.

90

Chapter 7

Examples

The previous chapters have presented the HTN language, and the UMCP planning system
that solves problems specified in that language. This chapter demonstrates how UMCP works
on two sample domains. Section 7.1 briefly explains how to write domain specifications in
the HTN language. Section 7.2 describes UM Translog, a benchmark domain for planning
applications, followed by a step-by-step trace of UMCP on a sample problem from that
domain. Section 7.3 presents a special planning domain, which was constructed to prove the
undecidability of HTN planning in the proof of Theorem 5. In this domain, plans correspond
to the intersection of the two context-free grammars, whose rules are specified in the initial
state. That section also contains a sample problem trace.

7.1 Writing Domain Specifications

For most planning applications, preparing a domain specification is a challenging job.
Unfortunately, it is the most neglected aspect of planning, and there is not an established
software-engineering methodology to guide this job. In this section, I will attempt to provide
a rudimentary approach to writing domain specifications in the HT'N language. An outline
of this approach is depicted in Figure 7.1. Each step is explained below, together with the
UMCP syntax. UMCP uses a slight variation of the HTN language, which is easier to type
on a computer terminal.

The first step in writing specifications is to identify the objects in the application. The
transport logistics domain presented in Section 7.2 has several packages such as package-1
and package-2, several vehicles such as truck-1 and airplane-4. The domain engineer
must invent names for the objects, and declare them. In the UMCP syntax, this declaration
is of the form

(constants <constant-symbol-1> <constant-symbol-2>...)

The second step is to identify the relationships and properties among the objects. For
example, the object truck-2 is of type truck. At any given time, it is located at some

91

AT

oy e

. Identify the objects of interest in the application, and declare a

constant symbol for each object.

. Identify the properties of the objects, and the relationships among

them, and declare a predicate symbol for each relation or property.

. Identify the actions that can be executed, and declare a

primitive-task symbol for each of them.

. Identify the jobs that need to be planned for, and declare a

compound-task symbol for each of them.

. Operators and methods use variable symbols as place holders.

Variable symbols must be declared as needed.

. For each action, determine the effects and applicability conditions,

and declare it in the form of an operator.

. For each job, determine the possible ways of accomplishing it, and

declare each possible way in the form of a method.

. Prepare test problems and run them on a planning system. Based

on the outcomes, revise the domain specification as necessary.

Figure 7.1: Steps of Domain Specification in the HTN Language

92

location. One may consider denoting these relations using two predicate symbols truck and
at. In the UMCP syntax, predicates are declared using the form

(predicates <predicate-symbol-1> <predicate-symbol-2>...)

Properties of objects themselves may have relations among them. For instance, in
the transport logistics domain, certain types of packages are compatible with only cer-
tain types of vehicles. Packages of type produce can be carried with only vehicles of
type refrigerated. The HTN language (or any first order language) does not allow rea-
soning about the properties of predicates. One solution around this problem is convert-
ing some predicates into constant symbols. For example, the predicate refrigerated can
be declared as a constant instead, and refrigerated(truck-1) can be represented as
type(truck-1, refrigerated), using a special type predicate. Now that vehicle types
and package types are denoted by constant symbols, we can introduce a compatibility predi-
cate compatible(vehicle-type,package-type). This technique is used extensively in UM
Translog.

The next two steps involve determining the actions and jobs in the domain, and declaring
primitive-task symbols and compound-task symbols for them, respectively. This is accom-
plished using the declarations

(primitive-tasks <primitive-task-symbol-1>
<primitive-task-symbol-2>...)

(compound-tasks <compound-task-symbol-1>
<compound-task-symbol-2>...)

Compound-task or predicate declarations can optionally specify a criticality level for
each symbol, which UMCP uses in determining what part of a task network to work on
at each iteration. The syntax for specifying criticality level in a declaration is (<symbol>
<criticality-level>).

Another type of symbols in the HTN language are the variables, which are used as place
holders in operators and methods. Variable symbols that appear in domain and problem
specifications are required to be declared in advance, using the form

(variables <variable-1> <variable-2>...)

The final two steps involve defining the primitive tasks using operators, and defining the
non-primitive tasks using methods. Primitive tasks are defined in terms of their effects and
their applicability conditions using the format

(operator <primitive-task-symbol>
:pre (<literal-1> <literal-2>...)
:post (<literal-1> <literal-2>...)

)

93

el AT s Gt s e

A literal is written as
(<predicate-symbol> <term-1> <term-2> ...)

Terms are either constant or variable symbols. For example, the 1load-package primitive
task in the UM Translog domain can be declared as follows:

(variables p v 1)

(operator load-package(p v 1)
:pre ((at-package p 1) (at-vehicle v 1))
:post((at-package p v) (“at-package p 1))

Methods are declared using the following syntax:

(declare-method <non-primitive-task-symbol>
:expansion
(
(<node-label> <task-symbol> <term-1> <term-2>...)
(<node-label> <task-symbol> <term-1> <term-2>...)

)

:formula <constraint-formula>

A task symbol can be either a primitive-task, a compound task, or a predicate (possibly
negated). The syntax for the constraint formula is depicted below:

formula — T

formula — °F

formula — atomic-constraint

formula — (not formula)

formula — (and formula-1 formula-2...)
formula — (or formula-1 formula-2...)

Below is the format of atomic constraints:

e Variable binding constraints are written as (veq term-1 term-2), where each term is
either a variable or a constant symbol.

e Ordering constraints are written as (ord point-1 point-2). Each point is either a
single node label, or in one of the forms (first node-label node-label ...) and
(last node-label node-label ...).

94

e Constraints of type initially are written as (initially literal)

e State constraints have one of the forms (before literal point)
(after literal point), (between literal point-1 point-2).

The following is a sample method declaration from the UM Translog domain:

(variables vehicle location origin r ocity dcity)
(declare-method AT-VEHICLE(vehicle location)
:expansion
((n1 MOVE-VEHICLE vehicle origin location r))
:formula
(and
(before (AT-VEHICLE vehicle origin) nil)
(initially (TYPE vehicle TRUCK))
(initially (IN-CITY origin ocity))
(or
(and ; same
(veq r LOCAL-ROAD-ROUTE)
(initially (IN-CITY location ocity)))
(and ;different city
(initially (IN-CITY location dcity))
(initially (CONNECTS r ROAD-ROUTE ocity dcity)))
))

This is a method for moving a vehicle to a given location. This particular method only
works for vehicles of type truck, under the condition that the location is either in the same
city as the vehicle, or it is in a city directly connected via a road route to the current city
the vehicle is located at.

As seen in this example, it is possible to add comments to domain specifications using

“.n

the LISP language syntax. The semicolon character “;” is the comment symbol. It instructs
the planner to ignore the rest of the line.

7.2 Case Study 1: UM Translog Domain

7.2.1 Description

The empirical studies on planning systems and techniques have been mostly on simple toy
domains. Two well known examples are “Blocks World” and “Towers of Hanoi.” As plan-
ning systems grow in sophistication and capabilities, however, there is a clear need for

95

D A R

planning benchmarks with matching complexity to evaluate those new features and ca-
pabilities. UM Translog is a planning domain designed specifically for this purpose by
Andrews, Kettler, and myself [4]. This section provides a brief description of the UM
Translog domain from that paper. The full domain specification is available online at:
http://www.cs.umd.edu/projects/plus/UMT.

UM Translog was inspired by the CMU Transport Logistics domain developed by Manuela
Veloso [67]. UM Translog is also an abstract, toy planning domain, but compared to the CMU
Transport domain, it is an order of magnitude larger in size (41 actions versus 6), number
of features and types of interactions. It provides a fairly rich set of entities, attributes,
actions and conditions, which can be used to specify rather complex planning problems with
a variety of plan interactions.

In this domain, the planner is given one or more tasks, which typically involve the de-
livery of a particular package to a destination. Our goal for UM Translog domain was to
create a domain more complex than toy domains such as blocks world. To do this we mod-
elled additional aspects of transport logistics not in the CMU Transport Logistics domain,
and which we believed were somewhat realistic. These include the following features and
restrictions:

e transport is by air, rail, or road
e transport is intracity or intercity

e several basic methods of transport are available including local transport via road,
direct transport via a specific direct route, and “indirect” transport via a transportation

hub

e customer locations and transportation centers (airports and train stations) are grouped
into cities which are grouped into regions

e intercity transport uses specific routes

e transport via air or rail uses specific transportation centers (airports and train stations)
e particular vehicles and packages have special (un)loading methods and actions

e packages and vehicles have (sub)types which must be compatible

e vehicles, equipment, routes, and transportation centers may be temporarily unavailable

e certain cities may not allow hazardous packages to be transported through them

7.2.1.1 Objects

UM Translog objects include individual locations (cities, etc.), routes, vehicles, equipment,
and packages. Each object has a primary type, specified by the predicate type. Primary
object types include location types, route types, vehicle types, equipment types, and package

96

types. Types are declared as constants rather than as predicates, because we would like to
be able to assert compatibility relations among vehicle types, package types and route types.
As shown in Figure 7.2, location types are region, city, and city-location. City
location subtypes are tcenter (transport center) and not-tcenter (a city location that
is not a transport center). Transport center subtypes are airport and train-station.
Non-transport center subtypes are clocation (customer location) and post-office.

location

region city-location city

A

tcenter not-tcenter

/\ /\

airport train-station clocation post-office

Figure 7.2: Location Type Hierarchy

Regions contain one or more cities specified via the predicate in-region.

Cities contain one or more city locations specified via the predicate in-city. Some cities
are compatible with hazardous packages, specified via the predicate pc-compatible.

A city location is located in a specific city specified via the predicate in-city.

A transport center can be used for air/rail direct and indirect transport. Transport
centers can optionally be specified as transport hubs via the hub predicate. Hub transport
centers can be used for indirect transport. Transport centers serve specific cities specified via
the predicate serves. Thus air or rail travel from a specific city must use a transport center
that serves that city. Hub transport centers serve specific regions, rather than cities. Trans-
port centers can be available or not. For example, a particular airport may be temporarily
unavailable due to bad weather.

Customer locations are generic locations (e.g., businesses, homes, etc.) within a city that
can serve as the origin and destination of a package, as can transport centers. Each customer
location is located in a city specified via the predicate in-city.

A post office is similar to a customer location but can be used as the origin and destination
for packages of type mail.

Route types are road-route, rail-route, and air-route. Routes connect locations.
Road routes connect two cities. All locations within a city are assumed to be connected by
roads, and thus road routes are not specified between individual city locations. Rail and air
routes connect airports and train stations, respectively. Routes have an origin, destination,
and route type specified via the predicate connects. Note that routes are directional: traffic

97

flows from the origin to the destination. Routes have an availability status specified via the
predicate available. For example, a particular road route may be temporarily unavailable
due to construction.

Primary vehicle types are truck, airplane, train, and traincar.

Trucks and traincars have subtypes: a single physical subtype and an optional specialty
subtype. Physical truck/traincar subtypes are listed below with some examples:

e regular: tractor-trailer truck, delivery van, boxcar, etc.
e flatbed: flatbed truck, flatcar, etc.

e tanker: tanker truck, tanker car, etc.

e hopper: dump truck, hopper car, etc.

e mail: mail truck, mail car, etc.

e livestock: livestock truck, cattle car, etc.

e auto: car carrier truck/traincar

Specialty truck/traincar subtypes are refrigerated and armored to carry produce type
of packages and valuable packages respectively. Specialty subtypes cannot be specified if the
truck or traincar has a physical type of mail, livestock or auto. Vehicles of type train
(i.e., train engines) unlike other types of vehicles, do not hold packages themselves but rather
have attached traincars that hold packages.

A vehicle’s primary type determines its compatibility with particular routes. Vehicles
have a location and availability specified via the predicates at-vehicle and available,
respectively.

Equipment types are plane-ramp and crane. Equipment of these types is used to load
planes and flatbed trucks/traincars, respectively. Equipment has a location, specified via
the predicate at-equipment. The status of a plane ramp is described using the predicate
ramp-connected. The status of a crane is described using the predicate empty.

Packages have type Package. Packages have subtypes: a single physical subtype and,
optionally, one or more specialty subtypes. Physical package subtypes are listed below with
some examples:

e regular : parcels, furniture, etc.

e bulky : steel, lumber, etc.

liquid : water, petroleum, chemicals, etc.

granular : sand, ore, etc.

mail : letters sent through the postal service

98

e livestock: cattle, etc.

e auto : automobiles

Specialty package subtypes are perishable for frozen food, etc.; hazardous for
petroleum, nuclear waste, etc.; and valuable for money, weapons, etc. Specialty subtypes
cannot be specified if the package has a physical subtype of mail, livestock, or auto.

The physical subtype of a package must be compatible with the vehicle’s primary type
and any physical subtype specified for that vehicle. Packages with specialty subtype of
hazardous may be compatible with certain cities and incompatible with others. Hazardous
packages cannot originate nor pass through cities unless that city is compatible with haz-
ardous packages (specified via the predicate pc-compatible).

Packages have a location and fees to be collected. Hazardous packages require a permit
and warning signs, and valuable packages require insurance.

7.2.1.2 Actions

This section describes the symbols that denote actions in UM Translog domain. Most symbol
names are chosen to be self explanatory.

Prior to carrying a package to its destination, fees should be collected, a special permit
should be obtained if the package is of type hazardous, the package should be insured
if it is of type valuable, and all these should be cancelled once the package is delivered
at its destination. These activities are denoted by the action symbols obtain-permit (p),
collect-fees(p), collect-insurance(p), and deliver(p), where p is a variable symbol
denoting a package.

There are a number of actions for loading and unloading packages from/to vehicles,
depending on the type of vehicle and package. In some cases, special equipment such as
cranes need to be used for that purpose.

Loading a regular package into a regular vehicle involves opening the door of the vehicle,
putting the package in, and then closing the door, denoted by the actions open-door(v),
load-package(p v 1), close-door(v). Unloading a regular package involves the same
steps in reverse order, replacing load-package with unload-package(p v 1). p is a variable
of type package, v is a variable of type vehicle, and 1 is a variable of type location. 1 is used
to make sure the vehicle and the package are at the same location.

Packages of type valuable can be carried only by vehicles of type armored, and require the
additional steps of posting a guard outside while loading, and posting a guard inside while in
transportation and removing the guards afterwards are required. These are denoted by the
primitive tasks post-guard-outside(v), post-guard-inside(v), and remove-guard(v).

Packages of type hazardous can be carried only with proper warning signs on the ve-
hicle, and the vehicle must be decontaminated afterwards. These actions are denoted by
affix-warning-signs (v), remove-warning-signs (v), and
decontaminate-interior(v).

99

Loading/unloading a truck or traincar of type flatbed requires use of a crane denoted by
¢ in the actions
pick-up-package-ground(p ¢ 1), put-down-package-ground(p c 1),
pick-up-package-vehicle(p ¢ v 1), and
put-down-package-vehicle(p ¢ v 1).

Loading a truck or traincar of type hopper involves several actions:
connect-chute(v), fill-hopper(p v 1), and disconnect-chute(v). Unload is similar,
simply replace empty-hopper(p v 1) with fill-hopper(p v 1).

Loading/unloading vehicles of type tanker also involves several actions:
connect-hose(v), disconnect-hose(v p), open-valve(v), close-valve(v),
fill-tank(v p 1), and empty-tank(v p 1) in appropriate order.

Loading packages of type livestock involves the actions lower-ramp(v),
fill-trough(v), load-livestock(p v 1), and raise-ramp(v). Unloading involves the
actions lower-ramp(v), unload-livestock(p v 1), raise-ramp(v),
do-clean-interior(v), and unload-livestock(p v 1).

Loading/unloading packages of type cars involves the actions load-cars(p v 1), and
unload~cars(p v 1). Asin the case of livestock, the ramp of the vehicle needs to be lowered
prior to loading/unloading, and the it should be raised immediately afterwards.

Loading/unloading vehicles of type airplane requires a conveyor ramp (denoted by r)
to be connected and the door of the vehicle to be open prior to the operation, and
the ramp to be disconnected and the door to be closed afterwards. These activities are
denoted by the actions attach-conveyor-ramp(v r 1), detach-conveyor-ramp(v r 1),
open-door(v),close-door(v),
load-package(p v 1), and load-package(p v 1).

A vehicle v can be moved from its current location ol to another location dl if there
is a route r of proper type between ol and dl, using the action move-vehicle(v ol dl
r). Vehicles of type traincar do not move by themselves but are pulled by vehicles of type
train instead. Thus a traincar goes wherever the train it is attached to goes. The actions to
attach/detach traincars to trains are attach-train-car(t ¢ 1), and detach-train-car(t
c 1).

In addition to those actions described above, UM Translog makes use of a dummy action
called do-nothing which has no preconditions or effects.

7.2.1.8 Tasks

Figure 7.3 presents the organization of tasks and their subtasks, which are discussed below.

AT-PACKAGE(package destination) This task requires transporting the
package to its destination.

TRANSPORT (package origin destination) Provided that the package is currently in the
origin location, this task involves picking up the package, carrying it to its destination, and
delivering it.

PICKUP(package) This task involves collecting fees, handling insurance and hazardous
material permits. Insurance is required only for valuable packages, and permits are required

100

at-package(?p ?d)

transport(?p 70 ?d)

pickup(?p ?0) carry(?p 70 ?d) deliver(?p 7d)
carry-between- carry-direct(?p 70 ?d) carry-via-
tcenters(?p 70 7d) hub(?p 70 ?d)
load- move- unload-
vehicle(?p ?v ?0) vehicle(?v 70 ?7d) vehicle(?p ?v 7d)

pickup(?p ?0)

handle-insurance(?p) handle-hazardous(?p) collect-fees(?p)

Figure 7.3: Top-level Task Hierarchy

only for hazardous packages.

CARRY (package origin destination) This is the task of actually moving the package from
its origin to its destination. This involves choosing a suitable path (a sequence of routes from
the origin to the destination), and moving the package along that path via a series of carry-
direct tasks. The diagram in Figure 7.4 shows the possible paths to transport a package.
The origin can be either clocationl (a customer location) or tcenter! (a transport center),
and similarly the destination can be either clocation? or tcenter2. As seen in the diagram,
a package can be carried directly if there is a direct route available, otherwise it has to go
through one or two transportation centers and possibly a hb. Transport within a city is
termed “local” transport. Transport via a direct route (i.e., not involving a hub) is termed
“direct” transport. Transport via a hub is termed “indirect” transport.

CARRY-DIRECT (package origin destination) This task involves picking a route connect-
ing the origin and the destination, and choosing a vehicle that is compatible both with the
package, and the route. Only those vehicles that are at the origin or one step away from
the origin can be dispatched. The task is accomplished by moving that vehicle to the ori-
gin, loading the package into the vehicle, moving the vehicle to the destination, and finally
unloading the package.

101

© B XU Memtrh

— - R i ahaatiadinba % .

L vy e g e g

—e_ LN e

j—

hub
tcentert -------- » tcenter2
clocation1 ------ » clocation?2

Figure 7.4: Transport Paths

AT-VEHICLE(vehicle destination) If the vehicle is of type truck, plane, or train, it is
moved to the destination, provided there is a direct route available from the current location.
The type of the route must be suitable for the type of vehicle. If the vehicle is a train-car, a
train must be moved to the location of the train-car, the train-car must be attached to the
train, the train must be moved to the destination, and then finally, the train-car must be
detached. Naturally, when a vehicle moves, so does the packages it contains.

LOAD/UNLOAD(package vehicle location)

Loading and unloading involve issuing a sequence of actions to put the package into and
out of the vehicle. The actions to be executed depend on the type of package and vehicle.
In particular, valuable packages can be transported only with armored vehicles, and they
require guards posted outside while loading/unloading and guards inside, while in transit.
Similarly, vehicles carrying hazardous packages need warning signs, which are removed after
the package is unloaded and the vehicle is decontaminated.

7.2.2 A Sample Problem in UM Translog Domain

The following illustrates the specification of an actual domain problem to UMCP. This
sample problem involves delivering a regular, valuable package pkg-1 to a customer location
cityl-cl2. Initially the package is at cityl-cll. Full description of the problem appears in
the appendix.

The initial state for UM Translog problems are usually rather large, because in addition
to the problem specification, it contains domain information regarding the compatibility of
various package types, vehicle types, and route types. It also contains all the geographic
information regarding the cities, routes, transportation centers and customer locations.

Here is how UMCP solves this problem:

USER(13):

USER(14): (search-for-plan in-tn)

102

N:
AT-PACKAGE
(PKG-1 CITY1l-CL2)

Name: tn

Formula: T

Variables: NIL

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints: NIL

Refinement Strategy: (EXPAND N)

This is the input task network. Since the constraint formula and all the auxiliary constraints
are empty, UMCP chooses to expand that task.

N.

éo~nothing
()

Name: tn-1

Formula: (BEFORE (AT-PACKAGE PKG-1 CITY1-CL2) (FIRST N))

Variables: NIL

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints: NIL

Refinement Strategy: (refine-constraint ((BEFORE (AT-PACKAGE PKG-1 CITY1-CL2)
(FIRST N))))

One way of accomplishing AT-PACKAGE(PKG-1 CITY1-CL-2) is not to do anything, provided
that it is already there, as seen in the constraint formula. This node gets pruned when this constraint
is enforced, since the package is in a different location.

N1148:]

TRANSPORT

(PKG-1 ?0RIGIN147 CITY1-CL2)

Name: tn-2

Formula: (AND (INITIALLY (AT-PACKAGE PKG-1 7ORIGIN147)) (AFTER (AT-
PACKAGE PKG-1 CITY1-CL2) (LAST N1148)))

Variables: ((?ORIGIN147 all))

Disjoint Variables: NIL

Postponed Orderings: NI,

Postponed State Constraints: NIL

Refinement Strategy: (refine-constraint ((INITIALLY (AT-PACKAGE PKG-1 7ORI-
GIN147)) (AFTER (AT-PACKAGE PKG-1 CITY1-CL2) (LAST N1148))))

Thus UMCRP tries to transport the package, which involves finding out its original location,
denoted by the variable YORIGIN147. UMCP also needs to ensure the package will reach its desti-
nation in the end, as specified in the constraint formula.

N1148:
TRANSPORT

(PKG-1 CITY1-CL1l CITY1-CL2)

Name: tn-2-1

103

Sabrd s e W

PRt

P e et

Formula: T

Variables: ((TORIGIN147 CITY1-CL1))

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints: ((AT-PACKAGE (AFTER (AT-PACKAGE PKG-1 CITY]1-
CL2) (LAST N1148))))

Refinement Strategy: (EXPAND N1148)

UMCP has determined that the origin of the package is CITY1-CL1, as can be seen from the
“variables” list. It has promised to have the package at its destination in the end, as can be seen
in the postponed state constraints. It suggests to expand the transport task next.

[N3151:] [N2150:] [N1149:]
deliver CARRY PICKUP
(PKG-1) (PKG-1 CITY1-CL1 CITY1-CL2) (PKG-1)

Name: tn-2-1-1

Formula: (AND (ORD (LAST N1149) (FIRST N2150)) (ORD (LAST N2150) (FIRST
N3151)))

Variables: ((TORIGIN147 CITY1-CL1))

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints: ((AT-PACKAGE (AFTER (AT-PACKAGE PKG-1 CITY1-
CL2) (LAST N3151 N2150 N1149))))

Refinement Strategy: (refine-constraint ((ORD (LAST N2150) (FIRST N3151)) (ORD
(LAST N1149) (FIRST N2150))))

N1149:

PICKUP
(PKG-1)

N2150:
CARRY
(PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
deliver
(PKG-1)

Name: tn-2-1-1-1

Formula: T

Variables: ((ORIGIN147 CITY1-CL1))

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints: ((AT-PACKAGE (BEFORE (AT-PACKAGE PKG-1
CITY1-CL2) (LAST N3151))))
Refinement Strategy: (EXPAND N2150)

104

Processing the constraints selected at the previous iteration has caused UMCP to order the

tasks.
N1149:
PICKUP
(PKG-1)

Two iterations later...
N4186: N3185; N2184: N1183:

UNLOAD-TOP AT-VEHICLE LOAD-TOP AT-VEHICLE

{PKG-1 ?VEHICLE176 CITY1-CL2} (?VEHICLE176 CITY1-CL2) (PKG-1 ?VEHICLEl76 CITY1-CL1) (?VEHICLE1l76 CITY1-CL1}

N3151:
delaiver
(PKG-1)

Name: tn-2-1-1-1-1-1
Formula:
(AND (ORD (LAST N1183) (FIRST N2184)) (ORD (LAST N2184) (FIRST N3185))
(ORD (LAST N3185) (FIRST N4186))
(BEFORE (AT-PACKAGE PKG-1 CITY1-CL1) (FIRST N2184))
(INITTIALLY (TYPE PKG-1 TPTYPEL7T))
(BETWEEN (AT-VEHICLE ?VEHICLE176 CITY1-CL1) (LAST N1183) (FIRST N2184))
(BETWEEN (AT-PACKAGE PKG-1 ?VEHICLE176) (LAST N2184) (FIRST N4186))
(INITTALLY (AVAILABLE ?VEHICLE176))
(INITIALLY (TYPE ?VEHICLE176 ?VITYPE178))
(INITIALLY (PV-COMPATIBLE ?PTYPE177 *VTYPE178))
(OR (AND (INITTALLY (TYPE ?VEHICLE176 TRUCK))
(INITIALLY (IN-CITY CITY1-CL1 ?0OCITY179))
(INITIALLY (IN-CITY CITY1-CL2 ?OCITY179)))
(AND (INITIALLY (TYPE ?VEHICLE176 TRUCK))
(INITIALLY (IN-CITY CITY1-CL1 ?OCITY179))
(INITTALLY (IN-CITY CITY1-CL2 ?DCITY180))
(INITTALLY (CONNECTS ?ROUTE182 ROAD-ROUTE ?0CITY179 ?DCITY180))
(INITIALLY (AVAILABLE 7ROUTEL182)))
(AND (INITIALLY (-TYPE ?VEHICLE176 TRUCK))
(INITIALLY (CONNECTS ?ROUTE182 ?RTYPE181 CITY1-CL1 CITY1-CL2))
(INITTALLY (RV-COMPATIBLE ?RTYPE181 ?VHTYPE))
(INITTALLY (TYPE ?VEHICLE176 7VHTYPE))
(INITTALLY (AVAILABLE ?ROUTE182)))))
Variables: ((?VEHICLEL76 all) (?PTYPE177 all) (?VTYPEL78 all) (?TOCITY179 all) (?DC-
ITY180 all) (?RTYPE181 all) (?ROUTE182 all) (?ORIGIN147 CITY1-CL1))
Disjoint Variables: NIL
Postponed Orderings: NIL
Postponed State Constraints: ((AT-PACKAGE (BEFORE (AT-PACKAGE PKG-1
CITY1-CL2) (LAST N3151))))
Refinement Strategy: (refine-constraint
((OINITIALLY (PV-COMPATIBLE ?PTYPE177 ?VTYPE178))
(INITIALLY (TYPE ?VEHICLE176 7VIYPE178))
(INITTALLY (AVAILABLE ?VEHICLE176))
(INITTALLY (TYPE PKG-1 ?PTYPEL77))

105

b AL e Pl BT AN M e

v M e gremee

o et .

(ORD (LAST N3185) (FIRST N4186))
(ORD (LAST N2184) (FIRST N3185))
(ORD (LAST N1183) (FIRST N2184))
(BEFORE (AT-PACKAGE PKG-1 CITY1-CL1) (FIRST N2184))
(BETWEEN (AT-PACKAGE PKG-1 ?VEHICLE176) (LAST N2184) (FIRST N4186))
(BETWEEN (AT-VEHICLE ?VEHICLE176 CITY1-CL1) (LAST N1183) (FIRST N2184))))

At this stage the task networks start to get quite big. UMCP picks all the unit clauses in the
constraint formula for refinement.

N1149:

PICKUP
(PKG-1)

N1183:
AT-VEHICLE

{(TRUCK-1 CITY1-CL1)

N2184:
LOAD-TOP
(PKG-1 TRUCK-1 CITY1-CL1)

N3185:
AT-VEHICLE

{TRUCK-1 CITY1-CL2)

N4186:
UNLOAD-TOP
(PKG-1 TRUCK-1 CITY1-CL2)

Name: tn-2-1-1-1-1-1-1

Formula: (OR (AND (INITIALLY (IN-CITY CITY1-CL1 ?70CITY179))
(INITIALLY (IN-CITY CITY1-CL2 ?0CITY179)))
(AND (INITIALLY (IN-CITY CITY1-CL1 70CITY179))
(INITTALLY (IN-CITY CITY1-CL2 ?DCITY180))
(INITIALLY (CONNECTS ?ROUTE182 ROAD-ROUTE 70CITY179 ?DCITY180))
(INITIALLY (AVAILABLE 7ROUTE182))))

Variables: ((7ORIGIN147 CITY1-CL1) (?ROUTE182 all) (?RTYPE181 all) (?DCITY180
all) (T0CITY179 all) (?VTYPEL78 ARMORED) (?PTYPE177 VALUABLE) (?VEHICLE176

106

TRUCK-1))

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints: ((AT-VEHICLE (AFTER (AT-VEHICLE ?VEHICLE176
CITY1-CL1) (LAST N1183)))

(AT-PACKAGE (BEFORE (AT-PACKAGE PKG-1 CITY1-CL2) (LAST N3151))
(AFTER (AT-PACKAGE PKG-1 ?VEHICLE176) (LAST N2184))))

Refinement Strategy: (refine-constraint ((INITIALLY (IN-CITY CITY1-CL1 ?0C-
ITY179))) (NOT (INITIALLY (IN-CITY CITY1-CL1 70CITY179)))))

UMCP has processed the constraints selected in the previous iteration, and determined the values
of some of the variables. Since the constraint formula contains a disjunction, UMCP has picked an
atomic constraint and its negation to work on further in separate branches.

Many iterations later...

107

et el W

N1306: N1310: N3308:
collect-fees collect-insurance HANDLE-HAZARDOUS
(PKG-1) (PKG-1) (PKG-1)
N1203:

move-vehicle

(TRUCK-1 CITY1-CL2 CITY1-CLl1 LOCAL-ROAD-ROUTE}

N232:
do-nothing
()

N305:
post-guard-outside
(TRUCK-1)

N1293:

open-door
(TRUCK-1)

N2262:
load-package
(PKG-1 TRUCK-1 CITY1-CLl)

N1291:
close-door
(TRUCK-1)

N295:
post-guard-inside
(TRUCK-1)

N1220:
move-vehicle
{TRUCK-1 CITY1-CLl CITY1-CL2 LOCAL-ROAD-ROUTE}

N304:
post-guard-outside
(TRUCK-1)

N1294:

open-door
(TRUCK-1)

N2289:
unload-package
{PKG-1 TRUCK-1 CITY1-CL2)

N1292:

close-door
(TRUCK-1)
Sk

—
N234:

do-nothing
()

108

Name: tn-2-1-1-1-1-1-1-1-2-1-2-2-1-2-1-1-1-1-2-1-2-1-2-1-2-1-1-1-1-1-2-2-2-2-2-2-2-1-1

Formula: (INITIALLY (TYPE PKG-1 VALUABLE))

Variables: ((?ORIGIN147 CITY1-CL1) (ROUTE182 all) (?RTYPE181 all) (?DCITY180
all) (70CITY179 CITY1) (?VTYPE178 ARMORED) (?PTYPE177 VALUABLE) (?VEHICLE176
TRUCK-1) (?DCITY202 all) (70CITY201 CITY1) (?ORIGIN200 CITY1-CL2) (?R199 LOCAL-
ROAD-ROUTE) (?DCITY219 all) (?0CITY218 CITY1) (?ORIGIN217 CITY1-CL1) (?R216
LOCAL-ROAD-ROUTE))

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints:
((AT-VEHICLE (AFTER (AT-VEHICLE TRUCK-1 CITY1-CL1) (LAST N1293))) (DOOR-
OPEN (AFTER (DOOR-OPEN TRUCK-1) (LAST N1294)) (AFTER (DOOR-OPEN TRUCK-1)
(LAST N1293))) (AT-PACKAGE (AFTER (AT-PACKAGE PKG-1 CITY1-CL1) (LAST N1293))
(AFTER (AT-PACKAGE PKG-1 ?VEHICLE176) (LAST N295))))

Refinement Strategy: (refine-constraint ((INITIALLY (TYPE PKG-1 VALUABLE))))

109

N1306: N1310: N3308:
collect-fees collect-insurance HANDLE-HAZARDOUS
(PKG-1) (PKG-1) (PKG-1)
N1203:

move-vehicle

{(TRUCK-1 CITY1-CL2 CITY1~CLl1l LOCAL-ROAD-ROUTE)

N232:
do-nothing
()

N305:
post-guard-outside
(TRUCK-1)

N2262:
load-package
(PKG-1 TRUCK-1 CITY1-CLl)

N1291:
close-door
{TRUCK-1)

N295:
post-guard-inside
{TRUCK-1)

N1220:
move-vehicle
(TRUCK-1 CITY1-CL1l CITY1-CL2 LOCAL-ROAD-ROUTE}

N304:

post-guard-outside
(TRUCK-1)

(N2289:
unload-package
| (PrG-1 TRUCK-1 crTvi-cr2)

N1292:

close-door
(TRUCK-1)

—
N234:

do-nothing
()

N3151:
deliver
{PKG-1)

110

Name: tn-2-1-1-1-1-1-1-1-2-1-2-2-1-2-1-1-1-1-2-1-2-1-2-1-2-1-1-1-1-1-2-2-2-2-2-2-2-1-1-1

Formula: T

Variables: ((?ORIGIN147 CITY1-CL1) (?ROUTE182 «ll) (?RTYPE181 all) (?DCITY180
all) (T0CITY179 CITY1) (?VTYPE178 ARMORED) (?PTYPE177 VALUABLE) (?VEHICLE176
TRUCK-1) (?DCITY202 all) (?0CITY201 CITY1) (?ORIGIN200 CITY1-CL2) (?R199 LOCAL-
ROAD-ROUTE) (?DCITY219 all) (?0CITY218 CITY1) (?ORIGIN217 CITY1-CL1) (?R216
LOCAL-ROAD-ROUTE))

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints: NIL

Refinement Strategy: (EXPAND N3308)

111

N1306:

collect-fees
{PKG-1)

N1312:
obtain-pe
{PKG-1)

o

N1310:
collect-insurance
{PKG-1)

N1203:
move-vehicle

(TRUCK-1 CITY1-CL2 CITY1-CLl LOCAL-ROAD-ROUTE)

N232:

do-nothing

(

N305:

post-guard-outside

(TRUCK-1)

N1293:

open-door
(TRUCK-1)

N2262:
load-package

(PKG-1 TRUCK-1 CITY1-CL1)

N1291:

close-door
{(TRUCK-1)

N295:

post-guard-inside

(TRUCK-1

)

N1220:
move-vehicle

(TRUCK-1 CITY1-CLl CITY1-CL2 LOCAL-ROAD-ROUTE)

/

N304:
post-guard-outside
{TRUCK-1)

N1294:

open-door
{TRUCK-1}

[n2289:
unload-package

L {PKG-1 TRUCK-1 CITY1-CL2)

N1292:

close-door

{TRUCK-1)
N

—

N234:

do-nothing
)

{PKG-1)

112

Name: tn-2-1-1-1-1-1-1-1-2-1-2-2-1-2-1-1-1-1-2-1-2-1-2-1-2-1-1-1-1-1-2-2-2-2-2-2-2-1-1-1-1

Formula: (INITIALLY (TYPE PKG-1 HAZARDOUS) N1312)

Variables: ((7ORIGIN147 CITY1-CL1) (PROUTE182 all) (RTYPE181 all) (?DCITY180
all) (T0CITY179 CITY1) (?VTYPE178 ARMORED) (?PTYPE177 VALUABLE) (?VEHICLE176
TRUCK-1) (?DCITY202 all) (70CITY201 CITY1) (?ORIGIN200 CITY1-CL2) (?R199 LOCAL-
ROAD-ROUTE) (?DCITY219 all) (?0CITY218 CITY1) (?ORIGIN217 CITY1-CL1) (?R216
LOCAL-ROAD-ROUTE))

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints: NIL

Refinement Strategy: (refine-constraint ((INITIALLY (TYPE PKG-1 HAZARDOUS)
N1312)))

113

N1306: N1311: N1310:
collect-fees do-nothing collect-insurance

(PKG-1} 0 (PKG-~1)
N1203:

move-vehicle

(TRUCK-1 CITY1-CL2 CITY1-CLl LOCAL-ROAD-ROUTE)

N232:
do-nothing
(

N305:
post-guard-outside
(TRUCK-1)

N1293:
open-dooyr
{TRUCK-1)

N2262:
load-package
(PKG-1 TRUCK-1 CITY1-CL1)

(TRUCK-1)

N295:
post-guard-inside
(TRUCK-1)

N1220:
move-vehicle
(TRUCK-1 CITY1-CL1l CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
post-guard-outside
{TRUCK-1)

N1294:
open-door
{TRUCK-1}

w2289
unload-package
LJPKG-I TRUCK-1 CITY1-CL2)

N1292:
close-door
(TRUCK-1)
—

N234:
do-nothing
{

N3151:
deliver
(PKG-1)

114

Name: tn-2-1-1-1-1-1-1-1-2-1-2-2-1-2-1-1-1-1-2-1-2-1-2-1-2-1-1-1-1-1-2-2-2-2-2-2-2-1-1-1-2

Formula: (INITIALLY (-TYPE PKG-1 HAZARDOUS))

Variables: ((?ORIGIN147 CITY1-CL1) (?ROUTE182 all) (?RTYPEI181 all) (?DCITY180
all) (TOCITY179 CITY1) (?VTYPE178 ARMORED) (?PTYPE177 VALUABLE) (?VEHICLE176
TRUCK-1) (?DCITY202 all) (70CITY201 CITY1) (?ORIGIN200 CITY1-CL2) (?R199 LOCAL-
ROAD-ROUTE) (?DCITY219 all) (70CITY218 CITY1 all) (?ORIGIN217 CITY1-CL1) (?R216
LOCAL-ROAD-ROUTE))

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints: NIL

Refinement Strategy: (refine-constraint ((INITIALLY (-TYPE PKG-1 HAZARDOUS))))

Here is one solution

115

N1159:

collect-fees
{PKG-1)

N1164:
do-nothing
)

N1163:
collect-insurance
(PKG-1)

N156:
move-vehicle

(TRUCK-1 CITY1-CL2 CITY1-CLl1 LOCAL-ROAD-ROUTE)

N85:
do-nothing
()

N158

post-guard-outside

(TRUCK-1}

N1146:
open-door
(TRUCK-1)

N2115:

load-package

{PKG-1

TRUCK~1 CITY1-CL1)

(TRUCK-1)

N148:
post-guard-inside
{TRUCK-1)

N173:
move-vehicle

(TRUCK-1 CITY1-CL1l CITY1-CL2 LOCAL-ROAD-ROUTE)

/

N157:

post-guard-outside

(TRUCK-1)

(TRUCK-1)

~-door

2142
unload-package

L (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
close-door
(TRUCK-1)
e ——

pu—

N87:

do-nothing
)

{PKG-1)

116

Name: tn-2-1-1-1-1-1-1-1-2-1-2-2-1-2-1-1-1-1-2-1-2-1-2-1-2-1-1-1-1-1-2-2-2-2-2-2-2-1-1-1-2-1

Formula: T

Variables: ((?ORIGIN0 CITY1-CL1) (ROUTE35 ALL) (?RTYPE34 ALL) (?DC-
ITY33 ALL) (TOCITY32 CITY1) (?VTYPE31 ARMORED) (?PTYPE30 VALUABLE) (?VE-
HICLE29 TRUCK-1) (?DCITY55 ALL) (?0CITY54 CITY1) (?ORIGIN53 CITY1-CL2) (7R52
LOCAL-ROAD-ROUTE) (?DCITY72 ALL) (?0CITY71 CITY1) (TORIGIN70 CITY1-CL1) (?R69
LOCAL-ROAD-ROUTE))

Disjoint Variables: NIIL

Postponed Orderings: NIL

Postponed State Constraints: NIL

Search for more (y/n)? n

USER(15):

In solving this problem, UMCP has generated 85 nodes, and expanded 63 nodes. The
distance of the solution to the input node is 42 refinements. As can be seen from the name
of the solution task network, UMCP deviated from the solution path 17 times, but the
constraint refinement strategies detected dead-ends in very few steps, with an avarage of

(63 — 42)/17 = 1.24 steps.

7.3 Case Study 2: CNF Domain

CNF domain is an artificial domain, which can be easily encoded in the HTN language, but
impossible to represent in the state-based planning framework.

This domain is designed so that the rules for any two contextfree grammars can be
represented in the initial state, and the plans correspond to strings that are common to the
langugages generated by the corresponding grammars.

This is the domain that was used in the proof of Theorem 5 to demonstrate that there
exists planning domains that can be encoded in the HTN language for which planning is
semidecidable. A detailed explanation of this domain is presented in Appendix A, in the
proof of Theorem 5.

7.3.1 Domain Specification for the CNF Domain

(clear-domain)

(constants al a2 bl b2 S1 S2 Q1 Q2 dummy)

Si and Qi are the nonterminal grammar symbols ai and bi are the terminal grammar symbols.
dummy corresponds to the empty string.

(variables v v1 v2)

(predicates Pa Pb R turn)

Proposition Pa and Pb are used to represent the terminal symbol contributed by the first gram-
mar, to enforce the second grammar to contribute the same symbol. Proposition turn is used to
make sure each grammar contributes a terminal symbol alternatingly. Predicate R is used to encode
grammar rules.

(primitive-tasks Fal Fa2 Fbl Fb2)

117

(compound-tasks G)

G has arity 1, its argument is a grammar symbol. If the argument ,is a terminal symbol, then
it expands to the corresponding primitive task. If it is a nonterminal symbol, then it can expand
to any sequence of primitive tasks, which correspond to the strings that can be derived from that
nonterminal symbol.

(operator Fal()

:pre ((“turn))

:post ((Pa)(turn))
I\
(operator Fa2()\\

:pre ((Pa))\\

:post (("Pa) (“turn))
N\

(operator Fbi()
:pre ((“turn))
:post ((Pb) (turn))

)
(operator Fb2()

:pre ((Pb))

:post (("Pb) (“turn))
)

(declare-method G(v)
rexpansion((n Fal))
:formula (veq v al)

)

(declare-method G(v)
:expansion((n Fa2))
:formula (veq v a2)

)

(declare-method G(v)
:expansion((n Fbil))
:formula (veq v bil)

)

(declare-method G(v)
:expansion((n Fb2))
:formula (veq v b2)

)

(declare-method G(v)
rexpansion((n do-nothing))

118

:formula (veq v dummy)

)

(declare-method G(v)
:expansion((n1 G v1)(n2 G v2))
:formula (and

(ord ni n2)

(initially (R v vi v2))))

7.3.2 A Sample Problem

Let us define two context-free languages, and ask UMCP to find a string that is common to both.
The first language is {a"b"|n > 0}. The corresponding grammar is

S — €
S - a@
Q — S5b

The second language is {(ab)"|n > 1}. The corresponding grammar is

S — ab
S - a@Q
Q — bS

Below is the encoding of these two grammars in the initial state of the sample problem.

(initially-true
;grammar 1
(R S1 dummy dummy)
(Rstal Q1)
(RQ1S1 bt)
;grammar 2
(RS2 a2 b2)
(R 52 a2 2
(R Q2 b2 s2)
)

(setq g-tn (create-tn
(after (“turn) (last nil stepl))
(n1 G S1)(stepl G S2))
)

The input task network contains the tasks corresponding to the start symbols of the two context-
free languages, and the constraint in the constraint formula ensures that the string generated by
S1 and S2 has the same length.

119

7.3.3 Solving the Sample Problem with UMCP

The CNF domain, in spite of its simplicity, is much harder to plan than the UM Translog domain.
UMCP finds the solution string ab only after 113 node expansions.

USER(13):
USER(14): (search-for-plan g-tn)

This is the initial problem:

STEP1: | |N1:
G
(s1)

Name: tn

Formula: (AFTER (TURN) (LAST N1 STEP1))

Variables: NIL

Disjoint Variables: NIL

Postponed Orderings: NIL

Postponed State Constraints: NIL

Refinement Strategy: (9 ((AFTER (TURN) (LAST N1 STEP1))))
Here is the solution:

do—ﬁothing
()

N325:
do-nothing
()

N290:

]
__J
N27%TT

fb2
0
Name: tn-1-6-2-6-1-6-1-4-1-3-1-2-1-6-1-1-1-5-1-5-1
Formula: T
Variables: ((V2303 DUMMY) (V1304 DUMMY) (V1167 A1) (V2166 Q1) (V1254 A2) (V2253
B2) (V1264 S1) (V2263 B1))

120

Disjoint Variables: NIL
Postponed Orderings: NIL
Postponed State Constraints: NIL

121

Chapter 8

Conclusion

8.1 Research Contributions

Planning has a wide range of applications in areas such as robotics, manufacturing, space
missions, and military force deployment. The size and complexity of these applications are
rapidly growing beyond the capabilities of the people responsible for planning. There is great
economic pressure to automate this process in order to reduce the cost of planning effort,
and to improve the quality of produced plans.

Al planning research has not yet met these challenges. Part of the reason, in my opinion,
has been the gap between theoretical work and application-oriented work on planning. Lack
of interaction between planning theory and practice has impeded progress in both.

A significant portion of the application-oriented work in planning has been based on
HTN techniques. The fundamental contribution of this dissertation has been to provide a
theoretical framework for HTN planning. The HTN framework consists of a formal HTN
language and the associated syntax and semantics. This framework facilitates learning about
HTN planning, writing correct HTN problem specifications, developing correct HTN plan-
ning algorithms, and also enables further analytical studies on HTN planning. Each of these
points will be explained in subsequent paragraphs.

The HTN framework provides a precise, consistent and coherent meaning to each HTN
construct. The HTN paradigm comes with many powerful concepts and constructs such
as compound tasks to model complex planning jobs, methods as a declarative construct
to define tasks, filter conditions to weed out undesirable solutions and prune the search
space. Previously, the meaning of these constructs were embedded in the implementation
details of HTN planning systems, and their meanings varied depending on the planning
system. For example, task expansions had the issue of what to do with high-level effects and
constraints associated with the expanded task. Planning systems usually made an arbitrary
decision to designate one of the tasks in the expansion to carry over the constraints from
the expanded task. The HTN framework addresses this issue by introducing constructs that
make it possible to refer to the beginning and end of a single task or a set of tasks. Thus the
constraints on an expanded task could be passed over to the set of tasks in the expansion.

122

HTN constructs are powerful, but also complex. It is rather difficult to learn those
constructs by examining the source code for implemented planning systems, or even their
user manuals. The HTN framework provides a mathematical model, which can be taught
independent of the implementation features of complex planning systems. Although the HTN
constructs are complex, the concepts are quite intuitive. The preciseness, consistency and
coherency of the framework makes learning easier. The UMCP planning system complements
the learning process by showing the HTN planning process in action. It (optionally) shows
what the planner does at every step, so that the HTN constructs can be better understood.
The HTN framework has already made its way into an acclaimed Al text book, thanks to
Russell and Norvig [57].

Writing correct domain specifications is a very challenging job, particularly for large
applications. It can be even more difficult, if there are doubts about how the domain spec-
ifications are going to be interpreted by the planner. When the produced solutions are
incorrect, it may take considerable effort to find out whether there is a mistake in the do-
main specifications, or a bug in the planner code. For example, developing specifications for
the UM Translog Domain [4] involved several months of debugging both the NONLIN plan-
ning system, and the domain specification. Developing specifications for the same domain
in the HT'N language took little effort, even considering the experience from the same job on
NONLIN. The HTN framework helps writing domain specifications by providing a precise
model, where the entities in an application domain can be cast into.

The operational semantics in the HTN framework facilitates developing correct algo-
rithms for planning systems, by providing a specification for the set of solutions to HTN
problems. It also gives a criterion for evaluating HTN algorithms for soundness and com-
pleteness. The development of the UMCP planning system has been guided by the HTN
framework, and thus it could be made sound and complete.

Analytical tools can be a big asset in studying and improving HTN planning systems.
The HTN framework has made it possible to use such tools to get a deeper understanding
of HTN planning. The complexity and expressivity analyses presented in this dissertation
serve to this purpose.

This dissertation contains a complexity analysis of HT'N planning, which brings a deep
understanding of the factors that contribute to the computational cost of solving HTN
problems. This analysis reveals that handling interactions among subtasks, and particularly
those interactions resulting from state constraints are the most complex aspect of solving
HTN problems. Limiting those interactions — for instance by restricting all task networks
to be totally ordered — significantly reduces the complexity. The complexity of STRIPS-
style planning is mostly influenced by the size and structure of the state space. The HTN
complexity analysis shows that the structure of compound tasks is a much more important
factor compared to the state space, in the complexity of solving HT'N problems. Particularly
those tasks which can be accomplished in infinitely many ways (i.e., recursive tasks, whose
expansions may contain themselves) are difficult to deal with.

The definitions developed to compare the expressivity of planning languages have been
used to investigate the similarities and differences between state-based planning and HTN

123

planning. This study enhances our understanding of both paradigms, and facilitates transfer
of results from one paradigm to the other. It reveals that the relationship between state-
based planning and HTN planning is akin to the relationship between regular languages
and context-free languages. The transformations from the STRIPS language to the HTN
language have been used to prove some of the complexity results on HTN planning.

The definition of solutions to HTN planning problems, and the insights gained from the
analyses results have been used to develop a provably correct HTN algorithm, which have
been implemented in the UMCP planning system. The UMCP planning system serves as a
testbed for conducting experiments to investigate new ideas on HTN planning. It can also
be a valuable education tool for teaching HTN planning.

8.2 Future Research Directions

The current state of the art in planning research has not yet reached a level to accommodate
the demands of the planning applications. Developing fast, reliable planning systems that
work well in planning applications is still a great challenge for planning researchers. HTN
planning paradigm is a significant improvement over state-based planning. Nonetheless, it
needs to be extended and improved in several ways to meet the challenges from planning
applications, as outlined in the following sections.

8.2.1 Improving Performance of HTN Planning

HTN planning constructs can represent rather complex planning problems. Solving those
problems in a reasonable amount of time is very difficult. The UMCP planning system
meets part of this challenge by providing ways domain-specific information can be utilized
to improve its performance. Two of these ways are user-specific critics and high-level search
heuristics. There are several other ways that need to be explored.

The choice of commitment strategy is very critical in determining the structure of the
search space and thus the overall performance of planning systems. A planner making
decisions at the right order can be tremendously more efficient than a planner making these
decisions in an arbitrary order. There is already a significant body of work in state-based
planning framework on abstraction hierarchies. This work can be extended to the HTN
framework, and it can provide good ways of deciding which task to expand first. Refinement
strategies in HTN planning are numerous: a planner can either pick a task to expand, a list
of constraints to enforce, or a domain-specific critic to call. There are many ways of choosing
a refinement strategy at each iteration. Deciding the order to expand tasks is a small part
of it. There is a clear need for devising new commitment strategies and experimentation.
Most probably, there will not be a commitment strategy that works well in all planning
problems. Controlled experiments with commitment strategies may serve to identify key
features of planning problems, to help select the most efficient commitment strategy for a
given problem.

124

The structure of HTN planning as refinement search is very suitable for parallel and
distributed implementations. Such implementations can enable us to solve larger planning
problems.

HTN planning can benefit from case-based planning techniques to guide the high-level
search, to assess which branches in the search space are most likely to lead to solutions. It
may also be possible to develop case-based reasoning techniques to act as domain-specific
critics. There has been some recent work on sound and complete plan reuse in the state-
based planning framework. Ways of accomplishing the same on HTN planning can be very
helpful in providing speed up.

8.2.2 Expanding Capabilities of HTN Planning

In order to keep the basic HTN framework simple and easy to understand, context-dependent
effects and quantified conditions are not allowed in the action representation. Furthermore,
actions with durations and probabilistic effects are not addressed in this dissertation. Ex-
tending the representation for primitive tasks to cover these would be very useful.

Planning systems situated in real-world applications need to interact with a number of
other software systems. For example, a planning system may need to access a flight database
for schedules, or a geometric reasoner to analyze mechanical parts in a design. There is
already a considerable body of work on database community for integrating heterogeneous
information sources. Providing the same capability for planning systems would be extremely
valuable.

In large scale planning applications, the planning domain may be so complicated that it
may be infeasible to implement a single centralized planning system with expertise in every
aspect of the problem. A distributed, agent-based approach may be more appropriate. Such
a system would be composed of a number of agents, each agent expert in a small part of
the problem, and controlling a small subset of the resources. Resolving interactions among
agents and facilitating communication among agents is a critical part of such a system. The
HTN language can be developed further to be the communication medium among agents,
and the HTN constraint-handling techniques may be developed further to resolve conflicts
among agents.

Classical Al planning systems usually work off-line. This is not suitable for dynamic
domains with uncertainty, which require planning continuously and responding to unex-
pected situations. In such domains new tasks arrive continuously, while some tasks are being
planned, and yet some others are being executed. Carrying the HTN planning techniques
to an agent-based platform may also facilitate interleaving planning and execution.

125

ARG M0 ™ . s e s IR s P s nle At

Appendix A

Proofs of Theorems

Theorem 4 PLAN EXISTENCE is strictly semi-decidable, even if P is restricted to be
propositional, to have at most two tasks in any task network, and to have only totally
ordered methods.

Proof.

Membership: We can restate PLAN EXISTENCE as 3k sol(d, I, D) # 0. Thus the problem
is in 31,

Hardness: Given two context-free grammars G4 and G,, whether L(G1) N L(G,) is non-
empty is an undecidable problem[32]. We define a reduction from this problem to PLAN
EXISTENCE as follows:

Without loss of generality, assume both G; and G, have the same binary alphabet ¥, and
they are in Chomsky normal form (at most two symbols at the right hand side of production
rules). Refer to [32] to see how any context-free grammar can be converted into this form.
Similarly, assume that the sets of non terminals I'; and I'; for each grammar are disjoint; i.e.
[y NIy = 0. We also assume neither language contains the empty string. It is easy to check
whether a CFG derives empty string. If both languages contain the empty string, then their
intersection is non-empty; we can simply return a simple HTN problem that has a solution.
If one of the languages does not contain the empty string, it does not affect the intersection
to remove the empty string from the other language.

It is quite easy to see that using methods we can simulate context-free grammars: Prim-
itive task symbols mimic the terminals, compound task symbols mimic the non-terminals,
and methods mimic the production rules. The difficulty is in making sure there is a string
produced by both Gy and G,. We achieve this with the help of the constraints in methods.

For each terminal a € X, we introduce a proposition p,. We also need another proposition
called turn.

Let the initial state I = {turn}.

126

For each terminal a € X, we introduce two primitive tasks (one for each grammar) f,,
and fgy such that fq; has the preconditions {turn} and effects {p,,—turn}; f,» has the
preconditions {p,, -turn} and effects {—p,,turn}.

Intuitively, f,; produces p,, and f;, consumes p,. The proposition turn ensures that we
use these primitive tasks alternately.

For each non-terminal B in each grammar, we introduce a compound task symbol ¢5.

For each production rule R : A — B;B,, we introduce a method

(ta,[(n1:a1)(n2 @ a2) (n1 < ny)])
, Where

per form[tg;] if B; is a nonterminal,
a; = { do[fs,] if B, is a terminal a, and R is a production rule of Gy,
do[f.2] if B;is a terminal a, and R is a production rule of G,.

The input task network contains the three tasks per form[ts:], per form|tsa], and do[fias],
where 51,5, are the starting symbols of the grammars G;, G, respectively, and fos is a
primitive task with no effects. The constraint formula states that ts; < ti4st, and tso < fiast
and that turn needs to be true immediately before f, ;. The last condition ensures that the
last primitive task f,, belongs to G,.

The task decompositions mimic the production rules of the grammars. The proposition
turn ensures that each grammar contributes a primitive action to any plan alternatively, and
the conditions with propositions p, ensure that whenever G contributes a primitive task
fe1, G2 has to contribute f,5. Thus, there is a plan iff Gy and G, have a common word in
their corresponding languages.

u

Theorem 5 There are HTN planning domains that contain only totally ordered methods
each with at most two tasks, for which PLAN EXISTENCE is strictly semi-decidable.

Proof: We construct a planning domain D and show that planning in this domain is semi-
decidable, using a reduction from the intersection of context-free grammars problem.

Domain Description We use four primitive tasks fo1, fo1, fa2, frz (they are exactly the
same primitive tasks used in the previous proof), and another dummy primitive task fiummy
with no effects or preconditions.

We have three propositions pq, ps,turn, and a predicate R(X,Y,Z), used for expressing
production rules of the form X — Y Z.

We declare the following four operators that specify the effects of those tasks:

127

(operator f,1 (pre : turn) (post : p,, ~turn))
(operator fuo (pre : ~turn,p,) (post : —p,,turn))
(operator fy (pre : turn) (post : py, ~turn))
(operator fi, (pre : =turn,py) (post : —py,turn))
(operator faummy (pre:) (post :))

We use five compound tasks t(Al),t(A2),t(B1),t(B2),t(Dummy) which correspond to
our primitive tasks.

We declare five methods describing how those compound tasks expand to their corre-
sponding primitive tasks:

(t(v) [(n: do[fa]) (v = A1)))
(t(v) [(n: do[fu]) (v = B1)))
(t(v) [(n:dolfa]) (v=A2)])
(t(v) [(n: do[fie]) (v = B2)))
(t(v) [(n:do[fiaummy]) (v = Dummy)])

We use a predicate R(v, vy, v,

(t(v) [(ny: perform[t(v1)])(ng : per form[t(v2)]) (n1 < n2) A (n1, R(v,v1,v2))])

Basicly, this method specifies that a task ¢(X) can be expanded to t(Y)t(Z) iff there is a
production rule of the form X — Y Z. Thus we have a domain with 5 operators and 5
methods.

to encode grammar rules. We declare a final method :

)
)

The reduction Given two context-free grammars, here is how we create the initial state
and the input task-network.

Let G; =< 5, T, R; > ¢ = 1,2 be two context-free grammars. Without loss of gen-
erality, assume ¥ = {a,b},I'y N Ty = 0, the production rules are in Chomsky normal
form (at most two symbols at right hand sides), and the grammars don’t use the symbols
{A1, A2, B1, B2, Dummy}

Here is the initial state:
e For each production rule of the form X — Y Z, we assert a predicate R(X,Y, Z).

e For each production rule of the form X — a from grammar 2, we assert a predicate

R(X, A;, Dummy). We handle rules of the form X — b, similarly.

e Finally, we assert turn.

The input task network to the planner contains the three tasks ¢(S1), t(S2), and fiummy,
where S1,52 are the starting symbols of the grammars G, G, respectively. The constraint
formula states that both ¢(S1) and t(S2) precede fiummy, and that turn needs to be true
immediately before fi,.;. The last condition ensures that the last primitive task belongs to

G,.

128

How it works: The construction is very similar to that of Theorem 4. In that construction,
we introduced a method for each production rule. This time, we observe that all those
methods had the same structure, so instead we use a single method with variables and an
extra constraint R(X,Y,Z) that makes sure that we can expand t(X) to #(Y)¢(Z) only
when we have the corresponding production rule. The sequence of actions ¢(S;) can expand
to corresponds to the strings that can be derived from S;. The effects of the actions and the
conditions on them ensure that in any final plan the actions from S; and S, alternate, and
that whenever S; contributes an action, it has to be followed by the corresponding action in
S. Obviously, the reduction can be done in linear time.

n

Theorem 6 PLAN EXISTENCE is decidable if P has a k-level-mapping for some integer k.

Proof. When there exists a k-level-mapping, no task can be expanded to a depth more
than k. Thus, whether a plan exists can be determined after a finite number of expansions.
|

Theorem 7 PLAN EXISTENCE is EXPSPACE-hard and in DOUBLE-EXPTIME if P is re-
stricted to be totally ordered. PLAN EXISTENCE is PSPACE-hard and in EXPTIME if P is
further restricted to be propositional.

Proof.

Membership: Here, we present an algorithm that runs in DOUBLE-EXPTIME, and solves
the problem. In the propositional case, the number of atoms, the number of states etc. would
go one level down, and thus, the same algorithm would solve the problem in EXPTIME.

The basic idea is this: for each ground task ¢, states sy, sr, and set of ground literals
L = {l,...,It}, we want to compute whether there exists a plan for ¢ starting at s; and
ending at sp while protecting the literals in L (i.e. without making them false). We store
our partial results in a table with an entry for each tuple (¢,s7,sp, L). An entry in the table
has value either yes, no, or unknown.

Here is the algorithm:

1. Initialize all the entries in the table to unknown.

2. For each sp,sp, L and ground primitive task f,, compute whether executing f, at s;
results in sp, and that all literals in L are true in both S; and sp. Insert the result in
the table.

3. For each method (¢,(n1 : &) ... (nk : k),) and the input task network do:

o Replace each constraint of the form (n;,{,n;) with
(m, l, ’I’Li+1) N (’I’LH_], l, n,'+2) AL A (n]‘_l, l, ’I’LJ)

129

(For simplicity, we assume the label of a node reflects its position in the total
order.)

e Apply de Morgan’s rule so that negations come before only atomic constraints.
4. Go over all the entries (t, s1, sF, L) in the table with value unknown, doing the following:

For all ground instances of methods for ¢ (¢,(n1 : a1)...(nk : ax), ¢) do:

For all k + 1 tuples of states (so, ..., sk) do:
For all expansions ¢’ of ¢ into conjuncts do:

(a) for each conjunct of the form (n;,!) or (I,n:41), check
whether s; satisfies {.

(b) For each i < k, let L. be the set of literals [such that (n;,{,ni1) is a
conjunct.
Check whether the entry for (¢;, s;—1, $;, L;) is yes.

(c¢) Check whether the variable binding constraints are satisfied

(d) If all checks are OK, enter yes to the table for (,s5,sr, L).

5. If step 4 modified the table, then goto step 4.
6. For all ground instances ((n; : a1)...(ng : ax), ¢) of the input task network do

For all k 4+ 1 tuples of states (so,...,sx) do

For all expansions ¢’ of ¢ into conjuncts do

(a) for each conjunct of the form (n;,!) or (I, niy1), check whether s; satisfies

l.

(b) For each 7 < k, let L] be the set of literals [such that (n:,/,n:41) is a
conjunct.
Check whether the entry for (t;,si-1,si, L;) is yes.

(c) Check whether the variable binding constraints are satisfied

(d) If all checks are OK, halt with success; if not, halt with failure.

The algorithm works bottom-up. For all ground tasks, state pairs and protection sets
(t,s1,8F, L), it computes whether there exists a plan for ¢ starting at s; and ending at sp
that does not violate the literals in L. When step 4 terminates without any modification to
the table, the table contains all the answers. Thus in step 6, we can check whether the input
task network can be achieved.

The table has a doubly exponential number of entries (roughly the cube of the number
of states times number of ground tasks). Step 4 is executed at most a doubly exponential
number of times (when we make one modification at each step). At each execution step 4
goes over all the entries in the table, taking double exponential time. Processing each entry
takes double exponential time. The resultant time is the product of these, which is still

130

double exponential. The rest of the steps in the algorithm obviously do not take more than
double exponential time. Thus the algorithm runs in double exponential time.

When we restrict the problem to be propositional, the number of states goes down from
doubly exponential to exponential, and so does the size of table and the number of executions
in all the steps. Thus in propositional case, the algorithm runs in exponential time.

Hardness: PLAN EXISTENCE, restricted to totally ordered regular planning domains, is a
special case of our problem. But in Theorems 8 and 9, we prove that under this restricted
version of PLAN EXISTENCE is EXPSPACE-hard (or PSPACE-hard in the propositional case).
Thus the hardness follows.

|

Theorem 8 PLAN EXISTENCE is EXPSPACE-complete if P is restricted to be regular. It
is still EXPSPACE-complete if P is further restricted to be totally ordered, with at most one
non-primitive task symbol in the planning language, and all task networks containing at
most two tasks.

Proof.

Membership: It suffices to present a nondeterministic algorithm that uses at most expo-
nential space and solves the problem, as EXPSPACE=N-EXPSPACE, so that is what we will
do. Since all task networks will contain at most one non-primitive task, all we need to do
is keep track of what atoms need to be true/false immediately before, immediately after,
and along that single task. Since there are an exponential number of atoms, we can do this
within exponential space. Here is the algorithm:

1. Let d be the input task network.

2. If d contains only primitive tasks, then
non-deterministically guess a total-ordering and variable-binding.
If it satisfies the constraint formula and the preconditions of the primitive tasks, then
halt with success; if not, halt with failure.

3. Non-deterministically, guess a total-ordering and variable-binding. The task network
will be of the form

[(n1: dolfi1]) ... (nm : do[fn])(n : per form[t])(n] : do[f;]) ... (n, : do[f.])]
with ordering ny < ns < ... <n, <n<nj <...<n.

Note that ¢ is the only non-primitive task in the network. Let s,,s%,s; be the states
immediately after f;, f!,t, respectively.

4. FEliminate all variable binding and task ordering constraints from the constraint formula
using the guess in step 3.

131

AT 2

5. Replace any constraint of the form (n;,l,n}) with (n,1,nm) A (7, 1,n7) A (03,1, 0%).

6. Replace any constraint of the form (n;,[,n;) or (nf,1,n}) with (n;,) A ... A (nj-1,{)
and (n},[) A ... A (n_4,1), respectively.

7. Process the constraint formula (using De Morgan’s rule) so that negations apply to
only atomic constraints.

8. Now the resultant constraint formula contains only conjuncts and disjuncts. For each
disjunct, nondeterministically pick a component, obtaining a constraint formula con-
taining only conjuncts.

9. Compute all the intermediate states before n and verify that all constraints of the form
(ni, 1), (I,n;) are satisfied. Remove these constraints from the constraint formula.

10. For all the state constraints after n, use regression to determine what needs to be true
immediately after n for those constraints to be satisfied.

11. Set the initial state I to fr(fm-1(-.. f1(I)...)), i.e., the state that results from applying
all the primitive tasks before ¢.

12. Now we can get rid of all the primitive tasks in the task network. The constraint
formula contains only what needs to be true while we achieve ¢t and what needs to be
true immediately after we achieve .

13. Nondeterministically, choose a method for ¢, expand it, and assign the resulting task
network to d.

14. Go to step 2.

Hardness: In [22], we showed that plan existence problem in STRIPS representation is
EXPSPACE-complete. Here we define a reduction from that problem.

The plan existence problem in STRIPS representation is defined as “Given a set of
constants, a set of predicates, a set of STRIPS operators, an initial state and a goal, is there
a plan that achieves the goal?”

Given such a problem, we transform it into an HTN planning problem as follows:

We use the same set of constants and predicates. We will also have the same initial
state. For each STRIPS operator o, we define a primitive task f, that has exactly the same
preconditions and postconditions as 0. We also need an extra primitive task f. with no
effects, that will be used as a dummy.

We will need a single non-primitive task ¢ that can be expanded to any executable
sequence of actions. Thus we declare the following methods for ¢:

1Here is how we do this. Consider the task (n! : t}) and the condition (n},!). When we regress this
condition, we get TRUE if t; asserts |, FALSE if t; denies I, or (n}_y,l) if t] neither denies nor asserts /.
This is what needs to be TRUE before t}, for the condition to hold after .

132

o (t, [(n1: fo), TRUE]);
o for each STRIPS operator o

(@, [(na: fo)(na : 1), (n1 < ma)]).
Finally, the input task network will be of the form

((n1:1),(n1,91) A (n1,92) - A (m1,98))),

where g; are the goals of the STRIPS problem.

The resulting HT'N problem satisfies all the restrictions of the theorem. A plan o solves
the STRIPS plan existence problem instance iff o is a solution for the HTN planning problem
instance. Hence the reduction is correct. Obviously, the reduction is in polynomial time. W

Theorem 9 PLAN EXISTENCE is PSPACE-complete if P is restricted to be regular and
propositional. Tt is still PSPACE-complete if P is further restricted to be totally ordered,
with at most one non-primitive task symbol in the planning language, and all task networks
containing at most two tasks.

Proof.

Membership: The algorithm we presented for the membership proof in Theorem 8 works
also for the propositional case. In the propositional case we have only a linear number of
atoms, and as a result, the size of any state is polynomial. Thus the algorithm requires only
polynomial space.

Hardness: In [12, 22], it is shown that plan existence problem in STRIPS representation
is PSPACE-complete if it is restricted to be propositional. The reduction from STRIPS
style planning that we presented in the hardness proof of Theorem 8 also works for the
propositional case. u

Theorem 10 If P is restricted to be regular and D is fixed in advance, then PLAN
EXISTENCE is in PSPACE. Furthermore, there exists fixed regular HTN planning domains D
for which PLAN EXISTENCE is PSPACE-complete.

Proof. When D is fixed in advance, the number of ground instances of predicates and tasks
will be polynomial in the size of the input. Thus we can reduce it to propositional regular
HTN-planning. As a direct consequence of Theorem 9, it is in PSPACE.

In the proof of Theorem 5.17 in [22], we had presented a set of STRIPS operators
containing variables for which planning is PSPACE-complete. Applying the reduction defined
in the hardness proof of Theorem 8 to this set of operators would give a regular HT'N planning
domain (containing variables) with the same set of solutions and complexity as its STRIPS
counterpart. |

133

SATRE S0 R AL A 1

L PO

o

Theorem 11 PLAN EXISTENCE is NP-complete if P is restricted to be primitive, or
primitive and totally ordered, or primitive and propositional. However, PLAN EXISTENCE is
in polynomial time P is restricted to be primitive, totally ordered, and propositional.

Proof. If P is primitive, propositional and totally ordered, we can compute whether an
atomic constraint is satisfied in linear time. In order to find a plan, all we need to do is to
check whether the constraint formula is satisfied, which can be done in polynomial time.

Membership: Given a primitive task network, we can nondeterministically guess a total
ordering and variable binding, and then we can verify that it satisfies the constraint formula
in polynomial time. Thus the problem is always in NP.

Hardness: There are three cases:

Case 1: Primitive and propositional.
We define a reduction from satisfiability problem as follows:

Given a boolean formula, we define a planning problem such that it uses the same set of
propositions as the boolean formula. we have two primitive tasks for each proposition,
one that deletes the proposition, and one that adds the proposition. The initial state
is empty. The input task network contains all the primitive tasks, and the constraint
formula states that the boolean formula needs to be true in the final state.

If there exists a total ordering that satisfies the constraint formula, the truth values
of propositions in the final state would satisfy the boolean formula; if there is a truth
assignment that satisfies the boolean formula, we can order the tasks such that if a
proposition p is assigned true, then the primitive task that adds it is ordered after the
primitive task that deletes it (and vice versa), coming up with a plan that achieves the
task network.

Obviously, the reduction can be done in linear time.

Case 2: Primitive and totally ordered.
Again, we define a reduction from satisfiability problem.
We will use two constant symbols ¢t and f, standing for true and false, respectively.

For each proposition p in the boolean formula, we will introduce a unary predicate P,
and a unary primitive task symbol T,(v,) that has the effect P(v,).

The initial state will be empty, and the input task network will contain one task for
each proposition, namely T,(vp).

We construct a formula F from the input boolean formula by replacing each proposition
p with P(t). Our constraint formula will require F' to be true in the final state.

134

If there exists a truth assignment that satisfies the boolean formula, we can construct a
variable binding such that v, is bound to ¢ whenever p is assigned true, and v, is bound
to f otherwise. This variable binding would make sure the constraints are satisfied.

If there exists a variable binding that achieves the task network, we construct the
following truth assignment that satisfies the boolean formula. We assign true to p iff
v, 1s bound to t.

Obviously, the reduction can be done in polynomial time.

Case 3: Primitive.

Both case 1 and case 2 are special cases of case 3, so hardness follows immediately.

135

e TSI £ A MalZ A b Tk L

f e e

Appendix B
UM-Translog Domain

B.1 Symbol Declarations

(VARIABLES
v ?p ?1 7¢c 7r %ol 7dl 7t
?package ?origin 7destination ?location 7regionl ?region2
?hub Tocity ?dcity ?cityl 7city2 ?cityh ?samecity 7tcenter
?tcenterl ?tcenter2 ?it ?vehicle ?tc ?train ?ptype ?viype ?route
?r ?rtype 7vptype ?typel)

(CONSTANTS
air-route mail perishable refrigerated granular airplane
armored auto bulky cars cityl cityl-cll cityl-cl2 cityl-tsl
cityl-ts2 cityl-apl cityl-ap2 city2 city2-cll city2-apl
city2-ts1 regionl region2 city3 city3-cll city3-apl city3-tsl
regionl-apl regionl-tsl rail-route-1 rail-route-2 rail-route-3
rail-route-4 road-route-1 road-route-2 air-route-1 air-route-2
air-route-3 air-route-4 rampla ramplb ramp2 ramp3 ramp4
road-route-i1547 road-route-i1548 pkg-1 truck-1 not-tcenter
not-hub train-station tcenter hub not-hazardous not-traincar
clocation tcenter airport train-station city region crane
flatbed hazardous hopper hub livestock liquid local-road-route
plane-ramp rail-route air-route regular road-route tanker
train traincar truck tcenter valuable)

(PRIMITIVE-TASKS

affix-warning-signs attach-conveyor-ramp
attach-train-car close-door close-valve collect-fees
collect-insurance connect-chute connect-hose
decontaminate-interior deliver detach-conveyor.ramp
detach-train-car disconnect-chute disconnect-hose
do-clean-interior do-nothing empty-hopper empty-tank
fill-hopper fill-tank fill-trough load-cars load-livestock
load-package lower-ramp move-vehicle obtain-permit open-door
open-valve pick-up-package-ground pick-up-package-vehicle
post-guard-inside post-guard-outside put-down-package-ground
put-down-package-vehicle raise-ramp remove-guard
remove-warning-signs unload-cars unload-livestock
unload-package)

(PREDICATES

(at-equipment 15) (at-package 100) (at-vehicle 40)
available chute-connected clean-interior connects
decontaminated-interior door-open empty fees-collected
guard-inside guard-outside have-permit hose-connected in-city
in-region insured pc-compatible pv-compatible ramp-available
ramp-connected ramp-down rv-compatible serves trough-full type
valve-open warming-signs-affixed

)

(COMPOUND-TASKS
(carry 79) (carry-between-tcenters 75) (carry-direct 70)

136

Specification

(carry-via-hub 78) handle-hazardous handle-insurance

(load-top 25) (unload-top 25) (load-haz 22) (load-val 22)

(unload-haz 22) (unload-val 22) (lead 20) pickup
(transport 90)(unload 20)

B.2 Actions

(operator open-door(?v)
post(
(door-open ?v))

(operator close-door(?v)
post(
("“door-open ?v))

3

(operator load-package(?p ?v ?1)
pre (
(at-package ?p ?1)
(at-vehicle ?v ?1))
post(
(at-package ?p 7v)
("at-package ?p ?71))

(operator unload-package(?p ?v ?1)
pre (

(at-package ?p 7v)

(at-vehicle ?v ?1))
.post(

(at-package ?p ?1)

("at-package ?p 7v))

)

(operator pick-up-package-ground(?p 7c ?I)
:pre (
(empty ?c)
(at-equipment ?c ?1)
(at-package ?p 71))
.post(
(at-package ?p 7c)
(“empty ’c)
(~at-package 7p 1))

(operator put-down-package-ground(?p ?c ?1)
.pre {
(at-equipment ?c ?1)
(at-package ?p 7¢))
‘post(
(empty ?c)
(at-package 7p ?1)
("at-package ?p ?c))

(operator pick-up-package-vehicle(?p ?c ?v ?1)
pre (

(empty ?c)

(at-equipment ?c ?1)

(at-package ?p 7v)

(at-vehicle ?v 71})

post(
(at-package ?p 7c)
("empty ?¢)
(~at-package 7p ?v))
)
(operator put-down-package-vehicle(?p ?c ?v ?1)

.pre (
(at-package ?p “c)
(at-equipment ?c ?1)
(at-vehicle ?v 71))

137

el e Sl RTINS AL L 5 Y B

.post(
(empty ?c)
(at-package 7p 7v)
(~at-package ?p ?c))

(operator connect-chute(?v)
:post(
(chute-connected ?v))

(operator disconnect-chute(?v)
‘post(
(“chute-connected ?v))

(operator fill-hopper(?p ?v ?1)
.pre (
(chute-connected ?v)
(at-vehicle ?v ?1)
(at-package ?p ?1))
.post(
(at-package ?p ?v)
(~at-package 7p ?1))

(operator empty-hopper(?p ?v ?1)
pre (

(chute-connected ?v)

(at-vehicle ?v ?1)

(at-package ?p *v))
post(
(at-package ?p ?1)
(~at-package ?p ?v))

)

B

(operator raise-ramp(?v)
:post(
(“ramp-down ?v))

)

(operator lower-ramp(?v)
:post(
(ramp-down ?v))

B

(operator fill-trough(?v)
.post(
(trough-full ?v))

B

(operator load-livestock(?p ?v ?1)
:pre (
(at-package ?p 1)
(at-vehicle ?7v ?1)
(ramp-down ?v))
post(
(at-package 7p ?v)
(~at-package ?p ?1)
("clean-interior ?v))

(operator unload-livestock(?p ?v ?1)
pre (
(at-package ?p ?v)
(at-vehicle ?v 1)
(ramp-down ?v))
‘post(
(at-package ?p ?71)
("at-package ?p 7v)
(“trough-full ?v))

B

(operator do-clean-interior(?v)
-post((clean-interior ?v))

138

3

(operator load-cars(?p ?v ?1)

pre (
(at-package ?p ?1)
(at-vehicle 7v 1)

(ramp-down 7v))

.post(
(at-package 7p ?v)
("at-package 7p 1))

(operator unload-cars(?p ?v ?1)
pre (
(at-package ?p ?1)
(at-vehicle ?v 1)
(ramp-down ?v))
:post(
(at-package ?p 1)
("at-package ?p ?v))

’

(operator connect-hose(?v)
:post((hose-connected ?v))

(operator disconnect-hose(?v ?p)
:pre ((hose-connected 7v))
:post{ (“hose-connected 7v))

’

(operator open-valve(?v)
:post{ (valve-open 7v))

(operator close-valve(?v)
post((“valve-open ?v))

3

(operator fill-tank(?v ?p ?1)
:pre {
(hose-connected ?v)
(valve-open ?v)
(at-package ?p ?1))
.post(
(at-package 7p ?v)
(~at-package ?p ?1))

(operator empty-tank(?v ?p ?1)
pre (
(hose-connected ?v)
(valve-open ?v)
(at-package ?p °v))
‘post(
(at-package ?p ?1)
(~at-package ?p 7v))

(operator move-vehicle(?v 7ol ?dl ?r)
.pre { (at-vehicle ?v %ol)
:post(
(at-vehicle ?v 7dl)
("at-vehicle ?v ?ol))

i

(operator attach-train-car(?t 7c ?1)
‘pre (
(at-vehicle ?¢ ?1)
(at-vemcle 7t ?1))
post(
(at-vehicle ?c ?t)
("at-vehicle ?¢ ?1))

139

i e GNKITRT -

(S N

(operator detach-train-car(?t ?c ?1)
ipre
(at-vehicle 7t 71)
(at-vehicle 7¢ 7t))
.post(
(at-vehicle ¢ ?1)
(~at-vehicle ?c 7t))

B

(operator attach-conveyor-ramp(?v 7r 71)
pre (
(ramp-available ?r)
(at-equipment ?r ?1)
(at-vehicle 7v 71})
:post(
(ramp-connected ?r ?v)
(“ramp-available 7r))

(operator detach-conveyor-ramp(?v ?r 71)
pre (
(ramp-connected ?r ?v)
(at-equipment ?r 71)
(at-vehicle 7v ?71))
‘post(
(ramp-available ?r)
(“ramp-connected ?r ?v))

(operator affix-warning-signs (7v)
-post((warmmng-signs-affixed ?v))

(operator remove-warning-signs (7v)
:post((~“warning-signs-affixed ?v))

(operator post-guard-outside(?v)
:post{ (guard-outside ?v)
(~guard-inside ?7v))

(operator post-guard-inside(?v)
:post((guard-inside ?v)
(~guard-outside ?v))

(operator remove-guard(?v)
post((“guard-outside ?v)
(" guard-inside ?v))

(operator decontaminate-intenor(?v)
:post((decontaminated-interior ?v))

(operator obtain-permit(?p)
:post((have-permit ?p})

(operator collect-fees(?p)
.post((fees-collected ?p))

(operator collect-insurance(?p)
:post((insured 7p))

(operator deliver(7p)
‘post((“have-permt ?p)
(“fees-collected 7p)
(“insured 7p))

140

B.3 Methods

3

(variables ?package
?origin ?destination ’location
Tocity ?dcity ?cityl ?city2 ?samecity
?tcenter ?tcenterl ?tcenter2 ?tt
?regionl ?region2 hub
?vehicle 7tc ?train
Tptype ?vtype 7route ?r ?rtype ?vptype ?typel

;1» top-level declare-method: used for top-level goal
(declare-method AT-PACKAGE(?package ?destination)
.expansion (
{nl TRANSPORT ?package %origin ?destination)

:formula (and
(initially (AT-PACKAGE ?package ?origin))
(after (AT-PACKAGE ?package ?destination) nl))

(declare-method TRANSPORT(?package ?origin ?destination)
:expansion (
(n1 PICKUP 7?package)
(n2 CARRY 7?package ?origin ?destination)
(n3 DELIVER ?package)

:formula (and (ord nl n2) (ord n2 n3))
s effects (
; (n2 :delete (AT-PACKAGE 7?package ?origin))
) (n2 :assert (AT-PACKAGE ?package 7destination))

PICKUP DECLARE-METHODS

3
s

3

(declare-method PICKUP(?package)
‘expansion (
(n1 COLLECT-FEES ?package)
(n2 HANDLE-INSURANCE %package)
(n3 HANDLE-HAZARDOUS ?package))

B

(declare-method HANDLE-INSURANCE(?package)
expansion (
(n1 COLLECT-INSURANCE ?package)

)
:formula (initially (TYPE ?package VALUABLE))

)

(declare-method HANDLE-INSURANCE(?package)
expansion (
(n1 DO-NOTHING)

)
:formula (initially ("TYPE ?package VALUABLE))

(declare-method HANDLE-HAZARDOUS(?package)
.expansion (
(n1 OBTAIN-PERMIT ?package)

)
formula (initially (TYPE ?package HAZARDQUS) nl)
)

(declare-method HANDLE-HAZARDOUS(?package)
expansion (
(nl DO-NOTHING)

)
:formula (1nitially ("TYPE ?package HAZARDOTUS))

’; CARRY DECLARE-METHODS - TOP LEVEL ** THESE BIND TCENTERS **

,y; top-level carry declare-method 1

IR

o

o237 SR Y

(declare-method CARRY(?package ?origin ?destination)
:expansion (
(nl CARRY-DIRECT ?package ?origin ?destination)

H seffects (
; (n1 ‘delete (AT-PACKAGE ?package 7origin))
, (n1 -assert (AT-PACKAGE ?package 7destination))

51y 2 Carry:
,;Torigin (tcenter, not hub) -, ?destination (tcenter, not hub)
(declare-method CARRY(?package ?origin ?destination)
expansion(
(n1 CARRY-VIA-HUB ?package ?origin ?destination)

) effects (
H (n1 :delete (AT-PACKAGE ?package ?origin))
) (nl :assert (AT-PACKAGE ?package ?destination))

:formula (and
(initially (IN-CITY ?origin 7ocity))
(initially (IN-CITY ?destination ?dcity))
(not (veq 7ocity ?dcity))
(initially (TYPE ?origin TCENTER))
(initially (TYPE ?destination TCENTER))
(initially ("TYPE ?origin HUB))
(initially ("TYPE ?destination HUB))
(initially (AVAILABLE ?origin))
(initially (AVAILABLE ?destination))

)

33 3 carry.
,;;7origin (not tcenter) -, ’tcenter -; ?destination (tcenter)
(declare-method CARRY(?package 7origin ?destination)
expansion (
(n0 CARRY-DIRECT ?package 7ongn ?tcenter)
(n1 CARRY-BETWEEN-TCENTERS
?package 7tcenter ?destination)

H reffects (
(50 .delete (AT-PACKAGE ?package ?origin))

H (30 :assert (AT-PACKAGE ?package 7tcenter))
(n1 :delete (AT-PACKAGE 7package ?tcenter))
(nl :assert (AT-PACKAGE ?package ?destination))

:formula (and

(ord n0 n1)
(initially ("TYPE ?origin TCENTER))
(initially (TYPE ?destination TCENTER))
(initially (IN-CITY ?origin ?ocity))
(initially (IN-CITY ?destination ?dcity))
(not (veq ?ocity ?dcity))
(initially (SERVES ’tcenter ?ocity))
(imtially (TYPE Ztcenter TCENTER))

(not (veq ?tcenter ?destination))
(initially (TYPE ?tcenter 7tt))
(not (veq 7tt TCENTER))
(initially (TYPE ?destination ?tt))
(initially (AVAILABLE ?tcenter))
(initially (AVAILABLE ?destination))
)

)

,3; 4 carry’
,;; Torigin (tcenter) -, 7tcenter -; ?destination (not tcenter)
(declare-method CARRY(?package 7origin ?destination)
.expansion (
(n1 CARRY-BETWEEN-TCENTERS ?package ?orgin ?tcenter)
(n2 CARRY-DIRECT ?package ?tcenter ?destination)
s effects ()
; (n1 :delete (AT-PACKAGE 7package ?origin))
, (nl -assert (AT-PACKAGE 7package 7tcenter))
) (n2 :delete (AT-PACKAGE ?package ?tcenter))
) (n2 :assert (AT-PACKAGE ?package ?destination))

formula (and
(ord n1 n2)
(imtially (TYPE ?origin TCENTER))
(initially ("TYPE ?destination TCENTER) }
(1nitially (IN-CITY ?origin Zocity))
(initially (IN-CITY ?destination 7dcity))
(not (veq ?ocity ?dcity))
(imtially (SERVES ?tcenter ?dcity))

142

(initially (TYPE ?tcenter TCENTER))
(initially (TYPE ?tcenter 7tt))
(not (veq ?tt TCENTER))
(imtially (TYPE ?origin ?tt))
(not (veq ?tcenter 7origin))
(1nitially (AVAILABLE ?origin))
(imtially (AVAILABLE 7tcenter))

)

35y CAITY
;; Torigin (not tcenter) -
2 ?tcenterl -; ?tcenter2 -; ?destination (not tcenter)
(declare-method CARRY(?package ?origin ?destination)
:expansion (
(n0 CARRY-DIRECT ?package Z?origin ?tcenterl)
(n1 CARRY-BETWEEN-TCENTERS
?package ?tcenterl ?tcenter2)
(n2 CARRY-DIRECT
?package ?tcenter2 ?destination)

, (n1 :delete (AT-PACKAGE ?package ?tcenterl))
) (n1 assert (AT-PACKAGE ?package 7tcenter2))
s (n0 ‘delete (AT-PACKAGE ?package ?origin))
s (n0 assert (AT-PACKAGE ?package 7tcenterl))
s (n2 assert (AT-PACKAGE ?package 7destination))
H (312 :delete (AT-PACKAGE ?package ?tcenter2)))
:formula (and
(ord n0 n1)
(ord nl n2)
(inttially ("TYPE ?origin TCENTER))
(imit:ally ("TYPE ?destination TCENTER))
(initially (IN-CITY Zorigin ?ocity))
(initially (IN-CITY ?destination ?dcity))
(not (veq ?ocity 7dcity))
(imitially (SERVES ?tcenterl ?ocity))
(initially (SERVES ?tcenter2 ?dcity))
(initially (TYPE ?tcenterl TCENTER))
(initially (TYPE ?tcenterl ?tt))
(not (veq ?tt TCENTER))
(1nitially (TYPE ?tcenter2 ?tt))
(initially (TYPE ?tcenter2 TCENTER))
(1mitially (AVAILABLE ?tcenterl))
(initially (AVAILABLE ?tcenter2))

.,y carry: ?tcenterl -; ?tcenter2 where ?tcenterl = ?tcenter2
(declare-method CARRY-BETWEEN-TCENTERS(?package ?tcenterl ?tcenter2)
:expanston (
(n1 DO-NOTHING))

, effects (

(nl delete (AT-PACKAGE ?package ?tcenterl))

(nl :assert (AT-PACKAGE "package ?tcenter2)))
Aformula (veq ?tcenterl ?tcenter2)

)

,y, carry: ?tcenterl -, ?tcenter2
(declare-method CARRY-BETWEEN-TCENTERS(?package ?tcenterl ?tcenter2)
expansion (
(n1 CARRY-DIRECT ?package ?tcenterl ?tcenter2)

s .effects (
(nl ‘delete (AT-PACKAGE ?package Ttcenterl))
; (nl1 assert (AT-PACKAGE ?package ?tcenter2)))
.formula (and

(not (veq ?tcenterl ?tcenter2))

(initially (TYPE ?tcenterl ?typel))

(not (veq ?typel TCENTER))

(not (veq ?typel HUB)

(1mitially (TYPE ?tcenter2 ?typel))

)

.y, Carry. ?tcenterl (not hub) -; ?tcenter2 (not hub)
(declare-method CARRY-BETWEEN-TCENTERS(?package ?tcenterl ?tcenter2)
expansion (
(n1 CARRY-VIA-HUB ’package ?tcenterl ?tcenter2)

s -effects (
(n1 .delete (AT-PACKAGE ?package 7tcenterl))
(nl :assert (AT-PACKAGE ?package ?tcenter2)))

143

LR ST W TN

S REWLLE Sl

:formula (and

(initially ("TYPE ?tcenterl HUB))
(imtially ("TYPE ?tcenter2 HUB))
(not (veq 7tcenterl ?tcenter2))

,;; carry ?tcenterl -

Zhub -, ?tcenter2.

(declare-method CARRY-VIA-HUB(?package 7tcenterl ?tcenter2)

-expansion (
(n1 CARRY-DI
(n2 CARRY-DI

H .effects (
; (n1
; (n1
; (n2
; (n2
‘formula (and
(ord nin

RECT ?package ?tcenterl hub)
RECT ?package ?hub 7tcenter2)

:assert (AT-PACKAGE ?package Thub))

:delete (AT-PACKAGE ?package 7tcenterl))
-assert (AT'PACKAGE ?package ?tcenter2))
:delete (AT-PACKAGE 7?package ?tcenterl)))

2)

(initially (*“TYPE ?package HAZARDOUS))
(initially (IN-CITY ?tcenterl ?cityl))
(xmtially (IN-CITY ’tcenter2 ?city2))
(initially (IN-REGION Zcityl ?regionl))
(initaally (IN-REGION Zcity2 7region2))
(initially (SERVES ?hub ?regionl))
(initially (SERVES ?hub ?region2))
(initially (AVAILABLE ?hub))

11, carry. ?tcenterl -,

?hub -; ?tcenter2.

(declare-method CARRY-VIA-HUB(?package ?tcenterl ?tcenter2)

expansion (

(n1 CARRY-DIRECT ?package ?tcenterl 7hub)
(n2 CARRY-DIRECT ?package ?hub ?tcenter2)

, effects (

, (n1 -assert (AT-PACKAGE ?package ?hub))
f (n1 :delete (AT-PACKAGE ?package ’tcenterl))
; (n2 :assert (AT PACKAGE ?package ?tcenter2))

:formula (and
(ord n1 n2)

(n2 :delete (AT-PACKAGE ?package ?tcenterl)))

(initially (TYPE ?package HAZARDOUS)
(initially (PC-COMPATIBLE ?cityh HAZARDOUS))
(1nit1ally (IN-CITY Ztcenterl ?cityl))
(initially (IN-CITY ?tcenter2 ?city2))

(xm
(ini

tially (IN-REGION ?cityl ?regionl))
tially (IN-REGION ?city2 7region2))

(initially (SERVES 7hub ?regionl))
(initially (SERVES ?hub ?region2))

(in1
(ini

t1ally (IN-CITY ?hub ?cityh))
tially (AVAILABLE ?hub))

(declare-method CARRY-DIRECT(?package ?origin ?destination)

.expansion (
(n1
(n2
(n3
(n4

:formula(and
(ord nl1 n2)
(ord n2 n3)
(ord n3 n4)

AT-VEHICLE *vehicle ?origin)

LOAD-top ?package ?vehicle ?origin)
AT-VEHICLE ?vehicle ?destination)
UNLOAD-top ?package ?vehicle ?destination)

(before (AT-PACKAGE 7package ?origin) n2)

(init1

ally (TYPE ?package ’ptype))

(between (AT-VEHICLE ?vehicle Zorigin) nl n2)

(between (AT-PACKAGE ?package ?vehicle) n2 n4)

(xmti
(imty
(initi
(or

ally (AVAILABLE ?vehicle))
ally (TYPE ?vehicle ?vtype))
ally (PV-COMPATIBLE 7?ptype ?vtype))

(and , same city via truck
(initially (TYPE ?vehicle TRUCK))

(imitrally (IN-CITY
(initially (IN-CITY
(and ;diff city via ¢

?origin Zocity))
?destination 7ocity)))
ruck

(initially (TYPE ?vehicle TRUCK))

144

(initially (IN-CITY Z?origin ?ocity))
(initially (IN-CITY 7destination ?dcity))
(initially (CONNECTS

?route ROAD-ROUTE

7ocity ?dcity
(1nitially (AVAILABLE ?route)))
(and ,not truck
(initially ("TYPE ?vehicle TRUCK))
(initially (CONNECTS

?route ?rtype

?origin ?destination))
(initrally (RV-COMPATIBLE ?rtype ?vhtype))
(initially (TYPE ?vehicle ?vhtype))
(initially (AVAILABLE ?route))))

; MOVE VEHICLE DECLARE-METHODS

B

;;» move: ?ornigin -, ?location, via road
(declare-method AT-VEHICLE(?vehicle ?location)
expansion(
(n1 MOVE-VEHICLE ?vehicle ?origin ?location ?r)

formula (and
(before (AT-VEHICLE ?vehicle ?origin) nl)
(initially (TYPE ?vehicle TRUCK))
(1mitially (IN-CITY ?origin ?ocity))
(or
(and ; same city
(veq ?r LOCAL-ROAD-ROUTE)
(1mtrally (IN-CITY ?location 7ocity)))
(and ;different city
(imitially (IN-CITY ?location ?dcity))
(init1ally (CONNECTS ?7r ROAD-ROUTE ?ocity deity)))
))

)

,,» move: ?origin -; ?location

(declare-method AT-VEHICLE(?vehicle ?location)
expansion

(nl MOVE-VEHICLE 7vehicle Zorigin ?location ?r)

formula (and
(initially ("TYPE ?vehicle TRAINCAR))
(before (AT-VEHICLE ?vehicle Zorigin) nl)
(initially (TYPE ?vehicle ?vtype)
(initially (CONNECTS ?r ?rtype ?origin ?location))
(initially (RV-COMPATIBLE ?rtype ?vtype))

,»; send train to pickup car, dehver it to destination, and detach it
(declare-method AT-VEHICLE(?tc ?destination)
expansion (
(n1 AT-VEHICLE “’train ?onigin}
(n2 ATTACH-TRAIN-CAR ?train ?tc ?origin)
(n3 AT-VEHICLE ?train ?destination)
(n4¢ DETACH-TRAIN-CAR ?train ?tc ?destination)

formula (and
(ord n1 n2)
(ord n2 n3)
(ord n3 n4)
(imtially (TYPE 7tc TRAINCAR))
(before (AT-VEHICLE ?tc ?origin) n2)
(initially (CONNECTS ?r RAIL-ROUTE ?ongin ?destination))
(initially (TYPE ?train TRAIN))
(between (AT-VEHICLE ?tc ?train) n2 n4)
(between (AT-VEHICLE ?train ?origin) nl n2)
(between (AT-VEHICLE ?train ?destination) n3 n4)

145

IR +78 % "2 N

LR

Vi

(vaniables ?p ?v 71 ¢ 7r)

(declare-method load-top (?p ?v ?1)
:expansion(
(n1 load-haz 7p 7v 71)
(n2 load-val ?p ?v 71)

:formula (ord nl n2)

(declare-method unload-top (?p ?v ?1)
expansion(
(nl unload-haz ?p ?v ?1)
(n2 unload-val 7p 7v 71)

:formula (ord n2 nl)

(declare-method load-haz (7p 7v ?1)
:expansion(
(n warming-signs-affixed ?p ?v)

:formula (initially (type ?p hazardous))

)

(declare-method load-haz (?p 7v 71)
.expansion(
(n do-nothing)

formula (initially (“type ?p hazardous))

(declare-method unload-haz (?p 7v ?1)
:expansion(
(nl1 decontaminated-interior ?v)
(n2 “warning-signs-affixed ?v)

formula (and
(1nitially (type ?p hazardous))
(ord n1 n2))

(declare-method unload-haz (7p 7v 1)
expansion(
(n do-nothing)

:formula (initially ("type ?p hazardous))

(declare-method load-val (?p ?v ?1)
-expansion(
(n do-nothing)

)
formula (1mtially (“type ?p valuable))

(declare-method unload-val (7p ?v ?1)
‘expansion(
{n do-nothing)

formula (1nitially ("type 7p valuable))

(declare-method load-val (?p ?v 71)
-expansion(
(nl guard-outside ?v)
(n2 load ?p ?v ?1)
(n3 guard-inside ?v)

formula (and

(ord nl n2)

(ord n2 n3)

(initially (type ?p valuable))
)

)

(declare-method unload-val (?p ?v ?1)
‘expansion(
(nl1 guard-outside ?v)
(n2 unload 7p ?v ?1)

:formula (and
(ord n1 n2)
(initially (type ?p valuable)))

146

;;; declare-method for loading REGULAR truck or traincar
(declare-method load (?p ?v ?1)
expansion (
(nl door-open ?v)
(n2 load-package ?p ?v ?1)
(n3 “door-open ?v)

formula (and

(ord nl n2)

(ord n2 n3)
(imtially (type ?v regular))
(between (at-package ?p ?1) nl n2)
(between (at-package ?p ?v) n2 n3)
(between (at-vehicle ?v ?1) nl n3)
(between (door-open ?v) nl n3)

)

1, declare-method for unloading REGULAR truck or traincar
(declare-method unload (7p ?v 71)
rexpansion (
(n1 door-open ?v)
(n2 unload-package ?p ?v ?1)
(n3 “door-open ?7v)

:formula (and

(ord n1 n2)

(ord n2 n3)
(imtially (type ?v regular))
(before (at-package ?p ?v) nl)
(before (at-vehicle ?v ?1) nl)
(before (at-vehicle ?v 71} n3)
(before (at-package ?p ?v) n2)
(between (door-open ?v) nl n3)

,»» declare-method for loading FLATBED truck or traincar
(declare-method load (?p ?v ?1)
:expansion (
(nl pick-up-package-ground ?p ?c 71)
(n2 put-down-package-vehicle ?p 7c ?v ?1)

.formula (and

(ord n1 n2)

(initially (type ?v flatbed))
(initially (type ?c crane))
(before (empty ?c) n1)

(before (at-package ?p ?1) nl)
(before (at-equipment ?c ?1) nl)
(between (at-package ?p ?c) nl n2)
(before (at-vehicle ?v ?1) n2)
(between (at-equipment ?¢ ?1) nl n2)

)

,»; declare-method for unloading FLATBED truck or traincar
(declare-method unload (7p ?v ?1)
expansion (
(nl1 pick-up-package-vehicle ?p ?c ?v ?1)
(n2 put-down-package-ground ?p ?c ?1)

formula (and
(ord nl1 n2)
(imtially (type ?v flatbed))
(before (at-package ?p 7v) nl)
(before (at-vehicle ?v ?1) nl)
(before (at-eqmpment ?c ?1) nl)
(initially (type ?c crane)
(before (empty ?c) nl)
(between (at-package 7?p ?c) nl n2)
(between (at-equipment ?¢ ?1) nl n2)

)

i1, declare-method for loading HOPPER truck or traincar
(declare-method load (?p ?v °1)
expansion (
(nl chute-connected ?v)
(n2 fill-hopper ?p ?v ?1)
(n3 “chute-connected ?7v)

.formula (and
(ord nl1 n2)

147

e G AN AP RO IR L0 el A

(ord n2 n3)
(initially (type ?v hopper))
(before (at-package ?p ?1) nl)
(before (at-vehicle ?v ?1) nl)
(before (at-package ?p ?1) n2
(between (at-package ?p ?v) n2 n3)
(before (at-vehicle ?v ?71) n3)
(between (chute-connected ?v) nl n3)

)

;33 declare-method for unloading HOPPER truck or traincar
(declare-method unload (7p ?7v ?1)
expansion (
(nl chute-connected 7v)
(n2 empty-hopper ?p ?v ?1)
(n3 “chute-connected ?v)

formula (and

(ord nl1 n2)

(ord n2 n3)
(xmtially (type ?v hopper) nl)
(before (at-package ?p 7v) nl)
(before (at-vehicle ?v ?1) n1)
(before (at-package ?p ?v) n2)
(before (at-vehicle ?v ?1) n3)
(between (chute-connected ?v) nl n3)

;;, declare-method for loading TANKER truck or traincar
(declare-method load (?p 7v ?1)
.expansion (
(n1 hose-connected 7v)
(n2 valve-open ?7v)
(n3 fill-tank ?v ?p ?1)
(n4 “valve-open ?v)
(n5 “hose-connected ?v)

:formula (and
(ord nl n2)
(ord n2 n3)
(ord n3 n4)
(ord n4 n5)
(initially (type ?v tanker))
(before (at-package 7p ?1) nl)
(before (at-vehicle ?v 71} nl)
(before (at-package ?p ?1} n2)
(between (at-package 7p 7v) n2 n3)
(before (at-vehicle ?v ?1) n3)
(between (hose-connected ?v) nl nb)
(between (valve-open 7v) n2 n4)

)

,;; declare-method for unloading TANKER truck or traincar
(declare-method unload (7p ?v ?1)
expansion (
(nl1 hose-connected ?v)
(n2 valve-open ?v)
(n3 empty-tank ?v ?p ?1)
{n4¢ “valve-open ?v)
(n5 “hose-connected ?v)

formula (and

(ord n1 n2)

(ord n2 n3)

(ord n3 n4)

(ord n4 n5)
(initially (type ?v tanker))
(before (at-package 7p 7v) nl)
(before (at-vehicle ?v ?1) nl)
(between (at-package ?p ?v) n2 n3)
(between (at-vehicle ?v ?1) nl n5)
(between (hose-connected ?v) nl n5)
(between (valve-open ?v) n2 n4)

,;; declare-method for loading LIVESTOCK
(declare-method load (7p ?v 1)
texpansion (
(nl ramp-down ?v)
(n2 trough-full ?v)
(n3 load-livestock ?p ?v ?1)

148

(n4¢ “ramp-down ?v)

formula (and
(ord nl1 n2)
(ord n2 n3)
(ord n3 n4)
(imtially (type ?v livestock))
(initially (type ?p livestock))
(before (at-package 7p ?1) nl)
(before (at-vehicle ?v ?1} nl)
(before (at-package ?p 71) n2)
(between (at-package ?p ?v) n3 n4)
(before (at-vehicle ?v ?1) n4)
(between (ramp-down ?v) nl n3)
(between (trough-full ?v) n2 n4)

)

.1, declare-method for unloading LIVESTOCK
(declare-method unload (?p ?v 71)
:expansion (
(n1 ramp-down ?v)
(n2 unload-livestock ?p ?v ?1)
(n3 clean-interior ?v)
(n4 “ramp-down ?v)

formula (and
(ord nl n2)
(ord n2 n3)
(ord n3 n4)
(initially (type ?v hivestock))
(initially (type ?p livestock))
(before (at-package ?’p ?v) nl)
(before (at-vehicle ?v 71) n1l)
(before (at-package ?p ?v) n2)
(before (at-vehicle ?v 71) n4)
(between (ramp-down ?v) nl n3)

,,, declare-method for loading AUTO truck or traincar with CARS
(declare-method load (?p ?v ?1)
expansion (
(nl1 ramp-down ?v)
(n2 load-cars ?p ?v ?1)
(n3 “ramp-down ?v)

formula (and

(ord n1 n2)

(ord n2 n3)
(initially (type ?v auto))
(initially (type ?p cars))
(before (at-package ?p ?1) nl)
(before (at-vehicle 7v ?1) nl)
(before (at-package ?p ?1) n2)
(between (at-package ?p ?v) n2 n3)
(before (at-vehicle ?v ?1) n3)
(between (ramp-down ?v) nl n3)

)

,;, declare-method for unloading AUTQ truck or traincar with CARS
declare-method unload (?p 7v ?1
P
expansion (
(nl1 ramp-down ?v)
(n2 unload-cars 7p ?v ?I)
(n3 “ramp-down ?v)

:formula (and

(ord n1 n2)

(ord n2 n3)
(xmtially (type ?v auto))
(initially (type ?p cars))
(before (at-package ?p ?v) nl)
(before (at-vehicle ?v 71) nl)
(before (at-package ?p ?v) n2)
(before (at-vehicle ?v ?1) n3)
(between (ramp-down ?v) nl n3)

,;, declare-method for loading AIRPLANE
(declare-method load (?p ?v ?1)
.expansion (
(n1 ramp-connected ?v ?r ?1)

149

ees T ———

(n2 door-open ?v)

(n3 load-package ?p ?v ?1)
(n¢ “door-open ?v)

(n5 “ramp-connected 7v 7r ?1)

:formula (and

(ord nl n2)

(ord n2 n3)

{ord n3 n4)

(ord n4 n5)
(initially (type ?v airplane))
(1mtially (type ?r plane-ramp))
(before (ramp-available ?r) nl)
(before (at-package ?p ?1) nl)
(before (at-vehicle ?v ?1) nl)
(before (at-equipment ?r ?1) nl)
(before (at-package ?p ?1) n3)
(between (at-package ?p ?v) n3 nb)
(before (at-vehicle ?v ?1) n5)
(between (ramp-connected ?r ?p) nl n5)
(between (door-open ?v) n2 n4)

;33 declare-method for unloading AIRPLANE
(declare-method unload (?p ?v ?1)
:expansion (

(n1 ramp-connected ?v ?r 71)
(n2 door-open ?v)
(n3 unload-package ?p ?v ?1)
(n4 “door-open ?v)
(n5 “ramp-connected ?r)

formula (and

(ord n1 n2)

(ord n2 n3)

(ord n3 n4)

(ord n4 n5)
(initially (type ?v airplane))
(initially (type ?r plane-ramp))
(before (ramp-available ?r) nl)
(before (at-package ?p ?v) nl)
(before (at-vehicle 7v ?1) nl)
(before (at-equipment ?r ?1) nl)
(before (at-package ?p ?v) n3)
(before (at-vehicle 7v 71} n5)
(between (ramp-connected ?r 7p) nl n5)
(between (door-open ?v) n2 n4)

(declare-method door-open (?v)
:expansion ((n1 open-door ?v)))
(declare-method “door-open (?v)
-expansion ((nl close-door ?v)))

(declare-method chute-connected(?v)
‘expansion((nl connect-chute ?v)))
(declare-method ~“chute-connected(?v)
.expansion((nl disconnect-chute ?v)))

3

(declare-method hose-connected(?v)
expansion((nl connect-hose ?7v)))

(declare-method “hose-connected(?v)
expansion{(nl disconnect-hose ?v)))

3

(declare-method valve-open(7v)

:expansion ({nl open-valve ?v)})
(declare-method ~valve-open(?v)
:expansion ((n1 close-valve 7v)))

3

(declare-method ramp-down(?v)
.expansion((nl lower-ramp ?v)))

150

(declare-method “ramp-down(?v)
:expansion({n1 raise-ramp ?v}))

B

(declare-method trough-full(?v)
:expansion((n fill-trough ?v)))

B

(declare-method clean-interior(?v)
:expansion((n do-clean-interior ?v)))

3

(declare-method ramp-connected(?v ?r 71)
:expansion({n attach-conveyor-ramp ?v ?r 71)))
(declare-method “ramp-connected(?v ?r 71)
:expansion({n detach-conveyor-ramp ?v ’r 71)})

3

(declare-method guard-outside(?v)
expansion((n post-guard-outside ?v)))
(declare-method ~“guard-outside(?v)
expansion((n remove-guard ?v)})
(declare-method guard-inside(?v)
expansion((n post-guard-inside ?v)))

’

(declare-method warning-signs-affixed (?v)
expansion ((n affix-warning-signs ?v)))
(declare-method “warning-signs-affixed (?v)
:expansion ((n remove-warning-signs 7v)))

B.4 A Sample Problem

(1mtially-true
(RV-COMPATIBLE AIR-ROUTE AIRPLANE)

(RV-COMPATIBLE
(RV-COMPATIBLE
(RV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE
(PV-COMPATIBLE

RAIL-ROUTE TRAINCAR)
RAIL-ROUTE TRAIN)
ROAD-ROUTE TRUCK)
CARS AUTO)
LIVESTOCK LIVESTOCK)
MAIL AIRPLANE)

MAIL MAIL)

VALUABLE ARMORED)
PERISHABLE REFRIGERATED)
GRANULAR HOPPER)
LIQUID TANKER)

BULKY FLATBED)
REGULAR AIRPLANE)
REGULAR MAIL)
REGULAR FLATBED)
REGULAR REGULAR)

(TYPE REGION1 REGION)
(TYPE REGION2 REGION)

(PC-COMPATIBLE CITY1 HAZARDOUS)
(IN-REGION CITY!1 REGION1)
(TYPE CITY1 CITY)

(TYPE CITY1-CL1 NOT-TCENTER)
(IN-CITY CITY1-CL1 CITY1)

(TYPE CITY1-CL1 CLOCATION)
(TYPE CITY1-CL2 NOT-TCENTER)
(IN-CITY CITY1-CL2 CITY1)

(TYPE CITY1.CL2 CLOCATION)
(SERVES CITY1-TS1 CITY1)

(TYPE CITY1-TS1 NOT-HUB)
(AVAILABLE CITY1-TS1)

(TYPE CITY1-TS1 TCENTER)
(IN-CITY CITY1-TS1 CITY1)

(TYPE CITY1-TS1 TRAIN-STATION)

151

3
i

(SERVES CITY1-TS2 CITY1)

(TYPE CITY1-TS2 NOT-HUB)
(AVAILABLE CITY1-T82)

(TYPE CITY1-TS2 TCENTER)
(IN-CITY CITY1-TS2 CITY1)

(TYPE CITY1-TS2 TRAIN-STATION)
(SERVES CITY1-AP1 CITY1)

(TYPE CITY1-AP1 NOT-HUB)
(AVAILABLE CITY1-AP1)

(TYPE CITY1-AP1 TCENTER)
(IN-CITY CITY1-AP1 CITY1)

(TYPE CITY1-AP1 AIRPORT)
(SERVES CITY1-AP2 CITY1)

(TYPE CITY1.AP2 NOT-HUB)
(AVAILABLE CITY1-AP2)

(TYPE CITY1-AP2 TCENTER)
(IN-CITY CITY1-AP2 CITY1)

(TYPE CITY1-AP2 AIRPORT)
(PC-COMPATIBLE CITY2 HAZARDOUS)

(IN-REGION CITY2 REGION2) (TYPE CITY2 CITY)

(TYPE CITY2-CL1 NOT-TCENTER)
(IN-CITY CITY2-CL1 CITY2)
(TYPE CITY2.CL1 CLOCATION)
(SERVES CITY2-AP1 CITY2)
(TYPE CITY2-AP1 NOT-HUB)
(AVAILABLE CITY2-AP1)

(TYPE CITY2-AP1 TCENTER)
(IN-CITY CITY2-AP1 CITY2)
(TYPE CITY2-AP1 AIRPORT)
(SERVES CITY2-TS1 CITY2)
(TYPE CITY2-TS1 NOT-HUB)
(AVAILABLE CITY2.TS1)

(TYPE CITY2-TS1 TCENTER)
(IN-CITY CITY2-TS1 CITY2)
(TYPE CITY2-TS1 TRAIN-STATION)
(PC-COMPATIBLE CITY3 HAZARDOUS)
(IN-REGION CITY3 REGION1)
(TYPE CITY3 CITY)

(TYPE CITY3-CL1 NOT-TCENTER)
(IN-CITY CITY3-CL1 CITY3)
(TYPE CITY3-CL1 CLOCATION)
(SERVES CITY3-AP1 CITY3)
(TYPE CITY3-AP1 NOT-EUB)
(AVAILABLE CITY3-AP1)

(TYPE CITY3-AP1 TCENTER)
(IN-CITY CITY3-AP1 CITY3)
(TYPE CITY3-AP1 AIRPORT)
(SERVES CITY3-TS1 CITY3)
(TYPE CITY3-TS1 NOT-HUB)
(AVAILABLE CITY3-TS1)

(TYPE CITY3-TS1 TCENTER)
(IN-CITY CITY3-TS1 CITY3)
(TYPE CITY3-TS1 TRAIN-STATION)
(SERVES REGION1-AP1 REGION1)
(TYPE REGION1-AP1 HUB)
(AVAILABLE REGION1-AP1)
(TYPE REGION1-AP1 TCENTER)
(IN-CITY REGION1-AP1 CITY2)
(TYPE REGION1-AP1 AIRPORT)
(SERVES REGION1.TS1 REGION1)
(TYPE REGION1.TS1 HUB)
(AVAILABLE REGION1-TS1)

(TYPE REGION1.TS1 TCENTER)
(IN-CITY REGION1-TS1 CITY3)
(TYPE REGION1-TS1 TRAIN-STATION)
(AVAILABLE ROAD-ROUTE-1)

(CONNECTS ROAD-ROUTE-1 ROAD-ROUTE CITY3 CITY1)
(CONNECTS ROAD-ROUTE-1 ROAD-ROUTE CITY1 CITY3)

(AVAILABLE ROAD-ROUTE-2)

(CONNECTS ROAD-ROUTE-2 ROAD-ROUTE CITY3 CITY?2)
(CONNECTS ROAD-ROUTE-2 ROAD-ROUTE CITY2 CITY3)

(AVAILABLE AIR-ROUTE-1)
(CONNECTS AIR-ROUTE-1 AIR-ROUTE
(CONNECTS AIR-ROUTE-1 AIR-ROUTE
(AVAILABLE AIR-ROUTE-2)
(CONNECTS AIR-ROUTE-2 AIR-ROUTE
(CONNECTS AIR-ROUTE-2 AIR-ROUTE
(AVAILABLE AIR-ROUTE-3)
(CONNECTS AIR-ROUTE-3 AIR-ROUTE
(CONNECTS AIR-ROUTE-3 AIR-ROUTE
(AVAILABLE AIR-ROUTE-4)
(CONNECTS AIR-ROUTE-4 AIR-ROUTE
(CONNECTS AIR-ROUTE-4 AIR-ROUTE
(AVAILABLE RAIL-ROUTE-1)

CITY2-AP1 CITY1-AP1)
CITY1-AP1 CITY2-AP1)

REGION1-AP1 CITY1-AP1)
CITY1-AP1 REGION1-AP1)

REGION1-AP1 CITY3-AP1)
CITY3-AP1 REGION1-AP1)

CITY1-AP2 CITY1-AP1)
CITY1-AP1 CITY1.AP2)

(CONNECTS RAIL-ROUTE-1 RAIL-ROUTE CITY1-TS2 CITY1-TS1)
(CONNECTS RAIL-ROUTE-1 RAIL-ROUTE CITY1-TS1 CITY1-TS2)

(AVAILABLE RAIL-ROUTE-2)

152

(CONNECTS RAIL-ROUTE-2 RAIL-ROUTE CITY2-TS1 CITY1-TS1)
(CONNECTS RAIL-ROUTE-2 RAIL-ROUTE CITY1-TS1 CITY2-TS1)

(AVAILABLE RAIL-ROUTE-3)

(CONNECTS RAIL-ROUTE-3 RAIL-ROUTE REGION1-TS1 CITY1-TS1)
(CONNECTS RAIL-ROUTE-3 RAIL-ROUTE CITY1-TS1 REGION1-TS1)

(AVAILABLE RAIL-ROUTE-4)

(CONNECTS RAIL-ROUTE-4 RAIL-ROUTE REGION1-TS1 CITY3-TS1)
(CONNECTS RAIL-ROUTE-4 RAIL-ROUTE CITY3-TS1 REGION1-TS1)

(RAMP-AVAILABLE RAMP1A)
(AVAILABLE RAMP1A)
(AT-EQUIPMENT RAMP1A CITY1-AP1)
(TYPE RAMP1A PLANE-RAMP)
(RAMP-AVAILABLE RAMP1B)
(AVAILABLE RAMP1B)
(AT-EQUIPMENT RAMP1B CITY1-AP2)
(TYPE RAMP1B PLANE-RAMP)
(RAMP-AVAILABLE RAMP?2)
(AVAILABLE RAMP2)

(AT-EQUIPMENT RAMP2 CITY3-AP1)
(TYPE RAMP2 PLANE-RAMP)
(RAMP-AVAILABLE RAMP3)
(AVAILABLE RAMP3)

(AT-EQUIPMENT RAMPS CITY2-AP1)
(TYPE RAMP3 PLANE-RAMP)
(RAMP-AVAILABLE RAMP4)
(AVAILABLE RAMP4)

(AT-EQUIPMENT RAMP4 REGION1-AP1)
(TYPE RAMP4 PLANE-RAMP)
(AVAILABLE ROAD-ROUTE-I1547)
(CONNECTS ROAD-ROUTE-I1547 ROAD-ROUTE CITY2 CITY1)
(AVAILABLE ROAD-ROUTE-11548)
(CONNECTS ROAD-ROUTE-I1548 ROAD-ROUTE CITY1 CITY?2)
(AT-PACKAGE PXG-1 CITY1-CL1)

5
H

(TYPE PKG-1 NOT-HAZARDOUS)
(TYPE PKG-1 VALUABLE)

(TYPE PKG-1 REGULAR)
(GUARD-INSIDE TRUCK-1)
(AVAILABLE TRUCK-1)

(TYPE TRUCK-1 NOT-TRAINCAR)
(AT-VEHICLE TRUCK-1 CITY1-CL2)
(TYPE TRUCK-1 ARMORED)
(TYPE TRUCK-1 REGULAR)

(TYPE TRUCK-1 TRUCK))

,sample input task network
(setq in-tn (create-tn T (n at-package PKG-1 CITY1-CL2)))

153

Bibliography

(1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1976.

(2] J. Allen, J. Hendler, and A. Tate. Readings in Planning. Morgan Kaufman, 1990.

[3] James Allen, Henry Kautz, Richard Pelavin, and Josh Tenenberg. Reasoning about
Plans. Morgan-Kaufmann, 1991.

[4] Scott Andrews, Brian Kettler, Kutluhan Erol, and Jaes Hendler. UM Translog: A
planning domain for the development and benchmarkingof planning systems. Techni-
cal Report CS-TR-3487, University of Maryland at College Park, Dept. of Computer
Science, 1995.

[5] F. Baader. A formal definition for expressive power of knowledge representation lan-
guages. In 9th Furopean Conference on Artificial Intelligence, Stockholm, Sweden,
August 1990.

[6] F. Bacchus and Q. Yang. Downward refinement, and the efficiency of hiearchical problem
solving. Artificial Intelligence, Vol. 71, 1994.

[7] C. Backstrom and P. Jonsson. Planning with abstraction hierarchies can be exponen-
tially less efficient. In Proc. IJCAI-95, Montreal, 1995.

[8] Christer Backstrom and Inger Klein. Planning in polynomial time: the sas-pubs class.
Computational Intelligence, pages pp. 181-197, 1991.

[9] A. Barrett. Frugal task decomposition. Technical Report Unpublished manuscript,
Computer Science Dept., University of Washington, Seattle, Washington, June 1995.

[10] A. Barrett and D. Weld. Partial order planning. Technical Report TR 92-05-01, Com-
puter Science Dept., University of Washington, Seattle, Washington, June 1992.

[11] J. Blythe, O. Etzioni, Y. Gil, R. Joseph, A. Perez, S. Reilly, M. Veloso, and X. Wang.
Prodigy 4.0: The manual and tutorial. Technical report, School of Computer Science,
Carnegie Melon University, Pittsburg, Pennsylvenia, 1992.

[12] T. Bylander. Complexity results for planning. In IJCAI-91, pages 274-279, 1991.

154

[13]

[14]
[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

T. Bylander. Complexity results for extended planning. In First Internat. Conf. Al
Planning Systems, 1992.

T. Bylander. An avarage-case analysis of planning. In AAAI-98, pages 480-485, 1993.

David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333-378,
1987.

Gregg Collins and Louise Pryor. Achieving the functionality of filter conditions in a
partial order planner. In AAAI-92, pages 375—380, 1992.

K. Currie and A. Tate. O-plan: the open planning architecture. Artificial Intelligence,
November 1991.

Thomas Dean. Time map maintenance. Technical Report TR 289, Yale University, New
Haven, Connecticut, October 1983.

M. E. Drummond. Refining and extending the procedural net. In James Allen, James
Hendler, and Austin Tate, editors, Readings in Planning, pages 667-674. Morgan Kauf-
man, 1990.

Kutluhan Erol, James Hendler, and Dana Nau. Complexity results for hierarchical task-
network planning. Annals of Mathematics and Artificial Intelligence, (CS-TR-3240,
UMIACS-TR-94-32), 1994.

Kutluhan Erol, James Hendler, and Dana Nau. Semantics for hierarchical task network
planning. Technical Report CS-TR-3239, UMIACS-TR-94-31, Computer Science Dept.,
University of Maryland, College Park, Maryland, March 1994.

Kutluhan Erol, Dana Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning. Artificial Intelligence, 1995.
To appear.

R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and executing generalized robot
plans. In James Allen, James Hendler, and Austin Tate, editors, Readings in Planning,
pages 189-206. Morgan Kaufman, 1990.

R. E. Fikes and N. J. Nilsson. Strips: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3/4):189-208, 1971.

E. C. Freuder and A. K. Mackworth. Special volume on constraint-based reasoning.
Artificial Intelligence, 58, 1992.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

155

Eatad Y

L

[27} R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation
for Computer Science. Addison-Wesley, 1989.

[28] Naresh Gupta and Dana S. Nau. On the complexity of blocks-world planning. Artificial
Intelligence, bf 5 :2-3:223-254, 1992.

[29] Naresh Gupta and Dana S. Nau. On the complexity of blocks-world planning. Artificial
Intelligence, 2-3:223-254, 1992.

[30] Steven Hanks and Daniel S. Weld. Systematic adaptation for case-based planning. In
First Internat. Conf. AI Planning Systems, pages 96-105, June 1992.

[31] James Hendler. Al Planning Systems. Morgan Kaufmann Publishing, Palo Alto, CA.
To appear.

[32] Hopcroft and Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley Publishing Company Inc., 1979.

[33] Subbara Kambhampati and James. Hendler. A validation structure based theory of
plan modification and reuse. Artificial Intelligence, May 1992.

[34] Subbarao Kambhampati. Characterizing multi-contributor causal structures for plan-
ning. In First Internat. Conf. AI Planning Systems, Tempe, Arizona, June 1992.

[35] Subbarao Kambhampati. On the utility of systematicity: understanding trade-offs be-
tween redundancy and commitment in partial-ordering planning. Technical report, Ari-
zona State University, Tempe, Arizona, December 1992.

[36] Subbarao Kambhampati. On the utility of systematicity: Understanding tradeoffs be-
tween redundancy and commitment in partial-order planning. In IJCAI-93, Chambery,
France, 1993.

[37] Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang. Planning as refinement
search: A unified framework for evaluating design tradeoffs in partial order planning.
Artificial Intelligence, To appear. To appear.

[38] Subbarao Kambhampati and Dana S. Nau. On the nature and role of modal truth
criteria in planning. Artificial Intelligence, 1994.

[39] Laveen Kanal and V. Kumar. Search in Artificial Intelligence. Springer-Verlag, 1988.

[40] Brian. P. Kettler. Case-based planning with a massively parallel memory. Technical
report, Dept. of Computer Science, University of Maryland,College Park, College Park,
MD., 1995. In Preparation.

[41] Craig A. Knoblock. An analysis of abstrips. In Proceedings of the first International
conference on Al Planning Systems, pages 126-135, 1992.

156

[42]

[43]

[44]

[45]

[46]
[47]

(48]

[49]

[50]

[51]

[52]
[53]

Janet Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, 1993.

Amy L. Lansky. A representation of parallel activity based on events, structure, and
causality. In M. Georgeff and A. Lansky, editors, Reasoning About Actions and Plans,
pages 123-160. Morgan Kaufmann, 1987.

Amy L. Lansky. Localized event-based reasoning for multiagent domains. Computational
Intelligence Journal, 1988.

Vladimir Lifschitz. On the semantics of strips. In James Allen, James Hendler, and
Austin Tate, editors, Readings in Planning, pages 523-531. Morgan Kaufman, 1990.

D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In AAAI-91, 1991.

J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence, bf 4:463-502, 1969.

D. McDermott. Flexibility and efficiency in a computer program for designing circuits.
Technical Report TR-40, Massachusetts Institute of Technology, 1977.

S. Minton, J. Bresna, and M. Drummond. Commitment strategies in planning. In
IJCAIL-91, 1991.

S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts: a heuristic

repair method for constraint satisfaction and scheduling problems. Artificial Intelligence,
December 1992.

A. Newell and J. A. Simon. Gps, a program that simulates human thought. In E. A.
Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279-293. R. Old-
enbourg KG, 1963, 1963.

N. Nilsson. Principles of Artificial Intelligence. Morgan-Kaufmann, 1980.

Edwin P. D. Pednault. Synthesizing plans that contain actions with context-dependent,
effects. Computational Intelligence, bf 4:356-372, 1988.

J.S. Penberthy and D.S. Weld. Ucpop: A sound, complete, partial order planner for
adl. In Proceedings of the Third International Conference on Knowledge Representation
and Reasoning, October 1992.

M. A. Peot. Conditional nonlinear planning. In First Internat. Conf. AI Planning
Systems, pages 189-197, 1992.

M. A. Peot and D. Smith. Threat removal strategies for partial-order planning. In
AAAI-93, pages 492-499, Washington D.C., 1993.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, 1995.

157

[58] E. D. Sacerdoti. A Structure for Plans and Behaviour. Elsevier-North Holland, 1977.

[59] E. D. Sacerdoti. The nonlinear nature of plans. In James Allen, James Hendler, and
Austin Tate, editors, Readings in Planning, pages 162-170. Morgan Kaufman, 1990.

[60] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. In James Allen, James
Hendler, and Austin Tate, editors, Readings in Planning, pages 98-109. Morgan Kauf-
man, 1990.

[61] D. Smit and M. A. Peot. Postponing threads in partial-order planning. In AAAI-93,
pages 500-506, Washington D.C., 1993.

[62] Mark Stefik. lanning with constriants. In James Allen, James Hendler, and Austin
Tate, editors, Readings in Planning, pages 171-185. Morgan Kaufman, 1990.

[63] G.J. Sussman. A Computational Model of Skill Acquisition. American Elsevie, 1975.

[64] A. Tate. Generating project networks. In James Allen, James Hendler, and Austin
Tate, editors, Readings in Planning, pages 291—296. Morgan Kaufman, 1990.

[65] A. Tate, B. Drabble, and J. Dalton. The use of condition types to restrict search in an
ai planner. In AAAI-9/, pages 1129-1134, 1994.

[66] A. Tate, J. Hendler, and D. Drummond. Ai planning: Systems and techniques. A[
Magazine, UMIACS-TR-90-21, CS-TR-2408:61-77, 1990.

[67] Manuela Veloso. Learning by analogical reasoning in general problem solving. Technical
report, Carnegie Mellon University, School of Computer Science, 1992.

[68] Manuela Veloso and Jim Blythe. Linkability: Examining causal link commitments in
partial-order planning. In Second Internat. Conf. AI Planning Systems, Chicago, 1994.

[69] S. A. Vere. Planning in time: Windows and durations for activities and goals. [EEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(3):246-247, 1983.

[70] R. Waldinger. Achieving sevaral goals simultaneously. In James Allen, James Hendler,
and Austin Tate, editors, Readings in Planning, pages 118—139. Morgan Kaufman,
1990.

[71] D. H. D. Warren. Extract for apic studies in data processing. In James Allen, James
Hendler, and Austin Tate, editors, Readings in Planning, pages 140-153. Morgan Kauf-
man, 1990.

[72] D. Wilkins. Practical Planning: Extending the classical Al planning paradigm. Morgan-
Kaufmann, 1988.

138

[73] D. E. Wilkins. Domain-independent planning: Representation and plan generation. In
James Allen, James Hendler, and Austin Tate, editors, Readings in Planning, pages
319-335. Morgan Kaufman, 1990.

[74] Q. Yang. Formalizing planning knowledge for hierarchical planning. Computational
Intelligence, 6:12-2, 1990.

[75] Q. Yang. Understanding the essence of nonlinear planning. Technical report, Computer
Science Department, University of Waterloo, 1991.

[76] Q. Yang, D. S. Nau, and J. Hendler. Merging separately generated plans with restricted
interactions. Computational Intelligence, February 1993.

[77] Q. Yang, J. Tenenberg, and S. Woods. Abstraction in nonlinear planning. Technical
Report TR CS-91-65, University of Waterloo, Dept. of Computer Science, 1991.

[78] R. M. Young, M. E. Pollack, and J. D. Moore. Decomposition and causality in partial-
order planning. In Second Internat. Conf. AI Planning Systems, Chicago, 1994.

159

