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Hypometria or reduced movement amplitude is a major concern in Parkinson’s 

disease (PD) since it impairs multiple functional activities of daily living, including fine 

motor control tasks, such as handwriting. Recent research using virtual or computer-based 

environments, wherein visual information about hand movement is altered and dissociated 

from perception (e.g., position sense or kinesthesia) of hand movement itself, has shown 

increases in handwriting size in patients with PD. In fact, preliminary findings in our 

laboratory have shown that gradual alterations in visual feedback of movement facilitate 

adaptation of handwriting size in patients with PD, plausibly by recruiting neural networks 

other than the basal ganglia, such as those in cerebellum. The purpose of this study was to 

determine whether these adaptive effects persist after a week following visuomotor 

training in patients with PD and can favorably transfer to other functional writing and 

drawing tasks. Thirteen patients with Parkinson’s disease and twelve healthy, age-matched 

subjects practiced handwriting either under gradually manipulated (intervention) or intact 

(placebo) visual display of handwriting size. The results from this study show for the first 

time, that these adaptive effects may persist for at least up to a week in PD; however, a 

single training session seemed inadequate to transfer these acquired changes to paper-pen 

writing and drawing. Additionally, experimental manipulation of task demands during 

training also helped maintain movement quality in patients with PD as against the placebo 



 

group. These findings have important implications in designing rehabilitative 

interventions to enhance functional sensorimotor performance in patients with PD. 
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Chapter I 

 Introduction 

 

Movement adaptation to changing environmental contexts is an important aspect of human 

sensorimotor control. This process of adaptation involves modifying existent mappings or 

even creating newer ones between the motor and sensory signals required for movement. 

Research has shown that humans can adapt point-to-point reaching movements to novel 

virtual environments wherein a visuomotor distortion is applied by manipulating the screen-

cursor relationships as rotational or movement direction distortions (Buch et al, 2003; 

Kagerer, Contreras-Vidal, & Stelmach, 1997) and movement amplitude/size distortions 

(Prager & Contreras-Vidal, 2003; Krakauer et al., 2004). Interestingly, these altered 

sensorimotor mappings for rotational visuomotor distortions are retained in humans for as 

long as a year for pointing movements (Yamamoto et al, 2006). Further, this form of 

visuomotor adaptation has been shown to transfer from arm to head pointing movements 

(Seidler et al, 2001), from arm to wrist movements (Krakauer & Shadmehr, 2006), from 

aiming to acoustic targets (Kagerer & Contreras-Vidal, 2009) and across movement 

categories (Abeele & Bock, 2003). The generalization and retention properties of newly 

acquired sensorimotor mappings in humans present a unique opportunity for developing 

adaptation protocols as intervention methods for improving or enhancing movement control 

in populations with neurological movement disorders such as Parkinson’s disease (PD). 

 PD is a progressive, degenerative disorder affecting the dopaminergic neurons in 

the substantia nigra of the midbrain. It affects about 1.5 million people, older than 65 years 

of age, in the United States of America. The clinical signs include resting tremor, rigidity 

and bradykinesia associated with hypometria. Hypometria, i.e., reduced movement 
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amplitude, affects several movements in PD as it is associated with reduced scaling of 

movement amplitude and a decrease in sustenance of force production throughout the range 

of motion (Desmurget et al, 2003). Predictably, hypometria has a significant impact on 

sequential motor behaviors such as handwriting that involve sequences of repetitive and 

simultaneous movement subcomponents where generation and maintenance of force and 

movement amplitude are extremely critical. The typical signs of handwriting disturbances in 

PD are progressive reduction in size of handwriting, fluctuations in the baseline, and 

slowness that collectively is called micrographia (Contreras-Vidal and Stelmach, 1995).  

 Interestingly, recent experiments show that patients with PD are able to adapt their 

handwriting size to visuomotor distortions of movement size (Contreras-Vidal et al, 2002; 

Teulings et al, 2002; Van Gemmert et al, 1999). This suggests that latent adaptation 

mechanisms in PD can be recruited under virtual reality conditions when indirect visual 

feedback of handwriting movement is provided through the screen display alone as vision of 

the moving hand is occluded (Contreras-Vidal et al, 2002). The beneficial effects of indirect 

visual feedback in PD could be associated with the resultant obviation of contextual cues 

that is probably more favorable for an impaired basal ganglial system. This is related to the 

fact that the underlying neural substrates mediating gain adaptation include bilateral lateral 

cerebellum and the putamen of the basal ganglia (BG) (Krakauer et al, 2004).  

 In the initial stages of gain adaptation, the BG seem to play a very important role in 

context recognition and recalibration of a sensory-motor association, in this case the 

mapping between visual feedback of handwriting and proprioceptive feedback of hand 

movement. However, in the later stages of this adaptive learning, the cerebellum seems to 

play a more critical role in the fine tuning of this internal model or sensory-motor 

association, by error-correction learning (Krakauer et al, 2004; Doya, 2000; LaForce & 
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Doyon, 2002; Kagerer et al, 1997; Ingram et al, 2000; Smith & Shadmehr, 2005, Grosse-

Wentrup & Contreras-Vidal, 2007). Thus, it is likely that an implicit or gradually introduced 

change in this visuomotor mapping (in this context) may obviate the need for context 

recognition and engage the cerebellar error-corrective mechanisms to modify the existent 

sensorimotor map in PD. In fact, empirical studies in non-human primates have shown the 

role of cerebellum in mediating adaptation to gradual changes in visuomotor cursor 

rotational transformations (Robertson & Miall, 1999). Importantly, healthy elderly subjects 

(Buch et al, 2003) and patients with PD (Contreras-Vidal, 2003; unpublished observations) 

seem to adapt better to gradually introduced visuomotor distortions in point-to-point 

reaching movements than to sudden ones. 

 Thus, in this experiment, we wished to study the adaptive increase in handwriting 

size in patients with PD using gradual changes in visual display of handwriting size in a 

virtual environment. In order to minimize confound by practice effects in this experimental 

setup, we included placebo groups, both for PD and healthy subjects wherein the visual 

display gain was not experimentally manipulated during the training session. To our 

knowledge, it unknown whether such learning can be retained and/or transferred to 

functional activities of daily living (ADL) like paper pen writing and drawing in patients 

with PD, specifically after a time elapse following the visuomotor training. The significance 

of this study is in investigating if the visuomotor adaptation paradigm can be used 

effectively to produce functional increases in movement size, specifically handwriting 

movements in PD. Hence, the findings from this study will have implications in 

understanding behavioral neural plasticity promoted by movement in PD and designing 

effective early rehabilitative interventions for micrographia in PD. 
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The first specific aim of this study was to investigate sensorimotor adaptation to 

altered movement gain in a handwriting task in patients with PD and healthy controls. In 

this study, the vertical gain of the subject’s handwriting was reduced to a proportion of 

actual gain (online during movement) and displayed on the computer screen; this gain 

reduction was performed in gradual steps. Such gradual changes in visuomotor mappings 

appear to engage the cerebellar error-correction mechanisms (Robertson & Miall, 1999; 

Ingram et al, 2000), making the adaptation of handwriting size more implicit and effective. 

Further, PD affects the BG, which is crucial for explicitly recognizing newer contexts, i.e., 

visuomotor mappings in this case and recalibrating the system.  Thus, a gradual regime can 

facilitate adaptation in PD through fine-tuning (cerebellar mechanisms) to modify an 

existing sensory-motor association, bypassing the basal ganglial mechanisms. Consistent 

with these findings, it is expected that the gradual regime will promote adaptation of vertical 

size of handwriting in both patients with PD and healthy subjects. However, the effective 

handwriting size in the PD intervention group is expected to be smaller than the healthy 

intervention subjects, due to the effect of the disease process.  

The second specific aim was to investigate the retention capabilities of handwriting 

gain adaptation in these two groups. Retention has been demonstrated for learning of 

visuomotor rotation distortions for point-to-point movements in humans for up to a year. 

Further, some evidence of retention, in terms of savings in a repeat performance of a novel 

task has been shown in elderly subjects (Seidler, 2007). It was thus expected that patients 

with PD and the age-matched healthy subjects in the intervention groups are expected to 

demonstrate an increased rate of adaptation, i.e., savings in performance or retention on 

retesting after a week.  
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The third and final aim of this study was to investigate the transfer of movement 

gain to other movement categories and handwriting contexts including paper writing and 

drawing. The use of a gradual alteration is likely to promote an adaptive increase in 

handwriting movement gain in the intervention groups of patients and healthy subjects by 

recruiting cerebellar error correction mechanisms. It is expected that the intervention groups 

of patients with PD (PD-I) and healthy subjects (C-I) are likely to transfer their acquired 

increase in handwriting movement gain to a different task such as drawing and to the 

functional paper-pen writing context. The placebo groups of patients (PD-P) and healthy 

subjects (C-P), who did not train under the adaptation protocol,  should not have any 

increase and movement gain and hence, no transfer effects thus ensuring that the proposed 

experimental manipulation was responsible for the adaptation, carry-over benefits, and 

transfer to other tasks.   

 This thesis contains four additional chapters in addition to this first introductory 

chapter (Chapter I). The second chapter presents a review of the relevant literature about the 

pathophysiology of hypometria in PD, specifically associated with micrographia and 

visuomotor adaptation in PD and aging. It also presents the theoretical framework behind 

the experimental protocol to be used in this study and the potential for clinical translation of 

these experimental findings in patients with PD. The third chapter details the methods used 

in this study. The fourth and fifth chapters present the results and discuss the findings and 

future directions of this research respectively.  
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Chapter II 

Review of Literature 

Neurophysiological basis of hypometria in Parkinson’s disease 

Parkinson’s disease (PD) is a degenerative disorder affecting the dopaminergic 

neurons in the substantia nigra of the midbrain. Though PD is one of the most frequently 

studied movement disorders, its pathophysiology is incompletely understood mainly due to 

the complexity of the basal ganglio-thalamocortical circuits. Hypometria, i.e., reduced 

movement amplitude, is a major concern in PD and affects several movements as it is 

associated with reduced scaling of movement amplitude and a decrease in sustenance of 

force production throughout the range of motion (Desmurget et al, 2003). Predictably, 

hypometria has a significant impact on the sequential motor tasks such as handwriting 

where generation and maintenance of force and movement amplitude are extremely critical. 

The underlying pathophysiological mechanisms in PD will be briefly discussed in the 

context of normal physiological connections of the basal ganglia (BG). 

The normal skeletomotor control of the BG is based on the activity in two major 

pathways that link its different parts- indirect and direct pathways. The major input 

structures of the BG are the caudate and the putamen (comprising the striatum) while the 

output from these subcortical nuclei is mediated through the globus pallidum, especially the 

internal component (GPi) and the closely associated substantia nigra pars reticulata (SNr). 

The input to the striatum is mainly from the various motor cortical areas, namely, primary 

(M1), premotor and supplementary (SMA) and the other sensory cortical association areas; 

the output of the basal ganglia is mediated through the ventrolateral thalamic nuclei 

connecting to the cortical areas, completing the loop.  
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Figure 2.1: This diagram shows the connections in the corticostriatal and pallidothalamic 

circuits in the direct (pink arrows) and indirect (gray arrows) pathways; the corticospinal 

projections are also shown. The function of these pathways under normal conditions and in 

PD is described in detail in the following text. [SNc - Substantia Nigra pars compacta; STN 

- Subthalamic nucleus; GPe - Globus pallidum externa; GPi - Globus pallidum interna] 

(From Principles of Neural Science, 4
th

 edition., E.R. Kandel, J.H. Schwarthz, T.M. Jessel; 

Chapter 43, p. 860) 

 

The disinhibition of the subthalamic nucleus in the indirect pathway leads to 

excessive stimulation of the GPi causing inhibition of the excitatory ventral thalamo-cortical 

pathways; hence activity in the indirect pathway leads to suppression of movement. In 

contrast, the direct pathway circuit bypasses the subthalamic nucleus, and inhibition of the 

GPi disinhibits the excitatory thalamo-cortical pathways thereby facilitating movement. A 

very important aspect is the dopamine (DA) secreted by the substantia nigra compacta 
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(SNc); the striatal neurons participating in the indirect pathway express D2 receptors and 

are inhibited by DA while the neurons in the direct pathway express D1 receptors and are 

stimulated by DA. Thus, DA plays an important role in regulating motor cortical activity by 

modulating the function in both these pathways. 

In PD, the degeneration of these crucial dopaminergic neurons of the SNc leads to 

excessive activity in the indirect pathway and relatively lesser activity in the direct pathway 

(shown in figure 2.1) The net result of this is reduced motor cortical activity (due to reduced 

thalamocortical facilitation.) It is thought that the regulated activity in the 2 pathways might 

have an influence in pallidal movement related signals in the following ways: 

• When the signals from both pathways are directed to the same pallidal neurons, the 

inputs from the indirect pathway might help in braking and/or smoothing the 

movement as the inputs through the direct pathway simultaneously facilitate the 

movement.  This reciprocal regulation would help in scaling the movement 

amplitude and velocity. 

• On the other hand, signals from both pathways directed to different neurons will 

lead to facilitation of the desired movements and suppress the undesired movements 

and this would be very consistent with the context-related movement selection 

function of the BG.  

As discussed above, the fine balance between the neurotransmitters in the 

nigrostriatopallidal circuits seems to be the most crucial factor in maintaining normal 

movement patterns. Thus, the depleted levels of DA seems to be responsible for producing 

smaller gating signals at the pallidothalamic synapses and prevents them from getting 

appropriately rescaled at the cortical level; thus, the ability to control variable movement 

speeds is compromised and this leads to a reduction in the amplitude of the movements that 
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are produced i.e. hypometria (Contreras-Vidal & Stelmach, 1995.) These abnormal thalamic 

gating signals might be a result of both aberrant patterns (connections between the GPi and 

GPe) and rates of pallidal firing. 

An important neural network model that explains the kinematics of arm reaching 

movements from point-to-point is the Vector-Integration-To-Endpoint (VITE) model 

proposed by Bullock and Grossberg (1988.) According to this model, the motor plan to 

reach from a given point to another in space is computed by calculating the difference 

vector (DV) between the current/present position vector (PPV) and the target position 

vector (TPV) under the influence of the GO signal; the DV is used to update the PPV 

towards the TPV by gradual integration such that the DV slowly tends to zero. When this 

happens, the TPV becomes the PPV and the arm has reached the new endpoint. 

Functionally, the corticocortical and the thalamocortical connections seem to operate 

within the VITE model based upon the GO signals generated from the BG through the 

pallidothalamic connections (shown in figure 2.2). The significance of this GO signal is that 

it is the neural correlate of a volitional command to start a movement that sets the global 

speed of the movement (Contreras-Vidal & Stelmach, 1995.) The dynamics of this GO 

signal could be controlled by the BG through the multiple parallel pallidothalamocortical 

loops; these are due to the diffuse corticostriatal projections. This could help in the 

simultaneous processing and linking of different subcomponents of a movement and 

thereby, produce a smooth motor act with appropriately controlled velocity and amplitude 

depending upon the requirements of the task. 
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Figure 2.2: This figure shows the connections in the corticostriatal and pallidothalamic 

circuits in relation to the VITE model. For a movement trajectory to be planned, the 

striatum and pallidum play a critical role in the generation of the GO signal through the 

pallidothalamic projections in updating the DV which is crucial for scaling the movement, 

in addition to modifying the quality of movement. However, for the normal generation of 

this GO signal, a fine balance between DA, substance P, enkephalins and GABA 

(neurotransmitters) is required in the striatopallidal circuits. This balance is disrupted in PD 

(decrease in DA with concomitant increase in substance P) consequently affecting the GO 

signal. (A.W.A. Van Gemmert et al., p. 687; Neuropsychologia, 37 (1999): 685-694) 

 

  

There seems to be a functional segregation at the level of the striatum in terms of 

movement initiation i.e. planning, and execution; these are executed through the striatal 

input to the parallel pallidothalamic signals to the different cortical areas, namely, SMA, 

premotor and motor cortex. Thus, depending on the DA loss in the different parts of the 

striatum, the motor deficits seen in PD either manifest as an increase in reaction time (RT) 

which suggests planning problems and/or prolongation of movement times (MT) and 

reduction in movement amplitudes (hypometria) suggesting execution problems. This also 
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seems to correlate with differences in the cortical projections to the striatum: the 

sensorimotor cortex tends to project to the putamen while the association cortex projects 

more to the caudate. As a corollary, it can be stated that with lesions affecting a larger 

portion of the striatum in PD, both forms of deficits might be more pronounced; it is likely 

that with progression of the disorder, the DA depletion might extend and affect larger 

portions of the striatum.  The striatum is the key to modulation of the output through the 

GPi and effectively, the GPi output determines movement velocity. There is an inverse 

relationship between the activities of the GPi and the thalamus; higher modulation of the 

GPi results in greater thalamic activity and hence faster movement velocities.  

Desmurget et al (2003) investigated the actual nature of the impaired motor 

performance in PD and attempted to correlate it with a problem in the planning of 

movement amplitude, which is considered a unique characteristic of PD. They controlled 

for initial localization errors of arm position at start position in reaching tasks, i.e. 

kinesthesia, which is known to be affected in PD (Contreras-Vidal & Gold, 2004), and 

observed that reduction in movement gain as observed through correlates such as peak 

velocity profiles was the only difference in the reaching exhibited by patients with PD and 

controls. Also, the amount of reduction in movement gain in the patients seemed to 

correlate significantly with the severity of the disease i.e., higher the severity, greater the 

reduction in movement gain. These results re-establish the movement amplitude planning 

function of the BG and this is even consistent with the single-cell recording of the pallidal 

neurons where amplitude/velocity effects have been identified. 

Thus, based on the theoretical framework of the VITE model and the 

neurophysiological mechanisms of the BG, the striatal modulation of the pallidum in the 

BG, seems critical in the control of movement amplitude and the affection of the former in 
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PD due to DA depletion might be the underlying cause of the hypometric movements seen 

in PD.  

 

Handwriting deficits associated with hypometria in PD 

The functional consequence of disturbances of regulation of movement amplitude 

and speed and especially simultaneous control of different subcomponents of movement 

would be that sequential motor acts involving control of all these aforementioned factors 

would be affected in PD. Handwriting is a complex motor act that involves sequences of 

repetitive and simultaneous movement subcomponents; predictably handwriting is 

significantly affected in PD. The typical signs of handwriting disturbances in PD are 

progressive reduction in size of handwriting, fluctuations in the baseline and slowness 

(which is seen in other movements as well) and the cluster of these signs is called 

micrographia (McLennan et al, 1972; Contreras-Vidal and Stelmach, 1995) 

Bullock et al (1993) developed a model for normal production of handwriting based 

on the VITE model described previously. This model, called the VITE-WRITE model, is 

hierarchical in nature that explains handwriting to be produced by a redundant hand with 

three degrees of freedom (DOF). According to this, the system models the three DOFs, 

namely, transverse movements of the pen by finger retraction/extension, and longitudinal 

strokes controlled by small vertical wrist rotations and left-to-right hand movements while 

writing controlled by horizontal wrist rotations. The VITE model plans the trajectories for 

each of these three movements by calculating TPVs to generate the required movement 

amplitude and velocity. The system is thus able to independently specify the size and speed 

of the handwriting movements by controlling the underlying muscle activity and temporal 

variations in the force produced.  
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In PD, the smaller GO signal produced by the pallidothalamic circuits seems to be 

the major issue; this consequently leads to reduction in the activity in the thalamocortical 

projections. The SMA is extremely important in planning complex movements; hence a 

reduction in the thalamocortical projections would impair the selection of the next 

subcomponent by the SMA in the motor sequence of handwriting. Also, reduction in the 

projections to the premotor and motor cortex leads to impaired production of the individual 

motor components itself (as shown by the VITE model simulations) (Contreras-Vidal et al, 

1995.) This plausible nature of dysfunction in PD was correlated with the simulation of the 

VITE-WRITE model which showed Parkinsonian micrographia too. 

Production and regulation of force amplitude is related to stroke size while 

development and release of force is related to stroke duration or speed; and according to 

Teulings and Stelmach (1991), patients with PD have a greater difficulty in the former. Van 

Gemmert et al (1999) investigated the actual problems faced by patients with PD in 

producing stroke size and/or duration in handwriting by requiring patients to write a given 

set of handwriting strokes in three conditions in addition to the baseline: as fast as possible, 

two times larger than the baseline and a combination of both i.e. as fast as possible and two 

times larger. The handwriting of the patients with PD were compared to age-matched 

controls and the experimental strokes consisted of relatively simple patterns because these 

would unmask the speed-size tradeoff in patients with PD who use bradykinesia a 

compensatory strategy to avoid speed-size tradeoff. The results of the patients with PD and 

the controls were compared to those generated by the simulation model (using VITE) for 

the same set of strokes.  

An interesting finding of this study was that the patients with PD might possibly 

follow the isochrony principle like normal subjects do in handwriting: this principle refers 
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to the fact that movement time (MT) is maintained constant within a range of stroke lengths 

from 0.5-2 cm. This is reflected in the results of the patients with PD wherein they attempt 

to maintain and/or increase speed, but are unable to increase stroke size to two times larger 

than baseline. This is probably due to the fact that reducing stroke duration demands a more 

rapid force development (which may be possible in PD), but increasing the size requires 

maintenance and regulation of the force amplitude over a greater period of time, which 

might be the problem in PD. This correlated with the results seen wherein patients with PD 

showed maximum impairment in the condition where they had to write as fast as possible 

and also two times larger; this situation demands a great deal of regulation of force 

amplitude. Comparable results were found in the simulations too. Van Gemmert et al 

explain this to be a result of deficiency in recruiting motor units due to a lot of noise in the 

motor system (and force amplitude varies directly in proportion to the recruitment of motor 

units.) An alternative explanation that has been considered is the role of perception-action 

mismatch which causes patients to perceive their movements of larger amplitude than they 

actually are, leading them to undershoot. Though in this study, this phenomenon may not 

explain why patients with PD demonstrated constancy in their stroke duration even though 

they were unable to double the size.  

These impairments in dynamic control of fine motor skills such as handwriting has 

been corroborated by Longstaff et al (2003) in their study of the movement scaling and 

accuracy in patients with PD while performing discrete circular drawing and continuous 

spiral drawing movements. They found that patients try to scale their movements depending 

upon the accuracy demands of the task and this typically caused a trade-off between 

movement size and accuracy; thus, reducing movement amplitude when more accuracy is 
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required in order to compensate for the variability in the performance was associated with a 

reduced quality of movement.  

In summary, micrographia in PD seems to be due to the hypometria caused by DA 

depletion rather than just an aspect of the general manifestation of the motor deficits. The 

theoretical framework of the VITE-WRITE model explains this to be a consequence of the 

reduction in the amplitude of the GO signal. 

 

Visuomotor gain adaptation in PD: a potential behavioral intervention for micrographia 

 Motor adaptation seems to be certainly impaired in PD, especially visuomotor 

adaptation; when a visuomotor distortion (novel environment) is provided, patients with PD 

seem to use sensory information on a trial-to-trial basis rather than updating their 

sensorimotor mapping (Contreras-Vidal et al, 2002; Contreras-Vidal & Buch, 2003.) This is 

demonstrated by the fact that aftereffects in patients with PD after such a distortion are 

comparatively diminished as against age-matched controls. This is probably associated with 

an impaired ability to update extant sensorimotor representations in novel environments 

since the striatum plays an important role in building a repertoire of motor actions with 

practice that can be executed in response to appropriate environmental stimuli i.e., 

contextual recognition and motor system recalibration (Laforce & Doyon, 2001).  

 However, gain distortion in visual feedback appears to be an interesting potential 

strategy to influence handwriting in PD. This is because patients with PD seem to rely on 

visual feedback of previous handwriting strokes to plan the subsequent ones (Teulings et al, 

2002). In fact, this has been postulated as a mechanism that negatively reinforces the 

smaller size of handwriting in patients with PD which was validated by experimental 

findings wherein when a gain distortion is imposed, instead of adapting, patients tend to 
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produce successive stroke amplitudes that amplify the distortion effect (Teulings et al, 

2002). However, Contreras-Vidal et al (2002) provided indirect visual feedback by 

displaying the manipulated handwriting on a computer screen wherein subjects wrote on a 

digitizer tablet with the vision of their hand and pen occluded (this was not occluded in the 

previous study) and compared the adaptation effects in patients with PD, age-matched 

elderly controls, and young controls. Interestingly, the patients showed comparable effects 

of gain adaptation with the controls in this study as against the previous study. 

 

 

 

Figure 2.3: Adaptation to gain reduction (70%) and gain increase (140%) of original 

handwriting size. The diamonds represent baseline trials, triangles represent exposure trials 

and the circles represent aftereffects. Patients with PD show comparable aftereffects like the 

elderly, though slightly lower in amplitude, indicating adaptation (Contreras-Vidal, JL et al., 

p. 80; Parkinsonism & Related Disorders 9 (2002): 77-84) 

 

It is seen that the patients with PD and the healthy elderly controls show comparable 

increases in stroke size when display gain of handwriting is reduced to 70%. This is evident 

in the post-exposure phase, i.e., the 100% gain condition following the trials during 

exposure to 70% gain. Similarly, when the display gain size is distorted and increased to 

140% of original, both patients and controls show an adaptive decrease in handwriting 
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stroke size (as compared to baseline) as seen clearly in the post-exposure trials. Although 

the magnitude of aftereffects i.e., the relative, adaptive increase and decrease in handwriting 

stroke size in patients is smaller than that seen in controls, these findings suggest that 

visuomotor gain adaptation may be a very useful means to access and modify the gain 

control system in PD, especially pertinent to handwriting deficits. Is it possible that an 

impaired context recognition and motor recalibration (due to affection of the BG) benefits 

better from a lack of contextual cues like indirect visual feedback? If so, which neural 

mechanisms operate in such a case to cause the adaptation that was seen in this experiment? 

In light of these experimental findings, it is important to understand the neural 

substrates mediating visuomotor gain adaptation in health and in PD; this will help 

determine experimental conditions that are more conducive to favoring an adaptive increase 

in handwriting size in PD. 

 

Putative neural mechanisms mediating visuomotor gain adaptation in PD  

Multiple neural networks are postulated to play a very critical role in modifying 

extant sensorimotor associations, i.e., updating extant internal models; the basal ganglia and 

cerebellum and their connections with multiple cortical areas seem to play a very important 

role in this regard. Krakauer et al (2004) studied and compared the brain regions activated 

during gain learning and rotation learning in healthy, young subjects using PET imaging 

and found significant differences in brain activation during adaptation under gain and 

rotation distortions. The most novel aspect of the methods used in this experiment is that the 

constant alternation between two opposing gain and rotation distortions allowed studying 

the difference between the rapid (first) phase and slow (secondary) phase of adaptation.  
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There was a clear distinction between the areas activated during the learning under 

distortions: rotation distortion activated the supplementary motor area (SMA) and posterior 

parietal cortex and with progression of learning, the activation of SMA decreased with 

concurrent increase in posterior parietal activation. On the contrary, initial learning of a gain 

distortion showed bilateral subcortical activation of the putamen and the cerebellum and as 

learning progressed, the activation patterns did not show a significant change from the 

baseline. These results correlate very well with fact that rotation adaptation involves 

learning a new reference frame and hence new cortical areas are activated, like the SMA 

and posterior parietal cortex; whereas, gain learning involves recognition and switching to a 

new context that has already been recalibrated, this is demonstrated by the transient 

activation of the BG and cerebellum. This also explains why gain learning is easier than 

rotation learning; and the bilateral activation is consistent with the ready interlimb transfer 

of gain adaptations.  

Thus, in the initial stages of handwriting gain adaptation, the BG seems to play a 

very important role in context recognition and recalibration of a sensory-motor association; 

in this case, the mapping between visual feedback of handwriting and proprioceptive 

feedback of hand movement. However, in the later stages of this adaptive learning, the 

cerebellum may play a more critical role in the fine tuning of this internal model or sensory-

motor association, by error-correction learning (Krakauer et al, 2004; Doya, 2000; LaForce 

& Doyon, 2002; Kagerer et al, 1997; Ingram et al, 2000; Smith & Shadmehr, 2005, Grosse-

Wentrup & Contreras-Vidal, 2007). 

Interestingly, differences in the time course of provision/presentation of the 

visuomotor distortion seem to engage different neural mechanisms for adaptation, 

consequently resulting in differential adaptive effects. It has been found that dentate 
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inactivation in monkeys, impaired adaptation to gradually varying distortions while 

preserving adaptation to sudden distortions (Robertson & Miall, 1999). This suggests a 

critical function of the cerebellar structures in adaptation to gradual kinematic distortions, 

wherein the process of adaptation appears to be more implicit. In this regard, studies have 

shown that in healthy elderly subjects, gradually changing visuomotor rotational distortions 

as against sudden ones seem to promote better adaptation, in terms of errors during 

exposure to the distortion (Buch  et al, 2003).  

 

Figure 2.4: (a) Gradually increasing rotational distortions produce significant aftereffects as 

measured by the initial directional error (IDE) in patients with PD. This is seen as IDE 

significantly different and in the opposite direction in the aftereffects (post) as against the 

baseline (pre) condition. (b) Root mean square error (RMSE) is also significantly increased 

following adaptation in the gradual condition in the post as against the pre condition.  

 

Further, similar effects have been shown for patients with PD wherein adaptation is 

facilitated by gradually increasing visuomotor rotational distortions, resulting in significant 
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aftereffects (reflected in initial directional errors) in the post exposure phase. On the 

contrary, patients with PD receiving sudden visuomotor distortions did not show adaptation 

and hence no significant aftereffects as compared to baseline (Contreras-Vidal et al, 2003; 

Unpublished observations) (Fig 2.4). Further, preliminary findings also suggest that gradual, 

and not sudden, visuomotor gain distortions seem to promote adaptive increases in 

handwriting stroke size in patients with PD (Fig 2.5). 

 

 

Figure 2.5: This figure shows data from a case study with one subject in each group. There 

is an increase in the standardized stroke length for the patient with PD receiving a gradual 

gain reduction; this is seen as an increase in stroke length as compared to baseline whereas 

the patient receiving the sudden distortion shows no/poor adaptation with increased 

variability in performance. Control subjects show similar performances in sudden and 

gradual conditions. [H & Y: Hoehn & Yahr stage of PD; UPDRS: Unified Parkinson’s 

disease Rating Scale] 

 

It is likely that an implicit or gradually introduced change in this visuomotor 

mapping (in this context) may obviate the need for context recognition and engages the 

Control
s 

Standardized mean stroke length of cursive ‘l’s 

PD  

Gradual 

Sudden 

H & Y - 3 
UPDRS - 37 

 

H & Y - 2.5 
UPDRS - 44 
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cerebellar error-corrective mechanisms more strongly. Another possibility is that gradual 

adaptation can be performed based on the actual error and the current internal model, rather 

than searching for appropriate mappings. This suggests that gradual distortions have a 

means to bypass the basal ganglial mechanisms that are required for contextual recalibration 

and this may explain the beneficial effects of this regime in patients with PD.  In addition, 

the recent discovery of neural connections between the cerebellum and basal ganglia in non-

human primates (Hoshi et al, 2005) also suggests that there may be other underlying neural 

mechanisms mediated by the cerebellum that may plausibly be recruited by a gradual 

regime.  

Further, in the context of prism adaptation, the “true” adaptation is postulated to 

occur in the later stage of the process of adaptation which is slower and comprises of 

realignment i.e., reduction of smaller terminal errors; this is also mediated by the cerebellar 

hemisphere ipsilateral to the deviation introduced by the prisms (Pisella et al, 2006). In fact, 

recruitment of the cerebellar mechanisms has been associated with stronger aftereffects and 

more generalization of learning in stroke patients with visuospatial cognitive deficits 

(Rosetti et al, 1998; Pisella et al; 2006). Thus, the use of a gradual regime in providing 

visuomotor gain distortions seems to be optimal to promote adaptive increases in 

handwriting size in PD. 

Additionally, visuomotor training may have other benefits such as amelioration of 

certain visuomotor impairments in PD (Stoffers et al, 2002) by plausibly serving as external 

cues to performing a simple day-to-day task like handwriting. Besides, external cues have 

been shown to be extremely beneficial in training and improving motor performance of 

patients with PD (Nieuwbower et al, 2007) because they allow for engaging alternate, 

plastic learning mechanisms (i.e., possibly cerebellar and cortical circuits); by improving 
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attention (Almeida et al, 2002); by facilitating movement planning and execution (Leis et al, 

2005); and most importantly, by eliciting a motor response through a perceptual cue that 

makes the movement less automatic, thus freeing the BG circuits (Praamstra et al, 1998; 

Nieuwbower et al, 2007). 

 

Retention and Transfer of visuomotor gain adaptation in Parkinson’s disease 

The effectiveness of any intervention is dependent on retention of learning and the 

potential to transfer any beneficial learning effects, in this case adaptive increases in 

handwriting size, to functional contexts outside the laboratory. It has been shown that 

adaptation to visuomotor rotational transformations during center-out reaching movements 

has retention for up to one year in humans (Yamamoto et al, 2006). However, such retention 

has not been investigated in patients with PD following visuomotor adaptation. Similarly, 

Bock & Girgenrath (2006) have shown transfer from adaptation during center-out 

movements to target tracking movements in healthy, young and elderly subjects.  

Gain adaptation has been shown to transfer from arm to wrist movements (Krakauer 

et al, 2006) and from arm to head movements (Seidler et al, 2001) in healthy young 

subjects. Further, gain adaptation has also been shown to readily transfer across limbs 

(Seidler et al, 2001) and this is probably associated with the bilateral activation of the 

putamen in the BG and the cerebellum during gain adaptation in health, young subjects. 

Interestingly, adaptation appears to transfer more easily when the movements which are 

practiced under distortions involve a large ballistic component. This was seen as better 

transfer from adaptation during pointing movements to a tracking task following that 

(Abeele & Bock, 2003). This is important in the context of this experiment since the 

subjects perform cursive l writing during adaptation which can be considered closer to 
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ballistic movements in the context of handwriting, especially the up stroke written for each 

l. Since elderly subjects demonstrate some potential for retention of adaptation in terms of 

savings in performance based on prior adaptive experience, it seems worthwhile to 

investigate if such an effect is seen in patients with PD. Thus, to address the extant 

knowledge gap in the literature, this study is proposed to investigate if patients can 

demonstrate savings in performance in gain adaptation and also transfer adaptive increases 

in handwriting size to a different drawing task and a functional paper pen writing context.  
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Chapter III 

Methods 

 
Subjects 

 Thirteen patients with diagnosed with idiopathic PD and twelve healthy adults (18 

males, 7 females total) participated in this study with voluntary consent. These were further 

sub-divided in to four groups (n=7 in PD intervention, n=6 each in PD placebo, Healthy 

Control intervention & placebo groups). Subjects with dementia, other co-morbid 

neurological disorders and those receiving deep brain stimulation or other surgical therapies 

were excluded. All subjects were screened for dementia using the Mini Mental State 

Examination (MMSE scores > 25). The patients belonged to local patient support groups, 

movement disorder clinics and from the local neighborhoods. All participants had normal or 

corrected-to-normal vision and were provided with financial compensation, as approved by 

the Institutional Review Board of the University of Maryland, College Park. All patients 

with PD had mild stages of the disease, stages 1-3 on the Hoehn-Yahr stages of PD and 

their motor deficits were also scored on the Unified Parkinson’s disease rating scale 

(UPDRS) (Table 1). All but 1 (healthy subject) out of 24 subjects were right-handed; 

however, since micrographia is a central phenomenon (McLennan et al, 1972), handedness 

does not matter in the patients with PD and the healthy subjects. Patients were tested in their 

“on” state for medications since the purpose was to study the effectiveness of this regime as 

an adjunctive therapy to treat micrographia. One patient in the intervention group (PD-I (3)) 

was much more impaired than the others and had significant dyskinesia during the 

experimental sessions; since there was no patient in the placebo group matching his clinical 
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status, his data were excluded from further analyses. There was no significant difference in 

ages across the 4 groups (p = 0.1372). 

Table 2.1 – Parkinson’s disease and healthy participants 

Subject Sex Age Handed MMSE UPDRS H&Y Yrs (PD) Medication 

     (Yrs)     day1 day8       

PD-I(1) M 60 Rt 27 26 24 3 4 Sinemet  

PD-I(2) M 63 Rt 30 23 18 2.5 4 Stalevo; Miraprex 

PD-I(3) M 52 Rt 30 38 47 3 10 

Stalevo; Miraprex; 

Amantidine 

PD-I(4) M 74 Rt 29 24 24 3 5 Sinemet 

PD-I(5) M 75 Rt 28 20 20 2.5 8 Stalevo; Requip  

PD-I(6) F 74 Rt 29 32 33 2.5 2 Sinemet; Temazepam  

PD-I(7) F 63 Rt 28 10 10 2.5 2 Stalevo  

  Mean 28.71 24.71 25.14 2.71   

  s.d. 1.11 8.88 11.89 0.27   

PD-P(1) M 73 Rt 29 16 17 2.5 3 Stalevo; Cymbalta 

PD-P(2) M 65 Rt 29 22 22 2.5 3.5 Sinemet 

PD-P(3) F 59 Rt 29 29 23 2 10 

Sinemet; Amantidine; 

Clonazepam 

PD-P(4) M 78 Rt 30 36 35 2.5 13 Sinemet; Stalevo 

PD-P(5) F 65 Rt 27 28 28 2.5 6 Sinemet; Miraprex 

PD-P(6) M 65 Rt 28 33 28 3 10 

Sinemet; Miraprex; 

Amantidine  

  Mean 28.67 27.33 25.5 2.5   

  s.d. 1.03 7.31 6.22 0.32   

  PD Mean 28.69 25.92 25.31 2.62   

  s.d. 1.03 7.97 9.32 0.3   

C-I(1) F 82 Rt 30 - - - - - 

C-I(2) M 67 Rt 28 - - - - - 

C-I(3) M 62 Lt 30 - - - - - 

C-I(4) M 72 Rt 29 - - - - - 

C-I(5) M 79 Rt 27 - - - - - 

C-I(6) M 77 Rt 30 - - - - - 

  Mean 29   

  s.d. 1.26   

C-P(1) M 63 Rt 27 - - - - - 

C-P(2) F 63 Rt 30 - - - -  - 

C-P(3) M 62 Rt 28 - - - - - 

C-P(4) M 67 Rt 28 - - - - -  

C-P(5) F 65 Rt 29 - - - - - 

C-P(6) M 66 Rt 30 -  - -         - - 

  Mean 28.67   

  s.d. 1.21   

    C Mean 28.83           

s.d. 1.19 

Note: UPDRS scores are only from the Motor section out of a total of 108. 
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Experimental setup 

 Participants were seated in front of a table facing a 

computer monitor (as shown in the figure 3.1), and 

allowed to write with a digitizer pen on a horizontally 

positioned digitizing tablet. Vision of the dominant 

hand/arm was prevented by a wooden pedestal over the 

digitizing tablet; the monitor (with screen resolution 800 x 600 pixels) was positioned on 

top of this pedestal. A digitizing tablet (12” x 12” WACOM InTuos™ 9100 Series) was 

used to collect data on the pen position in x/y coordinates at 200 Hz sampling rate using 

custom software written in OASIS™ (KIKOsoft, Nijmegen). The room was dimly lit to 

allow for better visualization of the screen display for the subjects. The active area for 

writing on the tablet measured 19.5 cm x 14.5 cm (6 cm from the front of the tablet) which 

was mapped on the screen as a corresponding viewable area of 26.5 cm x 19.5 cm (Teulings 

et al, 2002; Contreras-Vidal et al, 2002). Thus, the distance between the eye and the screen 

display was about 1.35 times larger than the normal writing distance and hence the 

corresponding larger writing display area on the screen matched this, thereby making the 

handwriting appear proportionately larger. As the subjects wrote on the tablet, visual 

feedback of the pen movements on the digitizing tablet was provided in real-time on the 

computer monitor. For assessment of transfer to a functional context, subjects were allowed 

to write/draw on a sheet of paper taped on to the digitizer tablet with an inking pen (“inking 

tablet”) analogous to paper-pen writing; this was done pre-training and one week post-

training. 

 

 

Fig 3.1: Experimental Setup 
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Task and Instructions 

 The experimental procedure involved handwriting (cursive ‘l’ or loops) and spiral 

drawing on a digitizer tablet. One group each of patients (PD-I) (mean age 65.9+8.7 yrs) 

and healthy subjects (C-I) (mean age 73.2+7.6 yrs) received the experimental intervention 

of reduction in visual display of handwriting size (intervention groups), while the other 

group of patients (PD-P) (mean age 67.5+6.8 yrs) and healthy subjects (C-P) (mean age 

64.33+2 yrs) received a ‘placebo’ or dummy treatment with no change in visual display of 

handwriting size (placebo groups). This arrangement was used to control for the task/testing 

effects; thus, giving a factorial treatment structure (2 x 2 – disease by treatment).  

 

Fig. 3.2: Summary of experimental protocol for the intervention (I) groups and the placebo (P) 

groups. The numbers in parentheses indicate number of trials performed. 

 

Subjects performed the experimental sessions either in the Cognitive Motor 

Neuroscience laboratory at the University of Maryland, College Park or in the community 

centers/support group meeting areas and were made familiar with the digitizer apparatus by 

practice with writing and drawing on the tablet. As shown in fig 2, for intervention groups, 

on day 1, baseline assessments of spirals and loops were made, followed by 

adaptation/exposure trials involving writing cursive ‘l’s with a gradual reduction in visual 

display size of handwriting to 50% (10 steps; 5% per step; 8 trials per step). On day 8, 

retention was assessed as savings in performance of loop writing with visual display size of 
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handwriting at 50%. The “inking tablet” was used to simulate a functional context for 

paper-pen writing wherein transfer of adaptive effects could be assessed. For the placebo 

groups, all conditions remained the same except that during exposure and retention, visual 

display size of handwriting was displayed at 100 %, i.e., without any reduction. The 

rationale behind comparing patients and healthy subjects is to investigate if Parkinson's 

disease affects visuomotor adaptation, retention and/or transfer compared to healthy 

subjects. Moreover, the placebo groups helped differentiate practice effects from those due 

to the experimental intervention accounting for any changes in handwriting and spiral 

drawing at the time of transfer testing. Importantly, no assessments of aftereffects were 

made on day 1 to avoid partial washout of learning due to visual feedback of movement. 

For the exposure phase (visuomotor training) and for retention assessment on day 8, 

subjects performed handwriting/drawing with indirect visual feedback of movement 

displayed as trajectories on the monitor. Subjects were instructed to trace their pen and 

move in to a home circle and hold their pen in that position till the circle turned green 

signaling movement onset. For the loop writing tasks, subjects were presented with a small 

circle in the margin about 7 cm above the home circle prior to movement onset as a 

representative target size for writing cursive l s. This disappeared once the home circle turns 

green since the task was intended to simulate normal handwriting and presentation of a 

continuous target will alter the neural planning signals for movement, particularly for the 

patients. Trajectories were displayed on the screen as soon as subjects touched the pen to 

the tablet, however, the kinematics of the movement were sampled after the home stimulus 

turned green. Recording ceased when the pen was lifted off the tablet (for more than 0.5 

seconds).  
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Data processing 

 Kinematic data of loop and spiral trajectories were low-pass filtered with a fourth 

order, Butterworth filter at 4Hz cutoff (since tremor frequency in PD is 4-7Hz) (Contreras-

Vidal et al, 2002). For each loop writing trial, the data were segmented in to up and down 

strokes based on zero crossings of vertical velocity profile (Teulings & Maarse, 1984). The 

average stroke length, normalized jerk (NJ) (as a measure of movement smoothness) and 

movement time (MT) were calculated for each trial. Exposure phase loop trials were 

divided into 10 blocks of 8 trials each, each block having the same visual display size of 

handwriting. The first 8 trials from the retention phase were used for further statistical 

analysis in order to minimize potential confound by re-learning or increased learning on day 

8 with more trials. For the spiral data, Cartesian coordinates (x/y) were converted to polar 

coordinates (theta/rho). Correlation coefficient between theta and rho was calculated as a 

measure of idealness of spiral and slope of this linear regression line was used as a measure 

of global size of the spiral. As the spiral approximates an ideal spiral, the correlation 

coefficient is expected to increase. The global size of the spiral as reflected in the slope of 

the linear regression line is indicative of the relative distance between 2 successive 

revolutions of a spiral and hence was expected to be a standardized measure of the size of 

the spiral across both trials and subjects (Longstaff et al, 2003). All analyses were 

performed using custom written programs in MATLAB 7.2.  

 

Statistical Analysis 

 The primary dependent variables included measures of movement size i.e., 

handwriting stroke size and spiral size; movement time (MT) and normalized jerk scores 

(NJ) as measures of movement speed and movement smoothness were also computed and 
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the statistical analyses were performed separately for studying retention and transfer. 

Outliers were rejected in the data preprocessing. For the spiral data, outliers included trials 

drawn too slowly or skipped trials; for loops, trials having less than 6 loops or skipped trials 

were excluded. Due to non-Gaussian nature of the data and small sample size, we used more 

conservative, non-parametric statistical methods (Kruskal-Wallis and Friedman methods of 

analysis of variance) to compare treatment effects on dependent measures across and within 

groups. Owing to the gradually decreasing visuomotor gain distortion, significant 

differences were not expected between successive adaptation blocks, hence preplanned 

contrasts were set up to compare 1
st
 (early adaptation) and 10

th
 (late adaptation) blocks of 

exposure phase to study adaptation of handwriting size within both intervention group. 

Retention was studied as differences among the last block of exposure phase and first 8 

trials of retention phase of loop writing in the PD and healthy intervention groups (PD-I & 

C-I respectively). Friedman’s test was used to compare these 3 blocks in a repeated 

measures design within each of the 4 groups. Further, for each of these 3 blocks, across 

group comparisons were performed using Kruskal-Wallis method in order to study the 

disease by intervention main and interaction effects. Transfer was studied by comparing all 

baseline corrected dependent measures to a zero median using the Wilcoxon Sign Rank test. 

Further, across group differences were studied using the Kruskal-Wallis method. All post-

hoc pair-wise comparisons of block and group means were preplanned and performed using 

the least-square differences (LSD) method. Alpha was set at 0.05 for experiment wise error. 
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Chapter IV 

 Results 

 

There were no differences in up and down stroke dependent measures per trial, 

hence these were collapsed to obtain average measures per trial. However, differences were 

found in baseline trial means of movement time (χ
2
=8.72 (df 3); p=0.0333) across groups, 

thus, all dependent measures in adaptation, retention and transfer were corrected for these 

baseline differences. Fig. 4.1a and b shows a characteristic trial of writing (loops) for one 

subject each from the PD and healthy intervention groups across early, late adaptation and 

retention assessment and also pre (baseline) and post-training (transfer) paper-pen writing 

and drawing. 
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Fig 4.1.a: Single trial of representative subjects, PD-I (2) (A) and C-I (2) (B), (top to 

bottom) early and late adaptation and retention tested at 1 week after training, slowing a 

slight increase in stroke lengths in late adaptation and retention. Trials are from the middle 

(trial no. 5) of each of the blocks (8 trials per block).  
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Fig 4.1.b.: Single trial of representative subjects, PD-I (2) (A) and C-I (2) (B), baseline (pre) 

and transfer (post-testing) for loop writing on paper; single trial for PD-1 (2) (C) and C-I (2) 

(D) baseline (pre) and transfer (post-testing) spiral drawing on paper. Trials are from the 

middle (trial no. 6) of each of the testing conditions (10 trials per condition).  
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Adaptation and Savings in performance (retention) in block means 

 

Fig 4.2: Box plots showing differences in early, late adaptation and retention blocks for 

stroke lengths (baseline corrected) within and across the 4 groups, (A)  PD-I (black) and 

PD-P (red) and (B)  C-I (black) and C-P (red). Significant differences are indicated by a 

connecting line and asterisk.  

 

Adaptation effects are reflected in changes in dependent measures specifically 

between early and late adaptation blocks while retention or savings in performance was 

studied by comparing late adaptation and retention performances. As seen in fig. 4.2, within 

group comparison across blocks revealed a significant increase in stroke length for C-I 

group (χ
2
=6.33 (df 2); p=0.0421) across blocks. Post-hoc pair-wise comparisons revealed a 

significant increase in late as compared to early adaptation (p<0.05). However, there were 
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no significant differences across blocks for PD-I, C-P and PD-P groups (p>0.3). Similarly, 

no significant differences were found for stroke length across groups at early and late 

adaptation blocks (p>0.12). However, post-hoc pair-wise comparisons revealed 

significantly higher stroke length in C-I as compared to PD-P (p<0.05) in late adaptation 

block. 

 Retention in C-I was significantly different from early adaptation (p<0.05) while not 

being different from late adaptation. Interestingly, across group comparison at retention 

revealed significant differences across groups (χ
2
=9.056 (df 3); p=0.0287). Post-hoc pair-

wise comparisons revealed significant increases in stroke length in C-I & PD-I groups as 

compared to PD-P (p<0.05) (fig 4.2). C-I and PD-I were not significantly different from 

each other. 

 There were no significant differences in stroke duration across blocks during 

adaptation and retention for any of the groups: C-I, PD-I, C-P and PD-P (p>0.11) (fig 4.3). 

Post-hoc comparisons revealed no significant differences between early and late adaptation 

(p>0.05). There appeared to an increase in variability in stroke duration in late adaptation in 

both placebo groups as compared to early adaptation and also intervention groups, but no 

significant differences were found across groups for adaptation and retention at each block 

(p>0.22).  



36 

 

 

Fig 4.3: Box plots showing differences in early, late adaptation and retention blocks for 

stroke durations (baseline corrected) within and across the 4 groups, (A) PD-I (black) and 

PD-P (red) and (B) C-I (black) and C-P (red). There were no significant within and across 

groups.  

 

  Comparison of normalized jerk scores (fig 4.4) across blocks revealed no significant 

differences within groups during adaptation and retention (p>0.13). Post-hoc pair-wise 

comparisons revealed no significant differences (p>0.05). Normalized jerk scores across 

groups were not different in the early adaptation block (p>0.5). However, in the late 

adaptation group, a significant difference in jerk scores was seen across groups (χ
2
=8.39 (df 

3); p=0.0385). Pair-wise comparisons revealed a significant increase in normalized jerk 

scores in PD-P as compared to PD-I group (p<0.05). No other groups were different from 
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each other statistically, though, there appeared to be trend for increase in jerk scores in C-P 

as compared to C-I group. Interestingly, there were no significant differences in jerk scores 

across groups in retention (p>0.6). 

 

Fig 4.4: Box plots showing differences in early, late adaptation and retention blocks for 

stroke normalized jerk scores (baseline corrected) within and across the 4 groups, (A) PD-I 

(black) and PD-P (red) and (B) C-I (black) and C-P (red). Significant differences are 

indicated by a connecting line and asterisk.  

 

 

In summary, the gradually reducing visual gain distortion mediated adaptive changes 

in handwriting in the healthy and PD intervention groups, particularly during retention. 

There were significant increases in stroke length, the primary dependent variable for the C-I 

group during adaptation. Predictably, the C-I group also maintained these significant 
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increases in stroke length during retention (savings in performance) while the PD-I group 

demonstrated a comparable increase in stroke length. On the contrary, the PD-P group 

deteriorated in quality of movement with significantly higher normalized jerk scores toward 

the end of adaptation, i.e., in the late adaptation block, as compared to PD-I group.  

 

Transfer of adaptive changes to paper-pen writing  

 

Fig 4.5: Box plots showing differences in (A) stroke length, (B) normalized jerk and (C) 

stroke duration across the 4 groups, C-I, PD-I, C-P and PD-P for baseline corrected 

measures at post-testing (transfer) after 1 week. Significant differences are indicated by a 

connecting line and asterisk in the normalized jerk scores between C-I and PD-I. 

 

There were no significant differences across groups for baseline corrected stroke 

lengths and stroke durations (p>0.61) (fig 4.5). There were no differences between any 2 
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groups in pair-wise comparisons (p>0.05). Similarly, there were no group differences in 

normalized jerk scores (p>0.11), however, post-hoc pair-wise comparisons revealed 

significantly lower jerk scores in PD-I as compared to C-I (post-training assessment) 

(p<0.05). There were no group medians significantly different from zero for any dependent 

measures (p>0.05, Wilcoxon Sign Rank test).  

 

Transfer of adaptive changes to paper-pen drawing 

 

Fig 4.6: Box plots showing differences in (A) linear regression slope and (C) correlation 

coefficient (r
2
) between polar coordinates (angle of revolution and radius for spirals) and 

(B) normalized jerk scored for spirals and across the 4 groups, C-I, PD-I, C-P and PD-P for 

baseline corrected measures at post-testing (transfer) after 1 week. There were no significant 

group differences except for correlation coefficient. 
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There were no significant differences across groups for baseline corrected spiral 

normalized jerk scores and slope measures (p>0.15) (fig 4.6). There were no differences 

between any 2 groups in pair-wise comparisons (p>0.05). However, there was a significant 

difference in spiral correlation coefficient (r
2
) (χ

2
=9.45 (df 3); p=0.0239) and post-hoc pair-

wise comparisons revealed significantly lower r
2
 in C-I as compared to other 3 groups 

(p<0.05). C-I slope median deviated significantly from zero (p=0.0313); all other dependent 

measures for all groups were not significantly different from zero (p>0.05, Wilcoxon Sign 

Rank test). Thus, the changes in transfer conditions for writing and drawing are suggestive 

of the fact that the single visuomotor training session did not produce significant 

improvements in the paper-pen context. 
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Chapter V 

Discussion 

 

 The results from this study suggest that the experimental intervention of gradual 

reduction in visual display gain promoted comparable adaptive changes in handwriting in 

the healthy and PD intervention groups. Moreover, these adaptive changes appeared to be 

retained for at least one week post-training in both the groups; to our knowledge, retention 

of such sensorimotor learning has not been demonstrated in PD, which is the novel finding 

of this study.  Moreover, the retention of the novel visuomotor gain appears to be specific to 

the context in which it was acquired, as these adaptive changes did not transfer to a paper-

pen context.  However, it must be noted that the lack of transfer to a new context may have 

been due to the limited exposure to the novel gain change as that patients and controls 

experienced a single training session only. 

 

Visuomotor adaptation of handwriting size 

Adaptive increase in handwriting size is validated by the finding that in late 

adaptation, the stroke lengths for the PD-I group did not differ significantly from the C-I 

group. Further, the PD-I group maintained their quality of handwriting (i.e., smoothness) 

through the adaptation while the PD-P group showed a breakdown in movement 

smoothness as seen in significantly higher normalized jerk scores in the last block of 

adaptation. This intact ability to adapt to gradual visuomotor gain distortions in PD, 

particularly in the context of handwriting is consistent with the findings of Contreras-Vidal 

et al (2002). There are two possible factors mediating this acquisition of a new sensorimotor 

association in PD: dissociated/indirect visual feedback of handwriting and gradually 
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changing visuomotor gain distortions, i.e., a ramp decrease in display size of handwriting. 

Indirect visual feedback of handwriting trajectories projected on the screen display is 

proposed to recruit different transformational mechanisms between proprioceptive and 

visual feedback arising from a movement (Norris et al, 2001). This may be particularly 

amenable to handwriting size modulation in PD owing to their impaired proprioceptive 

hand position estimation (Contreras-Vidal & Gold, 2004). The dissociated visual feedback 

may minimize conflict from errors in hand estimation owing to distorted visual feedback of 

handwriting. Additionally, the strong reliance of patients with PD on visual feedback and 

cues, in the context of movement aided by a dissociated hence, non-conflicting visual 

feedback of handwriting movement, may have helped patients adaptively scale their 

handwriting size in this study. Interestingly, we found progressive increases in normalized 

jerk scores in the PD-P group concomitant with relative preservation of handwriting size, 

which were significantly higher in the last block of the visuomotor adaptation phase.  

Normalized jerk scores in the context of handwriting are reflective of coordination between 

the wrist and finger joints and these are increased in PD due to sub optimally functioning 

basal-ganglia thalamocortical networks (Teulings et al, 1997). This impaired coordination is 

most likely associated with an irregularity in the force scaling or modulation of the muscles 

at the wrist and fingers during handwriting. Our finding is particularly interesting in light of 

new findings about functional dissociation for force control in the basal ganglia (Spraker et 

al, 2007; Vaillancourt et al, 2007). These findings suggest a differential role for anterior 

basal ganglia nuclei in selection of force amplitude and posterior basal ganglia nuclei in 

scaling and sustenance of a selected force impulse. The latter functions are mainly seen in 

Globus Pallidus interna (GPi), subthalamic nucleus (STN), posterior putamen (Vaillancourt 

et al, 2007) and also in the ventral (posterior, lateral and medial) nuclei of the thalamus, 
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which form the basal ganglia outflow to the motor cortical areas (Spraker et al, 2007). In 

addition, the pre-supplementary motor cortical area (pre-SMA) is associated with both 

selection and production of force and is tightly coupled to the Globus Pallidus externa 

(GPe) in this integrative function for appropriately selecting, generating and modulating any 

movement.  

 These findings are particularly relevant to our handwriting task since it requires 

selection and production of appropriate amplitudes of force in a series; these strongly 

require optimal basal ganglia functioning with appropriate input to the primary motor and 

supplementary motor cortical areas. Predictably patients with PD have impairments in force 

modulation. However, it is particularly interesting to note that the placebo in our study 

highlighted a specific impairment in the balance between selection and 

production/sustenance of force amplitudes in PD. On the contrary, when the task 

requirements changed, as in requiring adaptive changes in scaling handwriting size due to 

the intervention, these impairments in balancing scaling and producing force were 

seemingly attenuated in PD.  

It is proposed that the use of the gradually changing gain distortions in this study 

engaged trial-by-trial error correcting mechanisms plausibly mediated by the cerebellum 

(Robertson & Miall, 1999; Kagerer et al, 1997) which may have modulated the input to the 

motor cortical areas favorably to mask this impairment in PD. This could be potentially 

associated with some interaction between the cerebellar and basal ganglia input to the cortex 

relaying at the thalamus. This finding is very relevant from a functional perspective because 

it suggests that such task demands may actually aid in maintaining quality of performance 

in PD on a trial-by-trial basis; future research can delve deeper in to more specific task 

needs and their applicability to functional contexts.  
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Retention and transfer of sensorimotor learning in PD 

The PD-I group showed comparable retention or savings in performance to the C-I 

group, as evidenced by significantly higher stroke lengths in retention testing 1 week post-

training (day 8). Evidence of retention of this new sensorimotor association is provided by 

the finding that the PD-I demonstrated significantly higher stroke lengths than the PD-P on 

day 8. This confirms that the PD-I did not merely re-adapt to the visual gain reduction on 

day 8, rather, they recalled a seemingly acquired sensorimotor representation for this 

movement gain modulation.  

Previous research has shown difficulty or even absence of retention of skill learning 

in PD (Mochizuki-Kawai et al, 2004). On the contrary, patients with PD demonstrated 

savings in performance after a lapse of one week in this study; this is most likely due to the 

visuomotor adaptation promoted by the gradually changing gain distortions. As previously 

described, these are more likely to engage cerebellar error corrective mechanisms than the 

context recalibrating basal ganglial networks, thus plausibly making it favorable for the 

neurophysiological status in PD. In fact, the use of gradually varying visuomotor distortions 

as against sudden ones, leads to better movement adaptation in elderly (Buch et al, 2003) 

and even PD for a center-out pointing task (Venkatakrishnan et al, 2008). This also 

corroborates with neurophysiological evidence for these sensorimotor associations and 

computations in the cerebellum (Kawato, 1999). Thus, the demonstration of ability to retain 

a sensorimotor association for a complex and sequential, functional task such as 

handwriting, from one session of training is a novel finding that certainly warrants further 

research. Since long term retention of at least one year of such acquired internal models of a 

novel environment has been demonstrated in non-human primates and humans (Yamamoto 
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et al, 2006), it would be very interesting to investigate the extent of the duration for such 

retention in PD. 

In this study, however, we did not find any significant changes in paper-pen writing 

and drawing, particularly in movement size, on day 8 as compared to baseline; this is most 

likely due to the fact that a single session of visuomotor training may have been insufficient 

to mediate transfer of acquired movement amplitude increases to a functional context such 

as paper-pen writing. Besides, a gain reduction greater than 50 % could act as a stronger 

stimulus for learning that may have some carryover to a different context, i.e. paper-pen 

writing. Further, paper-pen writing is a highly over-learned motor skill and hence making it 

much harder to transfer any positive gains from an experimental context to it.  Alternatively, 

it is also likely that visuomotor adaptation leads to acquisition of internal models that are 

analogous to learning use of a new tool, which can coexist with representations for other 

tools, i.e., paper-pen writing context, in this case. Hence, the possibility of transfer of 

acquired handwriting changes in visuomotor adaptation context (tool B), may not 

necessarily transfer to a pre-learned handwriting performance in paper-pen writing context 

(tool A). 

Interestingly, it must be noted that we found a greater reduction in normalized jerk 

scores for paper-pen writing post-training in the PD as compared to healthy intervention 

group (p<0.05); however this difference between pre- and post-training scores was not 

significantly different from zero for the PD intervention group. Nevertheless, it is a trend 

that supports our earlier hypothesis about preservation of movement quality across trials 

mediated by adaptation to gradually introduced sensorimotor errors. It would be interesting 

to see if this effect persists in paper-pen writing following training and if so, for how long, 
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since it could find potential application in designing therapeutic interventions and functional 

aids for patients with PD.   

 

Future Directions 

Patients with PD commonly present with handwriting deficits such as micrographia 

and the results of this study thus, could provide new direction for developing novel 

therapies for the management of fine motor skill deficits and advance understanding of 

adaptive sensorimotor control in PD. Specifically, investigation of retention of 

experimentally acquired improvements in movement size over longer periods of times could 

be instrumental in developing novel therapies. This also emphasizes the importance of 

studying neural mechanisms underlying potential transfer of performance changes from the 

visuomotor adaptation paradigm to different movement categories and body segments. 

Also, manipulation of task demands or environmental contexts could prove to be an 

interesting alternative to maintain or even improve quality of performance. These 

manipulations could potentially enable clinical translation of research findings using virtual 

environments and/or training in a broader context to alleviate motor deficits in persons with 

movement disorders. 
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APPENDIX I 

Health Status Questionnaire 
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APPENDIX II 

 

Mini Mental State Examination 
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APPENDIX III 

 

Hoehn & Yahr Rating Scale for Parkinson’s disease 

  
 

 

 

 

 

 

 

 

Hoehn & Yahr Scale 

Select one that describes the stage: 

  

      0: No visible symptoms of Parkinson’s disease. 

      1: Symptoms confined to One-side of the body. 

      2: Symptoms on Both-sides of the body-NO difficulty walking. 

      3: Symptoms on Both-sides of the body-minimal difficulty walking. 

      4: Symptoms on Both-sides of the body-moderate difficulty walking. 

      5: Symptoms on Both-sides of the body-unable to walk. 
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APPENDIX IV 

 

Unified Parkinson’s disease Rating Scale 
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APPENDIX V 

 

Informed Consent Form 
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