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Abstract

Rényi entropy refers to a generalized class of entropies that have been used in several applications. In this work, we
derive a non-parametric distance between distributions based on the quadratic Rényi entropy. The distributions are
estimated via Parzen density estimates. The quadratic complexity of the distance evaluation is mitigated with GPU-
based parallelization. This results in an efficiently evaluated non-parametric entropic distance - the kernelized Rényi
distance or the KRD. We adapt the KRD into a similarity measure and show its application to speaker recognition. We
further extend KRD to measure dissimilarities between distributions and illustrate its applications to statistical subset
selection and dictionary learning for object recognition and pose estimation.

Keywords: Rényi entropy, graphical processors, similarity scores, speaker recognition, subset selection, Gaussian
process regression, object recognition, pose estimation

1. Introduction

The entropy of a distribution measures the amount of
information contained by the distribution. The Shannon
entropy is the most widely used entropic measure. For a
random variable X whose probability distribution is p(x),
the Shannon entropy is given by,

H(X) = −
∫

p(x) log p(x)dx (1)

The Shannon Entropy is a specific case of a more general-
ized family of Rényi entropies characterized by a param-
eter α. The Rényi entropy of order α (α ≥ 0) is given
by

Hα(x) =
1

1− α
log

∫
p(x)αdx (2)

As α → 1, the Rényi entropy reduces to the Shannon en-
tropy (Eq. 1) in the limits as shown in [1]. The Shannon
entropy of a joint probability distribution can be sepa-
rated into the entropies of the individual random variables
of the joint distribution. These properties, coupled with
the analytical tractability of the Shannon measures for the
commonly encountered parametric distributions, has made
it the preferred choice for many problems. Despite this
advantage, the Shannon entropy may be suboptimal in
certain applications that require entropy estimation from
samples [2].

Sample-based entropy estimation generally involves the
pdf estimation (p(x)) followed by the entropy-integral ap-
proximation (H(X) or Hα(x)). The pdf estimation is
much harder at higher dimensions, leading to an incon-
sistent entropy estimate which can be detrimental to the

underlying application. However, it has been shown that
for a quadratic Rényi entropy (α = 2), the pdf-estimation
step can be bypassed by directly solving the integral with
a kernel density estimate plug-in [1]. This results in a
consistent estimator even for higher dimension, as is illus-
trated later in Section 2. Motivated by this, we consider
the quadratic Rényi entropy and solve the integral with a
kernel density estimate plug-in following [1]. We adapt the
resulting distance measure to problems in speaker recog-
nition, object recognition and pose estimation; improve-
ments are seen in each case. Throughout this paper the
term Rényi entropy will refer to the quadratic Rényi en-
tropy (α = 2).

The paper1 is organized as follows. In Section 2, we
present expressions for the non-parametric quadratic Rényi
entropy using the kernel density plug-in as well as an ex-
pression for the distance between two distribution which
we call the kernelized Rényi distance (KRD) measure. We
illustrate the inconsistency in sample based estimation of
KL divergence and show empirically that this is absent
for the KRD measure. We finally discuss the acceleration
strategies to mitigate the O(N2) computational cost of
KRD evaluation between two distributions obtained from
O(N) samples. In Section 3, we adapt the KRD into a
similarity measure and show its application to a speaker
recognition problem. We adapt the KRD to a dissimilarity
measure for a low rank subset selection problem in Section
4. We develop a greedy algorithm based on the KRD, val-
idate the algorithm and apply the algorithm to Gaussian

1This paper synthesizes and extends results which were presented
in [3] and [4].
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process regression and object recognition. Section 5 con-
cludes the paper.

2. Kernelized Rényi Distance (KRD)

The quadratic Rényi entropy (for α = 2 in Eq. 2) is
given by,

H2(x) = − log

∫
p(x)2dx. (3)

If p(x) is known, the entropy can be computed using the
integral above. In many practical scenarios, the density
is unknown, and must be estimated from samples drawn
from the distribution. There are parametric and non-
parametric ways of estimating the density function. In
the parametric case, a particular form for the density is
assumed and the parameters associated with the form are
estimated from the samples, e.g. via the expectation-
maximization algorithm. A non-parametric approach to
density estimation uses a kernel window and estimates the
density as a sum of kernel functions of the available sam-
ples from the distribution. Using kernel density estimation
for p(x) as in [5], we get

p(x) =
1

N

N∑
i=1

Kh(x, xi), (4)

xi indicates the sample location, Kh(x, xi) is a kernel func-
tion, quite often the Gaussian kernel,

Kh(x1, x2) =
1

h
√
2π

exp

(
−|x1 − x2|2

h2

)
, (5)

with h the bandwidth that must be selected according to
the data. This approach is preferred when the underly-
ing distribution is unknown. Provided there are sufficient
samples, a non-parametric approach provides unbiased es-
timates. Plugging-in Eq. (4) for p(x) to Eq. (3), we get

H2(x) = − log

∫ (
1

N

N∑
i=1

Kh(x, xi)

)2

dx (6)

= − log
1

N2

N∑
i=1

N∑
j=1

∫
Kh(x, xi)Kh(x, xj)dx.

For the Gaussian kernel,∫
Kh(x, xi)Kh(x, xj)dx = K̂ĥ(xi, xj), (7)

where K̂ is also a Gaussian kernel with bandwidth equalling
sum of the bandwidths of the two Gaussian kernels [6]. Us-
ing this relation in Eq. (6),

H2(x) = − log

 1

N2

N∑
i=1

N∑
j=1

K̂ĥ(xi, xj)

 . (8)

Consider two distinct distributions with densities p and
q, with p defined by the set of data points,Dp = {xp1, . . . , xpN}
and q defined by the set of data-points,Dq = {xq1, . . . , xqM},
the distance between p(x) and q(x) is,

H2(p∥q) = − log

 1

NM

N∑
i=1

M∑
j=1

K̂ĥ(xpi, xqj)

 . (9)

This is called Rényi cross-information potential [1]. This
was first defined and analyzed by Principe et al. [1] and
has since been used in several applications including clus-
tering [7], visual tracking [8] and source separation [9].
We shall refer to this measure (Eq. 9) as the Kernelized
Rényi Distance (KRD). The KRD is symmetric and
non-parametric. However, it is not a complete distance,
because it does not satisfy triangular inequality.

Accelerating KRD evaluation: The practical use of
KRD is hindered by its memory and computational com-
plexity. Evaluating the KRD between two distributions,
each represented by N data-points, would require (O(N2))
operations. It should be noted that the core computation
in Eq. (9) is the summation of the Gaussian kernel. There
are two main approaches to accelerate the summation; we
discuss these briefly here.

ϵ-exact approximations exist to evaluate Eq. 9 in O(N),
e.g. FIGTREE [10]. These algorithms evaluate the KRD
so that the error (absolute/relative) is ≤ ϵ in some norm.
The key idea here is to utilize the structure of the prob-
lem along with special data structures to efficiently ap-
proximate the sum in O(N logN) time. The advantage
of these accelerations is that the computational complex-
ity can be linear (O(N)). However, this performance is
data-dependent and perform very badly at large data di-
mensions (> 10).

The other class of acceleration approaches include par-
allelizing the summation on multiple-cores, example GPUML
[11]. The asymptotic computation complexity is still O(N2)
but the availability of computational resources lead these
approaches to give comparable if not better accelerations
compared to the approximation algorithms for some prob-
lems [11]. These approaches are effective upto atleast 100
dimensions (more careful strategies can yield good accel-
erations even beyond this dimension). We therefore chose
GPUML to accelerated KRD evaluations in our paper.

Inconsistency of sample-based KL divergenceGockay
et al. [12] observe that sample based estimation of the
KL-divergence exhibits variability at higher dimensions
because it is ratio-based (other ratio-based distances like
Chernoff distance are also inconsistent at higher dimen-
sions for sample based estimation). In this experiment, we
illustrate this fact by using synthetic data and also show
that the KRD measure (Eq. 9) does not exhibit such in-
consistency.

In this experiment, we generated 10, 000 samples from
two Gaussian distributions, N(µ, 0.25I) and N(−µ, 0.25I),
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where µ = {1, . . . , 1} and I the identity matrix, for various
data dimensions. KL divergence between two Gaussian
distributions with means µ1 and µ2 and variances Σ1 and
Σ2 is given by,

KL(p||q) =
1

2
ln

|Σ1|
|Σ2|

+
1

2
tr
[
Σ1(Σ

−1
1 − Σ−1

2 )
]

+
1

2
tr
[
Σ−1

2 (µ1 − µ2)(µ1 − µ2)
T
]

(10)

This distance is made symmetric by taking the average
of KL(p||q) and KL(q||p). Similarly the quadratic Rényi
cross entropy between two Gaussian distribution is given
by,

KRD(p||q) = N (µ2|µ1,Σ1 +Σ2) (11)

where N (x|µ,Σ) is the evaluation of the Gaussian distri-
bution with mean µ and variance Σ evaluated at x [13].

We evaluate the KRD between samples for all the di-
mensions along with the KL divergence based on the sam-
ples. For comparison we also evaluate the KL-divergence
and quadratic Rényi entropic distance between the distri-
butions based on the first and second order statistics. As
the dimension increases, the distance between distribution
increases (as the means of the Gaussian are now more and
more far placed) and is expected to be reflected in the
corresponding measures. The normalized distance scores
across dimension for various sample sizes (N) is shown in
Fig. 1.
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Figure 1: Validation of the Kernelized Renyi Distance; Entropic dis-
tances between Gaussian distribution for various dimensions, dis-
tances evaluated analytically based on the underlying distribution
and from samples (based on density estimates)

It can be seen that the trend followed by the sample-
based KRD score compares favorably with the statistics-
based distance. However the trend of the sample-based
KL divergence is skewed at higher dimensions illustrating
the inconsistency. The variances of the corresponding KL
sample-based distances are shown in Fig. 2, which indi-
cates the associated instability. The variance of the other
measures were < 10−7 across several trials.

It was observed that the sample based KL divergence
estimates do exhibit the desired trend when estimated
from a very large number of samples (∼ 75, 000 samples

0 5 10 15

10
−5

10
0

KL − samples

Dimension

V
ar

ia
nc

e

Figure 2: Variance of the KL based on sample-based estimates

for 15 dimensions). However, in a practical scenario, this
critical sample size required to remove the underlying in-
consistency in the trend is either unknown or is beyond
the modeler’s control.

3. KRD for similarity measurement

We first explore the application of KRD in Eq. 9 as an
inter-class similarity measure (each class represented by a
set of feature points) in the context of speaker recognition.

Fig. 3 shows a generic text-independent speaker recog-
nition system that will be used in this paper. Once a
speech signal is available, the first step in any recognition
system is to extract features vectors from the signals. Once
features are extracted, there are many approaches to build
the speaker model. Gaussian Mixture Models (GMM) [14]
build a semi-parametric model in feature space, and are
one of the widely used approaches in speaker recognition.
Alternatively, it is possible to measure the distance be-
tween feature vectors from the reference and test signals
[15], and is the approach followed here. An advantage of
such an approach is very low training time.

There have been several information-theoretic and sta-
tistical measures that have been used to measure scores
between speech signals. Second-order statistical measures
[15] like sphericity and Gaussian likelihood have been used
in speaker identification, which use only the mean and vari-
ance of feature vectors. Soong et al. [16] use a vector quan-
tizer based codebook along with the Euclidean distance
to compare speech signals. Information theoretic mea-
sures like KL-divergence and Bhattacharya distance have
also been used in the speaker recognition framework [17].
However, the underlying feature distributions are assumed
to be Gaussian in all these works. This can be limiting
when the underlying distribution is non-Gaussian. Semi-
parametric Gaussian mixture models [14] address this issue
to some extent, and are widely used in speaker recognition.
A disadvantage with semiparametric and non-parametric
approaches is the associated computational complexity,
which make them undesirable for large problems. But
however, in the KRD measure (Eq. 9), we have already
addressed the computational complexity using GPUs.

To use KRD as a scoring function in speaker recog-
nition (Fig. 3), it is necessary to formulate the speech
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Figure 3: A modular representation of a generic speaker recognition system

signals (reference and test) as samples drawn from distri-
butions. The feature selection in the recognition system
extracts features from multiple overlapping frames of the
speech signal. Suppose there are N and M overlapping
frames in the reference and the test signal respectively,
and d features are extracted, then we will have N × d
vector representing the reference signal, and a M × d vec-
tor representing the test signal. We formulate this feature
set to be samples drawn from the corresponding feature
distribution of the speaker. This would make sense in a
text-independent speaker recognition framework because
the order of the features does not matter in this case. Us-
ing Eq. (9), we can thus evaluate the matching score.

For this experiment, we used the speech signals from
the TIMIT [18] database, which consists of data from 630
different speakers. Each sample for a speaker contains one
sentence uttered by the speaker and there are totally 10
samples per speaker. We extracted 13 mel-frequency cep-
stral coefficients (MFCC) coefficients from 25ms speech
frames with 10ms overlap [19]. For all our experiments,
the features were centralized and normalized to unit vari-
ance (except for the approaches that used only the first
and second order statistics of the feature vectors). The
method is of course generic enough to be used with other
features.

Experiment 1 - Speaker Verification: Speaker veri-
fication system accepts a sample X as a speaker S if the

likelihood ratio P (X|S)
P (X|S′) > T , where T denotes a thresh-

old. The likelihood P (X|S) denotes the probability that
the features from the sample X were generated by speaker
S. Similarly, P (X|S′) denote the probability the features
are from an imposter. The threshold T can be adjusted so
that the false acceptance rate (FAR) (an imposter being
identified as a speaker) and the false rejection rate (FRR)
(a speaker being rejected as an imposter) are equal. We
used this Equal Error Rate (EER) criterion to evaluate
the performance of our measure.

We compared our scoring function with the Gaussian-
likelihood measure [15] (GaussLL), Euclidean distance be-
tween vector quantized codebook [16] (VQ), KL-based mea-
sure [17] (KLa), KL-scores evaluated from the samples
(KLs), and GMM-UBM based score [14]. The Matlab
kmeans function was used to build the codebook of size
50. The GMM was built using statistical toolbox in Mat-
lab, and number of mixtures was chosen to be 32 with
diagonal covariance for each speaker. The universal back-
ground model [14] (UBM) for the imposter was built by

collecting feature samples from a large number of speakers
in the database. For the GMM, the UBM had 256 mix-
tures, whereas for other measures the entire set of UBM
samples were used.

We evaluate each of the above scores for a test signal
with respect to the reference speaker and imposter speaker
models and compute the ratio between the two, which is
then used for threshold comparisons. The equal error rate
obtained in this way is reported in Table 1 for each of the
scores. It can be seen that the proposed scoring function
outperforms the other approaches in all the cases.

In Table 1, we have also reported the average time
taken to evaluate the score between two sets of feature
vectors (speaker/imposter). The measures GaussLL and
KLa take the least time. However, these measures use
only the first and second order statistics for score evalua-
tion and hence inexpensive to compute. While our score
is more expensive, it still takes less time than all advanced
approaches (VQ, GMM, and KLs).

Table 1: EER for various methods in speaker verification exper-
iment. Time reported is the average time of one score evaluation.
Time to build the imposter models for GMM and VQ is not included.

VQ KLs KLa GaussLL GMM KRD

Time 0.7s 4.5s 0.03s 0.04s 0.4s 0.16s
EER 5.33 6.67 6.67 6.00 8.00 4.67

Experiment 2: Speaker Identification In speaker iden-
tification problem, the speaker is known a priori to be a
member of a set of N speakers and a new test sample must
be classified into one of N classes. In this experiment, we
used the KRD measure with a 3-nearest neighbor clas-
sifier for speaker identification. We repeated the experi-
ment with the GaussLL and VQ measures also using the
3-nearest neighbor classifier. We also built an SVM (with
an rbf kernel) based speaker identification system [20] for
comparison.

For each case, we use 5 samples for each speaker to do
the training and test on the remaining samples. We evalu-
ated the performance of each of the approaches for 10, 25,
50, 75, and 100-class scenarios. The classification results
are shown in Table 2. It can be seen that the proposed
approach performs better than the other approaches for
all the cases.

4



Table 2: Classification accuracy for various methods in speaker iden-
tification experiment.

# of speakers VQ GaussLL SVM KRD

10 96.00 94.00 94.00 96.00
25 90.40 91.20 82.40 92.00
50 70.67 73.87 66.80 78.40
75 64.40 71.60 61.07 74.40
100 54.80 63.20 55.80 64.80

4. KRD based subset selection

With the improvements in learning algorithms, the com-
plexity involved in learning has also increased along with
the amount of data available. Therefore choosing the most
informative subset of the data for learning has generated
more interest. In subset selection, given a set of data of
sample size N , we wish to extract a representative sample
of size M , with M < N and with the smaller dataset being
statistically close to the larger one. The distance measure
(Eq. 9) can be used in a greedy strategy to extract this
statistically valid subset and the algorithm thus developed
has several applications and we discuss two of these here.

Sparse learning algorithms use the sophisticated ap-
proaches with very few exemplar points are gaining pop-
ularity, for example, SVM[21]. On the other hand, proba-
bilistic algorithms like Relevance Vector Machine (RVM)
[22] and Gaussian Process Regression (GPR) [23] which
not only provide the predictions, but also a confidence
value for the prediction are also gaining popularity. Partic-
ularly, Gaussian Process Regression has a non-parametric
formulation. However, GPR is hindered by its cubic com-
putational complexity. In order to overcome this problem,
sparse approaches are often used. Sparse approaches fall
in three classes; 1.) a low rank approximation (chapter 8
in [23]); 2.) Learning from a subset of the original data
[24, 25, 26]; 3.) learning using mixture of experts like ap-
proach [27].

Dictionary-learning is a key problem in several vision
and pattern recognition tasks. For example, a dictionary
of codewords learnt via vector quantization (VQ) is used
in object recognition [28] and the dictionary is later used
for forming histograms from objects. The histogram of the
codewords are then used for training and classification of
object categories. The key idea in the utilization of VQ in
object recognition is to find cluster centers which are then
considered as representatives of the set. It is possible to
use our subset selection approach in place of VQ to learn
dictionaries with the most representative set.

Subset selection algorithm Existing algorithms for sub-
set selection can be categorized into two types, greedy and
clustering-based approaches. Greedy approaches [25, 24,
26] define a cost function to minimize and add data to
the subset that will minimize the cost. Clustering based
approaches (eg. Vector Quantization) cluster datapoints

into non-overlapping clusters and use the cluster centers
as a low ranked representation. Both approaches are used
for sparsification in learning and vision applications. Our
objective is to use the KRD to develop a greedy algorithm
to select a representative subset of a large dataset.

If the original distribution is denoted as p(x), the sub-
set selection can be formulated as forming a distribution
q(x) using data-points from p(x) such that p(x) and q(x)
are as close to each other as possible. In other words, we
would want to add the next point in the subset to be drawn
from the original set in such a way that H2(p∥q) is mini-
mized by this addition. It is easy to see that for a direct
use of the measure in Eq. (9) the subset will be clustered
around the mode of the distribution. However for a subset
to be actually representative of the data, it would be desir-
able to capture the significant outlier points as well. This
can be accomplished by minimizing the distance between
the subset distribution and the data distribution relative
to the distance of the distribution with itself. This is done
above by taking the ratio of the contribution of each train-
ing data element to the two distance measures, and the
modified measure is given by,

H2(p∥q) = − log

1− 1

NM

M∑
j=1

N∑
i=1

(
K̂(xpi, xqj)

K̂(xpi, xpj)

)
(12)

where the ratio
K̂(xpi,xqj)

K̂(xpi,xpj)
is the relative distance contri-

bution. The subtraction from 1 is done to to formulate
subset selection as a minimization. For numerical conve-
nience, we clamp all ratios

K̂(xpi,xqj)

K̂(xpi,xpi)
above 1 to 1 and set

log 0 = 0.
Greedy algorithms for subset selection fall into two cat-

egories; they either singly add data-points from the origi-
nal set to a subset till the distance between the original and
new distribution is less than a pre-defined threshold, or
they add a pre-defined number of data-points in batches.
We use the first approach. Suppose a subset of size M
needs to be extracted from a dataset of size N , the greedy
algorithm would add the data points one-by-one. For each
point, the distance measure is evaluated for all the points
of the distribution. This step has a complexity of O(MN)
and this is repeated for M points, thus leading to an over-
all complexity of O(M2N). However, we have parallelized
this computation efficient on a GPU using GPUML [11].

Table 3: KRD-based subset section algorithm

Given: Data D = {x1, . . . , xN}
Initialize subset I to be empty
FOR counter = 1 TO M (input subset size)
Define set J = all elements in D not in I
Add an element (el) from J to I
which minimizes H(pD∥pI) using Eq. (12)

Remove el from J
Output I
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We exploit the facts that the distance measure in Eq.
(12) is symmetric and that the influence of each sample
point is additive (log is a montone function). To minimize
the distance at each iteration, we consider the contribution
of each data-point in the original dataset to the distance,
and add the point to the subset that makes the largest
relative distance contribution.

Validation - Kernel density comparison: In order to
further validate our approach to subset selection, we drew
2000 samples from the 15 normal density mixtures in [29].
We estimated the underlying density using the standard
kernel density estimation, utilizing the entire set of drawn
samples. We then used KRD based subset selection to re-
duce the number of samples to 20% of the sample size, and
estimated the kernel densities using this low ranked rep-
resentation. The results for 6 of the 15 distributions are
shown in Fig. 4. It can be seen that our low ranked esti-
mates are similar to those obtained from the entire sam-
ples thus validating the approach further. Notice that the
KDE on the entire dataset also misses some fine features
because of finite sampling.
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Figure 4: Density estimates of the normal density mixtures in [29]
using the entire samples and our low rank subset

Experiment 1: Gaussian Process Regression: Gaus-
sian process regression is a probabilistic kernel regression
approach which uses the prior that the regression function
(f(X)) is sampled from a Gaussian process. For regres-
sion, given a set of datapoints D = {X, y}Ni=1, where X
is the input and y is the corresponding output, the func-
tion model is assumed to be y = f(x) + ϵ where ϵ is a
Gaussian noise process with zero mean and variance σ2.
Rasmussen et al. [23] use the Gaussian process prior with
a zero mean function and a covariance function defined by

a kernel K(x, x′) which is the covariance between x and x′,
i.e. f(x) ∼ GP (0,K(x, x′)). They further show that with
this prior, the posterior of the output y is also Gaussian
with mean m and covariance V given by,

m = k(x∗)
T (K + σ2I)−1y

V = K(x∗, x∗)− k(x∗)
T (K + σ2I)−1k(x∗)

where x∗ is the input at which prediction is required and
k(x∗) = [K(x1, x∗),K(x2, x∗) . . . ,K(xN , x∗)]. Herem gives
the prediction at x∗ and V the variance estimate of pre-
diction.

The core complexity in Gaussian processes involves so-
lution of a linear system involving the kernel covariance
matrix and hence is O(N3). One approach to overcome
this is to obtain a sparse representation (subset) of the
original dataset which retains the information contained
in the original data. For example, Online Gaussian Pro-
cess (OGP) [25] uses a set of Basis Vectors (BVs) to train
and predict the GP model. Similarly, the Informative Vec-
tor Machine (IVM) [24] uses a KL-like distance measure to
select a representative subset by approximating the pos-
terior. Sparse Pseudo-input Gaussian processes (SPGP)
[26] performs a sampling on the training points to obtain
pseudo training data which is then used for training and
prediction. Each of these approaches has a computational
complexity of O(MN), where N is the size of the origi-
nal data and M is the size of the subset. Along the same
lines, we propose the use of our subset selection algorithm
to obtain a subset of the training data, by using a com-
bined input-output space, an idea inspired by [8] where a
joint feature-spatial space is used for tracking. Once the
subset was selected, we trained and predicted the Gaussian
Process model [23].

In order to test the proposed algorithm with Gaussian
process regression, we performed regression with two stan-
dard datasets, Abalone and PumaDyn8NH [30]. We com-
pared the performance with popular sparse data selection
methods for Gaussian processes - IVM and SPGP. Fig. 5
shows that our algorithm performed much faster than the
other methods for comparable error residues.

Note that the approaches with which we compared our
method were tuned low-ranked approximations designed
specifically for Gaussian process regression, thus our un-
tuned subset selection performs on par with the other
tuned approaches.

Pose Estimation: Motivated by the superior computa-
tional performance of the KRD-based sparse GPR, we ap-
plied our approach to learn the head pose from human face
images. Sparse regression based pose estimation has been
done in several papers, for example, [31] uses RVM to train
images to learn poses, [32] uses an online Gaussian process
algorithm to learn head pose from images. For this exper-
iment, we used the PIE dataset [33] after annotating the
image. For the purpose of this experiment, we considered
only the horizontal orientations of the human face. The
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Figure 5: Comparison of the performance of the training and pre-
diction with our approach, Informative vector machine and Sparse
Pseudo-input Gaussian Process with Abalone and PumaDyn8NH

images were annotated with a score between −1 (left) to
+1 (right) based on the horizontal orientation of the hu-
man face. A randomly selected class from the dataset is
shown in Fig. 6 along with the score assigned to them.

Figure 6: This is a randomly chosen class of pose images from the
PIE dataset. The images were assigned scores of {-1,-0.75,-0.5,-
0.25,0,0.25,0.5,0.75,1} from left-to-right

Each image was projected onto a 30 dimensional sub-
space using PCA and were trained to learn the scores as-
signed to the image. Further, we also compared the results
with popular sparse learning methods Relevance Vector
Machine (RVM) (from [34] and Support Vector Machine
(SVM) (from [35]. The error in prediction and perfor-
mance are tabulated in table 4. In all the experiments,
90% of the images were used for training and the learn-
ing method was tested on the remaining 10%. 20% of the
training data were selected by our method which was then
used for training the GP model. Note that, both RVM and
GPR are probabilistic regression approaches and provide a
variance in prediction as well, a key difference from SVM.
KRD-based GPR is faster than RVM. It is slower than
SVM, but the additional computational cost is to provide
the variance in predictions.

Experiment 2: Visual words and object recogni-
tion We applied our subset selection algorithm to object
recognition. The bag-of-features approach [36, 28] have
been widely used for object categorization because of its
simplicity and good performance. The basic steps in bag-
of-feature based object recognition can be summarized as:

1. Features are extracted from an image by either div-
ing it into grids or using interest point detectors.

Table 4: Comparison of performance of our method with SVM and
RVM for pose estimation. Each error entry gives the mean absolute
error between the predicted face pose score and the actual score
assigned to the image. Note that the prediction using RVM and GPR
involved the evaluation of the variance (confidence) also, whereas the
SVM computed only the predictions

Method Mean Absolute Error Time taken for
in prediction prediction (s)

GPR 0.0261 20.7
RVM 0.0431 50.4
SVM 0.0755 9.9

2. The features are then represented by a set of de-
scriptors. One of the popular descriptors are the
Scale-Invariant Feature Transform (SIFT) [37].

3. The next step is to generate a codebook from the
descriptors. In this step, the feature descriptors are
Vector Quantized (VQ) and the centers of the clus-
ters are defined to be the codewords of the dictionary
of object categories.

4. Features from the images can now be expressed as a
histogram of all codewords in the dictionary.

5. The histogram is used to train a classifier for object
categorization.

6. For an unlabeled image, the histogram of codewords
is extracted, and then the trained classifier is used
for classification.

We replace the VQ step above with the KRD-based
subset selection approach to learn the codebook. A stan-
dard k-means based vector quantizer was used for com-
parisons in this experiment. We use the SIFT descriptors
of the image extracted after running an interest-point de-
tector using the toolbox from [38]. In order to provide a
basis for comparison, we also use a VQ based dictionary.
Once the dictionaries are obtained, the histogram of code-
words are extracted from the image. We use a 5-Nearest
Neighbor classifier to compare the performance of the two
dictionaries. The images used for the training and testing
were obtained from the Caltech-101 dataset [39].

We randomly choose classes from the Caltech-101 dataset
and extracted dictionaries using 5 images from each class
with the two approaches mentioned. The dictionaries were
used to obtain codeword histogram from each image. The
trained histograms are then used to classify unseen test
images using a 5 nearest neighbor search. We repeated
the experiment for 2, 3, 4, 5 and 10 class prediction, in
each case the size of the dictionary was set at 30 times
the number of classes trained. Table 5 shows the overall
accuracy and time taken for dictionary formation for our
approach and VQ based approach. It can be seen that,
with comparable accuracy, our approach is much faster
than the VQ based approach, especially as the number of
classes increases.
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Table 5: Accuracy of classification when objects from different num-
ber of classes were trained and predicted. The size of the dictionary
was set to be 30 times the number of classes of object present. Each
entry here indicates the over-all percentage of correct prediction, and
the time taken for dictionary formation is given within braces

#-classes VQ-based KRD-based

2 77.8 (24.1s) 71.3 (18.7s)
3 62.3 (36.1s) 63.8 (26.7s)
4 78.4 (95s) 78.4 (83s)
5 61.4 (175.3s) 62.7 (103.6s)
10 47.8 (313.3) 52.7 (175s)

5. Conclusions

In this paper we have explored various applications of
a quadratic Rényi entropy based distance measure (ker-
nelized Rényi distance or the KRD) obtained from a non-
parametric formulation via kernel density estimation. We
use GPU parallelization to accelerate the distance compu-
tation resulting in an efficiently computed non-parametric
entropic distance. The KRD is adapted into similarity
score for speaker recognition. We further developed a
KRD-based subset selection algorithm with applications
in object recognition and low ranked learning. The results
in each case are promising.
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