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During embryonic development, cells communicate with each other to 

cooperate to form organized tissues. Cells spatiotemporally coordinate with each other 

by communicating with signaling proteins such as Fibroblast Growth Factor (FGF) that 

travel from source to target cells to activate various functions. To better understand cell 

communication during tissue morphogenesis, this study aimed to address a 

fundamental question: how different cellular and molecular mechanisms in signal-

producing cells prepare and release signals at the correct time and location and at an 

appropriate level. This research focuses on the intercellular communication of 

the Drosophila FGF Branchless (Bnl) to elucidate this question. Bnl is dynamically 

produced in restricted groups of cells to induce morphogenesis of tracheal airway 



  

epithelial tubes. Tracheal cells receive the signal over distance by extending long 

receptor-containing filopodia, or cytonemes, to dynamically contact the Bnl-source. 

This work discovered two post-translational modifications of Bnl that regulate its 

polarized intracellular trafficking and cytoneme-mediated intercellular dispersal. 

During intracellular trafficking through the source cell Golgi network, Bnl is endo-

proteolytically cleaved at a single site by the protease Furin-1. This cleavage activates 

polarized intracellular trafficking of the truncated signal exclusively to the surface of 

the source cells that faces the recipient tracheal cells. Thus, the intracellular cleavage 

acts as a switch to catalyze the efficient trafficking of the signal to the correct location 

from where cytonemes can subsequently receive it. Secondly, in the endoplasmic 

reticulum of source cells, Bnl is modified with a glycosylphosphatidylinositol (GPI) 

moiety at its C-terminus. This lipid moiety tethers Bnl molecules to the outer leaflet of 

the cell membrane, inhibiting its free release and ensuring signal exchange solely by 

direct physical contacts established by cytonemes. Therefore, this study discovered 

how Bnl is prepared by the source cells to ensure its subsequent target-specific 

intercellular dispersion through cytonemes. Conserved FGF family proteins are 

essential for regulating a broad spectrum of biological functions and defects in 

spatiotemporal levels of FGF signaling leads to severe diseases. Given the conservation 

of developmental signaling mechanisms in all organisms, the discovery of new 

regulatory mechanisms of FGF signaling has fundamental implications for 

understanding development and disease in humans. 
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Chapter 1: Introduction 

1.1 Cell-Cell Communication 

Cell-cell signaling is critical for the development of complex structures in every 

multicellular organism and is also important for the maintenance and homeostasis of 

adult tissues. The first experimental report implicating the importance of non-

autonomous instructive signaling between cells was reported about 100 years ago by 

Mangold and Spemann in their famous cross-species grafting experiments in 

amphibian embryos (1924; Nobel Prize to Spemann 1934). When they grafted the 

blastopore dorsal lip from one gastrulating newt embryo onto an ectopic location of 

another host embryo of a different species, it induced ectopic gastrulation, resulting in 

two-headed tadpoles (Spemann and Mangold, 1924). As only cells originating from the 

blastopore could induce the host cells to achieve their new fates, Spemann and Mangold 

proposed that these cells create some “inducer” substance, such as a small, organic 

molecule that could freely diffuse between cells to mediate its instructive function to 

organize and influence the development of other cells and tissues. Research during the 

last four decades has identified almost all major pattern-inducing signaling proteins. 

Surprisingly, despite the amount of incredibly diverse patterns, the signaling proteins 

were found to be highly conserved throughout the animal kingdom. Further, they fall 

into only 11 main classes, which have been defined by the ligand or signal transducers 

involved: Notch, epidermal growth factor (EGF), fibroblast growth factor (FGF), 

Wnt/Wingless (Wg), Hedgehog (Hh), transforming growth factor β (TGFβ)/BMPs, 
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cytokines, Hippo, Jun kinase (JNK), NF-κB, and retinoic acid receptor (RAR). These 

pathways involve either cell-to-cell contact via surface proteins (juxtacrine signaling), 

or secreted growth and differentiation factors (paracrine signaling). Among these 

pathways, only Notch and Hippo are juxtacrine, whereas the others are paracrine 

(Perrimon et al., 2012). My thesis work focused on the local paracrine signaling 

mechanism and addresses one of the key regulatory steps in paracrine signaling - how 

the signal is controlled for release to ensure its target-specific dispersal through 

extracellular space.  

The two most influential theories on how signal dispersion through a naive 

tissue might play an important role in inducing spatial tissue patterns were proposed 

long before the discovery of the first signaling molecules. In 1952, British 

mathematician Alan Turing, in his Chemical Basis of Morphogenesis (1952), coined 

the term "morphogen" for pattern-inducing chemicals that diffuse between cells to 

induce concentration-dependent responses. Turing established equations to model a 

“reaction-diffusion” mechanism where two morphogens with different diffusion 

capabilities form patterns (Turing, 1952). For instance, in his activator-inhibitor model, 

one morphogen acts as the “activator”, which diffuses slowly and elicits a response in 

a recipient cell if it surpasses a certain concentration in that cell. The other morphogen 

is produced in response to the first morphogen and acts as an “inhibitor” of the activator 

but diffuses further and faster than the activator. The counteracting balance of these 

morphogens along with their differential diffusivity could therefore elicit responses in 

a field of cells in periodic patterns. Later in the 1960’s, Lewis Wolpert proposed the 

theory of positional information to further explain how more complex patterns could 
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be established from simple prior asymmetries in the tissue. The concept of positional 

information proposes that cells acquire positional values as in a coordinate system, 

which they interpret by developing in particular ways to give rise to spatial patterns 

(Wolpert, 1971). He proposed that recipient cells within a developing tissue are 

sensitive enough to be able to detect very small differences in morphogen 

concentrations. Different positions within a tissue could be defined and established 

based on the difference in concentration of morphogen received. Thus, Wolpert’s 

“French flag model” was created where cells in a recipient field respond differently to 

gradually lower concentrations of a morphogen with increasing distance from the 

morphogen source (Wolpert, 1969; 1971). This morphogen gradient induces recipient 

cells to exhibit threshold-dependent changes in behavior, such as gene expression 

differences, thereby endowing them with positional information within the tissue.  

Although the theoretical models of both Turing and Wolpert can explain many 

of the signal and signaling patterns observed during pattern formation (Green and 

Sharpe, 2015), how a signal might move across a tissue to set up a concentration-

dependent positional response remained highly controversial. For instance, four 

radically different mechanisms were proposed to explain the dispersion pattern of the 

TGFb homolog Decapentaplegic (Dpp) in the Drosophila larval wing imaginal disc: 1) 

free diffusion through extracellular space (Teleman and Cohen, 2000; Hufnagel et al., 

2006); 2) serial transfer between neighboring cells using transcytosis and endocytic 

trafficking (González-Gaitán, 2003; Kicheva et al., 2007); 3) extracellular transport 

within lipoprotein particles (Eaton, 2006; Panáková et al., 2005); and 4) direct transfer 

mediated by filopodial protrusions called cytonemes (Ramírez-Weber and Kornberg, 
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1999; Hsiung et al., 2005; reviewed in Kornberg and Guha, 2007) (Figure 1.1). Most 

biophysical and mathematical analyses supported a simple diffusion-based signal 

dispersion and gradient formation model over a single plane of cells (mechanism 1 

above) (Yu et al., 2009; Müller et al., 2013). However, tissues in a developing embryo 

have complex contours and geography (Roy and Kornberg, 2015). Moreover, available 

published experimental evidence did not definitively establish any of these proposed 

mechanisms as operative or inoperative. It was unclear how these processes could be 

responsible for complex pattern formation in development until the recent 

demonstration of cytoneme-mediated Dpp dispersion (Roy et al., 2011; 2014) provided 

a new perspective on paracrine signaling (Figure 1.1).  

 

Figure 1-1: Proposed models of morphogen dispersal 

Four mechanisms of morphogen distribution were proposed based on the distribution of Dpp in the wing 

disc. In the “Diffusion” model, signaling proteins are secreted from the producing cell and freely diffuse 

Kornberg & Guha. Curr Opin Genet Dev 2007
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through the extracellular environment. The “Serial transfer” model involves transcytosis and endocytosis 

of the signals to pass them between neighboring cells. The “Lipoprotein particle transfer” model involves 

the extracellular transport of signals that are contained within lipoprotein particles. In the “Direct 

transfer” model, signals are exchanged between cells via direct contact mediated by cytonemes that 

bridge the gap between the signal producing and recipient cells (adapted from Kornberg & Guha. Curr 

Opin Genet Dev 2007). 

1.2 Discovery of cytoneme-mediated signaling 

In 1999, a discovery from Tom Kornberg’s lab (Ramírez-Weber and Kornberg, 

1999) identified the existence of cytonemes in the Drosophila wing imaginal disc. They 

observed that Dpp-responding cells from the flanking region of the wing disc extended 

long, polarized filopodia or cytonemes towards the Dpp-expressing cells located in the 

center of the disc. These cytonemes were found to be ~200 nm in diameter and were 

only observed in live imaging conditions when GFP was over-expressed in the flanking 

wing disc region. Subsequent studies demonstrated that these cytonemes can respond 

to Dpp signaling and localize the Dpp receptor Thickveins (Tkv) (Hsiung et al., 2005). 

Although imaging and analyzing cytonemes was extremely challenging, in 2011 the 

wide-spread existence of cytonemes in many types of cells and tissues in Drosophila 

was first reported (Roy et al., 2011). In wing disc columnar cells, cytonemes were 

found to emanate from both the apical and basal membranes of cells. Furthermore, 

cytonemes from different locations within a single cell and in different tissues were 

shown to have different signaling specificities (Roy et al., 2011). Cytonemes from the 

apical part of the wing disc project towards the Dpp source cells in the wing disc, but 

their basal cytonemes do not. The use of a wing disc-associated tracheal branch called 

the Air-sac primordium (ASP) as a simple model system provided unique advantages 

that significantly advanced the cytoneme field (Figure 1-2, A). The ASP extends 
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cytonemes towards two different signal sources in the wing disc: FGF and Dpp (Figure 

1-2, B). The finding that the receptors for FGF and Dpp (Breathless (Btl) and Tkv, 

respectively) independently sort into signal-specific cytonemes (Figure 1-2, D-F) 

strongly favored the idea that cytonemes mediate the transport of signals between cells. 

The first direct evidence that cytonemes are the conduits of signal exchange and 

transport came when the ASP cytonemes that orient towards the Dpp source were found 

to localize Tkv and receive Dpp in a receptor-dependent manner. Receptor-bound Dpp 

was shown to move toward the ASP cells in a retrograde manner (Figure 1-2) (Roy et 

al., 2014). Using a GFP-reconstitution experiment, Roy et al. (2014) also showed that 

the ASP cytonemes establish direct physical contact with the source and in absence of 

these contacts, Dpp cannot be received by the ASP cells that extended the cytonemes. 

Consequently, these cells could not activate signaling and the ASP developed 

abnormally. Importantly, genetic conditions that removed the source-ASP cytoneme 

contacts did not remove the inherent ability of the ASP cells to signal or to make 

cytonemes. If Dpp was expressed in cytoneme-deficient ASP cells, these cells could 

autonomously induce signaling. These experiments unequivocally established that 

cytonemes are responsible for signal exchange at their source cell contact sites and are 

essential for signaling. Since the discovery of cytonemes, there have been numerous 

reports on both invertebrate and vertebrate models demonstrating that cytonemes and 

cytoneme-like projections are associated with various signaling proteins such as EGF, 

Hh, Notch/Delta, Wnt, and FGF (Roy et al., 2014; Rojas-Ríos et al., 2012; Kornberg, 

2014; Du et al., 2018a; Sanders et al., 2013; Huang and Kornberg, 2015; Stanganello 
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et al., 2015; Roy and Kornberg, 2015), suggesting a universal role for these specialized 

cellular structures (Kornberg and Roy, 2014). A recent study has provided strong  

 

Figure 1-2: ASP cytonemes containing Tkv transport Dpp 

(A) Drawings of different stages of 3rd instar larval wing discs that depict the growth of the ASP (red) 

and the relative positions of wing disc cells expressing Dpp (green) and FGF (blue). (B, B’) Expression 

of CD8:Cherry in the ASP marks the ASP and ASP cytonemes (red) and expression of Dpp:GFP marks 

Roy et al. Science 2014
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the Dpp source cells in the wing disc (green). Dpp:GFP is seen in lateral cytonemes (arrows) that contact 

the Dpp source, but not tip cytonemes (arrowhead). Left panel (merge), right panel (GFP). (C, C’) 

Expression of Tkv:cherry in the ASP and Dpp:GFP in the Dpp source cells shows that lateral Tkv-

containing ASP cytonemes (red) receive Dpp:GFP (green). (C) Dpp:GFP and Tkv:Cherry colocalize in 

punctate form in the ASP (arrows in C’). (D) FGFR:Cherry expressed in the ASP (red) marks tip 

cytonemes that extend beyond Dpp:GFP in the Dpp-expressing wing disc cells (green). Dpp:GFP did 

not localize on cytonemes marked by FGFR:Cherry. (E,F) Only the cytonemes marked with Tkv:Cherry 

that make contact with Dpp-expressing cells localize Dpp:GFP. F, merge. F’, GFP. Scale bars, 10 µm 

(adapted from Roy et al. Science 2014). 
 

evidence with unprecedented resolution that ASP cytonemes also receive FGF in a 

contact-dependent manner (Du et al., 2018a). The signals are transported along the 

surface of the cytonemes in a receptor-bound form and are endocytosed in Rab7-bound 

vesicles within the ASP. This study also thoroughly revealed how cytoneme-mediated 

signaling can create an FGF morphogen gradient and tissue patterns (Du et al., 2018a). 

However, there has been no examination on how FGF-producing cells may regulate the 

signal in order to ensure that the cytoneme-mediated signaling of FGF is 

spatiotemporally regulated. Thus, although these studies have considerably helped 

advance the cytoneme field, there is still much to uncover about the foundational 

molecular mechanisms that control cytoneme-mediated signaling.  

1.3 Fibroblast Growth Factors 

Fibroblast Growth Factors (FGFs) are a family of signaling proteins that 

regulate the development of many tissues during embryogenesis and also function in 

adult tissues to regulate metabolism and to maintain and regenerate tissues (Nies et al., 

2015; Itoh and Ornitz, 2011; Teven et al., 2014). In addition, defects in FGF have been 

implicated in several diseases, including cancer, asthma, and Alzheimer’s (Mashayekhi 

et al., 2010; Turner and Grose, 2010; Volckaert and De Langhe, 2014; Bergwitz and 
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Jüppner, 2012). Despite their crucial role in development and disease, surprisingly little 

is known about how FGFs are exchanged between tissues or how FGF-producing cells 

control the release of the signal in order to maintain wild type spatiotemporal levels of 

signaling. 

1.4 Mammalian FGFs 

The first FGFs isolated, Fgf1 and Fgf2, were purified over 40 years ago from 

the bovine brain and pituitary gland (Gospodarowicz, 1974; Gospodarowicz et al., 

1978). These proteins were found to induce growth and mitosis of fibroblast cells, and 

hence were named “Fibroblast Growth Factors”. Thereafter, many more FGFs were 

discovered based on homology to Fgf1 and Fgf2. It is now known that the human and 

mouse FGF families are composed of 7 subfamilies with 22 total members (reviewed 

in Itoh and Ornitz, 2004). Of the 7 subfamilies, one subfamily comprised of the three 

Fgf15/19-like FGFs act as endocrine FGFs that travel over long distances to act on their 

targets. Members of the Fgf13-like subfamily act as intracrine FGFs, and are also 

referred to as fibroblast growth factor homologous factors (FHF), as they don’t function 

in the same manner as the rest of the FGF family members (Goldfarb, 2005). Instead 

of traveling over distance to act on target cells, they act intracellularly in a receptor-

independent manner to regulate the excitability of neurons and possibly other cell types 

by influencing voltage gated sodium channels (Goldfarb et al., 2007). The remaining 5 

FGF subfamilies (Fgf4-, Fgf5-, Fgf8-, Fgf9-, and Fgf10-like) are comprised of 

canonical paracrine FGFs. The paracrine FGFs are secreted signaling proteins that 

travel locally between adjacent tissues and act on their target cells by binding to 

Fibroblast Growth Factor Receptor (FGFRs).  
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1.5 Mammalian FGF Receptors 

FGFRs are Receptor Tyrosine Kinases (RTKs) that contain an extracellular 

portion with several immunoglobulin-like domains, a transmembrane domain, and a 

cytosolic portion that contains tyrosine kinase domains (Ornitz and Itoh, 2001). FGF 

binding to FGFR induces dimerization of two FGFRs and subsequent 

transphosphorylation of their cytosolic domains (Eswarakumar et al., 2005). This 

stimulates downstream events to activate one of several possible signaling pathways, 

including RAS-RAF-MAPK, PI3K-AKT, STAT, and PLCg (Beenken and 

Mohammadi, 2009; Turner and Grose, 2010). In human and mouse, four FGFR genes 

(Fgfr1-4) have been identified, although alternative splicing of Fgfr1-3 can create two 

different variants of each. Therefore, 7 major forms of FGFR can be generated, each 

with different spatiotemporal expression and ligand specificity (Zhang et al., 2006). 

Theoretically, over 70 different FGF/FGFR interactions are possible. The binding 

specificities of different FGF/FGFRs have been examined in vitro, but less is known 

about the actual pairings in vivo. Furthermore, the expression pattern of different FGFs 

or FGFRs are not fully understood and often overlap in vivo (Zhang et al., 2006). These 

complexities make it very difficult to reliably study FGF signaling in mammals. 

1.6 Evolution the FGF family 

The nematode C. elegans (Caenorhabditis elegans) has 2 Fgf-like genes (egl-

17 and let-756) (Huang and Stern, 2005), while Ciona intestinalis (a member of the 

Urochordata, the earliest-branching subphylum of Chordata), contains six Fgf-like  
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Figure 1-3: Proposed evolution of the Fgf gene family  

Schematic showing the proposed evolution of the Fgf family. Gene duplication during early animal 

evolution created Fgf4-like from Fgf13-like. Fgf4-like is the common ancestor for the canonical 

paracrine Fgf subfamilies as well as the endocrine Fgf15-like subfamily. Fgf13-like is the ancestor of the 

intracrine Fgf subfamily (adapted from Itoh & Ornitz. Dev Dyn 2007). 
 

genes, which are likely ancestors of the human/mouse FGF subfamilies (Itoh and 

Ornitz, 2011). This suggests that most members of the FGF subfamilies are a result of 

gene duplication after the divergence of protostomes (which include insects) and 

deuterostomes (which include mammals and other chordates). An evolutionary history 

of FGFs (proposed by Itoh and Ornitz (2007), Figure 1-3) starts with the single 

ancestral gene Fgf13-like, an intracrine-acting protein. Through gene duplication 

during early metazoan development, Fgf4-like was generated from Fgf13-like. Fgf4-

like gained a signal sequence and the ability to be secreted and is likely the ancestral 

Itoh & Ornitz. Dev Dyn 2007
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gene of all paracrine FGFs. After the protostome/deuterostome divergence, the other 

paracrine FGF subfamily ancestral genes (Fgf5-like, 8-like, 9-like, and 10-like) resulted 

from duplication of Fgf4-like. As no ancestral gene of endocrine Fgfs has been 

identified in C. intestinalis (an early deuterostome), the endocrine Fgf ancestral gene 

(Fgf15/19-like) may have arisen early in vertebrate evolution via duplication of Fgf4-

like. During this period, Fgf15/19 likely lost its affinity to proteins in the extracellular 

matrix (ECM) and therefore was able to act in an endocrine fashion. Finally, the 

members of each Fgf subfamily expanded into 3 or 4 members during two large 

genome duplication events during early vertebrate evolution. 

1.7 Drosophila FGFs and FGFRs  

In the fruit fly Drosophila melanogaster, there are three FGFs and two FGFRs 

(Muha and Müller, 2013). Pyramus (Pyr) and Thisbe (Ths), two of the Drosophila 

FGFs, share high sequence similarity in their core conserved FGF domain with the 

vertebrate Fgf8/17/18 subfamily (Gryzik and Müller, 2004). Pyr and Ths both function 

by binding to the Drosophila FGFR Heartless (Htl) (Muha and Müller, 2013). During 

gastrulation of the Drosophila embryo, signaling through Htl mediated by both Pyr and 

Ths is essential for the establishment of the mesoderm. Pyr and Ths are expressed in 

the neuroectoderm and signal to Htl-expressing mesoderm cells to give rise to several 

mesodermal lineages, including heart, somatic muscle, and fat body (Beiman et al., 

1996; Gisselbrecht et al., 1996; Gryzik and Müller, 2004; Stathopoulos et al., 2004). 

FGF signaling through Htl is also essential for the morphogenesis of neuroectoderm-

derived glia in the nervous system. In this context, Ths was shown to be responsible 
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for glial differentiation while Pyr was shown to be responsible for migration (Shishido 

et al., 1997). 

Branchless (Bnl), the third Drosophila FGF, is functionally analogous to 

vertebrate Fgf10, which mediates the branching morphogenesis of the mammalian 

lung. Bnl functions by binding to the only other Drosophila FGFR Breathless (Btl) to 

fulfill its most well-studied role of regulating branching morphogenesis of the fly 

tracheal system (Sutherland et al., 1996). Recently, Bnl has been implicated in 

morphogenesis of the developing Drosophila eye disc (Mukherjee et al., 2012). It was 

shown that Bnl is responsible for restructuring eye disc cells to ensure that they 

properly form ommatidial clusters. Furthermore, Bnl regulates basal glia migration in 

the retina by signaling to Btl-expressing glial cells (Mukherjee et al., 2012). Bnl is also 

necessary in the developing Drosophila male genital disc to guide the migration of Btl-

expressing mesodermal cells that eventually give rise to internal components of the 

male genitalia (Ahmad and Baker, 2002). 

The Drosophila FGFRs Htl and Btl function as classical RTKs (Muha and 

Müller, 2013). Both contain two intracellular kinase domains for signal transduction, a 

transmembrane domain to anchor them in the membrane, and extracellular 

immunoglobulin (IG)-like domains to mediate ligand binding and dimerization. The 

intracellular kinase domains of Htl and Btl have high sequence homology with over 

75% amino acid identity. However, the extracellular portions of Htl and Btl differ 

significantly, as Htl has two IG-like domains while Btl has five (Shishido et al., 1993). 

This, along with the differences in the Drosophila FGF ligand core domains, is likely 
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why Bnl cannot activate Htl and neither Pyr nor Ths can activate Btl (Kadam et al., 

2009).  

It is notable that human and mouse contain 22 FGFs each, while Drosophila 

contains only 3 FGFs. However, despite the large difference in number of FGF 

members in mammals and Drosophila, their functions are strongly conserved. FGF 

signaling in both the fly and vertebrates is implicated in similar cellular events such as 

survival, proliferation, differentiation, and migration. For example, branch formation 

of the mammalian lung and Drosophila trachea and air sacs are both mediated by FGFs: 

Bnl in fly, Fgf10 in mammals (Metzger and Krasnow, 1999). Additionally, Fgf8 directs 

the migration of epiblast cells at the primitive streak in the early mouse gastrula, 

(Ciruna and Rossant, 2001) while the Fgf8-like Drosophila ligands Pyr and Ths 

similarly guide mesoderm cells expressing Htl in the ectoderm (Klingseisen et al., 

2009; Clark et al., 2011). Therefore, although there is a discrepancy in the number of 

FGFs across evolution, Drosophila is a very useful model for studying paracrine FGF 

signaling and provides several advantages over mammalian models, such as quicker 

generation times, cost effectiveness, and unique genetic tools. Furthermore, the 

presence of fewer FGFs in Drosophila and the exclusivity in Bnl/Btl signaling (one 

ligand, one receptor) also provide unique advantages to study FGF signaling.  

1.8 FGF signaling pathway  

In the classical FGF RTK signaling pathway (Figure 1-4), FGF binding to its 

receptor induces receptor dimerization and subsequent transphosphorylation of their 

cytoplasmic domains. This stimulates downstream events to activate one of several 

possible signaling pathways, including MAPK/ERK, PI3K-AKT, STAT, and 
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PLCg (Beenken and Mohammadi, 2009; Turner and Grose, 2010). The Drosophila 

protein Stumps/Downstream of FGF (Dof), which constitutively binds to the 

intracellular domain of FGFR, is also phosphorylated upon ligand binding and receptor 

dimerization (Petit et al., 2004) (Battersby et al., 2003). In vertebrates, FGF receptor 

substrate-2 (FRS2) serves the same function as Dof, which is to provide a scaffold for 

recruitment of downstream signaling components. The Dof sequence contains binding 

sites for three proteins that have all been shown to contribute to the MAPK/ERK 

signaling pathway: Corkscrew (Csw)/Shp2, Grb2/Drk, and Src64b (Csiszár et al., 

2010). Binding of Grb2/Drk recruits Son of sevenless (Sos), a guanine nucleotide 

exchange factor (GEF), which then activates the small GTPase Ras85D (Wassarman et 

al., 1995). Ras initiates the MAPK cascade by activating Raf (MAPKKK (Xia et al., 

2008)), which results in the continued cascade by successive phosphorylation of Dsor 

(Downstream of Raf1), a MAPKK, and ERK (MAPK). Finally, ERK-mediated 

phosphorylation of erythroblast transformation-specific (ETS) transcription factors 

results in gene expression changes, such as activation of eve, Mef2, pointed, and sprouty 

(Muha and Müller, 2013).  

Csw, one of the proteins that binds to the Dof scaffold, has also been shown to 

activate the Ras/MAPK pathway (Petit et al., 2004). Csw is the fly homolog of SHP2, 

which in mammalian cells interacts with Grb2 to form a complex to interact with the 

FRS2 scaffold. Therefore, it is possible that Csw and Dof form a similar complex to 

activate downstream signaling components in Drosophila FGF signaling. Negative 

feedback of FGF signaling via the protein Sprouty (Spry) is conserved in fly and 
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mammals (Hacohen et al., 1998; Tefft et al., 1999). Sprouty functions by binding to 

Grb2 and inhibiting the formation of the Grb2/Sos complex (Hanafusa et al., 2002). 

 

Figure 1-4: Drosophila FGF signaling pathway 

Schematic of the FGF signaling pathway in Drosophila. FGF ligand binding to FGFR induces 

dimerization of the receptor and subsequent transphosphorylation of their intracellular domains, which 

can lead to activation of at least one of several signaling pathways, most notably the MAPK/ERK 

pathway (adapted from Muha & Muller. IJMS 2013). 
 

FGF signaling also involves several MAPK-independent pathways to influence 

important cell activities. For example, FGF signaling induces the PI3-AKT pathway. 

GRB2 recruits the adaptor protein GAB1, which then activates the enzyme PI3K. PI3K 

phosphorylates the enzyme AKT, which has several functions including the activation 

of mTOR complex 1 by inhibiting TSC2 and phosphorylation of the FOXO1 

transcription factor, causing it to exit the nucleus (Ornitz and Itoh, 2015). In addition, 

Muha & Muller. IJMS 2013
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FGF signaling can influence the activity of the Rho family of small GTPases, which 

are known to be involved in regulating the actin cytoskeleton. These GTPases are 

controlled mainly by GTPase activating proteins (GAPs and guanine nucleotide 

exchange factors (GEFs)) (Ridley, 2006). Recently, it was shown that RhoD, a small 

GTPase, is activated by FGF signaling in a MAPK-independent manner to produce 

actin-based filopodial cell protrusions (Koizumi et al., 2012). Similarly, it was shown 

that the PLCg pathway induced by FGF signaling is responsible for cytoskeletal 

rearrangements that are critical for proper tissue morphogenesis (Sai and Ladher, 

2008).  

1.9 Branching Morphogenesis 

Branching morphogenesis is a key developmental process that is also relevant 

in disease states. Branched tissue structures are conserved throughout evolution, and in 

vertebrates the branching morphogenesis process is critical for the shape and function 

of the kidney, mammary gland, vasculature, nervous system, and lung. Although the 

tissue types and locations are different, the general mechanism of branching 

morphogenesis is very conserved. Aside from nerve cells which only branch at the 

single-cell level, multicellular branches involve different cell fates and phenotypes 

within each growing branch. The leader of the growing branches adopts a tip cell fate 

and helps guide the growth and direction of the branch, while the follower cells adopt 

a stalk cell fate and are involved in maintaining the branch position and elongation of 

the branch (reviewed in Ochoa-Espinosa and Affolter, 2012).  

 Branching morphogenesis of all these organs is thought to involve an attractant 

that is expressed in the areas surrounding the tips of the growing branches and is 
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necessary for the directional outgrowth and patterning of the branch. For example, in 

the developing kidney, an epithelial cell layer forms the kidney collection ducts while 

a surrounding mesenchymal cell layer produces glial cell-line-derived neurotrophic 

factor (GDNF). GDNF signaling with its receptor Rearranged During Transfection 

(Ret) in the developing ducts is necessary for branch formation and outgrowth 

(Costantini, 2006). The mammary gland also exhibits branching morphogenesis during 

postnatal mammary development, where the end buds of the tips of growing ducts form 

a highly branched structure by growing into the surrounding fatty stroma (reviewed in 

Gjorevski and Nelson, 2011). This branching outgrowth of the duct end buds requires 

several growth factors, such as FGFs, Bmps, and EGFs (Hens and Wysolmerski, 2005; 

Mallepell et al., 2006; Hens et al., 2007; Brisken et al., 1998; Sternlicht, 2006).  

1.9.1 Vasculature branching morphogenesis 

The vasculature of vertebrate animals is formed by branching morphogenesis 

and is responsible for transporting critical nutrients and gases throughout the body. The 

initial generation of the most rudimentary vessels are formed by vasculogenesis, which 

create a simple circuit to and from the heart (Swift and Weinstein, 2009). These 

rudimentary vessels serve as the infrastructure from which smaller and finer vessels 

can branch throughout the body via branching morphogenesis. Vascular Endothelial 

Growth Factor (VEGF) is a key signaling protein that is involved in the sprouting and 

branching of new blood vessels. For example, in the mouse retina, tip cell migration 

and stalk cell proliferation of growing blood vessels depend on a gradient of VEGF-A. 

The vessels express VEGFR2 to receive the VEGF signal from adjacent astrocytes that 

produce and secrete the signal (Gerhardt et al., 2003). Similarly, other VEGF ligands 
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and their receptors have been shown to be involved in angiogenesis (Lohela et al., 

2009).  

Within growing vasculature branches, the tip cell selection of growing vessels 

is linked to Notch/Delta signaling. The ligand Delta-like 4 (Dll4) is a target of VEGF 

signaling, so cells that receive high levels of VEGF also have high levels of Delta. 

Delta then signals to adjacent cells to laterally inhibit their ability to become tip cells 

and influences them towards a stalk cell fate (Liu et al., 2003). Thus, differing levels 

of VEGF signaling helps establish the tip cell and stalk cell phenotypes in each growing 

branch through Delta/Notch signaling.  

1.9.2 Lung branching morphogenesis 

Another organ that relies on branching morphogenesis for its structure and 

function is the lung. Within the lung, numerous secondary and tertiary bronchi form a 

highly branched structure that allows for efficient and rapid exchange of gases with 

cells in the vasculature. During lung development, the formation of this highly 

branched respiratory tree relies mainly of Fgf10, which is expressed in groups of 

mesenchymal cells surrounding the growing epithelial lung buds (Bellusci et al., 1997; 

Sekine et al., 1999). The lung buds express Fgfr2b, to which Fgf10 binds and activates 

signaling. This interaction between Fgf10 and Fgfr2b is required for the lung buds to 

grow and form a branched network (De Moerlooze et al., 2000). Fgf10 signaling 

through its receptor activates several genes in the tip of the growing lung bud, including 

sprouty2 (spry2), BMP2, BMP4, and sonic hedgehog (shh) to influence morphogenesis 

of the developing branches. (Bellusci et al., 1996; Lebeche et al., 1999; Tefft et al., 

1999; Eblaghie et al., 2006). 
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1.9.3 Branching morphogenesis in disease 

Defective branching morphogenesis is often associated with numerous diseases 

(Tímár et al., 2001). One example is angiogenesis, a process that involves branching 

morphogenesis and outgrowth of new blood vessels and is the underlying mechanism 

in the growth and metastasis of cancerous tumors (reviewed in Hoff and Machado, 

2012). Cancer cells produce and release growth factors, including VEGF, to promote 

the branching morphogenesis of blood vessels towards the tumor (Kerbel, 2008). This 

not only supplies the oxygen and nutrients needed to support the rapidly growing 

tumor, but also supplies the infrastructure that is necessary for the tumor to metastasize 

and spread throughout the body via blood vessels. Thus, as branched tissue structures 

in organisms are so common and critical to both development and disease, it is 

necessary to understand more about the cellular and molecular mechanisms involved 

in branching morphogenesis.  

1.9.4 Branching morphogenesis of the Drosophila trachea 

The Drosophila tracheal system is an excellent model to study conserved 

mechanisms of branching morphogenesis. The tracheal system of Drosophila begins to 

form in the embryo where small groups of tracheal progenitor cells are present in each 

body segment (Manning and Krasnow, 1993). The Drosophila FGF Bnl is expressed 

in small groups of cells surrounding the tracheal placodes and each Bnl source induces 

budding and migration of a single branch from the placode. Bnl signals to its receptor 

Breathless (Btl), which is expressed in the recipient tracheal cells (Klämbt et al., 1992). 

The migrating tracheal cells eventually branch out to fuse and form additional 

secondary and terminal branches to create the entire branched tracheal network. 
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Traditionally, it was thought that an extracellular gradient of Bnl induces branch 

migration. In this model, the concentration of Bnl surpasses a threshold in the proximal 

tracheal tip cells to induce a signaling response, which includes the synthesis of 

secondary signals such as Sprouty or Delta to laterally inhibit stalk cells and specify 

their fates. The difference in tip or stalk cell phenotype in a growing branch endows 

the branch with polarity, and the migrating tip cells pull the stalk cells as they grow, 

causing them to intercalate and elongate to extend the branch following the tip cell 

leader (Caussinus et al., 2008). 

1.10 Mechanisms of Bnl signaling during branching morphogenesis 

The growth and migration of Drosophila tracheal branches during development 

requires the tight spatiotemporal regulation of Bnl expression and source cell 

localization, but the mechanisms by which these requirements are achieved were a  

 

Figure 1-5: Early Bnl expression in Drosophila embryonic tracheal development 

Embryo Stages

St. 10-11 St. 12-13 St. 14

Du et al. Developmental Biology 2017
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Schematic showing that small groups of Bnl source cells (red circles) surround a tracheal placode in 

Stage 10-11 embryos and remain just ahead of the migrating tracheal branches through later embryo 

stages to guide their growth (adapted from Du et al. Developmental Biology 2017).  
 

mystery. For example, during early embryonic tracheal development, the six groups of 

Bnl expressing cells that surround a placode of tracheoblasts are situated within 2-3 

cell diameters away from each other (Figure 1-5) (Sutherland et al., 1996) (Du et al., 

2017). With the close proximity of the source cells, it was unclear how a soluble Bnl 

gradient could induce branch-specific signaling and migration. The source cells must 

have a way to regulate signal release and communicate with their cognate branch. To 

unravel the mystery, Du et al. (2017, 2018b), generated a bnl-LexA enhancer trap to 

reliably mark the signal source together with the recipient tracheal cells. Live imaging 

analyses showed that each Bnl source always remained closely associated with the 

migrating tracheal cells. This dynamism of Bnl-producing cells during tracheal 

migration was originally thought to be achieved by rapid activation/deactivation of bnl 

expression in cells along the tracheal branch’s migratory path. Instead, Du et al. (2017) 

found that the same group of Bnl-expressing cells migrate in synchrony with the 

migrating trachea, and that dynamic transcriptional activation of bnl was not 

responsible for spatiotemporal activity of Bnl. During this co-migration, both the 

source and recipient cells establish direct cell-cell contacts with each other. This close 

association of the source and recipient cells raised doubt on the traditional model that 

branching morphogenesis is guided by an extracellular soluble signal gradient.  

To visualize the Bnl gradient and determine how it is formed, Du et.al. (2018) 

generated an endogenous Bnl:GFP knock-in construct and used a larval wing disc-

associated neotracheal branch called the air sac primordium (ASP), a precursor of the  
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Figure 1-6: ASP morphogenesis and cytoneme-mediated Bnl transport 

(A) The air sac primordium (ASP) buds out from the transverse connective (TC) tracheal branch in the 

early L3 larval stage and grows into a full-grown tubular structure by the late L3 larval stage. ASP growth 

and morphogenesis is guided Bnl (FGF), which is expressed in a small group of wing disc cells and 

signals to its receptor Btl (FGFR) expressed in the ASP cells. (B) ASP tip cells extend many cytonemes 
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(green, left and right image) that make contact with the Bnl-producing cells (red, right image) in the 

wing disc (adapted from Roy et al. Science 2011 & 2014). (C) Bnl:GFP (green) travels along ASP 

cytonemes (red) from the source cells to the ASP recipient cells to activate signaling and control its 

morphogenesis. The lower image is the inset from the upper image (adapted from Du et al. Elife 2018). 

Scale bar, 10 µm. 
 

adult air sacs. In this system, a small group of cells in the wing imaginal disc epithelium 

express Bnl and signal to the ASP, which expresses Btl. The ASP buds out from the 

transverse connective (TC) in early stages of 3rd instar larval development (L3) and 

grows towards the wing disc Bnl source until it is fully grown in the late L3 larval stage 

(Figure 1-6, A). Use of this tissue system to study the inter-organ transport of Bnl 

revealed that Bnl does not diffuse freely to create an extracellular soluble gradient. 

Surprisingly, this study discovered that a Bnl gradient is formed, but only within the 

recipient ASP branch. ASP cells produce Btl-containing cytonemes that make contact 

with the Bnl-producing wing disc cells to receive the signal and transport it back to the 

ASP recipient cells where the signal is endocytosed and downstream signaling occurs 

(Figure 1-6, B and C) (Roy et al., 2014; Du et al., 2018a). This cytoneme-mediated 

target-specific signaling leads to the formation of a Bnl gradient within the ASP that 

adopts its shape. Different levels of FGF signaling in the ASP induce different target 

genes, indicating that Bnl functions as a morphogen to pattern the ASP epithelium. 

High to medium levels of Bnl in the tip region of the ASP induce the transcription 

factor Pointed-P1 (PntP1), which elicits positive feedback on Btl-containing cytoneme 

production (Figure 1-7) (Ohshiro et al., 2002; Du et al., 2018a). Further from the source 

cells, low levels of Bnl reception results in increased activity of the transcription factor 

Cut, which elicits negative feedback on Btl-containing cytoneme production (Du et al., 

2018a). In addition, PntP1 and Cut antagonize each other’s expression, resulting in a 
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graded number of ASP cytonemes based on Bnl reception levels that reinforces and 

maintains the Bnl gradient (Du et al., 2018a). This was the first demonstration of this 

novel mechanism underlying tracheal branching morphogenesis. It also, for the first 

time, showed how cytoneme-mediated signaling can create a morphogen gradient and 

tissue patterns. 

 

Figure 1-7: Bnl gradient formation in the recipient ASP 

A schematic is shown representing how a Bnl gradient is formed and maintained in the ASP. Bnl is 

transported along Btl-containing cytonemes (arrow) extended by ASP cells. In the ASP, Bnl forms a 

gradient and activates different genes in a concentration-dependent manner. High levels of Bnl induce 

PntP1, which positively feedback controls Btl-containing cytoneme production. Low levels of Bnl 

induce Cut, which negatively feedback controls cytoneme production. PntP1 and Cut antagonize each 

other’s expression, leading to a graded level of cytoneme production along the ASP which results in the 

maintenance of the Bnl gradient that adapts the ASP shape (adapted from Du et al. Elife 2018).  

1.11 Important conceptual gaps, Aims, and Significance of this study  

To initiate and maintain the type of self-regulated gradient formation 

mechanism described above, Bnl release from the source cells must be tightly 

controlled and restricted. If uncontrolled and unlimited Bnl protein were released from  

Du et al. Elife 2018
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Figure 1-8: Restricted Bnl release 

(A) Extracellular staining of Bnl using aBnl antibody (white puncta) reveals that the signal is only 

released from the source cells (green) where ASP cytonemes (blue) establish contact. The signal is not 

secreted from other regions of the source cells (adapted from Du et al. Elife 2018). (B) Schematic of a 

cross section of the ASP and wing disc representing restricted Bnl release only at the points of cytoneme 

contacts. Bnl is not secreted uncontrollably and appears to only be released from the surface that the 

cytonemes establish contact. So, how is Bnl release regulated within the source cells?  
 

the source, establishment of the gradient and proper directional outgrowth in newly 

budding tracheal branches would be difficult to achieve. Furthermore, limited Bnl 

release is likely required to maintain the established gradient by ensuring that not all 
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recipient cells can receive the same amount of the signal. Consistent with this idea, 

marking both the Bnl source and recipient cells and staining externalized Bnl showed 

that the Bnl-producing cells only release the signal where cytonemes make contact with 

the source cells (Figure 1-8, A) (Du et al. 2018). These results leave several questions 

unanswered: How do the signal-producing cells ensure that the signal is 

spatiotemporally released at the sites of cytoneme contacts? As most morphogens are 

secreted signaling proteins, why doesn’t the secreted signal simply diffuse away when 

the producing cells externalize it for cytoneme transport (Figure 1-8, B)? My thesis 

addressed these fundamental questions, advancing our overall understanding of 

cytoneme-mediated signaling and the cell biology underlying tissue development. 

1.12 Model System 

To study this aspect of cytoneme-mediated signaling in the branching 

morphogenesis process, Drosophila melanogaster was used as a model organism. 

Drosophila is ideal for studying basic, fundamental cellular processes for numerous 

reasons, such as the sophisticated genetic tools, high fecundity, short generation time, 

and well-established in vitro and in vivo systems and imaging methods. The wing 

disc/ASP is an ideal system to study FGF signaling because the Drosophila FGFR (Btl) 

is only expressed in the trachea and not in any surrounding wing disc cells. Therefore, 

manipulation of the FGF signal (Bnl) or of bnl-expressing cells does not affect the 

development of the wing disc and ASP phenotypes can be reliably interpreted as a 

direct result of a defect in Bnl signaling. This is a major advantage for unraveling the 

mechanisms within the source cells that regulate cytoneme-mediated signaling. 
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Chapter 2: Characterization and role of Bnl 
endo-proteolysis 

 

2.1 Introduction 

 A general mechanism that occurs for almost all signaling protein families is the 

proteolytic cleavage of an initial proprotein form of the signaling protein, often 

mediated by members of the Proprotein Convertase (PC) family. This study revealed 

the role of PCs in FGF signaling and may provide insights into the role of proteolysis 

in other signaling systems.  

2.1.1 Proprotein Convertases and Furin 

The hunt for proteases that post-translationally modify other proteins for their 

maturation and/or activation began when it was shown that some hormones, such as 

insulin, were produced as larger prohormones and subsequently cleaved at doublets or 

clusters of basic amino acids (i.e. Lysine and Arginine) (Steiner et al., 1969; Chrétien 

and Li, 1967). These studies initiated decades of research that collectively found that 

most peptide hormones, growth factors, and even bacterial toxins and viral envelope 

glycoproteins all follow a very similar scheme of maturation that involves cleavage of 

a proprotein form (Seidah and Chrétien, 1999). The yeast endoprotease kexin, or Kex2, 

was the first enzyme discovered to catalyze these types of reactions in 1984 (Julius et 

al., 1984). Eventually, it was shown that Kex2 was actually just one enzyme within a 

much larger family of proprotein convertases (PCs) that served this proprotein-

modifying function. Later, it was shown that Kex2 could process mammalian 

proproteins, which led to the hypothesis that mammalian PCs and Kex2 had similar 
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structural features and recognition sites (Thomas et al., 1988). Shortly thereafter, Furin 

was discovered in humans as the first Kex2 homolog (Fuller et al., 1989). Based on 

sequence homology, an additional six members of the mammalian PC family were 

isolated. Currently, it’s been shown that PCs catalyze the maturation of many proteins 

that are involved in essentially every homeostatic and disease process (Thomas, 2002).  

2.1.2 Furin structure and localization 

The PC family belongs to the Subtilisin superfamily of serine endoproteases, 

which all share similarity within their subtilisin-like catalytic domains. The aspartate, 

histidine, and serine residues that constitute the catalytic triad within PCs are very 

conserved in the Subtilisin superfamily. Furin, the best-studied PC, is a Type 1 

transmembrane protein that is found in all vertebrates and most invertebrates (Seidah 

et al., 1998; Thacker and Rose, 2000; Roebroek et al., 1991). It is an essential protein 

needed for proper development, as Furin knockout mice are embryonic lethal with 

death occurring at very early embryonic stages (Roebroek et al., 1998). Furin and the 

other PCs contain an N-terminal prodomain immediately downstream to their signal 

peptide. The prodomain acts as a chaperone to its guide the folding, transport, and 

activation, and is eventually cleaved off from the rest of protein via autocatalytic 

cleavage (Anderson et al., 2002). The mature Furin protein has a large 

extracellular/luminal domain that is homologous to similar regions of other PC family 

members and a P domain that functions to modulate pH and calcium requirements, as 

Furin activity is calcium-dependent (Zhou et al., 1998). The consensus cleavage site 

for Furin is -R-X-L/R-R-, and the minimal Furin cleavage site is -R-X-X-R- (R 

represents Arginine, L represents Lysine, X represents any amino acid), with cleavage 
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occurring immediately after the C-terminal Arginine (Molloy et al., 1992; Walker et 

al., 1994). Furin can localize in many parts of the cell and typically cycles through the 

trans-Golgi network, secretory vesicles, the cell surface, and endosomal vesicles 

(Molloy et al., 1999). The FI motif within Furin interacts with the adaptor protein AP-

4 and results in it being predominantly basolaterally localized in polarized cells 

(Simmen et al., 1999; 2002). This diversity in Furin localization can partly explain how 

Furin can act on so many substrates in vivo, and why Furin is involved in numerous 

developmental and diseases processes.  

2.1.3 Furin and disease 

As Furin is involved in so many biological processes, it is unsurprisingly also 

associated with many disease states. Furin expression is upregulated in several types of 

cancer, including non-small-cell lung carcinomas, head and neck squamous-cell 

carcinomas, and glioblastomas (Mbikay et al., 1997). Increased levels of Furin in 

tumors is correlated with the aggressiveness of the tumor (Bassi et al., 2001a). 

Increased tumor aggression is associated with increased activation of membrane type 

1-matrix metalloproteinase (MT1-MMP), one of Furin’s substrates that it cleaves to 

activate (Bassi et al., 2001b). MT1-MMP cleaves and activates Mmp2, or pro-

gelatinase, which can lead to tumor growth and vascularization by breaking down 

components of the extracellular matrix (Sounni et al., 2002). In mice, the Furin inhibitor 

a1-PDX leads to reduced activation of MT1-MMP and therefore reduced Mmp2 levels, 

which results in lower amounts of tumor metastasis (Bassi et al., 2001b; Aznavoorian 

et al., 2001). In colon, breast, prostate, and lung cancers, Insulin-like growth factor-1 

(IGF1) and its receptor are both upregulated, and both are also substrates of Furin (Wu 
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et al., 2002). Inhibiting the Furin-mediated processing of IGF1 and IGF1R using a1-

PDX significantly reduces the severity of tumor development and vascularization in 

mice (Khatib et al., 2001).  

In individuals with rheumatoid arthritis, Furin and TGF-b act together in a 

positive feedback loop that increases the severity of the disease (Yamanishi et al., 

2002). TGF-b is cleaved and activated by Furin, and autocrine TGF-b binding to its 

own receptor stimulates transcription of Furin through a SMAD2 and MAPK 

convergent pathway (Blanchette et al., 1997; 2001). The increased levels of both Furin 

and activated TGF-b lead to higher amounts of activated ADAMTS-4 (a disintegrin 

and metalloprotease with thrombospondin motifs-4). This metalloprotease degrades the 

cartilage protein aggrecan in joints and contributes to rheumatoid arthritis (Yamanishi 

et al., 2002; Tang, 2001). 

Furin is also directly involved in the pathogenesis of different bacterial and viral 

diseases. For example, Furin on the cell surface can cleave and activate anthrax toxin 

(Molloy et al., 1992), aerolysin toxin, which causes food-borne illness (Abrami et al., 

1998), and clostridium septicum alpha toxin, the causative agent of gas gangrene 

(Gordon et al., 1997). Furin in endosomal compartments can activate other bacterial 

toxins, like shiga toxin (ST), shiga-like toxin-1 (ST-1) and Pseudomonas exotoxin A 

(PEA) (Thomas, 2002). Inhibition of Furin activity using a1-PDX protects cells from 

the detrimental effects of these bacterial toxins (Jean et al., 1998). Several pathogenic 

viruses such as avian flu, HIV, measles, RSV, and some Ebola virus strains have 

envelope glycoproteins that must be cleaved by Furin to generate mature forms and aid 
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the virus in causing infection (Volchkov et al., 1998; Thomas, 2002; Molloy et al., 

1999).  

2.1.4 Proteolysis of signaling proteins 

 Most signaling proteins are known to require proteolytic maturation, many of 

which are cleaved by Furin. For example, Furin mediates the activation of members of 

the TGF-b/BMP family of signaling proteins, as both BMP4 and its Drosophila 

counterpart, Decapentaplegic (Dpp), are produced as proproteins and are cleaved 

multiple times by Furin (Kim et al., 2012; Künnapuu et al., 2009). Similarly, the 

Drosophila BMP5/6/7/8 type ligands Screw (Scw) and Glass bottom boat (Gbb) are 

also processed at several sites by Furin (Fritsch et al., 2012; Künnapuu et al., 2014). 

Furin also cleaves b-Nerve growth factor (b-NGF) to alter its activity in developing 

neurons (Lee et al., 2001b). In Notch/Delta signaling, maturation and membrane 

localization of Notch, the receptor for Delta, depends on Furin cleavage (van Tetering 

and Vooijs, 2011). Other signaling proteins that require cleavage include Hh, EGF, 

FGF, VEGF, Wnt, and peptide hormones such as insulin and Ghrelin (Lee et al., 1994; 

2001a; Urban et al., 2001; Tulin and Stathopoulos, 2010; Shimada et al., 2002; Vempati 

et al., 2014; Zhang et al., 2012; Hook et al., 2008; Duckworth et al., 1979). Although 

proteolytic cleavage of signaling proteins appears to be a universal phenomenon, the 

precise role of this cleavage in the signaling process is often unclear. 
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2.2 Results 

2.2.1 Bnl:GFP chimeras with different tag sites show different dispersion 

patterns 

To identify various functional forms of GFP-tagged Bnl proteins, four different 

Bnl:GFP variants were generated and their signaling activities were examined (Figure 

2-1, A-C). The Bnl protein is 770 amino acids long with an N-terminal 31-residue 

signal peptide and a conserved FGF domain spanning from amino acids 243 to 379 

(Figure 2-1, C). Each of the four variants contained a GFP tag at a single internal site: 

at the 87th (Bnl:GFP1), 206th (Bnl:GFP2), 432nd (Bnl:GFP3), and 701st (Bnl:GFP4) 

amino acid residue. Transgenic Drosophila lines harboring these constructs were 

crossed to bnl-Gal4 flies to drive their expression specifically in Bnl-producing cells 

and their activity was analyzed in 3rd instar larval wing imaginal discs. In three-

dimensional confocal stacks of wing discs, the lower Z sections revealed the Bnl-

expressing cells in the wing disc columnar epithelium and the upper Z sections (close 

to the objective) showed the associated ASP (Figure 2-1, B and D-D’).  

When the Bnl:GFP variants were expressed under bnl-Gal4 control, all of the 

variants were detected in disc Bnl source as bright fluorescent puncta (Figure 2-1, E-

H). Overexpression of all four Bnl:GFP variants led to ASP overgrowth (Figure 2-1, 

E’-H’), which phenocopied Bnl overexpression (Sato and Kornberg, 2002). Thus, all 

of the Bnl:GFP variants were functional and could signal non-autonomously. Unlike a 

membrane-tethered CD8:GFP protein, the fluorescent puncta comprised of Bnl:GFP2, 

Bnl:GFP3, and Bnl:GFP4 were detected in the recipient ASP, suggesting that the signals  
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Figure 2-1: Separate GFP fusion sites in Bnl result in different distribution patterns  

(A) Drawing depicting the organization of the ASP and bnl-expressing wing disc cells from 3rd instar 

larva; TC, transverse connective; DB, dorsal branch. (B) Drawing of a sagittal view showing the tubular 

ASP epithelium, upper-lower Z-axis, ASP cytonemes that contact the disc bnl-source (green nuclei), and 

the spatial domains of pntP1 and cut induced by high-to-low Bnl levels (green) (Du et al., 2018a). (C) 

Schematic map of the Bnl protein backbone showing its conserved FGF domain, Signal Peptide (SP), 

and four different GFP insertion sites. (D-H’) Representative images of maximum intensity projection 

of lower (wing disc source) and upper (ASP) Z-sections of 3rd instar larval wing-discs expressing CD8-

GFP, Bnl:GFP1, Bnl:GFP2, Bnl:GFP3, or Bnl:GFP4 under bnl-Gal4 as indicated; red, aDlg staining 

marking cell outlines. (I-K) Representative ASP images showing MAPK signaling (adpERK, red) zones 
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when Bnl:GFP3endo was expressed under native cis-regulatory elements (I), and when bnl-Gal4 

overexpressed Bnl:GFP3 (J) or Bnl:GFP1 (K). (D-K) White dashed line, ASP; white arrow, disc bnl-

source; dashed arrow, Bnl:GFP puncta in the ASP; arrowhead, ASP without Bnl:GFP1 puncta. Scale 

Bars: 30 µm. 
 

moved from the source to the ASP (Figure 2-1, D-H’). Surprisingly, although Bnl:GFP1 

puncta were visible in the source cells and its overexpression induced ASP overgrowth, 

the fluorescent puncta were absent from the recipient ASP (Figure 2-1, E-E’; Figure 2-

2, A-B’). Generally, as shown with an ASP derived from a genome edited bnl:GFP3endo 

larva that expressed the Bnl:GFP3 at physiological levels (Du et al., 2018a), only the 

distal ASP cells with high-to-moderate levels of Bnl induce MAPK signaling (Figure 

2-1, I). In contrast, overexpression of Bnl:GFP3 or Bnl:GFP1 in the source activated 

MAPK signaling in all of the ASP cells (Figure 2-1, J and K). Thus, Bnl:GFP1, like 

Bnl:GFP3, is an active signal but GFP fluorescence was undetectable in the recipient 

ASP.  

 

Figure 2-2: Comparison of Bnl:GFP1 and Bnl:GFP3 expression and dispersion  
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(A-B) Overexpression of both Bnl:GFP1 (A) and Bnl:GFP3 (B) under bnl-Gal4 led to ASP overgrowth, 

but only Bnl:GFP3 localized in the ASP (dashed arrow). (A’-B’) Lower optical sections showing 

Bnl:GFP1 (A’) and Bnl:GFP3 (B’) expressed in the wing disc source cells (arrows) below the ASP. Cells 

marked with aDlg (red). Scale bars, 30 µm. 

2.2.2 Bnl is cleaved prior to its transport to the recipient ASP 

One possibility for Bnl:GFP1 being functional, yet undetectable in the ASP, 

could be that the protein was cleaved downstream of tagging site-1 prior to the inter-

organ transport of its untagged C-terminal fragment (Figure 2-1, C). To test this 

possibility, a double-tagged Bnl chimera was generated with HA inserted at site 1 and 

GFP inserted at site 3 (Figure 2-3, A). Western Blot analyses were performed on total 

protein lysates of cultured S2 cells that were transfected with either the bnl:GFP1, 

bnl:GFP3, or bnl:HA1GFP3 constructs. An aGFP antibody recognized a common 150 

kDa band, which likely represented the full-length protein (Figure 2-3, B). Although 

the molecular weight of full length Bnl:GFP was predicted to be ~113 kDa, a larger 

size could be due to post-translational modifications. Similar observations were 

reported earlier for the other two Drosophila FGFs, Pyramus and Thisbe (Tulin and 

Stathopoulos, 2010). Bnl:HA1GFP3 and Bnl:GFP3 had similar size profiles, but 

multiple variant-specific bands were detected for Bnl:GFP1 and Bnl:GFP3 (Figure 2-3, 

B). The detection of unique smaller bands (~37 and 60 kDa) for N-terminally tagged 

Bnl:GFP1 and unique larger bands (>100 kDa) for C-terminally tagged Bnl:GFP3 and 

Bnl:HA1GFP3 was consistent with a cleavage near tagging-site 1. These biochemical 

analyses suggested a cleavage in the Bnl backbone, but it was difficult to estimate the 

actual molecular size of the cleaved products. Furthermore, the intracellular and 
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intercellular fates of the cleaved products cannot be directly visualized in tissues using 

biochemical assays.  

 

Figure 2-3: Bnl is cleaved in producing cells prior to its transport to the recipient ASP  

(A) Schematic map of a dual-tagged Bnl:HA1GFP3 construct containing an HA-tag at site 1 and a GFP-

tag at site 3. (B) An aGFP Western Blot showing differential bands (*) obtained from S2 cell lysates 

containing Bnl:HA1GFP3, Bnl:GFP1, and Bnl:GFP3; mock, lysates from untransfected cells. (C-F) 

Representative images of aHA-immunostained (red) S2 cells expressing Bnl:HA1GFP3; examples from 
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adherent cells grown on coverslip (D-F): XZY section (E,E’) and XYZ section near coverslip (F); 

merged bright field and fluorescent (C), merged fluorescent (C’,E,F), and split channels shown 

(C”,C”’,E’). (G) A schematic drawing showing the expected localization pattern of the uncleaved 

Bnl:HA1GFP3 (yellow) and truncated Bnl:GFP derivative (green) in the aHA-stained (red) discs/ASP. 

(H-I) A representative image of an aHA-stained (red) wing disc and ASP (dashed line) when bnl-Gal4 

expressed Bnl:HA1GFP3 (UAS-bnl:HA1GFP3); white, aDlg; split channels (H’,H’’); a graph (I) 

comparing the fractions of GFP and HA (aHA) signal in the recipient ASP relative to that of the wing 

disc source (n=14) under this condition. (C-H) arrowhead, uncleaved Bnl:HA1GFP3; white arrow, 

truncated Bnl:GFP3 derivative of Bnl:HA1GFP3. Scale bars: 10 µm; 30 µm (H-H”). 
 

Therefore, a fluorescence microscopy-based assay was employed to 

simultaneously visualize both the HA- and GFP-tagged parts of Bnl in cells. 

Immunostaining with aHA in S2 cells harboring uncleaved Bnl:HA1GFP3 molecules 

was expected to show both HA1 and GFP3 localizing together. On the other hand, a 

cleavage in the molecules would separate the HA1 tag from GFP3. Indeed, in transfected 

S2 cells, Bnl:HA1GFP3 was present in two distinct spatially separated forms (Figure 2-

3, C-F). An internal perinuclear zone showed colocalized GFP and HA signal, 

suggesting that the zone contained uncleaved Bnl. In addition, there were a number of 

exclusively GFP-positive puncta that localized more towards the periphery of the S2 

cells. Cells that were cultured and allowed to adhere to a coverslip contained peripheral 

lamellipodial and filopodial projections at the adherent surface. These peripheral 

lamellipodial/filopodial projections contained only a truncated Bnl:GFP portion 

(Figure 2-3, D-F). Spatial separation of the C-terminal GFP-tagged portion from the 

rest of the Bnl:HA1GFP3 molecule suggested Bnl cleavage. 

To further test the peripheral distribution of the truncated C-terminal fragment, 

two additional constructs were generated: bnl:HA1GFP4 and bnl:GFP1HA4, where the 

HA and GFP tags were interchanged between sites 1 and 4. Although the tag positions 



 

 

39 
 

were changed in these constructs, irrespective of the tags and tagging sites the cleaved 

N and C terminal Bnl fragments showed consistent subcellular localization patterns 

(Figure 2-4, A and B). These results showed that Bnl is cleaved and a truncated C-

terminal portion is trafficked toward the cell periphery, probably for release. To test 

inter-organ dispersion of cleaved/uncleaved forms of Bnl, transgenic Drosophila lines 

harboring the bnl:HA1GFP3 construct were generated. When bnl-Gal4 overexpressed 

Bnl:HA1GFP3 in the wing disc source, the N-terminal HA-tagged portion of Bnl 

remained in the signal producing cells and a truncated GFP-tagged C-terminal portion 

of Bnl (Bnl:GFP3) localized only in the recipient ASP cells (Figure 2-3, G-I). These 

results strongly suggested that Bnl is cleaved in the source and only a truncated Bnl 

derivative is received by the ASP.  

 

Figure 2-4: Switching tags between sites 1 and 4 does not alter cleavage  

(A-B”) aHA immunostained S2 cells cotransfected with act-Gal4 and either UAS-bnl:HA1GFP4 (A-A”) 

or UAS-bnl:GFP1HA4 (B-B”); arrow, truncated C-terminal tagged part of Bnl; arrowhead, uncleaved 

Bnl; A’,B’, channel of tag at site 4 for A and B, respectively; A’’,B’’, channel of tag at site 1 for A and 

B, respectively. Scale Bars: 10 µm. 

B

A A’ A’’

B’ B’’
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2.2.3 Bnl is cleaved at a single endoproteolytic site in the Golgi network 

Evolutionarily conserved serine proteases, namely the pro-protein convertases 

(PCs) that include Furins, cleave many growth factors and hormones that are 

synthesized in the form of pro-ligands (Thomas, 2002). With an artificial neural 

networks-based in silico PC site (PCS) prediction tool (Duckert et al., 2004), three 

putative PC sites (PCS1-3) were identified in the Bnl backbone. Among them, PCS1 

was Furin-specific with a core R–X–[R/K]–R domain (Figure 2-5, A-A’). 

Coincidentally, the four selected tagging sites in the Bnl backbone were perfectly 

structured for testing the putative cleavage sites (Figure 2-5, A). To test for cleavage at 

PCS3 (Figure 2-5, A), a chimeric Bnl:GFP3HA4 construct was generated where the 

GFP and HA tags were inserted at sites 3 and 4, respectively. Immunostaining with an 

aHA antibody on S2 cells transfected with bnl:GFP3HA4 showed colocalization of 

GFP3 and HA4 (Figure 2-5, B). Based on this cell biological assay, PCS3 is an unlikely 

cleavage site. However, the possibility of potential PCS3 cleaved products remaining 

closely associated during their intracellular trafficking was not investigated. In contrast, 

a cleavage at either PCS1 or PCS2 could explain the observed differential distribution 

of the N and C portions of Bnl:HA1GFP3 (Figure 2-3, C-H).  

To test PCS1 and PCS2, their Arginine (R) residues were replaced with Glycine 

(G) to generate bnl:HA1GFP3-M1 (henceforth referred as M1), a construct with 

mutations in PCS1 ((R/G)161TE(R/G)164^SI(R/G)166), and bnl:HA1GFP3-M2 

(henceforth referred as M2) with mutations in PCS2 (R/G)233NE(R/G)236^) (Figure 2-

5, A). R to G substitutions in PC sites were shown to successfully block PC  
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Figure 2-5: Bnl is cleaved at a single endoproteolytic site  

(A) Location of putative PCS1-3 in the Bnl backbone; #1-4: GFP insertion sites; *, point mutations 

generated at PCS1 (M1) and PCS2 (M2). (A’) In-silico predictions of PC sites; upper panel, Furin-

specific; lower panel, for General PC; green line, SP cleavage site; red line, a set threshold above which 

the sequence is predicted to be a PCS. (B-G) Examples of aHA immunostained (red) S2 cells expressing 

Bnl:GFP3HA4 (B) and Bnl:HA1GFP3 mutants as indicated (C-G); XYZ section near coverslip (D) and 
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XZY section (E) of M1-expressing adherent cells. (H) Graphs comparing colocalization index (Icorr) of 

the HA- and GFP- tagged parts of Bnl:HA1GFP3 (WT), M1, M2, and M1M2 in aHA-stained (red) S2 

cells; n=15 (WT), 13 (M1), 9 (M2 and M1M2); p values: ANOVA followed by Tukey HSD. (B-H) S2 

cells cotransfected with act-Gal4 and UAS-X, X= constructs as indicated. (I-M) Maximum intensity 

projections of the wing-disc source (I”’-I””,K,M) expressing Bnl:HA1GFP3 mutants as indicated (bnl-

Gal4 x UAS-X, X = M1, M2, or M1M2) and the recipient ASPs (I-I”,J-J”,L-L”); blue, aDlg; white dashed 

line, ASP. (B-M) arrow, truncated Bnl:GFP3 derivative; arrowhead, uncleaved Bnl:HA1GFP3. Scale 

bars: 10 µm (B-G); 30 µm (I-M). 
 

cleavage (Künnapuu et al., 2009). In transfected S2 cells, PCS1 mutation rendered the 

M1molecules uncleavable, as HA and GFP colocalized together in the intracellular 

compartments (Figure 2-5, C-E). However, M2 molecules were cleaved like wild type 

proteins (Figure 2-5, F). To compare the cleavage efficiency among the Bnl mutants, 

the fraction (index of correlation, Icorr) of colocalized pixels of HA and GFP channels 

was measured from 3D images (Jaskolski et al., 2005). The average Icorr value was 

significantly higher for M1 and M1M2 than either the control Bnl:HA1GFP3 or M2 

cells, suggesting that the PCS1 mutation inhibited cleavage (Figure 2-5, H). Transgenic 

flies harboring the M1, M2, or M1M2 constructs were also generated and their 

distribution in the wing disc and ASP was analyzed. When the M1 and M1M2 mutants 

were expressed in the wing disc source, the recipient ASPs received co-localized HA-

GFP puncta comprised of the uncleaved full-length Bnl molecules (Figure 2-5, I-I’’’’ 

and L-M). In contrast, only the GFP-tagged C-terminal part of M2 was distributed 

within the ASP (Figure 2-5, J-K). Collectively, these results suggest that Bnl:HA1GFP3 

molecules are cleaved at PCS1 prior to their delivery from the disc source to the ASP. 

Bnl cleavage could be intracellular or, alternatively, could occur on the surface 

of the source cell plasma membrane where the signal is delivered to the recipient ASP 

cytonemes (Figure 2-1, B). To test this possibility, a detergent-free aGFP-based 
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immunostaining protocol (henceforth referred to as aGFPex) was employed, which was 

previously used to detect surface-exposed Bnl:GFP (Du et al., 2018a). The aGFPex 

assay detected only Bnl:GFP3 on the expressing source cell surface, but not Bnl:GFP1, 

indicating that the cleaved Bnl prodomain never reached the cell surface (Figure 2-6, 

A and B). Thus, Bnl cleavage occurs within the source cells and only the truncated C-

terminal Bnl portion is displayed on the basal surface of the source cells. To determine 

the subcellular location of Bnl cleavage, standard immunostaining with aGM130 

antibody, a cis-Golgi probe, was performed on discs expressing Bnl:GFP1, 

Bnl:HA1GFP3, or Bnl:HA1GFP3–M1. In the wing disc source, 100% of either Bnl:GFP1 

or uncleaved Bnl:HA1GFP3 puncta were localized in the GM130-marked cis-Golgi 

(Figure 2-6, C-D’). In contrast, the truncated Bnl:GFP3 derivative (GFP-only puncta) 

localized in many small uncharacterized intracellular vesicles, some of which were 

enriched with Syntaxin16, a target-SNAP receptor for intra/trans-Golgi sorting (Charng 

et al., 2014) (Figure 2-6, D-D’ and F-F’). On the other hand, uncleaved M1 puncta were 

seen in all of the vesicular compartments, indicating their routing through the secretory 

pathway (Figure 2-6, E-E’ and G-G’). Similar intracellular distribution profiles of the 

cleaved and uncleaved portions of Bnl were observed in cultured S2 cells (Figure 2-6, 

H-J’). Since the cleaved N-terminal Bnl prodomain did not make it past the Golgi, these 

results collectively showed that Bnl is cleaved during its trafficking through the Golgi 

network.  
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Figure 2-6: Bnl is cleaved in the Golgi network of Bnl-producing cells  

(A-B) Projection images of lower Z-stacks of the disc bnl source showing detergent-free aGFP 

immunostaining (aGFPex; red) when bnl-Gal4 expressed Bnl:GFP1 (A) and Bnl:GFP3 (B); white, 

phalloidin:Alexa-647 to mark actin-rich cell outlines; arrowhead, intracellular molecules (only green); 

arrow, surface-localized molecules (green+red); dashed line, ASP in the upper Z-stacks (not shown). (C-

C’) aGM130-stained (red) optical sections of wing disc bnl-source expressing Bnl:GFP1. (D-J’) Single 

optical sections of aHA-immunostained (red) disc bnl-source (D-G’) and S2 cells (H-J’) expressing 

either Bnl:HA1GFP3 or M1 and marked with a-Stx-16 or aGM130 (blue) as indicated; arrow, truncated 

Bnl:GFP3 derivative; arrowhead, uncleaved Bnl:HA1GFP3 or M1 mutant; merged (D-J) and split blue 

channels (D’-J’) shown. Scale Bars: 20 µm (A-C); 5 µm (C’-G’); 10 µm (H-J’). 
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2.2.4 Bnl is cleaved by Furin1 in the wing disc bnl source 

Intracellular Bnl cleavage at PCS1, which is Furin-specific, indicated that Bnl 

is likely cleaved by a Furin. To identify the specific protease, RNAi-mediated 

knockdown was performed on two Drosophila furin genes, Dfurin1 (fur1) and Dfurin2 

(fur2) in cell culture. The role of amontillado (amon), a mammalian PC2 ortholog, was 

not investigated since it is expressed only in neurons and neuroendocrine cells 

(Künnapuu et al., 2009; Roebroek et al., 1992; 1993). In S2 cells, RNAi treatment of 

either fur1, fur2, or both significantly reduced Bnl:HA1GFP3 cleavage in comparison 

to a non-specific control RNAi (Figure 2-7, A-E). Thus, Bnl cleavage is Fur1 and Fur2-

dependent in cell culture.  

 

Figure 2-7: Knockdown of furin expression affects Bnl cleavage 
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(A-D’) Images of aHA-immunostained (red) S2 cells co-transfected with act-Gal4, UAS-bnl:HA1GFP3, 

and the synthesized RNAi as indicated; control-i, non-specific dsRNA; XYZ (A-D) and XZY (A’-D’) 

views; arrow, truncated Bnl:GFP3 derivative; arrowhead, uncleaved Bnl:HA1GFP3. (E) Graph 

comparing Bnl:HA1GFP3 cleavage under various furin knockdown conditions in S2 cells; Icorr: index of 

HA and GFP colocalization, with lower values indicating cleavage and color separation; n=13 (control), 

11 (fur1i), 12 (fur2i), 14 (fur1-i fur2-i); p-values (ANOVA followed by Tukey HSD): fur1-i vs fur1-i 

fur2-i, p=0.347, all other groups, p<0.001. (F-I) aDlg-immunostained (white) wing disc and ASP (white 

dashed line) from larvae where bnl-Gal4 expressed furin RNAi as indicated; control, bnl-Gal4 x w-. (J 

and J’) Drawing depicting the scheme (J) of allometric measurement of ASP length (L) relative to the 

corresponding wing disc (WD); graph (J’) comparing the length (L) ratio of ASP to wing-disc (WD) 

under conditions indicated; n=48 (control), 95 (fur1-i), 86 (fur2-i), 102 (fur1-i,fur2-i); p-values 

(ANOVA followed by Tukey HSD): all groups vs fur1-i, p<0.001, all groups vs fur1-i fur2-i, p<0.001. 

Scale Bars, 30 µm; 10 µm (A-D).  
 

However, in vivo, only fur1 knockdown in the wing disc bnl source resulted in 

stunted ASP development, which phenocopied a bnl knockdown condition (Figure 2-

7, F-I and Figure 2-8, A-D). Measurement of the allometric ratio of the recipient ASP 

length along its major Distal-Proximal (D-P) axis to the width of the wing disc 

confirmed that the growth abnormality was ASP-specific and was not due to a systemic 

developmental delay (Figure 2-7, J and J’). Lack of a fur2 knockdown phenotype in 

the ASP is likely due to the absence of fur2 expression in the bnl source, as expression 

analyses of fur1 and fur2 showed only fur1 expression in the bnl source (Figure 2-8, E-

K). Thus, although both Fur1 and Fur2 could cleave Bnl in S2 cells, their substrate-

specificity might depend on their tissue-specific expression.  

The RNAi analyses provided correlative evidence of Furin’s role in Bnl 

cleavage. For direct evidence, larval wing discs expressing Bnl:HA1GFP3 in the bnl 

source were ex vivo cultured either in the presence or absence of Furin inhibitors. In 

spite of prolonged (up to 16 h) ex vivo culture conditions, Bnl:HA1GFP3 was cleaved 

in the absence of inhibitors and the truncated Bnl:GFP3 moved to the growing ASPs 
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(Figure 2-9, A-C”). In the presence of inhibitors (Figure 2-9, D-F’), Bnl cleavage in the 

disc source was blocked and the amount of uncleaved puncta received by the ASP 

gradually increased with longer incubation times (Figure 2-9, G). The time-dependent 

inhibition of Bnl cleavage by Furin inhibitors confirmed Furin-dependent Bnl cleavage. 

 

Figure 2-8: Furin-dependent Bnl cleavage 

(A) An example of stunted ASP growth (arrow) due to the expression of bnl RNAi under bnl-Gal4. (B-

D) Examples of stunted ASPs (arrow) generated by three separate fur1 RNAi lines (BL# 25837, 42481, 

41914) expressed under bnl-Gal4. (A-D) aDlg immunostaining marked ASP and disc cell outlines: red 

for A, white for B-D. (E) Expression of fur1-LacZ in the a-bGal immunostained (red) wing disc source 

(arrow). (F-G) Zoomed-in images of an a-bGal immunostained (red) wing disc expressing both fur1-

LacZ and bnl-Gal4-driven CD8-GFP (green, arrow) (F,G); arrow, Bnl expression domain. (H-I) 

Fluorescent in-situ hybridization (red) of fur1 mRNA in the wing disc source (arrow) and ASP (white 

dashed line). (J) fur2-Gal4-driven CD8-GFP. (K) Fluorescent in situ hybridization of fur2 mRNA (N, 

red); arrow, Bnl source cells, white dashed line, ASP. Scale Bars: 30 µm; 40 µm (H); 100 µm (E). 
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Importantly, these results, together with the M1 mutant analyses, showed that when 

Bnl cleavage is blocked the uncleaved signals can still move from the disc to the ASP. 

These results indicated that cleavage might not be essential for molecular activation of 

the Bnl protein and led us to examine the physiological roles of Bnl cleavage.  

 

Figure 2-9: Furin-dependent Bnl cleavage in the wing disc  
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(A-F’) aHA-stained (red) wing discs that expressed Bnl:HA1GFP3 under bnl-Gal4 were ex vivo-cultured 

for 0 (pre-treat) -16h in the absence and 1-5h in the presence of Furin inhibitors as indicated; arrow, 

truncated Bnl:GFP3 derivative; arrowhead, uncleaved Bnl:HA1GFP3; blue, phalloiden-Alexa-647 

marking cell outlines; merged (A-D) and either split green, red (A’-C”) or only red (D’-F’) channels 

were shown. (G) Graphs comparing average levels of colocalized HA and GFP in the ASP grown in 

presence and absence of Furin inhibitors; samples were harvested at different time points from the 

continuous culture; n=11 (0h), 11 (1h), 10 (2.5h), 9 (5h control), 12 (5h test), 5 (16h); p-values (ANOVA 

followed by Tukey HSD): p=0.0001 for 5h vs either 0h, 1h, or 2.5h. Scale Bars, 30 µm. 

2.2.5 Uncleaved Bnl can signal and is dispersed by cytonemes, but only within a 

narrow range. 

To examine M1 distribution and activity at its physiological levels of 

expression, a previously reported bnl:GFP3endo allele was modified into 

bnl:HA1GFP3endo (henceforth referred as wtendo) and corresponding bnl:HA1GFP3-

M1endo mutant alleles (henceforth referred as m1endo) by employing genome-editing (see 

Chapter 5, section 5.3; Figure 2-10, A). Consistent with earlier observations for 

bnl:GFP3endo (Du et al., 2018a), wtendo flies were homozygous viable and had normal 

tissue morphology. Although bnl is an essential gene, m1endo mutant flies were 

homozygous viable, indicating that the PCS1 mutation was non-lethal. As expected, 

the endogenous Bnl:HA1GFP3endo (WTendo) molecules were cleaved and ASPs received 

only the truncated Bnl:GFP3 portion (henceforth referred as t-WTendo; Figure 2-10, B 

and Figure 2-11, A). The m1endo ASPs received uncleaved Bnl:HA1GFP3-M1endo 

(henceforth referred as M1endo) puncta containing both HA and GFP (Figure 2-10, C 

and Figure 2-11, B). Furthermore, ex vivo cultured wtendo wing discs grown in the 

presence of Furin inhibitors had uncleaved Bnl:HA1GFP3endo puncta in the ASP (Figure 

2-10, D and E). Thus, in the absence of cleavage, uncleaved Bnl could move to the ASP 

and sustain tracheal growth. 
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Figure 2-10: Comparison of activities of endogenously expressed cleaved and uncleaved Bnl 

(A) Schematic map of the genomic bnl:gfpendo locus and the products of its subsequent CRISPR/Cas9-

based editing; orange box, coding exon; grey box, non-coding exon; line, introns; red star, M1 mutation. 

(B-C) Representative images of aHA-stained (red) ASP and wing disc from homozygous wtendo (n=85) 

and m1endo (n=79) larvae. (D-E) Representative images of aHA-immunostained (red) ASP and wing disc 

from wtendo larvae after five hours (h) of ex-vivo culture in the absence (control; n=18) and presence 
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(n=29) of Furin inhibitors. (B-E) white dashed line, ASP; blue, phalloidin-Alexa-647; arrow, t-WTendo; 

arrowhead, uncleaved WTendo or M1endo. (F-G’) Receptor-colocalized t-WTendo and M1endo puncta 

(arrow) in trans-heterozygous btl:Cherryendo/ wt endo (F,F’) and btl:Cherryendo/ m1endo (G,G’) ASP; split 

red channels (F’,G’). (H-I’) Live images of CD8:Cherry-marked ASPs showing the long (>15 µm) 

oriented ASP cytonemes (arrows) containing t-WTendo (H,H’) and M1endo (I,I’) puncta (arrowheads). (J 

and J’) Surface aGFPex immunostaining (white) detecting M1endo on the ASP cytoneme surfaces of 

btl:cherryendo/m1endo larvae; arrow and arrowhead, receptor-colocalized intracellular (bright green) and 

surface M1endo, respectively. (K) Graph comparing the number of cytonemes (>15 µm long) counted 

from a 60 µm perimeter centering the ASP tip (Materials and methods) in wtendo (n=28) and m1endo (n=38). 

Scale Bars: 20 µm; 10 µm (H-I’). 
 

When either wtendo or m1endo were genetically combined with a btl:cherryendo 

allele, which expressed endo-tagged Btl:Cherry (Du et al., 2018a), both t-WTendo and 

M1endo puncta colocalized with the receptors in the ASPs (Figure 2-10, F-G’). As 

reported earlier (Du et al., 2018a), the distal ASP tip, which is closest to the disc bnl 

source, had a high concentration of the receptor-colocalized t-WTendo or M1endo puncta. 

With increasing distance from the source their concentration gradually decreased. Bnl 

is known to be transported by cytonemes to form a receptor-associated gradient (Du et 

al., 2018a). To examine cytoneme-mediated transport, CD8:Cherry-marked ASPs were 

live-imaged in homozygous wtendo or m1endo larvae (>30 discs/genotype). In both 

conditions, ASPs extended long (>15 µm) polarized cytonemes toward the source cells 

and received GFP-tagged fluorescent puncta comprised of either t-WTendo or M1endo 

(Figure 2-10, H-I’ and Figure 2-11, C-D). Surface aGFPex immunostaining showed 

that both M1endo and t-WTendo colocalized with Btl:Cherryendo on the recipient cytoneme 

surfaces prior to their endocytosis (Figure 2-10, J-J’ and Figure 2-11, E-F’). Therefore, 

the pattern of tissue-specific dispersion of M1endo was comparable to that of t-WTendo.  
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Figure 2-11: Localization and signaling of WTendo and M1endo in the ASP 

(A-B) Examples of aHA immunostained (red) ASPs (white dashed outline) and wing discs from 

homozygous wtendo (A) and m1endo (B) larvae. (C-D) High-gain Airyscan (Zeiss LSM 800, 60X) images 
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of fixed CD8:Cherry-marked ASP cytonemes that localized either t-WTendo (C) or M1endo (D). (E-F’) 

Detergent-free aGFP surface staining (white) of t-WTendo and M1endo on ASP cytonemes from 

btl:cherryendo/wtendo (E) and btl:cherryendo/m1endo (F) larvae; arrowhead, receptor-colocalized t-WTendo or 

M1endo on the cell and ASP surface; arrow, receptor-colocalized intracellular (bright green) t-WTendo or 

M1endo in the ASP; merged (E,F) and red channels (E’,F’) were shown. (G-H) ASPs from homozygous 

wtendo (G) and m1endo (H) larvae showing correlation of zones of MAPK signaling (adpERK, red) with 

t-WTendo and M1endo uptake (green puncta). Scale Bars: 5 µm (C,D); 20 µm (A,B), 30 µm (G,H).  
 

However, a thorough scrutiny revealed that the m1endo allele produced 

hypermorphic phenotypes due to a reduced signaling range. The distal tip area of m1endo 

ASPs had significantly fewer long (>15 µm) signal-receiving cytonemes than the wtendo 

ASPs (Figure 2-10, K). All of the cells (~6-7 cells in Z-projected images) within a 60 

µm periphery surrounding the tip of wtendo ASPs extended long signaling cytonemes. 

In contrast, only 1-2 distal tip cells in the comparable region of the m1endo ASPs 

extended M1endo-receiving cytonemes. A restricted zone of M1endo-receiving 

cytonemes is reflected in the narrow gradient range and attenuated m1endo ASP growth 

(Figure 2-12, A-E). While t-WTendo formed a long-range gradient along the ~10-12 

cells-long ASP D-P axis, M1endo formed a narrow, steeper gradient along the ~5-6 cells-

long D-P axis (Figure 2-12, D and E). Accordingly, the m1endo ASPs had a reduced 

zone of nuclear dpERK in comparison to the wtendo ASPs. Thus, M1endo had a narrow 

distribution and signaling range compared to t-WTendo (Figure 2-11, G-H and Figure 2-

12, G-I). Nevertheless, normalization of either the signal concentration or the signaling 

zone with recipient ASP length showed comparable scaling of the t-WTendo and M1endo 

gradients and signaling zones in relation to the recipient ASP size (Figure 2-12, F and 

I). Previous work suggested that the Bnl gradient adopts recipient ASP-specific shapes 

due to two counteracting Bnl signaling feedbacks on cytonemes (Du et al., 2018a). 
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Thus, scaling of the M1endo gradient to the recipient-specific shape indicated normal 

M1endo signaling, but within a limited range.  

 

Figure 2-12: Bnl cleavage determines the range of gradient distribution and signaling 

(A-C) Images of aDlg immunostained (white) ASPs (white outline) and wing discs from homozygous 

wtendo (n=52) and m1endo (n=64) larvae (A,B); a graphical comparison (C) of their ASP length relative to 

the wing disc size. (D-E) Average intensity profiles of t-WTendo (D, n=3) and M1endo (E, n=5) along the 

ASP D-P axis; lower panels, examples of signal distribution along the ASP D-P axis; red line, 

exponential fit trend line; Cmax, maximum average intensity; C1/2, ½ Cmax; slope for the trend line between 

Cmax and C1/2. (F) Average intensity profiles of t-WTendo (n=9) and M1endo (n=12) normalized with 
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recipient ASP length (D-P axes) (Materials and methods). (G-I) Images of adpERK-stained (red) ASPs 

from homozygous wtendo (n=16) and m1endo (n=20) larvae (G,H) and graphical comparison (I) of their 

nuclear dpERK positive zones along the D-P axes; lower chart: average ratio (± standard deviation) of 

number of dpERK positive cells along the D-P axis to the total number of cells in the D-P axis. (J-N) 

Larval salivary glands expressing CD8:GFP, Bnl:HA1GFP3 (18), M1 (11), M2 (20), and M1M2 (18) 

under bnl-Gal4 as indicated; red arrow, central branch point. (O) A quantitative assessment of the 

frequency of terminal branching on salivary gland determined by Sholl analysis under the conditions 

indicated. Scale Bars: 30 µm; 100 µm (J-N).  
 

Ectopic Bnl expression in the salivary gland, a non-tracheated organ that does 

not normally express bnl (Jarecki et al., 1999), consistently showed a limited spatial 

distribution of M1 signaling. Since Bnl expression is known to induce tracheal invasion 

toward source cells, active Bnl expression in the salivary gland was expected to induce 

easily scorable tracheal invasion. Non-specific expression of bnl-Gal4 (Du et al., 2017) 

in the salivary gland was used to express the Bnl mutants. Except for a CD8:GFP 

control, equivalent levels of expression of Bnl:HA1GFP3 (WT), M1, M2, or M1M2 all 

induced tracheal invasion into the salivary gland, confirming their non-autonomous 

signaling (Figure 2-12, J-N). Thus, M1 is an active signal. However, the salivary glands 

expressing WT and M2 had a significantly higher number of terminal branches 

ramifying throughout the gland surface. In contrast, glands expressing M1 or M1M2 

showed poor terminal branching frequencies and surface coverage (Figure 2-12, K-O). 

Thus, M1 induced a spatially restricted response on the source cell surface. Since Bnl 

distribution pattern on a producing cell surface determines the spatial coverage of 

terminal branching on it (Peterson and Krasnow, 2015), attenuated terminal branching 

on the M1-expressing salivary glands suggested a reduced availability of M1 on the 

exposed basal cell surface of the salivary gland. 
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2.2.6 Bnl cleavage ensures its trafficking to the basal cell surface. 

To examine this possibility, the surface aGFPex assay was performed on 

salivary glands expressing the M1 or WT constructs. As expected, a significantly lower 

fraction of total M1 molecules were externalized on the basal surface of the salivary 

gland cells in comparison to WT (Figure 2-13, A-D). Strikingly, while the WT protein 

covered the entire basal surface of the giant-sized salivary gland cells, most of the 

externalized M1 molecules were restricted to the cell junctions (Figure 2-13, B and B’). 

Such abnormality in spatial distribution might suggest mispolarized M1 trafficking, 

reducing its availability at the basal surface. Indeed, confocal sections through the 

salivary glands showed that most M1 signals were selectively enriched at the apical 

luminal sides of the cells that were inaccessible to the external trachea (Figure 2-13, E-

H). Notably, although salivary gland cells do not express Bnl, they do contain the Bnl  

 

Figure 2-13: The M1 mutant has reduced basal surface localization in salivary gland cells 

(A-C) High-magnification (40X) images of the exposed basal surfaces (arrowhead) of salivary glands 

expressing WT or M1 under bnl-Gal4 from an area schematically shown in C; red, surface aGFPex 

immunostaining; arrow, cell junction. (D) Graph comparing fractions (red surface stain/total GFP) of 

overexpressed WT (n=12) and M1 (n=10) that got externalized on the salivary gland surface. (E-H) 

Images of sagittal sections of salivary glands expressing WT and M1 under bnl-Gal4; arrow, apical 

lumen. Scale bars, 20 µm; 50 µm (E-H). 
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cleavage machinery. Bnl:HA1GFP3 (WT) driven by bnl-Gal4 was cleaved leading to 

clear spatial separation of the HA- and GFP-tagged fragments (Figure 2-14, A and A’). 

Therefore, these results suggested that Bnl cleavage promotes efficient polarized 

trafficking to the basal signaling surface from where tracheal cells can receive the 

signal.  

 

Figure 2-14: Bnl is cleaved in salivary gland cells 

(A and A’) An aHA (red) stained salivary gland (a single giant cell in center focus) expressing 

Bnl:HA1GFP3 under bnl-Gal4, showing signal cleavage; while the truncated Bnl:GFP3 portion localized 

likely in secretory granules (green), the uncleaved HA-GFP colocalized signal remained in a separate 

subcellular compartment; B’, red channel of B; arrowhead, uncleaved Bnl:HA1GFP3; white arrow, 

truncated Bnl:GFP3 derivative of Bnl:HA1GFP3. 
 

To confirm polarized Bnl sorting in the wing disc source, X-Z-Y sections of the 

wing disc-ASP tissue complex were acquired along the ASP D-P axis (Figure 2-15, A-

E). In the CD8:Cherry-marked disc bnl source, overexpressed M1 molecules 

preferentially populated the apical luminal and lateral sides of the columnar epithelial 

cells. In contrast, the truncated WT molecules had relatively higher density toward the 

basal side of the source cells (Figure 2-15, B-D). In aHA-immunostained discs that 

A A’

Salivary Gland: Bnl:HA1GFP3 
Merge HA Channel
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expressed the Bnl:HA1GFP3 construct under bnl-Gal4, the truncated Bnl:GFP3 signal 

was clearly polarized toward the basal surface of the columnar epithelial cells facing 

the overlying ASP (Figure 2-15, E). Indeed, examination of genome-edited wtendo and 

m1endo larvae revealed that the basal surface of the disc source and recipient ASP had 

significantly higher t-WTendo density in comparison to M1endo (Figure 2-15, F-H). Thus, 

Bnl cleavage in the source cells directs efficient polarized sorting of the signal to the 

basal signaling surface, thereby affecting intercellular signaling range and tissue 

morphogenesis. 

 

Figure 2-15: Cleavage ensures polarized Bnl sorting to the basal cell surface for signaling  

 (A) Drawings depicting the ASP D-P axis (dashed line; upper panel) and an XZY section along the D-

P axis (lower panel) showing the tubular ASP and disc epithelia as shown in J-M. (B-C) Sagittal sections 

of aDlg immunostained (blue, sub-apical marker) wing disc and ASP when the disc bnl source 

coexpressed CD8:Cherry with either the WT or M1 construct under bnl-Gal4; arrow, basal side; 

arrowhead, apical side. (D) A graph comparing apical and basal percentage of WT and M1 relative to 

the total amount in the disc source; n=24 (WT), 32 (M1). (E) Maximum projections of mid- and para-
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sagittal sections within ~3 µm of mid-Y of an aDlg (blue) and aHA (red) stained wing-disc/ASP, where 

bnl-Gal4 expressed Bnl:HA1GFP3; arrow, truncated Bnl:GFP3; white dashed line, ASP and wing disc. 

(F-H) Comparison (graph in H) of levels of t-WTendo (F, n=17) and M1endo (G, n=33) on the surface of 

the disc source and ASP (dashed line); red and arrowhead, detergent-free aGFP-staining; arrow, 

intracellular puncta; white staining, phalloidin-Alexa-647. Scale bars, 20 µm. 

2.2.7 Biochemical analysis of Bnl:GFP1 cleavage mutants reveals possible 

alternative Bnl cleavages 

The N-terminal prodomain of Bnl is fairly small, about 14 kDa after signal 

peptide removal. This made it difficult to accurately examine the cleavage product 

using Western Blotting of Bnl:GFP3 or Bnl:HA1GFP3 while probing for GFP, since full 

length Bnl:GFP is >150 kDa. On the other hand, examination of Bnl:GFP1 using 

Western Blot and probing for GFP provided clearer visualization of Bnl cleavage since 

the inclusion of the GFP insertion in the N-terminal prodomain of Bnl:GFP1 resulted 

in further separation of the cleavage products from the full length Bnl:GFP protein. 

Therefore, to further examine the cleavage of Bnl from a biochemical perspective, the 

same PCS1 and PCS2 cleavage site mutations (M1, M2, and M1M2) were generated 

in the Bnl:GFP1 background.  

The full-length form of all of these proteins is seen just above the 150 kDa 

marker, which is an indication of post-translational additions to the Bnl protein as full-

length Bnl:GFP is predicted to be just 112 kDa (Figure 2-16, A and B). This 

phenomenon is consistent with the other Drosophila FGFs Pyr and Ths, whose full-

length forms are also much larger than their predicted size (Tulin and Stathopoulos, 

2010). Furthermore, Bnl does contain several predicted N- and O-glycosylation sites 

that would increase the molecular weight of the protein, although these sites have not 
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been tested (Tulin and Stathopoulos, 2010). Consistent with possible glycosylation is 

the observation that the Bnl proteins, both full-length and cleavage forms, are present 

in doublets on the Western Blot when viewed at lower exposure (Figure 2-16, A). It 

has been shown that variable glycosylation of proteins can result in double bands that 

are only slightly different in size, similar to what we see for Bnl (Moriconi et al., 2015). 

If Bnl is variably glycosylated, inhibiting glycosylation should result in the loss of the 

double bands and/or decreased size of the bands such that they are closer to their 

predicted molecular weight. 

 

Figure 2-16: Biochemical M1 and M2 mutant analysis 

(A) Western blot probing with aGFP on proteins isolated from S2 cells expressing Bnl:GFP1, Bnl:GFP1-

M1, Bnl:GFP1-M2, and Bnl:GFP1-M1M2. A higher exposure image (left) and a lower exposure image 
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(right) of the gel are shown. All lanes show full-length Bnl:GFP around 150 kDa. In addition to the full-

length band, Bnl:GFP1 with wild type cleaved sites (WT) has two additional bands, one just above 50 

kDa and one just below 37 kDa. These bands shift upwards in the M1 mutant and are not present in the 

M1M2 mutant. (B) Schematic of Bnl:GFP1 showing relative locations of the GFP insertion, cleavage 

sites, and conserved FGF domain. Predicted sizes of the protein for different cleavage events are shown 

below the schematic.  
 

For Bnl:GFP1 with wild type (WT) cleavage sites, the full-length form migrates 

just above 150 kDa and two additional forms of Bnl migrate below the full-length 

protein, one just below 37 kDa and the other just above 50 kDa (Figure 2-16, A). 

Cleavage of Bnl:GFP1 at PCS1 is predicted to produce a 46 kDa fragment (Figure 2-

16, B), so the band above 50 kDa could be produced by cleavage at PCS1 in addition 

to other post-translational modifications. However, the band below 37 kDa cannot be 

explained by cleavage only at PCS1 or PCS2 in Bnl:GFP1. It is possible that there are 

additional active cleavage sites that cut the Bnl protein upstream of the GFP1 insertion 

that results in a smaller band fragments in S2 cells.  

The two lower Bnl bands that are present in Bnl:GFP1 with WT cleavage sites 

are no longer detected for the Bnl:GFP1-M1 mutant, suggesting that these bands are 

PCS1-specific. However, the Bnl:GFP1-M1 mutant contains a new band slightly larger 

than the upper PCS1 cleavage band, of approximately 65 kDa (Figure 2-16, A). As 

Bnl:GFP1-M1 contains an unaltered PCS2 site, cleavage at PCS2 in the M1 mutant 

background could result in the appearance of this new product. Although cleavage of 

Bnl:GFP1 at PCS2 is predicted to only produce a 54 kDa product (Figure 2-16, B), post-

translational modifications such as glycosylation could explain the size difference. 

Further evidence that this band is a result of PCS2 cleavage is the observation that it is 
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no longer present when PCS2 is mutated in the Bnl:GFP1-M1M2 double mutant (Figure 

2-16, A).  

When PCS2 alone is mutated in the Bnl:GFP1-M2 mutant, the band profile 

looks identical to Bnl:GFP1 with WT cleavage sites. This is consistent with the in vivo 

data that suggests PCS2 is not normally an active cleavage site and is likely not 

involved in the typical proteolytic maturation of Bnl (Figure 2-5, F, H, and J-K). 

However, it is interesting that PCS2 appears to be active when PCS1 cleavage is 

blocked in cell culture. It is possible that when an active Furin site is blocked, cleavage 

at a normally unutilized additional site can occur. For example, the Drosophila BMP 

Glass Bottom Boat (Gbb) has 3 Furin sites and can exhibit relatively normal activity as 

long as at least one of the sites remains functional (Fritsch et al., 2012), suggesting that 

cleavage at multiple sites can be used to compensate for blockage at other sites.  

The finding that cleavage at PCS2 can occur in S2 cells is very interesting. It is 

possible that cleavage does normally occur at PCS2, but that subsequent PCS1 cleavage 

occurs so rapidly that the PCS2-specific cleavage band is difficult to detect. However, 

if this occurs, initial cleavage at PCS2 is not required for cleavage at PCS1, because in 

the Bnl:GFP1-M2 mutant the cleavage products are the same as in Bnl:GFP1 with WT 

cleavage sites. Although this shows that cleavage at PCS1 can still occur if PCS2 is 

blocked, there could be a temporal or quantitative difference in cleavage at PCS1 in 

this scenario. Another intriguing possibility for an active PCS2 site is represented by 

findings for BMP4, in which cleavage at an optimal Furin site adjacent to the mature 

ligand domain separates the prodomain from the mature ligand, but the prodomain 

remains non-covalently attached to the mature domain until a second cleavage within 
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the prodomain frees the mature ligand from the prodomain (Degnin et al., 2004). Our 

in vivo results showing that cleavage at PCS1 is required for complete separation of the 

prodomain and mature ligand do not necessarily rule out the possibility that cleavage 

of PCS2 could result in the prodomain remaining non-covalently attached to the rest of 

the mature signaling domain. In this scenario, Bnl:HA1GFP3-M1 could still appear as 

a full-length, uncleaved protein even though it had been cleaved at PCS2. Additional 

biochemical analyses from in vivo samples and an endogenous PCS1/PCS2 double 

mutation in Bnl could be used to further examine this possibility.  

2.2.8 Lifespan of bnl:HA1GFP3-M1endo flies is slightly reduced 

It was somewhat surprising that bnl:HA1GFP3-M1endo flies are homozygous 

viable, which indicated that Bnl cleavage at PCS1 is not essential for development and 

survival. To test if there was any difference in lifespan between bnl:HA1GFP3endo and 

bnl:HA1GFP3-M1endo, a survival assay was performed in which groups of flies of each 

genotype were transferred to fresh food every other day and scored for how long they 

lived (Figure 2-17). Wild-type (wt) males and females (without any insertion in the bnl 

locus) survived similar lengths compared to bnl:HA1GFP3endo flies, as 50% death 

occurred after ~55 days, and 100% death occurred after at least 86 days. On the other 

hand, for bnl:HA1GFP3-M1endo flies, 50% death occurred after ~50 days and 100% 

death occurred after just 77 days. Thus, the lifespan of flies that contain the M1 

mutation in Bnl is slightly shorter. It is possible that in the wild, where conditions such 

as habitat and food are not as optimal or readily available, this reduction in lifespan 

could be even further exacerbated. However, this study did not thoroughly examine the 

flight, mating behavior, or other activities of the M1 mutant flies.  
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Figure 2-17: Survival Assay of the M1 mutant 

A survival curve is shown for males and females of the following homozygous genotypes: wt, 

bnl:HA1GFP3endo, and bnl:HA1GFP3-M1endo. Flies harboring the endogenous M1 mutation 

(bnl:HA1GFP3-M1endo) did not live as long as wt or bnl:HA1GFP3endo flies. 

2.2.9 Bnl is cleaved during embryonic development 

The regulation of Bnl cleavage may differ spatiotemporally throughout 

development. Bnl expression is critical in the early embryo for formation of the initial 

tracheal system. To test if Bnl is cleaved in the embryo, LexO-bnl:HA1GFP3 was 

expressed in the embryonic Bnl source cells using an endogenous bnl-LexA fly that was 

created by Du et al. (2017). When viewing stage 14 embryos, full-length Bnl (HA and 

GFP together) is seen in clusters of cells while only truncated Bnl (GFP only) is 

transported to adjacent recipient cells, suggesting that Bnl is cleaved for embryonic 

tracheal development as well (Figure 2-18). However, overexpression of Bnl led to 

abnormal embryonic tracheal development, consistent with findings in larval tissues. 
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Further experiments need to be performed with the tracheal cells marked to confirm 

that the cleaved Bnl is in fact being transported to developing tracheal branches. 

Moreover, endogenous constructs, although very poorly detected in the embryo, can 

also be examined. As Bnl is expressed in many sources such as leg discs, eye discs, the 

gut, and neurons (Du et al., 2017), it will be valuable to know if Bnl cleavage occurs in 

these other signal-producing cells. If Bnl is cleaved in other types of sources, it will be 

interesting to examine the regulation of the cleavage and whether it modulates Bnl 

trafficking and activity in the same way that it does in the wing disc source cells.  

 

Figure 2-18: Bnl cleavage in embryonic tracheal development 

Representative fluorescent image from a stage 14 embryo expressing Bnl:HA1GFP3 in the source cells 

(bnl-LexA x LexO-bnl:HA1GFP3). Bnl source cells (arrowheads) are seen with both HA and GFP 

fluorescence, but only GFP is located adjacent to the source cells likely in growing recipient tracheal 

branches (arrows). Scale bar: 10 µm. 
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2.3 Discussion 

In conclusion, this study showed that the FGF family protein Bnl is synthesized 

as a proprotein and subsequently endoproteolytically cleaved at a single site by Furin1 

in the Golgi network. The cleavage ensures efficient polarized intracellular sorting of 

a truncated C-terminal fragment of Bnl containing the FGF domain to the signaling site 

where the signal is received by ASP cytonemes for intercellular dispersal and signaling. 

Limited proteolysis is one of the versatile posttranslational mechanisms that 

activates most, if not all, developmental signals (LeMosy, 2006). Signals including 

Hedgehog (Hh); Dispatched; EGF; Trunk; the TGF-β/BMP family proteins 

Decapentaplegic (Dpp), Screw, and Glass bottom boat (Gbb); two Drosophila FGFs, 

Pyr and Ths; and human FGF7 were all shown to be cleaved (Lee et al., 1994; 

Schweitzer et al., 1995; Porter et al., 1996; Künnapuu et al., 2009; 2014; Wharton and 

Serpe, 2013; Constam, 2014; Johnson et al., 2015; Anderson and Wharton, 2017; 

Stewart et al., 2018). Although signal cleavage usually activates the signal and affects 

the range of signaling response (Künnapuu et al., 2009; 2014; Wharton and Serpe, 

2013), full-length uncleaved ligands were also found to activate receptors and were 

shown to be secreted when expressed in cultured cells (Künnapuu et al., 2009; Sopory 

et al., 2010; Tokhunts et al., 2010; Tulin and Stathopoulos, 2010; Constam, 2014). 

Therefore, why are signals synthesized as proproteins and subsequently cleaved for 

their activity or dispersion? 

This study showed that Bnl cleavage acts as a catalytic switch that ensures its 

efficient polarized sorting to the basal signaling surface from where it can be taken up 

by the recipient cytonemes (Figure 2-19). The uncleavable mutant Bnl can activate  
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Figure 2-19: Proposed model for the role of Bnl cleavage in determining signaling range 

Pro-Bnl is cleaved by Furin1 in the Golgi into a truncated form of Bnl, which, through an unknown 

process, is asymmetrically sorted to the basal surface of the source cells. In the absence of cleavage, 

mutant Bnl-M1 molecules traffic randomly and are mostly sequestered at a distant apical domain, 

reducing their basal availability. The ASP, which is located near the basal side of the source cells, extends 

cytonemes to directly receive Bnl from the basal surface of the source cells. High Bnl levels/signaling 

in the ASP induce PntP1, which induces Bnl-receiving cytoneme formation. Lower Bnl uptake in cells 

further from the source induces Cut, which suppresses Bnl-receiving cytoneme formation. Cut and PntP1 

feedback-inhibit each other’s expression, thereby generating a Bnl gradient that adopts recipient ASP-

specific shapes (Du et al., 2018a). Consequently, reduced Bnl-M1 availability results in only a few ASP 

cells extending Bnl-receiving cytonemes, leading to a restricted range of signal distribution and stunted 

ASP growth. 
 

receptors but is presented on the basal surface at low levels (Figure 2-13, A–D and 

Figure 2-15, F-H). The reduced basal presentation of uncleavable Bnl is due to its 
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mistargeting to a far apical domain of the source cells, which is inaccessible to recipient 

tracheal cytonemes. Therefore, it is likely that pro-Bnl cleavage activates a delivery 

barcode for efficient target-specific intercellular dispersal. Conceptually, the cleavage 

ensures a signaling polarity that is relayed from within the source cells to the recipient 

ASP through cytonemes. Such signal barcoding for determining intercellular 

destination might be conserved for all signals. Consistent with this view, a similar 

cleavage-dependent polarized sorting mechanism was reported for Hh in Drosophila 

retinal photoreceptor neurons (Huang and Kunes, 1996; Chu et al., 2006; Daniele et al., 

2017). A complex choreography of apical and basal localization followed by the basal 

cytoneme-dependent dispersion of Hh was also described in Drosophila wing imaginal 

disc cells (Guerrero and Kornberg, 2014; Kornberg, 2011). 

Interestingly, the efficiency of intracellular and intercellular Bnl trafficking 

depends on the enzymatic activity of Fur1 (Figure 2-7, G and Figure 2-8 A–D). 

Although Bnl expression is spatially restricted in tissues, the molecular machinery that 

cleaves Bnl exists even in salivary glands that do not normally express Bnl (Figure 2-

14). This might reflect the broad range of Fur1 expression, as reported in several studies 

(Roebroek et al., 1992; 1993; Künnapuu et al., 2009; van Tetering and Vooijs, 2011; 

Johnson et al., 2015). Alternatively, different types of cells might express different 

furin/PC genes that can act redundantly. Furins are known to be regulated enzymes that 

autoactivate in a Ca2+-dependent manner during their intracellular trafficking (Thomas, 

2002). How and when the Furin activation pathway might intersect with the pro-Bnl 

sorting itinerary is unknown. It is also not known why truncated Bnl is targeted only to 

the basal cell surface. Recently, the trans-Golgi cargo receptor AP-1γ, a component of 
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the Clathrin AP-1 complex, was shown to be necessary for Bnl trafficking to the 

basolateral membranes of bnl-expressing flight muscle cells (Peterson and Krasnow, 

2015). It is possible that Bnl cleavage is somehow involved in interaction with a cargo-

receptor binding site. The current knowledge of intracellular Bnl/FGF targeting is 

rudimentary and needs to be elucidated in the future. 

 These findings revealed that although Bnl cleavage is intracellular, it plays an 

important role in determining the range of cytoneme-mediated intercellular Bnl 

dispersal. Insights on how this intracellular event might influence the range of 

cytoneme-dependent dispersal came from an earlier study (Du et al., 2018a). As 

illustrated in Figures 1-7 and 2-19, high-to-low levels of Bnl signaling activate two 

counteracting feedback loops operating from the opposite poles of the ASP, which help 

to establish the zones of corresponding high-to-low number of Bnl-receiving 

cytonemes along the ASP epithelium. The consequence is a systemic self-regulatory 

process where the number of Bnl-receiving cytonemes produced by ASP cells is 

determined by the amount of Bnl received by the cells through cytonemes, which gives 

rise to the recipient ASP-specific Bnl gradient shapes. Therefore, the intracellular 

cleavage and polarized sorting pathway that modulate Bnl availability on the basal 

surface of source cells can determine the spatial range of cytoneme formation, signal 

dispersion, and signaling. These results suggest an intricate coordination of the 

intracellular events in the source and recipient cells with the intercellular cytoneme-

mediated dispersal, which together precisely shape signal gradients and tissue patterns. 
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Chapter 3: Lipid modification of Bnl 
 

3.1 Introduction 

Despite characterization of the basal sorting of Bnl activated by Furin-

dependent intracellular cleavage, it remained unclear why Bnl is not freely released 

once it is exposed to the surface of the source cells. Lipid modifications could render 

signals insoluble and restrict their dispersion through the extracellular matrix (Resh, 

2006), but most signaling proteins, as described below, are known to be lipidated and/or 

directly interact with lipidated proteins such as proteoglycans. Despite the wide-spread 

occurrence, the exact cell biological and developmental role of signal lipidation 

remained a mystery. Here I show that Bnl is lipid modified, which ensures cytoneme-

dependent signaling. This is the first report of any direct lipid modification to an FGF 

protein. 

3.1.1 Lipidation of signaling proteins 

Hedgehog (Hh) is a common morphogen that functions to pattern tissues during 

development and must travel over long distances to target cells to activate signaling. 

However, Hh is lipid-modified by both a cholesterol and a palmitate, a 16-carbon 

saturated fatty acid (Porter et al., 1996; Chamoun et al., 2001). The cholesterol 

modification to Hh requires autocatalytic activity of the Hh protein. An intein domain 

within its C-terminus catalyzes the proteolysis of the N-terminal signaling domain and 

subsequent Cholesterol addition to the C-terminal end of the signaling domain (Porter 

et al., 1996). The palmitate molecule is added to the N-terminal cysteine residue by the 

Drosophila membrane-bound O-acyl transferase (MBOAT) protein, Rasp (aka 
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Sightless, Skinny Hedgehog, and Central Missing) (Chamoun et al., 2001). Human 

Sonic Hedgehog (Shh) is also palmitoylated by the Rasp homolog Hhat (Pepinsky et 

al., 1998; Buglino and Resh, 2008). Due to its lipid modifications, Hh localizes in lipid 

rafts (Chen et al., 2004; Rietveld et al., 1999). This organization and clustering of Hh 

on the surface of the producing cells appears to be important for its long-range signaling 

(Vyas et al., 2008). Interestingly, Hh can still be secreted from producing cells when 

Rasp is mutated or when mutations in Hh block the addition of either lipid modification 

(Lee and Treisman, 2001; Micchelli et al., 2002; Chamoun et al., 2001; Chen et al., 

2004). However, unlipidated Hh travels further in the Drosophila wing imaginal disc 

but is less potent in activating its target genes (Callejo et al., 2006). Therefore, the lipid 

modifications to Hh are required for precise control of Hh signaling.  

The Wnt family of signaling proteins also contain two separate lipid 

modifications. Mouse Wnt3a has a palmitate molecule attached to its conserved 

cysteine C77 (Willert et al., 2003) as well as a monounsaturated palmitoleate molecule 

attached to its conserved serine S209 (Takada et al., 2006). Palmitoylation of Wingless 

(Wg), the Drosophila Wnt protein, by the MBOAT protein Porcupine (Por) is 

necessary for Wg localization to lipid rafts and proper secretion of the protein 

(Kadowaki et al., 1996; Zhai et al., 2004; van den Heuvel et al., 1993). Intriguingly, as 

palmitoleate is an unsaturated fatty acid, it is predicted to be excluded from lipid rafts, 

which typically contain highly ordered and saturated lipids. The interplay between 

these two lipid modifications on Wnt could play a role in its trafficking and release 

from the Wnt-producing cells. One finding consistent with the idea that Wg trafficking 

relies on lipid raft localization is that the palmitoylated cysteine residue in Wg is 
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required for normal secretion of the protein in vivo (Franch-Marro et al., 2008). Similar 

to Hh, lipidation of Wnt reduces its range of action and is necessary for the tight 

regulation of its signaling (Galli et al., 2007). 

The Drosophila EGF Spitz (Spi) is palmitoylated by Rasp, the same MBOAT 

enzyme responsible for palmitoylation of Hh. The palmitate addition to the N-terminal 

cysteine of Spi results in it being stably attached to the outer membrane of cultured 

cells. When this cysteine residue is mutated, Spi is instead released into the media and 

is no longer attached to the surface of cultured cells. Similar to loss of Hh lipidation, 

loss of Spi palmitoylation results in an increased range of activation of its target genes 

in vivo, but a weakened signaling response as the target genes are activated at lower 

levels (Miura et al., 2006).  

An interesting case of signaling protein lipidation is with Ephrins. Ephrin 

signaling is involved in organ boundary formation, axon guidance, and vasculature 

organization, and is also implicated in tumor malignancy (Pasquale, 2008; Wykosky 

and Debinski, 2008). Ephrins are ligands for Eph receptors, the largest family of 

Receptor Tyrosine Kinases (RTKs), and are categorized into two different classes, A 

and B, depending on how they are anchored in the membrane (Gale and Yancopoulos, 

1997). Ephrin A1-A5 are tethered to the membrane by a glycosylphosphatidylinositol 

(GPI)-anchor, while Ephrin B1-B3 are anchored in the membrane by a transmembrane 

domain followed by a cytosolic domain (Gale and Yancopoulos, 1997). Interestingly, 

due to the membrane anchoring of Ephrin ligands either by a GPI-anchor (Eph A1-A5) 

or a transmembrane domain with a cytosolic domain (Eph B1-B3), Ephrins can 

participate in reverse signaling, meaning they can relay signals back into the Ephrin-
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producing cells after ligand-receptor interactions (Pasquale, 2008). Although they have 

typically been thought of as membrane-bound, juxtacrine signaling proteins, it was 

shown that Ephrins can be released from the membrane by metalloproteases and 

function in soluble forms (Janes et al., 2005; Beauchamp et al., 2012).  

3.1.2 Intercellular transport of lipidated signaling proteins 

Since these lipidated proteins predominantly localize in the membrane due to 

their hydrophobic modifications, it remains somewhat of a mystery how they signal 

over long distances. One study found that Wg and Hh copurify from cultured cells with 

lipophorin, the protein scaffold of lipoprotein particles. The function of lipoprotein 

particles is to transport hydrophobic molecules within vesicles through the extracellular 

space. Furthermore, this study found that Hh and Wg also colocalize with lipophorin 

in the developing wing disc and that reduction of lipophorin levels also reduced the 

range of Hh and Wg signaling (Panáková et al., 2005). It has also been shown that 

lipoprotein receptor-related proteins can act as coreceptors for Wnt and Hh (He et al., 

2004; Fisher and Howie, 2006). Some GPI-anchored proteins, such as parasite coat 

proteins, can travel through the body on lipoprotein particles (Neumann et al., 2007), 

so transport of lipid-modified proteins by lipoprotein particles has been shown before. 

However, direct evidence of lipid-modified signaling protein transport via lipoprotein 

particles has not been provided and colocalization of some lipidated signaling proteins 

with lipoprotein particle components does not rule out other modes of transport. In fact, 

somewhat contradicting the lipoprotein particle transport model, it was shown that Hh 

can be cleaved and shed from the membrane by matrix metalloproteases (Dierker et al., 

2009).  
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Recently, increasing evidence has been surfacing that cytonemes, or thin actin-

based filopodia, play a critical role in the transport of most, if not all paracrine signaling 

proteins, including ones that are lipid-modified (Yamashita et al., 2018). Wnt and its 

receptor, Frizzled (Frz), were shown to be transported along cytonemes to mediate 

patterning of tissues in embryogenesis of both vertebrates and invertebrates 

(Stanganello et al., 2015; Huang and Kornberg, 2015; Sagar et al., 2015). Hh transport 

is also mediated by cytonemes. In the Drosophila wing imaginal disc, anterior 

compartment cells extend cytonemes containing the Hh receptor Patched (Ptc) to 

contact the Hh-producing posterior compartment cells (Chen et al., 2017). The Hh 

source cells also extend cytonemes that contain the Hh ligand and the signal is 

exchanged where the receiving-cell and producing-cell cytonemes contact each other 

(González-Méndez et al., 2017). Furthermore, Shh is transported by cytonemes to 

pattern the limb bud in chick embryos (Sanders et al., 2013). In the developing 

Drosophila eye disc, cells that express EGFR to receive EGF extend cytonemes to 

contact the EGF-producing cells and EGF signaling in the EGF-recipient cells is 

required for the production of cytonemes (Roy et al., 2011). These findings strongly 

suggest that cytonemes are used to transport EGF as well. Overall, there is mounting 

evidence that many signaling proteins are both lipid modified and are also transported 

via cytonemes, although there is still much to be learned about how these two properties 

of signaling proteins are connected. 

3.1.3 GPI anchor structure 

A common type of post-translational lipid modification to a protein that results 

in the protein being tethered to the outer membrane of cells is a 
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glycosylphosphatidylinositol (GPI) anchor. The most common type of GPI anchor 

consists of a phosphatidylinositol (PI) lipid moiety, four glycan molecules (one 

glucosamine and three mannoses), and a terminal phosophoethanolamine that is amide-

bonded to the GPI-anchored protein (Figure 3-1, reviewed in (Kinoshita, 2016)).  

 

 

Figure 3-1: GPI anchor structure 

Schematic of the GPI anchor structure is shown. Location of phospholipase C (PI-PLC) cleavage within 

the GPI anchor to release the tethered protein is indicated (arrow).  
 

Depending on many factors, such as the organism or cell type, the GPI anchor 

can differ with various glycan side chains or modified lipid moieties. The GPI anchor 

is assembled in the ER by a series of enzymatic reactions to covalently attach the 

glycans and phosphoethanolamine to the PI lipid portion. Hydrophobic signal 

sequences in the C-terminus of GPI-anchored proteins induce the addition of the fully 

assembled GPI anchor in the endoplasmic reticulum (ER). During this process, the C-
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terminal hydrophobic portion of the protein is cleaved off and concomitantly replaced 

with the preassembled GPI anchor via a transamidation reaction. Once added to the 

protein, the glycan and lipid portions of the GPI-anchor can be further remodeled in 

the ER and Golgi. GPI-anchored proteins are tethered to the outer surface of the cell 

membrane and often localize in membrane microdomains, or lipid rafts. They can be 

released from the membrane via phospholipase cleavage that occurs within the lipid 

portion of the GPI anchor (Figure 3-1).  

3.2 Results 

3.2.1 Additional predicted cleavage sites in the Bnl C-terminus 

 In addition to PCS1 and PCS2, which were tested using the BnlHA1GFP3-M1 

and -M2 mutants, respectively, the Proprotein Convertase (PC) site prediction software 

(Duckert et al., 2004) indicated that there were additional potential cleavage sites 

downstream of tagging site 3 in the C-terminus of the Bnl protein (Figure 3-2, A). 

“General PC” prediction indicated that there were 2 sites in the C terminus that had a 

high probability of being cleavage sites, which were referred to as PCS3 and PCS4. 

PCS3 was located after R565 in the native protein, which is between tagging sites 3 

and 4, and PCS4 was located after R767 in the native protein, which is just 3 amino 

acids upstream from the C-terminus. Previous experiments with Bnl:GFP3HA4 in S2 

cells ruled out the possibility of an intracellular cleavage at PCS3 (Figure 2-5, B). 

However, the four original GFP tagging sites (Bnl:GFP1-4) could not provide any 

information on possible cleavage at PCS4, which is downstream of Bnl:GFP4. 

Therefore, to test for any cleavage event downstream of tagging site 3, an mCherry tag 
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was attached to the C-terminus of the Bnl:GFP3 protein, creating Bnl:GFP3Cherryc 

(Figure 3-2, B).  

 

Figure 3-2: Putative C-terminal cleavage sites in Bnl 

(A) Schematic of the Bnl protein with the relative locations of the original 4 GFP tagging sites (top). 

Prediction of General Proprotein Convertase (PC) sites (Duckert et al., 2004) in the Bnl protein revealed 

2 putative sites, PCS3 and PCS4 (red stars), in the C-terminal region of Bnl. (B) To test for any cleavage 

in the C-terminus of Bnl, the construct Bnl:GFP3Cherryc was created by fusing a Cherry tag onto the C-

terminal end of Bnl:GFP3. 
 

 When the Bnl:GFP3Cherryc protein was expressed in S2 cells, GFP puncta 

consistently separated from Cherry puncta, suggesting a possible cleavage at PCS4 in 

the extreme C-terminal portion of Bnl (Figure 3-3, A). Furthermore, GFP puncta that 

were on the surface of the cells, as shown by an extracellular aGFP stain, were not 

colocalized with Cherry (Figure 3-3, A). Thus, the C-terminal fragment of Bnl  
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Figure 3-3: Separation of GFP and Cherry from Bnl:GFP3Cherryc  

(A) S2 cells expressing the Bnl:GFP3Cherryc protein (schematic shown above images) and stained with 

an aGFP extracellular stain (aGFPex). Merged and each individual channel are shown separately. Many 

GFP puncta (green) are seen without colocalization of Cherry fluorescence (red), including externalized 

Bnl:GFP, as viewed with aGFPex staining (blue, arrows). This indicates possible intracellular cleavage 

within the C-terminal region of Bnl that results in separation of GFP3 and Cherryc. (B) Wing disc from 

transgenic flies expressing Bnl:GFP3Cherryc driven by Bnl-Gal4 (bnl-Gal4 x UAS-bnl:GFP3Cherryc). 
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Bnl:GFP (green) in the ASP recipient cells is predominantly absent of Cherry fluorescence (red, arrows), 

which instead remains behind in the Bnl source cells (arrowhead), indicating that somehow the Cherryc 

tag is separated from the rest of the Bnl protein in vivo. All cells marked with aDiscs-large (Dlg). Merged 

and Cherry channels are shown. Scale bars: 10 µm (A), 30 µm (B).  
 

remained inside the cells while the rest of the signaling protein was externalized. To 

test if the cleavage also occurred in vivo, transgenic flies harboring the UAS-

bnl:GFP3Cherryc construct were generated and the protein was expressed in the wing 

disc source cells using bnl-Gal4. Consistent with the in vitro S2 cell data, the Cherry 

tag remained in the wing disc source cells while the GFP3 tag was transported to the 

recipient ASP cells (Figure 3-3, B), confirming that these tags are separated from each 

other, possibly by proteolysis or another mechanism.  

3.2.2 Bnl localization on the extracellular surface of producing cells 

 Interestingly, previous results investigating the cleavage of Bnl at PCS1 showed 

that Bnl is present on the extracellular surface of the source cells (Figure 2-13, A-D; 

Figure 2-15, F-H). As these assays probing for extracellular Bnl involved many wash 

steps (see Chapter 5, section 5.9), it indicated that Bnl is firmly anchored in the 

membrane or extracellular matrix by some mechanism. Using an extracellular aGFP 

stain in non-permeabilized conditions, high levels of Bnl:GFP3 were observed on the 

extracellular surface of S2 cells (Figure 3-4, A), confirming that Bnl:GFP3 is anchored 

on the outer surface of the cell membrane. Extracellular staining of endogenous Bnl, 

either transfected by itself or cotransfected with CD8:GFP, using aBnl antibody gave 

similar results, indicating that membrane localization is not an artifact of the GFP 

insertion in Bnl:GFP3 (Figure 3-4, A). Although membrane localization of Bnl might 

indicate that the protein contains a transmembrane domain that results in it being 
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Figure 3-4: Surface localization of Bnl and GPI anchor prediction 

(A) S2 cells transfected with Bnl:GFP3 (left cell), untagged Bnl (middle cell), or cotransfected with 

untagged Bnl and CD8:GFP together (right cell). Extracellular staining using either aGFP antibody (left) 

or aBnl antibody (middle and right) showed that Bnl is firmly localized on the outer surface of S2 cells 

and is not an artifact of the GFP3 insertion. (B) Sweet/Eisenberg Hydrophobicity plot of the Bnl protein 

showing a highly hydrophobic stretch of amino acids at the C-terminus of the protein (red star), an 

indication that Bnl could be GPI-anchored. (C) GPI anchor prediction software showing that GPI anchor 

modification to the Bnl protein is highly probable (arrow), with the modification occurring at residue 

S741 (w site, arrowhead). Scale bars: 10 µm. 
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anchored in the membrane, there are no strongly predicted transmembrane domains in 

the Bnl protein. However, according to the Sweet/Eisenberg hydrophobicity scale, Bnl 

does contain a short hydrophobic stretch of amino acids 24 residues in length at its C-

terminus (Figure 3-4, B). Intriguingly, a short stretch of amino acids near the C-

terminus of a protein is a strong requirement and characteristic of proteins that are 

modified with a glycosylphosphatidylinositol (GPI) anchor (Galian et al., 2012). 

Furthermore, an online software called PredGPI (Pierleoni et al., 2008) that predicts if 

proteins are GPI-anchored found it highly probable that Bnl is modified with a GPI 

anchor (Figure 3-4, C). This software predicted that the w site, the amino acid at which 

the GPI anchor is attached, is located at residue S741 of the 770 amino acid long Bnl 

protein. The addition of a GPI anchor to a protein results in it being tethered to the outer 

leaflet of the plasma membrane (Kinoshita, 2016), which could explain why Bnl is 

present on the outer membrane of producing cells. Moreover, GPI anchor modification 

results in the C-terminus of the target protein being cleaved off at the w site with 

concomitant covalent addition of the GPI anchor (Kinoshita, 2016). Since Cherry was 

fused downstream of the predicted w site, this could explain how the GFP and Cherry 

tags from Bnl:GFP3Cherryc separated in cell culture and in vivo. Notably, the Cherry 

fusion onto the C-terminus of Bnl after the GPI anchor signal sequence did not disrupt 

the ability of Bnl to localize on the membrane due to possible GPI anchor modification 

(Figure 3-3, A). This is consistent with previous studies reporting that C-terminal 

fusions onto known GPI-anchored proteins do not affect their ability to be modified 

with a GPI anchor (Caras, 1991). Since the predicted GPI anchor modification could 

explain both observations that Bnl is tethered to the surface of the producing cell 
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plasma membrane and also the distribution of the tags from Bnl:GFP3Cherryc, it was 

hypothesized that Bnl is post-translationally modified with the addition of a GPI 

anchor.  

 

Figure 3-5: PI-PLC-mediated Bnl removal from S2 cell surface 

(A) S2 cells transfected with Bnl:GFP3 (left cells) or cotransfected with untagged Bnl and CD8:GFP 

(right cells). The cells were incubated in the absence (top cells) or presence (bottom cells) of PI-PLC 

and were extracellular stained with aGFP (left) or aBnl (right). Following PI-PLC treatment, both 

Bnl:GFP3 and untagged Bnl appear to be removed from the surface of the cells. (B) Graph depicting the 

significant loss of extracellular Bnl following PI-PLC treatment. Scale bars: 10 µm. p values < 0.001. 
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3.2.3 PI-PLC treatment removes Bnl from the surface of S2 cells  

 The standard test to determine if a protein is GPI-anchored is to treat cells or 

tissues with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves 

within the lipid portion of GPI anchors and releases the tethered protein from the 

membrane (Paulick and Bertozzi, 2008). Treatment of S2 cells expressing Bnl:GFP3 or 

endogenous, untagged Bnl with PI-PLC followed by extracellular staining showed that 

PI-PLC treatment decreased Bnl levels on the extracellular surface of the cells (Figure 

3-5, A). Obtaining a ratio of the surface:total Bnl levels quantitatively showed that PI-

PLC significantly reduced the levels of Bnl:GFP3 and endogenous Bnl from the surface 

of the cells (Figure 3-5, B). 

 

Figure 3-6: Standardization of PI-PLC treatment 
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(A-C) S2 cells transfected with Bnl:GFP3 treated with or without PIPLC at different conditions and 

stained with aGFPex. All graphs represent the extracellular:total Bnl ratios. (A) Treatment with PI-PLC 

at 4oC and 25oC both significantly reduced surface levels of Bnl (both p values < 0.001), with no 

significant difference between 4oC and 25oC groups. (B-C) Different concentrations of enzyme were 

tested for 30 minutes each (B) and different times were tested using 0.2U/mL of enzyme (C). Scale bar: 

10 µm. 
 

 After it was found that PI-PLC treatment reduced extracellular Bnl surface 

levels on S2 cells, the PI-PLC treatment process was standardized by determining the 

optimal time, temperature, and concentration of enzyme to use in the assays (Figure 3-

6). It was determined that the optimal conditions for PI-PLC treatment were: 30 

minutes, 25oC, 1U/mL PI-PLC Enzyme. These optimized conditions were used for the 

rest of the experiments that involved PI-PLC treatment. 

3.2.4 PI-PLC treatment controls 

 To ensure that the PI-PLC-mediated shedding of proteins from the membrane 

is specific to GPI-anchored proteins in S2 cells, the PI-PLC assay was performed on 

the Drosophila EGF Spitz (Spi), which is known to localize on the extracellular surface 

of cells due to palmitic acid lipid modification. PI-PLC treatment should not be able to 

directly release palmitoylated proteins from the membrane. As expected, PI-PLC 

treatment of S2 cells expressing Spi:GFP did not alter the extracellular levels of Spi 

(Figure 3-7, A and B), indicating that PI-PLC treatment is specific to GPI-anchored 

proteins. Alternatively, the construct GFP:mGPI was used as a positive control for PI-

PLC treatment. The GFP:mGPI protein is composed of GFP flanked upstream and 

downstream by the signal sequence of rabbit lactase-phlorizin hydrolase (LPH) and a 

known mouse GPI signal sequence from the CD58 protein, respectively (Greco et al., 
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2001). When GFP:mGPI was expressed in S2 cells, the extracellular-localized 

GFP:mGPI was efficiently removed after PI-PLC treatment (Figure 3-7, A and B),  

 

Figure 3-7: PI-PLC treatment on Spi:GFP, GFP:mGPI, and GFP:bGPI 

(A) S2 cells transfected with Spi:GFP (left), GFP:mGPI (middle), and GFP:bGPI (right) and treated 

without PI-PLC (top row) or with PI-PLC (bottom row). All cells were extracellular stained with aGFP. 

(B) Graphs showing the extracellular:total GFP ratios for each group. PI-PLC treatment had no effect on 

Spi membrane localization, but significantly reduced surface levels of GFP:mGPI and GFP:bGPI (p 

values <0.001). (C) Schematic of the GFP:bGPI construct which contains the Bnl signal peptide (SP), 

GFP, and the final 53 amino acids from the native Bnl protein that includes the predicted w site for GPI 

anchor modification. Scale bars: 10 µm. 
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similar to the results for Bnl in S2 cells. To further examine whether the C-terminal 

hydrophobic portion of Bnl is responsible for GPI anchor modification, an additional 

GFP:bGPI construct was generated. GFP:bGPI contains the N-terminal Bnl signal 

peptide for secretion, followed by a GFP tag, followed by the final 53 amino acids of 

native Bnl that contains the predicted Bnl GPI signal sequence and w site (Figure 3-7, 

C). When expressed in S2 cells, GFP:bGPI was found to be tethered on the outer cell 

surface and after treatment with PI-PLC, the extracellular levels of GFP:bGPI on the 

surface were significantly reduced (Figure 3-7, A and B). Together, these results 

showed that Bnl is GPI-anchored and PI-PLC effectively and exclusively removes GPI-

anchored proteins from the surface of S2 cells. 

3.2.5 Generation and analysis of Bnl:GFP3-dGPI and Bnl:GFP3-TM 

 To further test and characterize the GPI-anchoring of Bnl, two different 

constructs were generated that contained an altered C-terminus in the Bnl:GFP3 protein. 

First, a deletion was made after amino Y730 in the native Bnl protein, which is 

upstream of where the predicted GPI anchor signal sequence and w site are located 

(Bnl:GFP3-dGPI, Figure 3-8, A). Another construct was made in which the 

transmembrane domain from a CD8 protein was fused to the C-terminus of Bnl:GFP3-

dGPI, which was named Bnl:GFP3-TM (Figure 3-8, A). In S2 cells expressing 

Bnl:GFP3-dGPI, there was no detectable aGFP extracellular stain on the surface either 

before or after PIPLC treatment, suggesting that this deletion inhibited the ability of 

Bnl to associate with the membrane (Figure 3-8, B). On the other hand, S2 cells 

expressing Bnl:GFP3-TM had a strong extracellular aGFP signal, indicating that the 
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transmembrane addition to Bnl:GFP3-dGPI allowed it to once again be anchored in the 

membrane. Furthermore, there was no change in extracellular Bnl:GFP3-TM levels 

after PI-PLC treatment (Figure 3-8, B), showing that PI-PLC-mediated removal of Bnl 

requires its intact C-terminus. 

 

Figure 3-8: Generation of Bnl:GFP3-dGPI and Bnl:GFP3-TM and PI-PLC treatment 

(A) Schematics showing how the Bnl:GFP3-dGPI and Bnl:GFP3-TM constructs were created. Bnl:GFP3-

dGPI was created by making a deletion at residue Y730 of the native Bnl protein, which is located 
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upstream of the predicted GPI-anchor w site. Bnl:GFP3-TM was created by fusing the transmembrane 

domain (TM) (cloned from the CD8:GFP construct) onto the end of Bnl:GFP3-dGPI. (B) S2 cells 

transfected with Bnl:GFP3-dGPI (left column) or Bnl:GFP3-TM (right column) and treated with or 

without PI-PLC. All cells were stained with aGFPex. (C) Graphs showing the extracellular:total GFP 

ratios for each group. Little to no Bnl:GFP3-dGPI was detected on the extracellular surface before or 

after PI-PLC treatment. Bnl:GFP3-TM was strongly localized on the extracellular surface, but PI-PLC 

treatment had no effect on extracellular levels. Scale bars: 10 µm. 

3.2.6 Analysis of PI-PLC assay using Flow Cytometry 

 Analysis of PI-PLC treatment on S2 cells by imaging methods naturally 

represents a relatively small sample out of the total number of successfully transfected 

cells. Therefore, these results were further investigated by flow cytometry to assess the 

effect of PI-PLC treatment on S2 cells expressing Bnl:GFP3, Bnl:GFP3-dGPI, or 

Bnl:GFP3-TM. Flow cytometry provided the ability to analyze each cell within a large 

population to determine if they exhibited GFP fluorescence (GFP+ or GFP-) and/or 

extracellular aGFP signal (GFPex+ or GFPex-). To ensure that flow cytometry could 

accurately detect GFP and Alexa-Fluor647 signal, which was the secondary antibody 

used for extracellular aGFP staining (aGFPex), a series of controls were performed. 

First, untransfected and unlabeled S2 cells were analyzed by the flow cytometer and 

were only seen in quadrant 3 (Q3), the region where there is no GFP or GFPex signal 

(GFP-, GFPex-) (Figure 3-9, A). Unstained S2 cells transfected with Bnl:GFP3 were 

only present in Q4 (GFP+, GFPex-). Finally, S2 cells transfected with Bnl:HA3 and 

stained using aHA primary antibody and Alexa-Fluor647 secondary were only 

localized in Q1 (GFP-, GFPex+). Therefore, this assay could accurately analyze the 

fluorophores used in the extracellular staining assay to ultimately measure the effect of 

PI-PLC treatment.  
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Figure 3-9: Flow Cytometry analysis of PI-PLC treatment on S2 cells expressing Bnl:GFP3, Bnl:GFP3-

dGPI, or Bnl:GFP3-TM 

(A) Control samples to ensure flow cytometry could accurately analyze the fluorophores used. Left: 

unlabeled S2 cells were restricted to Q3 where no fluorescence is detected. Middle: Unstained S2 cells 

transfected with Bnl:GFP3 were localized in Q4, the region where only GFP+ cells should localize. 

Right: S2 cells transfected with Bnl:HA3 and stained with aHAex using AlexaFluor-647 secondary 

localized in Q1 only. (B) S2 cells transfected with Bnl:GFP3 (left column), Bnl:GFP3-dGPI (middle 

column), or Bnl:GFP3-TM (right column) and treated with or without PI-PLC and analyzed using flow 

cytometry after aGFPex staining. After PI-PLC treatment, Bnl:GFP3 cells localize in Q4 compared to 

their Q2 localization in the absence of PI-PLC treatment. Cells expressing Bnl:GFP3-dGPI were 
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localized in Q4 regardless of PI-PLC treatment condition. PI-PLC treatment had no effect on cells 

expressing Bnl:GFP3-TM that were localized in Q2.  

 Theoretically, all cells successfully transfected with any of the constructs would 

be GFP+. If they were also GFPex+, it indicated that that protein was present on the 

surface of the cell. S2 cells expressing Bnl:GFP3 subjected to aGFPex staining were 

predominantly localized in Q2 (GFP+, GFPex+) of the plot before PI-PLC treatment. 

However, PI-PLC treatment altered this distribution where the majority of cells 

localized in Q4 (GFP+, GFPex-), indicating a loss of extracellular Bnl from almost the 

entire population of transfected cells due to the PI-PLC treatment (Figure 3-9, B). For 

S2 cells expressing Bnl:GFP3-dGPI, the entire population was localized in Q2 (GFP+, 

GFPex-) regardless of PI-PLC treatment, confirming that the dGPI deletion inhibited 

the ability of Bnl to localize on the extracellular surface (Figure 3-9, B). The majority 

of S2 cells transfected with Bnl:GFP3-TM were localized in Q2 (GFP+, GFPex+) for 

both the control and PI-PLC treated groups, showing that PI-PLC treatment had no 

effect on Bnl:GFP3-TM extracellular membrane localization. Thus, the flow cytometry 

data that allowed us to analyze a large population of cells at one time were in alignment 

with the S2 cell imaging data.  

3.2.7 Mutation of the predicted w site inhibits surface presentation of Bnl  

 Construction of Bnl:GFP3-dGPI and Bnl:GFP3-TM involved complete deletion 

of the C-terminus of the Bnl protein, including the region that contained the predicted 

GPI anchor signal sequence and w site. Therefore, it was important to determine if the 

predicted w site at the S741 residue in the native Bnl protein was the actual site of GPI 

addition. To test this, an additional Bnl construct was generated that contained only a  
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Figure 3-10: Bnl w site mutation results in impaired surface localization 

(A) Schematic of the generation of Bnl:GFP3-w mutant. The w, w+1, and w+2 amino acids (S741GA) 

were each substituted with proline in the Bnl:GFP3 protein to create Bnl:GFP3-w. (B) S2 cells transfected 

with either Bnl:GFP3 (left) or Bnl:GFP3-w (right) were stained with aGFPex. Little to no extracellular 

signal is seen on cells expressing Bnl:GFP3-w. (C) Graph of the extracellular:total GFP ratios shows that 

the control Bnl:GFP3 surface levels are significantly higher than Bnl:GFP3-w (p<0.001). Scale bars: 10 

µm. 
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disrupted w site. The w site as well as the two amino acids immediately downstream of 

the w site (w+1 and w+2) are critical for GPI anchor addition and proline residues at 

these sites were shown to inhibit the addition of a GPI anchor (Moran et al., 1991; 

Eisenhaber et al., 1998). The amino acids at the w, w+1, and w+2 sites were replaced 

with prolines to make the Bnl:GFP3-w construct (Figure 3-10, A). Interestingly, in 

contrast to the Bnl:GFP3 control, Bnl:GFP3-w could not be detected on the extracellular 

surface of S2 cells (Figure 3-10, B and C). This result indicates that S741 is the w site 

in the Bnl protein and w site mutation disrupts the ability of the Bnl protein to be 

tethered to the outer surface of the cell membrane.  

3.2.8 Bnl often colocalizes with Cholera-toxin subunit B on the cell surface 

 Previously, the membrane-binding subunit of cholera toxin, Cholera toxin 

subunit B (CT-B), was shown to be a bona fide marker of lipid rafts. CT-B targets the 

toxin to host cells by binding with high avidity up to five GM1 gangliosides that are 

enriched in membrane rafts (Wolf et al., 1998; 2002). This feature enabled the 

commercially available non-toxic fluorophore-conjugated CT-B to be used as a 

common tool for lipid raft research. As GPI-anchored proteins are thought to localize 

in lipid rafts (Sangiorgio et al., 2004), Bnl might colocalize with CT-B. Indeed, S2 cells 

expressing Bnl:GFP3 and stained with CT-B conjugated to Alexa-Fluor647 showed that 

Bnl does occasionally colocalize with CT-B on the surface of the cells (Figure 3-11). 

The inconsistency in colocalization of Bnl and CT-B is likely due to the dynamic 

membrane properties exhibited by GPI-anchored proteins (Saha et al., 2016). This data 

suggests that Bnl can localize in lipid rafts.  
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Figure 3-11: Cholera-toxin subunit B and Bnl:GFP3 colocalization 

S2 cells transfected with Bnl:GFP3 were stained using Cholera-toxin subunit B (CT-B) conjugated with 

AlexaFluor-647 (red). Merged and individual channels are shown. Cell 1 is an optical image of a cell 

close to the coverslip, showing the membrane near the “top” of the cell. Cell 2 is an optical section of 

the middle of a cell. Bnl:GFP3 colocalization with CT-B likely indicates that Bnl localizes in membrane 

microdomains, also known as lipid rafts. Scale bars: 10 µm. 

3.2.9 Biochemical phase separation analysis of Bnl 

 Lipid raft association of GPI-anchored proteins is often biochemically 

determined by lysing cells that are expressing the protein in a detergent solution 

followed by induction of a phase separation that separates proteins into aqueous or 

detergent phases depending on their hydrophobicity. A strong detergent such as Triton-

X114 is usually used to partition GPI-anchored and other integral membrane proteins 

into the detergent phase (Bordier, 1981). In this process, soluble proteins should 

theoretically localize in the aqueous phase while most membrane-bound proteins 

should partition to the detergent phase. To test how Bnl behaves when phases are  
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Figure 3-12: Phase Separation of Bnl constructs 

(A) Western blot probing with aGFP of proteins isolated from S2 cells expressing Bnl:GFP3, Bnl:GFP3-

dGPI, or Bnl:GFP3-TM, as indicated. Following isolation of the proteins, each group was phase separated 

and the aqueous and detergent phases were isolated. Theoretically, the aqueous phase (Aq) contains 

hydrophilic proteins, while the detergent phase (Det) contains hydrophobic proteins, including GPI-

anchored proteins. All proteins are seen to some degree in the aqueous phase. Low levels of Bnl:GFP3 

and Bnl:GFP3-TM are observed in the detergent phase, while Bnl:GFP3-dGPI is not detectable in the 

detergent phase. (B) Western Blots probing with aGFP of phase-separated GFP:mGPI, GFP:bGPI, and 

CD8:GFP from S2 Cells, as indicated. All of these samples are predominantly localized in the detergent 

phase after phase separation, with lower levels in the aqueous phase.  
 

separated, S2 cells expressing Bnl:GFP3, Bnl:GFP3-dGPI, or Bnl:GFP3-TM were lysed 

in a solution containing Triton-X114. Phase separation was induced as described in 

Chapter 5 (section 5.16) and the separated phases were examined by SDS-PAGE and 

Western Blotting. Low levels of Bnl:GFP3 were detected in the detergent phase, but 

most Bnl:GFP3 was localized in the aqueous phase. Surprisingly, Bnl:GFP3-TM had a 
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very similar pattern to Bnl:GFP3, where some of the isolated protein partitioned to the 

detergent phase, yet most was localized in the aqueous phase. Bnl:GFP3-dGPI, on the 

other hand, followed the expected pattern and exclusively partitioned to the aqueous 

phase (Figure 3-12, A). The incomplete partitioning of Bnl:GFP3 into the detergent 

phase is not too surprising, as proteins that are known to be GPI-anchored, such as 

Drosophila Mmp1 and Mmp2, were also detected in both the aqueous and detergent 

phases (LaFever et al., 2017). However, the finding that Bnl:GFP3 and Bnl:GFP3-TM 

were detected in the detergent phase while Bnl:GFP3-dGPI exclusively partitioned to 

the aqueous phase may suggest a weak association of Bnl with detergent-resistant lipid 

rafts.  

3.2.10 In vivo analysis of Bnl GPI anchoring 

 To test if the results implicating Bnl as a GPI-anchored protein in S2 cells were 

consistent in vivo, transgenic flies harboring either the UAS-bnl:GFP3-dGPI or UAS-

bnl:GFP3-TM construct were generated and a method for treating wing discs with PI-

PLC in ex vivo conditions was devised (see Chapter 5, section 5.19). Using bnl-Gal4 

to drive expression, Bnl:GFP3, Bnl:GFP3-dGPI, or Bnl:GFP3-TM were expressed in 

the wing disc Bnl source cells. Next, live discs were dissected, incubated with or 

without PIPLC, and were then subjected to extracellular aGFP immunostaining. 

Without PI-PLC treatment, the extracellular profiles of the different Bnl constructs 

were consistent with their S2 cell profiles. Bnl:GFP3 and Bnl:GFP3-TM had strong 

extracellular signal on the Bnl-producing cells, while Bnl:GFP3-dGPI exhibited no 

detectable extracellular surface staining on the source cells (Figure 3-13, A-C). ex vivo 

PI-PLC treatment of wing discs expressing Bnl:GFP3 significantly reduced the levels  
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Figure 3-13: Bnl is GPI-anchored in vivo  

(A-C) PI-PLC treatment on wing discs from flies expressing Bnl:GFP3 (A), Bnl:GFP3-dGPI (B), or 

Bnl:GFP3-TM (C) under Bnl-Gal4 (bnl-Gal4 x X, where X = UAS-bnl:GFP3, UAS-bnl:GFP3-dGPI, or 
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UAS-bnl:GFP3-TM). Discs were stained with aGFPex to visualize surface-localized signal. Merged and 

extracellular GFP channels are shown. (A-C) Top row: untreated discs. Bottom row: PIPLC-treated 

discs. (D) Graph showing the ratio of extracellular:total GFP fluorescence for the Bnl source cells in the 

wing disc. PI-PLC treatment significantly reduced the extracellular levels of Bnl:GFP3 on the surface of 

the source cells (p<0.001), but did not significantly alter the levels of Bnl:GFP3-dGPI or Bnl:GFP3-TM 

on the source surface. Scale bars: 30 µm. 
 

of extracellular Bnl:GFP3 on the surface of the wing disc source cells yet had no effect 

on the extracellular distribution of Bnl:GFP3-dGPI and Bnl:GFP3-TM (Figure 3-13, A-

D). Therefore, these results were in alignment with the data obtained from S2 cell 

culture and indicate that Bnl is likely GPI-anchored in vivo. 

3.2.11 In vivo analysis of PIG-V knockdown 

 To determine if Bnl signaling is affected when GPI anchor biosynthesis is 

disrupted, the effect of PIG-V knockdown in the Bnl source cells was tested. PIG-V is 

a mannosyltransferase enzyme that is involved in adding the second mannose to the 

GPI anchor and is essential for normal GPI anchor biosynthesis (Kang et al., 2005). If 

GPI anchor biosynthesis disrupted Bnl signaling, it may nonautonomously affect 

growth of the recipient ASP. When RNAi against PIG-V was expressed in the Bnl 

source using bnl-Gal4, corresponding ASPs were abnormally shaped. (Figure 3-13). 

The ASP:wing disc length ratio was significantly lower in PIG-V RNAi animals 

compared to the control, showing that PIG-V knockdown ASPs are stunted. 

Furthermore, they contained significantly fewer cells compared to the control (Figure 

3-13, B and C). This phenotype of the PIG-V knockdown ASPs mirrors that of a low 

level Bnl LOF phenotype (Sohr et al., 2019). These results showed that knockdown of 

GPI synthesis machinery in the Bnl-producing cells has a non-autonomous effect on 



 

 

99 
 

ASP growth and suggested that an intact GPI anchor biosynthesis pathway within the 

Bnl-producing cells is critical for normal Bnl signaling in the ASP.  

 

Figure 3-14: Knockdown of PIG-V in the Bnl source affects ASP growth 

(A) Images of ASPs from the genotype as indicated, showing that knockdown of PIG-V in the Bnl source 

cells resulted in an abnormal ASP phenotype. (B) Graph comparing the ratio of ASP:Disc size for each 

group, showing that when PIG-V was knocked down in the wing disc Bnl source cells, the ASPs were 

significantly shorter and stunted compared to control ASPs (p<0.001, Control: bnl-G4 x w-, PIG-V 

RNAi: bnl-G4 x PIG-V RNAi). (C) Graph showing a significant reduction in number of cells in the ASP 

when RNAi against PIG-V was expressed in the Bnl source cells (p<0.001, same genotypes as (B)). 

Scale bars: 30 µm. 
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3.3 Discussion 

 In conclusion, these experimental results provide strong evidence that Bnl is 

modified with the addition of a GPI anchor in the endoplasmic reticulum of the source 

cells. This is a significant shift in our understanding of what was once thought to be a 

freely diffusible protein. Furthermore, since we now know that Bnl is transported along 

recipient cytonemes to the tracheal cells (Du et al., 2018a), the finding that Bnl is GPI-

anchored is an important piece to the overall puzzle of the Bnl signaling process. If the 

Bnl protein were a freely diffusible protein, it would be difficult to regulate its release 

and transport by cytonemes. Instead, the tethering of Bnl via a GPI anchor allows it to 

be restricted and presented on the surface of the source cells until cytonemes make 

contact to receive the signal. This enables the signal to be tightly spatiotemporally 

regulated and ensures it signals in a target-specific manner. 

 Although GPI-anchored proteins are known to localize in the detergent-

resistant membrane microdomains, Bnl:GFP3 appeared to be weakly associated with 

the detergent-rich phase. One reason for such weak association could be that the lipid 

metabolism in Drosophila is different from mammalian cells for which the phase 

separation experiments at 37oC were standardized. Drosophila doesn’t thrive beyond 

25oC mainly because they lack C20 and C22 polyunsaturated fatty acids (PUFAs). The 

C20 and C22 PUFAs are critical structural components of the phosopholipids that 

mammalian cell membranes are comprised of (Shen et al., 2010). Therefore, since 

Drosophila contains fundamentally unique lipid components, the solubility of GPI 

anchors within the membrane may be altered, which could affect the TritonX-114 

extraction and phase partitioning. Furthermore, it has been shown that GPI-anchored 
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proteins can be diffusely distributed within the plasma membrane, but that with the 

addition of detergent, GPI-anchored proteins actually redistribute into a more highly 

clustered conformation, likely into lipid rafts, meaning that GPI-anchored proteins are 

inherently difficult to dissolve in detergent (Mayor and Maxfield, 1995). In addition to 

the above possibilities, it is also likely that this method needs to be refined in order to 

more efficiently separate GPI-anchored proteins and other proteins that contain 

hydrophobic regions into the detergent phase. For example, the solubility of GPI-

anchored proteins is affected by several factors, such as temperature of phase separation 

and concentration of detergent in solution (Melkonian et al., 1995), so additional 

conditions may need to be tested in order to optimize the phase separation protocol. 

However, while examining the phase separation of various proteins, there was a very 

interesting additional finding that might suggest an uncharacterized regulation of Bnl. 

GFP:mGPI and GFP:bGPI proteins predominantly partitioned into the detergent phase 

with relatively low levels in the aqueous phase (Figure 3-12, B). Since GFP:bGPI was 

created by fusing the GPI signal sequence from Bnl onto the C-terminal end of GFP, it 

is very intriguing that it strongly partitions to the detergent phase while Bnl:GFP3 does 

not. This might suggest that some sequence within the Bnl protein other than the GPI 

anchor affects its association with the detergent-resistant membrane or perhaps its 

trafficking within the membrane. This possibility is also supported by the finding that 

CD8:GFP strongly partitions to the detergent phase as well, but Bnl:GFP3-TM does 

not. Bnl:GFP3-TM was created by replacing the GPI-anchored region in the C-terminus 

of Bnl with the transmembrane domain from the CD8 portion of CD8:GFP. Thus, it 

would make sense for Bnl:GFP3-TM to also partition to the detergent phase similar to 
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its CD8:GFP counterpart, and yet Bnl:GFP3-TM localizes mostly in the aqueous phase. 

This somewhat contradicting result is consistent with the phase separation patterns of 

GFP:bGPI and Bnl:GFP3. As GFP:mGPI also localizes predominantly in the detergent 

phase, it will be essential to create Bnl:mGPI to see if it causes a shift into the aqueous 

phase as well. If so, this could further confirm that some domain or characteristic of 

the Bnl protein upstream from the GPI-anchored C-terminus may influence its 

hydrophobicity and localization within the membrane. Another interesting experiment 

could be to test phase separation of the uncleaved M1 mutant form of Bnl. It is possible 

that the cleavage of Bnl, which is a necessary step in its maturation and for its 

intracellular trafficking, could also somehow affect its membrane localization or 

trafficking within the membrane. More research needs to be done to examine if and 

how components within Bnl affect its membrane trafficking and inclusion in membrane 

microdomains. 

 Another interesting direction would be to examine if FGFs in other insect 

species are also lipidated. A phylogenetic analysis was carried out to test if relatives of 

the Bnl protein in other insect species are also predicted to be GPI-anchored. After 

compiling and aligning sequences obtained from Bnl protein blast hits, the alignment 

was organized into a phylogenetic tree. PredGPI (Pierleoni et al., 2008) was used to 

determine which Branchless homologs are predicted to be GPI-anchored. Interestingly, 

other than Drosophila melanogaster Branchless, only the Branchless homologs in 

Drosophila erecta, Stomoxys calcitrans, a closely related fly, and Anoplophora 

glabripennis, the Asian long-horned beetle, are predicted to be GPI-anchored (Figure 

3-15). All other insect Branchless homologs that were analyzed in silico and also mouse 
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and human Fgf10 were not predicted to be GPI-anchored. However, it is still possible 

that other Bnl homologs are tethered to the surface of the membrane by an alternative 

mechanism, such as a cholesterol or palmitic acid lipid modification.  

 

Figure 3-15: Phylogenetic analysis of Branchless and GPI anchor prediction of homologs 

Phylogenetic analysis of Drosophila Branchless was performed and the closest insect orthologs are 

shown (indicated as genus and species name), as well as mouse and human Fgf10. Using PredGPI 

(Pierleoni et al., 2008), each Branchless ortholog was tested to determine if they were predicted to be 

GPI-anchored (Yes: Green “Y”, No: Red “N”). 
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Chapter 4: Summary and Future Directions 

4.1 Summary 

 Prior to this research, intracellular regulation of FGF trafficking and its lipid 

modification were unknown. Overall, this work discovered two mechanisms that help 

control cytoneme-mediated Bnl signaling (Figure 4-1). This study revealed how the 

FGF Branchless is controlled for polarized trafficking within the source cells and that 

Bnl is tethered to the membrane via a GPI anchor. Both of these post-translational 

modifications are necessary for Bnl to properly signal and guide the morphogenesis of 

the Drosophila tracheal network.  

 

Figure 4-1: Summary of findings 
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Schematic summarizing the main findings is shown. In the ER, the C-terminus of the Bnl proprotein 

(blue) is cleaved off and replaced with a GPI anchor. The GPI-anchored Bnl proprotein is then 

transported to the Golgi, where Furin1-mediated cleavage removes the N-terminal prodomain of Bnl 

(red). The GPI-anchored, truncated Bnl is asymmetrically transported to the basal surface of Bnl-

producing cells where it is tethered on the outer leaflet of the membrane for subsequent retrieval by 

recipient cell cytonemes.  
 

 Based on the localization and activity of separate GFP fusions in the Bnl 

protein, we suspected that Bnl was proteolytically cleaved prior to its transport to 

recipient cells. Using a dual-tagged Bnl:HA1GFP3 protein, this cleavage was confirmed 

and the precise site of cleavage in the protein was identified by mutating putative 

cleavage sites. Next, it was determined that the cleavage is mediated by Furin1 in the 

Golgi of the source cells. Using CRISPR/Cas-9 genome editing technology, it was 

shown that when cleavage of the Bnl protein is blocked, signaling is affected, as 

uncleaved Bnl exhibits a loss of function phenotype. Interestingly, it was confirmed 

that the uncleaved endogenous form of Bnl could still bind to its receptor, Btl, travel to 

the ASP, and activate signaling in the recipient cells. However, the levels of uncleaved 

Bnl traveling to the ASP were significantly reduced, resulting in the loss of function 

phenotype. An extracellular stain to examine levels of Bnl on the surface of the source 

cells revealed that the amount of externalized uncleaved Bnl was significantly reduced 

compared to cleaved Bnl. Within the source cells, it was apparent that cleaved Bnl is 

preferentially trafficked to the basal surface, which is the only surface that recipient 

cytonemes can contact to receive the signal. However, uncleaved Bnl was more 

randomly trafficked within the source cells and instead localized predominantly at the 

apical domain of the source cells, which is inaccessible to the recipient cytonemes. 

Thus, the cleavage of Bnl ensures that it is transported to the location in the source cells 
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where it can be received by recipient cytonemes. When this cleavage is inhibited, the 

result is a reduced bioavailability of the signal, and although it is still an active signal, 

the recipient tissue does not receive enough to grow normally.  

 This study also demonstrated that Bnl localizes on the outer surface of the 

producing cells, which is consistent with the previous observation of contact-dependent 

Bnl dispersion through cytonemes (Du et al., 2018a). Examination of a Bnl protein that 

contained both an intramolecular and also a C-terminal fluorophore (Bnl:GFP3Cherryc) 

suggested that the C-terminal hydrophobic stretch of Bnl is cleaved and separated from 

the rest of the mature protein. This observation, along with the extracellular surface 

localization of Bnl, led to the hypothesis that Bnl is post-translationally modified with 

a GPI anchor. Next, various assays were employed to test if Bnl is GPI-anchored. 

Treatment of cells or tissues with PI-PLC, an enzyme that cleaves within the lipid 

portion of a GPI anchor, specifically shed Bnl from the membrane of producing cells 

both in vitro and in vivo. Furthermore, deletion of the Bnl C-terminus (Bnl:GFP3-dGPI) 

eliminated the ability of Bnl to localize on the extracellular surface of producing cells 

and replacement of the C-terminus with a transmembrane domain (Bnl:GFP3-TM) 

resulted in it being tethered to the extracellular surface regardless of PI-PLC treatment 

conditions. Bnl frequently colocalized with cholera toxin subunit-B (CT-B), which is 

used to label lipid rafts where GPI-anchored proteins are thought to localize. Phase 

separation of proteins enabled the independent isolation of hydrophobic membrane-

associated proteins and hydrophilic proteins and showed that Bnl:GFP3 localized in the 

detergent phase, unlike Bnl:GFP3-dGPI, which only localized in the aqueous phase. 

Mutation of the predicted Bnl w site, the site where GPI anchor modification to the 
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protein occurs, inhibited the ability of Bnl to localize on the extracellular surface. Thus, 

the exact site of GPI anchor modification in the Bnl protein was identified. Finally, 

knockdown of a key member of the GPI anchor biosynthesis pathway in the Bnl-

producing wing disc cells resulted in a non-autonomous defect in ASP growth, 

indicating that GPI anchoring of Bnl is critical for normal signaling in vivo. Taken 

together, all of these results demonstrate that Bnl is a GPI-anchored protein and that 

this post-translational modification is critical for its signaling function in vivo.  

4.1 Future Directions 

 The finding that Bnl cleavage results in altered trafficking of the protein 

naturally leads to the question of how this cleavage can affect Bnl trafficking within 

the source cells. One likely scenario is that Bnl cleavage affects its protein-protein 

interactions within the source cells. It appears that apical sorting is the predominant 

pathway for full-length Bnl. Therefore, cleavage and removal of the prodomain of Bnl 

may expose a domain within Bnl that allows it to interact with a protein that chaperones 

it to the basal domain of the source cells. Alternatively, the prodomain of Bnl could be 

interacting with a protein that influences it towards the apical sorting pathway, and 

proteolytic removal of the prodomain redirects truncated Bnl towards the basal sorting 

pathway. A combination of both of these possibilities could also occur to control Bnl 

trafficking. More research performed on protein-protein interactions of Bnl, either 

through biochemical analyses like co-immunoprecipitation or imaging assays such as 

BiFC (Bimolecular Fluorescence Complementation) could shed more light on how Bnl 

cleavage affects its intracellular trafficking.  
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Intriguingly, GPI-anchored proteins have been shown to preferably sort to the 

apical domain of polarized cells (Helms and Zurzolo, 2004; Schuck and Simons, 2006; 

Zurzolo and Simons, 2016). However, although Bnl is GPI-anchored, truncated Bnl is 

predominantly sorted to the basal domain. It will be interesting to examine how the GPI 

anchoring of Bnl and the proteolytic cleavage in the Golgi cooperate in directing Bnl 

to the correct location within the source cells. Possibly, full-length Bnl is apically 

targeted because of its GPI anchor but the cleavage of Bnl somehow enables it to 

override this signal and sort to the basal domain. It was found that unlipidated Hh was 

internalized into recipient cells from the basal surface, while lipid-modified Hh was 

internalized through the apical surface (Callejo et al., 2006). Therefore, in addition to 

proteolytic cleavage, lipidation could also play a key role in how Bnl is trafficked and 

released from source cells. Further analysis on the trafficking of Bnl:GFP3-dGPI and 

Bnl:GFP3-TM could help answer how the GPI anchor in Bnl affects the trafficking 

within source cells.  

 As Bnl is eventually endocytosed into the Btl-expressing recipient cells, the GPI 

anchoring of Bnl brings forth a very interesting question: How is Bnl released from the 

source cell membrane such that it can be received and endocytosed by recipient cells? 

It seems likely that an additional cleavage upstream of the GPI anchor is required to 

shed Bnl from the membrane to enable its transport and endocytosis. In Hh signaling, 

membrane-tethered Hh is released from the membrane via MMP cleavage (Dierker et 

al., 2009). In a conceptually similar signaling mechanism to Bnl/Btl in which two 

membrane-anchored proteins interact, Notch/Delta signaling also involves shedding of 

Notch from the membrane. It is thought that Notch/Delta binding and interaction 
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induces a conformational change in Notch that exposes a site for an ADAM (a 

disintegrin and metalloprotease) protease that sheds Notch from the membrane in a 

type of “lift and cut” mechanism (van Tetering and Vooijs, 2011). It will be interesting 

to investigate whether a similar mechanism is relevant for Bnl signaling as well.  

 In the classical RTK signaling pathway, ligand binding induces receptor 

dimerization which transmits the signaling cascade to within the recipient cell body. 

However, Bnl/Btl signaling represents an interesting case of RTK signaling since 

receptor binding actually takes place on cytonemes far from the recipient cell body (Du 

et al., 2018a). Examination of where downstream signaling events actually occur could 

open up a new field of how the RTK downstream signaling components are trafficked 

within the recipient cells. An intriguing example is the protein Dof, which 

constitutively binds to the cytosolic domain of FGFR/Btl to transduce the signal after 

receptor dimerization. Since Bnl/Btl interaction occurs at the cytoneme-source 

contacts, is this also where Dof begins its signal-transducing activity? Thus, cytoneme-

mediated signaling may provide a new perspective on how a signal is transduced in the 

recipient cells. 
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Chapter 5: Materials and Methods 
 

5.1 Drosophila strains and genetic crosses 

All crosses were incubated at 25°C. The following strains were used in this study: 

Bloomington Stock Center: UAS-bnlRNAi (#34572), fur1-LacZ (#10341), UAS-

fur1RNAi (#25837), UAS-fur1RNAi (#42481), UAS-fur1RNAi (#41914), UAS-

fur2RNAi (#51743), UAS-fur2RNAi (#42577), UAS-fur1 (#63077), UAS-fur1-X 

(#63078), UAS-fur1-CRR (#63079).  

Other sources: UASattB-Bnl:GFP1, UASattB-Bnl:GFP2, UASattB-Bnl:GFP3, UASattB-

Bnl:GFP4, UASattB-Bnl:HA1, UASattB-Bnl:HA2, UASattB-Bnl:HA3, UASattB-Bnl:HA4; 

fur2-Gal4 (NP 4074; Kyoto #104593); UAS-CD8:GFP, UAS-CD8:Cherry, btl-Gal4, 

bnl-Gal4 (Roy et al., 2014); bnl:gfpendo, btl:cherryendo (Du et al., 2018a); bnl-LexA (Du 

et al., 2017).  

This study: UAS-Bnl:GFP1, UAS-Bnl:HA1, UAS-Bnl:GFP2, UAS-Bnl:GFP3, UAS-

Bnl:HA3, UAS-Bnl:GFP4, UAS-Bnl:HA1GFP3, UAS-Bnl:HA1GFP3-M1, UAS-

Bnl:HA1GFP3-M2, UAS-Bnl:HA1GFP3-M1M2, bnl:HA1GFP3endo, bnl:HA1GFP3-

M1endo, UAS-Bnl:GFP3Cherryc, UAS-Bnl:HA1GFP3-dGPI, UAS-Bnl:HA1GFP3-TM. 

 

5.2 Cloning and generation of transgenic Drosophila lines 

UAS-bnl:GFP and UAS-bnl:HA variants 

Each of the four Bnl:GFP variants contained an HA-tag upstream to a GFP tag at a 

single internal site. Bnl:GFP1 contained both HA and GFP tags in tandem inserted 

between amino acids RSSLVPSAVS87 and E88RSVNQPT. Bnl:GFP2 contained the 
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tags inserted between amino acids SNLDRNERST206 and V207PQSHLAWTS. 

Bnl:GFP3 contained the tags inserted between amino acids KAPPHCSSNT432 and 

S433GSSSSISSS. Bnl:GFP4 contained the tags between amino acids 

MSSGEEQDQDN701 and D702QDQEQSDPGE. Previously, transgenic Drosophila 

lines harboring the Bnl:GFP3 construct at various attP loci in the 2nd and 4th 

chromosomes did not show any detectable Bnl:GFP3 expression when driven by bnl-

Gal4. Therefore, we subcloned the Bnl:GFP constructs in pUAST vector from the 

original pUAST-attB constructs and resorted to the random P-element-based 

transgenesis to avoid any positional effects on Bnl:GFP expression. P-element based 

transgenesis was carried out as described earlier (Du et al., 2017). 

 

UAS-bnl:HA1GFP3 and LexO-bnl:HA1GFP3 

UAS-bnl:HA1GFP3 contained an HA-tag at site 1 (between 87 and 88 amino acid 

residues of the original protein) and a superfolder (sf) GFP (Pédelacq et al., 2006) at 

site 3 (between 432 and 433 residues of the original protein). The construct was 

generated by overlap extension PCR of three fragments using primers (see “Primers”): 

the N-terminal HA-tagged part, the C-terminal Bnl coding region (amplified from the 

pUAST-attB-Bnl:HA1, and the middle sfGFP region from a sfGFP-containing 

construct (Addgene). The final 3060 bp PCR product was cloned into the pCR-Blunt 

II-TOPO vector. The fully sequence-verified insert was sub-cloned into the pUAST 

vector at the BglII and XbaI sites. UAS-bnl:HA1GFP3 was used for analysis in S2 cells 

and for P-element mediated germline transformation and transgenesis. LexO-
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bnl:HA1GFP3 was cloned using the BglII and XbaI sites to release bnl:HA1GFP3 from 

pUAST and sub-clone this fragment into the pLOT vector.  

 

UAS-bnl:HA1GFP3 mutants 

The M1 and M2 variants of Bnl:HA1GFP3 contained the following cleavage site 

mutations: M1 contained (R/G)TE(R/G)SI(R/G) and M2 contained (R/G)NE(R/G). 

These mutant constructs were created using overlap extension PCR (see “Primers”) 

with the Bnl:HA1GFP3 construct as a template. The final assembled PCR product was 

cloned into the pCR-Blunt II-TOPO vector. The sequence-verified constructs were 

subcloned into the BglII and XbaI sites of the pUAST vector for either analysis in S2 

cell culture or for P-element mediated germline transformation and transgenesis. 

 

UAS-bnl:HA1GFP4 and UAS-bnl:GFP1HA4 

UAS-bnl:HA1GFP4 was cloned using overlap extension PCR to insert a GFP tag at site 

4 of UAS-Bnl:HA1. Similarly, UAS-bnl:GFP1HA4 was cloned using overlap extension 

PCR (see “Primers”) to insert a GFP at site 1 of UAS-bnl:HA4. These constructs were 

verified and used in S2 cell culture analyses. 

 

UAS-bnl:GFP3Cherryc  

A cherry tag was added to the C-terminus of bnl:HA1GFP3 by using PCR to amplify 

bnl:HA1GFP3 with a C-terminal Cherry overhang (Fragment 1) and Cherry with an N-

terminal bnl:HA1GFP3 overhang (Fragment 2, See “Primers”). These fragments were 

assembled together into the puc19 vector using Gibson assembly and were 



 

 

113 
 

subsequently subcloned into the BglII and Acc65I sites of the pUAST vector for 

analysis in S2 cell culture or for P-element mediated germline transformation and 

transgenesis. 

 

UAS-bnl:GFP3-dGPI 

To create bnl:GFP3-dGPI, a stop codon was inserted into bnl:HA1GFP3 via PCR after 

residue Y730 in native Bnl (see “Primers”). This PCR product was cloned into the 

puc19 vector using Gibson Assembly. Then, the bnl:HA1GFP3-dGPI construct was 

subcloned into the BglII and Acc65I sites of the pUAST vector for analysis in S2 cell 

culture or for P-element mediated germline transformation and transgenesis. 

 

UAS-bnl:GFP3-TM 

The bnl:GFP3-TM construct contains a transmembrane domain (TM) at the end of 

bnl:GFP3-dGPI. PCR was used to amplify the transmembrane domain of the mouse 

CD8 protein with bnl:GFP3-dGPI overhang at the N-terminus (Fragment 1). PCR was 

also used to amplify bnl:GFP3-dGPI with the transmembrane domain overhang at the 

C-terminus (Fragment 2, see “Primers”). These fragments were cloned into the puc19 

vector using Gibson assembly to fuse the transmembrane fragment to the 

bnl:HA1GFP3-dGPI fragment after residue Y730 in native Bnl. The bnl:HA1GFP3-TM 

construct was subcloned into the BglII and Acc65I sites of the pUAST vector for 

analysis in S2 cell culture or for P-element mediated germline transformation and 

transgenesis. 
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UAS-bnl:HA1GFP3-w 

The w mutant was made with PCR using overlapping primers to create two PCR 

fragments, one that included the N-terminal portion of Bnl with the mutations in the C-

terminus of the PCR product (Fragment 1), and the other contained the C-terminal 

portion of Bnl with the mutations in the N-terminus of the PCR product (Fragment 2, 

“See Primers). These fragments were assembled into the puc19 vector and fully 

sequence verified. Then, the bnl:HA1GFP3-w construct was cloned into the BglII and 

XbaI sites of the pUAST vector for analysis in S2 cell culture.  

 

UAS-bnl:GFP1 cleavage site mutants: The UAS-bnl:GFP1-M1, UAS-bnl:GFP1-M2, 

and UAS-bnl:GFP1-M1M2 mutants were created using PCR with the bnl:GFP1 

template using the same primers (see “Primers”) and strategies that were used to create 

the mutants in the bnl:HA1GFP3 protein. These constructs were analyzed 

biochemically from S2 cell culture.  

 

UAS-hFgf10:HA,GFP 

The HA and GFP insertions were cloned into hFgf10 using PCR and Gibson assembly 

to stitch together four separate fragments into the puc19 vector: Fragment 1: N-

terminus to the HA insertion site; Fragment 2: HA insertion to the GFP insertion site; 

Fragment 3: GFP fragment containing hFgf10 overhangs; Fragment 4: GFP insertion 

site to the C-terminus (see “Primers”). Once fully sequenced, the hFgf10:HA,GFP 

construct was subcloned into the BglII and XbaI sites of the pUAST vector for analysis 

in S2 cell culture.  
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5.3 CRISPR/Cas9-based genome editing 

The bnl:HA1GFP3endo and bnl:HA1GFP3-M1endo mutant alleles were generated 

by in frame insertion of an HA-tag into the first coding exon of a previously 

characterized bnl:sfGFP3endo allele (Du et al., 2018a) using CRISPR/Cas9-based 

genome editing following previously described protocols (Du et al., 2017; 2018b). The 

bnl:HA1GFP3-M1 mutant allele includes the HA1 tag as well as mutations of three 

Arginines (R) to Glycines (G) at PCS1 that starts 82 amino acids upstream of the 

conserved FGF domain. For targeting a Cas9-based double-stranded break near tag site 

1, a guide RNA (BnlHA1gRNA- CTACGTTCACTCACTGCGCTCGG (underlined 

bases represent the PAM site)) with zero off targets in the fly genome was cloned by 

ligating two annealed complimentary oligos into the pCFD3 vector (see “Primers”). 

The replacement donors, pDonor-bnl:HA1GFP3 and pDonor-bnl:HA1GFP3-M1 

were designed and generated following Du et al. (2017). These constructs contained 

either HA1 or the HA1-M1 mutations flanked by ~1 kb long 5’- and 3’- arms that are 

homologous to the genomic sequence flanking tag site 1. Both 5’- and 3’- homology 

arms were PCR-amplified from genomic DNA from the nos-Cas9;;bnl:GFP3endo parent 

fly, sequence verified, and assembled together into the pUC19 vector using Gibson 

Assembly (see “Primers”). To prevent retargeting of the gRNA/Cas9 to the edited 

genome, a synonymous mutation was introduced into the replacement cassette near the 

PAM sequence via the primers used for amplification (see “Primers”). The constructs 

were fully sequenced prior to germline injection. 

The gRNA-expressing vector and the respective replacement donor vector were 

co-injected into the germline cells of nos-Cas9;;bnl:sfGFP3endo embryos. For each 
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genome-editing experiment, a step-wise crossing strategy (Du et al., 2018b) was 

followed to obtain G0-F2 progenies and establish individual fly lines for screening. The 

desired “ends-out” homologous directed repair (HDR) was screened for by a three step 

PCR-based strategy (see “Primers”), followed by sequencing and analyses of tissue-

specific expression patterns of the tagged genes under a confocal microscope. The 

efficiency of genome editing-based generation of the two different genotypes and their 

phenotypes are summarized in Sohr et al. (2019). During generation of bnl:HA1GFP3-

M1 endo several lines were obtained that had only the HA1 insertion without the M1 

mutation. We predicted that the HDR had taken place somewhere between the HA1 tag 

site and M1 mutation sites (219 bases apart). These lines were fully sequence-verified 

and found to have normal tissue expression. Therefore, these lines were considered as 

bnl:HA1GFP3 endo lines. For subsequent analyses, we used a wtendo and an m1endo line 

derived from the same genome-editing experiment. The wtendo F4-14 line and m1endo 

F4-9 line used in this study were fully sequence verified and established after 

outcrossing as previously described (Du et al., 2018a). 

5.4 Synthesis of double stranded RNA for gene knockdown in S2 cells 

Double stranded RNA (dsRNA) was synthesized by PCR from genomic DNA 

isolated from S2 cells following a previously described protocol (Künnapuu et al., 

2009). The following PCR primers were used to synthesize the T7 transcription 

template carrying the T7 promoter sequence at their 5’ ends: 

For fur1 

Fwd: TAATACGACTCACTATAGGGACGCAAAGATCCTCTGTGGCA  

Rev: TAATACGACTCACTATAGGGACATTGCTCCCGGAACTGC 



 

 

117 
 

For fur2 

Fwd: TAATACGACTCACTATAGGGACGCTAGAGGCCAATCCGGAA  

Rev: TAATACGACTCACTATAGGGACCCTTCTCGCCCCAAAAGTG 

Double stranded RNA against fur1 or fur2 were synthesized using the MEGAscript 

RNAi Kit (ThermoFisher). 

 

5.5 Fluorescence in situ hybridization 

To probe for fur1 and fur2 mRNA, the desired probe regions of 540 bp and 552 

bp were PCR-amplified with primers (see “Primers”) from respective cDNAs and 

cloned using Gibson assembly into pSPT18 vector. The vector was linearized and the 

RNA probe was prepared using the DIG-RNA Labeling Kit (Roche) according to the 

manufacturer’s protocol. RNA in situ hybridization on third-instar larval tissues was 

performed as previously described (Du et al., 2017). Hybridized probes were detected 

using a-Dig antibody followed by immunofluorescence with Alexa-647-conjugated 

secondary antibody. 

5.6 Cell culture assay 

S2 cells were cultured in 25 cm2 flasks using Shields and Sang M3 insect media 

(Sigma Aldrich). For transfection, when cells were ~90% confluent, the media was 

removed and 6 mL of fresh M3 media was added to the flask. Cells were gently 

resuspended by pipetting and added to a 12-well plate with 1 mL of cells per well. After 

2 hours, once the cells had adhered to the bottom of the well, the M3 media was 

replaced with 1 mL serum-free M3 media and the cells were transfected with 1 µg of 
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each DNA using Lipofectamine 2000 following the Manufacturer’s protocol. After 16 

hours the serum-free media was replaced with 1 mL M3 media containing serum. For 

experiments with furin RNAi, 5 µg of dsRNA was used for transfection. Under all 

conditions, transient expression was examined two-three days post-transfection.  

5.7 Ex vivo organ culture and Furin inhibitor assay 

Ex vivo culturing of wing discs was carried out in WM1 media as described in 

(Du et al., 2017). The discs were removed from a single pool of culture after 0, 5, and 

16 hours of incubation at 25oC, followed by fixation and aHA immunostaining of the 

tissues. For the Furin inhibition assay, late 3rd instar larval tissues were ex vivo cultured 

in 2 mL of WM1 media in the presence or absence of a cocktail of Furin inhibitor I and 

II (50 µm final concentration each; Calbiochem 344930 and 344931) following 

recommended concentrations in (Johnson et al., 2015). The live tissues were incubated 

for 1, 2.5 or 5 hours. Following incubation, the carcasses were transferred to a 

centrifuge tube, rinsed three times with 1X PBS, and fixed in 4% PFA before 

immunostaining.  

5.8 Protein analyses 

S2 cells were harvested 3 days post-transfection and the cell pellets were 

washed several times in 1X PBS. The pellet was resuspended in 70 µL RIPA cell lysis 

buffer (Sigma) in the presence of a cocktail of protease inhibitors (Roche) and kept for 

15 minutes at 4oC. An equal volume of lysed cells was combined with 2X Sample 

Buffer, heated at 95oC for 5 minutes and loaded onto a 10% SDS-PAGE gel. The gel 

was run at 50V for 10 minutes for stacking and then at 200V until the desired amount 
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of separation occurred. Proteins were transferred from the gel to a PVDF membrane 

using Transblot Turbo (BioRad). A standard protocol was followed to perform Western 

blot analyses using the primary antibodies aGFP (1:1000) or aHA (1:1000) and HRP-

conjugated secondary antibody. The HRP activity was detected with ECL substrate 

(GE) and imaged (Fuji LAS3000).  

5.9 Immunostaining 

Standard and detergent-free wing disc immunostaining protocols were as 

previously described (Du et al., 2017). The following antibodies were used in this 

study: a-Discs large (1:100, DSHB); a-HA (1:1000); a-dpERK (1:100, Cell 

signaling); a-GFP (1:3000 extracellular, Abcam); a-PH3 (1:2000, Cell Signaling); 

Alexa Fluor-conjugated secondary antibodies (1:1000 from Molecular Probes) were 

used for immunofluorescence detection. Phalloidin-conjugated Alexa 647 was often 

used for marking cell outlines. 

Extracellular detergent-free S2 cell staining: Cells were harvested (700g, 5 

minutes) and washed with 500 µL stain buffer (PBS, 5% NGS, 0.1% azide). Cells were 

resuspended in stain buffer containing the primary antibody and rotated for 1 minute to 

mix. Cells were incubated on ice for 30 minutes with occasional inversion to mix. Cells 

were washed with stain buffer, and then fixed in 2% PFA in PBS for 20 minutes at 

room temperature. Cells were washed with PBS and then resuspended in PBS 

containing the secondary antibody. After mixing for 1 minute by rotation, cells were 

incubated on ice for 30 minutes with occasional inversion to mix. Cells were washed 
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in PBS, and then resuspended in mounting media (Vectashield) and mounted on a slide 

for imaging or resuspended in 300 µL PBS for analysis via flow cytometry.  

5.10 Microscopic imaging 

For live imaging, wing imaginal discs and their associated trachea were 

prepared following (Roy et al., 2014). Images were obtained as previously described 

(Du et al., 2018a) using a Leica SP5X with HyD detector or an CSUX1 Yokogawa 

spinning disc confocal equipped with an Andor iXon897 EMCCD camera. The images 

were processed and analyzed with FIJI. Maximum intensity projections of sections 

were shown for most images. All images were obtained using a 40X objective in the 

microscopes, except for the images in Figure 2-12, J-N which were obtained with a 

20X objective. All XZY images were obtained using the Leica SP5X with a 40X 

objective for S2 cells and 20X objective for wing discs. 

5.11 Analysis of ASP size 

ASP length was measured from the transverse connective (TC) along the 

longest (major) Distal-Proximal axis to the ASP tip. The disc size was determined by 

measuring from the TC, along the ASP major axis to the edge of the disc. A ratio of the 

ASP:disc size was used to compare different genotypes and conditions. 

5.12 Sholl analysis for terminal branching 

Salivary Glands were gently dissected out from fixed larval tissues 

overexpressing the different variants of Bnl and imaged under transmitted light to 

visualize tracheal invasion. In WT overexpressing tissue, the terminal tracheal branches 
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ramified radially from a preexisting central branch point. Due to its morphological 

resemblance with neuronal dendritic arbors, we employed Sholl analysis (Binley et al., 

2014) using FIJI to measure the frequency of terminal branching. The analysis created 

20 concentric circles in increments of 5 µm radius from the point of origin up to 100 

µm and counted the number of times any tracheal branch crossed these circles. These 

values were averaged across several samples and compared between the different Bnl 

variants expressed in the salivary gland.  

5.13 Flow cytometry 

After extracellular staining, individual cell fluorescence was quantitated using 

a flow cytometer (BD CantoII, BD Biosciences) and the data were analyzed using 

FACSDiva (BD Biosciences).  

5.14 Survival assay 

For each genotype (w-, bnl:HA1GFP3endo, and bnl:HA1GFP3-M1endo) 90 males 

and females were collected within 2 days of their eclosure. The males and females were 

kept together for 2 days to allow them to mate, and then each sex was separated into 

three separate fly food tubes, with 30 flies in each. Thus, for each genotype and sex, 

there were three tubes of 30 mated flies used for the survival assay. Every other day, 

each group was changed to a new tube of fly food and dead flies were scored until there 

were no flies remaining.  
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5.15 Cholera toxin subunit B (CT-B) staining 

S2 cells transfected with bnl:HA1GFP3 were plated on a cover slip resting inside 

a 6-well plate. The cells were allowed to settle and adhere to the coverslip for 30 

minutes, and then were subsequently chilled on ice for 15 minutes. Cells were briefly 

rinsed 3 times with ice-cold PBS. Then, cells were incubated with 3 µg/mL CT-B-

AlexaFluor647 conjugate (Invitrogen) for 30 minutes at 4oC, protected from light. Cells 

were washed with ice-cold PBS 3 times and then were fixed with 4% PFA for 10 

minutes. Finally, cells were washed 3 times with PBS and the cell-coated coverslip was 

placed onto a slide containing Vectashield mounting media for imaging.  

5.16 Phase separation 

Phase separation was performed as in (LaFever et al., 2017). In brief, one well 

of transfected S2 cells from a 12-well plate was harvested (700g, 5 minutes) and the 

media was removed. Cells were then resuspended in 180 µL ice cold TBS with protease 

inhibitors and 30 µL of precondensed Triton X-114 (~12% detergent) was added. After 

thorough mixing, cells were lysed for 15 minutes on ice with occasional mixing. Lysed 

material was spun at high speeds (>13,000 rpm) at 4oC to remove insoluble material. 

The cleared lysate was warmed to 37oC for 5 minutes and spun at 1000g for 10 minutes 

at room temperature. The aqueous (upper) and detergent (lower) phases were isolated 

separately. The detergent phase was diluted five-fold with TBS prior to performing 

SDS-PAGE and western blotting. 
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5.17 Quantitative analyses of fluorescence intensities 

For Bnl levels, all fluorescent intensity measurements were background 

corrected. 3D image stacks representing only either the wing disc sections or the ASP 

were transformed into 2D by maximum intensity projections. The density of 

fluorescence intensity was measured from a selected ROI of the 2D images, either 

outlining the Bnl source cells or the recipient ASP. For the recipient ASP, the ROI 

encompassed the distal tip of the ASP (a region with ~3-4 cell diameter that receives 

the highest levels Bnl from the source). Likewise, the density of the surface-localized 

Bnl:GFP variants, probed by aGFP immunostaining was measured from selected ROIs 

on the maximum intensity projections of the relevant optical sections encompassing 

either the ASP or wing disc source. For salivary gland fluorescence quantitation, the 

ROIs represented each salivary gland cell including the cell junctions and the density 

of the red and green channel intensities were measured from the maximum intensity 

projections of optical sections within the 5 µm Z-stack from the basal surface. The ratio 

of surface GFP (red) to total GFP (green) was expected to be <1. However, some 

average ratios were slightly greater than 1, probably due to the immunofluorescent 

signal amplification of the surface-exposed proteins obtained through aGFP-

immunostaining. Secondly, as reported earlier (Du et al., 2018a) the surface exposed 

GFP was rapidly quenched, reducing its levels of detection on the cell surface. ROIs 

representing the basal or apical part of the wing disc source cells were selected from 

maximum intensity projections of the XZY sections. GFP intensities measured from 

the ROIs were normalized to the total intensity from the total source cell area.  
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For colocalization analyses in S2 cells, maximum intensity projections of ~4-5 

stacks around the center of the cell were produced. An Icorr value was obtained using 

the Colocalization Colormap plugin on FIJI to determine the degree of colocalization 

of two selected channels (HA immunostain and GFP).  

For measuring fluorescence intensities in S2 cells, 3-4 z-slices around the 

middle of the cell were flattened (~1.5-2 µm in total z-depth). A region of interest (ROI) 

was drawn around the cell, and each fluorescent channel was measured and background 

corrected. If applicable, a ratio of background-corrected measurements was taken (i.e. 

for “Extracelllular:Total GFP”, the background-corrected aGFPex measurement was 

divided by the background-corrected GFP measurement for each cell). 

Gradients of intensities of Bnl:GFP variants in the ASP were obtained along the 

ASP D-P axes as reported earlier (Du et al., 2018a). For the normalized gradients, 

individual gradients from homozygous wtendo (n=9) or m1endo (n=12) ASPs were 

measured. Each position (x) within an ASP was normalized by length of the ASP (L) 

to obtain x/L, the x-axis of the plot. Similarly, GFP intensity was normalized by 

dividing each intensity value in a single sample by the highest intensity value from that 

sample for the y-axis. Normalized intensity values from each sample were taken at 0.05 

x/L increments from 0-1 (i.e., 21 data points from each sample). The normalized 

intensity values from each group (WT or M1) were averaged together and plotted along 

the x/L axis.  
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5.18 Cytoneme analysis 

ASP cytoneme number was quantitated microscopically as previously 

described (Roy et al., 2014; Du et al., 2018a; Roy et al., 2011). In brief, cytonemes >15 

µm in length that extended from a 60 µm total perimeter region (30 µm from the tip of 

the ASP in both directions) were counted.  

5.19 PI-PLC treatment 

S2 cells: Transfected S2 cells (1 mL) were harvested (700g, 5 minutes) in a 1.7 

mL eppendorf tube. The media was saved for further analysis or discarded if not 

needed. The cells were then resuspended in 500 µL PBS, harvested, and washed once 

more in PBS in the same way. After the last wash, cells were resuspended in a PI-

PLC/PBS mixture (1 U/mL PI-PLC). Cells were incubated at 25oC for 30 minutes with 

light agitation. Then, cells were then harvested subjected to the extracellular staining 

protocol. 

Wing discs: 3rd instar larvae were dissected in WM1 media (Zartman et al., 

2013) and carcasses were placed into an Eppendorf tube on ice containing WM1 media. 

After all larvae were dissected, the carcasses were briefly rinsed with WM1 media 3 

times. Carcasses were then incubated with PI-PLC (1 U/mL) in WM1 media for 30 

minutes at room temperature with light agitation. Carcasses were briefly rinsed 3 times 

in WM1 media, and then were subjected to the extracellular staining protocol. 
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5.20 Phylogenetic analysis of Bnl 

The Drosophila Branchless conserved FGF domain protein sequence was 

blasted (blastp) against the insect database and mammalian database in NCBI. The top 

hits from the insect database were collected, and mouse (Mus musculus) and human 

(Homo sapiens) were chosen and collected from the mammalian database. All protein 

sequences were aligned in Clustal Omega (Li et al., 2015). The resulting alignment was 

imported into TOPALi v2 (Milne et al., 2009) where the phylogenetic analysis and tree 

was created using the RaxML, JTT+G model. Additional formatting of the tree was 

done using Dendoscope3 (Huson and Scornavacca, 2012).  

5.21 Statistical analyses  

Statistical significance was determined with two-tailed t-tests or a one-way 

ANOVA followed by Tukey honestly significant different (HSD) tests. All p values in 

the legends were obtained using a t-test, unless otherwise stated.  

5.22 Primers 

Primers used 
for cloning Sequence (5’-3’) 

UAS-
bnl:HA1GFP3 

 

5’ Bnl BglII GCTGCTAGATCTATGCGAAGAAACCTGCGCTTAGAC 

BnlR GFP N 
overhang 

CTCCTCGCCCTTGGACATAGTGTTGCTGCTGCAATGTGG 

GFP F Bnl 
overhang 

CCACATTGCAGCAGCAACACTATGTCCAAGGGCGAGGAG 

GFP R Bnl 
overhang 

CTGCTGCTGCTGCCACTCTTGTACAGCTCATCCATGCCC 

BnlF GFP C 
overhang 

GGGCATGGATGAGCTGTACAAGAGTGGCAGCAGCAGCAG 

3’ Bnl-XbaI TCTAGATTACAGGATGGCTCTTTTTCGGAGCAAAAC 
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UAS-
bnl:HA1GFP3-

M1 

 

5’ Bnl BglII GCTGCTAGATCTATGCGAAGAAACCTGCGCTTAGAC 

R bnl M1 mutant 
R_G 

CTGCTGCTGATTCTGGTGACcAATGCTGCcTTCGGTACcCGACAGGACCGCC 

F bnl M1 mutant 
R_G 

GGCGGTCCTGTCGgGTACCGAAgGCAGCATTgGTCACCAGAATCAGCAGCAG 

3’ Bnl-XbaI TCTAGATTACAGGATGGCTCTTTTTCGGAGCAAAAC 

UAS-
bnl:HA1GFP3-

M2 

 

5’ Bnl BglII GCTGCTAGATCTATGCGAAGAAACCTGCGCTTAGAC 

R bnl M2 mutant 
R_G 

CTGTGGCACCGTGGATCcTTCGTTACcGTCCAGATTGCTGATGGGC 

F bnl M2 mutant 
R_G 

GCCCATCAGCAATCTGGACgGTAACGAAgGATCCACGGTGCCACAG 

3’ Bnl-XbaI TCTAGATTACAGGATGGCTCTTTTTCGGAGCAAAAC 

UAS-
bnl:HA1GFP4 

 

5’ Bnl BglII GCTGCTAGATCTATGCGAAGAAACCTGCGCTTAGAC 

Bnl R GFP4 
overhang 

GCGGCGAGGAGCAGGATCAGGATAACATGAGTAAAGGAGAAGAACTTTTCACTGGAG 

GFP4 F Bnl 
overhang 

CTCCAGTGAAAAGTTCTTCTCCTTTACTCATGTTATCC TGATCCTGCTCCTCGCCGC 

3’ Bnl-XbaI TCTAGATTACAGGATGGCTCTTTTTCGGAGCAAAAC 

UAS-
bnl:GFP1HA4 

 

5’ Bnl BglII GCTGCTAGATCTATGCGAAGAAACCTGCGCTTAGAC 

Bnl R GFP1 
overhang 

GTAGTAGTTTAGTGCCGAGCGCAGTGAGTATGAGTAAAGGAGAAGAACTTTTCA 

GFP1 F Bnl 
overhang 

CTCCAGTGAAAAGTTCTTCTCCTTTACTCATACTCACTGCGCTCGGCACTAAAC 

3’ Bnl-XbaI TCTAGATTACAGGATGGCTCTTTTTCGGAGCAAAAC 

UAS-
bnl:GFP3Cherryc 

 

Cherryc 1 F GCTGCTAGATCTATGCGAAGAAACCTGCGCTTAGAC 

Cherryc 1 R GCCCTTGCTCACCATCAGGATGGCTCTTTTTCGGAGC 

Cherryc 2 F GTTTTGCTCCGAAAAAGAGCCATCCTGATGGTGAGCAAGGGCGAGGAG 

Cherryc 2 R GCTGCTGGTACCTTACTTGTACAGCTCGTCCATGCCG 

UAS-bnl:GFP3-
dGPI 

 

dGPI F AATTCGAGCTCGGTACAGATCTATGCGAAGAAACCTGCGC 

dGPI R GCCAAGCTTGCATGCCGGTACCTTAGTAGCTCGCATCTTCTAGGGATCC 

UAS-bnl:GFP3-
TM 

 

TM 1 F CCCTAGAAGATGCGAGCTACGACTTCGCCTGTGATATTTACATCTGG 

TM 1 R GCCAAGCTTGCATGCCGGTACCTTAGTGGTAGCAGATGAGAGTGATGATC 

TM 2 F AATTCGAGCTCGGTACAGATCTATGCGAAGAAACCTGCGC 

TM 2 R GATGTAAATATCACAGGCGAAGTCGTAGCTCGCATCTTCTAGGGATCC 



 

 

128 
 

UAS-
bnl:HA1GFP3-w 

 

omega 1 F AATTCGAGCTCGGTACAGATCTATGCGAAGAAACCTGCGC 

omega 1 R CGAATCGTCGCCGCCTGGTGGGGGGCGTCCTTGGGCCTCG 

omega 2 F CGAGGCCCAAGGACGCCCCCCACCAGGCGGCGACGATTCG 

omega 2 R GCCAAGCTTGCATGCCATATATTCTAGATTACAGGATGGCTCTTTTTCGG 

UAS-
hFgf10:HA,GFP 

 

hFgf10 1 F AATTCGAGCTCGGTACAGATCTATGTGGAAATGGATACTGACACATTGTG 

hFgf10 1 R GGCGTAGTCTGGGACATCATATGGATATGGTGACACCATGTCCTGACC 

hFgf10 2 F TATCCATATGATGTCCCAGACTACGCCGAGGCCACCAACTCTTCTTCC 

hFgf10 2 R CCTTGGACATAAGGTGATTGTAGCTCCGCAC 

hFgf10 3 F CTACAATCACCTTATGTCCAAGGGCGAGGAGC 

hFgf10 3 R CATCTCCTTGCTTGTACAGCTCATCCATGCCC 

hFgf10 4 F GAGCTGTACAAGCAAGGAGATGTCCGCTGGAG 

hFgf10 4 R GCCAAGCTTGCATGCCATATATTCTAGATTATGAGTGTACCACCATTGGAAGG 

In situ probe 
synthesis 

 

Fur1 probe-F GACTCTAGAGGATCCCCGCCGATGCGGTTGCCAA 

Fur1 probe-R TCGAGCTCGGTACCCGTTGGCGGTGGCTGCC 

Fur2 probe-F GACTCTAGAGGATCCCCTGTCCATTCTGGACGATGGCATTC 

Fur2 probe-R TCGAGCTCGGTACCCAGGAGCACTCCTCCAGGTAC 

CRISPR/Cas9-
based genome 

editing 

 

gRNA cloning 
 

bnl HA1 gRNA 
fwd 

AAACAGCGCAGTGAGTGAACGTAG 

bnl HA1 gRNA 
rev 

GTCGCTACGTTCACTCACTGCGCT 

HDR donor 
construction 

 

bnlHA1 N-fwd AATTCGAGCTCGGTACGCTGAAGAATTTATGTACAATTTGGCTTAATCC 

bnlHA1 N-rev GGCGTAGTCTGGGACATCATATGGATAACTCACTGCACTCGGCACTAAACTACTACG 

bnlHA1 C-fwd TATCCATATGATGTCCCAGACTACGCCGAACGTAGTGTAAATCAACCCACAAATC 

bnlHA1 C-rev GCCAAGCTTGCATGCCGAATGGGTGGTTCGAAGTTCG 

bnlHA1M1 N-fwd AATTCGAGCTCGGTACGCTGAAGAATTTATGTACAATTTGGCTTAATCC 

bnlHA1M1 N-rev GGCGTAGTCTGGGACATCATATGGATAACTCACTGCACTCGGCACTAAACTACTACG 

bnlHA1M1 mid-
fwd 

TATCCATATGATGTCCCAGACTACGCCGAACGTAGTGTAAATCAACCCACAAATC 

bnlHA1M1 mid-
rev 

CTGCTGCTGATTCTGGTGACcAATGCTGCcTTCGGTACcCGACAGGACCGCC 

bnlHA1M1 C-fwd GGCGGTCCTGTCGgGTACCGAAgGCAGCATTgGTCACCAGAATCAGCAGCAG 

bnlHA1M1 C-rev GCCAAGCTTGCATGCCGAATGGGTGGTTCGAAGTTCG 

HDR screening 
and sequencing 

 

bnlHA1 scr F CGCATAAACAAGCTGAAATTGCTTCATTC 

bnlHA1 scr R GGCGTAGTCTGGGACATCATATGGATA 
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bnlHA1 seq fwd1 GGGGCTTTCCCTCTCACTCTC 

bnlHA1 seq rev1 GGGTTGCTCAGTCTTTTCGATTTCG 

bnlHA1 seq fwd2 ATCCAATCCCAATACCCATCGC 

bnlHA1 seq rev2 CTTGTGGGCGCTCGACATATG 

 
Primers Table: F, forward; R, reverse; lowercase nucleotides in the primers for the M1 and M2 

overexpression constructs introduced R-to-G mutations at the M1 and M2 sites; lowercase nucleotides 

in the primers for the Bnl:HA1-M1 donor construct indicate nucleotides that will create the M1 

mutations; underlined sequences were for Gibson assembly cloning of the fur in situ probe constructs 

into the pSPT18 vector. The M1M2 double mutant was cloned using M2 mutant primers with the M1 

mutant template. Primers were used to introduce synonymous mutations at the gRNA recognition sites 

in the HDR donor construct. Nucleotides in bold caused the synonymous mutations to the protospacer 

sequence.  
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