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Dataflow models are widely used for expressing the functionality of digital

signal processing (DSP) applications due to their useful features, such as providing

formal mechanisms for description of application functionality, imposing minimal

data-dependency constraints in specifications, and exposing task and data level par-

allelism effectively. Due to the increased complexity of dynamics in modern DSP

applications, dataflow-based design methodologies require significant enhancements

in modeling and scheduling techniques to provide for efficient and flexible handling

of dynamic behavior. To address this problem, in this thesis, we propose an innova-

tive framework for mode- and dynamic-parameter-based modeling and scheduling.

We apply, in a systematically integrated way, the structured mode-based dataflow

modeling capability of dynamic behavior together with the features of dynamic pa-

rameter reconfiguration and quasi-static scheduling.

Moreover, in our proposed framework, we present a new design method called

parameterized multidimensional design hierarchy mapping (PMDHM), which is tar-

geted to the flexible, multi-level reconfigurability, and intensive real-time processing



requirements of emerging dynamic DSP systems. The proposed approach allows

designers to systematically represent and transform multi-level specifications of sig-

nal processing applications from a common, dataflow-based application-level model.

In addition, we propose a new technique for mapping optimization that helps de-

signers derive efficient, platform-specific parameters for application-to-architecture

mapping. These parameters help to maximize system performance on state-of-the-

art parallel platforms for embedded signal processing.

To further enhance the scalability of our design representations and imple-

mentation techniques, we present a formal method for analysis and mapping of

parameterized DSP flowgraph structures, called topological patterns, into efficient

implementations. The approach handles an important class of parameterized sched-

ule structures in a form that is intuitive for representation and efficient for imple-

mentation.

We demonstrate our methods with case studies in the fields of wireless com-

munication and computer vision. Experimental results from these case studies show

that our approaches can be used to derive optimized implementations on parallel

platforms, and enhance trade-off analysis during design space exploration. Further-

more, their basis in formal modeling and analysis techniques promotes the appli-

cability of our proposed approaches to diverse signal processing applications and

architectures.
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1 Introduction

Dataflow models are widely used for expressing the functionality of digital sig-

nal processing (DSP) applications, such as those associated with audio and video

data stream processing, digital communications, and image processing (e.g., see [1]).

Dataflow provides a formal mechanism for describing specifications of DSP appli-

cations, imposes minimal data-dependency constraints in specifications, and is ef-

fective in exposing and exploiting task or data level parallelism for achieving high

performance implementations.

In recent years, a variety of computing architectures have been proposed for

massively parallel processing (e.g., see [2, 3]). One of the most important classes of

parallel computing platforms is the class of multicore processors. Such processors

may use hundreds of lightweight cores to achieve application speedup. Graphics

Processing Units (GPUs) form one major sub-class of multicore processors. GPUs

provide large performance gains for certain types of regularly structured computa-

tions that have high degrees of parallelism (e.g., see [4, 5]). However, development

of efficient implementations on GPUs requires careful attention to scheduling and

resource mapping, and tedious fine tuning may also be required to extract perfor-

mance gains.

When implementing a dataflow-based signal processing application model on a

target platform, scheduling plays an important role (e.g., see [1]). Here, by schedul-

ing, we refer to the process of determining which processing resource each actor

executes on, and the ordering of execution among actors that share the same re-
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source. By affecting key metrics that include performance, and memory usage,

scheduling often has significant impact on implementation quality.

For efficient implementation on parallel platforms, it is useful for application

developers to perform complex graph analysis, such as parallelism exploration and

buffer size estimation, to map a platform-independent application graph into an

efficient platform-specific realization. In the mapping process, parameters associated

with the targeted parallel platforms, such as the degree of parallelism available for

exploiting application components, are useful for scheduling of the applications.

Here, by scheduling, we mean assigning application components (tasks) to processing

resources and ordering the execution of the application components that share the

same resources. The effective configuration of mapping parameters can be critical

to optimizing performance. However, such parameter configuration often requires

large amounts of human labor — e.g., to acquire profiling-related information for

the application with respect to relevant platform properties.

In this thesis, we propose a systematic framework based on dataflow tech-

niques to map signal processing applications onto parallel platforms. Our proposed

framework is geared toward achieving optimized performance, and operates using

platform-independent application graphs as its starting point. This use of platform-

independent specifications helps to promote the retargetability of the proposed

methods across different platforms, as well as the lasting utility across multiple gen-

erations of the same platform. Our mapping framework employs a form of dataflow

modeling called core functional parameterized synchronous dataflow (CF-PSDF). In

our work, CF-PSDF is applied to facilitate efficient scheduling techniques in dy-
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namic systems, and to help optimize the exploitation of parallelism in the targeted

platforms.

We also develop in this thesis a novel design method for hierarchical exploita-

tion of parallelism in multi-dimensional signal processing applications. The method

provides a formal linkage between hierarchical layers of parallelism in a targeted

multicore platform and corresponding subsystems of the application. Scheduling

can be optimized with the parallelism exposed from our proposed design method

by using established techniques for DSP dataflow graph scheduling (e.g., see [1]).

In addition, we also present innovative models for schedule representation. These

models aid in the development of code generation techniques, as well as in the formal

analysis and transformation of schedules to help meet design constraints.

1.1 Core Functional Parameterized Synchronous Dataflow

Due to the increased complexity of dynamics in modern DSP applications,

such as wireless communication systems based on LTE and WiMAX, designers need

significant flexibility in the types of functional behaviors that they can efficiently

specify and implement. To model complex dynamic DSP systems, a variety of

dataflow approaches have been proposed (e.g., see [1]). Some of these can model

arbitrary dynamic behaviors, but may lead to inefficient schedules. Others allow

powerful scheduling and mapping techniques by restricting the range of dynamic

applications that they can accommodate.
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Core functional dataflow (CFDF), is a dynamic dataflow model that provides

highly expressive semantics for the design of applications with structured dynamic

behavior [6]. However, this flexibility, especially when high levels of data-dependent

dynamics are present, may result in significant run-time scheduling overhead and

reduced predictability in scheduling performance.

On the other hand, parameterized synchronous dataflow (PSDF) is a modeling

technique that provides for systematic integration of dynamic parameter reconfig-

uration into synchronous dataflow representations [7]. Such an approach enables

flexible parameterized modeling as well as strong support for quasi-static schedul-

ing, which allows efficient and predictable scheduling performance for many kinds

of dynamic applications. Here, by quasi-static scheduling, we mean scheduling tech-

niques that fix a significant portion of schedule structure at compile time, while

allowing flexibility for run-time adaptation of this statically-constructed structure

based on characteristics of input data and operating conditions [8]. To provide sup-

port for powerful quasi-static scheduling techniques, expression of dynamics in PSDF

is restricted — in particular, dynamic changes to actor and subsystem dataflow

properties are disallowed for some kinds of modeling structures [7].

In this thesis, we develop a new dataflow modeling framework, which is based

on careful integration of the CFDF and PSDF models. We refer to our proposed

model as core functional parameterized synchronous dataflow (CF-PSDF). CF-PSDF

provides useful trade-offs between dynamic modeling flexibility, and support for ef-

ficient quasi-static scheduling. By applying our proposed design methodology based

on CF-PSDF modeling, designers can potentially enhance performance of dynamic

4



applications by employing efficient static and quasi-static scheduling techniques lo-

cally, and reducing the overhead associated with more general dynamic scheduling

strategies. We demonstrate the utility of our proposed CF-PSDF based modeling

and design techniques using an application case study involving multi-input, multi-

output (MIMO) detection.

1.2 Hierarchical Mapping Approach

Synchronous dataflow [9] has been popular in design of DSP applications be-

cause of its useful features, including compile-time, formal validation of deadlock-

free operation and bounded buffer memory requirements, as well as support for

efficient scheduling and buffer size optimization [1]. However, the SDF model is well

suited only for one-dimensional DSP algorithms, such as those in the domains of

speech, audio, and digital communication. Multidimensional synchronous dataflow

(MDSDF) [10] is a generalization of SDF to multiple dimensions. MDSDF provides

an effective model for a variety of multidimensional DSP systems that have statically

structured dataflow characteristics.

In this work, we develop new methods for efficient implementation of parallel

processing solutions for signal processing systems using MDSDF representations.

Our proposed design methods apply dataflow transformations to exploit data par-

allelism hierarchically from multidimensional dataflow graphs. Our design methods

provide a systematic approach for exposing and exploiting parallelism from multidi-

mensional dataflow specifications across different levels of the specification hierarchy.
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We demonstrate our proposed new modeling techniques and design methods

by applying them to optimize implementations developed using the NVIDIA GPU

programming environment [11]. Using our new MDSDF-based design techniques,

we demonstrate efficient GPU implementations for integral histogram computations,

which form an important class of image processing operations for surveillance and

monitoring applications. The results of our experiments demonstrate concretely

that our proposed design methods are effective in mapping formal design models for

multidimensional DSP systems into efficient implementations on complex multicore

processors.

1.3 Scheduling Representation

For dataflow models of large-scale DSP applications, the underlying graph

representations often consist of smaller sub-structures that repeat multiple times.

Topological patterns (TPs) have been shown to enable more concise representation

and direct analysis of such substructures in the context of high level DSP spec-

ification languages and design tools [12]. Furthermore, by allowing designers to

explicitly identify such repeating structures, use of TPs provides an efficient alter-

native to automated detection of such patterns, which entails costly searching in

terms of graph-isomorphism and related forms of computation. A TP is inherently

parameterized and provides a natural interface for parameterized scheduling, which

enables efficient derivation of adaptive schedule structures that adjust symbolically

in terms of design time or run-time variations.

6



In [13], a formal design method is presented for specifying TPs, and deriv-

ing parameterized schedules from such patterns based on a schedule model called

the scalable schedule tree (SST). The method ensures deterministic behavior of the

system based on compile-time analysis of its behavior, where the behavior may be

expressed in terms of parameterizable patterns of actor and edge instantiations.

However, this method enforces certain forms of regularity in executing schedules,

which restricts the class of schedule structures that can be expressed, and hence the

flexibility with which the method can be applied to the mapping of dataflow graphs.

In this thesis, we introduce a more general traversal method, which allows

designers and automated schedulers to programmatically construct solutions from

within a broad class of execution sequences. This allows for design and representa-

tion of a correspondingly broader range of schedules through the common framework

of SSTs. To demonstrate our enhanced SST model, we present a case study involv-

ing optimized implementation of turbo decoders, which are important and widely

used in wireless communication applications.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Background relevant to

the research presented in the thesis is discussed in Chapter 2. Chapter 3 presents

the CF-PSDF modeling approach for dynamic signal processing applications. Our

model for hierarchical representation of DSP flowgraph parallelism is introduced in

Chapter 4 through Chapter 5. In Chapter 6, we present our generalized method for

7



managing and traversing dataflow graph schedules. Conclusions and directions for

future work are discussed in Chapter 7.
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2 Background

2.1 Dataflow Modeling

In dataflow modeling, an application is represented using a directed graph

G = (V,E), where V is a set of vertices and E is a set of edges [14]. In the form

of dataflow that we employ in this thesis, each vertex (actor) v ∈ V represents a

computation of arbitrary complexity, while each edge e = (v1, v2) ∈ E represents a

first-in-first-out (FIFO) buffer that provides a logical communication link between

actor v1 and actor v2. In dataflow graphs, an actor can be executed (fired) whenever

it has a sufficient number of data values (tokens) available on each of its input ports.

In the topology of a dataflow graph, an actor with no input edges is called a source

actor; an actor that has no output edges is called a sink actor.

A static schedule for a dataflow graph G = (V,E) is a sequence of actors

in V that represents the order in which actors are fired during an execution of

G. Each actor, when firing, consumes a certain number of tokens at each input

port and produces a certain number of tokens at each output port. These numbers

of tokens consumed or produced are referred to as dataflow rates of the associated

dataflow actors or firings. Various types of dataflow models are formed based on the

characterizations of the consumption and production rates of actors. For example,

in synchronous dataow (SDF) [9], constant valued rates are used; in cyclo-static

dataow (CSDF) [15], the rates are in the form of periodic patterns of constant

values; in Boolean dataow (BDF) [16], data-dependent forms of rates are employed

9



for the support of modeling dynamic behaviors.

2.2 Multidimensional Synchronous Dataflow

Synchronous Dataflow (SDF) [9] is a specialized form of dataflow that is used

for an important class of DSP applications. In SDF, actors produce and consume

data at fixed rates. Useful features of SDF include compile-time, formal validation

of deadlock-free operation and bounded buffer memory requirements; support for

efficient static scheduling; and buffer size optimization (e.g., see [1]).

However, SDF is ideally suited only for one-dimensional DSP algorithms. By

expressing arrays in terms of 1-D streams, SDF modeling of multidimensional sys-

tems may hide potential data parallelism. Multidimensional synchronous dataflow

(MDSDF) [10] generalizes SDF to multiple dimensions to provide an effective model

for a variety of multidimensional DSP systems. In an MDSDF graph of dimension

M , the number of tokens produced and consumed are given as M -tuples. For each

edge, there are M balance equations, where the balance equations are used to de-

termine the minimal numbers of actor firings required in each dimension to provide

a periodic schedule (i.e., a schedule that can be executed iteratively, as many times

as needed, with guaranteed bounded memory requirements for the dataflow graph

edges) [10].

2.3 Parameterized Synchronous Dataflow

Parameterized dataflow is a meta-modeling technique that can significantly
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improve the expressive power of an arbitrary dataflow model that possesses a well-

defined concept of a graph iteration [7]. Parameterized dataflow provides a method

to systematically integrate dynamic parameter reconfiguration into such models of

computation, while preserving many of the properties and intuitive characteristics

of the original models. The integration of the parameterized dataflow meta-model

with synchronous dataflow (SDF) provides the model of computation referred to

as parameterized synchronous dataflow (PSDF). PSDF offers valuable properties in

terms of modeling systems with dynamic parameters, supporting efficient scheduling

techniques, and natural integration with popular SDF modeling techniques [7].

A PSDF specification (subsystem) is composed of three cooperating PSDF

graphs, the init, subinit, and body graphs of the specification. The init graph is

designed to configure the corresponding subinit and body graphs while the subinit

graph can only change parameters in the body graph. The body graph, when

executed, performs the main functionality of the subsystem based on the updated

set of parameters. For more details on PSDF modeling, we refer the reader to [7].

2.4 Core Functional Dataflow

Core functional dataflow (CFDF) is a dynamic dataflow model that provides

highly expressive semantics for the design of applications with structured dynamic

behavior [17]. In CFDF, an actor is specified as a set of operational modes. In

each mode, an actor consumes and produces fixed numbers of tokens on its input

and output ports, respectively. These numbers of tokens consumed and produced
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are called the consumption and production rates of the associated input and output

ports, respectively, and the associated modes. Consumption and production rates

for CFDF actor modes can be arbitrary non-negative integers.

During execution, a CFDF actor operates in a unique current mode of the ac-

tor, which can be maintained as part of the actor state. Each actor has an associated

enable function, which can be called by a run-time scheduler. The enable function

returns a Boolean value indicating whether or not there is sufficient data available

on the actor input ports to fire the actor in its current mode. The invoke function of

an actor consumes data for execution based on the associated current mode. When

an actor is invoked, it executes its current mode, produces and consumes data, and

updates its current mode (i.e., sets the mode to be used in its next firing).

The enable function need not always be called before invoking an actor — in

particular, it need not be called if static analysis of the graph can determine that

the required data for the given actor mode will be available at the desired point of

invocation. On the other hand, dynamic or quasi-static scheduling techniques may

make use of the enable function to help ensure data availability in the absence of

static guarantees [17].

2.5 Topological Patterns

For large-scale models of signal processing applications, the underlying dataflow

graph representations often consist of smaller substructures that repeat multiple

times. A method for scalable representation of dataflow graphs using topological

12



patterns was introduced in [12]. Topological patterns, such as the ring, butter-

fly, and chain patterns, are pervasive in signal processing applications, including

multi-dimensional signal processing systems, where processing of large scale dataflow

structures is common. Topological patterns enable concise representation and direct

analysis of sub-structures in the context of high level DSP specification languages

and design tools. Modeling based on topological patterns also provides a scalable

approach to specifying regular functional structures that is formally integrated with

the framework of dataflow. This integration allows not only for specification of

functional patterns, but also for their analysis and optimization as part of the larger

framework of dataflow. For more details on modeling and design based on topolog-

ical patterns, we refer the reader to [12].

2.6 Generalized Schedule Trees

The generalized schedule tree (GST) is a compact, tree-structured graphical

format that can represent a variety of dataflow graph schedules [18]. In GSTs, each

leaf node refers to an actor invocation, and each internal node n (called a loop node)

is configured with an iteration count In for the associated sub-tree, where execution

of the sub-tree rooted at n is repeated In times. The GST has been demonstrated

to represent looped schedules for dataflow graphs effectively in the context of static,

non-scalable schedules (e.g., see [18]).

13



2.7 General Purpose Graphics Processing Units

In recent years, graphics processing units (GPUs) have become increasingly

popular in general-purpose computing applications due to their useful features, such

as flexible programmability, tremendous computational ability, high memory band-

width, and large amounts of parallelism [5, 4]. Compared to conventional micro-

processors, GPUs are designed such that more hardware resources (transistors) are

dedicated to data processing and less are dedicated to data caching and flow control.

The result is that GPUs are effective on computations that involve large amounts

of data-parallel computing and relatively small amounts of control flow. Signifi-

cant levels of acceleration from GPUs have been demonstrated in many fields, such

as physics, computer vision, signal processing, and wireless communications (e.g.,

see [19, 20, 21, 22]). Currently, parallel computing on GPUs is supported in a variety

of programming models, including CUDA [23], OpenCL [24], and OpenACC [25].

In this thesis, we employ CUDA as the back-end environment for our GPU-targeted

design methods.

CUDA (Compute Unified Device Architecture) is a software programming

model for NVIDIA GPUs. In CUDA, a computational unit is wrapped in a ker-

nel function, which, when invoked, is executed N times in parallel by N CUDA

threads in a structure called a grid. The CUDA programming model features multi-

dimensional and multi-level thread hierarchies. Threads are organized into multi-

dimensional (up to three dimensions are supported) thread blocks, and multiple

thread blocks are combined together to form grids, as shown in Figure 2.1. As with
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Figure 2.1: An example of thread hierarchy in CUDA.

thread blocks, up to three dimensions are supported for the construction of grids in

CUDA.
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3 CF-PSDF Modeling and Scheduling

In this section, we address challenges pertaining to modeling and schedul-

ing of dynamic signal processing applications. Here, by dynamic signal processing

applications, we mean applications in which the underlying dataflow graphs con-

tain actors whose characteristics, such as production and consumption rates and

execution times, can exhibit significant run-time variation [26]. Development of effi-

cient scheduling techniques for dynamic signal processing applications is challenging

because of the limited information that is available at compile time about actor

characteristics, and because of the potential performance overhead and decreased

predictability involved in making significant scheduling decisions at run-time.

In this chapter, we address these challenges for a specific class of dynamic

signal processing applications. In the targeted application class, actors that exhibit

significant dynamics are controlled by common sources that control the actor dy-

namics at run-time. These control sources can be viewed as specific actors whose

outputs are used to control the behavior of other actors. We present a new dynamic

dataflow model that groups dynamic actors based on their control sources to en-

able efficient static and quasi-static scheduling approaches for the associated actor

groups (subsystems).

In this chapter, we present an application modeling approach called core func-

tional parameterized synchronous dataflow (CF-PSDF), which integrates the CFDF

and PSDF models. In CF-PSDF, an application is represented with a two-level

hierarchy, as illustrated in Figure 3.1. In the top level (e.g., Figure 3.1(a)), each
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node is a CF-PSDF actor (with enable and invoke functions as a CFDF actor) to

model data dependent dynamic behaviors that may change dataflow. The bottom

level (e.g., Figure 3.1(b)) is composed of three subgraphs (as in PSDF) to provide

flexible dynamic parameter reconfiguration.

This chapter is based on work presented in [27].

3.1 CF-PSDF Model

In CF-PSDF, a DSP application is modeled through a CF-PSDF specification,

which is also called a CF-PSDF subsystem. A hierarchical actor that encapsulates a

CF-PSDF subsystem S (i.e., for instantiation in a higher level subsystem) is called

the CF-PSDF actor associated with subsystem S. A CF-PSDF actor H can be

viewed at its interface as a CFDF actor that has a set of modes, and enable and

invoke functions, which are fundamental components of the CFDF model [6]. When

H is executed in a given mode, a fixed number of tokens is consumed and produced

at the input and output ports of H, respectively. Across different modes of H,

however, the production and consumption rates at the ports of H can vary.

In a CF-PSDF actor H, the encapsulated specification, which we denote by

σ(H), is decomposed into three cooperating graphs, which we refer to as the ctrl (ϕc),

subctrl (ϕs), and body (ϕb) graphs of σ(H) (here, “ctrl” is used as an abbreviation for

“control”). The actor H3 in Figure 3.1(b) shows an example of a CF-PSDF actor.

As in PSDF modeling, the body graph of a CF-PSDF specification is intended

for use in modeling the core functional behavior of the associated subsystem, while
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Figure 3.1: An example of a CF-PSDF graph.

the ctrl and subctrl graphs, which are analogous in some ways to the init and subinit

graphs of PSDF, control the dynamic behavior of the body graph. This dynamic

body graph control is achieved by appropriately configuring selected body graph

parameters. As in PSDF, the subctrl graph of a CF-PSDF specification σ(H) can

configure the parameters in the associated body graph in ways that do not change

the production and consumption rates at the interfaces (ports) of H.

The ctrl graph of a CF-PSDF subsystem σ(H) is executed once during each

firing of H and is allowed to update parameters in the associated subctrl and body

graphs. Such parameter configurations may depend on parameters of the enclosing

system as well as on run-time data generated from other CF-PSDF actors (i.e.,

data-dependent parameter updates).

On specific parameter that is configured in the ctrl graph of σ(H) is a special

parameter µ(H) that controls the execution mode of H. The ctrl graph is the basic

mechanism in CF-PSDF for determining this execution mode. After the ctrl graph

of σ(H) executes and µ(H) is updated, the production and consumption rates at the

interfaces of H are fixed until the next execution of the ctrl graph. Furthermore, the
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control information processed in the ctrl graph of σ(H) can be shared by “exporting”

tokens (through dedicated dataflow graph edges) to ctrl graphs in other CF-PSDF

actors within the enclosing application model. This mechanism of “sharing” control

information, which represents a departure from the parameterized dataflow meta-

model, can facilitate local scheduling and mapping optimization, and help avoid

repetitive computation of control information. Additionally, the ctrl graph can

process data from input ports of σ(H) and produce data onto the output ports of

σ(H). This is more flexible compared to the init graph of PSDF, where such linkages

to the ports of the enclosing PSDF actor are not allowed.

The modeling flexibility of CF-PSDF compared to PSDF is illustrated in Fig-

ure 3.2. In the PSDF subsystem shown in Figure 3.2, the production rate of actor

A is independent of the output of actor X. However, in some applications it can be

useful to model behaviors where the production rate of actor A in this kind of a sub-

system structure is dependent on the output of actorX. This kind of data-dependent

dynamics, which is not expressed in the more predictable, PSDF-style specification

of Figure 3.2, can be useful to model precisely when developing DSP applications.

For example, in wireless communications, a turbo decoder with a dynamic iteration

count may or may not execute one more iteration according to the run-time output

of the current iteration [22]. Another example of this kind of dataflow dynamics is

discussed in Section 3.5.

On the other hand, in CF-PSDF, designers can pass control tokens from actor

X to the ctrl graph of a CF-PSDF subsystem, as shown in Figure 3.2(b). Then,

the ctrl graph can configure the dataflow (production and consumption) rates of A
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Figure 3.2: Examples of PSDF and CF-PSDF actors.

through the CF-PSDF mechanism of parameter reconfiguration based on subsystem

input tokens (input tokens arriving from actor X in this case). A disadvantage in

supporting this kind of dynamics is that the efficient quasi-static scheduling tech-

niques that have been developed for PSDF models (e.g., see [7]) are in general not

applicable to CF-PSDF specifications. However, in Section 3.4, we develop new

scheduling techniques that exploit the structure of CF-PSDF models, and permit

derivation of efficient schedules from such models.

3.2 Multi-Mode Actors

In this section, we develop scheduling techniques for mapping CF-PSDF graphs

into efficient implementations.

The hierarchical, mode-oriented structure of CF-PSDF modeling allows de-

signers to specify complex applications with more concise graphs representations,

where related functionality can be grouped together naturally under common actors

or subsystems. For example, a P -QAM mapper, which maps blocks of log2P input

bits to P -QAM symbols, consumes P tokens (bits) and produces one token (QAM
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symbol). An SDF representation of this functionality would typically require three

separate actors for 4-QAM, 16-QAM, and 64-QAM processing, while this entire

functionality can be encapsulated within a single, multi-mode CFDF actor. How-

ever, in a CFDF graph, additional control modes may be needed to provide for

correct transitioning between operational states (e.g., see [6]), which may increase

design effort and introduce scheduling overhead. In CF-PSDF, we alleviate these

problems by applying a central control mechanism, through ctrl and subctrl graph

execution, and a modeling approach based on designer-specified sets of practical

mode combinations (functional modes) across body graph actors. This concept of

functional modes is discussed next, in Section 3.3.

3.3 Subsystem Modes

In CF-PSDF, it is not possible for one body graph actor to have direct control

over the dataflow rates of another actor in the same body graph. For example, in

the graph of Figure 3.1(b), the dataflow rates of actors A and B can be varied based

on output from H1, but the dataflow rates of A are prohibited from depending on

outputs of B, and vice versa. This condition ensures that the mode transitions of all

actors in a body graph ϕb can be configured centrally from the ctrl graph based on

system parameters and run-time data. This centralized, ctrl-graph based control of

actor modes can help to eliminate certain local (actor-level) modes and transitions

that are employed in pure CFDF models to ensure proper transitioning between

processing states.
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Each CF-PSDF actor (subsystem) H has a special mode called the control

mode of H, which is used to execute the ctrl graph of H, and update parameters,

including the next mode parameter µ(H). The control mode can in general consume

and produce data at the interface ports of H, as described previously.

Apart from the control mode, a CF-PSDF actor H may have any number of

additional modes, which are referred to as the functional modes of H. Execution

of H proceeds based on alternating sequences of the control mode and a functional

mode (i.e., between each pair of successive functional mode executions, there is

exactly one execution of the control mode). Each functional mode of H corresponds

to a unique set of modes for all actors that are contained in the associated body

graph, ϕb. That is, for each functional mode m of H and each actor α in ϕb, there

is a unique mode z(m,α) of α that governs the execution state of α whenever H

executes in functional mode m. Thus, in each functional mode m, ϕb can be viewed

an SDF graph Gsdf (m), which can be analyzed and scheduled by leveraging the large

body of existing techniques for SDF (e.g., see [1]).

Note that in CF-PSDF, the set F (H) of functional modes of H is defined

explicitly by the designer. An alternative approach would be to derive F (H) by

enumerating all possible mode combinations across the actors within ϕb. However,

this approach is clearly not scalable since, for example, there is no polynomial bound

on such mode combinations.

Indeed, in practical DSP applications, many mode combinations may be un-

interesting (e.g., redundant or simply not useful). In Figure 3.1(b), for example,

suppose that actors A and B are both P -QAM mappers with three modes each for
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P = 4, 16, and 64. The set of all mode combinations for H3 contains 3 × 3 = 9

combinations. However, at any given time during actual execution of the system,

the values of P will be identical for both A and B — only three mode combinations

are relevant in the design of H3. Thus, H3 is designed such that F (H3 ) contains only

three modes.

In previous work, methods have been developed to detect and eliminate un-

reachable mode combinations in CFDF graphs [6]. However, in practical scenarios,

such as the example of Figure 3.1(b), it can be difficult to detect all unused modes

without designer guidance. Automated techniques, such as those developed in [6],

can be used in a complementary fashion to the designer-specified approach in CF-

PSDF (e.g., to remove unused modes from the specified functional mode set). In-

tegrating such automation into the CF-PSDF framework is an interesting direction

for future work.

3.4 Scheduling Techniques

In CF-PSDF, dynamically parameterized and dynamic dataflow subsystems

are represented with two-level hierarchies, as illustrated in Figure 3.1. In the top

level (e.g., Figure 3.1(a)), each actor is a CF-PSDF actor with associated enable and

invoke functions, which have similar roles as in the pure CFDF model. The lower

level of the subsystem design hierarchy (e.g., Figure 3.1(b)) is composed of three

subgraphs to provide flexible dynamic parameter reconfiguration. This structured

decomposition into three subgraphs is based on a similar kind of decomposition
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provided in PSDF, but with significant adaptations to make the modeling approach

more flexible and more coupled to CFDF design techniques.

CF-PSDF provides a natural framework for quasi-static scheduling based on

the decomposition of a CF-PSDF subsystem H in terms of it functional modes F (H)

and the associated set of SDF graphs

S(H) = {Gsdf (m) | m ∈ F (H)} (3.1)

that characterizes the body graph ϕb. Each graph {R ∈ S(H)} can be scheduled

using SDF techniques, and based on specific operational constraints (e.g., constraints

on throughput, latency, or buffer memory requirements) that are associated with the

corresponding functional mode of H. The resulting set of SDF schedules S(R) | R ∈

S(H) can then be integrated in a quasi-static, dynamic control-driven manner using

CFDF techniques for scheduling H as a component within its enclosing subsystem

or application graph model.

For example, for the dataflow graph Gouter that contains H, one can readily

apply a CFDF canonical schedule, which is a standard type of schedule for CFDF

graphs that can be constructed quickly and is suitable for rapid prototyping and

bottleneck identification [6]. Alternatively, existing techniques for CFDF schedule

optimization (e.g., see [6]) can be applied to Gouter to help improve system perfor-

mance or satisfy operational constraints.
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3.5 Case Study: MIMO Detection

We demonstrate the utility of CF-PSDF-based implementation with a case

study of soft multiple-input, multiple output (MIMO) detection.

3.5.1 Application Model based on CF-PSDF

MIMO technology has been adopted in many modern wireless communication

standards, such as LTE and WiMAX, due to the significant capacity increases that

can be achieved by using multiple antennas in transmitters and receivers [28]. In

this case study, we implement an application of M × M MIMO detection with a

P -QAM constellation. We apply an efficient soft MIMO detection algorithm called

the list fixed-complexity sphere decoder (LFSD), which is a list-based version of the

fixed-complexity sphere decoder (FSD) [29]. The LFSD generates a list of candidates

around the maximum likelihood (ML) solution that can be used to calculate soft-

output information for each transmitted bit bk in the form of log-likelihoods (LLRs),

{Lk}.

An M ×M MIMO system is commonly decomposed into M processing layers

(in our experiments, we use M = 4). In our design, the vector-valued parameter λ,

consisting of M -elements, specifies the number of optimal detected results that are

generated at each layer. If λ = (n1, n2, . . . , nM), then the list size can be expressed

as NL =
∏M

i=1 ni.

In our implementation, the soft MIMO detector takes the received symbol vec-

tor y and the channel matrix C as inputs, finds the NL candidates for each y and
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Figure 3.3: CF-PSDF model of soft MIMO detection application.

C, and generates the soft information Lk. We model the application with our pro-

posed CF-PSDF framework, as illustrated in Figure 3.3. Here, the dataflow graph is

composed of three CF-PSDF actors (Pre-processor, LFSD, and Post-processor),

two source actors Y (source of y) and H (source of C), and one sink actor B (sink

of Lk). The soft MIMO detector is divided into three parts: (1) the preprocessing

component (Pre-processor actor), which applies QR decomposition on the channel

and least squares estimation of the input symbols; (2) the LFSD component (LFSD

actor), which generates a list of candidates according to the FSD algorithm; and (3)

the postprocessing component (Post-processor actor), which computes the LLRs

with the list generated by the LFSD component. On the subsystem corresponding

to each CF-PSDF actor, the quasi-static scheduling technique developed in [7] is

applied.

In our implementation, the list size NL is determined dynamically for each re-

alization (i.e., for each y and C) based on the channel quality. Usually, a large value

for NL improves the bit error rate (BER), but at the cost of increased complexity. In

our design, a realization with better channel quality is processed with a smaller list
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to reduce computational complexity. On the other hand, a large list is used for real-

izations in poor channel states to improve the detection accuracy. We consider three

different settings of λ in our MIMO system implementation: (1, 1, 1, P ), (1, 1, 2, P ),

and (1, 2, 2, P ). These settings result in NL = P , NL = 2P , and NL = 4P , respec-

tively.

In our CF-PSDF-based design, the LFSD actor includes three modes, MODE-P,

MODE-2P, and MODE-4P to output NL = P , NL = 2P , and NL = 4P tokens (candi-

dates), respectively. The associated control actor C2 of the LFSD actor, when fired,

computes the channel quality (instantaneous channel capacity of C, denoted ρC)

with the input data exported from the Pre-processor actor, and then configures

the subsystem mode parameter µ (i.e., selects a list size) based on the current chan-

nel quality indicator ρC . In the cases of ρC > ρTH1 (“good quality”) and ρC < ρTH2

(“bad quality”), MODE-P and MODE-4P are selected, respectively, while in all other

cases, the mode is set to MODE-2P. Here, ρTH1 and ρTH2 are two system parameters

that determine the thresholds to use for determining good and bad channel quality,

as described above.

The designer-provided specification of functional modes in CF-PSDF provides

significant streamlining in the space of mode combinations that need to be handled

during the implementation process. The body graph of the LFSD actor contains four

actors — E1, E2, E3, and E4 — which, respectively represent the FSD processing

elements for layers 1 through 4. Each Ei has four operational modes — a LOAD mode

for reading input tokens, and three processing modes, denoted M-1, M-2, and M-P, to

process data for ni = 1, ni = 2, and ni = P , respectively. The total number of actor
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mode combinations in the body graph is therefore 44 = 256. However, it is easy

for the designer to understand and specify that only three of these combinations,

which correspond to MODE-P, MODE-2P, and MODE-4P of the LFSD subsystem, are

relevant. Thus, including the required control mode, the total number of operational

modes for the LFSD subsystem is reduced from 256 to only 4 using the CF-PSDF

convention of designer-specified functional modes.

3.5.2 Experimental Results

Our experiments on this MIMO detector case study are performed on a PC

with an Intel 3GHz CPU and 4GB RAM. First, we compare the performance of

the detector modeled in pure CFDF and CF-PSDF for a 4× 4 MIMO system with

QPSK, 16-QAM, or 64-QAM modulation. In the experiments, both implementa-

tions apply the canonical CFDF scheduler [6]; however, for the CF-PSDF-based

implementation, the results of this scheduler are integrated with SDF schedules for

individual functional modes, as described in Section 3.4.

Table 1 lists experimental results for this comparison. From the results, we see

that compared to CFDF, CF-PSDF modeling can significantly reduce the number

of average visited actors per realization (shown in the row labeled Visited node

count). Here, by a “visit”, we mean a basic dataflow scheduling operation that

involves assessing whether an actor has sufficient input data, firing the actor if it

has sufficient data, or both. This reduction in visited node count, which can be

viewed as a reduction in schedule execution overhead, arises because of the novel
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Table 1: Performance comparison between CFDF- and CF-PSDF-based implemen-

tations. Run time is in microseconds.

Modulation 4-QAM 16-QAM 64-QAM

Dataflow model CF CF-PS CF CF-PS CF CF-PS

Visited node count 272.6 68.7 1012 151.9 3972 484.4

Improvement 74.8% 85.0% 87.8%

Run time 0.11 0.10 0.19 0.15 0.50 0.33

Gain 9.1% 21.1% 34.0%

support in CF-PSDF for efficient quasi-static scheduling (i.e., in terms of local SDF

schedules for individual functional modes). The overall performance of the CF-

PSDF implementation is correspondingly improved as well. As we see from the row

labeled “Run time”, the average execution time is improved by 9.1%, 21.1%, and

34.0%, respectively, for QPSK, 16-QAM, and 64-QAM.

As P increases, the run time improves more since in CFDF, more non-firing

node visits occur while in CF-PSDF, such overhead is avoided through efficient

quasi-static scheduling.

Next, we compare the performance of our dynamic MIMO detector against

a conventional static detector with a fixed list size NL = 4P for a 64-QAM 4x4

MIMO system (i.e., P = 64). To evaluate the coded BER performance, we feed

the soft output of the detectors to a length 3600, rate 1/2 turbo decoder with

eight iterations [30]. Our experimental results show that to achieve the target BER
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Table 2: Experimental comparison between the SS and DS. Run time is in microsec-

onds.

SNR (dB) 19.0 19.5 20.0 20.5 21.0

Run time (static) 0.425 0.425 0.424 0.426 0.425

Run time (dynamic) 0.370 0.353 0.339 0.327 0.318

Gain 12.9% 16.9% 20.0% 23.2% 25.2%

(assume 10−4), the static system (SS) and dynamic systems (DS) require at least

19.84dB and 19.90dB signal to noise power ratio (SNR), respectively. In exchange

for this small (0.06dB) degradation, the DS provides a significant improvement in

run time (RT), as shown in Table 2. As expected, the RT of the SS at various SNRs

is almost uniform. By contrast, the RT for the DS improves as SNR increases. This

is because higher SNR provides more opportunities for use of smaller list sizes, which

results in lower computational cost.

3.6 Related Work

In addition to CFDF and PSDF, there is a variety of other models that sup-

port dynamic dataflow modeling, design, and implementation. Wiggers, Bekooij,

and Smit [31] present variable rate dataflow (VRDF) to model systems with data-

dependent communication, and develop techniques to compute buffer sizes for VRDF

specifications for given throughput constraints. Eker et al. [32] present a hierarchi-

cal approach for modeling of heterogeneous embedded systems, including systems
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that incorporate dataflow behaviors. In this approach, designers employ modeling

constructs called directors to control the communication and execution schedules

for associated application subsystems. The stream-based functions (SBF) model of

computation combines the semantics of dataflow and process network models for

design and implementation of embedded signal processing systems [33]. An actor

in SBF contains a set of operational functions, along with a controller, state, and a

transition function. The use of operational functions and the transition function in

SBF is analogous in some ways to the modes and next mode determination func-

tionality in the CFDF model. Given this relationship, an interesting direction for

further study is the adaptation of the techniques introduced in this thesis to SBF

specifications (i.e., an integrated SBF-PSDF modeling framework).

The dataflow-based modeling and design techniques presented in this chapter

differ from the related work discussed above in that our framework generalizes the

CFDF and PSDF models to provide systematic, mode-based, dynamic modeling

together with flexible dynamic parameter reconfiguration. Our emphasis on support

for localized use of optimized static and quasi-static schedules further distinguishes

our contribution in this chapter from related work in this area.

Furthermore, the CF-PSDF modeling approach proposed in this chapter can

potentially reduce scheduling overhead and also provide opportunities for power-

ful dataflow analysis and transformation techniques. We discuss these advantages

further in Chapter 4.
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4 Hierarchical Mapping for Parallel Architectures

In this chapter, we present a structured design method based on MDSDF

graphs for hierarchical mapping of DSP systems onto parallel architectures. Mate-

rial in this chapter was published in partial, preliminary form in [34] and [35]. In

various forms of data parallel programming, programmers can define functions, and

have multiple calls to the functions execute in parallel on different data sets (e.g.,

see [11, 24]). Recent data parallel programming environments emphasize support

for exploiting multi-level or hierarchical parallelism, where parallelism is exploited

programmatically at multiple levels of granularity. For example, CUDA [11] pro-

vides a two-level thread hierarchy, where a set of threads makes up a thread block,

and multiple thread blocks form a grid.

Such hierarchical support for representing parallelism is important for multidi-

mensional signal processing applications, where parallelism exists in different forms

at different levels of the design hierarchy (DH) (e.g., inter-frame, inter-block, and

inter-pixel parallelism in video processing). In this chapter, we build on the MDSDF

and CF-PSDF models of computation, and develop a design method to represent

and apply parallelism hierarchically for multidimensional dataflow graphs. We re-

fer to the proposed method as the parameterized multidimensional design-hierarchy

mapping (PMDHM) framework.

Currently, the class of directed acyclic graphs (DAGs), i.e., directed graphs

with no directed cycles [36], is targeted in this work. In other words, we assume that

application dataflow graphs that are provided as input to the PMDHM framework
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are DAGs. A large class of useful signal processing applications conforms to the

structure of DAGs. The extension of the PMDHM framework to handle classes of

graph structures that include cycles is a useful topic for further investigation.

4.1 PMDHM Framework

In this section, we present our proposed PMDHM framework for dataflow-

based design, which is targeted to the flexible, multi-level reconfigurability, and

intensive real-time processing requirements of emerging dynamic signal processing

systems.

A CF-PSDF specification is composed of three cooperating CF-PSDF graphs,

the ctrl, subctrl, and body graphs of the specification. Actors and edges in CF-

PSDF graphs can be annotated with arbitrary parameters, which can be changed at

runtime. Such actors and edges correspond, respectively, to functional components

and intra-component connections in signal processing flowgraphs (see Chapter 3).

The ctrl graph of a CF-PSDF subsystem σ(H) is executed once during each

firing of H and is allowed to perform data-dependent parameter updates in the

associated subctrl and body graphs as presented in Chapter 3. The subctrl graph

of σ(H) can configure the parameters in the associated body graph in ways that do

not change the dataflow rates at the interfaces of H.

For selected subsystems in a CF-PSDF-based system design, a new design

transformation called the multi-level hierarchical dataflow transformation (MHDT)

can be employed to efficiently map the subsystem to a given target platform that
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employs parallelism at multiple levels of platform architecture. Designers can thus

select subsystems that have critical constraints (e.g., on performance, energy effi-

ciency or resource utilization) for application of the MHDT.

For each alternative body graph that results from different sets of param-

eter configurations (e.g., application or subsystem modes) in the ctrl graph, the

MHDT approach transforms an application graph with parameterized production

and consumption rates (i.e., dataflow rates that are represented as functions of sys-

tem parameters) into a hierarchical organization of graphs such that the structure

of the hierarchy helps the designer to map the design onto the hierarchical parallel

structures in the target platform.

4.1.1 Multi-level Hierarchical Dataflow Transformation

Let G = (V,E) denote an MDSDF graph where V = {v1, v2, . . . , vL} is a set of

vertices (actors), and E = {e1, e2, . . . , eK} is a set of directed edges, which represent

communication between actors according to MDSDF semantics. In MDSDF graphs,

actor firings are indexed (in their associated “firing spaces”) by n-dimensional vec-

tors, where the values of n depend on the dimensions of the data that are produced

and consumed (n = 1 corresponds to conventional single-dimensional, SDF-like fir-

ing sequences) [10].

Suppose that v is an MDSDF actor with a firing space of M dimensions, and

let rv,i, for i = 1, 2, . . . ,M , denote the size of the ith dimension of the firing space

for v in a given periodic schedule S for G. A periodic schedule is a sequence of
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Figure 4.1: An example of a three-actor MDSDF graph.

actor firings that executes each actor at least once and produces no net change in

the numbers of tokens queued on the edges of G [9, 10]. We refer to the M -vector

rv = [rv,1, rv,2, ..., rv,M ] as the firing vector for actor v associated with S. The product

of the M elements of this vector gives the total number of firings of v within S. For

a properly constructed MDSDF graph, rv can be computed by solving a system of

equations called the balance equations for the graph [10].

Consider, for example, the 3-node graph illustrated in Figure 4.1. The firing

vectors rA, rB, and rC can be found by solving the following balance equations for

i = 1, 2, . . . ,M :

rA,iOA,i = rB,iIB,i, rB,iOB,i = rC,iIC,i, (4.1)

where IX = [IX,1, IX,2, . . . , IX,M ] and OX = [OX,1, OX,2, . . . , OX,M ] are the M -

dimensional consumption and production rates, respectively, for actor X.

Now suppose that we have an N -level hierarchical parallel programming model

(platform hierarchy) P , which we want to use to implement a given MDSDF graph

G. For example, such a parallel programming model could be used as a target for

code generation or could be used for an implementation that is derived from hand

based on a functional reference (“golden model”) that is based on the MDSDF

specification. We develop an N -level hierarchical dataflow graph transformation

approach to achieve such a mapping from an MDSDF-based application graph to
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P . We refer to N in this context as the platform depth.

First, we introduce some definitions and notation related to hierarchical dataflow

graphs. For a dataflow graph G = (V,E), let Pi(V ) and Po(V ) be the sets of input

and output ports of all actors in V , respectively. A supernode s in G is an actor (i.e.,

s ∈ V ) that is associated with a “nested dataflow graph” H(s), where execution of

s in G corresponds to execution of H(s). In general, not all actor ports in H(s)

are connected in H(s) (i.e., not all of them connect to edges within H(s)). The

“unconnected actor ports” are referred to as the interface ports of H(s), and these

ports are in one-to-one correspondence with ports of actor s.

If G is the “top” of the design hierarchy (i.e., G is not encapsulated by a

supernode in another graph), then we say that the nesting level (or simply level) of

G, denoted λ(G), is 1. Similarly, for each supernode s in G, λ(H(s)) = 2; for each

supernode t in any of these H(s)’s, λ(H(t)) = 3, and so on.

The design hierarchies in our model are non-overlapping, which means that for

all supernodes within a design hierarchy (i.e., across all levels), their corresponding

nested dataflow graphs do not share any actors or edges. Furthermore, we assume

that these design hierarchies are finite, which means that the levels (λ values) are

all bounded.

We refer to the maximum λ value in a design hierarchy D as the depth δ of

D. For each i ∈ {1, 2, . . . , δ}, we denote by Li the set of all actors that are “at level

i”. That is, L1 = V , and for i = 2, 3, . . . , δ,

Li = ∪{Vh(s)|λ(H(s)) = i}, (4.2)
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where Vh(s) denotes the set of actors in the nested dataflow graph H(s).

Design hierarchies in our decomposition approach can be constructed by de-

signers as they explore alternative methods to structure the hierarchies such that

they map efficiently into the parallelism hierarchy supported by the targeted plat-

form. The key constraint in the construction of a design hierarchy D is that the

depth of each candidate design hierarchy should equal the platform depth. In Sec-

tion 5.1 and 5.2, we illustrate how a design hierarchy can be constructed naturally

from understanding of the flowgraph structure of an application. However, design

hierarchies can also be targeted by automated tools. Exploration of such automated

design hierarchy construction tools is a useful topic for future work.

We have developed a systematic method, called the multi-level hierarchical

dataflow transformation (MHDT), to specify and map design hierarchies into hier-

archies of smaller graphs, which can in turn be mapped to successively lower levels of

the targeted platform hierarchy. Figure 4.2 illustrates this approach for an MDSDF

graph. The designer can construct the design hierarchies in a bottom-up or top-

down fashion. At each ith level (i > 1) of the design hierarchy, one or more groups

(clusters) of connected actors are combined into units that are viewed as individual

supernodes from level (i − 1). Groups of actors, including supernodes, that are

contained within such clusters are then scheduled together by adapting techniques

for SDF- and MDSDF-based clustered graph analysis and scheduling [37, 10].

When applying the MHDT, each supernode s at each level i is transformed

into a corresponding “standalone” dataflow graph, which is referred to as a mapping

cluster. The transformation of a supernode into a mapping cluster is performed
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through the following process.

In each mapping cluster, two special interface actors, ii (interface input) and

io (interface output) actors, are inserted. These actors represent interfaces to the

enclosing supernodes and serve to inject data from input edges and to output edges of

the supernodes, while providing standalone dataflow graph representations for each

level of the design hierarchy. Using these standalone representations, buffer man-

agement and scheduling can be performed to ensure correct, consistent execution

while mapping the actors in each design hierarchy level Li into the corresponding

ith level of the targeted parallel platform.

Each mapping cluster, when executed, is assumed to fire the interface actors

only once. The derivation of the production and consumption rates associated with

the interface input and output actors, in general, depends on the characteristics of

supernodes (subsystems). Nevertheless, the valid values of the rates should satisfy

the condition that there exists a non-trivial solution of the balance equations for

the associated mapping cluster given that the ii and io actors only fire once. This

condition is important since it guarantees that a valid period schedule can be found

for the mapping cluster.

Presently, we compute these rates by hand, as our emphasis in this work is

on demonstrating the overall design methodology and its utility on practical case

studies. However, the process can readily be automated since it is based on for-

mal dataflow principles. Development of automated tool support for the design

methodology proposed in this chapter is a useful direction for further work.

For a mapping cluster C, virtual edges (edges with zero rates of consumption
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and production) are added between source (sink) actors and the ii (io) actor to

connect these actors with the interface actors, where the source (sink) actors are

those actors without input (output) edges. For each source actor src in C, a virtual

edge is created to connect src from the ii actor; Similarly, for each sink actor

snk in C, a virtual edge is created to connect snk to the io actor. The original

mapping cluster together with the actors ii and io, and the corresponding set of

virtual edges is referred to as the augmented mapping cluster graph (AMCG). Given

a mapping cluster C, the corresponding AMCG is denoted as AMCG(C).

The virtual edges are added to augment the mapping cluster such that for

each actor α in C, there exists a path in the AMCG from ii to io that traverses α.

This condition is important for further partitioning and transformation techniques,

which are introduced in Section 4.1.2.

The mapping clusters constructed using this process are used for efficient

mapping of flowgraph structures into architectures that employ multi-level paral-

lelism. Such architectures, such as graphics processing units (GPUs) and CBEA-

compliant processors [38], are becoming increasingly important in the realization of

computationally-intensive signal processing systems.

4.1.2 Partitioning of Mapping Cluster Graphs

In this section, we present techniques for graph partitioning that use the map-

ping clusters generated by the MHDT approach described in Section 4.1.1. These

partitioning techniques provide further transformations to the application dataflow
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Figure 4.2: An example of a design hierarchy for an MDSDF specification.
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graph that facilitate analysis and exploitation of parallelism across different levels

of the targeted platform hierarchy.

Let V (C), E(C) denote, respectively, the sets of actors and edges inAMCG(C).

The graph AMCG(C) is partitioned through the following process.

First, AMCG(C) is partitioned into n channels X1, X2, . . . , Xn, where n ≥ 1.

Each channel X is an ordered pair X = (actors(X), edges(X)), where actors(X) ∈

V (C) and edges(X) ∈ E(C), and actors(X), edges(X) are mutually connected. A

set P of actors and a set Q of edges are mutually connected if for each e ∈ Q, we

have that src(e) ∈ P and snk(e) ∈ P , where src(e) represents the source actor of

edge e and snk(e) represents the sink actor of edge e. For the partition into channels

X1, X2, . . . , Xn to be valid in this context, the edge sets edges(X1), edges(X2), . . . ,

edges(Xn) must be disjoint. Furthermore, in a valid partition X1, X2, . . . , Xn, each

channel contains both ii and io (i.e., each actors(Xi) contains both of these actors),

and beyond these two common actors, no other actor in AMCG(C) is contained in

multiple channels.

Thus,

∩n
i=1{edges(Xi)} = {∅}, (4.3)

and

∩n
i=1{actors(Xi)} = {ii, io}. (4.4)

We refer to this kind of graph partition as a channel partition of the associated
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AMCG. By definition, a channel partition ensures that, except through the interface

actors, there is no path that connects any pair of distinct channels, and therefore,

all channels can be executed in parallel once the input tokens of the associated

supernode are injected into the associated mapping cluster. We refer to each Xi as

a channel of the mapping cluster C (or of AMCG(C)).

Algorithm 1 outlines a partitioning process, which we refer to as the AMCG

partitioning algorithm, that we have developed for strategic derivation of channel

partitions.

After channel partitioning, the actors in each channelX are further partitioned

into ρ1(X), ρ2(X), . . . , ρparts(X)(X) in such a way that all actors in each ρi(X) are

ready to fire (i.e., all input tokens are available for a given iteration of the associated

mapping cluster) immediately after all actors in the preceding partition components

(ρ1(X), ρ2(X), . . . , ρi−1(X)) have fired completely. In this context, by firing com-

pletely, we mean that the associated actor A has finished ν(A) firings (i.e., a single-

or multi-dimensional “volume” of firings as represented by the vector ν(A)) in the

current iteration of the enclosing mapping cluster, where ν(A) represents the firing

vector of the actor A. At the beginning of this partitioning process, the interface

input actor ii is initialized as being fired completely.

This process results in a unique partition ρ1(X), ρ2(X), . . . , ρparts(X)(X) of each

channel X, which we refer to as the pipeline partition of the channel. The pipeline

partition provides a decomposition of a channel into a flowgraph pipeline consisting

of parts(X) “stages”, where all actors within a given pipeline stage ρi(X) can be

fired simultaneously for a given mapping cluster iteration once the previous stages
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Algorithm 1 Outline of the AMCG partitioning algorithm.
// The AMCG partitioning process for a mapping cluster C = (V,E).

// This process generates a finite sequence of channels {X(i) = (V(i),E(i))}.

Vb = V.Remove(ii,io); // The set of all non-interface vertexes in V.

Eb = E;

i = 1;

while (Vb is non-empty) {

v = Vb[1]; // The first vertex in Vb.

V(i) = {v}; // Initialize the vertex set for a new channel.

Vb.Remove(v); // Remove v from Vb.

E(i) = {};

EC = {};

EC = The set of all edges in Eb that are incident to any vertex in V(i);

while (EC is non-empty) {

VC = {all vertexes in Vb that are incident to edges in EC};

V(i).Add(VC); // Add all vertexes in VC to V(i).

Vb.Remove(VC); // Remove all vertexes in VC from Vb.

E(i).Add(EC); // Add all edges in EC to E(i).

Eb.Remove(EC); // Remove all edges in EC from Eb.

EC = The set of all edges in Eb that are incident to any vertex in V(i);

}

V(i).Add(ii,io); // Add the interface actors to the channel.

i++; // Next partition.

}
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(stages 1, 2, . . . , (i− 1)) have been completed.

This partitioning process, which we refer to as channel pipeline partitioning,

is illustrated by the pseudocode shown in Algorithm 2. Here, a vertex a1 is said to

be a successor of a vertex a2 if there is an edge that is directed from a2 to a1.

Algorithm 2 Outline of the channel pipeline partitioning process.
// Pipeline partitioning process for channel X = (V,E).

// This process divides V into V(j), j = 0, 1, ... where

// V(j) is the j-th pipeline stage in the pipeline partition of channel X.

VC = V;

VF = {ii}; // The set of all vertices in VC that are ready-to-fire.

V(0) = {ii}; // The initial stage.

VC.Remove(ii); // Remove the partitioned vertexes from VC.

j = 1;

while (VC is non-empty) {

V(j) = {}; // A new pipeline stage.

VR = The set of vertices in VC that are successors of vertices in VF;

V(j).Add(VR); // Add the vertices in VR to the current stage.

VF.Add(VR); // Add vertices in VR (ready-to-fire) to VF.

VC.Remove(VR); // Remove vertices in VR from VC.

j++; // Next stage.

}

Through these partitioning steps, a mapping cluster C is transformed to an

intermediate MDSDF graph representation that we call the pipelined AMCG. The
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pipelined AMCG provides a compact, graphical representation of application struc-

ture that exposes data parallelism, and facilitates further analysis for mapping and

performance optimization. In the construction of the pipelined AMCG, each chan-

nel X is transformed into a pipelined AMCG actor δ(X). Each such actor δ(X) has

a single input edge ein , which is directed from the interface input actor ii, and a

single output edge eout , which is directed to the interface output actor io. This is

illustrated in Figure 4.3(b).

In a pipeline partition ρi(X) of a channel X, since all actors are ready to

fire immediately after the execution of the previous pipeline stages, the degree of

parallelism (the maximum number of parallel actor firings) in each dimension k is

given by

r̂i,k(X) =
∑

v∈ρi(X)

fvectv,k, (4.5)

where fvectv,k represents the firing vector component associated with the kth di-

mension for actor v.

The kth entry of the firing vector for the pipelined AMCG actor δ(X) (transformed

from channel X) can be represented as

fvect δ(X),k = ϕ(r̂1,k(X), r̂2,k(X), . . . , r̂parts(X),k(X)), (4.6)

where ϕ : Zparts(X)
pos → Zpos is a mapping from the set of parts(X)-tuples of positive

integers to the set of positive integers (Zpos represents the set of positive integers).

The function ϕ is a design parameter in this formulation.
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An optimal setting for ϕ depends on various factors, including the application

dataflow, as well as characteristics of the target platform. A simple heuristic method

for configuring ϕ is to derive ϕ in terms of the maximum degrees of parallelism across

all of the pipeline stages encapsulated by X. That is,

ϕ(a1, a2 . . . , am) = max
1≤j≤m

aj. (4.7)

The usage of the maximum function here allows all pipeline stages to have sufficient

numbers of parallel threads to carry out all actor firings concurrently, provided that

there are sufficient hardware resources available. For pipeline stages with smaller

degrees of parallelism, the additional threads are simply redundant placeholders that

remain inactive (idle). As a cost for exploiting parallelism in this greedy manner,

these idle threads can cause execution overhead. A potential way to reduce such

overhead is to employ a suitable fine-grained, actor clustering strategy for design

hierarchies. We discuss this kind of clustering process further in Section 5.1.

4.1.3 Deriving Dataflow Rates for Intra-Channel Edges

In this section, we discuss the derivation of production and consumption rates

for edges that are contained in channels. For a given channel X, let EI(X) ∈

edges(X) denote the subset of edges that have ii as the source actor; similarly, let

EO(X) ∈ edges(X) denote the subset of edges that have io as the sink actor. In

the pipelined AMCG, the consumption rate of each edge ein,i in each dimension k is

derived as the total amount of dataflow (within a given mapping cluster iteration)
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from the interface input actor to the channel X. That is,

cein,i,k =
∑

e∈EI(Xi)

ce,k. (4.8)

Similarly, the production rate of each output edge eout ,i in each dimension k is

derived as the summation of the production rates of all edges in EO(X):

peout,i,k =
∑

e∈EO(Xi)

pe,k. (4.9)

To ensure the existence of non-trivial solutions for the balance equations of the

pipelined AMCG graph, the production rate of each ein,i and the consumption rate

of each eout ,i are accordingly set to

pein,i,k =
cein,i,k

fvect δ(X),k

, (4.10)

and

ceout,i,k =
peout,i,k

fvect δ(X),k

. (4.11)

Recall from Section 4.1.2 that δ(X) represents the pipelined AMCG actor that

represents the channel X.

From Equation 4.10 and Equation 4.11, observe that production and consumption

rates in the pipelined AMCG can be non-integer-valued, which is different from

conventional MDSDF graphs, and has some relationships to the concept of frac-

tional rate dataflow graphs [39]. However in our application of pipelined AMCGs
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to dataflow graph scheduling, we derive positive integer firing vectors through ap-

plication of certain transformations. This is discussed further in Section 4.2.

4.1.4 An Example of Pipelined AMCG Construction

An example of pipelined AMCG derivation is illustrated in Figure 4.3. This il-

lustration demonstrates that the pipelined AMCG takes the form of a simple pattern

that can be described using efficient techniques, such as topological patterns [12] for

compact graph expression, as well as for integration with standard dataflow-based

design representation techniques (e.g., see [40, 41]). Additionally, our proposed

partitioning methods provide a systematic framework for analyzing separate com-

ponents of the partitions separately (e.g., individual pipelined AMCGs) to lower

overall analysis complexity through a divide and conquer approach. Furthermore,

this framework allows designers a method for identifying relevant parts of a schedule

to extract specific details (e.g., idle threads) as suggested by feedback from exper-

iments. Such features of our proposed mapping cluster partitioning framework are

illustrated concretely in Section 5.1.

We also emphasize here that the concept of “pipelining” represented in the

pipelined AMCG and related aspects of mapping clusters is an abstract form of

pipelining and does not relate directly to any specific form of hardware pipeline or-

ganization or scheduling technique. In particular, pipelined AMCGs represent the

decomposition into sequences of “linearly-dependent” dataflow subgraphs of func-

tionality within MDSDF-based application representations. In this sense, pipelined
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Figure 4.3: An example of pipelined AMCG derivation.
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AMCGs can be viewed as a form of macro-pipelining for signal processing dataflow

graphs, as discussed, for example, in [42].

4.1.5 Graph Decomposition Example

In Figure 4.4 through Figure 4.8, we illustrate through an example the rela-

tionships among application dataflow graphs, PMDHM clustered graphs, AMCGs,

channel partitions, pipeline partitions, and pipelined AMCGs. This decomposition

shows different abstractions of a list fixed-complexity sphere decoder application,

which is an important application in wireless communications [29]). The different

abstractions shown in Figure 4.4 through Figure 4.8 are based on the different kinds

of representations applied and defined in this section. These illustrations also intro-

duce (by example) a new representation, which we refer to as the PMDHM clustered

graph, where each mapping cluster corresponds to a single vertex or equivalently,

each kernel corresponds to a single vertex. The PMDHM clustered graph can be

viewed as the top level hierarchical representation used in our proposed PMDHM-

based design flow. This illustration of a PMDHM clustered graph (Figure 4.5(b))

shows a decomposition based on application of a single kernel. In Section 5.1 of this

thesis we provide more details on this example as well as experimental results based

on its implementation. We also examine in Section 5.1 an alternative decomposition

for this application that involves multiple kernels.
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Figure 4.4: The application graph of (1,2,2,P) LFSD subsystem.

Figure 4.5: The actor clustering and the PMDHM clustered graph.
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Figure 4.6: The AMCG associated with supernode S1.

Figure 4.7: The channel and pipeline partitions for the LFSD mapping cluster.
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Figure 4.8: The pipelined AMCG associated with supernode S1.

4.2 Mapping Process and Optimization

4.2.1 Overview

In Section 4.1, we have introduced processes to construct a top-level graph (the

PMDHM clustered graph) and the associated pipelined AMCGs, which explicitly

expose application parallelism at multiple levels from MDSDF specifications. In this

section, this top-level graph representation and the associated pipelined AMCGs are

utilized to derive optimized parameters for mapping applications onto multi-level

parallel platforms. We present in detail the mapping process for a hierarchical ar-

chitecture of platform depth equal to two, and specifically for CUDA-based GPU

implementation. However, our mapping process has been developed with an objec-

tive of facilitating adaptation to larger platform depths, and to supporting imple-

mentation on other instances of multi-level parallel platforms (beyond CUDA-based

GPU implementation). Development of such adaptations is a useful direction for

future investigation.
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In a two-level parallel programming model, such as the CUDA or OpenCL

programming model, we refer to top-level execution units as kernels. Kernels require

user-specified information on parallel dimensions — i.e., a M -tuple vector for the

degree of top-level parallelism (grid size), and anotherM -tuple vector for parallelism

at the second (lower) level (block size) where M is supported up to three in CUDA.

In such a two-level parallel programming model, we denote the parallel dimensions

for kernel K as λK = (λK,1, λK,2), where λK,1 and λK,2 are the M -dimensional grid

and block sizes, respectively.

Presently, the PMDHM framework requires that M , the dimensionality of

the production and consumption rates in the MDSDF application graph, is less

than or equal to the dimensionality p of the targeted parallel programming model.

Thus, for example, in our targeting of CUDA, the application graph must satisfy

M ≤ 3. Extending the PMDHM framework with additional transformations that

allow for M > p is a useful direction for further investigation. However, note that

M ≤ 3 covers a broad class of important signal processing applications, including

applications in wireless communications (where typically M = 1), image processing

(where typically M = 2), and video processing (where typically M = 3).

In the remainder of this chapter, we focus on CUDA as the lower level (actor-

level) programming model for development of our mapping process onto the targeted

class of two-level architectures. We maintain this focus on CUDA for concreteness

and because our experiments, described in Section 5.1 and Section 5.2, have been

developed using CUDA-enabled NVIDIA GPUs as the target platforms. However,

we envision that the mapping approaches described here can be readily adapted to
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other kinds of multi-level parallel architectures, such as those supported by OpenCL.

Development and demonstration of of such adaptations is a useful direction for future

work.

In the process of mapping an application dataflow graph into a CUDA-enabled

GPU implementation, it is important to carefully derive the dimensions for the differ-

ent levels of parallelism — inefficient configuration of such mapping parameters can

degrade performance [23]. In the remainder of this section, we develop a systematic

approach, based on application of pipelined AMCGs, for deriving mapping param-

eters in CUDA-based GPU implementation. We refer to this mapping approach

as the PMDHM supernode transformation. The PMDHM supernode transforma-

tion includes methods for increasing the diversity of the design space of parallel

dimensions through a novel transformation technique for adapting dataflow within

AMCGs.

4.2.2 PMDHM Supernode Transformation

Given an MDSDF graph G, we denote the firing vector (defined in Sec-

tion 4.1.1) for an actor α in the graph as as fvectα. Suppose that A is a supernode in

the top-level graph (the PMDHM clustered graph) G with firing vector fvectA = θA.

Suppose also that the associated pipelined AMCG (denoted CA) has n non-interface

nodes, A1, A2, . . . , An, with firing vector fvectAi
= θAi

for each Ai.

Intuitively, using the PMDHM supernode transformation, we can parameterize

fvectA and each fvectAi
by transforming the dataflow of A and CA, while keeping
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the same total amount of dataflow for A in a periodic schedule iteration. To apply

the PMDHM supernode transformation, suppose that θA,k (the component of θA in

the kth dimension) can be factorized such that

(dA,k | θA,k) = qA,k, (4.12)

where the notation (a | b) = c is used to indicate that a is a positive divisor of

a positive integer b with the associated quotient c = b/a (the remainder of this

division operation is zero since a is a divisor).

Now suppose that dA,1, dA,2, . . . , dA,M is a sequence of M values such that

each dA,i is a positive divisor of θA,i. Recall that M in this context represents the

number of dimensions in the associated multidimensional dataflow (production or

consumption) rates. With a minor abuse of notation, we define the vector dA =

[dA,1, dA,2, . . . , dA,M ], and we define the set of possible dAs (based on all possible

combinations of positive divisors) as D. We then introduce a parameter qtvect ,

called the quotient vector parameter of the given supernode A, such that qtvect has

D as its domain (set of admissible parameter value settings). The quotient vector

can be viewed as a parameter for transforming dataflow in a supernode A such

that for each dimension k, A consumes from each input port and produces onto

each output port dA,k times as many tokens as in the original settings (i.e., before

application of the transformation). We refer to this transformation in terms of the

qtvect parameter as the PMDHM supernode transformation. Upon application of the

PMDHM supernode transformation, the supernode A is replaced by (transformed
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to) a new supernode A′ with a firing vector defined by

fvectA′,k = qA,k = θA,k/dA,k, k ∈ 1, 2, . . . ,M, (4.13)

where dA is the applied configuration (setting) of the qtvect parameter.

Such change of dataflow at different levels corresponds to applying a blocking

factor [9] of dA,k to the periodic scheduling of CA for each kth dimension. In the

pipelined AMCG of A′, the interface actors (ii and io) are still fired once per

iteration period of the resulting schedule (constructed based on the applied blocking

factors). From the application of the parameter qtvect , both the production rates

of ii at all of its output ports and the consumption rates of io at all of its input

ports are accordingly multiplied by dA,k in each dimension k. In addition, each non-

interface actor α in A′ has the same consumption and production rates at its input

and output ports as the rates for the corresponding actor in A. However, the firing

vector for each actor is changed based on the applied setting dA of qtvect . The new

firing vector is computed as:

fvectα,k = dA,k × θβ,k (4.14)

for each dimension k, where β is the actor corresponding to α in A (i.e., in the

original supernode).

Figure 4.9 shows an example of the PMDHM supernode transformation. This

example applies the PMDHM supernode transformation to the supernode A, which

contains two non-interface vertices in the associated pipelined AMCG. Note that
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Figure 4.9: An example of the PMDHM supernode transformation.

the firing vector and dataflow rates can be different before (Figure 4.9(a)) and after

(Figure 4.9(b)) the PMDHM supernode transformation, as described above.

The configuration of the quotient vector parameter qtvect affects the amount

of parallelism exploited in both the top and bottom levels of the targeted two-level

parallel architecture. Thus qtvect should be set carefully to optimize performance.

If a supernode A is targeted to a kernel KA on an two-level parallel platform,

the parallel dimensions of KA are derived from the PMDHM supernode transforma-

tion. Intuitively, the level-1 parallel dimension (i.e., the kernel size) λKA,1 of kernel

KA is configured as the firing vector (parallel degree) of its associated supernode A

in the PMDHM clustered graph.

λKA,1 = qA, (4.15)
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where qA = [qA,1, qA,2, . . . qA,M ], and recall from Equation 4.13 that for each i, qA,k =

θA,k/dA,k.

The block size of KA is derived from the pipelined AMCG of A. Since all non-

interface nodes in the pipelined AMCG can be executed in parallel, the bottom-level

parallel dimension (i.e., the block size) λKA,2 is set as the total parallel degree (i.e.,

the summation of parallel degrees over the associated non-interface nodes):

λKA,2,k =
n∑

i=1

dA,kθAi,k (4.16)

for each dimension k. Such a summation-based setting of parallel dimensions may

possibly worsen the overhead due to idle threads, as described in Section 4.1.2, espe-

cially for large M (e.g., when we are developing multidimensional signal processing

applications involving signals of high dimensionality). A possible direction for ad-

dressing this issue is to apply dataflow transformations in different dimensions of the

multidimensional production and consumption rates to avoid redundant allocation

of threads. Exploration of such transformations is an interesting direction for future

work.

In summary, the two-level mapping dimensions for a kernel KA mapped from

a supernode A are parameterized as shown in Equation 4.15 and Equation 4.16.

Strategic configuration of the quotient vector parameter qtvect can aid in the opti-

mization of specific metrics, such as throughput and latency. This is because dif-

ferent settings of qtvect in general give rise to different sets of parallel dimensions,

which in turn affect metrics such as kernel execution times and buffer memory re-
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Figure 4.10: Illustration of our proposed PMDHM-based design methodology for

design and implementation of signal processing systems.

quirements.

If kernel runtimes can be estimated through methods such as actor profiling

or runtime prediction models (e.g., see [43, 44]), then the results of such estimations

can be used to help configure qtvect . A specific approach to such estimation-driven

configuration of qtvect is discussed in Section 5.1.

Figure 4.10 summarizes the developments of this section with an illustration

of our proposed PMDHM-based design methodology for design and implementa-

tion of signal processing systems. In Section 5.1 and Section 5.2, we demonstrate

applications of this new design methodology to relevant practical applications.
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4.3 Related Work

A variety of dataflow based tools has evolved in recent years for design and

implementation of signal processing systems (e.g., see [1, 45, 46]). In this section, we

summarize a number of recent efforts beyond MDSDF that have focused especially

on multidimensional dataflow modeling.

Keinert et al. propose an extension of MDSDF, called windowed synchronous

dataflow (WSDF) [47]. WSDF allows modeling of sliding window algorithms for

a multidimensional applications. Array–OL [48] is a language devoted to applica-

tions that involve multidimensional signal processing. Two levels of description are

used for modeling parallelism in Array–OL — one is the global model for defining

task parallelism, while the other is the local model for expressing data parallelism.

Blocked dataflow (BLDF) [49] provides meta-modeling semantics that can be used

to represent block-based and multidimensional processing in terms of different spe-

cialized dataflow models.

McAllister et al. [50] augment the MDSDF model with parameterized array ex-

pressions. Their modeling approach, called Multidimensional Arrayed Synchronous

Dataflow (MASD), provides graph range parameters to control token dimensions at

input and output ports. These parameters enable systematic trade-off exploration

between actor network size and token size.

Additionally, a number of GPU-related design frameworks contain features

that are relevant to efficient targeting from MDSDF graphs. Hou et al. present a

programming language called BSGP for GPU-based implementation [51]. In BSGP,
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programmers write C-like sequential programs and provide special directives to con-

figure parallel processing on the targeted GPU. The BSGP compiler translates such

programs into kernels for GPU execution. GStream, a streaming-oriented design

framework for GPUs, is proposed by Zhang and Mueller [52]. GStream presents a

streaming abstraction dedicated to expressing data parallelism for massively parallel

architectures. To offer unified programming methods for domain-specific accelera-

tors, such as GPUs, the authors in [53] take a pragma-based approach to expressing

tasks as computational kernels.

In Chapter 4 through Chapter 5, we present a novel design method, building

on the MDSDF model of computation, for hierarchical exploitation of parallelism in

signal processing applications. This design method, called parameterized multidi-

mensional design hierarchy mapping (PMDHM), exposes parallelism from multidi-

mensional dataflow graphs at different design levels in a platform-independent way,

and facilitates the exploitation of parallelism using suitable platform-specific map-

ping optimizations at the back-end of the enclosing design flow. Graph clustering

and MDSDF dataflow analysis are developed and applied in novel ways to provide a

systematic framework for mapping applications to processing platforms that employ

parallelism at multiple levels.
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5 PMDHM Case Studies

5.1 Case Study: LFSD Subsystem for MIMO Detection

In this section, we develop a case study that demonstrates our proposed

PMDHM design methodology through the GPU-based implementation of the list

fixed-complexity sphere decoder (LFSD) application, which we introduced in Sec-

tion 3.5. The LFSD is a computationally-intensive subsystem. The independence

of operations in the LFSD among subcarriers helps to make it suitable for paral-

lel implementation. Through this concrete and practical application example, we

demonstrate how PMDHM can be applied to efficiently and systematically explore

implementation trade-offs across alternative design configurations. For an overview

of the functionality and parameters associated with the LFSD, we refer the reader

to Section 3.5.

5.1.1 Application Graph

In the parallel design of a λ = (n1, n2, n3, n4) LFSD subsystem, we employ

two-level hierarchical parallelism for GPU implementation. At the top level, LFSD

operations across different subcarriers are processed in parallel, and at the the bot-

tom level, parallelism is exploited within the LFSD operations for individual sub-

carriers. At the bottom level, multiple parallel threads compute a list of candidates

for each subcarrier.

In the serial design discussed in Section 3.5, the actor Ei, which represents the
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fixed-complexity sphere decoder (FSD) computation for layer i, consumes one token

from its input port and produces ni tokens on its output port on each invocation.

The computations for the different ni values are not independent, and thus, for

parallel implementation, designers need to carefully consider issues such memory

sharing and thread synchronization to ensure correctness of the results.

To avoid design complications and run-time overhead associated with such

memory sharing and thread synchronization, a set Si = {Fi(j) | 1 ≤ j ≤ ni} of ni

actors for each layer i is used to replace each Ei in our parallel design. At layer i,

each Fi(k) consumes one token and generates ni−1 (with n0 = 1) copies of a token

that encapsulates the kth optimal result for the process in the next layer. For an

Si that contains multiple actors, the actors can be executed in parallel since their

underlying computations are independent. Although this new (transformed) design,

where the Sis are used in place of the Eis, introduces some redundant computations,

the transformed design can provide GPUs with more parallel threads, and can pro-

vide this parallelism without data sharing or synchronization needed between the

introduced parallel threads.

Figure 4.4 illustrates an example of a dataflow graph for a (1, 2, 2, P ) LFSD

subsystem for P -QAM, 4×4 MIMO detection using our parallel design, as described

above. At Layer 4 (the leftmost part of Figure 4.4), full search is applied — i.e., there

are P actors, F4(1), F4(2), . . . , F4(P ), where each F4(j) computes the jth candidate

and produces two tokens (encapsulating the same jth candidate). These produced

tokens are sent for further processing by Layer 3.

The actors F3(1) and F3(2) then compute, respectively, the optimal and second-
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best points according to the input tokens from the previous layer. Similarly, at Layer

2, the actors F2(1) and F2(2) consume the two results computed in Layer 3, and

produce the optimal and second-best outputs of the FSD computation based on the

input tokens received from Layer 3. Finally, the actor F1(1) at Layer 1 processes

the input tokens received from Layer 2, and produces a single candidate around the

ML solution (see Section 3.5.1) as the overall subsystem output.

5.1.2 DH Exploration

We apply our proposed PMDHM framework to the dataflow graph of the LFSD

subsystem described in Section 5.1.1 to derive optimized mapping parameters for

the targeted GPU platform. First, we perform actor clustering to generate mapping

clusters. Here, two clustering approaches are considered:

• Clustering Approach A combines all processing elements into a single supern-

ode, which is mapped to only one GPU kernel.

• Clustering Approach B produces four supernodes, where the ith supernode

contains all processing elements at Layer i. A GPU kernel is mapped from

each of these four supernodes, resulting in four generated kernels.

Compared to Clustering Approach A, Clustering Approach B may introduce

additional kernel overhead (e.g., repeated computation of thread data indices) but

the mapping parameters of the GPU kernels can be more specialized to their asso-

ciated layers (e.g., more fine-grained control over mapping parameters). Figure 4.5
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Figure 5.1: Clustering Approach B.

and Figure 5.1 depict, respectively, Clustering Approaches A and B and their cor-

responding PMDHM clustered graphs for the application graph in Figure 4.4.

The next step in PMDHM is to construct the pipelined AMCG for each map-

ping cluster to explore second-level parallelism. We take the mapping cluster using

Clustering Approach A as an example. Figure 4.7(a) shows the channel partition-

ing results for this mapping cluster. There are P channels (X1, X2, . . . , XP ) that

can be processed in parallel. The pipeline partitioning process is further carried

out for each channel as illustrated in Figure 4.7(b), where six pipeline stages (in-

cluding two stages associated with ii and io) are drawn to indicate their serial

(chain-structured) dependencies. In the four central (non-interface) pipeline stages

(ρ2, ρ3, ρ4, ρ5), there are groups of one, two, four, and four parallel threads that ex-
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ecute the stages, respectively. Accordingly, four threads (the maximum of 1, 2, 4,

and 4) will be assigned to each channel, which results in 3 and 2 idle threads, respec-

tively, in ρ2 and ρ3. The pipelined AMCG of the mapping cluster under Clustering

Approach A is shown in Figure 4.8.

The PMDHM supernode transformation presented in Section 4.2 is then ap-

plied to the resulting pipelined AMCG to generate optimized mapping dimensions

for each GPU kernel.

5.1.3 Experiments

In our experiments, an NVIDIA GTX680 GPU with 2GB memory and an Intel

Core I7 3.4GHz CPU with 8GB memory are used.

We first compare the performance between implementations with and without

application of our proposed PMDHM framework. We assume that there are Nsc

subcarriers available at a time for parallel processing in each kernel.

The LFSD algorithm is applied on each subcarrier independently. In a

(n1, n2, n3, n4) LFSD subsystem, for each subcarrier, there are NL = n1n2n3n4 pos-

sible parallel threads that can be executed (e.g., see Figure 4.4).

We first examine Clustering Approach A without use of PMDHM. For this

case, based on the structure of the application, the kernel dimension is set to be

(Nsc, NL) — i.e., each grid contains Nsc blocks, and each block contains NL threads

to process LFSD on one subcarrier.

For Clustering Approach B without use of PMDHM, the ith layer can have
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Ni parallel threads for its associated kernel, where Ni is the number of actors that

can be processed in parallel at layer i — i.e., N4 = n4, N3 = n4n3, N2 = n4n3n2,

and N1 = n4n3n2n1 (see Figure 5.1(a)). Therefore, the kernel dimension of each ith

layer is configured as (Nsc, Ni).

These mapping parameter settings for Clustering Approaches A and B (with-

out PMDHM) are determined by hand, through examination of relevant application

properties.

By contrast, through our proposed PMDHM framework, the mapping param-

eters can be systematically derived to provide optimized performance, and allow

application developers to focus more design effort on the kernel implementations

and other important aspects of the design process.

Key experiment settings include the following. We conduct the experiments

on M ×M P -QAM modulation with M = 4 and P = 16, 64. As in Section 3.5, list

sizes of P , 2P , and 4P are considered in the subsystems associated with (1, 1, 1, P ),

(1, 1, 2, P ), and (1, 2, 2, P ), respectively. The numbers of subcarriers available for

one kernel launch ranges from 1 to 2048 to explore the impact of mapping parameters

on kernel performance.

Figure 5.2 shows a performance comparison of the 16-QAM scheme using Clus-

tering Approach A with and without application of the PMDHM framework. As

we can see from Figure 5.2(a), the average runtime per subcarrier (y-axis) improves

as the number of subcarriers per kernel (x-axis) grows. Such a trend is as expected

since the acceleration provided by a GPU benefits from large amounts of data to be

processed simultaneously. When Nsc ≤ 128, there is little performance difference

68



between the baseline (marked as “reg”, which is short for “regular”) and optimized

(marked as “opt”) parameter settings since performance limitations arise due to

the limited amount of parallel data available. Here, by baseline and optimized set-

tings, we mean the settings derived respectively without and with application of the

proposed PMDHM framework.

After the point of Nsc = 128, the implementation with the baseline mapping

parameters starts to saturate very quickly, which results from inappropriate kernel

dimensions: each kernel block contains 16, 32, and 64 threads, respectively, for

NL = P , NL = 2P , and NL = 4P , which are not optimal settings for this scenario,

as we can see from the performance derived using the optimized parameter settings.

In this region, the implementation with the optimized mapping parameters clearly

outperforms the corresponding regular (baseline) one.

After the point of Nsc = 128, the performance of the optimized settings con-

tinue to improve and finally saturates at 256, 512, and 1024 for NL = P , NL = 2P ,

and NL = 4P , respectively. From Figure 5.2(a), we observe that the baseline per-

formance has less improvement as Nsc grows when Nsc > 128 for all settings of list

sizes, which suggests that the maximum allowable block size is potentially causing

a performance bottleneck.

In contrast, the performance of the optimized solution saturates at the same

number of total threads (i.e., 16,384 total threads) for different list sizes. This is

because the PMDHM framework is agile at finding efficient mapping parameters

for different application specifications, and hence can remove potential performance

bottlenecks due to improper kernel dimensions that affect the baseline case. From
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this comparison, we also see that given the same number of total threads, improper

settings of parallel dimensions at the two levels can cause performance degrada-

tion. In particular, we can observe such performance degradation from the baseline

settings.

The resulting acceleration using the PMDHM framework is illustrated in Fig-

ure 5.2(b). From this figure, we see that the speedup gain achieved for this applica-

tion using the PMDHM framework can be up to 2.8X, 2.2X, and 1.6X for the cases

NL = P , NL = 2P , and NL = 4P , respectively.

The situation for 64-QAM modulation is different, as shown in Figure 5.3.

Here, performance enhancement by applying PMDHM can only be seen for the

case NL = P . The baseline settings of mapping parameters using (Nsc, NL) for

NL = 2P and NL = 4P are suitable for these scenarios, and the PMDHM framework

reaches almost the same quality of results as using the regular settings. However,

an exception can be seen for NL = P , where up to a 27% performance improvement

can be attained using PMDHM, as illustrated in Figure 5.3(b). From the above

results, our proposed framework is shown to provide an efficient configuration of

kernel dimensions regardless of application specifications, while the quality of the

baseline approach is fragile — i.e., it is seen to be highly sensitive to different settings

of application parameters.

As shown in Figure 5.4 for 16-QAM modulation and Figure 5.5 for 64-QAM

modulation, experimental results for Clustering Approach B also illustrate signif-

icant gains achieved using the PMDHM framework. In these experiments, the

PMDHM framework enhances performance by up to 2.5X, 2.2X, and 1.7X for 16-
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Figure 5.2: Performance comparison of Clustering Approach A for 16-QAM with

and without PMDHM.
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Figure 5.3: Performance comparison of Clustering Approach A for 64-QAM with

and without PMDHM.
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QAM with NL = P , NL = 2P , and NL = 4P , respectively. For the case of 64-QAM

with NL = P , runtime improvement of up to 25% can be attained for large numbers

of subcarriers per kernel.

Figure 5.6 depicts a performance comparison of Clustering Approaches A and

B with application of the PMDHM framework. Compared to Clustering Approach

A, Clustering Approach B groups each layer into a separate kernel and thus, opti-

mization can be carried out in a specialized way on each kernel to potentially obtain

better mapping parameters and reduce the impact of idle threads. However, there

is also a potential cost to Clustering Approach B in terms of introducing kernel

invocation overhead.

From the experimental results, we observe that Clustering Approach A out-

performs Clustering Approach B, but the difference decreases progressively as the

list size increases. For small list sizes, we expect that Clustering Approach A has

better performance primarily because it involves significantly less kernel invocation

overhead. For larger list sizes, overhead due to inactive threads becomes significant

in Clustering Approach A. For example, in the NL = 2P case, P threads must wait

for the other P threads to finish in Layer 4. This effect becomes increasingly strong

for larger list sizes. For NL = 4P , there are 3P and 2P idle threads, respectively,

in Layer 4 and Layer 3, which influence the reduced improvement of Clustering Ap-

proach A compared to Clustering Approach B. This reduction in improvement is

shown in Figure 5.6(c).

Next, we present results of experiments that measure the acceleration achieved

by using a GPU platform compared to a CPU. To measure CPU-based performance,
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Figure 5.4: Performance comparison of Clustering Approach B for 16-QAM with

and without PMDHM.
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Figure 5.5: Performance comparison of Clustering Approach B for 64-QAM with

and without PMDHM.
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Figure 5.6: Performance comparison of Clustering Approaches A and B with the

PMDHM framework.
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we consider both a single-core implementation using sequential code and a multi-

core implementation based on the OpenMP API. For the GPU implementation,

Clustering Approach A with PMDHM is used in the comparison. The acceleration

levels achieved by GPU- and CPU-based implementations are depicted, respectively,

in Figure 5.7 and Figure 5.8.

From the results, we see that the speedup increases as the number of subcarri-

ers grows, and the rate of this increase slows for larger numbers of subcarriers. We

can also see from the results that lower amounts of speedup are achieved for larger

list sizes.

Speedup gains ranging from 120X to 180X can be obtained using GPUs com-

pared to single-core CPUs, as we can see from Figure 5.7. Even in comparison to the

multi-core CPU implementation, the GPU implementation can achieve significant

speedup gains — ranging from 25X to 42X, as shown in Figure 5.8.

5.1.4 Summary

In this chapter, we have demonstrated important features and advantages of

our proposed PMDHM framework through an application case study of a list fixed-

complexity sphere decoder (LFSD) subsystem, which is an important subsystem

in modern wireless communication applications. Through this case study, we have

demonstrated concretely how the PMDHM framework can help system designers

to experiment with and optimize mapping parameters through a structured process

that is based on novel methods of dataflow graph modeling, analysis and transfor-
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Figure 5.7: Performance comparisons for GPU and single-core CPU implementa-

tions.
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Figure 5.8: Performance comparisons for GPU and multi-core CPU implementa-

tions.
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mation. An important benefit of the features demonstrated in this chapter is the

potential to reduce design and optimization effort for engineering teams, which can

in turn help to reduce costs, accelerate time-to-market or allow other design and

validation tasks to be focused on more intensively.

5.2 Case Study: Integral Histogram

To further demonstrate our proposed PMDHM framework, we map an image

processing application based on integral histogram computation [54] onto a GPU

target platform. Our proposed PMDHM framework can be applied flexibly accord-

ing to system properties and application specifications. Different from the case study

of the LFSD, which we presented in Section 5.1, kernel dimensions for this applica-

tion are configured by hand based on the derived design hierarchies to demonstrate

an alternative approach to applying PMDHM. A preliminary version of material in

this section is presented in [34].

The integral histogram (IH) first maps pixels into a set of non-overlapping

ranges (“bins”), and then performs a 2-D scan. Two scan orders, cross-weave and

wavefront, are explored in [55]. The cross-weave scan processes the image in the

first dimension (horizontal scan) followed by a scan in the second dimension (ver-

tical scan). Instead of applying two passes, the wavefront scan propagates an anti-

diagonal wavefront calculation as it operates through a single scan.

In our experiments, we incorporate use of a tiled image processing approach,

where the image is separated into blocks (tiles) of neighboring pixels. Tiled ap-
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proaches can be useful for GPU implementation to enhance parallel execution across

multiple threads [11]. In particular, we explore in this case study a tiled integral

histogram (TIH) approach for efficient mapping into GPU implementations.

The overall input image size for IH computation is denoted as (Iw× Ih) pixels,

and the number of histogram bins is denoted as Nb. In TIH computation, an image

is tiled as an (Nw × Nh) rectangular arrangement of tiles, where each tile has a

(Tw × Th) rectangular arrangement of pixels. Here, Tw = Iw/Nw, and Th = Ih/Nh.

For each (Tw × Th) tile, the IH is calculated independently. After computation of

all (Nw × Nh) tile-level IHs, the results can be processed to derive the image-level

IH result.

We experiment with both tiled and non-tiled versions for the cross-weave scan.

We have observed that non-tiled configurations of our wavefront-based IH actor

perform with unacceptable latency on the targeted GPU, and therefore, we employ

only tiled configurations when using the wavefront scan.

5.2.1 Actor Design

For GPU-based implementation of IH computation, we design three types

of two-dimensional signal processing actors. These actors are parameterized so

that they can be statically or dynamically configured (e.g., using parameterized

dataflow [7] integration with MDSDF) for the desired type of IH computation. This

parameterization in conjunction with the PMDHM mapping approach helps design-

ers to explore trade-offs involving different IH computation strategies in conjunction
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with efficient parallel realizations of these strategies.

Each of the three actors employed in our IH case study has a single input port

and a single output port. These actors are described as follows.

First, the Bin-Check actor determines bin membership for pixels. The actor

executes pixel checks of an image column for all bins with CONS = (1, Ih) and

PROD = (1, Ih × Nb). Here, and in the remainder of this section, we denote the

two-dimensional (MDSDF) production and consumption rates of a given actor port

as PROD and CONS , respectively.

Second, the Intra-Tile-IH actor computes the IH, where the size of the input

tile is specified by the actor parameters Tw (width) and Th (height), and the scan

order is specified by the scan order parameter of the actor. The supported settings

for the scan order parameter are:

• CWS: Compute the IH using a cross-weave scan with tiling. The actor ports

satisfy CONS = PROD = (Tw, Th)

• WFS: Compute the IH using a wavefront scan with tiling. The ports again

satisfy CONS = PROD = (Tw, Th)

• NT: Compute the IH using a cross-weave scan without tiling — that is, cal-

culate the IH for the input image directly with CONS = PROD = (Tw, Th).

The Inter-Tile-IH actor performs accumulation among tiles with a param-

eter, called the accumulation order parameter, to support different scan orders for

performing the accumulation. In particular, horizontal, vertical, and wavefront scans
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Figure 5.9: MDSDF graph for optionally-tiled IH computation.

Table 3: Application modes.

App mode Method V2 SOP V3 SOP V4 SOP

APP-CWS cross-weave TIH CWS HS VS

APP-WFS wavefront TIH WFS WFS IDLE

APP-NT no tiling NT IDLE IDLE

are used for accumulation order settings that are denoted HS, VS, and WFS, respec-

tively. The actor ports of this actor (regardless of the accumulation order setting)

satisfy CONS = PROD = (Iw, Ih). In addition, the accumulation order parameter

can be set to the value IDLE to bypass any accumulation. While in the IDLE con-

figuration, the actor performs no computation, and simply passes its input to its

output (through a simple pointer transfer to avoid memory transfer overhead).

5.2.2 Application Graph

Given the actors developed in Section 5.2.1, one can implement the IH appli-

cation with the MDSDF graph shown in Figure 5.9. The desired scan orders and

tiling settings can be achieved by setting the actor parameter values appropriately.

In the experiments, we show performance comparisons among three specific applica-

tion modes, which are defined by the groups of parameter settings shown in Table 3.

Here, SOP stands for “scan order parameter.”
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5.2.3 Design Hierarchy Exploration

We customize the implementations for the different application modes by ex-

amining their MDSDF application graph representations separately, and deriving

separate design hierarchies to guide the application mapping process. Taking the

application mode labeled APP-CWS as an example, we show a design hierarchy

in Figure 5.10 that can be used to derive an efficient implementation on the tar-

geted GPU. In the grid level of target platform parallelism, which is illustrated in

Figure 5.10(a), the 2-D indices shown above the actors represent the corresponding

firing vectors that are derived from the design hierarchy (see Section 4.1). Each

actor in the top level of the design hierarchy is mapped to a kernel function in the

GPU, and the firing vector is used to configure the grid size.

Figure 5.10(b) depicts the second level (i.e., block level) for the Intra-Tile-

IH actor. Figure 5.10(b) shows a hierarchical dataflow subgraph that specifies the

internal functionality for the Intra-Tile-IH actor. To avoid non-coalesced memory

access, the input data is loaded and transposed in the shared memory by the G-

to-S Loader actor before the horizontal scan (G-to-S stands for “global-to-shared”).

After the scan for each data row, the results are transferred from the shared memory

back to the global memory by the S-to-G (“shared to global”) Loader actor. Finally,

a vertical scan is performed to obtain the IH for the input tile.
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Figure 5.10: Hierarchical dataflow graphs for cross-weave TIH.

5.2.4 Experiments

In our experiments, an NVIDIA GTX260 GPU and an Intel Xeon 3GHz CPU

are used. We compare the three different application modes in Table 3. Table 4

depicts the grid and block sizes for GPU kernels. Performance is compared for four

image sizes (Iw × Ih): 32x32, 64x64, 256x256, and 512x512. Based on the number

of GPU threads employed for each kernel, we choose a tile size of (32 × 16) in the

APP-CWS mode for all image sizes. For the APP-WFS mode, tile sizes of (4× 4),

(8 × 8), (16 × 8), and (32 × 16) are chosen for successively larger image sizes. We

evaluate the frame processing time, including the time required for memory transfer

from the host to the device (GPU) and the processing time on the device. We do not

include the time for memory transfer from the device back to the host because many
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Table 4: Grid sizes (left) and block sizes (right) derived from design hierarchies in

our experiments.

mode V2 kernel V3 kernel V4 kernel

APP-CWS (Nw, NhNb) (Tw, 1) (1, Nb) (Tw, Th) (1, Nb) (Tw, Th)

APP-WFS (1, Nb) (Nw, Nh) (1, Nb) (Tw, Th) N/A

APP-NT (1, Nb) (Iw, 1) N/A N/A

applications that employ IH can be implemented on the GPU efficiently without

need for data transfer back to the CPU.

Figure 5.11 shows the frame rates (i.e., 1/τ , where τ represents the average

time in seconds required to process a single frame) for various bin sizes ranging from

16 to 1024. From the experimental results, we see that the GPU implementation

of the IH consistently outperforms the CPU implementation, and that the speedup

gains are approximately 35X for image sizes 32x32 and 64x64, 67X for image size

256x256, and 75X for image size 512x512.

Among the different GPU implementations for the 32x32 image size case, IH

without tiling (APP-NT) provides the best performance since it avoids overhead

from tiling. In the 64x64 case, however, APP-NT suffers from reduced inter-thread

parallelism due to the large amount of shared memory required. The best per-

formance is achieved in the APP-WFS mode as it provides more threads in the V2

kernel and less overhead due to tiling (V4 is bypassed). With image sizes of 256x256

and 512x512, we must use tiling due to the size limitations of the shared memory.

Compared to APP-WFS, APP-CWS can offer better frame rates by providing more
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Figure 5.11: Performance comparisons for different image sizes.

effective parallel execution on the target platform.

In summary, the best application mode for IH calculation depends on the

image size, and thus MDSDF application modeling in conjunction with our PMDHM

mapping approach are useful design methods to map IH computations systematically

onto the targeted GPU platform. Such a systematic mapping approach leads to

designs that can be mapped more efficiently, and that are more portable, and easier

to maintain and extend.
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6 Enhanced Scalable Schedule Trees

The scalable schedule tree (SST) model [13], built on the generalized schedule

tree (GST) representation [18], is a formal method to represent and manipulate a

class of parameterized dataflow graph schedules. The class of schedules targeted

by SSTs is useful for implementing dataflow graph models that employ topological

patterns. However, the SST method enforces certain forms of regularity in executing

schedules, which restricts the flexibility with which the method can be applied to

the mapping of dataflow graphs.

In this chapter, we introduce a traversal method using an array iterator design

pattern to allow more flexible schedules so that a broad class of execution sequences

can be accommodated. This allows for design and representation of a correspond-

ingly broader range of useful schedules through the common framework of SSTs.

Our enhanced model for schedule representation is significantly more powerful

than the original SST formulation, and as a target for scheduling techniques, this

new model enables the development of correspondingly more flexible schedulers. We

refer to this new form of schedule tree as the enhanced SST model.

Material in this chapter was published in preliminary form in [41].

6.1 SST Model

The SST model [13] has all of the features of a GST (e.g., see [18]) and

additionally provides the following new features.
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1. Parameterization. A node within an SST can be parameterized with a

parameter setK. The semantics of how values associated with elements ofK change

is determined by the model of computation that is used for application specification

(e.g., SDF with static graph parameters [56], parameterized dataflow [7], or scenario

aware dataflow [57]), in conjunction with the scheduling strategy that is used to

derive the schedule tree. This decoupling from parameter change semantics allows

the SST model to be applied to different kinds of dataflow application models and

design environments.

2. Guarded execution. An SST leaf node, which encapsulates a firing (exe-

cution) of an individual actor, has an optional guarded attribute, which indicates

that firing of the corresponding actor should be preceded by a run-time fireability

(enabling) check. Such an enabling check determines whether or not sufficient input

data is available for the actor to fire. The guarded attribute of SSTs is motivated by

the enable-invoke dataflow model of computation, where guarded executions play a

fundamental role [58].

3. Dynamic iteration counts. Loop nodes can be dynamically parameterized in

terms of SST parameters, which provides capabilities for data- or mode-dependent

iteration in schedules. An SST loop node L can be viewed as a parameterizable form

of the constant-iteration-count loop nodes in GSTs. An SST loop node L has an as-

sociated iteration count evaluation function cL : K → Z+. An implementation of cL

takes as arguments zero or more of the parameters in K, and returns a non-negative

integer (zero parameters are used if the iteration count is constant). Visitation of L
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begins by calling cL to determine the iteration count, and then executing the subtree

of L successively a number of times equal to this count.

4. Arrayed children. In addition to leaf nodes and SST loop nodes, a third kind

of internal node, called an arrayed children node (ACN), is introduced to represent

schedule structures related to TPs.

An ACN z has an associated array childrenz, which represents an ordered

list of candidate children nodes during any execution of the SST subtree rooted at

z. The array childrenz has a positive integer size sizez, which gives the number of

elements in the array.

Each element in childrenz represents a schedule tree leaf node (i.e., an encap-

sulation of an actor in the enclosing dataflow graph), an SST loop node, or another

SST — i.e., a “nested” SST.

In the enhanced SST model, ACN z also has two functions associated with

it, which we denote as trav list z and trav count z. These functions determine

how childrenz is traversed during a given execution of the enclosing subtree. These

functions take as arguments pre-specified subsets of the parameters of z, and return,

respectively, an array and a non-negative integer. One or more of these functions

can be constant-valued — dependence on parameter settings is not essential but

rather a feature that is provided for enhanced flexibility.
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6.2 SST Traversal Process

When an ACN z is visited during traversal (execution) of the enclosing sched-

ule tree, the following sequence of steps, called the SST traversal process, is carried

out.

(1) The parameter settings for z are updated by applying the evaluation function

fp for each parameter p ∈ Pz.

(2) The values of trav arr z and trav count z are evaluated in terms of the updated

parameter settings. These values are stored in temporary variables, which we denote

as T and L, respectively.

(3) To traverse the desired nodes in an ACN, we use the array iterator design

pattern in conjunction with the traversal list array T and the traversal count L in

the algorithm. The computation outlined by the pseudocode shown in Algorithm 3

is carried out, where count represents the iteration count evaluation function of the

associated SST loop node, and K represents the set of parameters for the enclosing

SST.

In [13], an ACN is designed to have three functions cinitz, cstepz, and climitz,

which allow for traversal of arrayed children nodes by stepping in regular patterns

through the associated child node arrays. These regular patterns are in terms of

parameterized initial indices, terminal indices, and step sizes for the arrays. In this

work, by introducing the functions trav arr z and trav count z along with array

iterators, we allow more flexible schedules, where a broad class of programmatic
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Algorithm 3 Outline of the SST traversal process.
initialize a new iterator

while (the traversal is not done) {

C = current node

if C is a leaf node {

execute the actor encapsulated by C

} else if C is an SST loop node {

Z = count(K)

execute the loop node subtree Z times

} else { // C is a nested SST

recursively apply the SST traversal process to C

}

current node = next node;

}
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Figure 6.1: An example of an SST.

traversal sequences can be devised for an ACN. This allows for design and rep-

resentation of a correspondingly broader range of schedules through the common

framework of SSTs.

Figure 6.1 shows a synthetic example of a nested SST, where the scheduling

result S shows the sequence of actor executions that results from traversing the

given SST.

6.3 Case Study: Turbo Decoder

In this section, we present a case study. This case study provides a demon-

stration of turbo decoder implementation for wireless communication based on the

SST concepts introduced in this document. The performance of implementations

with different parameters is compared to demonstrate design trade-offs involved in

applying the SST model, and illustrate the flexibility of the model.

6.3.1 The Dataflow Interchange Format

In this case study, we apply the Dataflow Interchange Format (DIF) frame-

work, which provides a standard language, called The DIF Language (TDL), for
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applying a broad class of dataflow models of computations for signal processing

applications [59]. Forms of dataflow semantics that can be expressed using TDL in-

clude graph topologies, hierarchical design structures, dataflow-related design prop-

erties, and actor-specific information. The associated software package in the DIF

framework, called The DIF Package (TDP), provides intermediate representations

for dataflow graphs that are specified by TDL, along with libraries of analysis tech-

niques and transformations that operate on these representations. The analysis tech-

niques can be used to enhance dataflow-based design flows based on TDL. Through

generalized interchange capabilities provided by DIF, the analysis techniques can

also be used to enhance design flows in other other dataflow environments that are

interfaced to DIF (e.g., see [60, 61, 58]).

6.3.2 Turbo Codes

Turbo coding is an attractive channel coding scheme, which can provide near

channel capacity performance [30]. In fact, turbo codes are used in many third and

fourth generation mobile communication standards, such as CDMA2000, UMTS,

WiMax, and LTE. In this section, we implement a turbo decoder and exploit features

of the SST model to demonstrate useful trade-offs that can be realized with different

SST-based scheduling schemes.

In this case study, we have assumed BPSK modulation (i.e., +1 or −1) and

an AWGN channel with noise variance N0. In the encoder, puncturing is applied

for a targeted coding rate R = 1/2. After transmission through a wireless channel,
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Figure 6.2: A dataflow graph representation of a turbo decoder.

the received BPSK symbols are decoded with a corresponding turbo decoder.

AMaximum A-Posteriori (MAP) [62] decoder is used for a component decoder

with two inputs including a-priori information and the channel outputs. Four actors

comprise a MAP decoder as illustrated in Figure 6.2(a). The γ actor computes the

state transition probabilities for the input data. Then, the α and β actors evaluate,

respectively, the forward and backward metrics based on the state transition proba-

bilities. Finally, the L actor computes and exports the Log Likelihood Ratios (LLR)

and the extrinsic component.

The turbo decoder operates iteratively. Each iteration block (IB) (Figure 6.2(b))

consists of two component decoders (MAP1 and MAP2 ) that are linked by an in-

terleaver (P1 ) and a de-interleaver (P2 ). The output of P2 is sent to the H actor

(hard decision) to generate the decoded bits provided that it is the final IB. Oth-

erwise, the output is propagated to the next IB for another iteration. The overall

graph of a turbo decoder is shown in Figure 6.2(c), where the S actor distributes

the channel outputs to each IB and n is the maximal number of iterations in the

implementation.
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A TDL representation is specified in Figure 6.3(a) where four types of TPs,

broadcast, chain, broadmerge, and parallel are employed. Among them, broadmerge

(broadcast and then merge) is a user-defined TP as illustrated in Figure 6.3(b),

which can reveal a potential structure for exploiting parallelism. In the TDL of

9n+1 nodes, there are 2n+3 TPs utilized to reduce the LOC cost to 2n+4 lines of

code (compared to 17n−1 without the support of TPs). Take n = 8 as an instance.

It needs 20 and 135 lines of code with and without TPs employed, respectively. This

example shows again the significant benefit of code efficiency that can be obtained

from using TPs.

6.3.3 Exploring Design Trade-offs using SSTs

Figure 6.4 shows the SST representation for the turbo decoder where we derive

the SST construction from the hierarchical graphs in Figure 6.2. Underlying the root

ACN (TD), there are n nested ACNs for the n IBs and one node for the source of the

subsystem (derived from Figure 6.4(c)). Each nested ACN has five nodes including

two nested ACNs for the two MAP decoders and three leaf nodes (see Figure 6.4(b)).

Each MAP ACN contains four child nodes (see Figure 6.4(a)).

With the SST representation, developers can readily realize targeting schedules

by imposing appropriate settings of parameters to explore design trade-offs. In the

turbo decoder, for example, more iterations lead to more reliable decisions with the

cost of more computational complexity. In wireless communication, the optimal

number of iterations d(≤ n) usually depends on many factors, such as channel
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quality, desired bit error rates (BERs), etc. Here, we leverage the flexibility of SST

for scheduling with various numbers of iterations.

To demonstrate further, we exhibit the ACN settings using an example of

d = 3 (i.e., three iterations for the turbo decoder). Under this scenario, only the

the first three IBs will be executed and for each IB executed, the nodes MAP1 ,

P1 , MAP2 , and P2 are traversed. The last IB executed will visit the H node to

generate the decoded bits while others will skip the H node; only the last IB has to

perform the hard decision of the turbo decoder. In addition, all of the child nodes of

the visited MAP1 and MAP2 nodes will be traversed to compute the LLR values.

To generate the corresponding schedules, the settings of ACNs can be config-

ured as follows.

TD: trav_arr = [0 1 2 3], trav_count = 4.

IB-1: trav_arr = [0 1 2 3], trav_count = 4.

IB-2: trav_arr = [0 1 2 3], trav_count = 4.

IB-3: trav_arr = [0 1 2 3 4], trav_count = 5.

Here, the settings for the MAP ACNs are skipped, as all of their child nodes

are always visited in the case study.

In the demonstration, we implement the turbo decoder and compare the per-

formance in terms of system throughput and BER level with various iteration counts

in SSTs. Our experiments on the turbo decoder case study are performed on a PC

with an Intel 3GHz CPU and 4GB RAM. A parallel concatenated turbo code of

memory 2 is used. The codeword size is 1024 bits and the maximal number of
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Table 5: Experimental results for various numbers of iterations (d ≤ 8). Note that

the throughput values are normalized to the throughput achieved under the setting

d = 1.

d 1 2 3 4

BER 2.6× 10−2 4.0× 10−3 7.2× 10−4 2.3× 10−4

Throughput 1.00 0.50 0.34 0.25

d 5 6 7 8

BER 1.3× 10−4 7.8× 10−5 6.8× 10−5 4.3× 10−5

Throughput 0.20 0.17 0.14 0.13

iterations n = 8. The signal-to-noise power ratio is set to 2dB.

The experimental results are listed in Table 5. As expected, the BERs decrease

as d increases. The throughput levels decrease linearly, however, as the number of

iterations since the IBs are the major components in this subsystem. According

to the results, one can evaluate how many iterations should be applied to the sub-

system to satisfy the system requirements by using less computational resources.

Our experiments thus demonstrate concretely how SSTs can provide a formal path

from scalable application analysis to the systematic exploration of implementation

trade-offs in the design and implementation of signal processing systems.
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6.4 Related Work

Scheduling is a critical aspect of implementing dataflow graphs (e.g., see [1]).

Parameterized schedules have been studied before (e.g., see [7, 18]), and previously,

production and consumption rates were key dataflow graph aspects that were used

to generate parameterized schedules. In topological patterns, even if production and

consumption rates are fixed, the schedule is still scalable in terms of the numbers of

actors and edges. Such scalability, when formulated in term of topological patterns,

leads to new opportunities and constraints for developing parameterized scheduling

techniques.

Early work on parameterized scheduling for dataflow graphs was done in the

context of parameterized dataflow representations. Parameterized dataflow is a

meta-modeling technique that can be applied to any underlying “base” dataflow

model, such as SDF [9], FRDF [63], and CSDF [15], for dynamically reconfiguring

the behavior of dataflow actors, edges, subsystems, and graphs through parameter

values [7]. Quasi-static scheduling techniques were developed for parameterized syn-

chronous dataflow (PSDF), which is the integration of the parameterized dataflow

meta-model with SDF as the base model [7]. However, in this work, parameterized

scheduling for scalable topologies was not addressed — the underlying sets of actors

and edges were assumed to be fixed.

The reactive process networks (RPN) model of computation supports the con-

struction of analysis and synthesis tools for dynamic streaming multimedia ap-

plications that include both event-based and dataflow-based computations [64].
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RPN provides an integration framework with run-time reconfiguration for event

and stream processing that is flexible to handle run-time scheduling decisions and

may also be used to represent non-deterministic stream processing behaviors. Us-

ing the parameterized Kahn process network (PKPN) model, designers can analyze

the behavior of a parameterized system at runtime based on self-timed scheduling

without introducing non-deterministic behaviors [65].

The operational semantics of the RPN and PKPN models can be viewed as

extensions of the Kahn process network (KPN) modeling framework [66], where

processes execute concurrently, applying blocking reads to assess availability of data

on their inputs, and control is incorporated into processes in a distributed fashion

without use of a global scheduler. While these models lead to flexible and efficient

execution of KPN-related models, they, like the parameterized dataflow framework,

do not address the scheduling of scalable topologies.

In this chapter, we have addressed key issues in parameterized scheduling for

scalable topologies, and introduced a novel schedule model that provides for intuitive

representation and efficient code generation for our targeted class of parameterized

schedules.

100



Figure 6.3: TDL code for using TPs to specify turbo a decoder.
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Figure 6.4: SST representation for a schedule of the targeted turbo decoder subsys-

tem.
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7 Conclusions and Future Work

In this chapter, we first summarize the contributions presented in the previous

chapters of this thesis. Then, we list useful directions for future research.

7.1 Summary and Conclusions

In this thesis, we have addressed various aspects of dataflow techniques for

modeling, mapping, and scheduling of dynamic signal processing applications for

parallel platforms.

First, we have introduced a novel dataflow modeling approach, called core

functional parameterized synchronous dataflow (CF-PSDF), that integrates core

functional dataflow (CFDF) and parameterized synchronous dataflow (PSDF) tech-

niques. CF-PSDF offers useful features including flexible dynamic parameter recon-

figuration and enhanced support for quasi-static scheduling.

Using parameterized multi-mode and centralized-control methods, which we

have developed in this these, the proposed CF-PSDF techniques can be applied

to dynamic signal processing applications to facilitate use of efficient static and

quasi-static scheduling techniques within a more general, dynamic dataflow model-

ing framework.

We have demonstrated the utility of CF-PSDF using a case study of soft MIMO

detector implementation. Our experimental results show significant performance

improvement through use of the streamlined scheduling techniques supported by

CF-PSDF.
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Next, we have developed a new design method, building on the MDSDF model

of computation, for hierarchical exploitation of parallelism in multidimensional sig-

nal processing applications. This method, called parameterized multidimensional

design hierarchy mapping (PMDHM), allows designers to explore alternative im-

plementations in a manner that separates platform-specific parallel processing opti-

mization from the behavioral specification, thereby enhancing portability and trade-

off exploration. Our PMDHM approach includes intermediate models that provide

a formal linkage between hierarchical layers of parallelism in the target platform and

corresponding subsystems of the application that will be mapped onto these layers.

In the PMDHM approach, graph clustering, partitioning, and dataflow anal-

ysis and optimization are applied in novel ways to map applications to target plat-

forms that employ parallelism at multiple levels. Applications involved in the fields

of imaging processing and wireless communication are studied to demonstrate our

proposed PMDHM framework. Experimental results, including detailed case studies

involving list fixed-complexity sphere decoder and integral histogram implementa-

tion, show that fast GPU implementations with significant performance improve-

ment can be derived systematically from the approach, as well as efficient trade-off

analysis and optimization across different application modes.

In Chapter 6, we have presented an enhanced scalable schedule tree (SST)

model for representing parameterized schedule structures based on topological pat-

terns. This method not only offers formal modeling for deriving flexible schedules

with topological patterns, but also provides a structured way to explore design

trade-offs. Through a case study involving turbo decoding for communication sys-
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tems, we have shown significant software coding efficiency by strategic application

of topological patterns, and we have validated the scheduling flexibility provided by

the proposed SST modeling techniques.

In summary, the dataflow-based techniques presented in this thesis provide

systematic methods for design and implementation of signal processing applications

that involve significant parameterization and dynamics in the underlying flowgraph

structures. The methods that we have developed provide a variety of important

features, including support for scalable and efficient design representations, schedul-

ing techniques, and trade-off exploration on state-of-the-art processing platforms for

signal processing systems.

7.2 Future Work

In this thesis, we have developed the PMDHM framework for optimized im-

plementation of MDSDF graphs on embedded platforms that employ multiple levels

of parallelism to enhance performance at different levels of granularity. At present,

this framework is applied to map applications onto individual multicore platforms.

Extension of the framework to handle platforms that contain multiple multicore

devices is a useful direction for further investigation. Moreover, developing model-

based, platform-specific optimization approaches, such as optimization for energy-

efficient design strategies is an important direction of future research. We expect

that an important direction in the development of such optimization processes is the

construction of prediction models that can provide accurate estimation of relevant
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metrics (e.g., energy consumption, execution time, and latency) for the targeted

platforms.

In this thesis, we have presented a formal design method for specifying topo-

logical patterns and deriving parameterized schedules from such patterns based on

SST analysis. To efficiently handle dynamic dataflow (production and consumption

rate) patterns in application behavior, it would be useful to extend the SST model

to support important forms of scheduling dynamics.

For example, in the design of turbo decoders, engineers often use a fixed num-

ber of turbo iterations (e.g., eight iterations) to achieve good BER performance.

However, early termination of iterations is possible under certain criteria to reduce

the average computational complexity with minimal performance degradation [67].

Such optimization can enhance energy efficiency as well as real-time performance.

To integrate such dynamics into a model-based design methodology, one ap-

proach that can be investigated is combining the SST with the dataflow schedule

graph (DSG) [68]. The DSG is a model for representing dataflow graph schedules

that can support dynamic schedules, while the SST model provides a framework

for derivation of efficient parameterized schedules from topological patterns. The

integration of these two models, and their complementary features, is attractive as it

can potentially provide systematic support for dynamic schedules using topological

patterns, which will enhance both flexibility and scalability.

Model-based approaches can guide system designers in making important im-

plementation decisions. We have demonstrated benefits gained from using model-

based design in applications involving integral histogram computation and turbo
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decoding. The utility of model-based approaches can be further enhanced with code

generation techniques that automatically translate high-level model-based specifi-

cations into hardware or embedded software implementations (e.g., see [1]). It is

a useful direction of future investigation to build on our advances in the hierarchi-

cal mapping and scalable scheduling of dataflow graphs to develop code generation

techniques that help to integrate and optimize these advances within automated

design flows. This will involve refining our models to allow for efficient translation

into embedded software code, and exploration of novel optimization techniques that

help to streamline the generated code based on the associated modeling context.
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