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Learning a Class of Large Finite State Machineswith a Recurrent Neural NetworkC. Lee Giles� B. G. Horne T. LinyNEC Research Institute4 Independence WayPrinceton, NJ 08540fgiles,horne,ling@research.nj.nec.com� Also withUMIACSUniversity of MarylandCollege Park, MD 20742 y Also withEE DepartmentPrinceton UniversityPrinceton, NJ 08540August, 1994AbstractOne of the issues in any learning model is how it scales with problem size. Neural networkshave not been immune to scaling issues. We show that a dynamically-driven discrete-timerecurrent network (DRNN) can learn rather large grammatical inference problems when thestrings of a �nite memory machine (FMM) are encoded as temporal sequences. FMMs are asubclass of �nite state machines which have a �nite memory or a �nite order of inputs andoutputs. The DRNN that learns the FMM is a neural network that maps directly from thesequential machine implementation of the FMM. It has feedback only from the output and notfrom any hidden units; an example is the recurrent network of Narendra and Parthasarathy.(FMMs that have zero order in the feedback of outputs are called de�nite memory machines andare analogous to Time-delay or Finite Impulse Response neural networks.) Due to their topologythese DRNNs are as least as powerful as any sequential machine implementation of a FMM andshould be capable of representing any FMM. We choose to learn \particular FMMs." Speci�cally,these FMMs have a large number of states (simulations are for 256 and 512 state FMMs) buthave minimal order, relatively small depth and little logic when the FMM is implemented asa sequential machine. Simulations for the number of training examples versus generalizationperformance and FMM extraction size show that the number of training samples necessaryfor perfect generalization is less than that su�cient to completely characterize the FMM to belearned. This is in a sense a best case learning problem since any arbitrarily chosen FMM with aminimal number of states would have much more order and string depth and most likely requiremore logic in its sequential machine implementation.



1 Introduction1.1 BackgroundDynamically{driven recurrent neural networks (DRNNs) have empirically shown the ability toperform inference in problems as diverse as grammar induction (Cleeremans et al., 1989; Das andDas, 1991; Elman, 1991; Frasconi et al., 1992a; Giles et al., 1992; Mozer and Bachrach, 1990;Pollack, 1991; Zeng et al., 1994) and system identi�cation in control (Barto, 1990; Billings et al.,1992; Narendra and Parthasarathy, 1990). We discuss results concerning the learning of temporalsequences for a particular class of discrete{time recurrent neural network architectures (Narendraand Parthasarathy, 1990). This DRNN has tapped delays both on the input and on the feedback ofthe output. Because of this model's similarity to an IIR �lter, we will refer to it as a neural networkIIR (NNIIR). Such models are very similar to feedback networks described by others (Back andTsoi, 1991; Billings et al., 1992; Frasconi et al., 1992b; Jordan, 1986; Sastry et al., 1994; Vries andPrincipe, 1992).We show that this DRNN when trained on strings encoded as temporal sequences is able tolearn and emulate a large �nite state machine (FSM) and its associated grammar. The �nite statemachines we easily learned have the following distinct properties: they are from a subclass of FSMscalled �nite memory machines (Kohavi, 1978) that are de�ned by the type of memory used andhow fed back, they have relatively low depth, and when implemented as a sequential machine theyrequire minimal memory and simple combinational logic.1.2 Benchmark Problems for Recurrent Neural NetworksThough there are many benchmark databases for feedforward networks, few exist for dynamicnetworks. We propose a speci�c problem of system identi�cation as one good benchmark for thecomputational capabilities of dynamically{driven recurrent networks. As a benchmark for dynamicnetworks, the training data must have dynamical characteristics. Temporal signals can have manycharacteristics: discrete or continuous; real, complex or binary valued; dimensionality; stochastic ordeterministic; one or many samples; labeled or unlabeled. If grammatical strings from deterministicregular grammars are interpreted as temporal sequences, then these temporal sequences have thesimple set of characteristics described above. However, the problem of learning (or inferring thesesequences) can be NP{complete in the worst case. As such we propose grammatical inference withtemporal sequences as a good benchmark problem for the computational capabilities of recurrentneural networks, irrespective of possible applications. However, potential applications in naturallanguage processing (Fu, 1994; Sun, 1994) and more recently in intelligent control (Nerode andKohn, 1993a; Nerode and Kohn, 1993b) have been proposed.2 Properties of Finite State and Memory MachinesSince we are learning �nite state machines from temporal sequences, we briey introduce �nite statemachines (FSMs) and their properties. A FSM is an abstraction of a device that can be describedby a labeled directed cyclic graph that consists of inputs, states and outputs. In this paper all FSMsare deterministic. A sequential machine (SM) refers speci�cally to the logical implementation ofthat machine, consisting of logic and fed back memory functions, for example delay lines, latches,ip{ops, etc. All SMs described in the paper are synchronous. Another important di�erencebetween sequential machines and FSM is that because of feedback, time is an explicit parameterfor sequential machines. For machine, time is just one of many possible parameterizations of the1
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(k)x (k+1)xFigure 1: A sequential machine.state transitions and of input and output sequences. We will see that there a topological similaritiesbetween various types of sequential machines and recurrent neural networks.2.1 Finite State MachinesFinite state machines operate with a �nite number of input and output symbols and have a �nitenumber of internal states and an output for each corresponding input. An FSM is de�ned as:De�nition 1 A �nite state machine (FSM) is a sextuple M = (Q;�;�; �; �; q0), where Q is a�nite set of states; � is a �nite set of symbols called the input alphabet; � is a �nite set of symbolscalled the output alphabet; � : Q � � �! Q is a transition function; � : Q � � �! � is an outputfunction; q0 is the initial state. 2For this work, the output alphabet, like the input alphabet, will always be binary, i.e. � = f0; 1g:We shall assume that the reader is familiar with the conventional extensions of � and � to the freemonoid of �, if not see citehopcroft79b.2.2 Sequential MachinesSequential Machines (SMs) are implementations of an FSM which consist of logic and memoryelements. An example of a SM is shown in Figure 1. In high{level VLSI synthesis generating theSM from the high{level FSM design is one of the �rst steps in logic synthesis (Ashar et al., 1992).A great deal of e�ort has gone into facilitating and automating this process.We can explicitly associate time with an FSM in the following way. The input, output andstate to the machine at time k will be denoted by respectively u(k), y(k) and x(k). The encodingof the input and output alphabets into u(k) and y(k) must be de�ned. When these variables arerelated by logic and time delays or memory, this implementation is called a sequential machine(see Figure 1). Note that if the combinational logic in Figure 1 is replaced by a feedforward neuralnetwork, the sequential machine becomes a general-purpose recurrent neural network.2
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0/0,1/0Figure 2: A �nite memory machine of input{order 2 and output{order 1.2.3 Useful properties of FSMsA �nite state machine is minimal if it is the machine with the fewest number of states for agiven input/output behavior. The FSMs described here are all minimal. Two useful measures ofcharacterizing a FSM are its depth and its degree of distinguishability. States qi and qj of a FSMare said to be distinguishable if there exists a �nite length sequence which when the machine isstarted in state qi produces a di�erent output sequence than the output sequence produced whenthe machine is started in state qj . The degree of distinguishability is the smallest integer � such thatfor every pair of non{equivalent states in the FSM there exists an input sequence not longer than� that induces a di�erent output sequence when the machine is started in each of the two states.(Two states, p and q, of a FSM are nonequivalent if there exists a string wa, called a distinguishingstring, such that �(�(p; w); a) 6= �(�(q; w); a).) The depth is the smallest integer d such that everystate in the FSM can be reached from the starting state in no more than d steps.2.4 Finite Memory MachinesWe will be interested in a subclass of FSMs known as �nite memory machines (FMMs).De�nition 2 A �nite state machine M is said to be a �nite memory machine of input{order nand output{order m if n and m are the least integers, such that the present state of M can alwaysbe determined uniquely from the knowledge of the last n inputs and the last m outputs, for allpossible sequences of length max(n;m). 2Note that the de�nition excludes the possibility of any knowledge of the initial state of the machine.For example, the FSM shown in Figure 2, has input{order two and output{order one, since for anyinput sequence of length two, the state of the FSMs can always be determined from knowledge ofthe past two inputs and the last output as illustrated in Table 1. Not all FSMs have �nite memory,some have in�nite order. For example, the Dual Parity FSM, shown in Figure 3, has in�nite ordersince one can observe an in�nite sequence of ones at the input and an in�nite sequence of zeros atthe output without being able to determine whether the FSM is in state q2 or q3 (unless one hasknowledge of the initial state of the machine).Given an arbitrary FSM there exist e�cient algorithms to determine if the machine has �nitememory and, if so, its corresponding order (Kohavi, 1978). For more properties of FMMs, pleasesee the Appendix.Since the state of an FMM depends only on a �nite number of previous inputs and outputs, thesequential machine implementation of an FMM can always be implemented by tapped delay lines(TDLs) on the input and output and a block of combinational logic as shown in Figure 4. Again,if the combinational logic is replaced by a feedforward neural network, the sequential machine3
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…Figure 5: Sequential machine implementation of a de�nite memory machine.implementation of a FMM becomes a recurrent network similar to those used in control (Narendraand Parthasarathy, 1990) and time series (Connor et al., 1994).FMMs of input{order n and output{order 0 are said to be de�nite memory machines. Im-plementations of such machines do not require feedback from the combinational logic as shownin Figure 5. De�nite memory machines are analogous to recurrent neural networks that have nofeedback from the output states but still time delays on the inputs. These neural networks havebeen called TDNNs (Lang, 1992) and �nite impulse response neural nets (Wan, 1994).2.5 Constructing FMMs of Minimal Order and Small LogicFinding example FMMs with a large number of states is nontrivial. One could potentially pickthe tap size and logic function of a SM implementation randomly. However, the resulting FMMmore often than not has an smaller order than the choice of taps and an unpredictable numberof states. Indeed, using this approach the resulting FMM is often a trivial machine with only afew states. Instead, we developed theory to devise a method for constructing machines to use forexample learning problems. This theory allows us to construct FMMs through a method we callthe Group Linking Method (GLM), a method which permits a certain amount of control over anumber of properties of the FMM including the order, number of states, and the complexity of thelogic function which de�nes the mapping from previous inputs and outputs to the current output.See the Appendix for a complete discussion of the GLM.2.6 Grammatical Inference and FMMsGrammatical inference (Fu and Booth, 1975) is the problem of �nding a FSM consistent witha set of positive and negative strings. (These results are often given for deterministic �nite-stateautomata (DFA). However, it is straightforward to map a DFA into a FSM.) Grammatical inferenceis known to be NP{complete (Angluin, 1978) in the worst case. However, some approaches havebeen suggested which seem to work well on relatively large problems.First, if there is a su�cient amount of data it is always possible to construct the smallestcorresponding FSM in polynomial time (Trakhenbrot and Barzdin, 1973). Speci�cally, given thecomplete set of strings not longer than d + � + 1, where d is the depth of the machine and � itsdegree of distinguishability, it is always possible to �nd the minimum consistent FSM. The input tothe algorithm is a tree{structured FSM that directly embodies the training set. The tree can then5



be collapsed into a smaller graph by merging all pairs of states that represent compatible mappingsfrom string su�ces to labels.If the FSM is known to have �nite memory, then it is possible to construct the correspondingFMM from a much smaller set of strings. We prove in the appendix that it is possible to identifya minimal order FMM of depth d from the complete set of strings not longer than d+ 1.3 Recurrent Neural NetworksIn the past few years several recurrent neural network (RNN) models have been proposed (Back andTsoi, 1991; Billings et al., 1992; Elman, 1990; Frasconi et al., 1992b; Giles et al., 1990; Hop�eld,1982; Jordan, 1986; Leighton and Conrath, 1991; Narendra and Parthasarathy, 1990; Nerrandet al., 1993; Poddar and Unnikrishnan, 1991; Robinson and Fallside, 1988; Vries and Principe,1992; Watrous and Kuhn, 1992a; Williams and Zipser, 1989) Here we use a class of networks inwhich output is computed as a nonlinear function of a window of past inputs and outputs (Narendraand Parthasarathy, 1990), i.e.y(t) = f (u(t); u(t� 1); : : : ; u(t� n); y(t� 1); y(t� 2); : : : ; y(t�m))where n and m are the size of the input and output windows respectively. Note that the activationsof hidden neurons are not fed back, the only recurrent connections are from the output(s) of thenetwork. Because of the similarity to in�nite impulse response �lters (IIRs), we (as well as others)will refer to these recurrent network models as neural network IIRs (NNIIRs). Many variationsof this model have been proposed by Narendra and Parthasarathy (Narendra and Parthasarathy,1990), and have been used extensively for system identi�cation and control problems. In the mostgeneral model, the function f(�) is implemented as a multilayer perceptron. One can also interpretthe NNIIR model as a special case of the recurrent net proposed by (Jordan, 1986).This class of networks also includes the Time Delay Neural Networks (TDNN), which are simplya tapped delay line followed by some kind of multilayer perceptron (Lang et al., 1990; Lapedes andFarber, 1987; Waibel et al., 1989). Strictly speaking, this network is not a RNN, since no nodesare fed back, i.e. the network implements a functions of the formy(t) = f (u(t); u(t� 1); : : : ; u(t� n)) :However, the tapped delay line does provide a simple form of dynamics that gives the network theability model a limited class of nonlinear dynamic systems.Since multilayer networks are capable of implementing arbitrary logic functions, it follows thatthese models are capable of implementing arbitrary FMMs using the implementation shown in Fig-ure 4. Similarly, networks like the TDNN are capable of implementing arbitrary de�nite machineswhen the combinatorial logic in Figure 5 is replaced with a multilayer feedforward network. Itshould be obvious that neural networks that feedback hidden neurons have full FSM representa-tional capabilities and are also capable of representing FMMs, a subclass of FSMs in general.4 Learning Finite Memory Machines4.1 A Large FMM with Little LogicWe have successfully been able to learn various FMMs with minimal order using the NNIIR models.Because of the minimal order, it is possible to learn very large machines. We also make the further6



Figure 6: A 512 state �nite memory machine of minimal order.restriction that the speci�c FSM to be learned has a simple logic function.In this paper we present results for learning two FMMs. The �rst machine has 512 states andcorresponds to the following logic function,y(k) = �u(k � 5)�u(k) + �u(k � 5)y(k� 4) + u(k)u(k � 5)�y(k� 4) (1)where �x represents the complement of x. The FSM is shown in Figure 6. It has an input{order of5, an output{order of 4, a depth of 9 and a degree of distinguishability of 6.The second machine has 256 states and has the more complex, though still learnable, logicfunctiony(k) = �u(k � 1) h�u(k � 4)y(k� 4)�u(k) + u(k � 4)u(k) + u(k� 4)�y(k � 4)i+ u(k � 1)�y(k � 1) hu(k � 4)y(k� 4)u(k) + �u(k � 4)�y(k � 4) + �u(k � 4)�u(k)i+ u(k � 1)y(k� 1) h�u(k � 4)y(k� 4)u(k) + u(k � 4)�y(k � 4) + u(k � 4)�u(k)i : (2)This machine has an input{order of 4, an output{order of 4, a depth of 9 and a degree of distin-guishability of 6. 7



Positive Target Negative TargetStrings Values Strings Values10 ?1 0 0110 ?01 11 ?00010 0??1 000 0?00101 0??1 011 0?00110 0?01 0000 0?001010 ?1?1 0011 0??01110 ?0?1 1100 ?0101111 ?0?0Table 2: Example of how to construct intermediate target information from a data set.4.2 Training and Testing SetTo create a training set, we generated all strings of length 1 to L and labeled them with a 0 or1 depending on whether the FSM rejected or accepted them. All strings of length L = d + 1 aresu�cient to identify an FMM according to Theorem 2 (see the Appendix). For both the 256-and 512-state FMMs d = 9 and L = 10 giving a total of 2046 strings. Thus, this value should besu�cient for any algorithm (neural network or otherwise) which has a representational bias towardsFMMs. However, if the algorithm is not biased toward an FMM, then according to (Trakhenbrotand Barzdin, 1973) all strings of length L = d+ �+ 1 = 16 may be required for a total of 131,071strings. From such a data set we randomly selected subsets of strings for training and reserved theremaining samples for testing.In principle, the neural network is capable of learning machines with a larger depth. However,in order to run the large number of experiments we did in a reasonable amount of time, we havelimited ourselves to machines with relatively low depth, and thus to small training and testing sets.It should be noted that the size of these sets would become unmanageably large as the depth ofthe target machine increases. For example, a machine of depth 20 would have a set of 4,194,302strings.It is possible to generate target outputs at intermediate points in each string for a given trainingset. For example, consider the set of strings shown in Table 2. Since the string \0" is a negativestring, then for any string that begins with \0" can be assigned a target output of 0 on the �rst timestep. Similarly, any string that begins with \10" can be assigned a target value of 1 on the secondtime step. By utilizing all of this information, many intermediate target values can be constructedfor each string, although typically not nearly as many as illustrated in the table above. One bene�tof intermediate labeling is to give an improved error measure for each string. In addition, teacherforcing (Williams and Zipser, 1989) can be used to force the target value into the feedback loop toimprove the speed of convergence, and indeed to enhance the ability of the network to converge atall. The strings were encoded such that input and output (target) values of 0s and 1s correspondedto oating point values of 0:0 and 1:0. However, many experiments in which we tried di�erentencodings such as �1:0 and 1:0 did not give signi�cantly di�erent results.8



4.3 Speci�c Network ArchitectureThe NNIIR architecture for both problems had �ve input taps and four output taps. On the �rstproblem, we used a two layer network with 4 nodes in the hidden layer and one output node, onthe second problem we used 15 hidden layer nodes. In both networks each node used the standardsigmoid nonlinearity. The initial values of all delay elements was chosen to be zero. The networkshad 49 and 181 adjustable weights respectively with the initial values of the weights randomlychosen from a uniform distribution in the range [�0:1; 0:1] :4.4 Training AlgorithmThe network was trained with Backpropagation Through Time Algorithm (Williams and Peng,1990; Williams and Zipser, 1990), augmented with a number of heuristics found useful for gram-matical inference problems. No batching was done on the training set, i.e. the weights were up-dated after processing each string (although see comment below on selective updating). Weightdecay (Krogh and Hertz, 1992) was used with a weight decay parameter of 0.0001.For sample presentation we used teacher forcing. When target values are available at interme-diate points during the processing of a string, these target values are used in the feedback loopinstead of the actual node output values. However, this presents several complications. First,teacher forcing e�ectively replaces feedback with an external input, and therefore gradients cannot propagate back through that pathway. Second, when the network is run during the testingphase, it can only feedback the actual node outputs. This can lead to poor performance if the fedback values are not su�ciently close to the teacher forced values. In order to compensate for thise�ect, we replaced the output node's nonlinearity with a hard limiter during testing. This assuresthat the network feeds back values that are either 0 or 1. In addition, this e�ectively converts thefeedforward part of the network to a logic function, which can be immediately used to extract anFSM from the �nal network.We used a selective updating scheme in which the weights were only updated if the absoluteerror on the training sample currently being processed was greater than 0.2. This e�ectively speedsup the learning algorithm by avoiding gradient calculations for weight updates that only add amarginal improvement to the overall performance.We have also found it useful to encourage the network to learn the shortest strings �rst by usingan incremental training algorithm. In this algorithm the training set is ordered lexicographically,and an epoch is terminated if there are more than thirty samples that have an absolute error greaterthan 0.2. Thus, the network must learn the shortest strings �rst in order to train on longer strings.Additionally, we imposed the condition that an initial set of 50 samples must be learned to withinan absolute error of 0.2 before the remaining samples are used for training. Once this initial set islearned, an additional �fty samples are added and then these must be learned to within the sameerror, then another 50 samples are added, and so on.The learning algorithm was stopped when all examples in the training set yield a absoluteerror less than 0.2, or if the network exceeded 5000 epochs for the 512{state or 10000 epochs forthe 256{state FMM respectively. On the �rst experiment, the algorithm typically required about500 epochs to converge. It did not converge in only 9 of the 1500 experiments. On the secondexperiment, the algorithm required about 2500 epochs and did not converge on 68 of the 1500experiments.All of the parameters discussed above were selected by trial and error and our experiences withlearning similar problems. For every simulation we used a learning and momentum rate of 0.25.No e�ort was made to try to optimize any of the parameters described.9



4.5 Experimental ResultsWe ran many experiments to determine the generalization ability and the size of the extracted FSMimplemented by the learned network as a function of the size of the training set. Because a NNIIRmodel is representationally biased towards FMMs, data is randomly selected from a complete dataset of length L = 10. For learning the 512-state FMM we chose 30 di�erent training set sizesranging from 10 to 300 samples in increments of 10, while for the 256-state FMM the set sizesranged from 25 to 750 in increments of 25. For each training set size we ran 50 experiments. Ineach case a di�erent random sample of strings was chosen, and the weights of the network wereinitialized di�erently each time.The generalization was determined by computing the performance on the samples which werenot chosen for training from the 2046 possible samples needed to completely specify the machine.The results are shown in Figures 7 and 9. The average error rate is plotted with an error bar ofone standard deviation around the mean.It is easy to extract the size of the FSM that the network actually learns. By replacing theoutput node's nonlinearity with a hard limiter, the network e�ectively implements a logic functionsince all input and output values are zeros and ones. This logic function de�nes a FSM for thatmachine. This FSM can be minimized using a standard FSM minimization algorithm (Hopcroftand Ullman, 1979). The average size of the extracted FSMs are plotted in Figures 8 and 10 withan error bar of one standard deviation around the mean.4.6 Discussion of Experimental ResultsFor learning the 512-state FMM, one notices from Figure 7 that as the percentage of trainingstrings increases, the variance in generalization performance decreases and �nally approaches zero.Similar behavior is noticed for extraction size in Figure 8 as the extracted FMM approaches thecorrect size. Note that the number of strings needed for perfect generalization was about 250. Thisis approximately an order of magnitude less than the 2046 strings necessary to characterize theFMM.For learning the 256-state FMM we see a similar behavior, although the network is not usuallyable to achieve perfect generalization. In fact, when the sigmoid is replaced by a hard{limitingthreshold function, the network does not even correctly classify the training set most of the time.This implies that the network may actually be utilizing the transition region of the sigmoid in orderto solve the problem, and so a more complex extraction algorithm may be needed (see for example(Watrous and Kuhn, 1992b)), although we have not investigated this. Nevertheless, the extractedFMM does get the majority of test samples correct and infers an FMM with size comparable tothe target machine.In the �rst experiment (the 512-state FMM), the order or number of taps in the recurrent netwas exactly equal to the order of the target machine, while in the second experiment (the 256-stateFMM) there was a single unnecessary tap in the recurrent net. It would be interesting to explorehow the NNIIR's performance changes as the number of input and output taps (or order) is varied.5 ConclusionsThe problem of learning �nite state machines (FSMs) from examples with recurrent neural networkshas been extensively explored. However, these results are somewhat disappointing in the sensethat the machines that can be learned are too small to be competitive with existing grammaticalinference algorithms. In this paper we show that large �nite state machines can be learned if we10
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limit the class of machines and choose a neural network whose structure is representationally biasedtowards the problem class to be learned.The particular DRNN we investigate has tapped delay lines on both the inputs and outputsbut no feedback from any hidden states. These values are fed through a Multilayer Perceptronto compute the next output value. For convenience and because of the network's similarity toIIR �lters, we refer to this recurrent network as a NNIIR. This network can be interpreted as asequential machine if the nodes of the neural network are interpreted as threshold logic functionsand the delays as memory elements. In fact, this structure corresponds to a speci�c class of FSMscalled �nite memory machines (FMMs).We showed an NNIIR is capable of learning large (up to 512 states) �nite memory machineswhen trained on grammatical strings encoded as temporal sequences. After training on a su�cientsized training set, the correct FMM, or at least one with a very low error rate, could be consis-tently extracted from the NNIIR. However, certain restrictions were required in order to make theproblem practical. These restrictions include limiting the order (which is related to the requiredtap delay length) and depth (which impacts the size of the training set) of the FSM. Furthermorethe sequential machine implementation of the FMM could only have relatively simple logic. Asthe logic becomes more complex, the task of �nding an appropriate set of weights becomes moredi�cult. We speculate that the task of learning arbitrary logic functions, i.e. the loading prob-lem (Blum and Rivest, 1988; Judd, 1990), is the greatest barrier for learning arbitrary FMMs (andFSMs in general). It is important to keep in mind that the restrictions discussed above on whatcan be learned with a recurrent net de�ne a very small class of all possible FMMs.It might be possible to identify other types of DRNNs which have a representational biastowards other classes of FSMs. For example, it would be interesting to establish if networks withlocal recurrence correspond to some other subclass of FSMs, or if they are capable of implementingarbitrary FSMs. The reader should keep in mind that this analogy is somewhat limited since ithas been shown that the nonlinearity in simple DRNNs enables them to be computationally verypowerful (Siegelmann and Sontag, 1992). It is an open question how the nonlinearity of DRNNswith restricted and local topological connections (Tsoi and Back, 1994) limits their representationalpower.AcknowledgementsWe would like to acknowledge K. Lang for insightful suggestions. We also acknowledge usefuldiscussions with P. Ashar, S. Chakradhar, L. Leerink and C. Omlin.Appendix: The Group Linking MethodIn this section, we describe a method, called the Group Linking Method (GLM), for constructingminimal FMMs with 2n+m states that have the lowest possible order. In addition, we prove thatthe GLM yields FMMs that are minimal, derive the number of machines in this class, and provehow the set of strings up to length d+1, where d is the depth of the FMM, is su�cient to uniquelyidentify an FMM.Properties of FMMsPerhaps the most important consideration is the order of the machine. The maximum input oroutput order of an FMM is jQj(jQj�1)2 (Kohavi, 1978). However, this implies that even if these13



machines have a small number of states jQj, a large number of tapped delay lines may be requiredfor their implementation. For example, for jQj = 20, the maximum order is 190, which impliesthat as many as 380 taps may be required to implement the machine! In contrast the minimumorder of the machine is 12 log jQj, since a system with n+m taps and binary inputs and outputs canimplement a machine of size at most 2n+m. In such cases, very large machines can be implementedwith a very small number of taps. For example, a machine with 1024 states may be implementablewith only 10 taps. In order to learn large FMMs, we only consider those machines that haveminimal order. In general, such machines will have a relatively low depth compared to the numberof states, which in turn implies that a relatively small training set will be su�cient to infer themachine (see the discussion at the end of this appendix). The GLM provides a way to create awide variety of such machines.An interesting property of FMMs is that they have a very limited next state function. Inunconstrained FSMs, a state can potentially make a transition to any one of the n states withinthe machine. But in FMMs, each state can only go to two possible states on a given input. Forexample, assume that the states are labeled as n+m bit numbers from 00: : :0 to 11: : :1, where the�rst n bits correspond to the values u(k � n); u(k � n + 1); : : : ; u(k � 1) and the following m bitscorrespond to y(k � m); y(k� m + 1); : : : ; y(k � 1): Since the next state is completely de�ned bythe content of the taps and the current input and output, there are only two possible states thatany state can transition to on an input of zero, and another two on an input of one. For example,consider the case when n = m = 2. On an input of zero, the state q7 = 0111; can only transitionto either q10 = 1010 if the output is de�ned to be zero or q11 = 1011 if the output is de�ned to beone. Table 3 shows the possible sets of next states for each of the sixteen states in an FMM withn = m = 2.It turns out that there are always exactly four states that can go to the same two possible nextstates. We de�ne these four states as a group. The four states within each group correspond tothe possible values of u(k � n) and y(k � m), since these are the values that are discarded on asubsequent time step. Formally,De�nition 3 A set of states is said to de�ne a group if the encoding of these states are identicalexcept for the values of u(k�n) and y(k�m). Denote a group by the vector of the common n� 1values of the input and m� 1 values of the output, i.e. byG = hu(k � n+ 1) : : : u(k � 1) y(k �m+ 1) : : : y(k � 1)i : 2Since there are only four possible assignments to u(k�n) and y(k�m), every group consists ofexactly four states. So, if the machine has jQj states, it will have jQj4 groups. Furthermore, everystate in the same group has the same set of possible next states as illustrated in Table 3.Property 1 Two states in di�erent groups cannot have a common next state. 2The above property must be true since if the groups are di�erent, then by de�nition they di�erin at least one bit that will de�ne the encoding of the state on the next time step, thus correspondingto di�erent states.Constructing FMMs of Minimal Order: The Group Linking MethodThe fundamental rule of the Group Linking Method is to ensure that there are no two states in thesame group which produce the same outputs for both u(k) = 0 and u(k) = 1. There are exactly14



Present state Encoding Group Next stateu(k) = 0 u(k) = 1q0 0000 [00] q0 or q1 q4 or q5q2 0010 [00] q0 or q1 q4 or q5q8 1000 [00] q0 or q1 q4 or q5q10 1010 [00] q0 or q1 q4 or q5q1 0001 [01] q2 or q3 q6 or q7q3 0011 [01] q2 or q3 q6 or q7q9 1001 [01] q2 or q3 q6 or q7q11 1011 [01] q2 or q3 q6 or q7q4 0100 [10] q8 or q9 q12 or q13q6 0110 [10] q8 or q9 q12 or q13q12 1100 [10] q8 or q9 q12 or q13q14 1110 [10] q8 or q9 q12 or q13q5 0101 [11] q10 or q11 q14 or q15q7 0111 [11] q10 or q11 q14 or q15q13 1101 [11] q10 or q11 q14 or q15q15 1111 [11] q10 or q11 q14 or q15Table 3: Possible state transitions for a FMM of input order n and output order m. The encodingof the states corresponds to the values u(k � 2), u(k � 1), y(k � 2), y(k � 1). Each entry labeled\qi or qj" corresponds to an output of either 0 or 1 respectively.
15



Present state encoding group y(k) Next stateu(k) = 0 u(k) = 1 u(k) = 0 u(k) = 1q0 0000 [00] 0 0 q0 q4q2 0010 [00] 0 1 q0 q5q8 1000 [00] 1 0 q1 q4q10 1010 [00] 1 1 q1 q5q1 0001 [01] 0 1 q2 q7q3 0011 [01] 1 1 q3 q7q9 1001 [01] 0 0 q2 q6q11 1011 [01] 1 0 q3 q6q4 0100 [10] 0 0 q8 q12q6 0110 [10] 1 0 q9 q12q12 1100 [10] 1 1 q9 q13q14 1110 [10] 0 1 q8 q13q5 0101 [11] 1 1 q11 q15q7 0111 [11] 1 0 q11 q14q13 1101 [11] 0 0 q10 q14q15 1111 [11] 0 1 q10 q15Table 4: An example FMM constructed to have minimal order. The encoding of the states corre-sponds to the values u(k � 2), u(k � 1), y(k � 2), y(k � 1).four choices for output assignments for each state. Speci�cally, the choices aren0=0; 1=0o ; n0=0; 1=1o ; n0=1; 1=0o ; and n0=1; 1=1o (3)where u=y denotes an input/output pair. Since there are exactly four states in every group, thenthe choices of possible outputs must be a permutation of the values in equation (3). For each groupthere are exactly 4! = 24 possible ways, called group mappings, to specify the next state mappingfor each of the four states within a group in such a way that no two states have the same next statemapping for both inputs. A consequence of the GLM is that any pair of states within the samegroup is distinguishable in one time step.For example, one possible FMM constructed by the GLM with n = m = 2 is illustrated inTable 4.Finally, we will shall always assume that the initial state of the machine q0 corresponds to thezero vector, i.e. u(k � i) = 0 for i = 1; : : : ; n and y(k � i) = 0 for i = 1; : : : ; m.Controlling the logic complexity with the GLMIf the group mappings are chosen to have the same \pattern" for each group, then the resultinglogic function is simple and only depends on the current input and the last tap in each delay line,i.e. u(k), u(k�n), and y(k�m). For example, our the FMM de�ned by equation (1) was obtainedby having one group mapping for all groups. The resulting logic function was easily be obtained bysimply forming a logic table which de�ned y(k) in terms of u(k), u(k � 5) and y(k � 4), and then16



deriving the function through a standard Karnaugh map (Kohavi, 1978).One the other hand, if the group mappings are chosen randomly, then the resulting logic functionmay be quite complex, and will in all likelihood depend on all of the previous input and outputvalues.Logic functions of intermediate levels of complexity can be constructed by having the groupmapping depend on a small collection of other variables. For example, the FMM de�ned byequation (2) was obtained by having three di�erent group mappings: one when u(k � 1) = 0,one when u(k � 1) = 1 and y(k � 1) = 0, and a di�erent group mapping when u(k � 1) = 1and y(k � 1) = 1. In fact, the terms inside the brackets are logic functions corresponding to eachgroup mapping, and the terms outside of each bracket e�ectively multiplex the appropriate groupmapping depending on the values of u(k � 1) and y(k � 1).A Proof that the GLM yields minimal FMMsIn order to prove that the GLM yields minimal FMMs of size 2n+m, then we must prove thatevery pair of states is distinguishable and every state is reachable from the initial state. Provingdistinguishability turns out to be relatively simple, but the proof of reachability is rather complex.We begin with the proof of distinguishability.Lemma 1 Every pair of states in an FMM constructed using the Group Linking Method is dis-tinguishable. 2Proof: Because the machine has �nite memory, then by de�nition all pairs of states either have adistinguishing string of length at most max(n;m) + 1, or the pair of states transitions to a singlestate on some input. According to Property 1, if the states are in di�erent groups, they cannothave the same next state. Thus, they must have a distinguishing string. If the pair of states is inthe same group, then by de�nition of the GLM, all such pairs are 1{distinguishable. Q.E.D.In order to prove that every state is reachable from the initial state, we shall prove that thegraph corresponding to the FMM is strongly connected. This is a su�cient, but much strongercondition than necessary to prove reachability. We begin with the following property.Property 2 If the FMM with n;m > 2 is constructed using the GLM, then each state has twodi�erent successors in di�erent groups and has two di�erent predecessors from the same group. 2This property must hold for the following two reasons. First, the successors must be di�erentsince on an input of zero, every state goes to a state in some group that has a zero in the (n�1){stcomponent of the group vector, i.e. toG0 = hu(k � n+ 1) : : : 0 y(k �m+ 1) : : : y(k � 1)i ;while on an input of one, the group must have a one in that component, i.e. to a state in groupG1 = hu(k � n+ 1) : : : 1 y(k �m+ 1) : : : y(k � 1)i :Second, according to Property 1, the successors of a state must be in the same group.Lemma 2 If the graph corresponding to a FMM is connected and has Property 2, then the graphis strongly connected. 217
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Figure 11: States qw , qx, qy , and qz are all in the same group. According to the GLM, it followsthat they must be in a connected subgraph.Proof: Assume this connected graph is not strongly connected, then we can always divide thisgraph into two subgraphs, Gi and Gj , such that there are edges from nodes in Gi to nodes in Gj ,but not in the opposite direction. According to Property 2, there are exactly two incoming andtwo outgoing edges for each node in the graph, so all incoming edges in graph Gj are accountedfor by the outgoing edges from the nodes within Gj . Thus, it is impossible to have additionalincoming edges from graph Gi without violating Property 2, and thus by contradiction, if thegraph is connected, it must also be strongly connected. Q.E.D.Lemma 2 is not su�cient to prove that the graph is strongly connected, since it leaves open thepossibility that the graph is disconnected with multiple strongly connected components. We shallnow prove that the graph is connected, by �rst showing that the states within a group must be ina common connected graph, and then showing that all of the groups are connected.Lemma 3 If the graph corresponding to a FMM has a subgraph which contains at least oneelement of a group, then this subgraph must contain all elements of this group. 2Proof: Suppose some state qw from group G is in some subgraph. By de�nition qw is connectedto at least two other nodes qw;0 and qw;1, corresponding to the transitions on an input of 0 and 1respectively. (Note that qw;0 or qw;1 may be the same state as qw , but this will not a�ect the result.)According to the way the FMM is constructed, then there is exactly one additional state, qx 2 G,that transitions to qw;0 on an input of 0. By de�nition of the GLM this state must transition toa di�erent state, qx;1, on an input of 1, as illustrated in Figure 11. By the same argument, theremust be a third state, qy 2 G, that connects to qx;1, but not to qw;0. Instead, on an input of 0, qymust transition to yet another state qy;0. Applying this argument a third and �nal time, it follows18
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1/0Figure 12: A path in a group graph need not correspond to a valid path in the FMM. Here thepath corresponding the the input/output pair 0=1 followed by 1=0 will traverse a path from groupG1 to G2 to G3. In the corresponding FMM, the input/output pair 0=1 can take the machine toa state qi 2 G2, but from here it is impossible to get to a state in group G3 since an input of 1produces and output of 1 from state qi.that there must be a fourth state, qz 2 G, that connects to qy;0. On an input of 1, this state willtransition to qw;1. Q.E.D.Lemma 3 shows that all of the states within a group must be in a common connected subgraph.The following lemma, proves that all of these connected subgraphs are themselves connected to-gether, thus showing that the entire graph is connected. First, we need the following de�nition.De�nition 4 The group graph for M is a labeled digraph G = (V;E) where each vertex vi corre-sponds to a group Gi, and an arc exists between two vertices vi and vj if there is a transition fromsome state in Gi to some state in Gj . This arc is labeled by u=y where u is the input which causesthe transition between the states and y is the corresponding output. 2Lemma 4 The group graph is strongly connected. 2Proof: Assume the FMM has input order n and output order m. According to the GLM, for anyvalue of u and y there exists exactly two states in every group that on an input of u produces anoutput of y. Thus, every node in the group graph will have four outgoing arcs labeled 0=0, 0=1,1=0, and 1=1. Because every group corresponds to the values ofhu(k � n+ 1) : : : u(k � 1) y(k �m+ 1) : : : y(k � 1)ithen there exists a path of length max (n� 1; m� 1) from any vertex in G to any other vertex. Forexample, in order to get to vertex corresponding to the grouph0 : : : 0 0 : : : 0i19



from any other vertex, we simply follow the path corresponding to all arcs labeled 0=0. (In general,a path in the group graph will not correspond to a path in the corresponding FMM, as illustratedin Figure 12.) Since any state can be reached by any other state, then by de�nition the graph isstrongly connected. Q.E.D.Lemma 5 Every state in an FMM constructed according to the Group Linking Method is reachablefrom the initial state q0. 2Proof: Lemmas 3 and 4 show that the graph corresponding to an FMM constructed by the GLMis connected. According to Lemma 2, the graph must be strongly connected. Therefore, every stateis reachable from the initial state. Q.E.D.Theorem 1 An FMM constructed according to the Group Linking Method is minimal. 2Proof: From Lemmas 1 and 5, it follows that an FMM constructed according to the GLM isminimal. Q.E.D.The number of FMMs of minimal orderThe number of FMMs that can be constructed using the GLM is extremely large. First, we notethat any two FMMs constructed according to the method are di�erent. Minimal FSMs have theproperty that they are unique up to a relabeling of their states. Because of the nature of FMMs,the encoding is predetermined by the fact that the states of the machine are delayed versions ofthe input and output. In addition, the initial state of an FMM constructed according to the GLMis always the zero vector, i.e. u(k� i) = 0 for i = 1; : : : ; n and y(k � i) = 0 for i = 1; : : : ; m. Thus,it is impossible for two di�erent FMMs constructed according to the GLM to be equivalent.In each group, there are 4! = 24 di�erent next state assignments collectively for the four statesin each group corresponding to the possible permutations of the four values given in equation (3).In a FMM of input order n and output order m, there are 2n+m�2 groups. So the number ofdi�erent FMMs constructible according to the GLM is(24)2n+m�2:For comparison, if there are no restrictions placed on the transitions of states within a group,there are 44 = 256 possible di�erent next state assignments for the four states in each group, sinceeach of the four states can be given one of the four output assignments in equation (3). Many ofthese assignments may yield equivalent FMMs, or even FMMs with non{reachable states. In anycase, there are at most (256)2n+m�2:di�erent FMMs. Thus the FMMs constructed according to the GLM is a considerable portion ofall possible FMMs.Minimal Order FMM Identi�cationTheorem 2 It is possible to identify a minimal order FMM of depth d from the complete set ofstrings not longer than d+ 1. 220



Proof: We assume that the input and output alphabets are binary. We also assume that the initialstate of the machine is known. Speci�cally, for a hardware implementation like the one illustratedin Figure 4, the appropriate initial values of the taps must be known. Thus, all we need to knowis how many states there are and what the transition and output functions are.First, in a complete data set every pre�x of every string is also in the data set. Thus, it ispossible to use the labeling of these pre�xes to determine the output at every time step for everystring in the training set. Since the state of an FMM is completely speci�ed by it previous n inputsand m outputs (where knowledge of the initial state de�nes previous values for strings of lengthless than max(m;n)), then the state of the system is known for every time step for every string.Furthermore, since the data set consists of every string up to length d, every state is visited.Second, if, for each state q and each input symbol a, the data set contains the string w = wqasuch that �(q0; w) = q, then �(q; a) is de�ned by the label of w. Since jwqj � d and, by thearguments above, the state is known at each time step, having the complete data set up to lengthd+ 1 will be su�cient to de�ne every value of �(q; a).Finally, once the output function is known it is trivial to determine the transition function,since the states of the FMM can always be implemented as tapped delay lines of the inputs andoutputs, as shown in Figure 4. The values of the taps at the next time step are easily computedfrom the current values, and the current input and output. Q.E.D.ReferencesAngluin, D. (1978). On the complexity of minimum inference of regular sets. Information andControl, 39:337{350.Ashar, P., Devadas, S., and Newton, A. (1992). Sequential Logic Synthesis. Kluwer AcademicPublishers, Norwell, MA.Back, A. and Tsoi, A. (1991). FIR and IIR synapses, a new neural network architecture for timeseries modeling. Neural Computation, 3(3):375{385.Barto, A. G. (1990). Connectionist learning for control. In Miller, W., Sutton, R., and Werbos, P.,editors, Neural Networks for Control. MIT Press, Cambridge, MA.Billings, S., Jamaluddin, H., and Chen, S. (1992). Properties of neural networks with applicationsto modelling non-linear dynamical systems. International Journal of Control, 55(1):193{224.Blum, A. and Rivest, R. (1988). Training a 3{node neural network is NP{complete. In Proceedingsof the Computational Learning Theory (COLT) Conference, pages 9{18. Morgan Kaufmann.Cleeremans, A., Servan-Schreiber, D., and McClelland, J. (1989). Finite state automata and simplerecurrent recurrent networks. Neural Computation, 1(3):372{381.Connor, J., Martin, R., and Atlas, L. (1994). Recurrent neural networks and robust time seriesprediction. IEEE Transactions on Neural Networks, 5(2):240{254.Das, S. and Das, R. (1991). Induction of discrete state-machine by stabilizing a continuous recurrentnetwork using clustering. Computer Science and Informatics, 21(2):35{40. Special Issue onNeural Computing. 21
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