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Abstract

The termgait recognitionis typically used to signify the identification of individsan image se-
guences ‘by the way they walk’. There is an increased intémggait as a biometric, mainly due to its
non-intrusive as well as non-concealable nature. Considlerresearch efforts are being devoted in the
computer vision community to characterize and extract ggitamics automatically from video. The
objective is to use gait as a filter (indicator) to effectivehhance the overall recognition performance
of a system that uses multiple modalities. In this propagalpresent (describe) two different gait recog-
nition methods; a non-parametric method that uses thesselitarity plot of a walking sequence as the
input feature for classification; and a parametric methodttbstimates the spatiotemporal parameters
of gait (the cadence and stride length) and exploits theiedir relationship as a cue for identifica-
tion. Finally, because carried loads are gait-altering, aso present a motion-based method to detect
whether a walking person carries an object (load).
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Chapter 1

Introduction

Recently, gait recognition has received growing interagiiwthe computer vision community, due to
its emergent importance as a biometric [10, 4]. The tgait recognitionis typically used to signify
the identification of individuals in image sequences ‘by weey they walk’. It can also refer to the
recognition of different types of human locomotion, suchaming, limping, hopping, etc. The former
usage of the term shall be assumed throughout this progusagver.

A major impetus for gait recognition research lies in psyahsical experiments with Moving Light
Displays (MLDs) pioneered by Johansson [27]. Johanssasisdkperiments demonstrated the ability
of human subjects to recognize the type of movement of a pexsiely from observing the 2D motion
pattern generated by light bulbs attached to the personlgBexperiments later showed some indication
that even the identity of a familiar person (‘a friend’) [8k well as the gender of the person [13], might
be recognizable from MLDs.

These experiments not only provided insight about motiaiecgg@ion in the human visual system,
they also brought about evidence suggesting that motidempatgenerated by the human gait encode
information that is characteristic of (and sometimes ueaitp) the moving person. The goal of gait
recognition research is to determine how that informatiam lzse extracted from images.

The fact that each person seems to have a distinctive (idepatic) way of walking is hardly sur-
prising from a biomechanics standpoint [52]. Human amibutatonsists of synchronized integrated
movements of hundreds of muscles and joints in the body.oéilgh these movements follow the same
basic pattern for all humans, they seem to vary from one iddal to another in certain details such as
their relative timing and magnitudes. Much research in @onanics and clinical gait analysis (among
others) is devoted to the study of the inter-person and-peraon variability of gait (albeit not for the
purpose of recognition, but rather to determine normal aghg@ogical ranges of variation). The major
sources of inter-person variability are attributed to ptglsmakeup, such as body mass and lengths of
limbs, while the sources for intra-person variability armgs like walking surface, footwear, mood and
fatigue [26, 52, 40]. Nonetheless, the gait of any one imtligi is known to be fairly repeatable when
walking under the same conditions.

This intra-person consistency and inter-person varigtalie what makes gait suitable (desirable) for
use as a biometric.

Having established that gait as a biometric does have patenhat makes this problem challenging
and novel from a computer vision viewpoint, however, is thatomatic extraction of gait parameters
(i.e. such as joint positions) requires feature trackinigiclv cannot always be done robustly over long



sequences, due to for example occlusions by clothing, @sindighting, and image noise, all of which

are inherent to real imagery of natural scenes. Video-bgsédanalysis methods rely on markers,
wearable instruments or special walking surfaces [40]ctviare not appropriate for a computer vision
approach, since direct participation (or cooperationhefdubject under study cannot be assumed.

In this proposal, we present two gait recognition techrsdaegth of which take a motion-based recog-
nition approach [9], and use correspondence-free imaderésato extract and characterize gait motion
patterns from video. Both techniques are also robust tditngcerrors, and changes of lighting and
clothing.

In the first method, a sequence of images of a walking perséirsismapped to a 2D feature con-
sisting of the matrix of self-similarities between eachrmdiimages in the sequence. We contend that
this feature encodes a projection of the planar dynamicaibf gnd which can be used for gait recog-
nition much the same way as a face image is used to identifysope We use principal components
analysis (PCA) to reduce the dimensionality of this feagpace, and k-nearest neighbor rule for gait
classification in the reduced space, termedBEigengait Because the technique is not view-invariant,
we investigate recognition performance as a function ohghreg camera viewpoint.

The second method takes a parametric approach insteadtim éxplicitly estimates actual gait pa-
rameters. Specifically, given a calibrated camera and leayd of the plane of walking, the method
exploits the periodicity of human walking to accuratelyirstte the cadence and stride length (also
known as the spatio-temporal parameters of gait). It alptoés the (known) linear functional relation-
ship between cadence and stride length to identify an unkrpmrson in an existing database of people
from his/her estimated cadence and stride length.

An important question that arises (or should arise) in ariyrgaognition algorithm is whether or not
it is invariant to gait-altering factors, such as footwesanface of walking, and load-carrying (i.e. when
the person is carrying something). We expect that both iqalks are generally not invariant to load-
carrying, and we describe a method to detect whether a vgpfiénson carries an object (load), so that
gait recognition is only attempted under non-load-cagytonditions. This method is view-invariant
and uses binary shape and periodicity cues.

The rest of this proposal is organized as follows. In Chapteve present a survey of existing vision
methods that are of, or related to, gait recognition, andgammthem with our techniques. Chapter 3 de-
scribes the proposed non-parametric gait recognitiomigale, and Chapter 4 the parametric technique.
In Chapter 5, we describe our method for determining whenlkimgaperson is carrying an object.



Chapter 2

Survey of Related Work

Gait recognition can be generally related to human motialyais methods (i.e. vision methods that
detect, track and/or recognize human movement), and meo#ally to methods that deal with whole-
body human movement.

2.1 Human Movement Analysis

The extraction and characterization of human movement frigi@o spans several research areas of
computer vision, such as gesture recognition, actiowiactiecognition, lipreading and person identifi-
cation from gait (or gait recognition). Good comprehensirereys on this topic are in [9, 1, 17].

Existing methods can be grouped into: (i) structural meshachich recover a structural model of
the human body and use this structure for motion recogn[@8n 24, 2, 45, 18, 7, 36, 46], and (i)
non-structural methods, which directly model, extract eexbgnize the motion patterns generated by
any particular body movement [53, 39, 37, 30, 25, 22, 12].

2.1.1 Structural Methods

In SFM-based methods, a set of body points are tracked (asult of body structure recovery), and
their motion trajectories are used to characterize, an@llyerecognize the motion or action performed
by the body. Note that this approach emulates MLD-basedam@igrception in humans, since the body
part trajectories are in fact identical to MLD-type stimulurthermore, this approach is supported by
biomedical gait research [38] which found that the dynaroica certain number of body parts/points
totally characterize gait. However, because tracking hatys in 3D over a long period of time remains
a challenge in vision, the effectiveness of SFM-based nasthemains limited.

A 2D or 3D structural model of the human body is assumed, adg pose is recovered by extracting
image features and mapping them to the structural compsoéttie model (i.e. body labelling). Hence
a human is detected in the image if there exists a labelliatfiis the model well enough (based on some
measure of goodness of fit) [23, 24, 45, 18, 46]. Once a perasiéen detected and tracked in several
images, motion recognition is done based on the tempolattaies of the body parts, typically by
mapping them to some low-dimensional feature vector and @ipplying standard pattern classification
techniques [2, 48, 36].



2.1.2 Structure-free Methods

Motion-based recognition methods, on the other hand, cterrae the motion pattern of the body,
without regard to its underlying structure. Two main apies exist; one which represents human
movement as a sequence (i.e. discrete number) of poseglo@tions; and another which characterizes
the spatiotemporal distribution generated by the motidtsinontinuum.

To recognize a moving object (or person), these methodsactaize its motion pattern, without
regard to its underlying structure. They can be furtherddidi into two main classes. The first class
of methods consider the human action or gait to be compris@edsequence of poses of the moving
person, and recognize it by recognizing a sequence of statifigurations of the body in each pose
[37, 25, 22]. The second class of methods characterizesptiteogemporal distribution generated by
the motion in its continuum, and hence analyze the spatidltamporal dimensions simultaneously
[39, 43, 14, 31, 30, 12].

State-space Methods

These methods represent human movement as a sequenceastagurations. Each configuration is
recognized by learning the appearance of the body (as aidanat its color/texture, shape or motion
flow) in the corresponding pose.

Spatiotemporal Methods

Here, the action or motion is characterized via the entirs@atiotemporal (XYT) data volume spanned
by the moving person in the image. It could for example cdridishe sequence of grey-scale images,
optical flow images, or binary silhouettes of the personsMolume is hence treated as a ‘large’ vector,
and motion recognition is typically done by mapping thisteedo a low-dimensional feature vector,
and applying standard pattern classification techniquéaisidpace. The following methods describe
different ways of doing this.

2.2 Whole-body Movement Analysis

Existing vision methods that analyze whole-body human mmaré can be classified into (1) gait
recognition methods [39, 37, 30, 25, 10, 22], which idenpi&ople from their gait (i.e. the ‘way they
walk’), (2) human detection methods which essentiallysifgsnoving objects as human or non-human
[53, 12, 46], and (3) human motion classification [8, 36], evhrecognize different types of human
locomotion, such as walking, running, limping, etc.

Niyogi and Adelson [39] extract four silhouette signatunés moving persong;(y,t),: =0, 1,2, 3,
two of which correspond to the outer boundaries of the peraod the other two to the inner edges of
each leg. Each signature is normalized via spatial and teahpbgnment and scaling (i.e. so that it
is stationary in the image and has a fixed height, a fixed penmta fixed phase). These normalized
signature defines a spatiotemporal sheet over the entirgeim@quence. Gait recognition is done by
matching these sheets for the model gait and input gait.

Yasutomi and Mori [53] describe a human detection methotldbaputes cadence and stride length
based on periodicity of human motion, and classifies the ngpabject as ‘human’ based on the likeli-
hood of the computed values in a normal distribution of hunvatking. Like in our method, they use
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a calibrated camera to recover the 3D position of the persoa known plane and compute the stride
length based on the ground plane distance number of stemdlékch However, while we use cadence
and stride length for recognition (i.e. person identificaji they use them for human detection.

Murase and Sakai [37] describe a template matching methachwises the parametric eigenspace
representation as applied in face recognition [49]. Spdifi, they use PCA (Principal Component
Analysis) to compute a 16-dimensional manifold for all thesgible grey-scale images of a walking
person. An input sequence of images (after normalizat®hence mapped to a trajectory in this 16-
dimensional feature space, and gait recognition is actibyecomputing the distance between the tra-
jectories of the input image sequence and a reference seguen

Little and Boyd [30] perform a non-parametric method of pargdentification. They first compute
the optical flow of people walking parallel to the image plaaed compute a best-fitting ellipse on the
flow. Various statistics of this ellipse are used to idengpi&ople. The method is not view invariant, and
has not been shown to be robust to lighting or clothing change

Huang et al. [25] use a similar technique, as they apply PGAap the binary silhouette of the moving
figure to a low dimensional feature space. The gait of an iddal person is represented as a cluster (of
silhouettes) in this space, and gait recognition is donedtgrdhining if all the input silhouettes belong
to this cluster.

He and Debrunner [22] recognize individual gaits via an HMidttuses the quantized vector of Hu
moments of a moving person’s silhouette as input.

Cutler and Davis [12] describe a method for human detectiorebognizing specific periodic pat-
terns in thesimilarity plot, a 2D matrix of all pairwise image matching correlationseylalso use the
periodicity of these similarity plots to estimate the striof a walking and running person, assuming a
calibrated camera. They contend that stride could be usabiasnetric, though they have not conducted
any study showing how useful it is as a biometric.

2.3 Carried Object Detection

Haritaoglu'sBackpacK20] system is the only work we know of that addresses theiippcoblem of
carried object detection for video surveillance applimasi. Like our methodBackpackuses both shape
and motion cues. It first locatestlier regions or significantly protruding regions, of the silhouette via
static shape analysis that segments silhouette regiongdiate the symmetry assumption of the human
body. Each outlier region is then classified as being pahetarried object or of the body based on the
periodicity of its vertical silhouette profile.

Implicit in this method is the assumption that aperiodiclieutregions correspond to the carried
object and periodic regions to the body. However, for thid¢otrue, the following must hold: the
person’s silhouette is perfectly symmetric (so that notrteny non-symmetric regions are detected),
and the legs and arms are the only protruding body parts &@#riodic non-symmetric regions truly
correspond to body parts). This can often fail for a varidtiyeasons. For example, the axis of symmetry
(which is computed as the blob’s major axis) is very sersitivdetection noise, as well as to the size
and shape of the carried object itself. Also, using a haaalty-determined threshold to filter out small
non-symmetric regions makes this method less robust. Ogdghigamethod can be more efficient and
robust is by constraining the location and number of nonsaginic regions a priori, since the vertical
profile of regions other than the legs and arms are generallgeriodic.

Like Backpack we use a silhouette signature shape feature to capturestigity of the human



body. A major difference lies in that we analybeth the periodicity and magnitude of these shape
features over time to detect the carried object, and onlgtae shape analysis in the final segmentation
phase of the object. Another important difference is thaewmicitly constrain the location of the object

to be either in the arms region and/or legs region, since ssdrabove, the silhouette signature of the

region above the arms are not periodic.



Chapter 3

Eigengait: a Non-parametric Gait Recognition
Method

We know from biomechanics that the dynamics of gait can dg @hlaracterized via the kinematics of a
handful of body landmarks such as limbs and joints [26]. Tiodlem with taking this approach in a vi-
sion algorithm is that it requires feature tracking (to agtijoint positions for example), which typically
cannot be done robustly over long image sequences witheuwts of special markers. Furthermore, we
may not necessarily need to extract the complete gait dyssimiorder to discriminate different gaits.
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Figure 3.1. Overview of Method.
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This chapter describes a motion-based recognition teakrtigat uses a correspondence-free image
feature for gait classification. Specifically, it maps a sawe of images of a walking person to a
similarity plot (SP), the matrix of self-similarities between each pairm&ges of the person in the
sequence. We contend that this 2D feature encodes a parjedtithe planar dynamics of gait, and
hence a signature of gait dynamics. We shall use this sigmasithe gait biometric of choice.

The proposed method essentially treats a similarity plathntbhe same way that the Eigenfaces tech-
nique [49] treats a face image; it uses Principal comporamdsysis to reduce the dimensionality of the
feature space, then applies some supervised patternfidassn technique (k-nearest neighbor rule in
our case) in the reduced feature space for recognition.

An oveview diagram of the method is shown in Figure 3.1. Anutiphage sequence is first processed
to segment the moving person from the background and trackheach frame. The obtained sequence
of blobs of the person are then properly aligned and scaleduimiform size (dimensions), to account
for tracking errors, as well as any depth changes that ooquwn-frontoparallel walking. The similarity
of each pair of these blobs is then computed, to obtain aaiityilplot of the person. For recognition,
the similarity plot is mapped (projected) to a small feategetor in Eigengait space, which is then used
for classification. The Eigengait space vectors are conggata training phase by applying PCA to the
similarity plots of a set of known (labeled) people.

In the sequel, we first present the assumptions of the methed,we describe the method in detail,
and finally we present a set of experiments in which we testiéthod on walking sequences of multiple
subjects, taken on different days and from different cameapoints.

3.1 Assumptions

The method makes the following assumptions:
e People walk on a known plane with constant velocity for at®dtseconds.
e The frame rate is greater than twice the frequency of theinglk

e The camera is static.

3.2 Computing Similarity Plots

Since the camera is assumed to be stationnary, we use baokignodeling and subtraction [15] to
segment moving objects in each frame. To track an object, seeausimple correspondence method
based on the overlap of blob bounding boxes in any two cotiseduames [21].

LetC,,, Cy,, .., Cy, betheN blobs obtained from tracking a personinconsecutive frames. Because
of the pendular-like oscillatory motion of the legs and arthe person’s size in the image changes at
the frequency of gait, and so these blobs do not have idéstiss (i.e. width and height dimensions).

If we assume fronto-parallel walking, then blob size vaassa stationary process and the average
blob size is almost constant, as illustrated by Figure 3e2.us denote the average height and width by
H andW, respectively. The similarity of any two blolis, andC;,, forall 1 < ¢,,¢, < N, is then
computed as follows:

Stl,tz = min Z |Ct1 (.’L‘ + d.’L‘, Y+ dy) - Ct2 (xla y,)| (31)

|dz,dy|<r
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whereB;, and B;, are equal rectangular regions of heightand width1¥, centered at the centroids of
Cy, andCy,, respectively(x, y) and(z', y') are corresponding pixels i;, and B,, respectively; and

is a small search radius that accounts for small tracking®riT his is illustrated by Figure 3.2(c); green
boxes correspond to the actual bounding box of a blob, anbores correspond to the average lg)x
used to compute the similarity plot.

If the person is not walking fronto-parallel, however, thée blobs need to be scaled to the same
dimensions, before computing their similarities. Thisesdéuse the average blob size changes (increases
or decreases) linearly. Figure 3.3 and Figure 3.4 illustrtvo examples in which the blob dimensions
oscillate with an increasing and decreasing trend, res@#¢t Hence, the dimensions of the blobs are
analyzed, and if a linear trend is detected, then they argcaled down to the size of the smallest blob
using a Mitchell filter [11]. Note that it is also possible ttate each pair of blobs separately, i.e. compute
S(t1,ts) by scaling blobC;, to the size of blol™,, .

130

— Blob Height
— Blob Width

AN S~

(c)

Figure 3.2. (a) One frame of a fronto-parallel walking seque  nce. (b) Dimensions (width and height)
of the person blob oscillate as a stationary process. (c) Fir st few blobs of person segmented from
background; green boxes are actual blob bounding boxes; red boxes bound blob area used to
compute similarity plot.

Note that the blob similarity measure in Equation 3.1 cang@ied to any one of:

e Binary silhouettes.

e Grey (color) silhouettes, without background.

12



L L L L L L L L
20 40 60 80 100 120 140 160 180
frame

(a) (b)

Figure 3.3. (a) First frame of a sequence where personwalksn  on-fronto-parallel, closerto the camera.
(b) Dimensions of corresponding blob oscillate with an increasing linear trendindicated by the red
line).

— Blob Height
— Blob Width

L L L L
50 100 150 200 250
frame

(a) (b)
Figure 3.4. (a) First frame of a sequence where person walks n  on-fronto-parallel, further from the

camera. (b) Dimensions of corresponding blob oscillate wit h an decreasing linear tren@dndicated
by the red line).

13



e Grey (color) silhouettes, with background.

though each has its own merits and drawbacks, and it is netttlirobvious which is best to use. For
example, 1 and 2 are sensitive to segmentation errors; 2 ane 8ot invariant to change of person’s
clothing and scene lighting; 3 is not invariant to changenaslbackground scene.

3.2.1 Properties
The similarity plot,S, of a walking person has the following properties:

1. S(t,t) = 0, i.e. it has a dark main diagonal.

(t,
2. S(t1,t3) = S(t2, 1), i.€. itis symmetric along the main diagonal.
3. S(t1,kp/2+t;) ~ 0, i.e. it has dark lines parallel to the main diagonal (thediffigonals).
4. 5(

S(ti, kp/2—t;) ~ 0, i.e. it has dark lines perpendicular to the main diagote ¢ross-diagonals).

wherety, t, € [1, N], pis the period of walking, andl is an integer. The first two properties are generally
true for any similarity function (though the second propermay not hold if substantial image shifting
and scaling are required). The latter two are a direct caressee of the periodicity and the bilateral
symmetry, respectively, of the human gait.

Furthermore, the intersections of the off-diagonals ambsidiagonals encode the frequency and
phase of walking [12]. Specifically, each intersection esponds to combination of two of the four key
poses of the gait: (i) when the two legs are furthest aparttiaadeft leg is leading, (ii) when the two
legs are joined together and the right leg is leading, (ihewthe two legs are furthest apart and the left
leg is leading, and (iv) when the two legs are joined togedimer the left leg is leading, as illustrated by
Figure 3.5. These poses shall be denoted3, C, and D, respectively. Due to the bilateral symmetry
of human walking, posed andC, and pose®3 and D are very similar in appearance when the person
is walking fronto-parallel to the camera. However, as the@&a viewpoint deviates away from fronto-
parallel, the similarity betweeB and D decreases rapidly to zero, while the similarity betweeand
C generally only decreases to a small non-zero value.

Note that, since these intersections correspond to théeicéma of S, the frequency and phase of
gait can hence be automatically estimated by finding thermarof.S, as we shall explain later.

The reason that' encodes the frequency and phase of gait may be explainedebfa¢hthat it is
(approximately) a projection of the planar dynamics of ttedkimg person when viewed sufficiently far
from the camera, as argued in [12]. Intuitively, this is hessS is obtained via a sequence of trans-
formations (image projection and correlation matching)liegal to the set of 3D points on the person’s
body. It can be shown that these transformations presen@irtg@roperties of the dynamics of these
points (and hence of the gait dynamics).

3.3 Gait Classifier
As mentioned in the previous section, the similarity pla jgrojection of the dynamics of the walking
person that preserves the frequency and phase of the gaitjudstion then arises as to whether this pro-

jection preserves more detailed (higher-dimensionalgetspof gait dynamics, that capture the unique
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(@ (b) (c)

Figure 3.5. (a) Key poses in one cycle of a walking gait. (b) Si ~ milarity plot S of the corresponding
sequence. (c) Intersections of dark linesin S correspond to combinations of key poses.

way a person walks. In other words, does a similarity plotamnsufficient information to distinguish
(not necessarily uniquely) the walking gaits of differeebple?

To evaluate the usefulness of the self-similarity plot iarettterizing and recognizing individual gaits,
we propose to build a gait pattern classifier that takes ans8Rgimilarity plot) as the input feature
vector. For this, we take an ‘eigenface’ approach [49], inclhwe treat a similarity plot the same
way that a face image is used in a face recognizer. The gisi®approach is that it extracts ‘relevant
information’ from input feature vectors (face images or 9Rsfinding the principal components of the
distribution of the feature space, then applies standatdnpeclassification of new feature vectors in the
lower-dimensional space spanned by the principal comgen&e use a simple non-parametric pattern

classification technique for recognition. In the followjnge explain the details of the proposed gait
classifier.

3.3.1 Input Variability and Normalization

In any feature classifier, it is important to identify the sms of variation in the input feature of
choice. Unwanted sources of variation are those that areetmtant to the classification, and hence
should be detected and removed or normalized prior to ieastson.

Obviously the similarity plot of the same walking personlwi¢ different if any of the following are
varied:

e Lighting.

Clothing.

Number of pixels on target.

Camera viewpoint.

Cadence (frequency of gait).

15



e Phase of walking (body pose at beginning of sequence).

e Length of image sequence.

In the sequel, we discuss how each of these variations imgha image sequence can be normalized or
otherwise dealt with when normalization is not possible.

Lighting and Clothing

Variations in clothing and lighting can both be normalizgdabusing a color-invariant image similarity
measure to computg, such as by applying Equation 3.1 to binary blobs insteadef (pr color) blobs,
or by using chamfer matching on edge maps of the person. Theefas sensitive to segmentation
errors, and the latter may not be a computationally efficgatdition. Another method is to lower the
resolution of the color blobs by scaling them down, so thastobtheir color detail is lost. The question
that arises here is how much can image resolution be decreateut losing motion information of
gait.

Number-of-Pixels-on-Target

The number of pixels-on-target (POT) can be defined as thghhef the person in the image grabber
(assuming the person appears upright in the image). Assuiimed image resolution and fixed camera
viewpoint, POT can vary due to change in camera depth. To ala@enPOT for such variations, we can
scaledownthe blobs to some fixed size Since normalization is not possible when the blob sizes are
smaller tham, we should choosg to be small enough so that blobs can generally be scaled down t
this size.

Camera Viewpoint

Normalizing for variation in camera viewpoint is not podsilexcept for very small changes. This is
because, inherently, a different (planar) projection af dgnamics is captured in the image plane from
any one camera viewpoint.

Hence it is necessary to index our gait recognition methoditigrent ranges of camera viewpoint.
The camera viewpoint is defined by the pan and tilt angles ®f3tb camera ray passing through the
walking person in the sequence (with respect to the camaraefrof reference). Hence we can for
example define the viewpoint ranges at equialeg-intervals of the pan and tilt angles.

Phase, Cadence and Sequence Length

In order to account for different walking paces, startinggg and length sequences, and assuming these
are irrelevant differences, we can normalize the simiauibts so that they start at the same phase, have
the same frequency, and contain the same number of cycleswaly, we obtain similarity plots of the
same size.

We estimate the fundamental periodlby computing the average 1D power spectrum of its columns,
and determining its smallest significant peak [12].

The phase of can be determined by finding the intersections of its offydizals and cross-diagonals,
since these correspond to combinations of the key pdsés C', andD, as discussed in Section 3.2.1.
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Since these intersections occur at local minim& pthen we simply find the first local minimum that
occurs on the diagonal, then determine to which pose cormbimi corresponds to, i.ed A, BB, CC,

or DD (See Figure 3.5). For this, we observe (without proof) thatlbcal minima corresponding to
AA andC(C tend to be ‘flatter’ than those that correspond® and DD. Hence, we can determine
whether the first peak is one ofA, C'C or is one of BB, DD. Hence, we can determine phasesof
up to (modulo) a half-period. We are unable to resolve theareimg two-way ambiguity betweeA A
andCC, and betweeB B and D D (which is a result of bilateral symmetry of human gait). Hoee it
might be resolved using other cues, such as shape and dire¢tmotion.

However, gait dynamics are in fact not invariant to largengfes in cadence. Hence it is necessary to
index for different cadences as well. For now, we shall gividdence into three ranges; slow, medium
and fast. The biomechanics literature shows that any namdadidual has acustomary walking speed
(CWS) (also called natural cadence) which is typically ie tanged0 — 130 steps/min [40]. Hence, we
can for example classify cadences within this rangmadium and cadences outside this rangeslasv
or fast

3.3.2 Training the Classifier

Let S, S], .., S}, be agiven training set af/ labelled (i.e. corresponding to a known person) normal-
ized similarity plots, of sizeVxV each, and let! be the vector of lengtiv? corresponding to théh
similarity plot S} (obtained by concatenating all its rows). We compute theggeal components [28] of
the space spanned by, .., s, by computing the eigenvalue decomposition (also calledhiaen-Loeve
expansion) of their covariance matrix:

M

1 _ _
Cy= 22 (s = (s, — )T

=1

wheres’ is the simple mean of all training vector .., s,. This can be efficiently computed (M)
time (instead of the brute fore@(N?)) [49].

We then consider the space spanned byrthreost significant eigenvectors,, .., u,,, that account
for 90% of the variation in the training SPs We denote this space tlggengait Hence each training
vectors, can be sufficiently approximated byradimensional vectow; obtained by projecting it onto
the Eigengait, i.ew; = 377, uf.s;. Furthermore, assuming that the training vectors are septative
of the variation in the entire feature space, then any netufearector can be similarly approximated
by a point in Eigengait space.

3.3.3 Classification

Gait recognition now reduces to a standard pattern claasditin an-dimensional Eigengait space.
The advantage of doing pattern classification in this spac®i only that: is typically much smaller
thanN? and M, but also that it contains less unwanted variation (i.edoamnoise) and hence provides
better separability of the feature vectors, or SPs.

*According to the theory of PCA, i1, .., A, are then largest eigenvalues, then the space spanned by their pondisig
eigenvectors account fQr;_ " \; /trace(Cs) of the total variation in the original feature vectors.
2Assuming data variation is much larger than noise variation
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Given a new SP (corresponding to an unknown person), theeguve for recognizing it is to first
convert it to aN2-vector, map it to a point in Eigengait, find tieclosest training points to it, then
decide its class (or label) via thenearest neighbor rulgs, 44].

3.4 Experiments

We test our method on two different data sets, and use the-l@a®-out cross-validation to obtain a
statistically accurate estimate of the recognition rafe {&}].

3.4.1 Little and Boyd Dataset

The first data set is the same used by Little and Boyd in [30]¢clvbonsists of 42 image sequences
with six different subjects (shown together in Figure 3.@raid on the background image) and 7 sam-
ples each. Since the camera is static we used median filteriregover the background image. Tem-
plates of the moving person are extracted from each imageimnpating the difference of the image
and the background and subsequently applying a threshelelaas morphological operations to clean
up noise. The self-similarity plots are computed for eacleath sequence via absolute correlation,
and normalized such that they all contained 4 gait cyclegirstpon the same phase, and are of size
64x64. Figure 3.7 shows examples of these normalized sityilglots, where each column of three
plots corresponds to one person. The recognition rateg tisek-nearest neighbor classifier are given
in Table 3.1.

Figure 3.6. The six people contained in the test sequences, 0 verlaid on the background image.

Figure 3.7. Normalized self-similarity plots (columns cor respond to a single person).
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Table 3.1. Classification rates for various K, values. The classification for a random guess is also
given.

3.4.2 Multiview Dataset

A more viable assessment of our gait classifier is by usingsstally independent samples of each
person. Sequences of one person taken on the same day aretaebhdependent samples. Sequences
taken on different days not only provide useful informatiaout variation of the person’s gait. However,
they also introduce unwanted variation such as that causddfbrent color and style of clothing.

We aim to assess the effectiveness of different similarigasures in computing the similarity plots
to deal with variations of clothing and lighting. We also dmrevaluate the recognition performance for
different camera viewpoints.

To this end, we test the technique on a database consist#@Oosequences of 7 people (3 females
and 4 males) walking on a treadmill, taken on 7 different dayd captured simultaneously from 8
different cameras. An average of 56 sequences is providegbfth subject. The multiple viewpoints
correspond to different pan angles of the camera that are dédree intervals and span a range of about
120 degrees of the camera field of regard. Figure 3.8 illtedtridne eight camera viewpoints used in this
experiment. The data sequences were captured in the neu#pective lab [6] at a frame of 60 fps and
using greyscale 644x488 images.

Figure 3.8. Eight camera viewpoints of the sequences in seco nd test data set.

Figure 3.9 shows the similarity plots corresponding to 2quseices of one subject taken on three
different days and from all 8 camera viewpoints.

The subjects have been instructed to walk at their naturdiumepace, so that no cadence indexing
is needed. However, we used three different similarity messto compute the similarity plots: (1)
correlation of binary blobs, (2) correlation of color blolwghout background, and (3) correlation of
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color blobs with background. Hence, we built and tested kassdier (as described in previous section)
separately for each of these similarity measures.

Figure 3.10 shows the classification results for each as@itumof three different k-nearest neigh-
bor classifier parameters(, = 1, 3), the 8 camera viewpoints, and three similarity measured ts
compute the SPs.

R

Figure 3.9. (a) Person walking on treadmill as seen from one ¢ =~ amera viewpoint on 3 different days
(from left to right). (b) Similarity plots of same person in ( a) for 3 different days (rows) and 8 camera
viewpoints (columns).

(b)

3.5 Summary and Discussion

We have used a correspondence-free motion-based methembggmnize the gaits of a small population
(7) of people, using sequences captured from 8 differemipagnts and taken on different days. The best
recognition result (65%) was achieved using correlatiofooeground images from a near-frontoparallel
viewpoint. This result is 4.6 times better than a randomsilies (16.7%).

We also performed the same classification on an existingetwath 6 people, taken from a single
angle on the same day, with no variation on lighting or claghi The best recognition rate (90%) was
achieved usindy(, = 5, and is 5.3 times better than a random classifier (14.2%).

This method is view dependent, and performs best when fpanatiel images are used. Clothing,
lighting, and other variations may degrade the performaftiee classifier, though not significantly.
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Figure 3.10. Classification rate for the 8 viewpoints when us ing (a) Correlation of binary images (BC).
(b) Correlation of foreground greyscale images (FC). (c) Co  rrelation of greyscale images (GC).
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Ang | K, | BC Rate| FC Rate| GC Rate
15 1 0.365 0.460 0.454
35 1 0.447 0.467 0.467
55 1 0.460 0.380 0.460
75 |1 0.589 0.385 0.467
95 | 1 0.500 0.640 0.400
115 1 0.610 0.651 0.406
135| 1 0.357 0.400 0.383
155 | 1 0.356 0.406 0.328
15 3 0.415 0.440 0.417
35 3 0.319 0.385 0.320
55| 3 0.400 0.460 0.440
75 | 3 0.589 0.426 0.385
95 | 3 0.540 0.620 0.440
115| 3 0.569 0.528 0.406
135 | 3 0.353 0.440 0.363
155 | 3 0.355 0.406 0.316

Table 3.2. Classification rates for binary correlation (BC) , forground image correlation (FC), and grey

image correlation (GC) at various viewing angles (in degree s).
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Chapter 4

Parametric Gait Recognition using Cadence
and Stride Length

This chapter describes a gait recognition technique whiilathe Eigengait method of Chapter 3, takes
a motion-based approach in that it extracts correspondieeeanotion features to characterize gait from
images. However, it is different in that it estimates expB® parameters of gait (and is hence deemed
a parametric approach). It exploits the periodicity of hamalking to estimate the cadence and stride
length of gait, also known as the spatio-temporal parammeaitgait [52]. The cadence is estimated
using the periodicity of a walking person. Then, using alzatied camera system, the stride length is
estimated by first tracking the person and estimating thstadce and number of steps traveled over a
period of time.

For a typical outdoor surveillance configuration (with e@rtassumptions), we are able to estimate
the stride length to within 1cm. An error analysis is give\ppendix A.

The stride length and cadence are known to vary linearly fgr@ne person over his/her range of
natural walking speedsand because they are also a function of the physical clesistats of the person
(most notably leg length and body weight), we develop a pataogait classifier which takes cadence
and stride length as the input features.

This method is view invariant, and robust to changes in iightclothing, and tracking errors.

4.1 Assumptions
This technique makes the following assumptions:

e People walk on a known plane with constant velocity for at®dtseconds.
e The camera is calibrated.

e The frame rate is greater than twice the frequency of theinglk

Natural cadence corresponds to when a person walks as lhaaggossible, and is typically in the range 100-120
steps/minute.
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4.2 Overview

The algorithm for gait recognition via cadence and strideyth consists of three main modules, as
shown in Figure 4.1. The first module tracks the walking pelisceach frame, extracts a 1D signature
of his silhouette shape, and estimates his 3D position ogrthnd plane. The second module computes
the time-distance parameters of gait; it computes the aad@n frequency of gait) via spectral analysis
of the extracted shape feature over time, and deduces tbe Bngth as a ratio of the total distance
and the number of cycles traveled. Finally, the third modigirmines the likelihood (in a probabilistic
sense) of the person being any one of the people in an exiitadpase, based on his cadence and stride
length thus measured from the video sequence.

Detection and
Tracking

# person blob

h(t;).h(t,),

W »| Compute Gait Compute Cadence
Shape Feature = Period and Stride
Extraction

(C.S5)
— Gait Classifier

‘ image position

Camera
Estimate 3D Calibration;
Position Ground

plane

Figure 4.1. Overview of Method.

4.3 Tracking and Feature Extraction

Since the camera is static, we use a non-parametric baakgjrmodeling technique for foreground
detection, which is well suited for outdoor scenes wherd#akground is often not perfectly static (e.g.,
for occasional movement of tree leaves and grass) [15]. Wk @number of standard morphological
cleaning operations to the background-subtracted bimaage and use a two-pass algorithm to find
connected components (or blobs). Each foreground blolerstilacked in subsequent frames by finding
the set of new blobs that overlap it in the current frame. Cmbéob has been tracked for a sufficient
number of frames, itis classified parsonor non-persorbased simply on the aspect ratio of its bounding
box.

For eachpersonblob, we compute two image features that will be used in tix¢ medule to estimate
the cadence and stride length, namely the width of the blmamding box and its lowest leftmost pixel.
These correspond to the width of the person and the posifitthredack heel in the image, respectively.

Assuming the person is moving with constant velocity on akmplane and the camera is calibrated,
the 3D position of the back heel point can then be determisddlbbws. Let K and E' be the camera
intrinsic and extrinsic matrices respectively, andffet AX + BY + CZ + D = 0 be the parametric
equation of the plane of motion, in some defined world framartifermore, we assume perspective
projection and hence the camera equations:
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Therefore, if(X,Y, Z) is any point on plané?, and(z, y) is its projection (pixel coordinates) on the
image plane, then we have:

kll 0 —T + k13 X 0
0 /{322 -y + k23 E Y = 0
A B o Z —-D'

where( A B C" D ) = ( A B C D ) E~! andk;; is the (i, j)th element of K. Hence,
given the image position of the back heel pdinty), its 3D position(X}, Y}, Z,) can be determined
via the above linear system of 3 equations and 3 unknoWwng;, andZ,,.

4.4 Estimation of Cadence and Stride Length

Once the person has been tracked for a certain number ofdramiés spatio-temporal gait param-
eters, namely the cadence and stride length, are estintaradts 3D trajectory and width time series
computed above.

Human gait is a rhythmic (repetitive) phenomenon. Hencefipearance of a moving person viewed
from a camera is itself periodic. Existing vision methods tompute the period of gait typically extract
a 1D or 2D feature from the image then analyze the spectrplepties of the obtained 1D or 2D time
series. For example Polana and Nelson [43] ne$erence curveseach of which is a 1D signal of the
intensity values of one pixel in the person’s image over ti@etler and Davis [12] compute thself-
similarity plot, a 2D matrix of the absolute correlation between each paages of the person in the
sequence; and Haritaoglu et al. [20] use the autocorrelétiaction of the vertical profile of the contour
silhouette.

In this method, we simply use the width of the bounding boxefc¢orresponding blob region, hence-
forth denoted¥ (¢), not only for computational efficiency but also because & pioven to work well
with our background subtraction algorithm (which is fairbbust). Niyogi and Adelson [39] also ex-
tract this feature from an image sequence and analyze thespanding spatiotemporal patterns for the
detection and recognition of a walking person.

One method for estimating the period of a time series thaiwaus for colored (non-white) noise, isto
use its autocorrelation [12]. To estimate the perio@lqft), Ty, we first detrend it (to remove the linear
trend if any), smooth it with a symmetric average filter ofived2, then compute its autocorrelation,
A(1),1 € [~lag,lag] wherelag is chosen such that it is much larger than the expected pefitid(t).
The peaks ofA (i) correspond to whefl' (¢) is maximally self-similar. However, due to the bilateral
symmetry of the human gait (which makes the pose when thdegfis leading similar, though not
maximally, to the pose when the right leg is leadind};) will sometimes have minor peaks half way
between every two major peaks. The strength of these mirakspdiminishes the more the camera
viewpoint deviates from fronto-parallel.
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Figure 4.2. Autocorrelation function of the width series of a (nearly) fronto-parallel sequence. It
contains major and minor peaks.

Figure 4.2 showsV (¢) and the corresponding(i) for a (almost) frontoparallel sequence. Note that
A(z) has both minor and major peaks. Figure 4.3 shti4$) and the correspondind(i) for a non-
frontoparallel sequence. Note here the linear increasamgitini¥’(¢) due to the changing camera depth.
Note also thati (i) does not have any minor peaks.

Hence, we estimaté,, as the average distance between every two consecusij@ peaks inA(i).

The gait period!’ is then given byly,,, and the cadence and stride length respectively by [40] :

C w (steps/min)
_ [At.) = ()
S = T (meters)

whereh(t;) andh(t,) are the 3D coordinates of the person’s back heel point in tsegfindnth frames,
respectively, and’ is the frame capture rate.

An analysis, of the estimation error in stride length, based typical outdoor setting, is given in
Appendix A, and shows an error of about 1cm.

45 Person Identification

Here the goal is to build a supervised classifier that usesdbence and stride length as the input
features. While we believe stride length and cadence camiguely identify a person, just as height and
hair color do not, building such a classifier helps us to asfes'separation power’ of these features, and
hence their usefulness in an actual authentication systahwbould use several modalities (biometrics)
to identify a person.

We use two different parametric classification techniqubeeneby, given a set of. labeled samples
(i.e. cadence and stride length value-pairs of known péppl@, S;), .., (Ci, Sm), the classifier is
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Figure 4.3. Autocorrelation function of the width series of a non-fronto-parallel sequence containing
no minor peaks.

trained by fitting the points of each class (persoto) the parameter. of a certain model. Classification
of a new sample is then achieved by maximizing the likelihobthhat sample given the class model.

45.1 Linear Regression Model

Since the stride length and cadence are known to vary Iynéarleach person within the range of
his/her natural walking speeds [19, 52], we use a lineaessgon model of the forns = a-C + b+ w,
wherew is random noise. We estimate the model parametgendb, for each clasg in the training
set using the linear least squares method, which is knownriomze the square sum of the residuals
r; = S; — aC; — b (i.e. vertical distance between fitted line and the sampietgjpand is optimal when
the model noisey, is a white noise. The variance of is estimated using the sample variangg,, of
these residuals.

Given a new sampléC’, S) of an unknown person, we compute the probabtitythat it belongs
to classp in the database as the likelihood (also called p-valug)of the corresponding residual=
S" —aC" — b with respect to the distribution af,.

4.5.2 Bivariate Gaussian Model

A simpler way to model the relationship between cadence taiittedength is as a bivariate Gaussian
distribution. Hence the model is trained simply by compgtine sample mear,, and sample covari-
ance matrix,ﬁ)p, of the model from the training samples of each clas¥he likelihood (p-value) of a
new sampley = (C, S), with respect to each clagds then computed.

An obvious disadvantage of this model is that, unlike thedirregression model, it cannot extrapolate
to values outside the range of its training samples (sineg itievitably lie at the tails of the probability
distribution). This problem can be avoided if we ensure taming samples indeed span the entire range
of natural walking cadences.
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4.6 Results

The technique is tested on a database of 131 sequencesstownesf 17 people with an average 10
samples each. The subjects were videotaped with a Sony DR digital camcorder in a typical
outdoor setting, while walking at various cadences (pacEgkch subject was instructed to walk on a
straight line at a fixed speed a distance of about 90 feet (3€rs)e Figure 4.4 shows a typical trajectory
walked by each person in the experiment. The same camerafielelw was used for all subjects.

The video sequences were captured at 30 fps with an imagefstét®x240. We used the technique
described above to automatically compute the stride leagthcadence for each sample sequence. The
results are plotted in Figure 4.5, where each subject is shaith a different line label (only 10 of the
17 subjects are shown here for the sake of clarity).

In order to test our gait classifier, we then use these 131ncadand stride length samples and the
leave-one-out cross-validation technique [51, 44] to iobdestatistically accurate estimate of the recog-
nition rate. Specifically, we train the classifier using ait bne of the samples, and test it on the sample
missed (or left out). This process is hence repeated 13Xtilmaving out each of the 131 samples in
turn. The classification result of any one test sample ctssfsa ranking(p;, , .., p;,,), of all 17 persons
in the database, whepg, is the top match ang,. is the least favorable match. The overall classification
rate is then obtained as the fraction of test samples (ouneotfatal 131) for which the correct person is
found to be the top match.

A more general way of describing the performance of a classtfivia the FERET evaluation method-
ology (originally developed for evaluating face-recognit algorithms) [41]. Specifically, for each
k = 1,..,17, we measure the probability(k), that the correct person (or class)within the topk
matches for a test sample. Hence the classification rateied &m\(1). Using the leave-one-out cross-
validation procedure, we compuiék) for eachk as the fraction of test samples for which the correct
person label is in the subsgt;,, ..., p;, ).

Figure 4.6 shows (k) for the two different classifier models as well as for the fotel classifier. A
chance classifier corresponds to when the ranking .., p;,,) is a random permutation of the the 17
persons, i.eA(k) = k/17.

4.7 Summary and Discussion

We have presented a parametric method for person idenbiichy estimating and classifying their
stride and cadence. This approach is view invariant, andstafo changes in lighting, clothing, and
tracking errors. It achieves its accuracy by exploitingnlaéure of human walking, and computing the
stride and cadence over many steps.

The classification results are promising, and are over 7<ibedter than chance for the k=1, linear
regression classifier. The linear regression classificatém be improved by limiting the extrapolation
distance for each person, perhaps using supervised kngavtddhe walking speeds of each person.

Further improvements can be achieved by using higher regolcameras (here we used only 360x240),
and by improving the tracking precision.
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Figure 4.4. Typical trajectory walked by each subject. Red d ots correspond to repeating poses in the
gait cycle.
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Chapter 5

Detection of Load-carrying People for Gait
and Activity Recognition

5.1 Motivation

The detection of whether a walking person is carries an olg&d interest in gait recognition because
carried loads are considered a gait-altering factor (ney alter the the dynamics of walking). Moreover,
some gait recognition algorithms are appearance-basdderce the presence of a large carried object
that distorts the silhouette shape of the person is veryylitee ‘break’ such algorithms. Thus, it is
essential to determine whether a person is carrying an gdore attempting gait recognition.

Carried object detection is also of interest to human agtiécognition. In many surveillance appli-
cations, an important class of human activities are thogaluimng interactions of people with objects
in the scene, which include depositing an object, pickinganmbject, and the exchange of an object
between two people. Given the time intervals during whicjects are carried by any one person, we
would expect that a temporal logical reasoning system valiable to infer events of object pickup,
object deposit and object exchange.

The clinical gait analysis and ergonomics research comtiegriiave also been interested in assessing
the effect of load-carrying on the human gait, for applizasi that include the design of ‘ergonomically’
safe backpacks for army infantrymen and recreational Rig9, 34]. Their studies typically analyzed
the spatio-temporal, kinematic and kinetic parametersadfag a function of the amount of carried load
as well as the manner by which it is carried. According to¢ssdies, people carrying a (heavy) object
adjust the way they walk in order to minimize their energy engliture! [26, 32, 33]. Consequently,
their cadence tends to be higher and the stride length todréestior people carrying an object. Also,
the duration of the double-support phase of the gait cyate (he period of time when both feet are on
the ground) tends to be larger for a person carrying an abject

From a computer vision viewpoint, carried objects can bssifeed into two types:

e Objects that alter the way the persemalks (i.e. the biomechanics of his gait) because of their
sheer weight and/or size.

e Objects that alter the way the persappearsbecause they occlude part of the body when carried.

lin fact this is a general concept in gait dynamics that apptieany walking conditions
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Hence, a vision algorithm can either determine if the péssgait is within the range of normal gait
dynamics, in which case the problem becomes one of gaitifit@ggn, or can try to detect changes in
its appearance that might suggest the presence of a cabject.o

The detection of deviations from normal gait can most singdydone by measuring certain gait
parameters (temporal, kinematic and kinetic) and deteéngiifithey correspond to those of a naturally
walking person, assuming we have a model of what ‘normal gaiT his is the typical approach taken
by clinical gait analysts [40]. It is not a good approach faoanputer vision method, however, since it
would require accurate tracking of body landmarks, whicstiisan error prone process. An exception
to this are the spatial and temporal periods of gait (i.e.enad and stride length), which recent work
has shown can be computed robustly from video [53, 12]. Infoh@er, pedestrians are detected by
estimating the pace (cadence) and stride length of a ‘rnyalhyi moving object, then classifying it as
a pedestrian if the pace and stride length lie within somelfreege of ‘typical human walking’ (they
model the latter as two independent Gaussian distributiatfisfixed parameters).

In [12], Cutler and Davis show that stride length can be aattically estimated from video and an
accurately calibrated camera to within 2 inches. Unfortelyawith this much accuracy, itis not possible
to confidently distinguish a load-carrying person from auraty-walking person, since the difference
in their stride lengths is typically on the order of only 1rR2§29].

Thus, a parametric approach for discriminating load-éagand natural-walking gaits seems imprac-
tical. Instead, we shall use periodicity and silhouettgshaues to characterize the differences between
these gaits. Specifically, we contend that the spatioteatpatterns of human silhouette satisfy certain
constraints, that are often when the person carries antolpaa method essentially analyzes silhou-
ette shape over many frames, and so it is robust to (spursagshentation errors, unlike a static shape
analysis method for example that would try to detect a ‘bumphe silhouette contour from one frame.

5.2 Assumptions
We limit the scope of the problem by making the following asgtions:

e The camera is stationary. This simplifies the foregrounéat&in procedure, and helps decouple
detection problem from the problem at hand.

e The person is walking in upright pose. This is a reasonaldamption for a person to carry an
object.

e The person walks with a constant velocity for a few secondslfroughout the analysis for carried
object detection).

5.3 Overview of Method

The method consists of a sequence of three processing stepsdoles. First we detect and track
the person for som#&’ frames in the video sequence and obt&iinary blobs of the person. Then, we
classify the person asaturally-walkingor object-carrying based on spatiotemporal analysis of certain
features of binary silhouette of the blobs. Finally, we segtrthe object via static shape analysis of a
select frame.
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5.4 Foreground Detection and Tracking

Since the camera is assumed static, foreground detectiobecachieved via background modelling
and subtraction. We use the non-parametric background limagechnique that is essentially a gener-
alization of the mixed-Gaussian background modelling aagi [15, 47], and is well suited for outdoor
scenes in which the background is often not perfectly stiree.g. occasional movement of tree leaves
and grass). A number of standard morphological cleaningatipes are applied to the detected blobs
to correct for random noise. Frame-to-frame tracking of aimgpobject is done via simple overlap of
its blob bounding boxes in the current and previous frames.

5.5 Carried Object Detection

Given N blobs of a moving person ify frames, we determine whether it corresponds to a naturally-
walking person, or a persguossiblycarrying an object. For this, we formulate two constraihiast t
characterize natural walking as a function of the tempdrnatacteristics (periodicity and amplitude) of
certain binary shape features of the person’s silhouettao@ing person is deemed as possibly carrying
an object if either one of these constraints is violated,asdaturally-walking otherwise.

5.5.1 The Algorithm

The human gait is highly structured both in space and time, tduthe bilateral symmetry of the
human body and the cyclic coordinated movement patternseofarious body parts, which repeat at
the fundamental frequency of walking. A good model for theiltstory motion of the legs is a pair of
planar pendula oscillating80° out of phase [35, 42, 32]. The same can be said about the swidi
the arms [50].

The differences between natural walking gait and loadyaagrgait may be attributed to any of the
following (this list does not claim to be exhaustive):

e The manner by which the person carries the object; e.g. whleling a box with both hands, the
arms no longer swing.

e Occlusion of part of the silhouette, such as when a handbagitmase held on the side occludes
the legs.

e Protrusion of the object outside silhouette, hence disigits contour shape.

e The sheer weight of an object; a heavy object will most lileglyse a person not to swing his arms
as much.

We capture these differences between natural gait anddaagiing gait via temporal behavior of
correspondence-free binary shape features, consistthg bbunding box widths of horizontal segments
of the silhouette. We formulate constraints on the periogdand amplitude of these features, and claim
that these constraints are typically violated when thegrers carrying an object.

Consider the subdivision of the silhouette into 4 segmehimyn in Figure 5.1; three equal contiguous
horizontal segments over the lower body region, denadted.2, L3 (bottom segments first), and one
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/6 Region L2
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Figure 5.1. Subdivision of body silhouette into 5 segments f or shape feature computation.

segment for the upper body region, dendtedNVe also defind, = L1 U L2 U L3 (i.e. the lower half of
the body).

We compute the boundary box width over each of the defined setgof the silhouette, for each blob
in the sequence. The time series thus obtained are denotéd By 5;1(t), Br2(t), Brs(t) and Sy (t),
corresponding to segments L1, L2, L3 andU, respectively. Since natural walking gait is charactetize
by the oscillation of the legs and swinging of the arms at #éqgal of gait [32], we contend that:

Period(Br(t)) = Period(fu(t)) = Ty (5.1)

wherePeriod(.) denotes the fundamental period of a time series. If Equétibis not satisfied, then the
person is deemed to be possibly carrying an object. Furitremve claim that their mean amplitudes,
denoted bys;,, By, etc., satisfy:

B > Bu A Bri > Bra > Brs (5.2)

Though we do not formally prove this claim here, intuitivélis an artifact of the pendular-like motion
of the arms and legs, as mentioned above. The person is astedeo be possibly carrying an object
if Inequation 5.2 is not satisfied.

The binary shape features used by our method to capture thempatterns of human gait, namely
the width of the silhouette bounding box, are indeed akittsé used in [39] and those in [16]; Niyogi
and Adelson [39] extract these same shape features andamddidetect humans in video by finding
the characteristic ‘spatiotemporal braids’ created by kiwg person in an image sequence; Fujiyoshi
and Lipton [16] extract the five (most salient) curvature imaxof the silhouette contour to track the
‘gross extremities’ of the body, and then analyze the 12ttayry of each point to detect cyclic motion.

We estimate the period @f;(¢) and Sy (¢) via the autocorrelation method, which is robust to colored
noise and non-linear amplitude modulations, unlike Fouamigalysis [12]. For this, we smooth each
signal, detrend it to account for any linear increase cailigedhange in viewpoint, and compute its
autocorrelationA (i) for i in some interval—lag, lag], wherelag is chosen such that it is sufficiently
larger than the expected period of gait. The period is thémaged as the average distance between
each two consecutiv@ajor peaks inA(z).
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A(7) may also contaiminor (small) peaks between every two major peaks. A minor pealesponds
to the similarity of the two symmetric poses; when the lgftileading and when the right leg is leading
[12]. This is due to the bilateral symmetry of the human gHliénce, we first detect all peaks #{:),
then determine whether there are minor peaks by computagubrage strength of all odd peaks (i.e.
first, third, etc.) and all even peaks (i.e. second, fouttt).elf they are comparable, then there are no
minor peaks. Otherwise, the odd peaks are minor peaks.

In summary, our algorithm determines that a person is plyss#srying an object if any of the prop-
erties given in 5.1 and 5.2 which we claim characterize mhtwalking gait, is not satisfied (since
load-carrying is considered un-natural gait). In the nedtisn, we give examples to illustrate these
claims.

5.5.2 Examples

Figure 5.2 shows one frame of a person walking frontopdrléhe camera, along with the corre-
spondings,(t) and gy (t) (topmost plot) and their respective autocorrelation fioms (in bottom plot),
Ap(t) and Ay (t). Note that bothd, (i) and A (7) have minor and major peaks.

Figure 5.3 shows the same thing for a person walking nontdparallel to the camera. Note that,
while A, (i) has major and minor peaksd,; (i) does not. The bilateral symmetry of the upper region
is lost when the person is walking non-frontoparallel to ¢henera. However, in both caset,(t) and
Bu(t) have the same period, since only major peaks are relevantipuating the period.

—Vu
— L

A(lag)

() (b)

Figure 5.2. (a) Person walking frontoparallel to camera, an  d (b) corresponding width series and
autocorrelation functions.

The following two examples illustrate cases in which eitber (i) or Ay (i) is not periodic due to
the presence of a carried object. Figure 5.4 shows a persojingpa bucket in each arm. He is hardly
swinging his arms, perhaps because the buckets must be Adasexplains whyd, (¢) is not periodic,
while Ay (i) is. Figure 5.5 illustrates the same case with a differerdéqrerNote here that; (i) seems
to oscillate at a higher frequency than the legs, which malyleeto independent oscillation of the carried
handbag (particularly if it's lightweight).
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A(lag)

@)

Figure 5.3. (a) Person walking non-frontoparallel to camer  a, and (b) corresponding width series and

autocorrelation functions.

Another case whenl, (i) is periodic whileA (i) is not, happens when a person is carrying an ob-
ject with both hands, as illustrated by both examples in Fedu6 and Figure 5.7. This can be easily
explained by the fact that both arms are not swinging (siheg are holding the object). Note that for
the second example, Equation 5.1 is not satisfied becausmathed box wider than legs-width. This

provides further evidence that the person might be carrgimgbject.

L
250

5L 1 I I I
0 50 100 150 200
time

I 1 I I
0 20 40 60
lag

(b)

-1 L L L
-80 -60 -40 -20

(@)

Figure 5.4. Person carrying two objects on the side. Width se ries of lower body region is periodic,

while that of upper body is not.

The examples in Figure 5.8, Figure 5.9, and Figure 5.10utitis cases of a person carrying an object

for which Equation 5.1 and the first part of Inequation 5.8, i3, > [y are satisfied. However, in
all three cases, detection of the object is in fact made plasby the fact that the second part of this
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Figure 5.5. Person carrying a handbag on the side. Width seri es of lower body region is periodic and

of upper body region is aperiodic.

Allag)

(@)

Figure 5.6. Person carrying a box in front with two hands. Wid th series of lower body region is

periodic and of upper body region is aperiodic.
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Figure 5.7. Person carrying a box in front with two hands. Wid th series of lower body region is
periodic and of upper body region is aperiodic.Furthermore , average width of upper body region is
larger than that of lower body region.

Inequation, i.e.f;; > (L2 > (L3, evaluates to false. The underlying reason for this is beedie
carried object occludes part of the legs, and hence digteetpendular-like motion pattern as seen by
the camera. Figure 5.11 shows;, (1, and 3 for the examples in Figure 5.2, Figure 5.8, Figure 5.9,
and Figure 5.10, respectively.

5.5.3 Carried Object Segmentation

To segment the object, we first observe that the silhouettéooo of a walking person is smooth,
except when the arms swing outside the body. Hence, if wesghtie frame that corresponds to the gait
pose when the two legs are joined together (and hence armexdréo the body), then we may assume
that any remaining ‘significant’ curvature maxima in the twam occur because of a protruding carried
object. The region enclosed within the convex hull providesude initial estimate of the object. We
extend this region by adding any connected blob pixels tkablthe left or right of it (i.e. are more
extreme than it).

5.6 Experiments and Results

We tested the method on 41 outdoor sequences taken fronusaamera viewpoints, and captured at
30 fps and an image size of 360x240. The examples given aberesamples of these sequences. All
of these sequences were depictions of spontaneous, uestrated human activity within the parking
lot of a university building. Table 5.1 summarizes the typseruences used and the detection results
for each category. The detection rate is hence 83.33% (20f @4f) and the false alarm rate is at 11.76%
(2 out of 17). We notice that the mis-detections occurrednthe object was too small to distort the
spatio-temporal shape patterns of the silhouette, whige falarms occurred due to segmentation errors.
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@) (b)

Figure 5.8. Person carrying two objects on the side. Width se ries of upper and lower body regions
are periodic with same period.

(@) (b)

Figure 5.9. Person carrying two objects on the side. Width se ries of upper and lower body regions
are periodic with same period.

Total | Natural-walking| Load-carrying
Walking 17 15 2
Backpack 7 2 5
On the side 13 2 11
With both handg 4 0 4

Table 5.1. Carried Object Detection Results.
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Alag)

() (b)
Figure 5.10. Person carrying two objects on the side. Width s eries of upper and lower body regions
are periodic with same period.

5.7 Summary and Discussion

We have described a novel method for determining whethersmpén carrying an object in monocu-
lar sequences seen from a stationary camera. This is adhieveemporal analysis of simple correspondence-
free binary shape features, that exploit the periodic amdplar-like motion of legs and arms. The final
phase of our method is a crude segmentation of the objectatia shape analysis of the blob silhouette.
We plan to improve this technique in future work in at leash tmays; first by using color/edge infor-
mation to refine the segmented region and obtain a more decestimate of the object, and second by

applying the segmentation process on blobs in multiple &sam
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Figure 5.11. (311, B2 and (3 for (a) naturally-walking person, and (b),(c),(d) a person carrying an
object. Inequation 5.2 is only violated for the latter three
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Chapter 6

Conclusions and Future Work

We presented two methods for gait recognition and a methiothéodetection of carried objects. We
take a motion-based recognition approach in all three nastras we extract correspondence-free motion
features from images and use them to directly characteodg imovement. We plan to refine and extend
this work in the following ways:

6.1 Eigengait Method

e Teston alarger population ofitdoorsequences taken from arbitrary viewpoints. These seqaence
present challenges and difficulties that did not arise withtoparallel and treadmill walking. For
example, the scaling of images required for non-frontdfEreequences may prove to be a sig-
nificant source of error in the similarity plot. Note alsotthhee need to automatically estimate the
camera viewpoint of a walking person, which requires knogkof both the camera calibration
parameters and the walking plane of the person.

e Assess the number of camera viewpoints needed to indexnigi@oy(i.e. the granularity of pan
and tilt angles ranges).

e Assess the effect of image resolution on recognition perémce. We currently scale down the
person blobs to a fixed number-of- pixels-on-target. We ainetermine the effect of varying this
parameter.

6.2 Cadence/Stride-based Method

e Test on a larger, more diverse population of people.

e Assess the effect of using higher resolution cameras (wectly use only 360x240), and im-
proving the tracking precision on performance.

e Assess the effect of camera viewpoint on the accuracy of gthaoa, via more detailed analysis
of the estimation error of cadence and stride length. Algfiaine method is view-invariant, in that
the same algorithm can be applied regardless of viewpoiowveder, we believe its performance
is notview-invariant. The presented error analysis assumegaansamera depth throughout the
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sequence. It also assumes a constant pixel error, whetgpeidlly varies as a function of camera
viewpoint and position in the image. We expect that estiomaérror will degrade very quickly
for near front-on viewpoints (i.e. where the person is wagkiowards or away from the camera).
Hence, it is important to evaluate just how much performategrades as a function of camera
viewpoint.

6.3 Towards an Integrated Multi-camera Surveillance Systm

e Integration of multiple features for gait recognition:

Perhaps the best approach for achieving better personifidatibn results is to combine the
Eigengait features with the stride length/cadence featud®mwever, because of the different na-
ture of these features, a careful analysis of variance idatke

e Best-view selection:

The performance (in terms of accuracy and robustness) ofraage-based human movement
(gait) analysis method is inherently view-dependent,esinevitably images capture only a planar
projection of gait dynamics, and not its entire phase spideace, a different subset of this phase
space is extracted from different camera viewpoints. Sgaiedynamics are dominated by leg
and arm movements, this subset is largest when the sadatad jis parallel to the image plane.
This happens in fronto-parallel walking.

Thus, for best performance of gait recognition and humanemmnt analysis methods, it is ideal
to use a camera that is nearly fronto-parallel to the walkiigon. This ‘view-selection’ capabil-
ity can be provided by a distributed multi-camera systera;dhmera that has the ‘best view’ of
the moving person is selected to analyze its movement.

We plan to develop the camera control and planning algosttimt implement this capability,
using the existing network of outdoor Philips cameras. nablem also involves a great deal
of low-level vision issues, associated with ensuring smaoiccessful camera handoff, i.e. data
transfer from one camera to another.

1The Sagittal plane corresponds to the side view of a walkérgqn, and is hence the plane of movement of the legs and
arms.
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Appendix A

Stride Length Error Analysis

Consider the outdoor camera configuration shown in Figute Ahe camera has a height and looks
down on the ground plane with tilt angle and vertical field of viewF'. Suppose that a person walks
roughly parallel to the image plane (to simplify the anadysand with roughly constant velocity. The
strideS is estimated using the number of steps walk€dand the distance walkedl;

S=W/N (A.1)
The uncertainty irb isog:

o5 = S\/ (0% /W? + 0% /N?) (A.2)

whereoy is the uncertainty inV, andoy, is the uncertainty ind’. We assume the uncertaintylivi and
N are uncorrelated (to simplify the analysis). We have erogily estimatedy = 0.07 steps with our
configuration and method of estimating periodic motion.

The horizontal ground sampling distance per pixe}is F' «+ R/(V cosT), whereV is the vertical
resolution,R = v/ D? + H? is the distance from the camera to the person,@nd H x tanT is the
distance from the camera base to the person. We approximate 2 * g, which assumes we can track

.

Figure A.1. Outdoor surveillance camera configuration.
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Figure A.2. Stride uncertainty as a function of distance fro m camera to person.
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Figure A.3. Stride uncertainty as a function of number of ste ps.

people with two pixel accuracy in the video image. We negtaatera calibration errors in this analysis,
as they they were small.

For our outdoor surveillance configuratiol,= 12deg, 7' = 64deg, H = 15m, V' = 240 pixels,
N = 16 steps,D = 30.5m; the resultants = 7mm. Figure A.2 gives a plot afs as a function ofD.
Note that the stride error is relatively low compared to tbe4ontal ground sampling distance since we
are estimating the stride over many steps. We are expldhméact that the total distance traveled is the
sum of the individual steps; implicitly, we use the fact thabple move with piecewise contiguous steps.
Therefore, a3V and N increases and remains relatively constant, thery significantly decreases.
For example, at the distance bf= 30.5m, the horizontal ground sampling distance- 68mm, while
og = 7mm. Figure A.3 shows the uncertainty in stride as a functfomumber of steps takén

Note that we cannot exploit the same error-reduction methestimating a person’s height. However,
while we cannot accurately estimate height with a low resatuwideo camera in this configuration, we
can accurately esimate stride and cadence.

To further explain the reduction of error, consider thedaling problem: suppose you were asked to measure the length
of a poker card, and you were given a tape ruler that is acetwatcm. To achieve greater accuracy, you take 20 cards from
the same deck, and align them to be piecewise contiguousméasure the length of all 20 cards, and divide this measure
by number number of cards. The cards can now be measured Witlé&s the accuracy as before with using just a single
card.
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