Visibility Planning: Predicting Continuous
Period of Unobstructed Views

Ser-Nam Lim, Larry S. Davis, and Yung-Chun (Justin) Wan

Computer Vision Laboratory, UMIACS, University of Maryland, College Park
{sernam,1sd,ycwan}@umiacs.umd. edu

Abstract. To perform surveillance tasks effectively, unobstructed views
of objects are required e.g. unobstructed video of objects are often needed
for gait recognition. As a result, we need to determine intervals for video
collection during which a desired object is visible w.r.t. a given sensor.
In addition, these intervals are in the future so that the system can effec-
tively plan and schedule sensors for collecting these videos. We describe
an approach to determine these visibility intervals. A Kalman filter is
first used to predict the trajectories of the objects. The trajectories are
converted to polar coordinate representations w.r.t. a given sensor. Tra-
jectories with the same angular displacement w.r.t. the sensor over time
can be found by determining intersection points of functions representing
these trajectories. Intervals between these intersection points are suitable
for video collection. We also address the efficiency issue of finding these
intersection points. An obvious brute force approach of O(N 2) exists,
where N is the number of objects. This approach suffices when N is
small. When N is large, we introduce an optimal segment intersection
algorithm of O(N log® N +I), I being the number of intersection points.
Finally, we model the prediction errors associated with the Kalman filter
using a circular object representation. Experimental results that compare
the performance of the brute force and the optimal segment intersection
algorithms are shown.

Keywords: Sensor planning, visibility planning, scheduling, filtering,
surveillance

1 Introduction

We describe asymptotically efficient algorithms for controlling a collection of
surveillance cameras to acquire video sequences of moving objects (people, ve-
hicles), subject to visibility, ground resolution and positional constraints. The
problem is motivated by the following surveillance scenario:

We are given a collection of calibrated surveillance cameras, each of which
can be independently panned, tilted and zoomed. They must be controlled to
acquire surveillance video over a large surveillance site, which can most simply
be modelled as a large patch of ground plane, possibly annotated with the loca-
tions of specific regions of interest (e.g., regions near the entrances to buildings,
receptacles such as trash cans, or regions defined dynamically as vehicles enter
and stop in the site).

Each camera has a field of regard, which is the subset of the surveillance site
that it can image by controlling its pan and tilt. A field of view of a camera
is the image obtained at a specific pan/tilt/zoom setting and is generally much
smaller than its field of regard.

As people and vehicles move into and through the surveillance site, the cam-
eras are to be controlled to acquire sets of videos that satisfy temporal and
positional constraints that define generic surveillance tasks; these surveillance
tasks could be represented in a suitable temporal logic, although we do not con-
sider their representation in this paper. Examples of typical surveillance tasks
are:

1. Collect k seconds of unobstructed video from as close to a side angle as
possible for any person who enters the surveillance site. The video must be
collected at some minimal ground resolution. This task might be defined
to support gait recognition, or the acquisition of an appearance model that
could be used to subsequently identify the person when seen by a different
camera.

2. Collect unobstructed video of any person while that person is within k& meters
of region A. This might be used to determine if a person deposits an object
into or takes an object out of region A.

One could imagine other surveillance tasks that would be defined to support
face recognition, loading and unloading of vehicles, etc. Additionally, one would
expect that there would be tasks related to system state maintenance - for exam-
ple, tasks to image a person or vehicle to obtain current position data to update
a track predictor like a Kalman filter; or tasks to intermittently monitor regions
in which people and vehicles can enter the surveillance site. We would like to
efficiently schedule as many of these surveillance tasks as possible, possibly sub-
ject to additional constraints on priority of the tasks. Finally, one would need
some mechanisms to verify that the tasks have been successfully completed (i.e.,
that in fact we have obtained unobstructed video of some given person) so that

it an be determined if the task has to be rescheduled (which, of course, will not
always be possible).

The information that would be needed by any such scheduling algorithm
would include the future time intervals during which each object being tracked
through the surveillance site would be (probabilistically) visible from each of
the surveillance cameras - i.e., would be in its field of regard and not occluded
by another moving object or a fixed object in the site. The prediction of these
visibility intervals must take into account the positional uncertainty of the mov-
ing people and vehicles, which generally increases as time progresses. We refer
to this problem as the visibility planning problem. In our implementation, we
use a simple Kalman filter to predict linear trajectories and their uncertainties.
The scheduling algorithm must also take into account latencies associated with
camera control. Practically, predictions need to be done over a time interval
that is at least some multiple of the camera latencies, and is bounded above by
increasing positional uncertainties of the objects in the site. Typically we would
perform predictions over a time interval of 2-5 seconds in the future, so that the
visibility analysis, task selection and camera control must be accomplished in
some fraction of that time.

There is an obvious brute force solution to the visibility planning algorithm,
which would have computational complexity O(N?), where N is the sum of the
number of moving and fixed objects in the site. For a small number of moving
objects, this brute force algorithm would be efficient enough, but as the number
of moving objects increases, it could lead to a system bottleneck. We describe,
then, a more efficient O(N log? N + I) algorithm based on an optimal segment
intersection approach to solve the visibility planning problem. Here I is the
number of reported intersections.

We start by providing a very brief review of research on visibility planning;
there is an extensive literature on visibility analysis and planning in the graphics,
computational geometry and robotics literature, and our review is not compre-
hensive. We then describe an efficient visibility planning algorithm for point
objects, which does not take into account positional uncertainty. Then, we ex-
tend the representation so that we can model time-varying positional uncertainty
or the physical extent of an object. Finally, we present the results of some sim-
ulation experiments that are designed to determine the problem size at which
our approach becomes more efficient than the brute force algorithm.

The paper is organized as follow: Section 2 will briefly describe the back-
ground for the analysis in this paper, Section 3 will describe how line of sight
visibility planning can be performed efficiently, Section 4 describes how the ap-
proach can be extended to circular representation of objects. Finally, Section 5
and 6 will give results and discussions.

2 Background

Some notable previous work on visibility planning can be found in [1], [2] and
[3]. They used similar approaches in maintaining data structures of boundary
surfaces, 3D free space that is not occupied by objects and tangential rays.

Updating these data structures are triggered by certain events, for example [1]
defined “peek events” when an object just becomes visible as a result of sensor
motion. Their approach is closely related to the filtering method that we use.
Instead of waiting for events to trigger updates, we predict events using tech-
nique such as Kalman filtering described in [4,5]. Updates are triggered, in our
case, when the prediction errors become large. Space carving approach to create
visibility space is also described in [6]. Other work includes [7], where visibility
graphs with complexity O(N?log N) are described. A survey of sensor planning
can also be found in [8].

3 Visibility Model

Object

Fig. 1. The coordinate systems used in the visibility model

In this section, we describe the visibility model used to determine whether
the moving line of sight from a sensor to some object intersects any other objects
during the time interval ¢ to t;. This visibility model is used to determine sub-
intervals between tg and ¢; that an object is unobstructed from a given sensor’s
view. The visibility model represents the objects as 2D points on the ground
plane. In Section 4, we will generalize the object representation to circles to
model object size and limited uncertainty. Let N be the number of objects in
the scene and M be the number of sensors, located on the ground plane, also
referred to as the plan view. M polar coordinate systems are used to represent the
location of N objects w.r.t. each of the M sensors. Line segments connecting each
sensor to each object are created during initialization. Each line is represented
in polar coordinate (d,#), where d is the distance of the object from the sensor
and 6, between —m and 7, is the angular displacement the line makes with the
sensor and which is available from the plan view. Given a set of objects with
the same 6 w.r.t. a sensor at some time, only the object nearest to the sensor is

unobstructed®. The coordinate systems are illustrated in Figure 1. In the figure,
M = 3 and the coordinates of the object are (dy,6;) w.r.t sensor 1, (da,02) w.r.t
sensor 2 and (ds,f03) w.r.t sensor 3. It is clear that at any time instant, we can
compute the coordinates of an object w.r.t. a sensor given some prediction model
for the motion of that object.

For each object O;, a time varying function fy;(t) — 6 that describes its
trajectory w.r.t sensor s is computed. We assume that each f;(t) is represented
by a straight-line trajectory?. Given some time instant ¢, f,;(t) returns the angle,
0, that O; makes with s. Consequently, a set of functions F' = {fs(t) | s €
[1, M],i € [1,N]} can be created. The general form of fs;(t) is

fsi(t) = arctan2((1 —)y + tyo, (1 — £)ay + tas) (1)

where (z1,y1) and (22, y2) are the current and ending positions of the predicted
trajectory of object O;, t = tlA_th, to is the time instant when ¢ is at (x1,y1), t1 is
the predicted time instant when i is at (z2,y2), At; = t1 — to, and arctan2(y, x)
is the four-quadrant inverse tangent function over the range —m to m. Note that
for mathematical convenience, we transformed the coordinates to the plan view
so that the sensor location in the plan view becomes the (0, 0) position. We can

rewrite Equation 1 as

fsi(t) = arctanQ((t — tO)yl + (tl — t)yg, (t — to)l‘l + (tl — t)wg). (2)

Here 6 = fyi(t) for to < t < t; defines a t-monotone line (usually a curve)
segment on the 6-t plane. Special care has to be taken for degenerate cases
where the segment is not continuous. First, if the object passes through the
sensor in the ground plane, f,;(t) is changed by + at the instant the object is
at the origin. Second, when the object passes through the negative portion of
the z-axis in the z-y plane, § wraps around between —m and 7, as illustrated in
Figure 2. Both degenerate cases can be handled by splitting the curve segment
into segments>.

Using the set of continuous curve segments, we can find intersection points
between all fy;(¢). This is performed in the 6-t plane as shown in Figure 3.
Each intersection point in the plane represents the situation when objects in-
volved have the same 6 w.r.t. the sensor. For example, in Figure 3, the sensor
has unobstructed view of object 1 between ¢y and t5. Object 2 is unobstructed
in the whole period analyzed because it is the nearest object to the sensor at
every intersection its segment makes with other segments. We can use the visi-
bility information in these intersection points to schedule sensors for future time
instants.

! The model can easily be changed to place the sensors above and looking down at the
ground plane which would then shorten the “occlusion shadow” cast by each object.
This would also involve assigning a height to each object.

2 If the trajectory is not a straight line, we can model it as a piecewise-linear function.

% Continuous curve segments are not absolutely necessary, but it eases the implemen-
tation of performing line segment intersections described in Section 3.1.

Y axis 0 i

T L
\ I
AN 1 |
. |
N 1 !
\ . I
X axis ‘ t
/] 5 w
’ I
3 2
Trajectqry |
/ _3m | I
) 4 %
ot
|
I
I
|
Use 61 = %Tﬂ ,02 = 7%. Corresponding -t curve is split.
Fig. 2. Handling wrap around segments
,
|
| Faa(t) _
0 ‘ Y axis Object 1
fs2(t)
tg !
|
t3 |
|
|
&1 | Object 3
' Sensor, .
: t (0,0) X axis
|
|
|
! Object 2
1fs1(t)
|
|
|
to te‘nd, end time instant of period being analyzed
Objects Unobstructed Period
1 [to, t2), (t2, tendl
2 [to, tendl
3 [to, t2), (t2,t3), (t3,t4), (ta, tendl

Fig. 3. Intersection on the #-t plane indicates objects in the same line of sight at the
same time

3.1 Finding Intersection Points

In this section, we will show how to efficiently use the visibility model described in
the previous section to find the intersection points. It is obvious from Equation 2
that visibility intervals occur between the intersections of fs;(t) corresponding
to different objects. Solving for the intersections between two object trajectories
fsi(t) and fs;(t), we obtain

at?> + bt +c=0 (3)

where

a = (zj1 —j2)(Yin — ¥i2) — (i1 — 2i2)(Yj1 — Yj2)
b= (tio + tjo)(ziny1 — xj1yin) + (ta + tjo)
($j19i2 — Tioyj1) + (tj1 + tio)(ﬂﬁﬂyﬂ — -Tilyj2) +
(ti1 + tj1)(zi2yj2 — TjoYi2)
¢ = (tio + tjo)(zj1y1 — xayjn) + (ta + o)
(Tioyj1 — Tj1yiz) + (tio + tj1)(Tayje — Tjoyn) +
(tin + tj1)(zj2yi2 — Ti2yj2)

t
t

and (z;1,v:1) and (22,¥:2) are the starting and ending positions of object i
at time instants ¢;o and #;1 respectively while (z;1,y,1) and (252, y;2) are the
starting and ending positions of object j at time instants t;o and t;; respectively.
Obviously, using Equation 3 in a brute force manner will incur O(N?) running
time. Note that Equation 3 also shows that two objects can lie on the same line
of sight of a given sensor at most twice.

The brute force approach can be used to determine intersections when N is
small. When N is large, several efficient segment intersections algorithms can be
used. We will also show in Section 4 that when objects are represented as circles
rather than points, the number of segments at least doubles; therefore a more
efficient segment intersection algorithm is necessary. These include the plane
sweep algorithm due to Bentley and Ottmann [7] (pp 22-29) and an optimal
algorithm first introduced by Balaban [9], both of which give similar complexity.
Our implementation of the Balaban’s algorithm is based on [10] because it is
more efficient than other implementations we tried. Intersections of all fg;(¢) on
this plane are computed within a time period up to to + max(At;) where At; is
the predicted elapsed time before object i exits the scene.

Balaban’s Algorithm Here we briefly outline Balaban’s algorithm; readers
should refer to [9] for details. Let (b, e) denote the vertical strip b < ¢ < e and let
I and r be the x coordinates of the endpoints of a segment s (I < r). The segment
s is said to be spanning the strip (b,e) if [< b < e < r. Given segments s; and
S2, 81 <4 S2 if 81 and s, intersect the vertical line ¢ = a and the intersection
point with s1 lies under the intersection point with so. A staircase, D, is the pair
(Q, (b,e)), where segment set @ possesses the following properties:

— Vs € Q, s spans the strip (b, e).

— Intp(Q) = 0, where Inty.(Q) denotes the segments pairs intersecting
within the strip (b, e).

— (@ is ordered by <.

Intersections of segments in @ with (b, e) are called stairs of D. The staircase D
is called complete relative to a set S if each segment of S either does not span
the strip (b, e) or intersects one of the stairs of D. The basic idea of Balaban’s
algorithm is to split a set of segments L into the set @ and L’ so that the staircase
D = (Q, (b,e)) is complete relative to L’. The first phase is then to find all the
intersections D with L’ and the second phase to find all the intersections in L’.
Algorithm 1 shows how L can be split efficiently while Algorithm 2 shows how
intersections between D and L’ can be determined effectively. For the algorithms
to work, L has to be a set of segments spanning the strip (b, e) and ordered by
<p. R represents the reordering of L by <.. For a set of segments, Balaban’s
algorithm sorts the endpoints based on the x coordinates, generating a sorted
list of 2V endpoints with the smallest and largest values used as an initial strip.
This strip is then recursively split into halves during which intersections in the
resulting strips are also checked for. This is done until each strip has resulting
width of 1, at which time Algorithm 2 is applied to each of these strips.

Algorithm 1 Split, (L, Q, L')
1: {Let L = (s1,..., 8%), 8i <o Si+1}.
2: L'=0.

3 Q=0
4
5

:for j=1,....k do
if the segment s; doesn’t intersect the last segment of @ within (b, e) and spans
this strip then

6: add s; to the end of Q
7. else

8: add s; to the end of L'.
9: end if

10: end for

The complexity of Balaban’s algorithm is O(N log? N + 1), where I is the
number of intersection points. The algorithm is output-sensitive, since its run-
ning time depends on the number of intersections I output. Therefore the algo-
rithm is more useful when the number of intersections is small. Note that Balaban
also presented an asymptotically faster algorithm which runs in O(N log N +1).
We use the former algorithm due to its relative simplicity. Readers should refer
to [9] for details.

4 Modelling Objects as Circles

When the physical extent of the objects become significant, a simple point repre-
sentation is insufficient. Additionally, positional uncertainty requires a different

Algorithm 2 SearchInStripy (L,R)
Split(L,Q,L).
if L' == () then
R=Q.
Exit.
end if
Find Inty, . (Q,L").
SearchInStrips..(L',R’).
R = Merge.(Q, R').
{Merges(S1, S2) is a procedure of merging sets S1 and Sz ordered by <.}

model of object geometry. Here we show how the method of Section 3 can be
generalized to represent objects as circles on the ground plane (cylinders in 3D).
This provides a fast, admittedly limited, approach to modelling object size and
positional uncertainty. Figure 4 shows a circle representation with radius, r, of
an object with respect to the sensor, s. Each circle has two tangents that define
its extent. The visibility model can be modified to use its two tangents for find-
ing intersection points. Let 6 be the angular displacement of the circle center
w.r.t. s. The angular displacement of the upper and lower tangents can then be

expressed as ¢ + a and 6 — « respectively, where o = arcsin 7.

N Y axis
~ JLower tangent point
r
Center
N = = . a/ s 0
Upper tangent paint__ o <
- NS X axis

ajectory

Fig. 4. Representing objects as circles (o = arcsin)

Section 3.1 shows that given two point objects moving linearly, solving a
quadratic equation in ¢ allows us to exactly find the time instants when the
two objects have the same 6. For the circle representation, the trajectory of the
object, fsi(t), can be expressed as the trajectories of its tangent points

fsi(t) = 0(t) £ arcsin % (4)

where d(t) and 0(t) are the distance and the angular displacement respectively,
of the center of object O; at time instant ¢ from sensor s; 6(¢) is the same as in
Equation 1 while d(t) = /(z0 + v4t)? + (yo + vyt)? where (20, yo) is the initial
position of the object, v, is the horizontal velocity and v, the vertical velocity of
the object. Although we assume that the center of the object is moving linearly,
note that since the positions of these two tangents depend on the position of the
object, the tangent points are actually moving non-linearly. Moreover, the radius
of the circle for an object increases as the variance of the prediction increases over
time. To find the potential time instants when two objects O; and O; occlude
one another, we need to solve

fsi(t) = fs; (1) (5)
Unlike in Section 3.1, it is now clearly non-trivial to solve Equation 5 (a polyno-
mial in ¢ of degree 6). To resolve this problem, we split the trajectories of each
tangent point into piecewise linear trajectories using Algorithm 3, and apply
Equation 3 to solve for the resulting linear trajectories. Due to the splitting, the
number of resulting trajectories can be large and Balaban’s algorithm becomes
helpful for finding intersection points efficiently.

Algorithm 3 SplitTangent(¢q,t1)

1: Let p¢, be the position of the tangent point in the x-y plane at to using Equation 4.

2: Let p¢, be the position of the tangent point in the x-y plane at ¢; using Equation 4.

3: Interpolate for the midpoint, m, of p;, and p;, in the x-y plane, i.e., m = WA

4: Compute the actual position, m/, in the x-y plane of the tangent point at time

@% using Equation 4.

if the difference between the angular displacement of m and m’ is small then
Assume the trajectory of the tangent point is linear from time to to t1, and return
this trajectory.

7: else

8: SplitTangent(to, “5%).

9: SplitTangent(“5%L, ¢1).

10: Return the trajectories found in the above two SplitTangent() calls.
11: end if

5 Results

A Java based simulator has been implemented on top of available code from
[10]. The simulations are run on an 800 MHz Pentium IIT Linux machine with
384 MB of RAM. Simulations are run to compare the performances between
the visibility planning algorithm using the brute force algorithm and Balaban’s
algorithm respectively. We use a scene of size 50mx50m, with only one sensor
located at the middle of the left border. We assume the field of regard of the
sensor covers the whole scene. In each experiment we generate N objects where
their initial positions are uniformly distributed. Their walking speeds are also

uniformly distributed at 0.6 to 1 m/s, and their walking directions are randomly
chosen. Since the Java Hotspot Virtual Machine’s adaptive compiler optimizes
Java programs as it runs them, we repeat the experiments with the same input
for 30 times in the same Virtual Machine and record the average time taken for
the last 10.

5.1 Experiments with Point Representation

Here we model objects as points, and we investigate which algorithm runs faster
as N varies. Figure 5(a)(b)(c) shows that visibility planning using Balaban’s
algorithm does become faster than the brute force when N is sufficiently large.
The prediction time refers to the interval between the current and some future
time instants that the current trajectory prediction of an object is valid. A few
observations can be made from the figure:

1. As the prediction time increases, the break-even point of N increases.

2. As the number of objects doubles, the running time of the brute force algo-
rithm quadruples, while the running time of the Balaban’s algorithm only
triples.

3. The processing time is much smaller than the prediction time. This is im-
portant for showing that visibility planning into the future is viable.

4. The number of object pairs intersected (i.e., I) are much fewer than O(N?),
even when the prediction time was 30 seconds (typical prediction time is
2 - 5 seconds). This shows that using an output-sensitive algorithm like
Balaban’s algorithm is more favorable than a brute force O(N?) algorithm.
This is shown in Figure 5(d).

5. For a typical prediction time of 2 secs, we see that the break-even point is
N = 100.

5.2 Experiments with Circular Representation

We model the object as circle to represent the physical extent and positional
uncertainty of a given object. A fixed radius is initialized for the physical extent
while the positional uncertainty is modelled by increasing that radius over the
prediction time so that the confidence interval remains at 90%. The radius is
increased based on the variances, o2 ., and o725, in the prediction of the
trajectory’s velocity magnitude and direction returned by the Kalman filter. For
realistic simulations, we monitor the trajectories of objects near an entrance of a
real scene. These trajectories are then used to derive probable values for Uiredl
and ozmﬂ over time. The corresponding standard deviations are determined as
0.02165 meter and 0.048 radian respectively, which are used to set the radius of
the circle. The variances of the white noise for both the magnitude and direction
are set as 0.5 meter and 0.01 radian respectively while the linear coefficient in the
Kalman filter relating the measurements and predicted values is set as 0.8. The
speed of using Balaban’s algorithm and the brute force algorithm is compared in
Figure 5(e)(f)(g) for prediction time of 2, 5 and 10 secs respectively. We can see
that for a typical prediction time of 2 secs, the breakeven point is N = 40. This

Prediction time ahead = 5 secs, log plot, point representation

Prediction time = 2 secs, log plot, point representation
Brute force alg
10°F 10°F Brute force alg 4

Balaban's alg
Balaban's alg

Processing time (msecs)
e
5
Processing time (msecs)
=
5

10 . . 10° . .

10° 10° 10" 10! 10° 10° 10"

Number of objects Number of objects

(a) (b)

Prediction time = 30 secs, log plot, point representation

Number of intersections, log plot, point representation

Brute force alg

Balaban'’s alg time ahead =30 s

time ahead =5 s

time ahead =2 s

Processing time (msecs)

= .

S =5
Number of intersections

= e e

S, o, o,
\

10 - . 10 . .

10! 10° 10° 10* 10 10° 10

Number of objects Number of objects

(c) (d)

Prediction time = 2 secs, log plot, circular representation Prediction time = 5 secs, log plot, point representation

Brute force alg

3 Balabam'salg 1 10 Bruteforcealy 4

Balaban's alg

Processing time (msecs)
5

Processing time (msecs)
e
5

1075 1 | 10°L - L
10° 10

10 10° 10 10’
Number of objects Number of objects
(e) (f)

Prediction time = 10 secs, log plot, circular representation

3

Brute force alg

Balaban's alg

Processing time (msecs)
5

10° 10
Number of objects

(8)

Fig. 5. Representing objects as points: (a)(b)(c) Speed comparisons for prediction
time of 2, 5 and 30 secs. The breakeven point for a typical 2 secs prediction time is
N = 100. (d) The number of object pairs that were checked for intersections is much
lesser than the brute force approach which always checks all object pairs (O(N?)).
Representing objects as circles: (e)(f)(g) The breakeven point for a typical pre-
diction time of 2 secs is now N & 40. This is expected since each object has 2 tangent
points, giving 2N + ¢ segments, where c is the number of segments that were split from
the tangent trajectories

is expected since we know that circular representation will create 2N segments
for N objects, giving a total of 2N + ¢ segments including segments that were
split from the tangent trajectories.

6 Discussions

We have described a novel approach to acquire unobstructed surveillance video in
intervals between intersection points on the 6-t plane. We addressed the efficiency
issue and showed with results that brute force approach is only viable when
the number of segments created is small and Balaban’s algorithm is used when
the number of segments is large, particularly for circular object representation.
Lastly, we have shown how prediction errors can be modelled with circular object
representation. Future work on extending to a more accurate ellipsoidal object
representation and using the visibility algorithm described for scheduling sensors
are desired.

References

1. Olaf A. Hall-Holt, Kinetic Visibility, Stanford University, Computer Science De-
partment, PhD Thesis, 2002.

2. Amy J. Briggs and Bruce Randall Donald, “Visibility-based planning of sensor
control strategies,” Algorithmica, vol. 26, no. 3-4, pp. 364-388, 2000.

3. I. Stamos and P. Allen, “Interactive sensor planning,” in Computer Vision and
Pattern Recognition Conference, Jun 1998, pp. 489-494.

4. Ismail Haritaoglu, David Harwood, and Larry S. Davis, “W4:who? when? where?
what? a real time system for detecting and tracking people,” in International
Conference on Face and Gesture Recognition, 1998.

5. Kalman, Rudolph, and Emil, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME - Journal of Basic Engineering, vol. 82, no.
Series D, pp. 35-45, 1960.

6. Sing Bing Kang, Steven M. Seitz, and Peter-Pike Sloan, “Visual tunnel analysis
fpr visibility prediction and camera planning,” in Computer Vision and Pattern
Recognition, Jun 2000, p. 2195.

7. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational
Geometry, Springer, 1997.

8. K.A. Tarabanis, P.K. Allen, and R.Y. Tsai, “A survey of sensor planning in com-
puter vision,” IEEE Transactions on Robotics and Automation, vol. 11, no. 1, pp.
86-104, 1995.

9. Ivan J. Balaban, “An optimal algorithm for finding segments intersections,” in
Proceedings of the eleventh annual symposium on Computational geometry, Van-
couver, British Columbia, Canada, 1995, pp. Pages: 211-219.

10. Radu Florian, “Computational geometry,” http://bigram.cs.jhu.edu/~rflorian/
CompGeom1.html.

