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Chapter 1

Introduction

Automatic speech recognition (ASR) is one of the most challenging topics of
research and has fascinated many speech scientists and engineers for over three
decades. But despite the extensive efforts and progress in this field, the best
systems developed so far have recognition capabilities far below those of a child.

The reason lies in both the complexity and variability of the acoustic speech
signals and the various non-acoustic cues involved in human speech recognition.
Variability and stochastic nature of speech signals are due to stochastic nature
of their sources, namely motions and sizes of our vocal tract articulators and
their constraints as well as variations in characteristics of the acoustic media.
In other words these variabilities can be classified in the following groups:

1) Acoustic media: noise, interference and changes in environment, position
and characteristics of transducer.

2) Across-speakers variability: speech signals contain talker dependent fea-
tures as well as phonetic and linguistic information, and it is not always easy to
separate them. In fact these talker dependent features are the basis for speaker
recognition systems.

3) Within speaker variability: even for a single speaker the articulatory mo-



tions in vocal tract do not follow exactly the same path every time they are per-
formed and therefore the spectro-temporal characteristics of produced sound,
even for the same phoneme, are different. Variations caused by carelessness,
stress and other psychological states and co-articulation effects (i.e. effects of
context) are in this group.

4) Temporal variations: e.g. rate, intonation.

5) Ambiguity: generally there is not a distinct one-to-one map from acoustic
features to phonemic variables.

Despite all these variabilities, speech signals are highly structured and are
subject to phonetic and linguistic rules. Qur knowledge of these rules and incor-
porating them as sets of constraints help us to remove most of the variabilities
and ambiguities and enables us as humans to recognize speech sounds in very
noisy conditions. Needless to say, in many cases some non-linguistic cues like
visual information (e.g. gestures and lip reading) and our knowledge of speaker
and subject of speech also contribute to our recognition performance.

Before considering the general schematic of an ASR system, let us look at a
typical partitioning of them based on speaker variety and speaking rate. With
respect to speaker variety, these systems can be divided into three categories,
each involving different training paradigms.

Speaker dependent systems are trained with one speaker and perform sat-
isfactorily for only that speaker while speaker independent ASR systems are
capable of correct recognition regardless of the speaker. Of course to achieve
speaker independence we need more complex systems with training data which
represents a large population of speakers. So we train the system for a group

of speakers and test them on a separate group of them. There are also multi-

speaker systems that perform well for a certain group of speakers for which the



system has been trained.

One can also classify ASR systems based on the speaking rate. Discrete
utterance or isolated word recognition involves the recognition of single words.
The talker may pronounce these words in isolation or in an utterance consisting
of several words separated by distinct pauses. In connected speech recognition
words are clearly articulated but there are no pauses between words. Because of
possible co-articulation between words and unclear word boundaries these tasks
are more involved.

More difficulty arises when we deal with continuous speech; where there
are no pauses between words, they are not necessarily articulated clearly, also
considerable extent of co-articulation effects are involved. These ASR systems
are designed for relatively small (less than 100 word) to large (over 5000 word )
vocabularies.

In many cases the fundamental part of an ASR system is the phoneme clas-
sification, this is specially the case for large vocabulary systems. Phoneme
recognition in a sense can be considered as a difficult continuous speech recogni-
tion problem because at phoneme level not only there are co-articulation effects
and unclear boundary problems but also there is not as much structure (to be
used in recognition) as there is in word and sentence levels. In fact experiments
show that despite excellent performance of human speech recognition people
have many errors in recognizing isolated and segmented phonemes.

Despite all these difficulties, there is a considerable amount of literature on
ASR systems, many of which have appeared in the commercial market place
and perform well in constrained speech recognition tasks. The most popular
recent techniques in speech recognition are Hidden Markov Model (HMM) based

and Neural Network(NN) based schemes. Neural network models seem to be a



suitable approach for phoneme recognition whereas HMM are more effective at
word level. Some hybrid systems based on both HMM and neural networks are
also the subject of recent research.

In this study we are interested in neural network based speaker independent
phoneme recognition. Several major neural network models have been sug-
gested and tested for this task. Some of these models are “temporally static”
and perform classification based on a single [1,2] or a fixed number of temporally
aligned frames[3,4] for each phoneme, while more recent models are “temporally
dynamic and time shift invariant” systems that do not require pre-segmentation
and time alignment and have a kind of “memory” associated with them. Tem-
porally dynamic models seem to be a natural and effective way for phoneme
recognition. These models are one of the major topics of our study. After
introducing several major classes of these models, namely Time Delay Neural
Network[5,6], Temporal Flow Model [7,8] and Recurrent Networks([9,10], a modi-
fied and relatively small sized network will be suggested and tested on the task of
discriminating unvoiced stops, /p,t,k/. The modifications are inspired by some
observations based on multiresolution and multirate signal processing ideas, in-
corporating non-causal context in recognition scheme and combined target and
error weight function selection in training paradigm. In experiments, data has
been extracted from TIMIT database and input feature vectors are outputs of
an auditory model[11,12], and the results confirm the suggested approach and
that the auditory model used preserves the perceptually important features of
acoustic speech signals.

As a start we first look at a general schematic of an ASR system with more
emphasis on neural network based schemes then temporally dynamic versus

temporally static models will be introduced. The suggested observations will be



discussed next, an alternative approach to network analysis and pruning will be
given and subsequently the detail of experiment and results based on suggested

ideas will be provided.



Chapter 2

A general neural network based ASR

system

2.1 Introduction

Typically an ASR system can be divided into several modules (Figure(1)).

2.1.1 Signal processing and feature vector computation

The sampled speech signal are processed to produce a representation which
conveys all linguistic information and suppresses all extra-linguistic information
such as amplitude variations, talker stress, noise and other acoustic environmen-
tal interferences.

How we perceive and how machines can be made to perceive these auditory
signals means in part finding appropriate representation for them and ways to
compute them. This problem is in a sense harder than visual analysis where it
is clear that the 2D image is a natural starting point and the most important
primitives are edges and lines.

As we mentioned there are different kinds of cues ( linguistic and nonlinguis-
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tic, acoustic and nonacoustic ) involved in human speech recognition, but it is
not possible to incorporate all of them in an ASR system. In fact in most cases
the acoustic signal in the only tangible information. Chief among the acoustic
cues is the frequency content of the speech waveform and its variations in time.
In most simplistic form this frequency content can be viewed as a stochastic
process involving two principle dimensions, time and frequency. This stochastic
2D signal is our major source for speech understanding.

In auditory systems it’s harder to make precise which 2D representation
are to be used and what are the appropriate primitives. Especially when we
note that the combined time and frequency resolutions that can be achieved is
bounded by uncertainty principle[13].

When we speak of frequency content, we mostly mean the local spectral en-
ergy concentrations that vary in center frequency as functions of time. These
peaks are due in part to resonances in the vocal tract and are called ” Formants”.
The formants locations ( labeled F1, F2, ... in increasing order ) specify the gen-
eral vowel quality, recoloring and roundness while formant transitions between
consonants and vowels play an important role in consonant identification. For
voiced speech the first formant, F1, fall in the range 250-900 Hz, F2 has a wider
range 600-3600 Hz. Formants F3, F4 and F5 may also be present in voiced
speech. However, the lowest two( and some times F3 ) are usually sufficient to
identify specific phonemes, while the location of higher formants are generally
speaker dependent (Morgan[14]). In fact ( A. Libermann 1967 ) claims that
“The second formant transition is probably the single most carrier of linguistic
information in speech signal”’[14]. So most ASR systems focus on the first three
formants and their trajectories in time.

Previous studies had indicated that the choice of preprocessing significantly



influences the performance of an ASR system(Bengio and De Mori 89 {15])

The initial stages in speech processing are commonly performed using a Short
Time Fourier Transform (STFT) of the digitally sampled acoustic time series.
Several representations of the STFT have been employed for ASR systems, in-
cluding Linear, Logarithmic scale, Logarithmic mel-scale, Cepstral and differ-
enced Cepstral coefficient. Recently some feature representations based on mam-
malian auditory system models have been suggested, and some neural network
based experiments on speech recognition have been performed (Cosi, Bengio and
De Mori 90,[16]) which show that the performance of the ASR system using the
auditory model is better than those based on STFT representations.

All feature vectors used in ASR systems, e.g. Filter banks, FFT or LPC
coefficients, Cepstral coeflicient, auditory model based features. are computed
in such a way that , they reveal these formant trajectories.

In continuous speech, different speech sounds have very different average
durations. The human auditory system adjusts attention easily and quickly to
recognize not only relatively steady-state sounds whose identity is determined
primarily by the location of spectral peaks of formants(e.g. vowel like /ae/
and /a/ and fricatives like /s/ and /z/) but also very brief impulse-like sounds
(for example stops like /p/ or /d/ ) and much longer periodic sounds whose
phonetic identity is determined over a large extent by their spectral dynamics
(e.g. diphthongs).

Therefore in an ASR system the choice of input window duration is impor-
tant, because selecting an input window which is too long may make detection
of short term events difficult and lead to prohibitive training times. On the
other hand a very short window may lead to poor generalization as a result of

encoding acoustic events which are not of sufficient duration to be relevant for



discrimination.
In this study we use an auditory model based time-frequency representation

a brief description of which will be given later.

2.1.2 Feature Abstraction

After feature vectors have been generated they can be directly used for pattern
matching, but often it is more convenient to first perform kind of feature ab-
straction, by which we mean removing most redundant variabilities and come
up with compact feature vectors of smaller dimension. These secondary inter-
nal representations are typically abstract in a sense that, they may not have
any specific acoustic or phonemic meaning, but they are more robust to non-
linguistic variations than initial features and their combination contains almost
all information we need for our discrimination task. The acoustic feature vectors
and their corresponding internal abstract versions are computed in short time
and typically equally spaced intervals such that the sequence of these vectors

reveals all formant transitions.

2.1.3 Time-warping and Pattern Matching

Variabilities in duration and rate of speech utterances makes their acoustic
(time-frequency) representations different. In other words when the same speech
pattern is spoken with different rates , duration of the stationary segments (like
vowels) may vary but the non-stationary segments (e.g. stops) remain of almost
the same length. In comparing the two acoustic features X and Y it is desirable
to absorb this kind of unessential distance caused by rate difference. Dynamic

time warping is a matching method for time-frequency patterns to absorb this
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distance by non-linear time alignment, i.e. non-linear stretching or compressing
in time, for speech patterns,[14,17], figure(2).

Statistical methods ( which can remove acoustic variabilities ) can be inte-
grated with DTW approaches ( that absorb the time variabilities ) to achieve
robust recognition and this leads us to the idea of Hidden Markov Model (HMM)
based methods.

The HMM uses a Markov chain to model the changing statistical charac-
teristics observed in speech signals. It is a parametric modeling technique in
contrast to the non-parametric DTW schemes.

If the Viterbi algorithm is used for decoding in HMM based speech recog-
nition, decision will be made based on the probability pr(z; | s;). This is the
probability that the input frame z; is produced from the template state s; which
is the information theoretic extension of distance to probability.

The power of HMM lies in the fact that the parameters used to model the
speech signal can be trained to be optimized based on our prior knowledge of
some speech waveforms. This results in lower computational complexity and

improved recognition accuracy[17].
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The other major class of pattern classification algorithms are neural network
based systems. Neural networks are particularly interesting for speech recogni-
tion, which requires massive constraint satisfaction, i.e. the parallel evaluation
of many clues and facts and their interpretation in the light of numerous in-
terrelated constraints. The most distinctive feature of neural network based
classifiers is that they compute matching scores in parallel and have parallel
input and outputs where internal parameters (connection weights) are typically

trained adaptively using training data.

2.1.4 Higher level language processing

The outputs of the decision units of the primary classifiers will be given, to
higher level language processing modules where the knowledge of the specific
language (at subword, word and may be phrase levels) is used to improve the
recognition performance, through removing impossible and “invalid” combina-
tion of phonemes. The results of these decisions, in the form of last labels and
their confidence measures could be fed back to earlier stages, as kind of context
inputs, to reduce the number of similar possibilities among which the classifier

should make its decision.

2.2 The Cochlear Model

As we mentioned before, the spectro-temporal characteristic of speech wave-
form and especially the first three formants trajectories on time form the most
informative tangible feature set for speech recognition. In order to obtain these
formants i.e. ridges and peaks in the spectrum, we can start with a fine short

time frequency analysis of speech and then perform kind of edge detection on

12



this 2D (time-frequency) plane.

The input feature vectors in our experiments have been computed following
the same idea and based on an auditory model, figure(3)

The model is based on the spatio-temporal frequency decomposition effects in
cochlear and some nonlinear processings (including lateral inhibition) in human
auditory system. Details of this model can be found in Shamma[5][6]. What we
explain here is a very brief, simplified and functional description of the model
as far as it relates to this study.

Sound pressure waves after guided by organs of outer, middle, and inner
ear, cause mechanical displacement of the so called Basilar membrane in the
cochlea of our inner ear. Frequency and amplitude of these displacements is
directly related to the frequency and power of the acoustic stimuli. Because of
the spatial selectivity of the membrane to frequency of the mechanical stimuli, it
maps different frequency components of incoming stimuli onto different spatial
locations in a tonotopically ordered manner along its length which results in a
spatio-temporal patterns of input sound.

These patterns of displacements are transfered to hair cells along the cochlea
and after three complex stages , namely the fluid-cilia coupling, the ionic chan-
nels and the membrane potentials, they produce signals of electrical nature in
neurons. These pulse modulated signals are sent to the auditory cortex where
higher level processing is performed.

From our functional point of view, the cochlear can be considered as a parallel
bank of bandpass filters i.e. 128 channels with frequency responses inspired by
the observed patterns of frequency selectivity along the cochlea. These frequency
responses are shifted versions of each other on a logarithmic frequency scale,

maintaining a constant Q-factor. At this stage outputs of these channels roughly

13
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give the fine spectra of speech sound. The three mentioned complex stages can
be modeled by a time derivative, a simple nonlinearity and a lowpass filter
respectively. Inspired by the observations in human visual and auditory system,
and to enhance peak and ridges in the fine spectra, lateral inhibition (LIN I
and II) has been included in the model[11,12]. Therefore the spectral profile
of the stimuli are found by rapidly detecting discontinuities along the spectral
(spatial) axis of the auditory nerve patterns and integrating its outputs over a
few mili-seconds. This final auditory representation ,although is different from
SFT, contains most of spectral information and may even high light feature that
from recognition point of view are more important.

This auditory representation forms the input feature vectors through out this
set of experiments. Of course computation of input feature vectors, the correct
choice of model parameters, especially window size and step size in the short
time frequency analysis and a preemphasis parameter includes in the model is

of great importance.
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Chapter 3

Neural Networks in Phoneme

Recognition

There are several major classes of neural networks that have been used for

phoneme and word recognition.

3.1 Temporally static networks with time av-
eraged inputs:

Assuming that speech signal has been already segmented and phoneme bound-
aries are, at least approximately, known and that the signal is almost stationary
in each segment; one can perform the classification based on the averaged fea-
ture vector obtained from the whole duration of each phoneme segment or based
on a pre-selected typical frame from the middle of the utterance.

For this classification one may use any static pattern classifier, including sin-
gle and multilayer backpropagation networks or Kohonen feature map, Learning
Vector Quantization(LVQ) or Radial Basis Function networks(RBF)[14].

An example of this approach, is Huang and Lippmann’s experiment[1] where

16



they used a simple 3 layer feed forward network to form the nonlinear classifica-
tion boundaries of the first two formants of 10 vowels. Their network had two
inputs representing F1 and F2, 50 hidden units and 10 outputs corresponding to
each vowel. Another example of this approach which is in a sense related to our
study is K. Wang[2]’s experiment on phoneme recognition, where he starts from
an auditory model based representation (consisting of 128 channels of cochlear
model) and then computes the average feature vectors over hand segmented
phoneme boundaries. In this case again a simple two layer back propagation
network is used for classification.

As we mentioned before these methods lie on the restricting assumptions that
the input signal is segmented correctly and that for each segment the averaged
vector over the whole sequence is a "good” representative of the that segment.
Considering that speech patterns are nonstationary in most cases the above

method cannot be used in general.

3.2 Temporally static networks with explicit
representation of time:

This class consists of methods in which the network does not have a dynamic
structure ( or memory as we discuss later on ) but the time variation of input
feature vectors are given to the network by incorporating time as a second di-
mension. The result is a static 2D input feature space, so its resembles an image
pattern recognition. It does not require any kind of stationarity assumptions as
previous class, because here the time variations of feature vectors are included.
However in these networks because of the “static presentation of time” to the

network precise segmentation and time alignment of input patterns are required

17



for pattern matching. In other words although the time-frequency representa-
tion is a 2D signal ,it must be noted that one of the dimensions is “time”, and in
order to have correct recognition the system should take a shift invariant look at
input frames. Otherwise sequences like X=000101000 and Y=001010000) that
are two instances of the same basic pattern observed at different times will be
considered as completely different patterns because they are ”spatially” quite
dissimilar and distant. Therefore in speech and generally in time sequence recog-
nition it is desirable to keep track of relative temporal position of events rather
than absolute temporal positions.

An examples of these schemes is Elman and Zipser’s experiment[3] on phoneme
recognition for the voiced stop consonants / b,d,g / followed by the vowels / a,i,u
/. Their input feature space consisted of twenty frames of 16 DFT coefficients
computing at overlapping 3.2 msec time intervals that are given to a 3 layer
backpropagation network.

Of course the same classification task can be performed using Kohonen fea-
ture map and LVQ ideas. All these networks, because of their shift variance
with respect to incoming sequence of feature vectors, rely on pre-segmentation

and time warping.

3.3 Temporally dynamic networks:

The principal goal of an effective phoneme recognizer is to capture the dynamic
nature of the acoustic-phonetic trajectory of the speech signal. The temporal
aspect of this task is particularly challenging, some speech recognition systems
attempt to parse or segment speech patterns into discrete units roughly corre-

sponding to phonemes. However, the best segmentation schemes are highly sus-

18



ceptible to errors; these errors in turn, result in higher errors rates further along
in the recognition process. As a result a robust speech recognition should sim-
ply scan the speech signal for useful cues without relying on pre-segmentation,
basing its overall decision on the sequence and co-occurrence of a sufficient set
of these cues. This, in turn, suggests a system that is temporally dynamic (i.e. a
system whose recognition performance is unaffected by temporal shifts of the in-
put speech train). The experiments mentioned above used utterances that were
precisely parsed from the speech signal, obviating the need for shift invariance
of the system. The following series of experiments all employ techniques aimed
at yielding shift invariant phoneme recognition.

Temporally dynamic networks, because of their special delay structure, take
a shift invariant look at input sequences and so they are more suitable for time
sequence recognition tasks. The delayed links in feed forward and feed back
paths give the network kind of a "memory”, which enables the network to in-
spect temporal variations in the history of the input sequence and therefore to
capture the dynarﬁic as well as static discriminative features needed in classi-
fication. Because of the shift invariance we do not need strict time alignment
and segmentation, but we have to enlarge the training set such that for each
phoneme, it includes examples of different durations.

* Several neural network models of this characteristic have been developed so
far. Among them are the Time Delay Neural Network(TDNN), (Waibel[5,18,19]),
Temporal Flow Model(TFM) (Watrous[7,8]) ,and Elman’s recurrent network
(Elman [9]) (figure(4)).
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3.3.1 Time Delay Neural Networks

The TDNN is a multilayer feed forward neural network which can be trained
to recognize specific structures within consecutive frames of speech. Temporal
structure in the TDNN is represented as increasing levels of abstraction and
duration in progression from the input layer to the output layer. Time delayed
input frames allow the weights in the initial layers to account for variations in
the spectral representation of speech. The cells of TDNN integrate activity from
adjacent time delayed vectors, in such a way that these vectors are treated as
additional inputs occuring at the same time.

The TDNN is trained using Back Propagation(BP) algorithm[20], however
cells within a TDNN compute activities at different time intervals, with cells at
the input layer active at input frame rate and cells at the output layer activated
only after a complete speech segment has been processed.

According to Waibel[5,19], the TDNN is a coherent architecture for integrat-
ing temporal and spectral models within a single neural network. The network is
apparently able to discriminate acoustically similar patterns with high accuracy
and robustness given widely varying contexts. In essence, the network is forced
to uncover the underlying spectro-temporal structure which discriminates one
class from another.

Perhaps the most important characteristic of the TDNN is the temporal
compression which results from this architecture. Note that in TDNN the num-
ber of delays at each layer is more than the number of delays in previous layer
i.e. dl < d2 < d3. This property of the TDNN allows the length of the input
“window” on the feature representation to be short in comparison to the full
duration of the utterance. In applications discussed above, the input window

corresponded to three adjacent vectors (30 msec) of spectral features. The du-
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ration of this window was selected to match the expected duration of acoustic
events sufficient for the discrimination of the stop-consonant segments in the
training set[5].

The TDNN architecture substitutes the problem of matching the utterance
duration with similar problem of matching low level acoustic events. the selec-
tion of a TDNN input duration to match these acoustic events will depend on
task-specific knowledge. For example, because the expect duration of a vowel is
on the order of 100 msec, 10 frames of length 10 msec are needed to observe the
context variation due to the preceding and following phonemes.

In addition to minimizing the problem of time alignment, the temporal com-
pression architecture can force cells within hidden layers to fire for “sequences”
of acoustic events. Cells within the first hidden layer compensate for short-term
acoustic events, while cells in the second hidden layer detect events of longer
duration.

According to Waibel[5] analysis of the internal representation of the first and
second hidden layers for phoneme discrimination demonstrated that the cells of
the first layer detect second formant slope transitions and vowel boundaries.
However, the cells of the second layer did not seem to be sensitive to sequences
of these events. It may be possible to generalize the type of representations
learned by the TDNN to more complex problems which occur in word and
language perception. However, extension to word-lenght duration may require
significant modification to the TDNN to permit realistic training times. This is
due to the fact that the size of the TDNN is proportional to the duration of the
acoustic events to be recognized. In this respect, recurrent networks are more

efficient because their size is independent of the duration of the acoustic event.
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3.3.2 Elman’s Recurrent network and Temporal Flow

Model

Recurrent neural networks are characterized by both feedforward and feedback
paths. The feedback paths enable the output at any layer to be used either as
input to a previous layer, or to be returned to that layer after one or more time
steps. One of the motivations for using recurrent networks for temporal modeling
is that they allow time to be represented by the effect it has on processing a
sequence (Elman[9]).

in most recurrent networks, the output of the node in layer ¢ at time ¢ is
stored in a context node so that it may be used as an input to some set of
nodes ( generally within the same layer ) at time ¢t + 1 . The weights between
the context nodes and the nodes they feed into are called the context weights.
In the simplest example, a node has a self-recurrent weight when the output
at time t is delayed and then used as an input to determine the output at
time t + 1. As figure (6) shows the self-recurrent link configuration is a special
case of context weight connections. That is, the self-recurrent link connects the
node from which the activation originated, while the context weights are fully
connected to the nodes in layer g.

Although in this study we are more interested in temporal flow model in-
troduced by watrous and Shastri, it must be noted that other recurrent ANN
paradigms which achieve similar results have also been developed[15,16]. Re-
current networks are appealing because they can integrate activity levels over
time and thus “remember” activations from previous inputs. The temporal flow
model designed by Watrous and Shastri uses a three layer network in which

each node in the hidden and output layer contains self-recurrent weights with a
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single time step delay. It also has a unit time step delay between the output of
successive layers. Thus, for the three layer network two time steps are required
for the output to progress from input to output layer.

The temporal flow network permits the context weights to vary and uses the
standard Back Propagation training algorithm to determine the values of the
weights (including the context weights). Thus in the BP equations, the context
weight are treated as additional weights from layer ¢ — 1. The activation at the
context node is updated after all the weights have been adjusted.

In order to train this network, the desired output must be expressed as a
function of time. This is a significant departure from the training paradigms of
static networks in which the desired network output is fixed for the duration of
a specific pattern.

The selection of an appropriate time dependent “target function” is a some-
what empirical process. However the specification of the network behavior over
time is very important because the target function determines how network
weights are updated and how intermediate and final performances are evalu-
ated.

One of the most interesting results of this experiment is that the network
performed the classification task without making a direct comparison of acoustic
segments across the CV syllable.

The basic operation of these temporally dynamic networks can be expressed

in terms of the following equations for single layer networks for each model.

TDNN:

Yn] = (X7 [n — d] - Wd]) + ) (3.3.1)

d
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Elman Recurrent Network:

Y[n] = f(XT[n]-W1+Y[n—1]-W2+0) (3.3.2)

Temporal Flow Model:

yiln] = f(XT - Wi + riyi[n — 1] + 63) (3.3.3)

where X[n]’s (X[n] = (21, %2,...,2p)[r]) and Y[r]’s (Y = (y1,y2,...ym)[n])
are input and output vector sequeﬂces respectively. § = (6, ...,0x) is the vector
of thresholds for all cells in the network. r; is the weight of the recurrent link of
it cell, W, W1 and W2 are connection weight matrices between the two layers,
and function f(.) is the nonlinearity, typically sigmoid, associated with each

unit, Figure(4).

26



Chapter 4

Some Observations and Modifications

4.1 Introduction

We are seeking in our research effort the advantages of combining the flexibil-
ity and learning abilities of the neural networks with as much knowledge from
speech science as possible in order to advance the construction of a speaker
independent phoneme recognizer. Prior knowledge can be used in many steps
of this construction, e.g. preprocessing, choice of input feature vectors, output
supervision, and design of network architecture.

In particular, hypothesis about the nature of the processing to be performed
by the network based on prior knowledge of speech production and recognition
processes enables to put constraints on the architecture. These constraints result
in a network that generalizes better than a fully connected network (Baum and
Haussler [21 ]). This fact leads also to the idea of modularization and scaling in

design of neural network based ASR systems, (Waibel[18]).
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Figure 4.1: Incorporating contextual information in speech recognition

4.2 Incorporating causal and non-causal con-
text

Human perception of speech highly relies on contextual information. In many
cases our knowledge of the speaker, language and subject of speech help us to
recognize ambiguous or incomplete speech utterances even in very noisy con-
dition. Based on this fact most modern automatic speech recognition systems
incorporate, in one way or another, the contextual( mostly acoustic and some
times visual [22]) clues in their schemes[23]. In neural network based automatic
speech recognition systems this ideal can be approached using delayed links in
feed forward and feedback paths and also feedback from higher level language
processing modules.

The study of the speech production mechanism shows that the patterns of

articulatory movements in our vocal tract for any phoneme depends on both
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previous and next phoneme i.e. co-articulation affects the acoustic pattern of
speech in an “noncausal” way([24]. So in this case and for all signals for which the
present state of signal depends on both past and future, it would make sense to
expect that incorporating contextual information from both previous and next
frames improve the recognition performance. As always we should accept some
delay from input to output to realize this noncausality. We will discuss this

later.

4.3 Multi-resolution in time

An important observation is that we can use, for recognition purposes, the mul-
tiresolution signal processing techniques and related ideas, that have been stud-
ied extensively in signal compression applications. Multi-resolution signal pro-
cessing techniques have been shown to be a valuable tool in signal understanding,
specially in image understanding and partly in speech. Neural networks using a
single temporal window to provide successive fixed length “glimpses” of a speech
signal should be capable of classifying steady state sounds of any duration. How-
ever, such a network would seem to be sub-optimal for classifying phonemes that
are distinguished by dynamic characteristics that extend over a longer duration
than the networks input span, _and also may be unreliable at detecting events
that are significantly shorter in duration than the networks input span. Conse-
quently, the choice of input span may be critical to recognition performance for
some phoneme classes. Based on this observation Kamm and Singal[25] have
tested several feed-forward neural networks of different input spans (e.g. 35-
ms, 65-ms and 245-ms) to classify sub-word speech segments. Their experiment

showed that brief sounds can be reliably detected by networks with longer in-
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put spans, but results for a subset of longer duration phonemes(diphthongs)
indicate that a network needs a wide enough view of the input to capture the
salient features of the output class[26]. An alternative approach is to use a net-
work architecture that has both short time fine resolution and long time coarse
resolution spans simultaneously.

This leads us to the idea of multi-resolution inputs which implies primarily
multi-resolution in time. The implementation of multiresolution methods for
speech requires frequency analysis of short time speech segments using several
window sizes. The final or even intermediate results of pattern classification
based on different resolutions have to be combined later in a suitable way to
come up with better and consistent final decision. This adds to the complexity
of the system but improves the resulting performance. To avoid complexity, but
based on the same idea, one can suggest the following methods to be used in
ANN design of a phoneme recognition system:

1) Fine scale feature vectors are averaged to estimate feature vectors at
coarser scales, which are then used in the network as additional information
corresponding to lower resolution “view” of the incoming signal.

2) For further simplification, the delayed structure of the network is chosen
such that one class of units (“scale class”) observe all successive frames, while
units in other scale classes observe every other frame, or every other two frames.

Figure(8) shows this idea, where scale classes are subunits(subnetworks) that
operate with different frame rates. Using the results obtained from all scales the
network can produce the final decision about the phoneme class. There are
many strategies to combine informations derived from scales. For simplicity we
may just combine the outputs of units corresponding to different scale classes as

a combined hidden layer, which is fully connected to next (e.g. output) layer.
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The idea above can easily be implemented in neural networks with time delay
structure. Figure (9) illustrates this for a Time Delay Neural Network (TDNN)
and a recurrent (“Temporal Flow”) network. These classes of dynamic networks
have been studied (Waibel[5,19,27] and Watrous[5,10]) mostly for phoneme clas-
sification.

After training we expect to see units sensitive to short time features in the
fine scale class and others sensitive to long time features in coarser scale classes.
For example in Figure (9, (a) and (b)) the first and second units in this single
layer network contribute to short time feature detection and third and forth
units observe farther in past with less detail and therefore contribute to long
term “memory” of the network. For a TDNN it is easy to tell quantitatively
how much memory it has i.e. how many frames are in the input span of the
network. But for a recurrent network it is not as straight forward, because of
the nonlinearities and dynamic feedback, and all one can do is to find a rough

estimate of this memory.
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Roughly speaking, linearizing the nonlinearity function locally, taking the Z-
transform, expanding the fraction using geometric series and finding the inverse

transform, the output can be expanded in terms of delayed inputs as follows:

zin] = XT - W; (4.3.1)

yiln] = f(ziln] + i - yiln — d]) (4.3.2)

] = ]

1- T,'Z"d

yiln] = ziln] + ri-zifn = 1d] +r2 - zfn — 2d| +r? - zn —3d] +...  (4.3.4)

(4.3.3)

zi[n] is the total activation level at the input of i** unit at time/frame n; W;
is the connection weight vector from input “X” to output y; ; r; is the weight
of the self-recurrent link to :** unit and “ d” is number of delays associated to
this link. The function f(.) is typically a Sigmoid.

If r; is not too small we expect to have the effect of past few frames, roughly
4-dor 5-d frames. The recurrent links may be fixed or left as free parameters
during the training.

It may be argued that for the TDNN architecture the fully connected network
with identical delay structure contains all connections in figure(9.a) above and
should be more general. But the goal is to find a simple network with small
number of free parameters to make training, analysis and implementation easier
and to improve generalization. Note that the recurrent network is much smaller
in terms of free weights, and that the self-recurrent links can provide a very

simple and useful memory structure.

33



3.25) 1
042 0 st J\___._
! 5 3,65
465 / 3,65 o LR

1 23 6 54 1342653 3 255 6 4

Figure 4.4: Choosing suitable target function

4.4 Target and Error Weight Functions

In the supervised learning mode of a temporally dynamic network used for time
sequence recognition, in most cases we need a target function. The target func-
tion is a sequence of desired outputs defined for any input sequence from training
set. For example, for applications in which recognition is performed within con-
text, the target function should be zero everywhere except for the duration of
desired process at the input. Sometimes the role of target function and the
importance of an appropriate choice of its shape and timing is overlooked. A
good choice of this function simplifies training and improves the generalization
of the network. One can easily give examples of sets of time sequences ( to be
recognized ) for which a flat “0” and “1” target value for the whole interval
is not a good choice; even though the average error could be made small with
long exhaustive training of large number of free parameters. For example, con-
sider a time sequence of labeled events, and suppose we want to discriminate
two possible sequences {3,2,5} and {3,6,5} so for this task and assuming that
all possible sequences may occur, we should choose the target function as in
figure(10).

To choose a suitable target function, we should first estimate the point in time
where a perfect recognizer can identify a time sequence from other possibilities.

For speech signals an accurate estimate of such points is a separate difficult
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problem, but it is possible to find rough estimates for our purpose.

In phoneme recognition a continuous target function (e.g. Gaussian, Trape-
zoid or raised cosine) with suitable transition slope and peak timing would be
suitable.

Another important observation is that by considering a target function which
lags the input sequence by a few frames the noncausal context can be simulated
at the frame basis level. Here the network asserts a phoneme class after it
observes a few frames following the “present” frame.

Having introduced the target function, it is important to mention the weighted
mean square error as opposed to conventional uniform mean square error func-
tion, otherwise called the error weight function. In many cases errors in different
parts of the output sequence are not of equal importance, so instead of mean

square error, our objective function could be a weighted sum of the frame level
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square error. Proper choice of this error weight function can reduce training

time.

4.5 Training, Validation and Scoring

Training a neural network means finding a good set of connections weights that
provides the required input-output mapping, for all input patterns in the training
set. A successfully trained network, with abpropriate choice of architecture
and suitable output éupervision, should be able to generalize the desired input-
output map to examples which have not been presented to it during the training
time.

Most training algorithms, are based on gradient descent idea, among which
the so called Back Propagation(BP)[20] is the most popular algorithm in train-
ing multilayer feed forward networks. There are also Quasi-Newton nonlinear
optimization methods that are used in training in connectionist models[28]. The
BFGS algorithm|[29] is one of these methods which will be introduced later.

The whole data set is first separated into two disjoint groups of training
and test sets. Only training data is used for training the network. During the
training process the training set itself is divided dynamically into two subsets,
namely training subset and “Validation” subset. The training is performed in
several steps:

1) Start with a small training subset.

2) initialize all connection weights to random small values ( typically in [-1,1]

3) present the input training and validation data and their corresponding

desired output to the network. Evaluate the average objective error function for
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each subset separately. Save the two computed errors.

4) Update the connection weights based on the calculated errors. In this
step one may use BP or BFGS or other optirhization methods.

5) perform this updating few times, ( 5-10 iterations ).

6) reevaluate the objective error function on validation set; If it is smaller
than what has been saved in step 3 continue from steps 4 until desired small error
is obtained. Otherwise enlarge the training set by including some of examples
in validation set and then continue from step 3.

This approach is taken to avoid over-training and achieve better generaliza-
tion. The update rule for connection weights based on an “Accelerated BP”

algorithm is given as follows:

OF

Awi,j(n + 1) = /LAU),',]'(TL) — nm
1,3

(4.5.5)

where w; j(n) is the connection weight from unit (i) to unit (j) evaluated at
iteration (n). E is the error function value, 5 is called the learning rate, and
¢ is the momentum constant. The effect of the momentum term is to magnify
the learning rate for regions of weight space where the gradient is essentially
constant. In simple BP algorithm momentum is zero and learning rate is con-
stant, whereas in faster versions of that both 5 and g are nonzero and change
adaptively during the training process. Back propagation update formula has a
simple form for squared error objective function with neural units of sigmoidal
non-linearity[20].

For neural units with sigmoid nonlinearity we have,

yi[n] = (1 + ¢~7lnl+0)~1 (4.5.6)
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zj[n] = Zwijdyi[n —d| (4.5.7)

also for mean square error (MSE):

E oc 3 ((95[n] - trg5[n)’ - wgt*[n]) (4.5.8)
we can write,
aw'_‘““id( ) ‘,L;[yf(" —trgj(n )]%!%:_) (4.5.9)

=Y [y7(n — d)&5(n)] (4.5.10)

awl s d( ) ijd

where error signals ¢7(n) are computed recursively in terms of the error
signals of units which they are connected to, and finally in terms of differences
between output and target function values. So there is a backward recursion as
follows.

for output units,

= [y7(n) — trg?(n)] y’(n) (45.11)
while, for other units,
. . dy;
67 = (3 wjiabf (n — d)) == (n) (4.5.12)
id 0z;

The BFGS algorithm also gives an update method given in the following

sequence:

For 7o € R", S, € R™*™, Positive definite (e.g. So = I)
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while V f(z;) # 0 do

hi = =SV f(z;)

pick A; € argmina(f(z; + Ah;) [ A > 0)

Tiy1 = T; + Aihy

Compute S;41, positive definite using some update formula.

stop.

and update formula for BFGS is the following.

’)”YT S,'(S(STS,'

S{+1 = Si + 5T7 - 6TS1:6 (45.13)

where
6= Tiy1 — T4 (4514)
v = Vf(zi1) = Vf(z:) (4.5.15)

Where f(.) is the objective function and z € R™ is the parameter with
respect to which the minimization has to be done. After some iterations the
error decreases to some value which is typically a local ( an hopefully global)
minimum of the objective function. Perturbation, sometimes helps to escape
from a local minimum. In other words it is recommended to perturb all network
parameters by small amounts and use it as initial condition of post-training
phase to see whether the overall error decreases further.

Scoring and evaluation of network performance is done in the following way.
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In training step, as mentioned before, the objective function is the average frame
based weighted mean square error over all tokens. Similarly for testing the net-
work the mean square error between network output values and their correspond-
ing desired target values is computed over each example and over all examples
in the test set. Scoring can be done based on both these errors, namely the
overall frame based error or the classification error rate. In other words assum-
ing that each output unit represents a separate hypothesis regarding the class of
the input observation, error corresponding to each hypothesis is evaluated using
the appropriate target function or parameters based on which the corresponding
objective value is computed. The hypothesis with the lowest mean square error,
is considered as the decision made by the network under the condition of pre-
chosen class. For context feedbacks and also for higher level language processing
modules it is desired to have a soft decision, therefore the two most probable
classes with a confidence measure based on the ratio of the lowest error and

second lowest error can also be provided at the output of the decision module.
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Chapter 5

Experiment; Network Pruning and

Analysis

5.1 Experiment

Results are presented for an experiment on speech data; specifically the (p,t,k)
task in the context of front, middle and back vowels, taken from TIMIT database.
Each example consists of the closure, burst and the following vowel. No further
segmentation, normalization or time warping is performed. The data has been
randomly selected from about 100 different speakers from the different dialect
regions included in this data base.

INPUT: the output of 128 channels of a Cochlear model, Shamma[11,12] are
used as reference input feature vectors, and only those channels in the frequency
range of speech data, e.g. 60 channels are included. This representation is chosen
because one of our other objectives in this experiment is to test whether this
model preserves the short time features of speech spectra.

NETWORK: the recurrent network is used for simplicity, the network must

have 60 inputs, which results in many connections at the first layer of the net-
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work. In order to reduce the size of effective inputs a kind of averaging is
performed as in figure(12), such that the receptive field of each unit in the first
hidden layer consists of 5 input channels with two channels overlap. It may be
suggested that instead of this averaging, it is easier to consider only every other 3
input channels, but it is not a good idea because the Cochlear filters have small
bandwidths with sharp transition bands, and by choosing just some channels
important frequency ranges may be missed. Appropriate connection weights in
this layer can be found via training on a small training set. These weights are
then fixed for the rest of the training phase. Note that with this structure we can
find a secondary set of input feature vectors with small dimension from original
channels for each specific class of phonemes. The self-recurrency at succeeding
layers provide the required temporally dynamic structure (i.e memory). Note
that the recurrent links at the first hidden layer have delays of either one or three
time steps to provide two scale classes following the mentioned multi-resolution
ideas.

WINDOW and STEP SIZES and NETWORK MEMORY: these parameters
are related to each other, in that the delay structure in the network and size of
input windows and their overlap determine the overall network input span or
memory.

Neither large nor small window sizes gives both time and frequency reso-
lution. Without suitable time and frequency resolution transition parts of the
CV segments will not appear clearly at the output of the cochlear model. The
maximum number of frames that the network can cover in its “memory” is finite
and depends on the delay structure of the network. It is therefore necessary to
check that the maximum extent of the desired feature, is less than the maxi-

mum number of frames that the network can span in time. As mentioned before;
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for TDNN this memory can be determined explicitly but for recurrent it is not
clearly determined but can be roughly estimated. After inspecting input pat-
terns it was determined that the typical extent of unvoiced plosives in time is
about 40 to 60 msec (including transition times) so 10ms window size and 5 ms
step size were chosen.

TARGET and ERROR WEIGHT FUNCTION: for each example in the
training set a Gaussian target function with suitable width and timing is ar-
bitrarily chosen i.e. for a Gaussian function:

1 Y

trg(t) = 0.5+ 0.5((2—;)1—@@%) (5.1.1)

For each input example file with the total duration normalized to one the
parameters o and m are chosen such that the function value is close to zero
during the closure and vowel parts of the CV segment and is high during the
burst and transition parts. So in equation above + and — is used for outputs
corresponding to correct and incorrect hypothesis respectively. Experiments
showed that the best performance is achieved when the peak of this target
function is placed roughly after the end of burst and begining of the transition
part. In particular the performance obtained in this case is better than the one
obtained using a target function centered and concentrated at the middle of the
burst. This confirms the fact that formant transitions in a CV segment are very
important, even more than burst, for the discrimination of the stops.

A weight function as depicted in figure(13) is also used so that in training
output values are not forced to rise and fall exactly like a Gaussian. In fact,
what is really known about the optimal target function for classification is, it
has low values during the context (e.g. preceding ang following phonemes) and

a high value “somewhere” during the desired phoneme. Using this function
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seems to improve the final performance in terms of average error and speed of
convergence.

TRAINING: is performed using both BP and BFGS algorithms which we
introduced before. The BFGS algorithm provided faster error convergence rate
as expected. Even accelerated BP is slower that BFGS. The network simulator
GRADSIM[28] was used in most of the experiments. Training set consisting
of 120 examples from TIMIT database, is divided dynamically into validation
and training subsets, and in order have a fast initial convergence rate small
initial training subset(e.g 12 examples) is chosen, which gradually, by including
more and more examples in the validation set, increases to the whole set of 120
examples.

After required average weighted mean square error is achieved the final per-
formance is tested on a separate set of examples from other speakers. This
performance either as mean square error or recognition rate, evaluates the gen-
eralization capability of the speaker independent phoneme recognizer.

For training BFGS algorithm was used which as mentioned is a nonlinear
optimization method and is faster that usual back propagation. The network
simulator GRADSIM([28] is used in most of these experiments. Data was divided
into two sets of training and test sets. The training set also consisted of a subset
for validation. The final performance is evaluated on the test set which was not
used for training, and shows the average mean square error per frame and also

the recognition rate.
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5.2 Network Analysis

The next objective is to analyze what the network has learned and possibly
simplify the network. In other words the question is first, what features from
input data have been extracted by the network in its abstract internal represen-
tations, and second which input components, network units or connection links
are redundant, i.e. are not actively involved in classification. This in turn leads
us to the idea of network pruning. As one can see network analysis is related
to pruning in the sense that in analysis we are looking for most important fea-
tures and in order to find them or at least simplify our search, we have to get
rid of redundancies in the system. On the other hand removing all redundan-
cies, and using a small size network with fewer number of parameters, enables
us to achieve better generalizations. Figure(14) shows qualitatively that small
networks are more effective in generalizing from training examples and are less
susceptible to over-training than networks with large number of free parameters.

Although in this pruning stage our main concern is to retain the overall
performance, we may loose some of that. So, It is recommended to post-train
the simplified network, i.e. use the pruned network parameters as an initial
condition and redo training to obtain better results.

The analysis and pruning is easy when we deal with small sets of static
patterns and temporally static networks, but it is not very straight forward for
temporally dynamic networks with large number of time varying inputs.

Assuming that the training has been done correctly, one can approach the
problem of network pruning in several ways:

TRIAL AND ERROR: remove links one at a time and each time evaluate

the recognition performance measures, discard that link if the performance is
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Figure 5.3: Small size networks have better generalization and are less suscep-

tible to over-training than large networks
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not affected significantly otherwise retain it.

SENSITIVITY ANALYSIS: write output vector as function of input and
connection weights find the partial derivative of outputs with respect to each
connection weight and do the well known sensitivity analysis. Although sensi-
tivity analysis has been studied mostly for static feedforward networks, the idea
seems to be extendable to dynamic networks as well.

Also recently some other algorithms for network pruning have been suggested
that are based on information from all second order derivatives of the error
function[30].

VISUAL INSPECTION: of weighted activation at the input of each neural
unit. Figure(15) below shows the basic idea and figure(16) gives one example of
such observation on actual data and network in the experiment above.

As we see in figure(15), wse can be removed because its corresponding
weighted activation wyg - y4 is small. Also wy can be removed because its cor-
responding weighted activation as a function of time is identical to that of wye.
For each unit, the same set of inspection has to be made for all input patterns.
Thus all idle connections and units as well as all but one of connections with

the same effect on their destination can be removed [6].

5.2.1 Variance-Covariance Analysis

This method relies on the same idea of visual inspection. When we have a
relatively large network with large training and test sets the visual inspection
of all examples to give a general statement about important and redundant
connections and input features would be very difficult. So it is better to give
some structure to this analysis so that we can perform it automatically with

a computer. Basically we want to discard all units that are not responsive to
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our desired part of the input file, i.e. those units(or weighted activations that
are almost constant or have very small deviation from their mean value during
that time interval). It is possible to write a code to do this analysis and give a
quantitative measure of importance of units and weights as well as the simplified
(pruned) network. The basic idea is the following:

a) concatenate all input files in the training and/or test set into a single big
file arranged in time so that for each unit in the network there is a long time
waveform; figure(16) shows the idea for a small number of input files. Then
mark those time intervals during which the desired input process ( for instance
the utterance of plosive) is located.

For a successfully trained network these time interval are where outputs
depart from their rest(mean) value and only one of them goes "high” and others
go to "low”. These intervals should be expanded few frames to the past and
future to include the dynamic effects of propagation of activations through the
network delay structure. After this expansion we have a set of time intervals
[tr(2),te0(7)] where i goes from zero to number of examples in the set.

b) Now that we know all “interesting” parts of input files happen during these
time intervals; we can focus on them and discard all units/connections that do
not change their status during these intervals. In order to make it computable,
for each neuron’s waveform we find the mean and variance in those time intervals
and save them for the next step. Note that in computation of variance we just
consider those mentioned time intervals and we are not interested in variations
in activities far from our interested process. i.e. in our case we do not look at
variations that happen far into closure or vowel part of input waveform.

c) Based on these variances we can define the following arbitrary quantitative

“Importance Measure” for both links and units. Of course one may define other
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measures of importance.

For connection weight w;;, the link from unit i to unit j:

Imp(w;;) = wfj x Var(y;) (5.2.2)

For the i** neural unit;

Imp(y;) = Y (Imp(wi;) x Imp(y;)) (5.2.3)

i

measures can be compared within each layer, so they can be normalized for
each network layer separately. So importance factors for units must be calculated
recursively from the output layer toward input. In order to do that normalized
importance factors are assigned to each output, depending on the purpose of
the analysis.

For example, in the mentioned experiment outputs correspond to (p, t, k);
by assigning 1, 0, 0, for their importance we will be able to look at important
units and features to detecting t’s only. Normally we assign (1, 1, 1) to consider
all phonemes of this class simultaneously. Thus all connections and units for the
discrimination of each of these phonemes from the other two wil be included.

Based on these relative importance measure one can tell for each unit in the
network how important it is compared to other units at that level, and which of
the links at its input are redundant. Thus by setting an appropriate threshold
we can discard all inactive units and links and hence prune the initially fully
connected network.

Also for those weighted links that are discarded we can add all of their
weighted means to the bias of their destination unit.

9

d) Analogous to what we did in visual inspection to remove ”equivalent

inputs” to each unit, here we can find the cross covariance of weight activation
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sequences for all links with sources in the same layer. Thus large covariance
function at time 0 (and may be a few frames to the past) means highly correlated
inputs, i.e. one of them is redundant and can be removed, by adjusting the
relative weights. The result of this computations is an ordered list of important
inputs for each unit. Along with importance of units, and based on a preset
threshold for pruning process network description for a simplified network can
be generated.

As we mentioned before one expects to have slightly inferior performance for
the resulting network. Performance can be improved by considering the pruned
network as an initial network description and retrain it. The final net would
typically have smaller number of links and by looking at the outputs of program
one can tell which components of input feature vector have been considered and

picked by network as a clue for its discrimination task.

5.2.2 Input Test Signals

In this last method of analysis there is some expectation about the features that
might be extracted by the network and it is desired to check whether they are
indeed picked by the network. In other words the question is whether there are
some unit(s) just sensitive to that specific feature. In order to do this analysis
one can generate a set of synthetic signals with structure that is an simulation of
the target feature and use them as input test signals to the network and inspect
their corresponding outputs in time.

In our case, we want to check whether some of the units in the network is
"specifically” sensitive to formant transition slopes at the input. In order to
check this several FM signals have been generated in which frequency has tri-

angular and staircase variations in time with different rate and range of change.
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We tried to make the frequency transition slopes close to what is observed in
speech data. Then these synthetically generated inputs were passed through
cochlear model and LIN(II). The derived signal was used as input to the trained
network and figure (17) shows one of the results for a triangular FM test signal
for which the slope of frequency change is in the same range as those observed
in the transition parts of the tested plosive CV segments. As one can see none
of the units is purely dedicated to pick up transition slopes because for such
a unit activation waveforms should be antisymmetric, because of different re-
sponse to upward and downward transitions. But generally the total activation
patterns are not symmetric during the upward and downward transitions. This
is expected because of the network’s memory and dynamics of activation flow
in the network. Note also that with the combination of staircase and triangular
changes in input vector one can get some idea about which units are sensitive
to which frequency range.

Observation: Although some results have been reported about neural net-
works phoneme classifiers that have hidden units specifically responsive to for-
mant transition slopes[5], such units were not been observed in the experiments
above using recurrent networks. This is because, the self-recurrent configuration
of the temporal flow model is not suitable for detecting transitions (shifts) in
input vector, whereas with TDNN these slopes can be detected easily. This can
be shown using the following short experiment:

Try to train small networks with few binary inputs (e.g. 5-tuple input vec-
tors) to pick up the transition slopes, i.e. direction of shifts, in the input vector.
Figure(18) shows both a recurrent and a feedforward time delay single layer net-
work to be trained, along with one of training sequences. The result of training

shows that a satisfactory performance can not be achieved for the first network
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even after long training time, whereas for the second and third configurations
convergence 1s quite fast.
Using the result of this experiment and also using input-output equations we

see, a suitable network architecture for slope or shft detection is as in figure(18.e).

z[n] = X[n)T - W (5.2.4)

y[n] = z[n] — z[n — 1] % t=n (5.2.5)

These observations justify why in the suggested network none of units is
specifically dedicated to pick up formant transition, since extracting just transi-
tion slopes requires co-laboration of a large number of hidden units, at least for
the temporal flow model. In other words it would be very "expensive” for the
network to pick this feature distinctively. Also we could expect that based on
network architecture and training method a network might generate its internal
representations in a very complicated way and although we know that the tran-
sition part of plosives are important for their discrimination and the previously
mentioned experiment results with different target functions also confirmed that
but there might be no special unit dedicated to detection of transition slopes.

One may think of including pre-trained specialized subnetworks like figure(18-
e) as “fixed modules” within the hidden layers of the big network and train the
remaining free weights to achieve desired performance. This kind of network
design may result is efficient and yet small sized architectures and may also
improve the generalization and final performance of the overall system. This
approach is not a completely connectionist paradigm since the network is forced

to pick some features.
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Chapter 6

Results and Discussions

6.1 Comments on a suitable data base for
training a phoneme recognizer

Considering that isolated phonemes, without any information of the words they
are contained in, are quite confusing even to humans, one can suggest the follow-
ing features for a suitable database for training phoneme recognition systems.

1) Having a set of carefully uttered phonemes in different contexts for all
speakers.

2) Having many examples of the same phoneme for each speaker.

3) Having an exact labeling for all phoneme segments.

4) Including some more realistic examples extracted from continuous speech.

Considering the way we, as humans, learn to recognize speech sounds, in
training a speaker independent phoneme recognizer it makes sense to start with
very clearly uttered examples from all speakers, and perform training on that,
and when satisfactory results obtained on this set, we can add few more real-
istic segments extracted from continuous speech as additional inputs to check

and improve the generalization of the system. This approach becomes more im-
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portant specially when we want to analyze the internal abstract representation
of the network.

TIMIT database is one of the standard data bases that is used for speech
recognition, and mostly speaker independent word recognition. It consists of a
large number of examples of continuous speech files from many speakers. But
based on above observation, TIMIT database, like some others, is not an ideal
database for some phoneme recognition tasks It also has some labeling prob-
lems. For example in most cases it includes transition parts of the plosive-vowel
segments, under vowel label so for choosing a suitable target function for input
files one has to look at them one by one. In many cases phonemes are not
uttered carefully so although they might be understandable at word level they
are quite unclear at subword and phoneme levels. Again as an example in many
cases K-waveforms when played, sound exactly like T or P and vice versa. Also
the transitions parts are not consistently observed in randomly selected exam-
ples from this data set. So for the sake of analysis it is much better to deal
with smaller group of speakers but with many examples of carefully uttered
phonemes for each of them. With large variety of speech quality, analysis of
extracted acoustic feature would be more difficult and also less accurate. In fact
most analysis results that have been reported are based on small databases from

single speakers.

6.2 Results and Discussion

Having explained the suggested approach and its plausibility, the results of ex-
periment on speech data are presented. The convergence of averaged weighted

error using BFGS algorithm was fairly fast for the simple recurrent network
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phonemes | /p/ | /t/ | /k/
/p/ 0.98 |0.02 | 0.00
[t/ 0.00 | 1.00 | 0.00
/k/ 0.00 |0.00 | 1.00

MSE error || 0.001

Table 6.1: The confusion matrix for the training set.

phonemes || /p/ | /t/ | /k/

/p/ 0.97 |0.01|0.02
/t/ 0.10 |0.85]0.05
/k/ 0.02 |0.02 | 0.96

MSE error || 0.003

Table 6.2: The confusion matrix for the test set.
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whereas for the same task the TDNN mentioned above, convergence takes much
more time and the performance is almost the same. For a TFM network of the
same size mean square error converges to 0.0035 on training set and to 0.006
on the test set. For the suggested modified TFM the final normalized error per
frame was about 0.001, and the average recognition score was about 98% on the
training set and about 88% on the test set (Tables 1,2). When we presented the
examples, which had errors, to human listeners, we realized that in 80% of cases
the confusion made by the network was the same as human subjects. Thus,
further improvement of recognition would be possible by using higher level (e.g.
word, sentence) language processing. Examples of scoring results on the test set
are given in figure(18) and more examples are provided in appendix. Note that
in this list hypothesis 0, 1 and 2 refer to /p/ , /t/ and [k/ respectively. The
CORRECT or ERROR decisions are based on pre-defined labels in the database.
Also note that for incorrect decision cases where score ratios are greater than
one these ratios are actually very close to the threshold “one”.

In general it is difficult to compare recognition results obtained by researchers
across laboratories, because of different databases, recognition conditions, sig-
nal representations, speaking rates and speaker dependencies. There are many
factors involved, for example in phoneme recognition case, very high recognition
rates ( more than 90 percent ) can be achieved if one uses isolated utterances
rather than segments obtained from continuous speech. Also speaker normaliza-
tion, noise removal and lots of other pre/post processing could affect the results
significantly. In addition to all of these the complexity of the system and speed
are other major factors. In other words the comparison of different recognition
schemes is possible if the same input feature vectors are used and similarly in

order to decide between different speech representations, one should test them
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GRADSIM 3.0x Connectionist Simulator
Optimizer ../../score compiled for NOT COMPILED
Optimizing network: net1.60.all

Experiment: exp.tst.60

Example /vp/ti.7.IIf.bin Hypothesis 0 Score 0.009660
Example /vp/ti.7.IIf.bin Hypothesis 1 Score 0.009640
Example /vp/ti.7.IIf.bin Hypothesis 2 Score 0.009426

RATIO 1.024912 ERROR

Example /vp/pa.2.IIf.bin Hypothesis 0 Score 0.012657
Example /vp/pa.2.IIf.bin Hypothesis 1 Score 0.000925
Example /vp/pa.2.IIf.bin Hypothesis 2 Score 0.012569

RATIO 0.073601 CORRECT

Example /vp/ku.0.IIf.bin Hypothesis 0 Score 0.007440
Example /vp/ku.0.IIf.bin Hypothesis 1 Score 0.007219
Example /vp/ku.0.IIf.bin Hypothesis 2 Score 0.006938

RATIO 0.961073 CORRECT

Figure 6.1: Some of scoring results on test set, Hypothesis 0,1 and 2 refer to

phonemes T, P and K respectively
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using the same shceme. This comparison has not been given so far because of
different practical difficulties. Just for the sake of a rough comparison, experi-
ments performed by Zue et. al. [31] Waibel [19] and Robinson and Fallside [32]
on TIMIT database, can be mentioned, where they have achieved recognition
rates between 50 and 75 percent on different tasks, using parts or all of exam-
ples in the database. Considering the fact that we have extracted our data from
continuous speech of many speakers without any normalization and time warp-
ing the results are acceptable and comparable to previous result reported with
larger networks. And this confirms the validity of our arguments on one hand
and on the other hand it shows that the auditory model used in this experiment

preserves important features of short time frequency spectra of speech.
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Chapter 7

Appendix

7.1 Some of scoring results for training set

Hypothesis 0 , 1 , 2 correspond to phonemes T, P, K respectively.

GRADSIM 3.0x Connectionist Simulator
Optimizer ../../score compiled for NOT COMPILED
Optimizing network: net1.60.all

Experiment: exp.trn.60

Example /vp/ta.1.IIf.bin Hypothesis 0 Score 0.000075
Example /vp/ta.1.IIf.bin Hypothesis 1 Score 0.022253
Example /vp/ta.1.IIf.bin Hypothesis 2 Score 0.022302

RATIO 0.003386 CORRECT

Example /vp/ta.4.IIf.bin Hypothesis 0 Score 0.000473
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Example /vp/ta
Example /vp/ta
RATIO 0.020167
Example /vp/ta
Example /vp/ta
Example /vp/ta
RATIO 0.117964
Example /vp/ti
Example /vp/ti
Example /vp/ti
RATIO 0.020055
Example /vp/ti
Example /vp/ti
Example /vp/ti
RATIO 0.011486
Example /vp/ti
Example /vp/ti
Example /vp/ti
RATIO 0.023969
Example /vp/tu
Example /vp/tu
Example /vp/tu
RATIO 0.085402
Example /vp/tu
Example /vp/tu

Example /VP/tu

.4.1IIf . bin
.4.IIf.bin
CORRECT
.6.IIf.bin
.6.1If.bin
.6.1IIf.bin
CORRECT
.2.IIf.bin
.2.I1f .bin
.2.IIf.bin
CORRECT
.4.IIf.bin
.4.11f.bin
.4.11f.bin
CORRECT
.6.IIf.bin
.6.IIf.bin
.6.IIf.bin
CORRECT
.1.IIf.bin
.1.IIf.bin
.1.1IIf.bin
CORRECT
.3.1If.bin

.3.IIf.bin

.3.IIf.bin

Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis

Hypothesis

'Hypothesis
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Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Score

Score

Score
Score

Score

Score
Score

Score

Score
Score

Score

Score
Score

Score

Score
Score

Score

Score
Score

vCore

0.023471

0.023526

0.001773
0.015120

0.015027

0.000382
0.019217

0.019037

0.000212
0.0184563

0.018673

0.000516
0.021508

0.021555

0.001636

0.019157

0.019173

0.000189
0.016470

0.010010



RATIO 0.011461
Example /vp/tw
Example /vp/tw
Example /vp/tw
RATIO 0.006773
Example /vp/tw
Example /vp/tw
Example /vp/tw
RATID 0.003526
Example /vp/pa
Example /vp/pa
Example /vp/pa
RATIO 0.144201
Example /vp/pa
Example /vp/pa
Example /vp/pa
RATIO 0.016796
Example /vp/pa
Example /vp/pa
Example /vp/pa

RATIO 0.038175

Example /vp/pa.12.1If.bin
Example /vp/pa.12.IIf.bin

Example /vp/pa.12.IIf.bin

RATIO 0.044199

Example /vp/pi

CORRECT
.0.1If.bin
.0.IIf.bin
.0.IIf.bin

CORRECT
.7.11f.bin
.7.1If.bin
.7.1If.bin

CORRECT
.1.IIf.bin
.1.IIf.bin
.1.1If.bin

CORRECT
.3.1If.bin
.3.1If .bin
.3.IIf.bin

CORRECT
.8.1If.bin
.8.I1If.bin
.8.1If.bin

CORRECT

CORRECT

.7.1If.bin
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Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis
Hypothesis
Hypothesis

Hypothesis

Hypothesis

Score
Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

.000104
.015386

.015794

.000086

.024384

.024433

.013572

.001944

.013480

.026333

.000441

.026271

.020409

.000779

.020587

.016174

.000712

.016117

.020528



Example /vp/pi.
Example /vp/pi.
RATIO 0.023910
Example /vp/pi.
Example /vp/pi.
Example /vp/pi.
RATIO 0.027526
Example /vp/pi.
Example /vp/pi.
Example /vp/pi.
RATIO 1.031918
Example /vp/pu.
Example /vp/pu.
Example /vp/pu.
RATIO 0.022806
Example /vp/pw.
Example /vp/pw.
Example /vp/pw.
RATIO 0.036108
Example /vp/ka.
Example /vp/ka.
Example /vp/ka.
RATIO 0.632643
Example /vp/ka.
Example /vp/ka.

Example /vp/ka.

7.IIf.bin
7.11f.bin
CORRECT
10.IIf.bin
10.IIf.bin
10.1If.bin
CORRECT
18.IIf.bin
18.IIf.bin
18.IIf.bin
ERROR
2.IIf.bin
2.IIf.bin
2.IIf.bin
CORRECT
1.IIf.bin
1.IIf.bin
1.IIf.bin
CORRECT
2.IIf.bin
2.IIf.bin
2.IIf.bin
CORRECT
22.IIf.bin
22.IIf.bin

22.IIf.bin
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Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

.000491

.020596

.013898

.000380

.013812

.005043

.004977

.004823

.020440

.000464

.020346

.019155
.000688

.019050

.012801

.012651

.008003

.013877

.013761

. 006389



RATIO 0.
Example
Example
Example
RATIO 0.
Example
Example
Example
RATIO O.
Example
Example
Example
RATIO O.
Example
Example
Example
RATIO 0.
Example
Example
Example
RATIO O.
Example
Example
Example
RATIO 0.

Example

464331
/vp/ka
/vp/ka
/vp/ka
015851
/vp/ka
/vp/ka
/vp/ka
008770
/vp/ki
/vp/ki
/vp/ki
976691
/vp/ki
/vp/ki
/vp/ki
977698
/vp/ku
/vp/ku
/vp/ku
010383
/vp/ku
/vp/ku
/vp/ku
052231

/vp/ku

CORRECT
.24 .I1f.bin
.24.IIf.bin
.24.IIf.bin

CORRECT
.26.IIf.bin
.26.IIf.bin
.26.11f.bin

CORRECT
.0.IIf.bin
.0.IIf.bin
.0.IIf.bin

CORRECT
.8.1IIf.bin
.8.IIf.bin
.8.1If.bin

CORRECT
.2.IIf.bin
.2.IIf.bin
.2.IIf.bin

CORRECT
.4.IIf.bin
.4.IIf.bin
.4.IIf.bin

CORRECT

.7.1If.bin
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Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis
Hypothesis
Hypothesis

Hypothesis

Hypothesis

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

.021523
.021473

.000340

.015607
.015620

.000137

.007525
.007436

.007263

.006996
.007002

.006840

.021404
.021706

.000222

.018570

.018833

.000970

.017232



Example /vp/ku.7.IIf.bin Hypothesis
Example /vp/ku.7.IIf.bin Hypothesis
RATIO 0.009462 CORRECT

Example /vp/kw.1.IIf.bin Hypothesis
Example /vp/kw.1.IIf.bin Hypothesis
Example /vp/kw.1.IIf.bin Hypothesis

RATIO 0.007913 CORRECT

Score

Score

Score

Score

Score

0.017034

0.000161

0.020990
0.021051

0.000166

7.2 Some of scoring results for test set

Hypothesis 0 , 1 , 2 correspond to phonemes T, P, K respectively.

GRADSIM 3.0x Connectionist Simulator

Optimizer ../../score compiled for NOT COMPILED

Optimizing network: net1.60.all

Experiment: exp.tst.60

Example /vp/ta.2.IIf.bin Hypothesis 0 Score 0.000416

Example /vp/ta.2.IIf.bin Hypothesis 1 Score 0.016294

Example /vp/ta.2.IIf.bin Hypothesis 2. Score 0.017646
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RATIO 0.025514
Example /vp/ta
Example /vp/ta
Example /vp/ta
RATIO 0.031859
Example /vp/ta
Example /vp/ta
Example /vp/ta

RATIO 0.051319

Example /vp/ta.
Example /vp/ta.

Example /vp/ta.

RATIO 0.087750
Example /vp/ti
Example /vp/ti
Example /vp/ti
RATIO 0.018056
Example /vp/ti
Example /vp/ti
Example /vp/ti

RATIO 1.024912

Example /vp/ti.
Example /vp/ti.

Example /vp/ti.

RATIO 0.023348

Example /vP/tu

CORRECT
.5.IIf.bin
.5.1If.bin
.5.IIf.bin

CORRECT
.8.1If.bin
.8.IIf.bin
.8.1If.bin

CORRECT
10.IIf.bin
10.IIf.bin
10.IIf.bin

CORRECT
.5.1If.bin
.6.IIf.bin
.5.1If.bin

CORRECT
.7.1If .bin
.7.IIf.bin
.7.IIf.bin

ERROR
15.IIf.bin
15.IIf.bin
15.IIf.bin

CORRECT

.0.IIf.bin

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis
Hypothesis
Hypothesis
Hypothesis
Hypothesis
Hypothesis

Hypothesis

HyPothesis

71

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

.000586

.018462

.018400

.000954

.018598

.019285

.000863

.009833

.010151

.000275

.0152086

.015783

.009660

.009640

.009426

.000258

.011066

.011450

.000755



Example /vp/tu
Example /vp/tu
RATIO 0.049884
Example /vp/tu
Example /vp/tu
Example /vp/tu
RATIO 0.088363
Example /vp/tu
Example /vp/tu
Example /vp/tu
RATIO 1.082371
Example /vp/tw
Example /vp/tw
Example /vp/tw
RATIO 0.068642
Example /vp/tw
Example /vp/tw
Example /vp/tw

RATIO 1.106883

Example /vp/tw.
Example /vp/tw.

Example /vp/tw.

RATIO 0.049553

Example /vp/tw.
Example /vp/tw.

Example /vp/tw.

.0.IIf.bin
.0.1IIf.bin
CORRECT
.2.I1f .bin
.2.IIf.bin
.2.IIf.bin
CORRECT
.6.1IIf.bin
.6.IIf.bin
.6.1If .bin
ERROR
.2.1If.bin
.2.1If .bin
.2.I1f .bin
CORRECT
.6.IIf.bin
.6.I1f.bin
.6.IIf.bin

ERROR

CORRECT

Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

17.1If.bin Hypothesis
17.1I1f.bin Hypothesis

17.1If.bin Hypothesis

21.IIf.bin Hypothesis
21.IIf.bin Hypothesis

21.1If.bin Hypothesis
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Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score
Score

Score

Score

Score

Score

Score

Score

Score

.015135

.015241

.002097
.025454

.023734

.006705
.006559

.006194

.001367

.019993

.019921

.007669
.007497

.006928

.001247
.025173

.025933

.002061
.017677

.018101



RATIO 0.
Example
Example
Example
RATIO 1.
Example
Example
Example
RATIO 0.
Example
Example
Example
RATIO O.
Example
Example
Example
RATIO 0.
Example
Example
Example
RATIO O.
Example
Example
Example
RATIO 0.

Example

116603
/vp/pa
/vp/pa
/vp/pa
044033

/vp/pa.
/vp/pa.
/vp/pa.

525504

/vp/pa.
/vp/pa.
/vp/pa.

173306

/vp/pa.
/vp/pa.

/vp/pa.

027770

/vp/pa.
/vp/pa.
/vp/pa.

445069

/vp/pa.
/vp/pa.
/vp/pa.

312674

/vp/pi

CORRECT
.5.11f.bin Hypothesis
.5.IIf.bin Hypothesis
.5.IIf.bin Hypothesis
ERROR
10.IIf.bin Hypothesis
10.IIf.bin Hypothesis
10.IIf.bin Hypothesis
CORRECT
14.1IIf.bin Hypothesis
14.IIf.bin Hypothesis
14.IIf.bin Hypothesis
CORRECT
19.IIf.bin Hypothesis
19.IIf.bin Hypothesis
19.IIf.bin Hypothesis
CORRECT
22.1I1f.bin Hypothesis
22.1I1f.bin Hypothesis
22.IIf.bin Hypothesis
CORRECT
25.1IIf.bin Hypothesis
25.IIf.bin Hypothesis
25.I1f.bin Hypothesis

CORRECT

.6.IIf .bin Hypothesis

73

Score
Score

Score

Score

Score

Score

Score
Score

Score

Score
Score

Score

Score
Score

Score

Score

Score

Score

Score

.006812
.005687

.005447

.008071

.004111

.007822

.020438
.003240

.018694

.017248
.000479

.017282

.009539
.004038

.009073

.021402

.005897

.018861

.008013



Example /vp/pi.
Example /vp/pi.
RATIO 1.048896
Example /vp/pi.
Example /vp/pi.
Example /vp/pi.
RATIO 0.308380
Example /vp/pi.
Example /vp/pi.
Example /vp/pi.
RATIO 0.335662
Example /vp/pi.
Example /vp/pi.
Example /vp/pi.
RATIO 0.507179
Example /vp/pu.
Example /vp/pu.
Example /vp/pu.
RATID 0.214439
Example /vp/pu.
Example /vp/pu.
Example /vp/pu.
RATIO 1.043729
Example /vp/pw.
Example /vp/pw.

Example /vp/pw.

6.1IIf.bin
6.IIf.bin
ERROR
8.IIf.bin
8.IIf.bin
8.IIf.bin
CORRECT
17.1If.bin
17 .1If.bin
17 .IIf.bin
CORRECT
19.IIf.bin
19.IIf.bin
19.1IIf.bin
CORRECT
3.IIf.bin
3.IIf.bin
3.IIf.bin
CORRECT
5.1If.bin
5.IIf.bin
5.1IIf.bin
ERROR
0.IIf.bin
0.I1f.bin

0.IIf.bin

Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis

74

Score

Score

Score
Score

Score

Score
Score

Score

Score
Score

Score

Score
Score

Score

Score
Score

Score

Score
Score

Score

.007912

.007543

.008025
.002403

.007793

.010675
.003538

.010541

.010994
.005418

.010682

.012029
.002549

.011889

.004381
.004303

.004123

.009867
.012994

.004696



RATIO 2.
Example
Example
Example
RATIO O.
Example
Example
Example
RATIO 0.
Example
Example
Example
RATIO O.
Example
Example
Example
RATIO O.
Example
Example
Example
RATIO O.
Example
Example
Example
RATIO O.

Example

766700
/vp/ka
/vp/ka
/vp/ka
800507
/vp/ka
/vp/ka
/vp/ka
185126
/vp/ka
/vp/ka
/vp/ka
051192
/vp/ka
/vp/ka
/vp/ka
957839

/vp/ka.
/vp/ka.
/vp/ka.

022334

/vp/ka.
/vp/ka.
/vp/ka.

705051

/vp/ka.

ERROR
.1.IIf.bin Hypothesis
.1.IIf.bin Hypothesis
.1.IIf.bin Hypothesis
CORRECT
.4.1IIf .bin Hypothesis
.4.IIf .bin Hypothesis
.4.1If .bin Hypothesis
CORRECT
.9.1If.bin Hypothesis
.9.IIf.bin Hypothesis
.9.IIf.bin Hypothesis
CORRECT
.11.I1f.bin Hypothesis
.11.1If.bin Hypothesis
.11.IIf.bin Hypothesis
CORRECT
25.1I1f.bin Hypothesis
25.1IIf.bin Hypothesis
25.1If.bin Hypothesis
CORRECT
27 .11f.bin Hypothesis
27.IIf.bin Hypothesis
27 .1If.bin Hypothesis
CORRECT

29 .IIf.bin Hypothesis

75

Score

Score

Score

Score

Score

Score

Score
Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

.010001

.010196

.008006

.024100

.024417

.004462

.018690
.018261

.000935

.006037

.005927

.005677

.020615

.019587

.000437

.01562563

.023140

.010754

.016071



Example /vp/ka.29.IIf.bin Hypothesis

Example /vp/ka.29.IIf.bin Hypothesis

RATIO 0.315629

CORRECT

Example /vp/ka.35.IIf.bin Hypothesis

Example /vp/ka.35.IIf.bin Hypothesis

Example /vp/ka.35.1If.bin Hypothesis

RATIO 0.224379
Example /vp/ki
Example /vp/ki
Example /vp/ki
RATIO 0.956526
Example /vp/ku
Example /vp/ku
Example /vp/ku
RATIO 0.482327
Example /vp/ku
Example /vp/ku
Example /vp/ku
RATIO 0.956431
Example /vp/kw
Example /vp/kw
Example /vp/kw

RATIO 0.015132

CORRECT
.5.IIf.bin
.5.IIf.bin
.5.1If .bin

CORRECT
.5.IIf.bin
.5.1If.bin
.5.IIf.bin

CORRECT
.8.IIf.bin
.8.11f.bin
.8.IIf.bin

CORRECT
.1.IIf.bin
.1.IIf.bin
.1.IIf.bin

CORRECT

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis
Hypothesis

Hypothesis

Hypothesis

Hypothesis

Hypothesis

76

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score

Score
Score

Score

Score

Score

Score

.015168

.004787

.015242
.014413

.003234

.006838
.006659

.006370

.015640
.015249

.007355

.009926
.009669

.009248

.020892
.020008

.000303
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