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E. coli RecBCD is a 330kDa enzyme with three subunits RecB, RecC and RecD. The 

biological functions of RecBCD are to degrade foreign linear DNA and provide 

single stranded DNA to initiate homologous recombination. The enzyme has 

nuclease, helicase and ATPase activities. Divalent metal ions like Mg2+ are required 

for the nuclease and helicase activity of RecBCD. Previous work done by Dixon et al. 

(Dixon, D. A., Churchill, J. J., and Kowalczykowski, S. C. (1994) Proc. Natl. Acad. 

Sci. USA 91, 2980-2984) and Taylor and Smith (Taylor, A. F., and Smith, G. R. 

(1999) Genes & Devel. 13, 890-900) has shown that Mg2+ plays an important role in 

the interactions of the subunits and the activities of RecBCD. Identification of metal 

binding sites and the role of Mg2+ in the interaction of the subunits will enhance our 

understanding of the catalytic mechanism and structure of E. coli RecBCD.                                                

  The RecB subunit contains the 30kDa nuclease domain of RecBCD. Sequence 

comparisons have shown that the nuclease active site of the 30kDa nuclease domain 

is very similar to that of restriction endonucleases. Fenton chemistry techniques have 

  



been used to map the metal binding sites of several restriction enzymes. We used 

Fenton chemistry techniques coupled with Edman sequencing to map the Mg2+ metal 

binding site of the 30kDa nuclease domain. A specific amino acid residue, Asp 1067 

was identified as the metal binding site. Further corroboration that Asp 1067 was a 

unique Mg2+ binding site was obtained by doing mutational studies. Studies were also 

carried out in presence of other metals like Ca2+ to understand the details of the metal 

binding site. 

 The interactions between the RecB and RecC subunits of RecBCD are 

dependent on the presence of Mg2+ and DNA. We studied the role of magnesium on 

the binding interactions using surface plasmon resonance (Biacore) and found that 

Mg2+ enhances the binding interactions between the RecB and RecC subunits. Also, 

the role of magnesium in the binding of the RecC and 100kDa helicase domain of 

RecC were studied using ssDNA agarose chromatography, spin columns and gel 

filtration. Since, the 100kDa helicase domain requires Mg2+ for its helicase activity, 

we employed Fenton chemistry techniques coupled with mass-spectrometry to show 

that there is a metal binding site in the 100kDa helicase domain. 
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1 Chapter 1:  Recombination and RecBCD 
 

1.1 Introduction 
 

From bacteria to mammals, recombination plays an important role in the 

repair of DNA damage induced by defects during replication. The site of these 

damages can either be the DNA itself or mutations in the replication enzymes. 

The event of recombination helps organisms to survive DNA damage and in the 

process gives rise to new genetic variants. Recombination can be either 

homologous or site specific. Homologous recombination has been well studied in 

E. coli and various mechanisms have been elucidated. One such mechanism uses 

the RecBCD enzyme.  

RecBCD is a member of the Rec class of DNA-binding proteins from E. 

coli and is also known as Exonuclease V (1). RecBCD is a multimeric protein. It 

is composed of three different proteins called RecB, RecC and RecD. Each of 

these subunits has a defined activity. The function of the RecBCD enzyme in 

recombination is to generate single stranded DNA with the help of its nuclease 

and helicase activity. The single stranded DNA is then taken over by the SSB and 

RecA proteins to create stable intermediates, capable of undergoing 

recombination with homologous sections of the chromosome. The process of 

recombination is then completed by other enzymes like DNA polymerase, DNA 

ligase that repair the damaged portion of the DNA. RecBCD also has nuclease 

activity which helps E. coli to degrade viral DNA.(2) 
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There is evidence that the process of recombination, repair and replication 

may be intimately related. It was shown that mutants deficient in the PriA protein 

(functions in initiation at the replisome and recruitment of the replication 

enzymes) have a drastically reduced level of recombination dependent integration 

of conjugal DNA or P1 phage DNA into the chromosome (3).  

 

1.2 Homologous Recombination 
 

During meiosis the two homologous chromosomes are aligned next to 

each other and a cross-over takes place. Crossing over thus generates homologous 

recombination; that is, it occurs between two regions of DNA containing identical 

or nearly identical sequences. Usually, these are sequences on two equivalent 

regions of homologous chromosomes. At least in bacteria and yeast any two 

homologous DNA segments will recombine in the cell, given one condition: One 

of them must have a break or a region of single stranded DNA (4) A strong hint 

about the way crossing over begins is that breaks in the DNA greatly stimulate it. 

UV irradiation, X-ray irradiation and chemicals that create double-stranded breaks 

or gaps increase crossing over (5). In E. coli several different gene products have 

been identified that play a role in the process of homologous recombination. The 

rec gene products play a central role in recombination with the help of other 

proteins including DNA polymerase, single strand binding protein (SSB), DNA 

topoisomerase, gyrase, ligase, and the RuvABC resolvasome (6). In 1965 the first 

rec gene was discovered (4). This was the recA gene and was identified by the 

isolation of recombination deficient mutants of E. coli K-12. These mutants could 
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conjugate with the donor DNA and receive the donor DNA but could not 

recombine that DNA with their own chromosomes. These mutants were also 

sensitive to UV radiation and it was shown that these mutants carried a single 

mutation that affected both recombination and UV resistance.  

 

1.3 RecBCD Enzyme 
 

Exonuclease V (RecBCD) was discovered as an ATP dependent DNase 

while studying DNA degradation with thermo-sensitive mutants of E. coli. 

Several other recombination deficient and UV sensitive mutants were identified 

simultaneously that lacked this enzyme (7). This enzyme is widely distributed in 

Gram-negative bacteria and has been most thoroughly studied in E. coli. The 

properties of E. coli RecBCD mutants lacking the enzyme reveal that the 

RecBCD enzyme is important for: 

1.3.1 Homologous recombination 
 

RecBCD is involved in homologous recombination events in E. coli, 

which includes conjugation, transduction and transformation. RecBCD catalyzed 

recombination events occur only in the presence of a DNA which is double-

stranded and linear (2). This is called the Double Stranded Break Repair model 

(DSBR).  

 

 3  



 

1.3.2 Recovery of DNA from damage and maintenance of cell viability 

    RecBCD in conjunction with RecA, DNA polymerase, and other enzymes 

repairs double-stranded breaks in DNA by a process of recombination repair.   

 

1.3.3 Exclusion of foreign DNA  

The nuclease activity of RecBCD is responsible for degrading foreign 

DNA. This activity is modulated by the Chi sequences to protect the E. coli 

genome from being degraded by the enzyme (8). 

Double strand break repair model (DSBR): 

 This is the most general model for recombination and repair. It 

incorporates the various enzymes and the basic Holliday model. Double stranded 

breaks serve the paradoxical role of being both sites at which recombination 

initiates and lesions that are lethal. Hence, they are simultaneously loci that 

stimulate recombination and DNA damage that needs repair. The recombinational 

repair process consists of four steps. 

 Initiation: This is the first step in DSBR and represents the processing of 

the linear duplex DNA at the double stranded break to produce the ssDNA needed 

for DNA strand invasion of a dsDNA homologue by RecA. (For the prototypic 

homologous pairing reactions promoted by RecA protein ssDNA is a prerequisite) 

(6) 

 Homologous pairing and DNA strand exchange: The binding of RecA and 

SSB to the single stranded DNA leads to the formation of a presynaptic filament 

which then searches for a region of homology and initiates strand invasion 
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followed by base-pairing between the homologous regions. (A triple helix is 

probably formed). The resulting displacement of the recipient DNA strand leads 

to the formation of a D-loop. Base pairing of the invading strand of the donor 

DNA with the non-invading single strand of the recipient DNA results in the 

formation of a Holliday junction. Recombination specific helicases, the RecBCD 

and RecQ proteins work in conjunction with the RecJ exonuclease for the 

formation of the heteroduplex. 

 DNA heteroduplex extension: The extension takes place by branch 

migration. In this step a specialized motor protein complex, the RuvAB complex 

functions. The RuvAB complex is a DNA helicase that extends the region of the 

DNA heteroduplex by branch migrating over the cross over point (9). 

Resolution: This is the final step of recombination. It requires the 

separation of the two conjoined DNA molecules. This is done by the Holliday 

junction specific RuvC endonuclease. The RuvC protein as a part of a complex 

with the RuvAB proteins recognizes and cleaves the Holliday junctions to 

complete the recombination process (10).  The mechanism of homologous 

recombination and repair is shown below in Figure (1.1) 
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Figure 1.1: Double strand break repair model (6) 
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1.4 The Subunits of RecBCD 

 RecBCD enzyme is a heterotrimer (11) of RecB (134kDa), RecC 

(129kDa) and RecD (67kDa). Genetic complementation analyses of ExoV null 

mutants revealed two genes, recB and recC, that coded for two polypeptides of 

mass 120 kDa and 110 kDa. These polypeptides were identified as RecB and 

RecC respectively. 

The RecD protein was discovered after RecB and RecC. Purified 

preparations of ExoV can be dissociated by high salt and separated by column 

chromatography into two fractions, α and β (12). Mixing of α and β restores 

ATPase and nuclease activity. The β fraction contained the 120 kDa and 110 kDa 

polypeptides and the α fraction contained a 58 kDa polypeptide (1). The above 

molecular weights were obtained from an SDS PAGE gel. The composition of the 

α fraction was identified by using genetic complementation analysis of ExoV null 

mutants and recombination deficient mutants. Two mutants recC⏐and recB⏐ 

belonging to a class of mutants designated as recBC⏐ were studied. Unlike the 

recBC null mutants, the RecBC⏐ are recombination proficient (but Chi 

nonactivating), resistant to DNA damaging agents and fully viable. Incubation of 

extracts from recB⏐ mutant with the purified α fraction resulted in the appearance 

of ATP- dependent dsDNA exonuclease activity while incubation with β fraction 

produced no significant increase in this activity. Conversely, extracts of recC⏐ 

mutant produced ATP- dependent dsDNA exonuclease activity with the β fraction 

but not with the α fraction. The α fraction polypeptide was designated as RecD. 

 7  



 

 

1.5 RecBCD: Genes and mutants  

 The three contributing genes of the RecBCD enzyme are closely grouped 

on the E. coli chromosome: recB and recD form an operon, while recC is situated 

nearby but has its own promoter (13). A combination of extremely weak 

promoters and suboptimal codons maintains the level of 10 RecBCD nuclease 

molecules per chromosome (14) None of its three genes are known to be SOS 

inducible. The physical map of the genes is shown below (Figure 1.2). 

 

Figure 1.2: The RecBCD genes (15) 
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E. coli recB and recC null mutants are deficient in recombination 

following conjugation or generalized transduction. They are more sensitive than 

wild-type E. coli to DNA damaging agents such as X-rays, UV light, and 

mitomycin C (16). They are also sensitive to dsDNA phages (17).Cultures of 

recBC null mutants contain a large fraction of cells that fail to form visible 

colonies (18). This phenomenon called lethal sectoring, results in slower growth 

of recBC mutant colonies than the wild-type colonies. As a result the mutant 

colonies are reduced in size compared to the wild-type colonies.  

 In contrast null recD mutants and a single recC missense mutant display 

normal viability as well as wild-type survival after DNA damaging treatment (19). 

The recD mutants lack nuclease activity and are sensitive to dsDNA phages. They 

exhibit a rec+uvr phenotype.  

 

1.6 Biochemical Activities of RecBCD 
 

RecBCD is a multimeric enzyme and was first discovered as an ATP 

dependent exonuclease (7). The prominent activities of RecBCD are as follows: 

           1. DNA dependent ATPase 

                                2. ATP dependent nuclease  

        (ssDNA and dsDNA exonuclease and ssDNA   

        endonuclease) 

                               3. ATP dependent helicase 

                               4. Chi recognition activity  
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The Chi sequence (5’GCTGGTGG-3') inactivates the enzyme by 

attenuating its nuclease activity. 

          Each of these activities of RecBCD is needed for recombinational repair 

and has been localized to a particular domain of the enzyme complex.   

1. DNA dependent ATPase and ATP dependent nuclease: 

 The nuclease activity of RecBCD requires ATP and proceeds at the same 

rate in the presence of a broad range of ATP concentrations. The requirement of 

ATP was demonstrated by isolation and characterization of an ATP dependent 

deoxyribonuclease encoded by the recB and recC genes (7). The extracts from 

wild type E. coli contained a DNase that catalyzed the release of acid soluble 

fragments from DNA. This activity was absent in recB and recC mutants. (The 

existence of the RecD subunit was still not known).  

         The two activities are linked to each other. The nuclease activity of RecBCD 

manifests itself only in the presence of both ATP and magnesium. RecBCD is 

unusual as a nuclease because DNA hydrolysis does not need an input of energy, 

and most nucleases do not hydrolyze ATP (20). RecBCD exhibits nuclease 

activity on circular or linear ssDNA and linear dsDNA. It functions as an 

exonuclease in both 3’ to 5’ and 5’to 3’ orientations. DsDNA exonuclease is 

defined as the activity able to degrade linear duplex DNA RecBCD degrades 

linear duplex DNA to the same oligonucleotide products as are formed by 

ssDNA, but the degradation is faster and the rate of hydrolysis declines with 

increasing ATP concentrations (21). Circular duplex DNA, even containing single 

stranded nicks and short gaps are refractory to RecBCD attack (22) because the 
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enzyme can enter duplex DNA only through double-stranded ends (23). It can 

also act as an ssDNA endonuclease to cut and degrade circular ssDNA. RecBCD 

degrades ssDNA to fragments several nucleotides in length and these fragments 

are acid-soluble. 

The degradation of duplex DNA by RecBCD requires both Mg2+ and 

ATP. The rate of degradation is dependent on the ratio of these two ions.(24) ATP 

and Mg2+ complex with each other, and so in an equimolar solution there is little 

free Mg2+ or ATP. The nuclease activity of RecBCD is stimulated when the Mg2+ 

concentration exceeds that of ATP and is inhibited when the ATP concentrations 

exceed that of Mg2+ (11). 

  

2. ATP dependent helicase: 

The third major activity of the RecBCD enzyme is DNA unwinding. 

RecBCD is a potent and highly processive DNA helicase (25). DNA unwinding 

by RecBCD requires ATP and magnesium. The explanation for the unusual ATP-

dependent dsDNA exonuclease activity of RecBCD is that the enzyme is able to 

hydrolyze duplex DNA only after its unwinding. The helicase activity was 

measured using a novel assay. The assay takes advantage of the quenching of the 

intrinsic protein fluorescence of E. coli SSB protein upon binding to ssDNA. This 

is used to characterize the DNA unwinding activity of RecBCD enzyme. 

Unwinding in this assay is dependent on the presence of ATP, RecBCD enzyme, 

and linear dsDNA (25). 
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3. Chi-recognition activity: 

One of the functions of the RecBCD enzyme is to degrade invading 

foreign DNA. At the same time this enzyme has to repair the double stranded 

break in the E. coli genome by recombinational repair. Several activities like the 

helicase and nuclease activities of RecBCD are regulated by an 8-nt symmetric 

DNA sequence χ (5′-GCTGGTGG-3′), which is recognized by the RecBCD 

enzyme. Chi sites are DNA sequence elements that stimulate the RecBCD 

enzyme dependent recombination in their vicinity. These are recombination 

hotspots. Genetic and physical analysis has determined that these recombination 

hotspots are composed of the sequence 5'-GCTGGTGG-3' (26). When RecBCD 

enzyme encounters χ, the intensity and polarity of its nuclease activity are 

changed, and the enzyme gains the ability to load RecA protein onto the χ-

containing, unwound single-stranded DNA.  The presence of the 8-nt Chi 

sequence in the E. coli genome prevents the degradation of the E. coli genome by 

interacting with RecBCD. RecBCD enzyme catalyzes Chi-dependent cleavage of 

one the DNA strands containing the Chi sequence, 5'-GCTGGTGG-3'. 

Stimulation of recombination by Chi occurs primarily to the 5' side of the Chi site 

and requires a functional RecBCD enzyme. Chi-specific cleavage is greatly 

reduced by single base pair changes within the Chi sequence and by mutations 

within the E. coli RecC gene (27).On approaching the Chi sequence the RecBCD 

enzyme nicks the DNA. In vitro recognition of Chi by RecBCD enzyme is 
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orientation dependent and results in a site specific nick in the DNA strand 

containing the Chi sequence 4-6 not to the 3' side of the Chi sequence (Figure 3, 

step a). RecBCD must approach the Chi site from the 3' side for a specific nick to 

occur (23).  The 3′ terminal at the entry site of RecBCD enzyme is degraded much 

more vigorously than the 5′ terminal strand (28) After binding to a double-

stranded DNA end, RecBCD  hydrolyzes ATP to translocate and separate the 

duplex while preferentially degrading the 3'-terminated nascent single strand. The 

RecBCD enzyme requires only the sequence information in the 5'-GCTGGTGG-

3'-containing strand to recognize and to be regulated by Chi. Furthermore, 

interaction with the recombination hotspot χ causes an attenuation of the nuclease 

activity but not of the helicase activity and is accompanied by a pause of RecBCD 

enzyme at the χ site (Figure 1.3, step b). Once the enzyme encounters Chi, the 

translocating enzyme pauses  and subsequent cutting on the 3'-strand is attenuated 

leading to production of a Chi-specific DNA fragment, the length of which is 

equal to the length of the DNA from Chi to the 5' end of the strand (27,28). 

This single strand is then taken over by RecA and homologous 

recombination occurs (Figure 1.3c). The ssDNA strand covered with RecA then 

invades the homologous dsDNA to produce a D-loop structure and initiate 

recombinational repair with the help of other enzymes (Figure 1.3d). In addition 

to the attenuation of the 3' to 5' nuclease activity a weaker 5' to  3' nuclease 

activity is activated in the 5' terminal strand. This switch in the polarity of 

nuclease activity produces a dsDNA molecule with an ssDNA tail retaining χ at 

the 3’ terminus (Figure 1.3e & 1.3f). 
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Figure 1.3: Initiation of recombination dependent DNA repair by RecBCD and 

RecA enzymes  (2) 
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1.7 RecBCD: The role of RecB, RecC and RecD subunits  
 

The RecBCD enzyme is comprised of three subunits arranged as a 330-

kDa heterotrimer that is fully functional without the need for further 

oligomerization (12). The complex range of enzyme activities catalyzed by 

RecBCD can be attributed to the three subunits as follows: RecB is a 3’–5’ 

helicase and multifunctional nuclease, RecC recognizes Chi, and RecD is a 5’–3’ 

helicase. 

Photo-affinity labeling of the RecBCD enzyme was done with 8-

azidoadenosine 5'-triphosphate.The RecB and RecD subunits of the RecBCD 

enzyme (exonuclease V) from E. coli were covalently photo-labeled with the ATP 

photo affinity analogue [alpha-32P] 8-azido-ATP.  ATP strongly inhibited the 

photo labeling. 8-azido-ATP is hydrolyzed by the RecBCD enzyme and this 

supported its double-stranded DNA exonuclease activity. Also the label is largely 

confined to two peptides obtained by tryptic digestion of the photo labeled 

holoenzyme. One is derived from the RecB subunit and the other from the RecD 

subunit (29). 

 

RecB and RecC: 

RecB protein has been shown to exhibit DNA-dependent ATPase activity. 

The amino acid sequence of RecB and photo affinity labeling with 8-

azidoadenosine 5'-triphosphate, an analogue of ATP showed that RecB had ATP 

binding sites. The purified RecB protein can also function as a DNA helicase. The 

RecB subunit could displace oligonucleotides annealed to viral M13 DNA in an 
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ATP dependent and orientation-specific manner (30). RecC protein alone has 

neither ATPase nor exonuclease activity. However, when combined together, the 

RecBC complex shows higher ATPase and helicase activity than RecB by itself 

(31). The RecBC complex is still a very weak nuclease (exonuclease and 

endonuclease). A class of recC mutants lacks Chi recognition activity. This 

suggests that probably the Chi recognition activity reside in the RecC polypeptide.  

Limited proteolysis was carried out on the RecB subunit with subtilisin. 

Subtilisin cleavage of purified 130 kDa RecB gives rise to two fragments; a 100 

kDa N-terminal domain (residues 1-929) and a 30 kDa C-terminal domain (32). 

With longer incubation time the 100 kDa fragment was degraded further whereas 

the 30 kDa fragment was resistant to further degradation.  The 100 kDa and the 30 

kDa fragments were separated using chromatographic separation with a ssDNA- 

agarose or heparin-agarose column. The 30 kDa fragment did not bind to these 

columns, whereas the 100 kDa bound to the column and had an elution pattern 

identical to intact RecB. This suggested that the 100 kDa fragment is responsible 

for binding to DNA. A linker region links the 100 kDa N-terminal and the 30 kDa 

C-terminal domains. A truncated RecB mutant was created (RecB1-929) by 

deleting the DNA encoding the 251 amino acids from the C-terminal end. The 

truncated RecB1-929 protein was over expressed and purified. The protein showed 

helicase activity by its ability to unwind linearized plasmid DNA. RecB1-929 was 

able to unwind DNA and the processivity of unwinding increased in the presence 

of RecC. It was then reconstituted with RecC and His-tagged RecD. Helicase and 

nuclease assays were done with this protein. The RecB1-929 CD did not show any 
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nuclease activity as manifested by its inability to cut any of the three substrates 

(linear ssDNA, circular ssDNA and linear dsDNA) of RecBCD. This suggested 

that the 30 kDa C-terminal domain is essential for nuclease activity of RecBCD. 

The 30 kDa C-terminal domain was shown to have nuclease activity by 

the creation of a chimerical enzyme by attaching the 30 kDa C-terminal domain to 

the gene 32 protein of T4 phage. This chimera was created because the 30 kDa C-

terminal domain did not bind the ssDNA agarose column. To identify the 

nuclease active site Asp427 in the 30kDa C-terminal domain chimerical enzyme 

(= Asp1080 in RecB) was substituted by Ala. This abolished all nuclease activity 

and indicated that there is a single nuclease active site in RecB, which is localized 

to the 30kDa region. This mutation did not affect the helicase activity (33). 

 

RecD: 

RecD has ATP binding sites and a weak ATPase (3). The addition of 

RecBC to RecD produces a potent dsDNA exonuclease. The nuclease activity of 

RecBC increases on the reconstitution of the holoenzyme (34). Although 

identified as a ssDNA-dependent ATPase several years ago (35) and shown to 

contain several characteristic helicase motifs20, it was only recently shown that 

the RecD subunit has 5’–3’ helicase activity. (36) (37). 

 

1.8 Crystal Structure of RecBCD 
 

RecBCD is a bipolar helicase that splits the duplex into its component 

strands and digests them until encountering a recombinational hotspot (Chi site). 
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The nuclease activity is then attenuated and RecBCD loads RecA onto the 3’ tail 

of the DNA. The crystal structure of RecBCD bound to a DNA substrate has been 

solved showing that the dsDNA strand is split into two across the RecC (38). 

Each of these single stranded DNA then align themselves toward two helicase 

motor subunits. The strands pass along tunnels within the enzyme, and emerge 

near the nuclease domain of RecB. The recognition of the Chi sequence occurs in 

this tunnel and this in turn regulates the nuclease activity. The crystal structure of 

the RecB nuclease domain also shows a calcium coordinated to the side chains of 

three residues (His 956, Asp 1067 and Asp 1080) and the main-chain carbonyl of 

Tyr 1081. It is likely that this calcium ion is bound at the position where a 

magnesium ion would normally bind in the active site of the protein, because 

calcium has been shown to be an inhibitor of the nuclease activity. (39) 
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Figure 1.4: Crystal Structure of RecBCD (38) 
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1.9 Role of Magnesium 
 

Divalent metal ions play a crucial role in forming the catalytic centers of 

various DNA nucleases. RecBCD requires both Mg2+ and ATP for its activity. 

Mg2+ is a divalent metal ion which is required for the nuclease and helicase 

activity and interactions of the RecBCD subunits as well. A single nuclease active 

site has been identified in the C-terminal 30kDa domain of the RecB subunit of 

the RecBCD holoenzyme (32). The nuclease activity of RecBCD is attenuated on 

encountering an octameric sequence called Chi (3’-GGTGGTCG-5’). Regulation 

at Chi depends strongly on the concentration of ATP and Mg2+. The degradation 

of duplex DNA by RecBCD requires both Mg2+ and ATP. The rate of degradation 

is dependent on the ratio of these two ions. ATP and Mg2+ complex with each 

other, and so in an equimolar solution there is little free Mg2+ or ATP. The 

nuclease activity of RecBCD is stimulated when the Mg2+ concentration exceeds 

that of ATP and is inhibited when the ATP concentrations exceed that of Mg2+. 

 The inactivation of RecBCD on encountering Chi was proposed to result 

from the complete disassembly of the enzyme to its individual subunits (40). 

Enzyme inactivation was studied in presence of tandem Chi sequences and low 

magnesium and high ATP concentration. Taylor and Smith analyzed the Chi 

inactivated enzyme disassembly by glycerol gradient ultracentrifugation and 

native gel electrophoresis. Ultracentrifugation showed that very little intact 

enzyme was left after it was treated with Chi containing DNA sequences. RecC 

sedimented as expected of the free polypeptide whereas RecB sedimented faster 

than free RecB but slower than the RecBC complex. Further, RecB did not co-
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sediment with RecD. The faster sedimentation of RecB was explained by a RecB-

DNA complex. The RecD sedimented as a trimeric species because it is very 

hydrophobic and forms aggregates. Taylor et al also corroborated their findings 

by observing the migration of the Chi inactivated RecBCD enzyme on a native 

gel. 

Dixon et al showed that under conditions of limiting Mg2+ ion there is 

reversible inactivation of the enzyme; addition of excess Mg2+ reactivates all 

activities of the enzyme (24). They observed that RecBCD unwound only Chi 

containing DNA when the ATP concentration was higher than that of magnesium, 

resulting in low free magnesium concentrations. Under the conditions of limiting 

magnesium (less than 10mM) Dixon et al showed that dsDNA unwinding activity 

is inhibited. This inactivation is reversed when the concentration of magnesium is 

increased. To examine the inhibitory effect of Chi on dsDNA unwinding Dixon et 

al used fluorescence helicase assay and found that at limiting magnesium 

concentrations RecBCD unwound ds DNA till it encountered Chi. At Chi 

RecBCD pauses and becomes equivalent to RecBC and unwinding can be 

reinitiated by the addition of magnesium. Based on their studies they proposed a 

model in which the RecD subunit is ejected or functionally inactivated after 

RecBCD interacts with a Chi sequence.  

 The above observations suggest that there is some change in the subunit- 

subunit interaction at Chi. These changes were dependent on the concentration of 

Mg2+ and subunit disassembly. However, the exact nature of these changes was 

not known. We looked into the role of the divalent magnesium ion closely. In an 
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effort to understand the role of magnesium we studied the effect of magnesium on 

the binding of RecB and RecC proteins and then went on to map the magnesium 

metal binding sites in the RecB subunit. 

Alignment of the C-terminal sequence of E. coli RecB with homologous 

proteins from other bacteria identified conserved aspartates at position 1067 and 

1080 and a lysine at position 1082. Mutation of the amino acid residues Asp1080, 

Asp1067 and Lys1082 abolished nuclease activity on both single and double 

stranded DNA. Together with Asp1080, these residues compose a motif that is 

similar to one shown to form the active site of several restriction endonucleases 

(41). Mg2+ ion has been shown to play a role in the activity of nucleases 

containing acidic residues in their active site(42). 

 

1.10 Fenton Chemistry 
 

This process uses transition metals to catalytically oxidize chelating 

ligands with deleterious effects. More recently, Fenton chemistry techniques have 

been applied to investigate the active sites of proteins by using reagents which 

oxidatively cleave the polypeptide backbones of enzymes at their metal-binding 

sites (43-45). Fe2+ is most commonly used to cause oxidative cleavage of proteins 

(42,46). The metal-catalyzed oxidation generates reactive species (O2· or OH) 

through Fenton Chemistry (43). The reactive species can interact with nearby 

susceptible amino acid residues can specifically cleave the polypeptide backbone 

in close proximity to the site where the reactive species are formed. A schematic 

representation is shown in Figure (1.5). The hydroxyl radical reacts with the 
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polypeptide backbone in the vicinity of the metal binding site. The hydroxyl 

radical abstracts the α hydrogen of the amino acid near the metal binding site and 

cleaves the peptide backbone generating peptide fragments. The purified enzyme 

was treated with Fe2+ and ascorbate. The ascorbate helps in maintaining the +2 

oxidation state of Fe. The cleavage products from the protein after treatment with 

Fe2+ are sequenced using Edman degradation to identify the amino acid at the 

metal binding site. 

In an attempt to identify the amino acids involved in metal binding at the 

active sites of endonucleases, Andersen et al, substituted Mg2+ ions by Fe2+ ions 

in two archaeal intron encoded homing endonucleases, I-DmoI and I-PorI, 

yielding functional enzymes and enabling the generation of reactive hydroxyl 

radicals within the metal ion binding sites (47). Specific hydroxyl radical-induced 

cleavage was observed within, and immediately after, two conserved 

LAGLIDADG motifs in both proteins and at sites at, and near, the scissile 

phosphates of the corresponding DNA substrates. The dual protein/ nucleic acid 

foot printing approach implemented by Andersen et al, is generally applicable to 

other protein–nucleic acid complexes when the natural metal ion can be replaced 

by Fe2+. Hlavaty et al, employed Fenton chemistry techniques to identify the 

residues involved in metal binding located at the active sites of restriction 

endonucleases. The restriction endonucleases BamHI, FokI, BglI, BglII, PvuII, 

SfiI, BssSI, BsoBI, EcoRI, EcoRV, MspI, and HinP1I were subjected to oxidizing 

conditions in the presence of Fe2+ and ascorbate. All proteins were inactivated 

upon treatment with Fe2+ and ascorbate. BamHI, FokI, BglI, BglII, PvuII, SfiI, 
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BssSI, and BsoBI were specifically cleaved upon treatment with Fe2+/ascorbate. 

The site of Fe2+/ascorbate induced protein cleavage for each enzyme was 

determined. The metal binding amino-acids found by the Fe-mediated cleavage 

reactions has also been shown by structural and mutational studies to be involved 

in both metal ligation and catalysis (42). 
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Figure 1.5: Schematic representation of Fe-cleavage of proteins. 
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RecBCD is a complex enzyme which has many functions; helicase, 

nuclease, ATPase. Each of these activities is carried out by one or more subunits 

of this protein. A lot of studies to date have explored the activities of this protein. 

In my thesis I have tried to study the structure-functional relationship of RecBCD 

using a variety of biochemical and biophysical techniques.  

Divalent metal ions like Mg2+ are required for the nuclease activity of 

RecBCD. Identification of metal binding sites will enhance our understanding of 

the catalytic mechanism and structure of E. coli RecBCD.  The C-terminal 30kDa 

domain of the RecB subunit contains the nuclease active site of RecBCD. We 

used Fenton chemistry techniques to identify the amino acid that binds the 

magnesium metal in the 30kDa domain. 

The various activities of the E. coli RecBCD enzyme are very sensitive to 

reaction conditions. Inclusion of calcium in low concentrations affects dsDNA 

exonuclease and ssDNA exonuclease activities but the DNA dependent ATPase 

activity is not affected (39). This finding coupled with the crystal structure of 

RecBCD which showed a bound calcium in the nuclease active site indicates that 

calcium binds more strongly to the nuclease active site than magnesium.  Hence, 

to corroborate our findings we carried out the Fe-cleavage reactions in presence of 

calcium. 

Magnesium is also required for the interactions between the subunits of 

RecBCD and the for its helicase activity (24, 40). We used a variety of 

biophysical techniques like Biacore, ssDNA agarose chromatography, spin 
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columns and gel filtration to probe the role of magnesium in the interactions 

between the RecC and RecB subunits of RecBCD. Moreover, the N-terminal 

100kDa domain of the RecB subunit contains the helicase activity of RecBCD. 

So, we also attempted to use Fenton chemistry techniques to identify the 

magnesium binding site in the helicase domain of RecBCD. 
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2 Chapter 2: Mapping of Metal Binding Sites in the Nuclease Domain of 
RecBCD 

 

 

2.1 Introduction: 
 

RecBCD enzyme is a DNA dependent ATPase and an ATP dependent 

helicase and exonuclease. RecBCD also requires Mg2+ ion for its ATPase, 

nuclease, and helicase activities. The single nuclease active site of RecBCD is 

located in the 30kDa domain of the RecB subunit of RecBCD. Metal binding sites 

in restriction enzymes have been mapped using Fenton chemistry techniques. We 

employed this method to map the magnesium metal binding site in the RecB 

nuclease domain. Different reaction conditions were tested to arrive at an optimal 

condition where the clear cleavage products were maximally formed and could be 

visualized. 

A comparative study was done with the wild type 30kDa and two mutants 

where the aspartate residues at 1067 and 1080 were mutated to an alanine residue 

(D1067A mutant of the 30kDa and D1080A mutant of the 30kDa). These 

aspartate residues are crucial for nuclease activity of RecBCD (33). The aspartate 

residue has a negative charge and this helps in binding of the positively charged 

magnesium ion. The significance of the Asp1067 residue in metal binding was 

corroborated by constructing a mutant 30kDa in which the Asp residue at 1067 

was mutated to an uncharged Ala residue. The effect of Fe-cleavage was also 

studied on the D1080A mutant which had an Asp residue at position 1080 

mutated to Ala. This mutant was previously shown to have reduced nuclease 
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activity. The comparative study of the wild-type and the mutants corroborated that 

the Asp1067 residue of the 30kDa nuclease domain of RecB is the binding site of 

the magnesium metal ion. 

 
 
 

2.2 Material and Methods 
 

 All protein and DNA molecular mass markers were from Invitrogen. The 

chemicals used for buffers used during protein purification were either from 

Sigma, Fisher or J.T. Baker. The E. coli strain used for the expression and 

purification of the 30 kDa RecB nuclease domain was BL-21. The plasmid 

containing the 30kDa sequence was pET 15b-30 (34) which has ampicillin 

resistance. Ampicillin was used at a concentration of (25 mg/ml) for the BL-21 

strains carrying the pET 15b-30 plasmid. Culture media were LB broth (Fisher) 

and agar plates containing ampicillin. The BL-21 cells expressing the 30kDa 

protein were grown at 37 ºC with shaking at 250rpm. 

2.2.1 Purification of the 30kDa subunit: 
 
 Each batch of purification was done using a culture volume of 2 - 10 liters. 

An overnight 50 ml seed culture was grown to saturation. This saturated culture 

was used to start the larger cultures the next day. The dilution was 1:200. The 

cells were induced with 1mM IPTG after the cells had reached log phase (OD650 = 

0.5) and induction was carried out for 3-4 hrs. The cells were harvested using a 

JA 10 rotor in a Beckman centrifuge at 10,000 X g for 10 minutes. The pelleted 
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cells were stored at –80 °C. The cells were lysed the next day after re-suspending 

them in the first buffer that was used to load the column. Protease inhibitor 

cocktail (Sigma) was added to the resuspended cells before lysis. Cell lysis was 

done using a Branson 300 Sonicator at a duty cycle of 30% for 30 seconds for an 

average of 10-15 cycles. Care was taken so that frothing did not take place during 

cell lysis using sonication. The lysate was cleared by centrifuging the crude cell 

lysate at 20000 g using a JA 20 rotor for 90 minutes at 4 °C in a Beckman 

centrifuge. The lysate was then decanted into a polypropylene tube and filtered 

using a 0.22 micron syringe filter. It is important to filter the crude lysate before 

loading them on the FPLC columns to avoid clogging of the filters. 

 The purification of the 30kDa protein was done using 5 ml Hi-Trap 

chelating HP columns on an AKTA FPLC system from Amersham-Pharmacia. 

The column was charged using a 10mM NiCl2 solution. The column and the super 

loop were then equilibrated with the Native Binding buffer (pH = 7.8) (see Table 

2.1 for the composition). The filtered lysate was then injected into the loop using 

a syringe. The lysate was loaded on the column at a flow rate of 1-2 ml/min. The 

unbound protein was washed using 2 CV of the native binding buffer followed by 

Native Wash Buffer containing 60mM imidazole (pH=6.0) at a flow rate of 3 

ml/min. The protein was eluted from the column by applying a gradient of 10 CV 

of 60mM - 1M imidazole at a flow rate of 1.5ml/min. The native binding, wash 

and elution buffers contained 20mM KPO4 and 10mM NaCl. PMSF (100 mm) 

was added to the buffers just before the purification of the protein to prevent 

degradation. The fractions containing the eluted protein were pooled and dialyzed 
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against a buffer containing 20mM Tris and 50% glycerol (pH = 7.5) for storage at 

-80 °C. The elution profile of the 30 kDa protein is shown below (Figure 2.1). 

Column settings of the Akta FPLC for the purification of 30kDa are listed in 

Table (2.1). The program used to automate the process was written using Unicorn 

software provided by Amersham. 

 The protein starts to elute at 40% gradient and is completely eluted around 

59% as shown in Figure (2.1). The fractions B11- B3 under the peak fraction 

elution peaks were checked on a 12% SDS gel. For this purpose 20µl of sample 

along with 5µl of 3.3X loading dye was loaded on the gel. The figure (2.2) shows 

that the 30kDa is present in the above fractions but large amounts of GroEL 

(molecular weight ~60 kDa) has co-purified with the 30kDa domain. 
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Figure 2.1: Elution profile of 30kDa from Hi-Trap chelating nickel column. The 

yellow line and blue lines indicates gradient concentration and absorption at A280 

respectively. 
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Buffer Name Buffer 
abbreviation 

Buffer Composition pH 

Native Binding 
Buffer 

NBB 20mM KPO4 + 50mM NaCl + 5mM 
Imidazole 

7.8 

Native Elution 
Buffer 

NEB 20mM KPO4 + 50mM NaCl + 60mM/1M 
Imidazole 

6.0 

Buffer A ------- 20mM KPO4 + 0.5mM EDTA + 7mM ß-
Mercaptoethanol + 10% Glycerol + 
0.1mM PMSF 

6.4 

Buffer B -------- 20mM Tris.HCl + 0.5mM EDTA + 7mM 
ß-Mercaptoethanol + 10% Glycerol + 
0.1mM PMSF 

7.6 

Buffer C ------ 20mM NaPO4 + 14.4mM ß-
Mercaptoethanol + 10% Glycerol + 
0.1mM PMSF 

6.8 

Buffer D ----- 50mM Tris.HCl + 50mmM NaCl + 1mM 
DTT + 1mM EDTA 

7.5 

Buffer Q ----- 20mM bis-Tris propane + 0.5mM EDTA 
+  
10% Glycerol 

6.4 

Storage Buffer ------ 20mM Tris.HCl + 1mM DTT + 0.1mM 
EDTA + 50% Glycerol + 01mM PMSF 

7.5 

SDS Gel running 
buffer 

( 1 liter) 

------ 3gm Tris.HCl + 14.4 glycine + 10 ml 10% 
SDS  
( Make up volume to 1 liter with water) 

---- 

3.3X loading dye 
(10 ml) 

 1.5 ml 1M Tris.HCl (pH=6.8), 3ml 
glycerol, 3ml 10%SDS, 0.3ml ß-
mercaptoethanol, 0.04 ml bromophenol 
blue dissolved in 2% methanol,  
2.2 ml water. 

 

Rapid de-stain  500 ml methanol + 100 ml acetic acid + 
400ml water. 

 

 

Table 2.1: Composition of Buffers 
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AKTA FPLC Column Variables 
  
Column Hi-Trap chelating HP 5ml 

Flow rate 3 ml/min 

Column pressure limit 0.3 MPa 

UV averaging time 5.10 

Equilibration Buffer (NBB, pH=7.8) volume 10 CV 

Wash Buffer ( NEB + 60mM Imidazole) volume 5 CV 

Flow through tube type 18mm 

Equilibration/ Wash Flow through fraction size 10 ml 

Protein Sample  injection volume  10 ml 

Elution type Gradient elution 

Elution Buffer ( NEB + 60mM/1M  Imidazole) 
volume 

2 CV 

Gradient  60mM Imidazole (0%) – 1M 
Imidazole(100%) 

Elution fraction size 2 ml 

 

Table 2.2:  AKTA FPLC Hi Trap chelating column variables for the purification 

of 30kDa nuclease domain of RecB. 
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  Figure 2.2:  Elution peak fractions of the 30kDa fragment of RecB 
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2.2.2 Further purification of 30kDa by Ultra filtration: 
 
 The 30kDa copurifies with GroEL. According to the literature in Qiagen 

Ni-NTA his-tagged protein purification system, E. coli chaperonins GroEL and 

GroES helps in folding of the his- tagged proteins and copurifies with them. 

During the purification of the His-tagged 30kDa GroEL copuried and this is seen 

on the gel as a two bands around the 60kDa molecular weight range. Moreover, 

the N-terminal sequence of these bands was obtained by Zhang and Julin 

(unpublished work) and they corresponded to that of GroEL. Pure 30 kDa protein 

was obtained by ultra filtration using Centricon centrifugal filters. A Centricon 

YM-100 filter was used to separate GroEL from the 30kDa. GroEL is retained on 

the membrane and the 30kDa flows through as shown in Figure (3). A YM-10 

filter is then used to concentrate the protein. 
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Figure 2.3: 12% SDS gel of 30kDa after ultra filtration using centricon YM-100. 

The 30kDa without GroEL flows through and the GroEL along with some amount 

of 30kDa is retained on the membrane 
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2.2.3 Site-directed mutagenesis: 
 

Site-directed mutagenesis was used to construct the D1067A mutant in the 

30 kDa protein. The D1080A mutant was constructed previously in our 

laboratory. Site-directed mutagenesis was carried out using the Quick-change site 

directed mutagenesis kit from Stratagene. The following primers were used, 

Primer 1: 5׳- CATGTTAAAAGGCTTTATCGCTCTGGTGTTCCGCC 

Primer 2: 5- GGCGGAACACCAGAGCGATAAAGCCTTTTAACATG 

The primers were reconstituted in 50 µl TE buffer, pH=8.0 (10 mM TrisHCl and 

1mM EDTA). The primers were then gel purified before PCR. The template ds-

DNA used was pET15b-30 purified from BL-21 cells by a Qiagen spin- miniprep 

kit. The concentration of the primers and the template DNA for the PCR was 125 

ng and 20-50 ng respectively. The PCR was carried out using a PowerBlock II 

thermocycler (Ericomp Corp.). During the PCR, denaturation was carried out for 

1min at a temperature of 95 ºC, annealing was done at 55 ºC for 1min and 

extension was carried out at 68 ºC for 13 min. The PCR reaction was carried out 

for 16 cycles. The PCR product was then digested with DpnI enzyme for 1 hour 

before transformation into supercompetent XL-1 blue cells. A 45 second heat 

pulse at 42 ºC was applied to achieve transformation of the competent cells with 

the PCR product. One ml SOC media was added to the cells soon after 

transformation and the cells were grown at 37 ºC with shaking for one hour. The 

transformed cells were then plated on LB-agar plates containing Ampicillin and 

grown overnight. A few colonies were selected from the plates and plasmid DNA 
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was isolated and submitted for sequencing. The mutant protein was then 

expressed by transforming BL-21 cells with the plasmid containing the mutation. 

The solubility and expression of the 30kDa subunit was tested prior to 

purification. Ten milliliter cultures of the BL-21 cells expressing the protein were 

grown in the presence of ampicillin. The BL-21 strains containing the plasmid for 

D1067A was grown at 37 °C in a shaker. The cultures were grown till they 

reached an OD650 of 0.5-0.6 and induced with 1 mM IPTG for 3-4 hrs. The cells 

were harvested using an Eppendorf centrifuge. To determine solubility the pellets 

were resuspended in 20 mM HEPES buffer (pH = 7.5) and lysed using a Branson 

Sonicator at 30% duty cycle lasting 30 seconds for 2 cycles. To determine both 

the soluble and insoluble cytoplasmic fractions, the lysate obtained after 

sonication was centrifuged at 14,000 x g for 10 minutes in a microcentrifuge to 

separate the soluble and insoluble fractions. The soluble supernatant was 

collected. The insoluble pellet was resuspended in 500 µl of 3.3X loading dye. 

Both the soluble and insoluble fractions were loaded on a 12% SDS gel after 

adding SDS loading dye and heating for 2 min at 70 °C and stained with 

Coomassie blue to get an approximate measure of the soluble fraction. 

 

2.2.4 Purification of mutant D1067A and D1080A of 30kDa protein: 
 

Purification was carried out using Akta FPLC and the procedure is 

described in the Materials section above for the wild-type 30 kDa protein. 
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2.2.5 Fe-cleavage of the 30kDa protein: 
 

For the experiments presented here, each enzyme was dialyzed against 40 

mM Tris-HCl (pH 7.4) to equilibrate the enzyme for the cleavage reaction and to 

remove glycerol, which scavenges hydroxyl radicals and interferes with the 

Fenton chemistry. The enzyme solution was then concentrated using 4 ml Amicon 

Ultra-4 centrifugal concentrators. The centrifugation was carried out using a 

Beckman Centrifuge with a JA-10 rotor at 5000 rpm. Ferrous sulfate (0 - 1000 

mM) was added to 5 - 100 µM enzyme in 40 mM Tris-HCl buffer, pH 7.4. The 

solution was incubated for 15 min on ice followed by the addition of ascorbate 

(25 mM). The solution then sat on ice or at room temperature for an additional 

period of 30 min to 24 h. The Fe-cleavage reactions were stopped by adding 2mM 

EDTA. A variety of conditions were tested, including the presence of ferrous 

ammonium sulfate, DTT, and hydrogen peroxide. Other conditions tested are 

described in detail in the results section 

 

2.2.6 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis.  
 

12% SDS polyacrylamide gels and Tricine-SDS polyacrylamide gels (48) 

were run to visualize the small products from the cleavage reactions. The Tricine 

– SDS gel is typically used to identify small cleavage products. The tricine SDS 

gel involved having a 12% separating gel and a 5% stacking gel with an anode 

buffer (0.2M Tris, pH= 8.9) and a cathode buffer ( 0.1M Tris + 0.1M Tricine + 
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0.1% SDS pH= 8.25). The gel apparatus had an upper and lower buffer chamber 

which contained the cathode and anode buffer respectively. 

  Electrophoresis was carried out at 35 mA at room temperature for 3 hours 

and destained with 50% methanol and 10% acetic acid. Molecular mass markers 

were used to estimate the mass of the Fe2+/ascorbate-generated protein cleavage 

fragments that had been run on SDS-polyacrylamide gels. The protein bands were 

visualized by staining with 0.1% Coomassie Brilliant Blue in 50% acetic acid. 

 

2.2.7 Isolation of Protein Fragments and N–terminal sequencing: 
 

Peptide fragments in unstained polyacrylamide gels were electro-blotted 

onto Pro-Blott membranes [poly (vinylidene difluoride)] (Applied Biosystems). 

The electroblotting was conducted in a blotting cassette (Bio-Rad) at a constant 

100 mA current for approximately 12 hours at 4°C in 0.01 M CAPS buffer, pH 

11. After transfer, the protein bands were visualized by staining the membrane 

with 0.1% Coomassie Brilliant Blue in 50% methanol and destained with 50% 

methanol and 10% acetic acid. Membranes containing the transblotted protein 

fragments were stored at 4°C until sequencing could be performed. Automated 

N–terminal amino acid sequence analyses were performed by Edman degradation 

with an Applied Biosystems protein sequencer by Dr. Brian Martin at the 

National Institutes of Health. 
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2.3 RESULTS: 
 

2.3.1 Optimal conditions for the Fe-cleavage reactions of the 30kDa subunit 

 
Several sets of experiments were done under different conditions which 

showed that the 30kDa subunit was optimally cleaved after 30-60 min incubation 

at RT at pH = 7.4 in the presence of 5-100 mM ferrous sulfate, 25mM sodium 

ascorbate and 40mM TrisHCl. The cleavage products were visualized on a 

Tricine-SDS PAGE as compared to a 12% SDS PAGE. 

 

2.3.2 Fe-cleavage of 30kda 
 

Experiments were carried out in the presence of ferrous sulfate as 

literature indicated that ferrous sulfate was used in case of protein cleavage only 

as compared to ferrous ammonium sulfate which is used in cleaving protein – 

DNA complexes (49). 20µl reaction mixes were set up and incubated at 37 ºC for 

180 minutes in the presence of varying concentrations of ferrous sulfate. 
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Figure 2.4: 12% SDS PAGE of 30kDa (WT) cleavage products. The reaction was 

incubated for 3hours with 30µM 30kDa protein, different FeSO4 concentration, 

25mM Na-ascorbate and 40mM Tris buffer (pH=7.4) at RT. 
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The reaction mixes were analyzed in a 12% SDS gel as shown in figure (2.4). 

Two prominent cleavage products were visible in the 10 kDa range. However, the 

cleavage products were not very well resolved on a 12% SDS gel as the size of 

the cleaved product was very small. The Tricine-SDS gel system was used to 

overcome this resolution problem and further sequence the cleavage products. 

The cleaved products were well visualized on a Tricine-SDS PAGE gel as shown 

in figure (2.5) below. 

  

2.3.3 Fe-cleavage of 30kDa: Cleavage product sequencing 
 
 In order to identify the sites where the protein was being cleaved and 

hence pinpoint the metal-binding site a Tricine-SDS gel was run. This gel is 

typically used to identify small cleavage products. The cleavage products were 

visualized well on a Tricine SDS gel and a sequence was obtained by Edman 

sequencing. The sequencing data showed that the cleavage was occurring near 

Asp1067 which is one of the crucial residues in the nuclease active site of the 

nuclease domain of RecB. It suggests that Asp1067 is involved in metal binding. 

The other band in the gel that was sequenced had a sequence of G S S H H H 

which corresponded to the His-tag of the 30kDa nuclease fragment of RecB. The 

sequences obtained were G S S H H H (Band 2, Fig 2.5)  

I D L V F R H E G R (band 3, Fig 2.5) and S P G T F L H S L (band 1, Fig 2.5). 

The sequence of band 1 agrees with the amino-terminal sequence of the His-

tagged 30kDa, lacking the initial methionine residue. We found previously 

(Zhang and Julin, unpublished data) that the mass of the purified 30kDa protein 
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was consistent with loss of the amino terminal Met residue. The amino-terminal 

sequence for the middle band agrees with residues # 1066 – 1075 of the full-

length RecB protein (residues # 160 – 169 of 30kDa). The second residue (D) of 

this peptide is Asp1067 of RecB, previously shown to be important for the 

nuclease activity of RecB (33). The result suggests that the iron is bound in the 

vicinity of amino acid #1066 of the 30kDa nuclease domain. The sequence 

obtained for the topmost band (band 1) corresponds to residues # 950 – 958 of 

RecB protein (residues # 44 – 52 of 30kDa nuclease domain). 
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Band 1 

Band 3 

Band 2 

Figure 2.5: Tricince-SDS gel showing the cleavage products of the 30kDa protein 

at different concentrations of FeSO4. 
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2.3.4 Fe-cleavage reaction in the presence of different metals 
 

To study the effect of different metals on the cleavage reactions, the Fe-

cleavage reaction was done in the presence of varying concentrations of 

magnesium chloride and calcium chloride. 30kDa protein (50 µM) was incubated 

with ferrous sulfate/sodium ascorbate in 40 mM Tris buffer (pH=7.4) at RT. The 

reaction was quenched by the addition of 2mM EDTA and the cleavage products 

were analyzed on a Tricine-SDS gel. 

 
 
 
 
2.3.4.1 Fe-cleavage reaction in the presence of MgCl2 
 
The band corresponding to the cleavage at Asp1067 is faint at high concentrations 

of Mg2+ as shown in figure (2.6). The cleavage products are formed at a slower 

rate in presence of MgCl2. This also indicates that magnesium does not bind very 

tightly to the binding site. 
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Figure 2.6: Cleavage of 50µM 30 kDa in presence and absence of MgCl2, 5µM 

FeSO4 and 25mM Na-ascorbate 
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2.3.4.2 Fe-cleavage reaction in the presence of CaCl2: 
 

Calcium is an inhibitor of the nuclease activity of the 30kDa nuclease 

domain of RecBCD (39).Cleavage of 30kDa is completely inhibited in the 

presence of CaCl2 as shown in figure (2.7). This suggests that Ca2+ binds to the 

metal binding site located in the vicinity of Asp1067 and inhibits Fe2+ from 

binding. This set of experiments also suggests that calcium binds to the nuclease 

active site much more strongly than magnesium. 
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Figure 2.7: Cleavage of 50µM 30 kDa in presence and absence of CaCl2, 5µM 

FeSO4 and 25mM Na-ascorbate at RT. 
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2.3.5 Fe-cleavage of 30kDa mutant (D1067A mutant of 30kDa): 
 

 The following study was done to assess the effect of the Fe-induced 

cleavage on the mutant protein. Wild-type 30kDa and the D1067A mutant protein 

(50 µM) were incubated with 5 µM FeSO4 and 25 mM sodium ascorbate for the 

indicated time at RT. The reaction was quenched by the addition of 2 mM EDTA 

and the cleavage products were analyzed on a Tricine-SDS gel (Figure 2.8). The 

formation of cleavage products in the mutant was absent indicating that the 

mutation has altered the metal binding site, thus preventing the metals from 

binding. 
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Figure 2.8: Comparison of Fe-cleavage reactions of the 30kDa WT and D1067A 

mutant of 30kDa. 
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2.3.6 Fe-cleavage of 30kDa mutant (D1080A mutant of 30kDa): 
 

 Fe-cleavage reactions were carried out with a mutant of the 30kDa 

nuclease domain where the aspartate residue at position 1080 was mutated to an 

alanine. This aspartate residue was earlier shown to be required for the nuclease 

activity of RecBCD (50). The figure (2.9) below shows that the cleavage reaction 

is not inhibited in the case of the D1080A mutant indicating that aspartate 1080 is 

not involved in magnesium metal binding. The reaction conditions are described 

in the materials section. 
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Figure 2.9: Comparison of Fe-cleavage reactions of the 30kDa WT and D1080A 

mutant of 30kDa. 
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2.4 DISCUSSION: 
 

Alignment of C-terminal sequence of E. coli RecB protein with 

homologous proteins from other bacteria identified conserved aspartates at 

position 1067 and 1080 and a lysine at position 1082. Mutation of the amino acid 

residues Asp1080, Asp1067 and Lys1082 abolished nuclease activity on both single 

and double stranded DNA (51). These residues compose a motif that is similar to 

one shown to form the active site of several restriction endonucleases (Figure 

2.10) (33). Mg2+ ion has been shown to play a role in the activity of nucleases 

containing acidic residues in their active site. 
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Asp1067 Asp1080 Lys1082

 

Figure 2.10: Alignment of C-terminal sequence from the E. coli RecB protein 
with homologous proteins from other bacteria. 
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The Fe-cleavage technique was used to map the metal binding sites in several 

DNA binding enzymes like restriction endonucleases (42), DNA primase (52), 

and RNA polymerase (49). The identification of metal binding site of an enzyme 

using this technique helps in identifying the precise metal binding site in the 

structure of the enzyme. The work presented in this chapter was done before the 

crystal structure of RecBCD was published (38). The Fe-cleavage experiments 

showed that magnesium bound to the aspartate at position 1067. Iron and 

magnesium both have a divalent metal ion chemistry and it is possible that their 

mode of binding to the protein is very similar. Hence, the Fe-cleavage tells us 

where the iron binds and we assume this is the place where magnesium binds too. 

Cleavage reactions with mutant aspartate residue at 1067 inhibit cleavage product 

formation as compared to mutation at aspartate 1080. A mutation at aspartate 

1080 inhibits nuclease activity but does not have any effect on magnesium 

binding. This suggests that there is a unique magnesium binding site in the 

nuclease domain of RecB. 

 Type II restriction endonucleases are enzymes which protect bacteria 

against foreign DNA by cleaving it. These enzymes have a nuclease active site 

which is responsible for cleaving the DNA.  The active site of 30kDa nuclease 

domain of RecB has many similarities with these restriction endonucleases. 

Sequence alignment show that both the 30kDa and the nuclease domain have the 

PD . . . D/ExK motif in their active site. The active site in the 30kDa is made up 

of Asp 1062, Asp 1080 and Lysine 1082.  
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 Calcium metal ion is bound in the RecBCD crystal structure. The crystal 

structure of RecBCD was obtained in the presence of calcium acetate and not 

magnesium. This was because calcium binds to the nuclease active site of 

RecBCD more tightly than magnesium. Our results with the Fe-cleavage showed 

that the cleavage reaction was inhibited in the presence of Calcium and not to a 

large extent in presence of magnesium. Moreover, the calcium ion in the crystal 

structure is seen bound to the side chains of His956, Asp1067, and Asp1080, in 

the nuclease domain of RecB. We do not detect a cleavage product near Asp1080 

of the 30kDa and mutation of Asp1080 does not abolish the cleavage that occurs 

near Asp1067. This is significant since Asp1080 is a calcium ion ligand in the 

RecBCD crystal and it is important for RecBCD nuclease activity. This result 

suggests that the two acidic residues contribute differently to the overall metal ion 

binding under the conditions of the iron-cleavage reactions. Examination of the 

active site structure and the location of the cleavage sites suggest a possible 

explanation. The amino acid residues from which Cα-H abstraction would initiate 

peptide bond cleavage are on the opposite side of Asp1067 and Asp1080. Instead, 

they are closer to Glu1020, the residue that is structurally analogous to the acidic 

residue that is in metal ion binding site II in some enzymes (Fig 2.11). This 

suggests that the iron responsible for the cleavages could be bound in a site that 

involves Asp1067 and, perhaps, Glu1020. Further, this would indicate that 

RecBCD can bind metal ions in several ways, in addition to that observed in the 

crystal structure. The technique of Fe-cleavage was mainly used to study metal 

binding sites to which the metal was known to bind tightly. The success of this 
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technique in our system illustrates that the technique of Fe-cleavage to metal 

binding sites can be used for the study of metal binding sites with different 

affinities to their respective metals. 
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Figure 2.11: Model of the RecBCD Nucleus and Metal binding site. The amino 

acids labeled in red are aspartate 1080 and aspartate 1067. Histidine 956 is 

indicated by blue and lysine1082 is indicated in cyan. The gray sphere is calcium. 

The green color indicates the peptide bonds that are cleaved.  ( Dr.DA Julin ) 
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3 Chapter 3: The Role of Magnesium in the Subunit Interactions of 
RecBCD and Iron Cleavage of 100kDa Helicase Domain of RecBCD 

 
 

3.1 Introduction 
 

The RecB protein has a 30kDa C-terminal nuclease domain and a 100kDa 

N-terminal helicase domain. RecBCD is a dsDNA dependent ATPase and an ATP 

dependent helicase and exonuclease. Dixon et al. showed that in presence of DNA 

containing chi sequences and limiting concentrations of magnesium, RecBCD is 

incapable of unwinding intact DNA molecules. However, this inactivation of the 

unwinding activity is reversible upon the addition of 10mM Mg2+. Also, upon the 

subsequent increase of Mg2+ concentration the degradative nuclease activity is 

fully reversible. Moreover, they also showed that chi inactivated RecBCD does 

not unwind DNA at low concentrations of Mg2+.  

Taylor et al (40) showed that the RecBCD enzyme gets inactivated upon 

encountering chi containing DNA. The inactivation was reversible upon addition 

of magnesium in excess of ATP. Ultracentrifugation analysis of the RecBCD after 

it encountered chi showed that the enzyme disassociated into three subunits RecB, 

RecC and RecD. The RecB was bound to DNA and the RecD formed aggregates 

when they sedimented. 

Preliminary work done in our research group by Dr. Olga Carlson 

indicated that magnesium in presence of DNA enhanced the binding of 100kDa 

and RecC.  The study by Dixon et al, Taylor et al. and preliminary work done in 

our laboratory corroborated that the presence of magnesium was essential for the 
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activity of the RecBCD enzyme. The figures (3.1 & 3.2) shown in Dr.Carlson’s 

result show that the RecC and the 100kDa remained as tightly bound complex in 

presence of ss-DNA and 20mM magnesium chloride. This effect is not seen on 

the nickel column. 
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Figure 3.1: Nickel column fractions of 100kDa-RecC complex. The column was 

eluted in the absence of magnesium. 

 

Figure 3.2: ssDNA-agarose column fractions of 100kDa-RecC complex. The 

column was eluted in the absence and presence of 20mM of magnesium. 
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In an effort to understand the interactions between the RecB and RecC 

subunits of E. coli we studied how magnesium played a role in this interaction. 

The crystal structure of RecBCD was solved recently and it showed that the RecC 

contains three large channels that run through the protein (38). RecB has been 

identified as a member of the SF1 super family of helicases, which are comprised 

of other helicases as PcrA and Rep (53). The crystal structure of RecBCD has 

shown that the structure of the amino terminal of the RecB has regions similar to 

the canonical 1A, 1B, 2A and 2B of other SF1 helicases. The 2B domain is the 

only domain that does not contain any of the conserved amino acids that comprise 

the seven so-called "helicase motifs" that define the SF1 helicase superfamily. 

The largest of these channels accommodates the 2B domain of RecB and 

provides a major interface between the proteins. The other two channels are 

pathways along which the single-stranded tails of the DNA run to, or from, the 

two helicase subunits. Moreover the domain 2B of RecB is also located in the 

100kDa N-terminal of the RecB protein. The 100kDa fragment is a helicase 

domain and magnesium is required for the helicase to function. Fenton chemistry 

techniques were used to probe whether magnesium had a binding site in the 

helicase domain. We adopted a two-pronged strategy and multiple techniques to 

get an insight into the effect of magnesium in the interactions between RecB and 

RecC. Direct binding changes between RecB and RecC in presence and absence 

of magnesium were measured using ss-DNA-agarose column chromatography, 

Biacore, Nickel spin columns and gel filtration.  
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3.2 Materials and Methods 
 

3.2.1 Expression of 100kDa helicase domain 
 
 The 100kDa was His-tagged at the N–terminus. The solubility and 

expression of the 100kDa subunit was tested prior to its purification. The M-15 

strains contained the pRep4/OC-2 plasmid expressing the 100kDa and were 

grown in LB media  at 30 °C with vigorous shaking at shaker speeds of 250-300 

rpm. Each batch of purification was done using a culture of volume 2 - 10 liters. 

An overnight 50ml seed culture was grown to saturation. This saturated culture 

was used to start the larger cultures the next day. The dilution was 1:200.  The 

cells were grown till the OD650 was 0.5-0.6. Induction was carried out with 1mM 

IPTG for 4-5 hours. The cells were harvested in  a Beckman centrifuge using a 

JA-10 rotor at 10,000 rpm for 10 minutes. The pelleted cells were stored at –80 

°C .  The cells were lysed the next day after re-suspending the pellet in 5-10ml of 

NBB. Protease inhibitor cocktail (Sigma) was added to the re-suspended cells 

before lysis. Cell lysis was done using a Branson 3000 Sonicator at a duty cycle 

of 30% for 30 seconds for an average of 10-15 cycles. Care was taken so that 

frothing did not take place during cell lysis using sonication. The lysate was 

cleared by centrifuging the crude cell lysate at 20000 rpm using a JA 20 rotor for 

90 minutes at 4 °C in a Beckman centrifuge. The lysate was then decanted into a 

polypropylene tube and filtered using a 0.22 micron syringe filter. It is important 

to filter the crude lysate before loading on the FPLC columns to avoid clogging of 

the filters. 
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3.2.2 Purification of 100kDa helicase domain using FPLC 
 
 Purification of the 100kDa was done using an Amersham Pharmacia 

FPLC system and columns.  The composition of the buffers and purification 

parameters for the different columns are listed in Table (3.1).  The crude lysate 

was loaded on a 5ml Hi-Trap chelating nickel column using a 10ml or 150ml 

Superloop. Depending on culture volume up to three Hi-Trap nickel columns 

were used. This was done by connecting the columns in a series using adaptors. 

The column was then washed with NBB (pH=7.8) to enable binding of the His-

tagged 100kDa to the column. Unbound protein was washed out with NEB + 

60mM imidazole (pH=6.0). The protein was gradient eluted using NEB (pH=6.0) 

with a gradient of 60mM-1M imidazole. The eluted fractions were collected in 

several tubes using a fraction collector (Figure 3.3 & 3.4). The peak fractions 

containing the protein were pooled and dialysed in Buffer D (pH=7.5) for loading 

on a 5ml Hi-Trap heparin column. Again depending on the volume of the pooled 

fractions and protein concentration 1-2 Hi-Trap heparin columns were used. After 

loading the protein on the column it was washed with Buffer D (pH=7.5). 

Gradient elution was done using BufferD (pH=7.5) with a gradient of 0-1M NaCl.  

The peak fractions were collected using a fraction collector (Figure 3.5 & 3.6). 

Twenty microlitres of each fraction was loaded on a 12% SDS-PAGE to check for 

purity. The fractions containing pure protein were pooled and dialysed in the 

storage buffer (pH=7.4) (Table 3.1) for the 100kDa. The purified 100kDa 

typically had concentrations of 4-10µM. The protein was stored at -80ºC.

 66  



 

 

 

 

Figure 3.3: Elution profile of 100kDa from Hi-Trap chelating nickel column. The 

red line, yellow line and blue line indicate flow-rate, gradient concentration and 

absorption at 280 nm respectively. 
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Figure 3.4: 12% SDS PAGE of 100kDa fractions from Hi-Trap Nickel column. 
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Buffer Name Buffer 
abbreviation 

Buffer Composition pH 

Native Binding 
Buffer 

NBB 20mM KPO4 + 50mM NaCl + 5mM 
Imidazole 

7.8 

Native Elution 
Buffer 

NEB 20mM KPO4 + 50mM NaCl + 60mM/1M 
Imidazole 

6.0 

Buffer A ------- 20mM KPO4 + 0.5mM EDTA + 7mM ß-
Mercaptoethanol + 10% Glycerol + 
0.1mM PMSF 

6.4 

Buffer B -------- 20mM Tris.HCl + 0.5mM EDTA + 7mM 
ß-Mercaptoethanol + 10% Glycerol + 
0.1mM PMSF 

7.6 

Buffer C ------ 20mM NaPO4 + 14.4mM ß-
Mercaptoethanol + 10% Glycerol + 
0.1mM PMSF 

6.8 

Buffer D ----- 50mM Tris.HCl + 50mmM NaCl + 1mM 
DTT + 1mM EDTA 

7.5 

Buffer Q ----- 20mM bis-Tris propane + 0.5mM EDTA 
+  
10% Glycerol 

6.4 

Storage Buffer ------ 20mM Tris.HCl + 1mM DTT + 0.1mM 
EDTA + 50% Glycerol + 01mM PMSF 

7.5 

SDS Gel running 
buffer 

( 1 liter) 

------ 3gm Tris.HCl + 14.4 glycine + 10 ml 10% 
SDS  
( Make up volume to 1 liter with water) 

---- 

3.3X loading dye 
(10 ml) 

 1.5 ml 1M Tris.HCl (pH=6.8), 3ml 
glycerol, 3ml 10%SDS, 0.3ml ß-
mercaptoetanol, 0.04 ml bromophenol 
blue dissolved in 2% methanol,  
2.2 ml water. 

 

Rapid de-stain  500 ml methanol + 100 ml acetic acid + 
400ml water. 

 

 

Table 3.1: Composition of Buffers 
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Figure 3.5: Elution profile of 100kDa from Hi-Trap heparin column. The red line, 

yellow line and blue line indicate flow-rate, gradient concentration and absorption 

at 280 nm respectively. 
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Figure 3.6: 12% SDS PAGE of 100kDa fractions from Hi-Trap heparin column. 

M stands for the pre-stained invitrogen marker. 
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3.2.3 Expression of RecC subunit 
 
 The RecC protein was expressed from V186 cells containing the plasmid 

pNM52/pPB500. V186 is an E.coli strain which is deficient in RecBCD. The 

pPB500 encode the RecC protein and the pNM52 encode the lac repressor. The 

solubility and expression of the RecC subunit was tested in smaller culture 

volumes of 10ml prior to its purification. The V186 strain expressing the RecC 

subunit was grown in 2xYT (5gm yeast, 5 gm tryptone and 2.5gm NaCl dissolved 

in 250 ml water) media containing ampicillin (50mg/ml), tetracycline (15mg/ml) 

and thymidine (50mg/ml) at 37 °C with vigorous shaking at shaker speeds of 250-

300 rpm. Since the V186 cells were mutants deficient in recombinational repair, it 

was hard to get good expression of the RecC protein. Each batch of purification 

was done using a culture volume of 2 - 10 liters. An overnight 50ml seed culture 

was grown to saturation. This saturated culture was used to start the larger 

cultures the next day. The dilution was 1:200.  The cells were grown till the OD650 

was 0.5-0.8. Higher OD yielded higher levels of expressed RecC. The cells were 

then induced with 1mM IPTG for 3 hours. The cells were harvested in  a 

Beckman centrifuge using a JA-10 rotor at 10000 rpm for 10 minutes. The 

pelleted cells were stored at –80 °C .  The cells were lysed the next day after re-

suspending them in Buffer A. Protease inhibitor cocktail (Sigma) was added to 

the re-suspended cells before lysis. Cell lysis was done using a Branson 300 

Sonicator at a duty cycle of 30% for 30 seconds for an average of 10-15 cycles. 

Care was taken to so that frothing did not take place during cell lysis using 

sonication. The lysate was cleared by centrifuging the crude cell lysate at 20000 
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rpm using a JA 20 rotor for 90 minutes at 4 °C in a Beckman centrifuge. 

Precipitation of the protein from the lysate was carried out by slow addition of 

crushed  30% ammonium sulfate for a period of 1 hour at 4ºC. The protein from 

the lysate was pelleted by centrifuging at 15000 rpm for 90 minutes using a JA-10 

rotor in a Beckmann centrifuge. After the pellet was obtained it was redissolved in 

3ml of Buffer A and dialysed against Buffer A. The protein solution was filtered 

using a 0.22 micron syringe filter before loading on the FPLC columns. 

3.2.4 Purification of RecC subunit using FPLC: 
 
 Purification of the RecC subunit was done using an Amersham Pharmacia 

FPLC system and columns.  The composition of the buffers is listed in Table 

(3.1).  The protein solution was loaded on a 5ml Q_FF6 (Q-Sepharose)  anion-

exchange column. Depending on the culture volume multiple columns were used. 

The column was washed with Buffer A and the protein was eluted using a 

gradient of 0-450mM NH4Cl. The peak fractions were collected and 20µl of each 

fraction was run on a 12% SDS gel (Figure 3.7 and 3.8). The peak fractions 

containing the protein were pooled and dialyzed against Buffer B for loading on a 

heparin column. The protein solution was loaded on a 5ml Hi-Trap heparin 

column using a 150ml Superloop. 

 The column was washed with Buffer B and the protein was eluted by 

applying a gradient of 0-1M NaCl. The peak fractions were collected and 20µl of 

each fraction was run on a 12% SDS gel (Figure 3.9 and 3.10)..  Peak fractions 

containing RecC were pooled and dialysed in Buffer C for loading on a 

Hydroxyapatite column.  The protein solution was loaded on a 10 ml CHT5 
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hydroxyapatite column from Bio-Rad. The column was attached to the Pharmacia 

FPLC system using adaptors provided by Bio Rad. The column was washed with 

Buffer C and the protein was eluted using a gradient of 20-250mM NaPO4. The 

peak fractions were collected and 20µl of each fraction was run on a 12% SDS 

gel. The peak fractions containing the protein were pooled together and dialysed 

against Buffer Q for further purification using a MonoQ column. The protein 

solution was loaded on a 5ml MonoQ HR 5/5  column using a 10ml Superloop. 

The column was washed with Buffer Q and the protein was eluted using a 

gradient of 0-500mM KCl. The peak fractions were collected and 20µl of each 

fraction was run on a 12% SDS gel (Figure 3.11).. The peak fractions containing 

the protein were pooled together and dialysed in the storage buffer. The purified 

RecC was stored at -80ºC.  
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Figure 3.7: Elution profile of RecC from Hi-Trap QFF column. The red line, 

yellow line and blue line indicate flow-rate, gradient concentration and absorption 

at 280 nm respectively. 
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Figure 3.8: 12% SDS PAGE of RecC peak fractions from Hi_Trap QFF column. 
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Figure 3.9: Elution profile of RecC from Hi-Trap heparin column. The red line, 

yellow line and blue line indicate flow-rate, gradient concentration and absorption 

at 280 nm respectively. 
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Figure 3.10: 12% SDS PAGE of RecC fractions from Hi-Trap heparin column. 
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Figure 3.11: Elution profile of RecC from Hi-Trap MonoQ column. The protein 

elutes as a single peak which shows that it is pure. The red line, yellow line and 

blue line indicate flow-rate, gradient concentration and absorption at 280 nm 

respectively. 
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3.2.5 Co-purification of 100kDa-RecC complex 
 
 The M15 and V186 cells containing the plasmids for overexpressing the 

100kDa and RecC respectively were grown separately and harvested together. 

The ratio of the culture volumes of the 100kDa and RecC were 2:3.  The RecC 

was grown in larger culture volume because the V186 cells do not over express 

the protein as well as the M15 cells. The lysate of the pooled cultures of 100kDa 

and RecC were prepared by sonicating the cells as described in the materials 

section. The lysate was then treated with 40% ammonium sulfate to precipitate 

the complex of 100kDa and RecC. The precipitated complex was isolated as a 

pellet by centrifuging at 15000 rpm for 90min using a JA-20 rotor. The pellet was 

then re-dissolved in NBB and loaded on a nickel column. The 100kDa has a his-

tag, hence, the complex was purified using a Hi-Trap chelating nickel column. 

The pooled peak fractions from the nickel column were then loaded on a Hi-Trap 

heparin column for further purification. The purification procedure used is 

described for the 100kDa. The peak fractions from the heparin column were 

pooled and run on a ss-DNA agarose column (Sigma) in presence of 20mM 

magnesium. The ss-DNA agarose column was used for further purification of the 

protein complex. The purity of the complex was checked by running a 12% SDS 

PAGE. 
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3.2.6 Fe-cleavage of the 100kDa domain 
 

For the experiments presented here, the 100 kDa  helicase domain of RecB  

was dialyzed against 40 mM Tris-HCl (pH 7.4) to equilibrate the enzyme for the 

cleavage reaction and to remove glycerol, which scavenges hydroxyl radicals and 

interferes with the Fenton chemistry. The enzyme solution was then concentrated 

using 4 ml Amicon Ultra-4 centrifugal devices. The centrifugation was carried out 

using a Beckmann Centrifuge with a JA-20 rotor at speeds of 5000 rpm. Ferrous 

sulfate (0-1000  µM) was added to 5- 100  µM enzyme in 40 mM Tris-HCl 

buffer, pH 7.4. The typical volume of the reaction mix was 20µl and it  was 

incubated for 15 min on ice followed by the addition of  sodium ascorbate (25 

mM). The solution then sat on ice or at room temperature for an additional period 

of 30 min to 24 h. The Fe-cleavage reactions were stopped by adding 2mM 

EDTA. Also, the cleavage reactions were carried out under other conditions as 

described in detail in the results section. 

3.2.7 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis.  
 

12% SDS polyacrylamide gels and tricine-SDS polyacrylamide gels were 

run to visualize the small cleavage products from the cleavage  reactions. 

Electrophoresis was carried out at 35 mA at room temperature for approximately 

4 h. Gels were studied after they were de-stained with 50% methanol and 10% 

acetic acid. Benchmark pre-stained molecular mass markers obtained from 

Invitrogen were used to estimate the mass of the Fe2+/ascorbate-generated protein 

cleavage fragments that had been run on SDS-polyacrylamide gels. The protein 
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bands were visualized by staining with 0.1% Coomassie Brilliant Blue in 50% 

acetic acid. 

 

3.2.8 Inverse gradient gel: 
 
 Inverse gradient gels obtained from Gelux labs (699 Columbia Ave, 

Akron, OH 44310) were used to analyze the cleavage products from the 100kDa 

cleavage reaction. The gel had a gradient of 16-4% polacrylamide from the top to 

the bottom of the gel. The gradient of polyacrylamide helped to resolve the 

cleavage products better than 12% SDS PAGE. The running buffer contained 

Tris.HCl and Glycine. The buffer composition is listed in Table (3.1) The gels 

were Comassie stained as previously described. 

 

3.2.9 RecB and RecC interactions studied by surface plasmon resonance 
 

Biacore X instrument method is based on the optical phenomenon surface 

plasmon resonance (SPR). This technique essentially detects a change in 

refractive index (RI), when a molecule binds to another molecule immobilized on 

a surface such as gold. A molecule (in our case a protein) is immobilized on the 

surface by using a chemical coupling reaction. After immobilization, a second 

protein molecule is passed over the surface. The interaction between these protein 

molecules is captured by a change in the refractive index which can be visualized 

in real time as a plot between time and refractive index (RI)/ response difference. 
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 Biacore X in Dr. Peter Schuck’s laboratory at NIH was used for the 

experiments to study the binding between the RecB and RecC subunits. The 

sensor chip used was made of dextran matrix. The sensor surface was activated by 

adding 60 µl of NHS (N-hydroxysuccinimide) and EDC (N-ethyl-N'-(3-dimethyl 

aminopropyl)-carbodiimide hydrochloride). Amine coupling chemistry (direct 

linkage via primary amines on the protein/peptide) helps the activated sensor 

surface to couple with the protein molecule. In the experiments discussed in this 

chapter the RecC was coupled or immobilized on the sensor surface and the 

binding change upon the addition of RecB by injection was observed. Both RecC 

and RecB were dialyzed in 10 mM acetate buffer (pH = 4). The concentrations of 

both the subunits were in the µM range. The flow rate during the binding was 

3 µl/min. At all other times during washes and surface activation/deactivation the 

flow rate was 5 µl/min. The running buffer was 0.01M HEPES (pH=7.4). Binding 

changes between RecB and RecC were studied in the presence and absence of 

magnesium. After each run (to measure the binding of RecB and RecC) the 

surface was deactivated by injecting 30 µl ethanolamine and reactivated by 

NHS/EDC before the next run. 

 

3.2.10 ss-DNA agarose column chromatography 
 
Method 1:  Individually purified RecC and 100kDa were mixed and loaded and 

eluted from a gravity flow ss-DNA agarose column. Purified 100kDa and RecC 

were combined in 1:1 ratio in and incubated on ice for 1-2 hours in Buffer D. The 
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protein mixture was then loaded on two different 5 ml ss-DNA agarose column. 

One column was washed and eluted with BufferD containing 20mM MgCl2 and 

the other was eluted with Buffer D without MgCl2 (Table 3.1). Elution was done 

by applying a gradient of 0-1M NaCl. The wash and elution fractions that were 

collected had a volume of 1ml each. The fractions were analyzed on a 12% SDS 

PAGE gel. 

Method 2: The RecC subunit and the 100kDa helicase domain of RecB were 

copurified as described in the materials section. This purification procedure using 

the nickel column showed that even in the absence of magnesium, the 100kDa 

and RecC form a complex and coelute in the elution fractions. In the next step we 

used ss-DNA agarose column to see if the presence of ss-DNA and magnesium 

altered this interaction. The copurified 100kDa and RecC were then loaded on 

two ss-DNA agarose columns. The columns were washed and eluted as described 

in Method 1 in absence and presence of 20 mM MgCl2. The wash and elution 

fractions were then analyzed on a 12% SDS PAGE. 

3.2.11 Spin column experiments: 
 

The 100 kDa is histidine tagged and it was bound on spin columns 

containing a chelating metal like nickel or cobalt. The effect of magnesium on the 

complex formation between 100kDa and RecC was studied using spin columns by 

complexing 100kDa and RecC in a ratio of 1:1. This ratio was based on 

concentrations which were calculated based on absorbances at A280. The Nickel-

NTA spin columns obtained from Qiagen were pre-charged with nickel, whereas 

the spin columns from Pierce had to be charged with a cobalt containing resin. 
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The spin columns required a protein concentration of 100-150µg .Both the 

proteins were dialyzed in a buffer containing 20mM NaPO4, 50mM NaCl, 1mM 

EDTA and 0.1mM DTT (pH=7.8). The buffers used for binding (NBB) and 

eluting (NEB + 1M Imidazole) the complexed 100kDa and RecC contained 

20mM MgCl2 for the column that was used to study the effect of magnesium. In 

the control set the buffers used for binding and eluting of the complexed 100kDa 

and RecC did not contain magnesium. The binding of the 100kDa to the chelating 

spin columns was done by incubating the protein in NBB (pH=7.8) column for 1-

3 hrs on ice. Unbound 100kDa was spun out by centrifuging at 2Xg in an 

Eppendorf centrifuge. RecC was then added to the column containing the bound 

100kDa and incubated for another 1 hour. Any unbound complex was spun out of 

the column by centrifugation. The column was then eluted with 50µl NBB and 

NEB. The flow-through from the washes with NBB and NEB were collected and 

run on a12% SDS PAGE.  

3.2.12 Gel Filtration 
 
Calibration of the Superose-6 column: 

 The 24ml Superpose-6 column was calibrated using Bio Rad and 

Sigma Gel Filtration standards with molecular weight ranges between 29,000 – 

669,000 

 The Bio-Rad standard was used to estimate the void volume of the 

column which was found to be approximately 7.5 ml which is in close agreement 

with the void volume supplied by the company (Void volume (Vo) = 30% of 
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column volume = 30% of 24ml = 7.2ml). The FPLC trace of the column 

calibration using Bio-Rad standard is shown in figure (3.12). 
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Figure 3.12: Calibration of Superose 6 column with Bio Rad Standard. 
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3.2.13 Mass-Spectrometry:  
 
 The samples for mass-spectrometry were prepared by dissolving them in 

trifluroacetic acid using a C4 ziptip. A shimadzu mass-spectrometer was used. 

MALDI-TOF technique was used to obtain the spectra of the samples of the Fe-

cleavage reactions. The spectra was obtained with the help of Noel Whittaker at 

the mass-spectrometry facility in the Department of Chemistry and Biochemistry, 

University of Maryland, College Park. 
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3.3 RESULTS: 
 

3.3.1  Effect of Mg2+ on the Interactions of RecB, 100kDa and RecC  
 
 The effect of magnesium on the interactions of the RecB, 100kDa 

fragment of RecB and the RecC subunit were studied using multiple techniques. 

In this section I will discuss the techniques and the results obtained from these 

experiments. 

3.3.1.1 Biacore X Binding Experiments 
 

The binding and dissociation profile of the full length RecB and RecC 

subunits were studied using Biacore X. These set of experiments were a part of an 

initial study to see if magnesium had any effect on the binding of the RecB and 

RecC subunits. In our experiments RecC was immobilized on the surface by 

amine coupling chemistry and RecB was passed over this surface. The RecB used 

for most of these experiments was from a stock in our laboratory. The 

experiments were carried out as described in the materials section of this chapter. 

Unbound RecC was washed away by passing the running buffer over the surface. 

Immobilization of RecC was detected by observing a change in the RI as shown 

in Figure (3.13). A change in the response difference signal (marked change in 

refractive index) was observed which indicated binding. The signal decreased 

slowly when the running buffer was passed through the chip and this indicated 

slow dissociation. In the presence of 20mM Mg2+, a stronger binding signal was 

observed.  In presence of 1M NaCl and EDTA a rapid dissociation was observed 

because the EDTA chelated the magnesium ions, thus weakening the binding 
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between the RecB and RecC subunits (Figure 3.13 & 3.14). These results 

indicated that Mg2+enhances the interaction between RecC and RecB.  The prime 

difficulty faced with this technique was that RecB was difficult to purify in very 

large and pure amounts. Also RecB was not very stable over long periods of time.  
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Figure 3.13: Plot of RI (response difference) and time. This plot shows the 

immobilization of RecC on the surface. The increase in RI indicated 

immobilization of RecC. The drop in the RI indicates the washing away of 

unbound RecC. 
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Figure 3.14: Difference in binding interactions between RecB and RecC in 

presence or absence of magnesium. The figure on the right and left shows the 

response difference after the binding of RecB and RecC in the absence or 

presence of magnesium respectively. The increase in RI is 1000 units in presence 

of magnesium as compared to an increase in 200 units in the absence of 

magnesium. This indicates that magnesium enhances the binding of RecB and 

RecC. 

 92  



 

 

3.3.1.2 ss-DNA agarose column chromatography 
 
 The Biacore results indicated that there is an effect of magnesium on the 

interactions of the RecB and RecC subunits. At this point we decided to work 

with the 100kDa helicase domain of the RecB subunit because preliminary work 

done previously in our laboratory  by Dr. Olga Carlson indicated that magnesium 

in the presence of DNA enhanced the binding of the 100kDa and RecC (Figure 

3.2). The 100kDa was stable and easier to purify in large amounts than full length 

RecB. Moreover, the 100kDa is a helicase and had requirements for magnesium. 

Also, the recently solved crystal structure of RecBCD showed that the 2B domain 

of RecB which is located in the 100kDa helicase domain was a contact point with 

RecC.  The effect of magnesium on the binding of RecC and the 100kDa helicase 

domain in the presence of ss-DNA was studied using ss-DNA agarose columns 

from Sigma. This experiment was performed in two different ways as described in 

the materials section. 

 

Method 1: Individually purified RecC and 100kDa were mixed and loaded and 

eluted from a gravity flow ss-DNA agarose column. The results obtained from 

Method 1 show that most of the RecC was in the flow through of the wash 

fraction of the ss-DNA column that was eluted without MgCl2 compared to the 

column that was eluted with 20mM MgCl2. This observation strongly illustrates 

that magnesium enhances the binding of 100kDa and RecC. 
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Figure 3.15: ssDNA-agarose column fractions of 100kDa-RecC complex in the 

absence and presence of 20mM of magnesium. 
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Method 2:  The RecC subunit and the 100kDa helicase domain of RecB were 

copurified on a nickel column (Figure 3.16). The purified complex of the 100kDa 

and RecC were then and loaded on a ssDNA agarose column. In presence of 

20mM MgCl2 the 100kDa and RecC coeluted during the gradient elution as 

compared to in absence of MgCl2 (Figure 3.17). This shows that the presence of 

magnesium and DNA enhances the formation of complex between the 100kDa 

and RecC. This method is described in the materials section. 
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Figure 3.16:  Peak fractions of Complexed 100kDa and RecC from the nickel 

column. 

 

 

 

Figure 3.17: Elution fractions of complexed 100kDa and RecC from the ssDNA 

agarose column. 
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3.3.1.3 100kDa and RecC interactions studied using nickel and cobalt spin 

columns 

 
The RecC alone did not bind to the chelating columns and this was 

confirmed by incubating just RecC in the column and spinning the column to 

collect the flow-through. The flow-through was analyzed on a 12% SDS gel and it 

was found that the RecC was in the flow through. 

Binding of 100kDa to RecC in presence or absence of magnesium was studied in 

parallel by using two spin columns.  
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Figure 3.18: Spin column fractions of the binding experiments between 100kDa 

and RecC. 
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           The gel shows that there is unbound RecC present in the first lane of the 

gel in absence of MgCl2 as compared to the gel in presence of 20mM MgCl2 

9(Figure 3.18). This indicates that RecC forms a strong complex with 100kDa in 

the presence of magnesium. Also, the fractions from the NBB contained unbound 

RecC in absence of magnesium as compared to in presence of 20mM magnesium. 

The NEB fractions in the gel in the presence of 20mM magnesium contained 

more complexed 100kDa and RecC as compared to the gel in the absence of 

magnesium. This is very clear in the lane containing Fraction 1 of NEB. These 

results again corroborate the fact that the binding of 100kDa and RecC is 

enhanced in the presence of magnesium. 

The ss-DNA agarose chromatography and the chelating spin column 

experiments show that the binding of the 100kDa and RecC is enhanced in 

presence of magnesium. This enhancement in binding is more pronounced when 

the interactions between the 100kDa and RecC are studied in presence of ss-

DNA. This could be because the magnesium ions are required to shield the 

charges of the negatively charged ss-DNA strand. Moreover, the crystal structure 

also shows that the RecC subunit has three channels, two of which accommodate 

ss-DNA and the third interacts with the 100kDa C-terminal helicase domain of the 

RecB subunit. 
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3.3.1.4 Gel Filtration 
 
 In an effort to quantify the role of magnesium on the binding 

interactions between the 100kDa helicase domain of RecB and RecC we used gel 

filtration. Gel filtration is a technique that is used to understand the size and 

shapes of protein molecules. It separates protein molecules based on their size and 

shapes. A larger protein molecule will flow through the spaces between the gels 

as it cannot fit into the pores of the gel matrix and elute out early as compared to 

an smaller protein molecule which will wind its way through the pores of the gel 

matrix and elute later. We used gel filtration to study the complex of 100kDa and 

RecC in presence or absence of magnesium to get an idea of the behavior of the 

complex. The purified complex was run through a Superose 6-HR-10/30 column 

(Amersham) at different concentrations of magnesium. The elution volume was 

recorded and it was used to calculate the apparent molecular weight according to 

the following equation.  

Kav = (Ve – Vo) / (Vt – Vo)   

Where Kav = Binding constant which is linearly related to the logarithm of 

molecular weight of  the protein complex. 

            Ve = Elution volume of the protein 

            Vo = Column void volume 

             Vt  =  Total elution volume. 
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If the complex is compact in shape it will elute later and thus, have a larger 

elution volume Ve  

The Superose 6 column was then calibrated as described in the materials section 

with Sigma molecular weight standards and a standard plot of Ve/Vo versus log 

mol.wt. was obtained (Figure 3.19). This plot was then used to forecast the 

molecular weights of the 100kDa-RecC complex under different concentrations of 

magnesium. 

 101  



 

 

Superose 6

2.04, 5.30, Beta- 
Amylase; 2.11, 5.18 Alc. 

Dehydrogenase

2.20, 4.82 Albumin

2.40, 4.46 Carbonic 
Anhydrase

1.92, 5.65 
Apoferritin

4.00

4.20

4.40

4.60

4.80

5.00

5.20

5.40

5.60

5.80

1.92 2.04 2.11 2.20 2.40

Ve/Vo

Lo
g 

M
w

Series2
Linear (Series2)

0mM MgCl2

20mM MgCl2
40mM MgCl2

 

Figure 3.19: Standard curve for Superose 6 column for estimating the apparent 

molecular weight. The arrows indicate the elution positions of the 100 kDa -RecC 

complex in presence of 0 mM, 20 mM and 40 mM MgCl2.  
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The molecular weights of purified 100kDa-RecC complex were determined in the 

absence and presence of different concentrations of magnesium. The complex was 

formed by copurifying the 100kDa and RecC. The concentrations of the complex 

used for the gel filtration experiments ranged from 0.1-0.5 µM. The running 

buffer used for these experiments contained 50mM Tris.HCl, 0.15M NaCl + 1mM 

DTT. In the runs without magnesium, 1mM EDTA was added to the running 

buffer. The column was eluted with two column volumes and equal fractions of 

1ml were collected. These peak fractions were then concentrated using a 5ml 

Amicon centrifugal filter and analyzed on a 12% SDS PAGE to confirm that the 

protein eluting at the particular elution volume (Ve) was the complex of 100kDa 

and RecC. The elution volume was determined from the centre of the peak 

fractions. The apparent molecular weights of the 100kDa-RecC complex at 

different magnesium concentrations are tabulated in Table 3.2. 
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Conc. of 

Mg2+(mM)
Ve [Elution 

vol.](ml)
Ve/Vo Mol.wt. of 

complex(kDa)
0 14.6 2.03 217

20 14.4 1.99 267
40 14.3 1.98 281  

 

Table 3.2:    Dependence of apparent molecular weight of the 100kDa-RecC  

complex on the concentration of MgCl2. 
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The apparent molecular weight of the 100kDa-RecC complex increases with 

increasing concentrations of magnesium. This indicates that the shape of the 

complex may be less compact in the presence of magnesium and elutes out of the 

column at much lower elution volumes (Ve). Also, the elution volumes obtained 

for these experiments were well within the range of the elution volumes of the 

standard plot that was used to forecast the values of the molecular weights. The 

molecular weights obtained were in good agreement with theoretical values. The 

experiments were repeated, but the molecular weights obtained were not the 

same every time but they were in a reasonable range. This experiment showed 

that magnesium probably enhanced the binding of RecC and 100kDa. However 

since the difference in elution volumes were small the effect of magnesium 

cannot be quantitatively estimated. 
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3.3.2 Mapping of Magnesium Binding sites in the 100kDa Helicase Domain 

of Rec B 

 The 100kDa domain is a helicase domain and is also a major point 

of contact with RecC. Thus, it is plausible that the 100kDa domain had sites for 

magnesium binding. Fenton chemistry was used to study if there was any 

magnesium binding sites in the 100kDa helicase domain.  

 

3.3.2.1 Fe-cleavage of  100kDa helicase domain of RecB 
 
 The magnesium metal binding sites in 100kDa were studied using 

Fenton chemistry. The Fe- cleavage conditions were first optimized with 

extensive experimentation. It was much harder to optimize the cleavage 

conditions for the 100kDa domain as it was a much larger protein than the 30kDa 

nuclease domain of RecB.  The Fe-cleavage reactions with the 100kDa yielded 

two distinct cleavage products. The two cleavage products had a molecular mass 

in the range of 60 – 80 kDa. In this section, the optimization of the cleavage 

reactions that yielded two distinct cleavage products when the 100kDa domain 

was treated with ferrous ions is discussed. The yield of the cleavage products was 

not as high as the cleavage products obtained from the 30 kDa nuclease domain. 

Hence, the cleavage products were not visible on the gels if they were coomassie 

stained and the gels had to be silver stained to visualize the cleavage products. 

After several sets of experiments, we were able to find a set of conditions at 

which the cleavage products could be visualized in a reproducible manner. The 

standardized set of conditions was then used to obtain further data.  
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3.3.2.2 Fe-cleavage at different enzyme concentrations 
 
 Cleavage reactions were carried out at different enzyme 

concentrations to find out the optimal amount of enzyme required to obtain the 

cleavage products if any which could then be visualized. The reactions were 

carried out as described in the materials section. The reactions conditions are 

summarized below in Figure (3.20). From these experiments it was found that the 

enzyme concentration should be at least 0.5µM to visualize the cleavage products 

by silver staining. Also, the cleavage products could not be visualized by silver 

staining at higher enzyme concentrations of 2µM as it resulted in a lot of 

background. 
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Figure 3.20: Fe-cleavage of 100kDa at different enzyme concentrations, 1mM 

FeSO4, 25mM Na-ascorbate, 40mm Tris.HCl (pH=7.4) at RT. 
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3.3.2.3 Fe- cleavage  of 100kDa at different FeSO4 concentration 
 
 Ferrous sulfate (FeSO4) was used as the source of Fe2+ ions in the 100kDa 

Fe-cleavage reactions. Very high concentrations of ferrous ions caused extensive 

cleavage and degradation of the protein. Different concentrations of ferrous 

sulfate were included in the reaction mixture and the cleavage reactions were 

carried out. The reactions were carried out as described in the materials section. 

The cleaved products were visualized on a 12% SDS gel by silver staining (Figure 

3.21). From several sets of experiments it was found that the optimal ferrous ion 

concentrations that were required for optimal cleavage of the 100kDa were 

between 500µM – 1000µM (1mM). The cleavage products were visualized on a 

12% gel by silver staining. 
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100kDa 

 Figure 3.21: Fe-Cleavage of 100 kDa at different concentrations of FeSO4, 1µM 

enzyme, 25mM Na-ascorbate, 40mM Tris.HCl (pH= 7.4) at RT. M stands for 

Marker. 

 110  



 

 

3.3.2.4 Fe-cleavage of 100kDa at different incubation times 
 

To optimize the incubation time that yielded distinct cleavage products the 

cleavage reactions were carried out for different time periods keeping the enzyme 

and FeSO4 concentrations constant. The cleaved products were visualized on a 

12% gel SDS PAGE by silver staining (Figure 3.22). From the experiments it was 

found that an incubation time of 1- 1.5 hours yielded the optimal amount of 

cleavage products. Incubation times below or above this range yielded too little or 

too much degradation products. The reaction was performed as described in the 

materials section.  
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Figure 3.22: Fe-cleavage of 100 Da at different incubation times, 1µM enzyme, 

1mM FeSO4, 25mM Na-ascorbate, 40mM Tris (pH=7.4) at RT. C stands for 

control, E stands for experimental and M stands for Marker. 
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3.3.2.5 Fe-cleavage reactions with 100kDa and cross-linking 
 

During the above Fe- cleavage experiments with the 100kDa a high 

molecular weight product was obtained when the protein was treated with ferrous 

ions. This high molecular weight product was obtained possibly because of cross-

linking of the tyrosine residues in the protein molecules in presence of transition 

metals like iron. Similar products were obtained with proteins like ribonuclease A 

were treated with nickel.  The cross-linking was due to the formation of a 

dityrosine and the inclusion of excess tyrosine in the reaction inhibited the 

formation of such cross-linked protein dimer. The excess included tyrosine 

instead formed a protein-tyrosine cross-link (54). In an effort to see if the 

formation of the cross-linked products could be inhibited in our cleavage 

reactions with ferrous ions we added tyrosine to the reaction mix of the Fe-

cleavage reactions. The goal of including tyrosine was to see if the inhibition of 

such cross-links yielded better cleavage products. From our experiments we found 

that the inclusion of 1µM tyrosine did decrease the formation of cross-linked 

products to some extent but it did not improve the extent of protein cleavage. 

Also, the yield of the cleavage products was not affected by the inclusion of 

tyrosine in the reaction mix. The results are shown below in Figure (3.23). 
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Figure 3.23: Fe-cleavage of 100 kDa in the absence and presence of tyrosine, 

1µM enzyme, 1mM FeSO4, 25mM Na-ascorbate, 40mM Tris.HCl (pH=7.4) at 

RT. 
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3.3.2.6 Fe-cleavage of 100 kDa in presence of hydrogen peroxide (H2O2) 
 

Hydrogen peroxide was included in the Fe-cleavage reaction mix as a 

supplement to dissolved molecular oxygen. With the inclusion of peroxide we 

wanted to see if the reaction yielded better cleaved products in a shorter 

incubation time. The results from these experiments showed that inclusion of 

2mM peroxide leads to the rapid degradation of the 100 kDa protein. The figures 

from these experiments are not shown. On the other hand inclusion of 2mM 

peroxide and 1µM tyrosine leads to a more controlled cleavage reaction. The 

reaction was incubated in presence of tyrosine for different time periods. After the 

incubation period 2mM peroxide was added and incubation was carried out for 

1min before it was quenched with EDTA. The result from this experiment is 

shown in the figure below (Figure 3.24). 

 115  



 

 

 

 

Figure 3.24: Fe-cleavage of 100kDa in presence of 2mM H2O2 and 1µM tyrosine, 

1µM enzyme, 1mM FeSO4, 25mM Na-ascorbate, 40mM Tris.HCl (pH=7.4) at 

RT. C stands for control and E stands for experimental sets. M stands for Marker. 
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3.3.2.7 Optimized conditions for the Fe-cleavage of 100kDa 
 

The multiple sets of experiments under different conditions (~ 800-1000) 

were done and the representative results were presented in the previous section. 

From these experiments it was found that a unique cleavage product was obtained 

when the 100kDa protein was treated with 1mM FeSO4, 25mM NaAsc in the 

presence of 40mM Tris buffer (pH=7.4) for 1 hour at room temperature (RT). In 

the latter part of this project we attempted to sequence the cleavage products. In 

order to do so we had carried out the cleavage reactions under the optimized 

conditions at high concentrations of the enzyme and visualized the cleaved 

products on a SDS PAGE by coomassie staining. 

 

3.3.2.8 Fe-cleavage of 100kDa with optimized conditions at high enzyme 

concentrations 

 
The Fe-cleavage reactions were carried out at high enzyme concentrations 

with the optimized conditions.  The cleavage products were visualized on a 12% 

SDS PAGE. The cleaved products were visible at high enzyme concentrations but 

they were not very well resolved. The figures below is a representative gel that 

shows the reproducibility of the 100kDa Fe-cleavage reactions at higher enzyme 

concentrations (Figure 3.25). Moreover, the cleavage reactions were also carried 

out at different temperatures and the results obtained indicate that the room 

temperature (RT) is the optimal temperature for the cleavage reactions to occur 

(Figure 3.26). 
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Figure 3.25: 12% SDS PAGE of Fe-cleavage of 100 kDa after optimization of the 

reaction conditions. Cleavage reactions were carried out at different enzyme and 

FeSO4 concentration,  25mM Na-ascorbate, 40mM Tris.HCl (pH=7.4). The 

cleavage products are indicated by double arrows. 
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Figure 3.26: 12% SDS PAGE of 100kDa Fe-cleavage at different temperatures. 

Reactions were carried out in the presence of 10µM enzyme, 1mM FeSO4, 25mM 

Na-ascorbate, 40mM Tris.HCl (pH=7.4). C stands for control and E stands for 

experimental sets. 
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3.3.2.9 Fe-cleavage of 100kDa as visualized on an inverse gradient gel 
 

The cleavage products could not be resolved well on a 12% SDS gel so we 

used an inverse gradient gel in Tris glycine buffer with 14-6% gradient to 

visualize the cleavage products. The higher percentage on the top of the gel 

helped in retarding the progression of the two products which had similar 

molecular weight. The products were well resolved on this gel and they were 

submitted for sequencing after transferring them to a membrane (Figure 3.27). 
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Figure 3.27: Inverse gradient SDS PAGE  of Fe-cleavage of 100 kDa. Cleavage 

reactions were carried out at different enzyme concentration 1mM FeSO4,  25mM 

Na-ascorbate, 40mM Tris.HCl (pH=7.4). The cleavage products are indicated by 

double arrows. 
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3.3.2.10 Sequencing of cleavage products 
 

We tried to sequence the cleavage products of the 100kDa by Edman 

sequencing as described in the materials section. However, we were unable to 

obtain any sequence. The inability to obtain sequence information could have 

been due to various reasons. One of them was that the cleavage products were 

very large in size and their yield was low. The other reason could be that the side-

chains of the cleavage products were reacting with the reactive oxygen-species 

giving rise to blocked N-terminals which could not be sequenced. So, we used 

mass spectrometry to get some insight into the sequence of the cleaved products. 

The method used for the MALDI-TOF mass spectrometry is described in detail in 

the materials section. We were able to detect the presence of the cleaved products 

in the reactions where the 100kDa protein was treated with Fe/Ascorbate as 

compared to control reactions in the absence of Fe/Ascorbate. The figures below 

shows the results obtained from the MALDI-TOF mass-spectrometry (Figure 3.28 

& 3.29). 
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Figure 3.28: Mass Spectrogram of control 100kDa fragment of RecB( Not treated 

with Fe/ascorbate). The cleavage products are absent in the 60000-80000 region 

of the spectrum 
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Figure 3.29: Mass-spectrogram of 100kda fragment of RecB treated with 

Fe/ascorbate. The cleavage products are present in the 60000-80000 region of the 

spectrum. 
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3.4 DISCUSSION 
 

The role of magnesium is difficult to study because it does not bind tightly 

to the protein and is also present at fairly high intracellular concentrations, thus, 

making it difficult to study its role quantitatively. A combination of experimental 

approaches was used to provide some insight into the role of magnesium in the 

functioning of the RecBCD enzyme. Since, RecBCD is a DNA repair enzyme 

with helicase and nuclease activity magnesium is required to shield the negative 

charges of the DNA and it is also required for the helicase activity. Apart from 

this magnesium is also required in the stabilization of this large 330 kDa protein 

complex. The Biacore experiments showed the role of magnesium in complex 

formation between the 100kDa and RecC. In presence of magnesium the binding 

between the 100kDa and the RecC was enhanced. This indicates that magnesium 

is helping in the stabilization of the protein complex by binding in the interface of 

the two proteins. However, the complex was composed of the 100kDa fragment 

of the RecB subunit and RecC, hence to gain more complete insight into the role 

of magnesium in the interactions of the subunits it will be good to study the 

interaction of the full-length RecB and RecC. This kind of study has some 

intrinsic difficulties as it is difficult to purify the intact full length RecB in large 

quantities. The results of the experiments from the ss-DNA agarose column 

showed that the effect of magnesium in complex formation between the 100kDa 

and the RecC was more pronounced in the presence of ss-stranded DNA. 

Magnesium was required for the complex of 100kDa and RecC to be intact in the 

presence of ss-DNA.   
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We tried to quantify the role of magnesium in the complexation of the 

100kDa and RecC by gel filtration studies but it was difficult to do so because 

magnesium is present at fairly high intracellular concentrations.  The gel filtration 

experiments showed that the molecular weight of the complex in presence of 

magnesium was very close to the predicted theoretical molecular weight of the 

complex of 100kDa and RecC. 

 After gaining some insight into the role of magnesium in the complexation 

of 100kDa and RecC it was necessary to identify the binding sites of the 

magnesium metal in 100kda the helicase domain of RecB. Magnesium is required 

in DNA unwinding by the helicase domain and it is possible that it has a binding 

site in the helicase domain. The Fenton chemistry technique had helped us to 

identify the magnesium binding site in the 30kDa nuclease domain of RecB and 

we transferred this technique to identify the magnesium binding site in the 

100kDa subunit of the RecB protein. We met with some success in doing so, as 

we were able to observe two distinct cleavage products. The formation of these 

two cleavage products in the presence of Fe/ascorbate indicates that magnesium 

has a binding site in the 100kDa helicase fragment of RecB. We were unable to 

obtain concrete binding sites as it was difficult to obtain a sequence for these 

cleaved products. The products were fairly large and also the cleavage products 

could have a blocked N-terminal. Moreover, it is possible that the reactive oxygen 

species formed during the Fe-cleavage experiments reacts with the protein side-

chains and forms carbonyl derivatives (55). Such reaction products also make it 

harder to sequence the proteins.  The results obtained for the Fe-cleavage 
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reactions showed that this technique is transferable to study the magnesium 

binding sites of proteins that require magnesium for its activities.  However, it is 

difficult to apply this technique successfully to very large proteins like that of the 

100kDa fragment of RecB. The work presented in this section to study the role of 

magnesium used multiple techniques and was exhaustive. However, detailed 

studies using Biacore, ultracentrifugation and light scattering experiments can be 

carried out to further study the role of magnesium. 

.  
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