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Abstract

The termgait recognitionis typically used to signify the identification of individuals in image se-
quences ‘by the way they walk’. There is an increased interest in gait as a biometric, mainly due to its
non-intrusive as well as non-concealable nature. Considerable research efforts are being devoted in the
computer vision community to characterize and extract gaitdynamics automatically from video. The
objective is to use gait as a filter (indicator) to effectively enhance the overall recognition performance
of a system that uses multiple modalities. In this proposal,we present (describe) two different gait recog-
nition methods; a non-parametric method that uses the self-similarity plot of a walking sequence as the
input feature for classification; and a parametric method that estimates the spatiotemporal parameters
of gait (the cadence and stride length) and exploits their linear relationship as a cue for identifica-
tion. Finally, because carried loads are gait-altering, wealso present a motion-based method to detect
whether a walking person carries an object (load).
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Chapter 1

Introduction

Recently, gait recognition has received growing interest within the computer vision community, due to
its emergent importance as a biometric [10, 4]. The termgait recognitionis typically used to signify
the identification of individuals in image sequences ‘by theway they walk’. It can also refer to the
recognition of different types of human locomotion, such asrunning, limping, hopping, etc. The former
usage of the term shall be assumed throughout this proposal,however.

A major impetus for gait recognition research lies in psychophysical experiments with Moving Light
Displays (MLDs) pioneered by Johansson [27]. Johansson’s first experiments demonstrated the ability
of human subjects to recognize the type of movement of a person solely from observing the 2D motion
pattern generated by light bulbs attached to the person. Similar experiments later showed some indication
that even the identity of a familiar person (‘a friend’) [3],as well as the gender of the person [13], might
be recognizable from MLDs.

These experiments not only provided insight about motion perception in the human visual system,
they also brought about evidence suggesting that motion patterns generated by the human gait encode
information that is characteristic of (and sometimes unique to) the moving person. The goal of gait
recognition research is to determine how that information can be extracted from images.

The fact that each person seems to have a distinctive (idiosyncratic) way of walking is hardly sur-
prising from a biomechanics standpoint [52]. Human ambulation consists of synchronized integrated
movements of hundreds of muscles and joints in the body. Although these movements follow the same
basic pattern for all humans, they seem to vary from one individual to another in certain details such as
their relative timing and magnitudes. Much research in biomechanics and clinical gait analysis (among
others) is devoted to the study of the inter-person and intra-person variability of gait (albeit not for the
purpose of recognition, but rather to determine normal vs. pathological ranges of variation). The major
sources of inter-person variability are attributed to physical makeup, such as body mass and lengths of
limbs, while the sources for intra-person variability are things like walking surface, footwear, mood and
fatigue [26, 52, 40]. Nonetheless, the gait of any one individual is known to be fairly repeatable when
walking under the same conditions.

This intra-person consistency and inter-person variability are what makes gait suitable (desirable) for
use as a biometric.

Having established that gait as a biometric does have potential, what makes this problem challenging
and novel from a computer vision viewpoint, however, is thatautomatic extraction of gait parameters
(i.e. such as joint positions) requires feature tracking, which cannot always be done robustly over long
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sequences, due to for example occlusions by clothing, changes in lighting, and image noise, all of which
are inherent to real imagery of natural scenes. Video-basedgait analysis methods rely on markers,
wearable instruments or special walking surfaces [40], which are not appropriate for a computer vision
approach, since direct participation (or cooperation) of the subject under study cannot be assumed.

In this proposal, we present two gait recognition techniques both of which take a motion-based recog-
nition approach [9], and use correspondence-free image features to extract and characterize gait motion
patterns from video. Both techniques are also robust to tracking errors, and changes of lighting and
clothing.

In the first method, a sequence of images of a walking person isfirst mapped to a 2D feature con-
sisting of the matrix of self-similarities between each pair of images in the sequence. We contend that
this feature encodes a projection of the planar dynamics of gait, and which can be used for gait recog-
nition much the same way as a face image is used to identify a person. We use principal components
analysis (PCA) to reduce the dimensionality of this featurespace, and k-nearest neighbor rule for gait
classification in the reduced space, termed theEigengait. Because the technique is not view-invariant,
we investigate recognition performance as a function of changing camera viewpoint.

The second method takes a parametric approach instead, in that it explicitly estimates actual gait pa-
rameters. Specifically, given a calibrated camera and knowledge of the plane of walking, the method
exploits the periodicity of human walking to accurately estimate the cadence and stride length (also
known as the spatio-temporal parameters of gait). It also exploits the (known) linear functional relation-
ship between cadence and stride length to identify an unknown person in an existing database of people
from his/her estimated cadence and stride length.

An important question that arises (or should arise) in any gait recognition algorithm is whether or not
it is invariant to gait-altering factors, such as footwear,surface of walking, and load-carrying (i.e. when
the person is carrying something). We expect that both techniques are generally not invariant to load-
carrying, and we describe a method to detect whether a walking person carries an object (load), so that
gait recognition is only attempted under non-load-carrying conditions. This method is view-invariant
and uses binary shape and periodicity cues.

The rest of this proposal is organized as follows. In Chapter2, we present a survey of existing vision
methods that are of, or related to, gait recognition, and compare them with our techniques. Chapter 3 de-
scribes the proposed non-parametric gait recognition technique, and Chapter 4 the parametric technique.
In Chapter 5, we describe our method for determining when a walking person is carrying an object.

5



Chapter 2

Survey of Related Work

Gait recognition can be generally related to human motion analysis methods (i.e. vision methods that
detect, track and/or recognize human movement), and more specifically to methods that deal with whole-
body human movement.

2.1 Human Movement Analysis

The extraction and characterization of human movement fromvideo spans several research areas of
computer vision, such as gesture recognition, action/activity recognition, lipreading and person identifi-
cation from gait (or gait recognition). Good comprehensivesurveys on this topic are in [9, 1, 17].

Existing methods can be grouped into: (i) structural methods, which recover a structural model of
the human body and use this structure for motion recognition[23, 24, 2, 45, 18, 7, 36, 46], and (ii)
non-structural methods, which directly model, extract andrecognize the motion patterns generated by
any particular body movement [53, 39, 37, 30, 25, 22, 12].

2.1.1 Structural Methods

In SFM-based methods, a set of body points are tracked (as a result of body structure recovery), and
their motion trajectories are used to characterize, and thereby recognize the motion or action performed
by the body. Note that this approach emulates MLD-based motion perception in humans, since the body
part trajectories are in fact identical to MLD-type stimuli. Furthermore, this approach is supported by
biomedical gait research [38] which found that the dynamicsof a certain number of body parts/points
totally characterize gait. However, because tracking bodyparts in 3D over a long period of time remains
a challenge in vision, the effectiveness of SFM-based methods remains limited.

A 2D or 3D structural model of the human body is assumed, and body pose is recovered by extracting
image features and mapping them to the structural components of the model (i.e. body labelling). Hence
a human is detected in the image if there exists a labelling that fits the model well enough (based on some
measure of goodness of fit) [23, 24, 45, 18, 46]. Once a person has been detected and tracked in several
images, motion recognition is done based on the temporal trajectories of the body parts, typically by
mapping them to some low-dimensional feature vector and then applying standard pattern classification
techniques [2, 48, 36].
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2.1.2 Structure-free Methods

Motion-based recognition methods, on the other hand, characterize the motion pattern of the body,
without regard to its underlying structure. Two main approaches exist; one which represents human
movement as a sequence (i.e. discrete number) of poses/configurations; and another which characterizes
the spatiotemporal distribution generated by the motion inits continuum.

To recognize a moving object (or person), these methods characterize its motion pattern, without
regard to its underlying structure. They can be further divided into two main classes. The first class
of methods consider the human action or gait to be comprised of a sequence of poses of the moving
person, and recognize it by recognizing a sequence of staticconfigurations of the body in each pose
[37, 25, 22]. The second class of methods characterizes the spatiotemporal distribution generated by
the motion in its continuum, and hence analyze the spatial and temporal dimensions simultaneously
[39, 43, 14, 31, 30, 12].

State-space Methods

These methods represent human movement as a sequence of static configurations. Each configuration is
recognized by learning the appearance of the body (as a function of its color/texture, shape or motion
flow) in the corresponding pose.

Spatiotemporal Methods

Here, the action or motion is characterized via the entire 3Dspatiotemporal (XYT) data volume spanned
by the moving person in the image. It could for example consist of the sequence of grey-scale images,
optical flow images, or binary silhouettes of the person. This volume is hence treated as a ‘large’ vector,
and motion recognition is typically done by mapping this vector to a low-dimensional feature vector,
and applying standard pattern classification technique in this space. The following methods describe
different ways of doing this.

2.2 Whole-body Movement Analysis

Existing vision methods that analyze whole-body human movement can be classified into (1) gait
recognition methods [39, 37, 30, 25, 10, 22], which identifypeople from their gait (i.e. the ‘way they
walk’), (2) human detection methods which essentially classify moving objects as human or non-human
[53, 12, 46], and (3) human motion classification [8, 36], which recognize different types of human
locomotion, such as walking, running, limping, etc.

Niyogi and Adelson [39] extract four silhouette signaturesof a moving person,xi(y; t); i = 0; 1; 2; 3,
two of which correspond to the outer boundaries of the person, and the other two to the inner edges of
each leg. Each signature is normalized via spatial and temporal alignment and scaling (i.e. so that it
is stationary in the image and has a fixed height, a fixed periodand a fixed phase). These normalized
signature defines a spatiotemporal sheet over the entire image sequence. Gait recognition is done by
matching these sheets for the model gait and input gait.

Yasutomi and Mori [53] describe a human detection method that computes cadence and stride length
based on periodicity of human motion, and classifies the moving object as ‘human’ based on the likeli-
hood of the computed values in a normal distribution of humanwalking. Like in our method, they use
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a calibrated camera to recover the 3D position of the person on a known plane and compute the stride
length based on the ground plane distance number of steps travelled. However, while we use cadence
and stride length for recognition (i.e. person identification), they use them for human detection.

Murase and Sakai [37] describe a template matching method which uses the parametric eigenspace
representation as applied in face recognition [49]. Specifically, they use PCA (Principal Component
Analysis) to compute a 16-dimensional manifold for all the possible grey-scale images of a walking
person. An input sequence of images (after normalization) is hence mapped to a trajectory in this 16-
dimensional feature space, and gait recognition is achieved by computing the distance between the tra-
jectories of the input image sequence and a reference sequence.

Little and Boyd [30] perform a non-parametric method of person identification. They first compute
the optical flow of people walking parallel to the image plane, and compute a best-fitting ellipse on the
flow. Various statistics of this ellipse are used to identifypeople. The method is not view invariant, and
has not been shown to be robust to lighting or clothing changes.

Huang et al. [25] use a similar technique, as they apply PCA tomap the binary silhouette of the moving
figure to a low dimensional feature space. The gait of an individual person is represented as a cluster (of
silhouettes) in this space, and gait recognition is done by determining if all the input silhouettes belong
to this cluster.

He and Debrunner [22] recognize individual gaits via an HMM that uses the quantized vector of Hu
moments of a moving person’s silhouette as input.

Cutler and Davis [12] describe a method for human detection by recognizing specific periodic pat-
terns in thesimilarity plot, a 2D matrix of all pairwise image matching correlations. They also use the
periodicity of these similarity plots to estimate the stride of a walking and running person, assuming a
calibrated camera. They contend that stride could be used asa biometric, though they have not conducted
any study showing how useful it is as a biometric.

2.3 Carried Object Detection

Haritaoglu’sBackpack[20] system is the only work we know of that addresses the specific problem of
carried object detection for video surveillance applications. Like our method,Backpackuses both shape
and motion cues. It first locatesoutlier regions, or significantly protruding regions, of the silhouette via
static shape analysis that segments silhouette regions that violate the symmetry assumption of the human
body. Each outlier region is then classified as being part of the carried object or of the body based on the
periodicity of its vertical silhouette profile.

Implicit in this method is the assumption that aperiodic outlier regions correspond to the carried
object and periodic regions to the body. However, for this tobe true, the following must hold: the
person’s silhouette is perfectly symmetric (so that not toomany non-symmetric regions are detected),
and the legs and arms are the only protruding body parts (so that periodic non-symmetric regions truly
correspond to body parts). This can often fail for a variety of reasons. For example, the axis of symmetry
(which is computed as the blob’s major axis) is very sensitive to detection noise, as well as to the size
and shape of the carried object itself. Also, using a heuristically-determined threshold to filter out small
non-symmetric regions makes this method less robust. One way this method can be more efficient and
robust is by constraining the location and number of non-symmetric regions a priori, since the vertical
profile of regions other than the legs and arms are generally not periodic.

Like Backpack, we use a silhouette signature shape feature to capture the periodicity of the human
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body. A major difference lies in that we analyzeboth the periodicity and magnitude of these shape
features over time to detect the carried object, and only usestatic shape analysis in the final segmentation
phase of the object. Another important difference is that weexplicitly constrain the location of the object
to be either in the arms region and/or legs region, since as noted above, the silhouette signature of the
region above the arms are not periodic.
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Chapter 3

Eigengait: a Non-parametric Gait Recognition
Method

We know from biomechanics that the dynamics of gait can be fully characterized via the kinematics of a
handful of body landmarks such as limbs and joints [26]. The problem with taking this approach in a vi-
sion algorithm is that it requires feature tracking (to extract joint positions for example), which typically
cannot be done robustly over long image sequences without the use of special markers. Furthermore, we
may not necessarily need to extract the complete gait dynamics in order to discriminate different gaits.

Background Modeling and
Subtraction

Blob Correspondence and
Tracking

Scale Blobs

New frame

Compute Similarity Plot S

Compute Frequency and Phase
of S

Normalize Frequency, Phase
and Length of S

Compute Eigengait

Project S on Eigengait

Recognize

Reduced
feature vectorTrain Test

Sequence of
person blobs

Sequence of equal-
size person blobs

Figure 3.1. Overview of Method.
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This chapter describes a motion-based recognition technique that uses a correspondence-free image
feature for gait classification. Specifically, it maps a sequence of images of a walking person to a
similarity plot (SP), the matrix of self-similarities between each pair of images of the person in the
sequence. We contend that this 2D feature encodes a projection of the planar dynamics of gait, and
hence a signature of gait dynamics. We shall use this signature as the gait biometric of choice.

The proposed method essentially treats a similarity plot much the same way that the Eigenfaces tech-
nique [49] treats a face image; it uses Principal componentsanalysis to reduce the dimensionality of the
feature space, then applies some supervised pattern classification technique (k-nearest neighbor rule in
our case) in the reduced feature space for recognition.

An oveview diagram of the method is shown in Figure 3.1. An input image sequence is first processed
to segment the moving person from the background and track him in each frame. The obtained sequence
of blobs of the person are then properly aligned and scaled toa uniform size (dimensions), to account
for tracking errors, as well as any depth changes that occur in non-frontoparallel walking. The similarity
of each pair of these blobs is then computed, to obtain a similarity plot of the person. For recognition,
the similarity plot is mapped (projected) to a small featurevector in Eigengait space, which is then used
for classification. The Eigengait space vectors are computed in a training phase by applying PCA to the
similarity plots of a set of known (labeled) people.

In the sequel, we first present the assumptions of the method,then we describe the method in detail,
and finally we present a set of experiments in which we test themethod on walking sequences of multiple
subjects, taken on different days and from different cameraviewpoints.

3.1 Assumptions

The method makes the following assumptions:� People walk on a known plane with constant velocity for about3-4 seconds.� The frame rate is greater than twice the frequency of the walking.� The camera is static.

3.2 Computing Similarity Plots

Since the camera is assumed to be stationnary, we use background modeling and subtraction [15] to
segment moving objects in each frame. To track an object, we use a simple correspondence method
based on the overlap of blob bounding boxes in any two consecutive frames [21].

LetCt1 ; Ct2 ; ::; CtN be theN blobs obtained from tracking a person inN consecutive frames. Because
of the pendular-like oscillatory motion of the legs and arms, the person’s size in the image changes at
the frequency of gait, and so these blobs do not have identical sizes (i.e. width and height dimensions).

If we assume fronto-parallel walking, then blob size variesas a stationary process and the average
blob size is almost constant, as illustrated by Figure 3.2. Let us denote the average height and width by�H and �W , respectively. The similarity of any two blobsCt1 andCt2 , for all 1 � t1; t2 � N , is then
computed as follows: St1;t2 = minjdx;dyj<rX jCt1(x+ dx; y + dy)� Ct2(x0; y0)j: (3.1)
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whereBt1 andBt2 are equal rectangular regions of height�H and width �W , centered at the centroids ofCt1 andCt2 , respectively;(x; y) and(x0; y0) are corresponding pixels inBt1 andBt2 respectively; andr
is a small search radius that accounts for small tracking errors. This is illustrated by Figure 3.2(c); green
boxes correspond to the actual bounding box of a blob, and redboxes correspond to the average boxBt
used to compute the similarity plot.

If the person is not walking fronto-parallel, however, thenthe blobs need to be scaled to the same
dimensions, before computing their similarities. This is because the average blob size changes (increases
or decreases) linearly. Figure 3.3 and Figure 3.4 illustrates two examples in which the blob dimensions
oscillate with an increasing and decreasing trend, respectively. Hence, the dimensions of the blobs are
analyzed, and if a linear trend is detected, then they are allscaled down to the size of the smallest blob
using a Mitchell filter [11]. Note that it is also possible to scale each pair of blobs separately, i.e. computeS(t1; t2) by scaling blobCt1 to the size of blobCt2 .

(a)

0 20 40 60 80 100 120 140
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40
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70

80
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130

frame

Blob Height
Blob Width

(b)

(c)

Figure 3.2. (a) One frame of a fronto-parallel walking seque nce. (b) Dimensions (width and height)
of the person blob oscillate as a stationary process. (c) Fir st few blobs of person segmented from
background; green boxes are actual blob bounding boxes; red boxes bound blob area used to
compute similarity plot.

Note that the blob similarity measure in Equation 3.1 can be applied to any one of:� Binary silhouettes.� Grey (color) silhouettes, without background.
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Figure 3.3. (a) First frame of a sequence where person walks n on-fronto-parallel, closerto the camera.
(b) Dimensions of corresponding blob oscillate with an increasing linear trend(indicated by the red
line).
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Figure 3.4. (a) First frame of a sequence where person walks n on-fronto-parallel, further from the
camera. (b) Dimensions of corresponding blob oscillate wit h an decreasing linear trend(indicated
by the red line).
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� Grey (color) silhouettes, with background.

though each has its own merits and drawbacks, and it is not directly obvious which is best to use. For
example, 1 and 2 are sensitive to segmentation errors; 2 and 3are not invariant to change of person’s
clothing and scene lighting; 3 is not invariant to change in the background scene.

3.2.1 Properties

The similarity plot,S, of a walking person has the following properties:

1. S(t; t) = 0, i.e. it has a dark main diagonal.

2. S(t1; t2) = S(t2; t1), i.e. it is symmetric along the main diagonal.

3. S(t1; kp=2 + t1) ' 0, i.e. it has dark lines parallel to the main diagonal (the off-diagonals).

4. S(t1; kp=2�t1) ' 0, i.e. it has dark lines perpendicular to the main diagonal (the cross-diagonals).

wheret1; t2 2 [1; N ℄, p is the period of walking, andk is an integer. The first two properties are generally
true for any similarity function (though the second property may not hold if substantial image shifting
and scaling are required). The latter two are a direct consequence of the periodicity and the bilateral
symmetry, respectively, of the human gait.

Furthermore, the intersections of the off-diagonals and cross-diagonals encode the frequency and
phase of walking [12]. Specifically, each intersection corresponds to combination of two of the four key
poses of the gait: (i) when the two legs are furthest apart andthe left leg is leading, (ii) when the two
legs are joined together and the right leg is leading, (iii) when the two legs are furthest apart and the left
leg is leading, and (iv) when the two legs are joined togetherand the left leg is leading, as illustrated by
Figure 3.5. These poses shall be denotedA, B, C, andD, respectively. Due to the bilateral symmetry
of human walking, posesA andC, and posesB andD are very similar in appearance when the person
is walking fronto-parallel to the camera. However, as the camera viewpoint deviates away from fronto-
parallel, the similarity betweenB andD decreases rapidly to zero, while the similarity betweenA andC generally only decreases to a small non-zero value.

Note that, since these intersections correspond to the local minima ofS, the frequency and phase of
gait can hence be automatically estimated by finding the minima ofS, as we shall explain later.

The reason thatS encodes the frequency and phase of gait may be explained by the fact that it is
(approximately) a projection of the planar dynamics of the walking person when viewed sufficiently far
from the camera, as argued in [12]. Intuitively, this is becauseS is obtained via a sequence of trans-
formations (image projection and correlation matching) applied to the set of 3D points on the person’s
body. It can be shown that these transformations preserve certain properties of the dynamics of these
points (and hence of the gait dynamics).

3.3 Gait Classifier

As mentioned in the previous section, the similarity plot isa projection of the dynamics of the walking
person that preserves the frequency and phase of the gait. The question then arises as to whether this pro-
jection preserves more detailed (higher-dimensional) aspects of gait dynamics, that capture the unique
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(a) (b) (c)

Figure 3.5. (a) Key poses in one cycle of a walking gait. (b) Si milarity plot S of the corresponding
sequence. (c) Intersections of dark lines in S correspond to combinations of key poses.

way a person walks. In other words, does a similarity plot contain sufficient information to distinguish
(not necessarily uniquely) the walking gaits of different people?

To evaluate the usefulness of the self-similarity plot in characterizing and recognizing individual gaits,
we propose to build a gait pattern classifier that takes an SP (self-similarity plot) as the input feature
vector. For this, we take an ‘eigenface’ approach [49], in which we treat a similarity plot the same
way that a face image is used in a face recognizer. The gist of this approach is that it extracts ‘relevant
information’ from input feature vectors (face images or SPs) by finding the principal components of the
distribution of the feature space, then applies standard pattern classification of new feature vectors in the
lower-dimensional space spanned by the principal components. We use a simple non-parametric pattern
classification technique for recognition. In the following, we explain the details of the proposed gait
classifier.

3.3.1 Input Variability and Normalization

In any feature classifier, it is important to identify the sources of variation in the input feature of
choice. Unwanted sources of variation are those that are notrelevant to the classification, and hence
should be detected and removed or normalized prior to classification.

Obviously the similarity plot of the same walking person will be different if any of the following are
varied:� Lighting.� Clothing.� Number of pixels on target.� Camera viewpoint.� Cadence (frequency of gait).
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� Phase of walking (body pose at beginning of sequence).� Length of image sequence.

In the sequel, we discuss how each of these variations in the input image sequence can be normalized or
otherwise dealt with when normalization is not possible.

Lighting and Clothing

Variations in clothing and lighting can both be normalized by a using a color-invariant image similarity
measure to computeS, such as by applying Equation 3.1 to binary blobs instead of grey (or color) blobs,
or by using chamfer matching on edge maps of the person. The former is sensitive to segmentation
errors, and the latter may not be a computationally efficientsolution. Another method is to lower the
resolution of the color blobs by scaling them down, so that most of their color detail is lost. The question
that arises here is how much can image resolution be decreased without losing motion information of
gait.

Number-of-Pixels-on-Target

The number of pixels-on-target (POT) can be defined as the height of the person in the image grabber
(assuming the person appears upright in the image). Assuming fixed image resolution and fixed camera
viewpoint, POT can vary due to change in camera depth. To normalize POT for such variations, we can
scaledownthe blobs to some fixed sizeh. Since normalization is not possible when the blob sizes are
smaller thanh, we should chooseh to be small enough so that blobs can generally be scaled down to
this size.

Camera Viewpoint

Normalizing for variation in camera viewpoint is not possible except for very small changes. This is
because, inherently, a different (planar) projection of gait dynamics is captured in the image plane from
any one camera viewpoint.

Hence it is necessary to index our gait recognition method bydifferent ranges of camera viewpoint.
The camera viewpoint is defined by the pan and tilt angles of the 3D camera ray passing through the
walking person in the sequence (with respect to the camera frame of reference). Hence we can for
example define the viewpoint ranges at equal15 deg-intervals of the pan and tilt angles.

Phase, Cadence and Sequence Length

In order to account for different walking paces, starting poses, and length sequences, and assuming these
are irrelevant differences, we can normalize the similarity plots so that they start at the same phase, have
the same frequency, and contain the same number of cycles. This way, we obtain similarity plots of the
same size.

We estimate the fundamental period ofS by computing the average 1D power spectrum of its columns,
and determining its smallest significant peak [12].

The phase ofS can be determined by finding the intersections of its off-diagonals and cross-diagonals,
since these correspond to combinations of the key posesA, B, C, andD, as discussed in Section 3.2.1.
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Since these intersections occur at local minima ofS, then we simply find the first local minimum that
occurs on the diagonal, then determine to which pose combination it corresponds to, i.e.AA, BB, CC,
or DD (See Figure 3.5). For this, we observe (without proof) that the local minima corresponding toAA andCC tend to be ‘flatter’ than those that correspond toBB andDD. Hence, we can determine
whether the first peak is one ofAA;CC or is one ofBB;DD. Hence, we can determine phase ofS
up to (modulo) a half-period. We are unable to resolve the remaining two-way ambiguity betweenAA
andCC, and betweenBB andDD (which is a result of bilateral symmetry of human gait). However, it
might be resolved using other cues, such as shape and direction of motion.

However, gait dynamics are in fact not invariant to large changes in cadence. Hence it is necessary to
index for different cadences as well. For now, we shall divide cadence into three ranges; slow, medium
and fast. The biomechanics literature shows that any normalindividual has acustomary walking speed
(CWS) (also called natural cadence) which is typically in the range90� 130 steps/min [40]. Hence, we
can for example classify cadences within this range asmedium, and cadences outside this range asslow
or fast.

3.3.2 Training the Classifier

LetS 01; S 01; ::; S 0M be a given training set ofM labelled (i.e. corresponding to a known person) normal-
ized similarity plots, of sizeNxN each, and lets0i be the vector of lengthN2 corresponding to theith
similarity plotS 0i (obtained by concatenating all its rows). We compute the principal components [28] of
the space spanned bys01; ::; s0M by computing the eigenvalue decomposition (also called Karhunen-Loeve
expansion) of their covariance matrix:Cs = 1M MXi=1 (s0i � �s0i)(s0i � �s0i)T
where�s0 is the simple mean of all training vectorss01; ::; s0M . This can be efficiently computed inO(M)
time (instead of the brute forceO(N2)) [49].

We then consider the space spanned by then most significant eigenvectors,u1; ::; un, that account
for 90% of the variation in the training SPs1. We denote this space theEigengait. Hence each training
vectors0i can be sufficiently approximated by an-dimensional vectorwi obtained by projecting it onto
the Eigengait, i.e.wi � Pnj=1 uTj :s0i. Furthermore, assuming that the training vectors are representative
of the variation in the entire feature space, then any new feature vector can be similarly approximated
by a point in Eigengait space.

3.3.3 Classification

Gait recognition now reduces to a standard pattern classification in an-dimensional Eigengait space.
The advantage of doing pattern classification in this space is not only thatn is typically much smaller
thanN2 andM , but also that it contains less unwanted variation (i.e. random noise)2 and hence provides
better separability of the feature vectors, or SPs.

1According to the theory of PCA, if�1; ::; �n are then largest eigenvalues, then the space spanned by their corresponding
eigenvectors account for

Pi=ni=1 �i=trae(Cs) of the total variation in the original feature vectors.
2Assuming data variation is much larger than noise variation.
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Given a new SP (corresponding to an unknown person), the procedure for recognizing it is to first
convert it to aN2-vector, map it to a point in Eigengait, find thek closest training points to it, then
decide its class (or label) via thek-nearest neighbor rule[5, 44].

3.4 Experiments

We test our method on two different data sets, and use the leave-one-out cross-validation to obtain a
statistically accurate estimate of the recognition rate [51, 44].

3.4.1 Little and Boyd Dataset

The first data set is the same used by Little and Boyd in [30], which consists of 42 image sequences
with six different subjects (shown together in Figure 3.6 overlaid on the background image) and 7 sam-
ples each. Since the camera is static we used median filteringto recover the background image. Tem-
plates of the moving person are extracted from each image by computing the difference of the image
and the background and subsequently applying a threshold aswell as morphological operations to clean
up noise. The self-similarity plots are computed for each ofeach sequence via absolute correlation,
and normalized such that they all contained 4 gait cycles starting on the same phase, and are of size
64x64. Figure 3.7 shows examples of these normalized similarity plots, where each column of three
plots corresponds to one person. The recognition rates using thek-nearest neighbor classifier are given
in Table 3.1.

Figure 3.6. The six people contained in the test sequences, o verlaid on the background image.

Figure 3.7. Normalized self-similarity plots (columns cor respond to a single person).
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Kn Rate
1 0.80
3 0.825
5 0.90

Table 3.1. Classification rates for various Kn values. The classification for a random guess is also
given.

3.4.2 Multiview Dataset

A more viable assessment of our gait classifier is by using statistically independent samples of each
person. Sequences of one person taken on the same day are not quite independent samples. Sequences
taken on different days not only provide useful informationabout variation of the person’s gait. However,
they also introduce unwanted variation such as that caused by different color and style of clothing.

We aim to assess the effectiveness of different similarity measures in computing the similarity plots
to deal with variations of clothing and lighting. We also aimto evaluate the recognition performance for
different camera viewpoints.

To this end, we test the technique on a database consisting of400 sequences of 7 people (3 females
and 4 males) walking on a treadmill, taken on 7 different daysand captured simultaneously from 8
different cameras. An average of 56 sequences is provided for each subject. The multiple viewpoints
correspond to different pan angles of the camera that are at 15 degree intervals and span a range of about
120 degrees of the camera field of regard. Figure 3.8 illustrates the eight camera viewpoints used in this
experiment. The data sequences were captured in the multi-perspective lab [6] at a frame of 60 fps and
using greyscale 644x488 images.

Figure 3.8. Eight camera viewpoints of the sequences in seco nd test data set.

Figure 3.9 shows the similarity plots corresponding to 24 sequences of one subject taken on three
different days and from all 8 camera viewpoints.

The subjects have been instructed to walk at their natural medium pace, so that no cadence indexing
is needed. However, we used three different similarity measures to compute the similarity plots: (1)
correlation of binary blobs, (2) correlation of color blobswithout background, and (3) correlation of
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color blobs with background. Hence, we built and tested the classifier (as described in previous section)
separately for each of these similarity measures.

Figure 3.10 shows the classification results for each as a function of three different k-nearest neigh-
bor classifier parameters (Kn = 1; 3), the 8 camera viewpoints, and three similarity measures used to
compute the SPs.

(a)

(b)

Figure 3.9. (a) Person walking on treadmill as seen from one c amera viewpoint on 3 different days
(from left to right). (b) Similarity plots of same person in ( a) for 3 different days (rows) and 8 camera
viewpoints (columns).

3.5 Summary and Discussion

We have used a correspondence-free motion-based method to recognize the gaits of a small population
(7) of people, using sequences captured from 8 different viewpoints and taken on different days. The best
recognition result (65%) was achieved using correlation onforeground images from a near-frontoparallel
viewpoint. This result is 4.6 times better than a random classifier (16.7%).

We also performed the same classification on an existing dataset with 6 people, taken from a single
angle on the same day, with no variation on lighting or clothing. The best recognition rate (90%) was
achieved usingKn = 5, and is 5.3 times better than a random classifier (14.2%).

This method is view dependent, and performs best when frontoparallel images are used. Clothing,
lighting, and other variations may degrade the performanceof the classifier, though not significantly.
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Figure 3.10. Classification rate for the 8 viewpoints when us ing (a) Correlation of binary images (BC).
(b) Correlation of foreground greyscale images (FC). (c) Co rrelation of greyscale images (GC).
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Ang Kn BC Rate FC Rate GC Rate
15 1 0.365 0.460 0.454
35 1 0.447 0.467 0.467
55 1 0.460 0.380 0.460
75 1 0.589 0.385 0.467
95 1 0.500 0.640 0.400
115 1 0.610 0.651 0.406
135 1 0.357 0.400 0.383
155 1 0.356 0.406 0.328
15 3 0.415 0.440 0.417
35 3 0.319 0.385 0.320
55 3 0.400 0.460 0.440
75 3 0.589 0.426 0.385
95 3 0.540 0.620 0.440
115 3 0.569 0.528 0.406
135 3 0.353 0.440 0.363
155 3 0.355 0.406 0.316

Table 3.2. Classification rates for binary correlation (BC) , forground image correlation (FC), and grey
image correlation (GC) at various viewing angles (in degree s).
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Chapter 4

Parametric Gait Recognition using Cadence
and Stride Length

This chapter describes a gait recognition technique which,like the Eigengait method of Chapter 3, takes
a motion-based approach in that it extracts correspondence-free motion features to characterize gait from
images. However, it is different in that it estimates explicit 3D parameters of gait (and is hence deemed
a parametric approach). It exploits the periodicity of human walking to estimate the cadence and stride
length of gait, also known as the spatio-temporal parameters of gait [52]. The cadence is estimated
using the periodicity of a walking person. Then, using a calibrated camera system, the stride length is
estimated by first tracking the person and estimating their distance and number of steps traveled over a
period of time.

For a typical outdoor surveillance configuration (with certain assumptions), we are able to estimate
the stride length to within 1cm. An error analysis is given inAppendix A.

The stride length and cadence are known to vary linearly for any one person over his/her range of
natural walking speeds1, and because they are also a function of the physical characteristics of the person
(most notably leg length and body weight), we develop a parametric gait classifier which takes cadence
and stride length as the input features.

This method is view invariant, and robust to changes in lighting, clothing, and tracking errors.

4.1 Assumptions

This technique makes the following assumptions:� People walk on a known plane with constant velocity for about3-4 seconds.� The camera is calibrated.� The frame rate is greater than twice the frequency of the walking.

1Natural cadence corresponds to when a person walks as naturally as possible, and is typically in the range 100-120
steps/minute.
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4.2 Overview

The algorithm for gait recognition via cadence and stride length consists of three main modules, as
shown in Figure 4.1. The first module tracks the walking person in each frame, extracts a 1D signature
of his silhouette shape, and estimates his 3D position on theground plane. The second module computes
the time-distance parameters of gait; it computes the cadence (or frequency of gait) via spectral analysis
of the extracted shape feature over time, and deduces the stride length as a ratio of the total distance
and the number of cycles traveled. Finally, the third moduledetermines the likelihood (in a probabilistic
sense) of the person being any one of the people in an existingdatabase, based on his cadence and stride
length thus measured from the video sequence.

Detection and
Tracking

Shape Feature
Extraction

Estimate 3D
Position

Compute Gait
Period

Compute Cadence
and Stride Gait Classifier

(C,S)T

person blob

image position

Camera
Calibration;

Ground
plane

h(t1),h(tn),
W(t)

Figure 4.1. Overview of Method.

4.3 Tracking and Feature Extraction

Since the camera is static, we use a non-parametric background modeling technique for foreground
detection, which is well suited for outdoor scenes where thebackground is often not perfectly static (e.g.,
for occasional movement of tree leaves and grass) [15]. We apply a number of standard morphological
cleaning operations to the background-subtracted binary image and use a two-pass algorithm to find
connected components (or blobs). Each foreground blob is then tracked in subsequent frames by finding
the set of new blobs that overlap it in the current frame. Oncea blob has been tracked for a sufficient
number of frames, it is classified aspersonor non-personbased simply on the aspect ratio of its bounding
box.

For eachpersonblob, we compute two image features that will be used in the next module to estimate
the cadence and stride length, namely the width of the blob’sbounding box and its lowest leftmost pixel.
These correspond to the width of the person and the position of the back heel in the image, respectively.

Assuming the person is moving with constant velocity on a known plane and the camera is calibrated,
the 3D position of the back heel point can then be determined as follows. LetK andE be the camera
intrinsic and extrinsic matrices respectively, and letP : AX + BY + CZ + D = 0 be the parametric
equation of the plane of motion, in some defined world frame. Furthermore, we assume perspective
projection and hence the camera equations:
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0B� xy1 1CA = K 0B� 1 0 0 00 1 0 00 0 1=f 0 1CA E 0BBB� XYZ1 1CCCA
Therefore, if(X; Y; Z) is any point on planeP , and(x; y) is its projection (pixel coordinates) on the
image plane, then we have:0B� k11 0 �x + k130 k22 �y + k23A0 B0 C 0 1CA E 0B� XYZ 1CA = 0B� 00�D0 1CA
where

� A0 B0 C 0 D0 � � � A B C D � E�1 andkij is the (i; j)th element ofK. Hence,
given the image position of the back heel point(x; y), its 3D position(Xh; Yh; Zh) can be determined
via the above linear system of 3 equations and 3 unknownsXh, Yh andZh.
4.4 Estimation of Cadence and Stride Length

Once the person has been tracked for a certain number of frames,n, its spatio-temporal gait param-
eters, namely the cadence and stride length, are estimated from its 3D trajectory and width time series
computed above.

Human gait is a rhythmic (repetitive) phenomenon. Hence theappearance of a moving person viewed
from a camera is itself periodic. Existing vision methods that compute the period of gait typically extract
a 1D or 2D feature from the image then analyze the spectral properties of the obtained 1D or 2D time
series. For example Polana and Nelson [43] usereference curves, each of which is a 1D signal of the
intensity values of one pixel in the person’s image over time; Cutler and Davis [12] compute theself-
similarity plot, a 2D matrix of the absolute correlation between each pair images of the person in the
sequence; and Haritaoglu et al. [20] use the autocorrelation function of the vertical profile of the contour
silhouette.

In this method, we simply use the width of the bounding box of the corresponding blob region, hence-
forth denotedW (t), not only for computational efficiency but also because it has proven to work well
with our background subtraction algorithm (which is fairlyrobust). Niyogi and Adelson [39] also ex-
tract this feature from an image sequence and analyze the corresponding spatiotemporal patterns for the
detection and recognition of a walking person.

One method for estimating the period of a time series that accounts for colored (non-white) noise, is to
use its autocorrelation [12]. To estimate the period ofW (t), TW , we first detrend it (to remove the linear
trend if any), smooth it with a symmetric average filter of radius 2, then compute its autocorrelation,A(i); i 2 [�lag; lag℄ wherelag is chosen such that it is much larger than the expected periodof W (t).
The peaks ofA(i) correspond to whenW (t) is maximally self-similar. However, due to the bilateral
symmetry of the human gait (which makes the pose when the leftleg is leading similar, though not
maximally, to the pose when the right leg is leading),A(i) will sometimes have minor peaks half way
between every two major peaks. The strength of these minor peaks diminishes the more the camera
viewpoint deviates from fronto-parallel.
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Figure 4.2. Autocorrelation function of the width series of a (nearly) fronto-parallel sequence. It
contains major and minor peaks.

Figure 4.2 showsW (t) and the correspondingA(i) for a (almost) frontoparallel sequence. Note thatA(i) has both minor and major peaks. Figure 4.3 showsW (t) and the correspondingA(i) for a non-
frontoparallel sequence. Note here the linear increasing trend inW (t) due to the changing camera depth.
Note also thatA(i) does not have any minor peaks.

Hence, we estimateTW as the average distance between every two consecutivemajorpeaks inA(i).
The gait periodT is then given byTW , and the cadence and stride length respectively by [40] :C = Fs � 60 � 2T (steps=min)S = k h(tn)� h(t1) kn � T (meters)

whereh(t1) andh(tn) are the 3D coordinates of the person’s back heel point in the first andnth frames,
respectively, andFs is the frame capture rate.

An analysis, of the estimation error in stride length, basedon a typical outdoor setting, is given in
Appendix A, and shows an error of about 1cm.

4.5 Person Identification

Here the goal is to build a supervised classifier that uses thecadence and stride length as the input
features. While we believe stride length and cadence cannotuniquely identify a person, just as height and
hair color do not, building such a classifier helps us to assess the ‘separation power’ of these features, and
hence their usefulness in an actual authentication system that would use several modalities (biometrics)
to identify a person.

We use two different parametric classification techniques whereby, given a set ofm labeled samples
(i.e. cadence and stride length value-pairs of known people), (C1; S1); ::; (Cm; Sm), the classifier is
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Figure 4.3. Autocorrelation function of the width series of a non-fronto-parallel sequence containing
no minor peaks.

trained by fitting the points of each class (person) to the parameters� of a certain model. Classification
of a new sample is then achieved by maximizing the likelihoodof that sample given the class model.

4.5.1 Linear Regression Model

Since the stride length and cadence are known to vary linearly for each person within the range of
his/her natural walking speeds [19, 52], we use a linear regression model of the form:S = a �C+ b+!,
where! is random noise. We estimate the model parametersâp and b̂p for each classp in the training
set using the linear least squares method, which is known to minimize the square sum of the residualsri = Si � aCi � b (i.e. vertical distance between fitted line and the sample points) and is optimal when
the model noise!p is a white noise. The variance of!p is estimated using the sample variance,�̂wp, of
these residuals.

Given a new sample(C 0; S 0) of an unknown person, we compute the probability�p that it belongs
to classp in the database as the likelihood (also called p-value),�p, of the corresponding residualr �S 0 � aC 0 � b with respect to the distribution of!p.
4.5.2 Bivariate Gaussian Model

A simpler way to model the relationship between cadence and stride length is as a bivariate Gaussian
distribution. Hence the model is trained simply by computing the sample mean,̂�p and sample covari-
ance matrix,̂�p, of the model from the training samples of each classp. The likelihood (p-value) of a
new sample,u � (C; S), with respect to each classp is then computed.

An obvious disadvantage of this model is that, unlike the linear regression model, it cannot extrapolate
to values outside the range of its training samples (since they inevitably lie at the tails of the probability
distribution). This problem can be avoided if we ensure the training samples indeed span the entire range
of natural walking cadences.
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4.6 Results

The technique is tested on a database of 131 sequences, consisting of 17 people with an average 10
samples each. The subjects were videotaped with a Sony DCR-VX700 digital camcorder in a typical
outdoor setting, while walking at various cadences (paces). Each subject was instructed to walk on a
straight line at a fixed speed a distance of about 90 feet (30 meters). Figure 4.4 shows a typical trajectory
walked by each person in the experiment. The same camera fieldof view was used for all subjects.

The video sequences were captured at 30 fps with an image sizeof 360x240. We used the technique
described above to automatically compute the stride lengthand cadence for each sample sequence. The
results are plotted in Figure 4.5, where each subject is shown with a different line label (only 10 of the
17 subjects are shown here for the sake of clarity).

In order to test our gait classifier, we then use these 131 cadence and stride length samples and the
leave-one-out cross-validation technique [51, 44] to obtain a statistically accurate estimate of the recog-
nition rate. Specifically, we train the classifier using all but one of the samples, and test it on the sample
missed (or left out). This process is hence repeated 131 times, leaving out each of the 131 samples in
turn. The classification result of any one test sample consists of a ranking,(pi1; ::; pi17), of all 17 persons
in the database, wherepi1 is the top match andpi17 is the least favorable match. The overall classification
rate is then obtained as the fraction of test samples (out of the total 131) for which the correct person is
found to be the top match.

A more general way of describing the performance of a classifier is via the FERET evaluation method-
ology (originally developed for evaluating face-recognition algorithms) [41]. Specifically, for eachk = 1; ::; 17, we measure the probability,�(k), that the correct person (or class) iswithin the topk
matches for a test sample. Hence the classification rate is equal to�(1). Using the leave-one-out cross-
validation procedure, we compute�(k) for eachk as the fraction of test samples for which the correct
person label is in the subset(pi1 ; :::; pik).

Figure 4.6 shows�(k) for the two different classifier models as well as for the ‘chance’ classifier. A
chance classifier corresponds to when the ranking(pi1 ; ::; pi17) is a random permutation of the the 17
persons, i.e.�(k) = k=17.

4.7 Summary and Discussion

We have presented a parametric method for person identification by estimating and classifying their
stride and cadence. This approach is view invariant, and robust to changes in lighting, clothing, and
tracking errors. It achieves its accuracy by exploiting thenature of human walking, and computing the
stride and cadence over many steps.

The classification results are promising, and are over 7 times better than chance for the k=1, linear
regression classifier. The linear regression classification can be improved by limiting the extrapolation
distance for each person, perhaps using supervised knowledge of the walking speeds of each person.

Further improvements can be achieved by using higher resolution cameras (here we used only 360x240),
and by improving the tracking precision.
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Chapter 5

Detection of Load-carrying People for Gait
and Activity Recognition

5.1 Motivation

The detection of whether a walking person is carries an object is of interest in gait recognition because
carried loads are considered a gait-altering factor (i.e. they alter the the dynamics of walking). Moreover,
some gait recognition algorithms are appearance-based, and hence the presence of a large carried object
that distorts the silhouette shape of the person is very likely to ‘break’ such algorithms. Thus, it is
essential to determine whether a person is carrying an object before attempting gait recognition.

Carried object detection is also of interest to human activity recognition. In many surveillance appli-
cations, an important class of human activities are those involving interactions of people with objects
in the scene, which include depositing an object, picking upan object, and the exchange of an object
between two people. Given the time intervals during which objects are carried by any one person, we
would expect that a temporal logical reasoning system will be able to infer events of object pickup,
object deposit and object exchange.

The clinical gait analysis and ergonomics research communities have also been interested in assessing
the effect of load-carrying on the human gait, for applications that include the design of ‘ergonomically’
safe backpacks for army infantrymen and recreational hikers [29, 34]. Their studies typically analyzed
the spatio-temporal, kinematic and kinetic parameters of gait as a function of the amount of carried load
as well as the manner by which it is carried. According to these studies, people carrying a (heavy) object
adjust the way they walk in order to minimize their energy expenditure1 [26, 32, 33]. Consequently,
their cadence tends to be higher and the stride length to be shorter for people carrying an object. Also,
the duration of the double-support phase of the gait cycle (i.e. the period of time when both feet are on
the ground) tends to be larger for a person carrying an object.

From a computer vision viewpoint, carried objects can be classified into two types:� Objects that alter the way the personwalks (i.e. the biomechanics of his gait) because of their
sheer weight and/or size.� Objects that alter the way the personappearsbecause they occlude part of the body when carried.

1in fact this is a general concept in gait dynamics that applies to any walking conditions
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Hence, a vision algorithm can either determine if the person’s gait is within the range of normal gait
dynamics, in which case the problem becomes one of gait classification, or can try to detect changes in
its appearance that might suggest the presence of a carried object.

The detection of deviations from normal gait can most simplybe done by measuring certain gait
parameters (temporal, kinematic and kinetic) and determining if they correspond to those of a naturally
walking person, assuming we have a model of what ‘normal gait’ is. This is the typical approach taken
by clinical gait analysts [40]. It is not a good approach for acomputer vision method, however, since it
would require accurate tracking of body landmarks, which isstill an error prone process. An exception
to this are the spatial and temporal periods of gait (i.e. cadence and stride length), which recent work
has shown can be computed robustly from video [53, 12]. In theformer, pedestrians are detected by
estimating the pace (cadence) and stride length of a ‘rythmically’ moving object, then classifying it as
a pedestrian if the pace and stride length lie within some fixed range of ‘typical human walking’ (they
model the latter as two independent Gaussian distributionswith fixed parameters).

In [12], Cutler and Davis show that stride length can be automatically estimated from video and an
accurately calibrated camera to within 2 inches. Unfortunately, with this much accuracy, it is not possible
to confidently distinguish a load-carrying person from a naturally-walking person, since the difference
in their stride lengths is typically on the order of only 1-2cm [29].

Thus, a parametric approach for discriminating load-carrying and natural-walking gaits seems imprac-
tical. Instead, we shall use periodicity and silhouette shape cues to characterize the differences between
these gaits. Specifically, we contend that the spatiotemporal patterns of human silhouette satisfy certain
constraints, that are often when the person carries an object. Our method essentially analyzes silhou-
ette shape over many frames, and so it is robust to (spurious)segmentation errors, unlike a static shape
analysis method for example that would try to detect a ‘bump’in the silhouette contour from one frame.

5.2 Assumptions

We limit the scope of the problem by making the following assumptions:� The camera is stationary. This simplifies the foreground detection procedure, and helps decouple
detection problem from the problem at hand.� The person is walking in upright pose. This is a reasonable assumption for a person to carry an
object.� The person walks with a constant velocity for a few seconds (i.e throughout the analysis for carried
object detection).

5.3 Overview of Method

The method consists of a sequence of three processing steps or modules. First we detect and track
the person for someN frames in the video sequence and obtainN binary blobs of the person. Then, we
classify the person asnaturally-walkingor object-carrying, based on spatiotemporal analysis of certain
features of binary silhouette of the blobs. Finally, we segment the object via static shape analysis of a
select frame.
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5.4 Foreground Detection and Tracking

Since the camera is assumed static, foreground detection can be achieved via background modelling
and subtraction. We use the non-parametric background modelling technique that is essentially a gener-
alization of the mixed-Gaussian background modelling approach [15, 47], and is well suited for outdoor
scenes in which the background is often not perfectly static(for e.g. occasional movement of tree leaves
and grass). A number of standard morphological cleaning operations are applied to the detected blobs
to correct for random noise. Frame-to-frame tracking of a moving object is done via simple overlap of
its blob bounding boxes in the current and previous frames.

5.5 Carried Object Detection

GivenN blobs of a moving person inN frames, we determine whether it corresponds to a naturally-
walking person, or a personpossiblycarrying an object. For this, we formulate two constraints that
characterize natural walking as a function of the temporal characteristics (periodicity and amplitude) of
certain binary shape features of the person’s silhouette. Amoving person is deemed as possibly carrying
an object if either one of these constraints is violated, andas naturally-walking otherwise.

5.5.1 The Algorithm

The human gait is highly structured both in space and time, due to the bilateral symmetry of the
human body and the cyclic coordinated movement patterns of the various body parts, which repeat at
the fundamental frequency of walking. A good model for the oscillatory motion of the legs is a pair of
planar pendula oscillating180o out of phase [35, 42, 32]. The same can be said about the swinging of
the arms [50].

The differences between natural walking gait and load-carrying gait may be attributed to any of the
following (this list does not claim to be exhaustive):� The manner by which the person carries the object; e.g. when holding a box with both hands, the

arms no longer swing.� Occlusion of part of the silhouette, such as when a handbag orsuitcase held on the side occludes
the legs.� Protrusion of the object outside silhouette, hence distorting its contour shape.� The sheer weight of an object; a heavy object will most likelycause a person not to swing his arms
as much.

We capture these differences between natural gait and load-carrying gait via temporal behavior of
correspondence-free binary shape features, consisting ofthe bounding box widths of horizontal segments
of the silhouette. We formulate constraints on the periodicity and amplitude of these features, and claim
that these constraints are typically violated when the person is carrying an object.

Consider the subdivision of the silhouette into 4 segments,shown in Figure 5.1; three equal contiguous
horizontal segments over the lower body region, denotedL1, L2, L3 (bottom segments first), and one
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Figure 5.1. Subdivision of body silhouette into 5 segments f or shape feature computation.

segment for the upper body region, denotedU . We also defineL = L1 [ L2 [ L3 (i.e. the lower half of
the body).

We compute the boundary box width over each of the defined segments of the silhouette, for each blob
in the sequence. The time series thus obtained are denoted by�L(t), �L1(t), �L2(t), �L3(t) and�U(t),
corresponding to segmentsL,L1,L2,L3 andU , respectively. Since natural walking gait is characterized
by the oscillation of the legs and swinging of the arms at the period of gait [32], we contend that:Period(�L(t)) = Period(�U(t)) = T0 (5.1)

wherePeriod(:) denotes the fundamental period of a time series. If Equation5.1 is not satisfied, then the
person is deemed to be possibly carrying an object. Furthermore, we claim that their mean amplitudes,
denoted by��L, ��U , etc., satisfy: ��L > ��U ^ ��L1 > ��L2 > ��L3 (5.2)

Though we do not formally prove this claim here, intuitivelyit is an artifact of the pendular-like motion
of the arms and legs, as mentioned above. The person is also deemed to be possibly carrying an object
if Inequation 5.2 is not satisfied.

The binary shape features used by our method to capture the motion patterns of human gait, namely
the width of the silhouette bounding box, are indeed akin to those used in [39] and those in [16]; Niyogi
and Adelson [39] extract these same shape features and use them to detect humans in video by finding
the characteristic ‘spatiotemporal braids’ created by a walking person in an image sequence; Fujiyoshi
and Lipton [16] extract the five (most salient) curvature maxima of the silhouette contour to track the
‘gross extremities’ of the body, and then analyze the 1D trajectory of each point to detect cyclic motion.

We estimate the period of�L(t) and�U(t) via the autocorrelation method, which is robust to colored
noise and non-linear amplitude modulations, unlike Fourier analysis [12]. For this, we smooth each
signal, detrend it to account for any linear increase causedby change in viewpoint, and compute its
autocorrelationA(i) for i in some interval[�lag; lag℄, wherelag is chosen such that it is sufficiently
larger than the expected period of gait. The period is then estimated as the average distance between
each two consecutivemajorpeaks inA(i).
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A(i) may also containminor(small) peaks between every two major peaks. A minor peak corresponds
to the similarity of the two symmetric poses; when the left leg is leading and when the right leg is leading
[12]. This is due to the bilateral symmetry of the human gait.Hence, we first detect all peaks inA(i),
then determine whether there are minor peaks by computing the average strength of all odd peaks (i.e.
first, third, etc.) and all even peaks (i.e. second, fourth, etc.). If they are comparable, then there are no
minor peaks. Otherwise, the odd peaks are minor peaks.

In summary, our algorithm determines that a person is possibly carrying an object if any of the prop-
erties given in 5.1 and 5.2 which we claim characterize natural walking gait, is not satisfied (since
load-carrying is considered un-natural gait). In the next section, we give examples to illustrate these
claims.

5.5.2 Examples

Figure 5.2 shows one frame of a person walking frontoparallel to the camera, along with the corre-
sponding�L(t) and�U(t) (topmost plot) and their respective autocorrelation functions (in bottom plot),AL(t) andAU(t). Note that bothAL(i) andAU(i) have minor and major peaks.

Figure 5.3 shows the same thing for a person walking non-frontoparallel to the camera. Note that,
while AL(i) has major and minor peaks,AU(i) does not. The bilateral symmetry of the upper region
is lost when the person is walking non-frontoparallel to thecamera. However, in both cases,�L(t) and�U(t) have the same period, since only major peaks are relevant in computing the period.
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Figure 5.2. (a) Person walking frontoparallel to camera, an d (b) corresponding width series and
autocorrelation functions.

The following two examples illustrate cases in which eitherof AL(i) or AU(i) is not periodic due to
the presence of a carried object. Figure 5.4 shows a person carrying a bucket in each arm. He is hardly
swinging his arms, perhaps because the buckets must be heavy. This explains whyAU (i) is not periodic,
whileAL(i) is. Figure 5.5 illustrates the same case with a different person. Note here thatAU(i) seems
to oscillate at a higher frequency than the legs, which maybedue to independent oscillation of the carried
handbag (particularly if it’s lightweight).
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Figure 5.3. (a) Person walking non-frontoparallel to camer a, and (b) corresponding width series and
autocorrelation functions.

Another case whenAL(i) is periodic whileAU (i) is not, happens when a person is carrying an ob-
ject with both hands, as illustrated by both examples in Figure 5.6 and Figure 5.7. This can be easily
explained by the fact that both arms are not swinging (since they are holding the object). Note that for
the second example, Equation 5.1 is not satisfied because thecarried box wider than legs-width. This
provides further evidence that the person might be carryingan object.
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Figure 5.4. Person carrying two objects on the side. Width se ries of lower body region is periodic,
while that of upper body is not.

The examples in Figure 5.8, Figure 5.9, and Figure 5.10 illustrate cases of a person carrying an object
for which Equation 5.1 and the first part of Inequation 5.2, i.e. ��L > ��U are satisfied. However, in
all three cases, detection of the object is in fact made possible by the fact that the second part of this
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Figure 5.5. Person carrying a handbag on the side. Width seri es of lower body region is periodic and
of upper body region is aperiodic.
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Figure 5.6. Person carrying a box in front with two hands. Wid th series of lower body region is
periodic and of upper body region is aperiodic.
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Figure 5.7. Person carrying a box in front with two hands. Wid th series of lower body region is
periodic and of upper body region is aperiodic.Furthermore , average width of upper body region is
larger than that of lower body region.

Inequation, i.e. ��L1 > ��L2 > ��L3, evaluates to false. The underlying reason for this is because the
carried object occludes part of the legs, and hence distortsthe pendular-like motion pattern as seen by
the camera. Figure 5.11 shows�L1, �L2 and�L3 for the examples in Figure 5.2, Figure 5.8, Figure 5.9,
and Figure 5.10, respectively.

5.5.3 Carried Object Segmentation

To segment the object, we first observe that the silhouette contour of a walking person is smooth,
except when the arms swing outside the body. Hence, if we choose the frame that corresponds to the gait
pose when the two legs are joined together (and hence arms arenext to the body), then we may assume
that any remaining ‘significant’ curvature maxima in the contour occur because of a protruding carried
object. The region enclosed within the convex hull providesa crude initial estimate of the object. We
extend this region by adding any connected blob pixels that lie to the left or right of it (i.e. are more
extreme than it).

5.6 Experiments and Results

We tested the method on 41 outdoor sequences taken from various camera viewpoints, and captured at
30 fps and an image size of 360x240. The examples given above were samples of these sequences. All
of these sequences were depictions of spontaneous, un-orchestrated human activity within the parking
lot of a university building. Table 5.1 summarizes the type of sequences used and the detection results
for each category. The detection rate is hence 83.33% (20 outof 24) and the false alarm rate is at 11.76%
(2 out of 17). We notice that the mis-detections occurred when the object was too small to distort the
spatio-temporal shape patterns of the silhouette, while false alarms occurred due to segmentation errors.
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Figure 5.8. Person carrying two objects on the side. Width se ries of upper and lower body regions
are periodic with same period.
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Figure 5.9. Person carrying two objects on the side. Width se ries of upper and lower body regions
are periodic with same period.

Total Natural-walking Load-carrying
Walking 17 15 2
Backpack 7 2 5
On the side 13 2 11
With both hands 4 0 4

Table 5.1. Carried Object Detection Results.
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Figure 5.10. Person carrying two objects on the side. Width s eries of upper and lower body regions
are periodic with same period.

5.7 Summary and Discussion

We have described a novel method for determining whether a person in carrying an object in monocu-
lar sequences seen from a stationary camera. This is achieved via temporal analysis of simple correspondence-
free binary shape features, that exploit the periodic and pendular-like motion of legs and arms. The final
phase of our method is a crude segmentation of the object via static shape analysis of the blob silhouette.
We plan to improve this technique in future work in at least two ways; first by using color/edge infor-
mation to refine the segmented region and obtain a more accurate estimate of the object, and second by
applying the segmentation process on blobs in multiple frames.
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Figure 5.11. �L1, �L2 and �L3 for (a) naturally-walking person, and (b),(c),(d) a person carrying an
object. Inequation 5.2 is only violated for the latter three .
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Chapter 6

Conclusions and Future Work

We presented two methods for gait recognition and a method for the detection of carried objects. We
take a motion-based recognition approach in all three methods, as we extract correspondence-free motion
features from images and use them to directly characterize body movement. We plan to refine and extend
this work in the following ways:

6.1 Eigengait Method� Test on a larger population ofoutdoorsequences taken from arbitrary viewpoints. These sequences
present challenges and difficulties that did not arise with frontoparallel and treadmill walking. For
example, the scaling of images required for non-frontoparallel sequences may prove to be a sig-
nificant source of error in the similarity plot. Note also that we need to automatically estimate the
camera viewpoint of a walking person, which requires knowledge of both the camera calibration
parameters and the walking plane of the person.� Assess the number of camera viewpoints needed to index recognition (i.e. the granularity of pan
and tilt angles ranges).� Assess the effect of image resolution on recognition performance. We currently scale down the
person blobs to a fixed number-of- pixels-on-target. We aim to determine the effect of varying this
parameter.

6.2 Cadence/Stride-based Method� Test on a larger, more diverse population of people.� Assess the effect of using higher resolution cameras (we currently use only 360x240), and im-
proving the tracking precision on performance.� Assess the effect of camera viewpoint on the accuracy of the method, via more detailed analysis
of the estimation error of cadence and stride length. Although the method is view-invariant, in that
the same algorithm can be applied regardless of viewpoint. However, we believe its performance
is notview-invariant. The presented error analysis assumes constant camera depth throughout the
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sequence. It also assumes a constant pixel error, whereas ittypically varies as a function of camera
viewpoint and position in the image. We expect that estimation error will degrade very quickly
for near front-on viewpoints (i.e. where the person is walking towards or away from the camera).
Hence, it is important to evaluate just how much performancedegrades as a function of camera
viewpoint.

6.3 Towards an Integrated Multi-camera Surveillance System� Integration of multiple features for gait recognition:

Perhaps the best approach for achieving better person identification results is to combine the
Eigengait features with the stride length/cadence features. However, because of the different na-
ture of these features, a careful analysis of variance is needed.� Best-view selection:

The performance (in terms of accuracy and robustness) of anyimage-based human movement
(gait) analysis method is inherently view-dependent, since inevitably images capture only a planar
projection of gait dynamics, and not its entire phase space.Hence, a different subset of this phase
space is extracted from different camera viewpoints. Sincegait dynamics are dominated by leg
and arm movements, this subset is largest when the sagittal plane1 is parallel to the image plane.
This happens in fronto-parallel walking.

Thus, for best performance of gait recognition and human movement analysis methods, it is ideal
to use a camera that is nearly fronto-parallel to the walkingperson. This ‘view-selection’ capabil-
ity can be provided by a distributed multi-camera system; the camera that has the ‘best view’ of
the moving person is selected to analyze its movement.

We plan to develop the camera control and planning algorithms that implement this capability,
using the existing network of outdoor Philips cameras. Thisproblem also involves a great deal
of low-level vision issues, associated with ensuring smooth successful camera handoff, i.e. data
transfer from one camera to another.

1The Sagittal plane corresponds to the side view of a walking person, and is hence the plane of movement of the legs and
arms.
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Appendix A

Stride Length Error Analysis

Consider the outdoor camera configuration shown in Figure A.1. The camera has a heightH, and looks
down on the ground plane with tilt angleT and vertical field of viewF . Suppose that a person walks
roughly parallel to the image plane (to simplify the analysis), and with roughly constant velocity. The
strideS is estimated using the number of steps walked,N , and the distance walked,W :S = W=N (A.1)

The uncertainty inS is �S: �S = Sq(�2W=W 2 + �2N=N2) (A.2)

where�N is the uncertainty inN , and�W is the uncertainty inW . We assume the uncertainty inW andN are uncorrelated (to simplify the analysis). We have empirically estimated�N = 0:07 steps with our
configuration and method of estimating periodic motion.

The horizontal ground sampling distance per pixel isg = F � R=(V osT ), whereV is the vertical
resolution,R = pD2 +H2 is the distance from the camera to the person, andD = H � tanT is the
distance from the camera base to the person. We approximate�W = 2 � g, which assumes we can track
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Figure A.1. Outdoor surveillance camera configuration.
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Figure A.3. Stride uncertainty as a function of number of ste ps.

people with two pixel accuracy in the video image. We neglectcamera calibration errors in this analysis,
as they they were small.

For our outdoor surveillance configuration,F = 12 deg, T = 64 deg, H = 15m, V = 240 pixels,N = 16 steps,D = 30:5m; the resultant�S = 7mm. Figure A.2 gives a plot of�S as a function ofD.
Note that the stride error is relatively low compared to the horizontal ground sampling distance since we
are estimating the stride over many steps. We are exploitingthe fact that the total distance traveled is the
sum of the individual steps; implicitly, we use the fact thatpeople move with piecewise contiguous steps.
Therefore, asW andN increases andD remains relatively constant, then�S significantly decreases.
For example, at the distance ofD = 30:5m, the horizontal ground sampling distanceg = 68mm, while�S = 7mm. Figure A.3 shows the uncertainty in stride as a function of number of steps taken1.

Note that we cannot exploit the same error-reduction methodin estimating a person’s height. However,
while we cannot accurately estimate height with a low resolution video camera in this configuration, we
can accurately esimate stride and cadence.

1To further explain the reduction of error, consider the following problem: suppose you were asked to measure the length
of a poker card, and you were given a tape ruler that is accurate to 1cm. To achieve greater accuracy, you take 20 cards from
the same deck, and align them to be piecewise contiguous. Youmeasure the length of all 20 cards, and divide this measure
by number number of cards. The cards can now be measured with 20 times the accuracy as before with using just a single
card.
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