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Being able to attend and recognize speech or a particular sound in complex listening 

environments is a feat performed by humans effortlessly. The underlying neural 

mechanisms, however, remain unclear and cannot yet be emulated by artificial 

systems. Understanding the internal (cortical) representation of external acoustic 

world is a key step in deciphering the mechanisms of human auditory processing. 

Further, understanding neural representation of sound finds numerous applications in 

clinical research for psychiatric disorders with auditory processing deficits such as 

schizophrenia. 

In the first part of this dissertation, cortical activity from normal hearing 

human subjects is recorded, non-invasively, using magnetoencephalography in two 

different real-life listening scenarios. First, when natural speech is distorted by 

reverberation as well as stationary additive noise. Second, when the attended speech 

is degraded by the presence of multiple additional talkers in the background, 



 

  

simulating a cocktail party. Using natural speech affected by reverberation and noise, 

it was demonstrated that the auditory cortex maintains both distorted as well as 

distortion-free representations of speech. Additionally, we show that, while the neural 

representation of speech remained robust to additive noise in absence of 

reverberation, noise had detrimental effect in presence of reverberation, suggesting 

differential mechanisms of speech processing for additive and reverberation 

distortions. In the cocktail party paradigm, we demonstrated that primary like areas 

represent the external auditory world in terms of acoustics, whereas higher-order 

areas maintained an object based representation. Further, it was demonstrated that 

background speech streams were represented as an unsegregated auditory object. The 

results suggest that object based representation of auditory scene emerge in higher-

order auditory cortices. 

In the second part of this dissertation, using electroencephalographic 

recordings from normal human subjects and patients suffering from schizophrenia, it 

was demonstrated, for the first time, that delta band steady state responses are more 

affected in schizophrenia patients compared with healthy individuals, contrary to the 

prevailing dominance of gamma band studies in literature. Further, the results from 

this study suggest that the inadequate ability to sustain neural responses in this low 

frequency range may play a vital role in auditory perceptual and cognitive deficit 

mechanisms in schizophrenia.  

Overall this dissertation furthers current understanding of cortical 

representation of speech in complex listening environments and how auditory 



 

  

representation of sounds is affected in psychiatric disorders involving aberrant 

auditory processing.  
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1 Introduction 
Sound is one of the dominant forms of how we perceive the external world around 

us, alongside of vision. Speech, a class of sounds, is the vital form of human 

communication, on its way to become the most important form of human-machine 

interaction. The ability to attend to and perceive speech in complex listening conditions 

such as noisy reverberant environments or in presence of additional talkers are 

mathematically ill-posed problems, yet routinely solved by human brain robustly and 

with little effort. Such robustness, however, is lost with hearing impairment (Festen and 

Plomp, 1990; Marrone et al., 2008b, a) and cannot yet be achieved by artificial speech 

recognition systems (Lippmann, 1997; Cooke et al., 2010; Davis and Scharenborg, 2016), 

despite recent success of recurrent neural networks in speech recognition (Yu and Deng, 

2014). Identifying the neural representations of speech in complex listening conditions is 

the first key step in understanding the mechanism of respective auditory processing in 

humans. This is not only of great interest in auditory neuroscience, but also has potential 

applications in artificial speech recognition systems as well as design of better hearing 

aids for the impaired. Apart from basic scientific and technological advancement, 

understanding cortical processing of sounds finds numerous applications in medical 

community. Deficiencies in cortical processing of sounds can be indicative of certain 

mental disorders (Iliadou and Iakovides, 2003). For example, auditory hallucinations, 

which are hallmark feature of schizophrenia, are thought to be cause by aberrant cortical 

processing and perception of sounds (McLachlan et al., 2013) and hence understanding 
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neural representation of sounds can help in designing new diagnostic measures for 

psychiatric/mental disorders.  

Recognition of speech by humans relies on its spectro-temporal modulations (i.e., 

variations of energy over time and frequency scales (Chi et al., 1999; Chi et al., 2005)), 

with slow temporal modulations (<10 Hz) reflecting the syllabic and phrasal structure of 

speech (Greenberg et al., 2003; Poeppel et al., 2008; Chait et al., 2015) and fast temporal 

modulations (>100 Hz) indicating the pitch and carrier information (Chi et al., 2005). 

Non-invasive neuro-imaging techniques such as magnetoecephalography (MEG) 

(Hamalainen et al., 1993) and electroencephalography (EEG) (Niedermeyer and Lopes da 

Silva, 2005) are sensitive to activity in human cortex and have millisecond time 

resolution, enough to resolve the neural activity phase locked to the slow temporal 

modulations in speech (Ding and Simon, 2009; Wang et al., 2012). Utilizing the neural 

representations of these slow temporal modulations, this dissertation investigates how 

complex auditory scenes are encoded, from the mixture of the entire acoustic scene, to its 

separate individual sources in different areas of auditory cortex, with a special emphasis 

on speech. We focus on two such complex auditory scenes, speech in the presence of 

reverberation as well as noise and speech in the presence of multiple background talkers. 

The investigation focuses on neural mechanisms that employ temporal encoding, 

allowing us to exploit the strong temporal nature of speech. The slow temporal and 

spectral modulations in speech and other natural sounds are most critical for their 

perception (Shannon et al., 1995; Sheft, 2008; Elliott and Theunissen, 2009). Hence, we 

also investigate the deficiencies in neural representation of sounds at slow rates using 

auditory steady state response (ASSR) paradigm in Schizophrenia patients, in an effort to 
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discover new objective measures for otherwise subjectively diagnosed disorder. This 

dissertation consists of three studies and the rest of this chapter presents its organization. 

1.1 Outline 
A review of human auditory processing, neuro-imaging techniques (MEG & 

EEG) and analysis methods used in this dissertation are provided in Chapter 2. 

The first study (Chapter 3) addresses the neural representation of speech in 

reverberant as well as noisy conditions. Using natural speech distorted by reverberation 

and spectrally matched additive noise at varying degrees of severity, it is demonstrated 

that auditory cortex maintains both distorted as well as distortion free representations of 

speech. Further, these neural representations remained robust to additive noise in absence 

of reverberation but demonstrated a detrimental effect in presence of reverberation 

suggesting differential encoding mechanisms for additive and convolutive (reverberation) 

distortions of speech. 

The second study (Chapter 4) addresses the neural representation of an auditory 

scene, in a multi-source scenario. Using cortical tracking of (continuous) speech, in a 

multi-talker auditory scene, it is demonstrated that the early neural responses, which 

primarily originate from core auditory regions, represent the foreground (attended) and 

background (unattended) speech streams with no significant difference, whereas the late 

neural responses, which typically originate from higher order auditory regions, represent 

foreground with significantly higher fidelity than background. Further, it is shown that 

while early neural responses represent auditory scene in terms of acoustics, the late 

responses maintain an object-based representation. Additionally, it is shown that even 

though there is more than one unattended speech stream, the neural representation of 
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background remains unsegregated. This study has been accepted for publication by the 

Journal of Neuroscience. 

The third study (Chapter 5) addresses low frequency auditory synchronization 

deficiencies in schizophrenic patients compared with normal subjects and first-degree 

relatives of patients.  Using electroencephalography recordings in an ASSR paradigm, it 

is demonstrated that patients exhibit a greater reduction of ASSR power in delta band 

(2.5 Hz) compared with traditionally investigated gamma band (40 Hz) responses. 

Critically, reduced delta band ASSR in patients was associated both with more severe 

longitudinally experienced auditory deficits and also poorer verbal working memory, 

supporting the use of low frequency ASSR to study the etiology of schizophrenia. This 

study has been published in Schizophrenia Bulletin (Puvvada et al., 2017). 

Finally, chapter 6 provides a summary of findings of the current work, along with 

possible future directions to the studies presented in this dissertation. 
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2 Background: 

2.1 Human auditory system 

2.1.1 Auditory pathway 
The path through the nervous system of how sound is processed in humans, 

known as the auditory pathway, starts at the ear and proceeds through the cortex. 

Auditory system can mainly be decomposed into two parts, peripheral and central 

auditory systems. Here we provide a brief overview of major organs involved and their 

functional role in forming perception from sound.  

 

Figure 2.1:  A schematic view of peripheral auditory system 

Figure 2.1 shows a schematic of peripheral auditory system, consisting mainly of 

Pinna, Ear canal, Tympanic membrane (Ear drum), Ossicles (Malleus, Incus and Stapes), 

Cochlea and Auditory/cochlear nerve. The function of the Pinna is to perform spectral 

transformation through spatial filtering, amplifying the incoming sound in the spectral 

range of human speech. Also, spatial filtering by Pinna embeds a spectral notch, an 
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important cue in vertical sound localization (Hebrank and Wright, 1974). Further 

amplification of incoming sound, in speech related spectral range, is performed by Ear 

canal and Ear drum before delivering the information to Ossicles in the form of 

mechanical vibrations, through Tympanic membrane, which in turn transfers the acoustic 

information to fluid-movements in Cochlea. Sound is transferred into (electrical) neural 

activity in Cochlea. Basilar membrane, a tonotopically arranged structural element that 

separates two liquid-filled tubes and runs along the Cochlea acts as a filter bank (Figure 

2.2, adapted from Ding (2012)). Stretched horizontally, Basilar membrane is about 35 

mm long, with its base tuned to high frequencies and apex tuned to low frequencies. The 

(inner) hair cells on the basilar membrane transform the fluid vibrations into electrical 

neural activity, which in turn is picked up by Auditory nerve. (Yang et al., 1992; Chi et 

al., 2005; Zilany et al., 2014) provide computational models of peripheral auditory 

system.  

 

 

Figure 2.2:  A schematic of basilar membrane and filter bank 

									

2000 Hz 

500 Hz 
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In the auditory nerve, each nerve fiber is tuned to a specific frequency and 

particular range of loudness. The neural representations of sound in auditory nerve are 

then processed by a series of nuclei (neural networks in central auditory system) located 

in brainstem and thalamus before reaching cortex. The first station auditory nerve 

innervates is Cochlear Nucleus (CN). The auditory information is further processed by 

Superior Olivary Complex (SOC), Inferior Colliculus, and Thalamus, before reaching 

Auditory cortex (AC). While SOC is known to the place of ITD (inter-aural time 

difference) and ILD (inter-aural level difference) computation, IC acts as a major 

integration center, receiving (parallel) ascending inputs from auditory nuclei in lower part 

of brain stem, descending inputs from auditory cortex and inputs from contralateral IC. 

Overall, these sub-cortical nuclei refine the temporal synchronization of neural responses 

from auditory nerve (Joris et al., 1994), extract information related to pitch, 

directionality, integrate inputs from both ears and possibly from somatosensory system 

(Pickles, 2012) before relaying the acoustic information to cortex. As in cochlea, majority 

of these sub-cortical nuclei exhibit frequency tuning and tonotopy (Pickles, 2012). Also, 

it is to be noted that temporal precision of neurons decreases gradually from auditory 

nerve to cortex (Giraud et al., 2000). Neural phase locking can be observed up to 1 kHz 

in auditory nerve, up to approximately 200 Hz in thalamus and generally below 40 Hz in 

the cortex.  
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Figure 2.3:  Anatomy of primate auditory cortex (adapted from Kaas and 

Hackett (2000)). 

In humans, the auditory cortex is located in the superior temporal lobe (Figure 

2.3). It can be divided into three regions namely, core, belt and parabelt regions (Hackett 

et al., 1998; Kaas and Hackett, 2000). The core region, containing primary auditory 

cortex (PAC/A1) and other primary-like areas, is centered on Heschl’s gyrus (HG) (Da 

Costa et al., 2011). It is surrounded by the belt and parabelt regions, and by additional 

higher order auditory regions (Hackett, 2008). The core auditory cortex receives direct 

input from the thalamus and contains tonotopically organized neurons responding to wide 

variety of sounds, including speech. A1 encodes spectrotemporal modulations (Depireux 

et al., 2001), among other acoustic properties, and its responses are affected consistently 

but modestly by selective attention (Fritz et al., 2003; Fritz et al., 2005). The core region 

is the origin of MEG M50 response (Yvert et al., 2001), a positive deflection in MEG 

response around 50 ms after a sound onset, known to be task independent (Chait et al., 

2004). Posterior to Heschl’s gyrus lies Planum Temporale (PT), containing both parabelt 

and additional higher order auditory regions (Griffiths and Warren, 2002; Sweet et al., 

2005). The PT is supposed to play an important role in high level auditory processing, for 
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instance, identification and segregation of an auditory source in a mixture of acoustic 

sources (Griffiths and Warren, 2002). PT (Lutkenhoner and Steinstrater, 1998) and/or 

lateral part of HG (Herdman et al., 2003) are known to be the sources of MEG M100 

response, a strong negative response occurring 100 ms post sound onset, strongly 

modulated by attention (Chait et al., 2004). 

2.1.2 A Neuron 
Neuron is the basic functional unit of central nervous system. It is separated from 

extracellular medium by a cell membrane and typically consists of three main parts: 

dendrites, soma (cell body) and an axon (Figure 2.4), which help in receiving, integrating 

and transmitting the information respectively. The soma is typically tens of microns in 

diameter (Dayan and Abbott, 2001) and the axon has a typical thickness of few microns 

(less than 20)  in diameter. A neuron connects to other neuron through axon via synaptic 

cleft. While the information is transmitted electrically in axon, it is transmitted 

chemically to the next neuron through neurotransmitters.  

 

Figure 2.4:  Structure of a neuron 
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The difference in electrical potential between the interior and exterior 

(extracellular medium) of a cell is called Membrane potential and the typical resting state 

membrane potential for a neuron is about -70 mV (exterior is more positive than interior). 

The dendrites of a neuron receive input from axons (usually from multiple other neurons) 

via synapses. Action potentials received by a dendrite causes voltage change in dendrite, 

called post-synaptic potential (PSP). An excitatory post-synaptic potential (EPSP) causes 

depolarization (reduction of resting state potential) and an inhibitory post-synaptic 

potential (IPSP) causes hyperpolarization (further increase of resting state potential). 

When the net voltage change due to spatial and temporal integration of PSPs received by 

dendrites of a neuron, from multiple pre-synaptic neurons, reaches a threshold, an action 

potential is fired by the neuron. After firing an action potential, the neuron is ready to fire 

again after a brief refractory period. Thus the output of neuron is a series of action 

potentials, which are brief (1-2 ms in duration) voltage changes that propagate along the 

axon. The number of action potentials generated per second is called firing rate, which 

can be as high as few hundred hertz. The post-synaptic potential also generates current in 

the dendrites flowing towards soma (Figure 2.5A), called dendritic current, typically on 

the order of fA (  10−15  Ampere) (Hämäläinen et al., 1993). This dendritic current is the 

source of electromagnetic fields measured outside the brain. In the following, we provide 

an introduction to non-invasive neuroimaging and M/EEG sources and measurement. 
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Figure 2.5:  (A) A cortical pyramidal neuron. (B) Network of neurons in 

cortex (adapted from Dayan and Abbott (2001)) 

2.2 Noninvasive neuro-imaging 
With at least 10 billion neurons and 10,000 times more connections among them, 

the human brain is the most complex structure known to exist and the most important 

organ for humans. It is the seat of information processing, sensing, memory, conscious 

and unconscious thought, action planning and so on. Investigation of the human brain is 

great intellectual interest, not only because of the scientific curiosity but also has many 

practical applications. For example, deep neural networks (LeCun et al., 1998; Bengio, 

2009), the current gold standard in classification and recognition systems are inspired 

from neural networks in the brain.  Neuromorphic computation aimed at consuming ultra-

low power for a wide array of real-time application is inspired from brain architecture 
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(Arthur et al., 2012). Also, understanding of the brain has widespread applications in 

treating psychiatric disorders.  Although a great deal about anatomy and physiology of 

the brain is known, the question of how the brain stores, retrieves and processes 

information is still largely unknown. Most of our current understanding of the brain 

comes from studying animal models. Although quite useful, animal models can never 

replace studies on humans when studying aspects such as speech, which are human 

specific. While human brain activity may be recorded by inserting electrodes (invasive 

recording) during surgery on patients suffering from drug-resistant epilepsy or tumors, 

such studies are restrictive in terms of recording area and are extremely time consuming. 

Invasive recording can never be performed on healthy humans, due to ethical reasons and 

hence non-invasive recording techniques provide an excellent alternative for studying 

human brain. Non-invasive recording techniques can be mainly categorized into two 

types. The first class of methods directly measure electrical activity associated with 

neuronal firing such as EEG and MEG. The second class of methods such as Positron 

emission tomography (PET), functional magnetic resonance imaging (fMRI) measure 

neuronal activity indirectly, based on the principle that increased neural activity is 

supported by increased local blood flow and metabolic activity. The dynamics of blood 

flow (hemodynamic activity) are much slower than dynamics of neural activity and hence 

PET and fMRI have a time resolution of less than 1 Hz, whereas EEG and MEG can be 

recorded as fast as 1 ms and can resolve phase locked neural responses to slow temporal 

modulations of speech (1-16 Hz). In the following we discuss the physiological sources 

of EEG and MEG and their instrumentation. 
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2.2.1 Physiological sources of electromagnetic fields in brain 
Synchronous post-synaptic potentials (PSP) (both excitatory and inhibitory) in 

pyramidal neurons in cortex are the main source of electric and magnetic activity 

measured by EEG and MEG respectively. To explain this, consider the cartoon presented 

in Figure 2.6 (adapted from Niedermeyer and Lopes da Silva (2005)). At rest, membrane 

potential (potential difference between intracellular and extracellular space) of a neuron 

is about -70 mV and is thus maintained due to opposing electrical and chemical gradients. 

The inside of neuron is more negative than outside of neuron. This is represented by 

negative charge inside and positive charge outside of the neuron at rest. Consider an 

action potential arriving at the excitatory synapse. The synapse releases 

neurotransmitters, which opens Na+ ion channels causing the positively charged ions to 

flow into the cell (step 1). This inward current flow changes the local membrane potential 

and creates an electrical gradient, along the length of dendride, inside as well as outside 

of the cell (step 2). This electrical gradient sets up intracellular (primary) currents and 

extracellular (secondary or volume) currents (step 3).  MEG is sensitive to magnetic 

fields caused by primary current (mainly) and secondary currents, whereas EEG is 

sensitive to potential setup by secondary/volume currents.   
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Figure 2.6:  Generation of dendritic current in pyramidal neurons (adapted 

from Niedermeyer and Lopes da Silva (2005)). 

The dipole moment generated due to primary current flow in a pyramidal neuron 

due to a single PSP is about 20 fA m (Hamalainen et al., 1993) and is directed along the 

length of neuron as shown in the Figure 2.5A. Usually, a dipole moment on the order of 

10 nA m is required to explain the measured magnetic field strengths outside the head. 

Pyramidal neurons are a common type of neurons in cortex and some dendrites of these 

pyramidal neurons, called apical dendrites, are roughly perpendicular to the surface of the 

cortex. Typically, neurons are never present in isolation but interconnected with other 

neurons, forming networks (Figure 2.5B). In each mm2 of cortex there are roughly 105 

neurons (Hämäläinen et al., 1993). This high density of neurons combined with the fact 

that apical dendrites of neighboring neurons are approximately parallel implies that the 

dendritic currents in a local neural network flows in a very similar direction. Thus, when 

dendritic current in many neurons are synchronized in time (e.g., due to the presence of a 
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stimulus) they add up to a current source that generates a magnetic field strong enough to 

be measured outside the brain (extracranially).  Measurement of this magnetic field is 

called magnetoencephalography (MEG) and the electrical potential generated due to the 

corresponding volume currents can be measured extracranially using 

electroencephalography (EEG). The advantage of MEG/EEG is that they can be 

measured noninvasively. But, due their requirement of synchronous neural activity over 

tens of thousands of neurons they have limited spatial resolution (mm to cm). 

 

 

Figure 2.7:  Primary source of EEG and MEG 

Although, the source of both MEG and EEG are post-synaptic potentials, there are 

two main differences between them worth mentioning, which arise due to the nature of 

(vector) magnetic and (scalar) electric fields. As mentioned previously, pyramidal cells 
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are oriented perpendicular to cortical surface, which implies that a dipole in gyri is radial 

to the skull and a dipole in sulci is tangential to the skull, as shown in Figure 2.8 (left). A 

radial dipole produces no external magnetic field (outside the skull) where as a tangential 

dipole produces measurable external magnetic field (Figure 2.8, right). In contrast, both 

radial and tangential dipoles produce measurable surface potentials. Therefore MEG does 

not see sources in gyri, which are radial, but sees the dipoles in sulci clearly. Another 

consequence of this dipole orientation (radial vs. tangential) is that the deeper the sources 

more radial they are (e.g. a dipole at the center of a sphere is always radial). Thus, deeper 

cortical sources produce more suppressed external magnetic fields. In contrast, potentials 

measured using EEG due to deeper sources are not as suppressed as magnetic fields. 

Thus, in general, dipoles located in gyri and dipoles located deeply are more suppressed 

in MEG compared to EEG. Another important difference between MEG and EEG is due 

to smearing of potential by the resistivity of skull and various brain tissues whereas the 

magnetic field is not affected by the same. This implies that MEG source localization is 

more accurate than EEG source localization. EEG source localization is further made 

difficult because of the requirement of knowledge of conductivities of various brain 

tissues. Thus, in general EEG source location accuracy varies about +/- 9 mm whereas 

MEG can localize with an accuracy of +/- 4 or 5 mm, provided the neural source dipole is 

tangential.  
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Figure 2.8:  Tangential and radial dipoles seen by MEG and EEG 

2.2.2 Magnetoencephalography 
Magnetic field generated by the brain are in the range of 10-100 fT, which is 

approximately seven orders smaller in magnitude than the earth’s magnetic field. Hence 

special data recording techniques are required to measure magnetic field generated by 

cortex. A Magnetically shielded room is built around the MEG system, which greatly 

reduces the interference from external electromagnetic sources, and highly sensitive 

SQUID (superconducting quantum interference device) sensors are used to measure 

cortical magnetic fields. The magnetic field is picked up by the pick-up coils or detector 

coils and is converted to voltage by SQUID sensors. Typically the pickup coils can be 

plain magnetometers or gradiometers (Figure 2.9). The simplest of all is the 

magnetometer, which picks up the magnetic field normal (
 Bz ) to its plane. The axial 

gradiometer measures the difference of 
 Bz  in the axial direction z and the planer 

gradiometer measures the same in tangential direction y. 
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Figure 2.9:  Pickup coil configurations in MEG 

 

Modern MEG systems consist of typically 100-300 SQUID sensors distributed over 

whole head, offering simultaneous recordings (Figure 2.10A). To maintain the super 

conducting nature of SQUID sensors, they have to be cooled in liquid helium. The MEG 

studies presented in this dissertation are performed in a magnetically shielded room 

(MSR) (Yokogawa Electric Corporation) using a 160-channel whole head system 

(Kanazawa Institute of Technology, Kanazawa, Japan). The pick-up coils are arranged in 

a uniform array on a helmet-shaped surface (Figure 2.10, adapted from Ding (2012)) with 

approximately 2.5 cm between the centers of two adjacent 15.5 mm diameter pick-up 

coils. The pick-up coils are configured as first-order axial gradiometers with 5 cm 

baseline.  Three of the 160 sensors are plain magnetometers located away from the head, 

and are used to measure ambient magnetic field. These sensors are used as reference 

channels in de-noising the MEG recordings (de Cheveigne and Simon, 2007). Despite the 

use of highly sensitive SQUID sensors, the recordings are corrupted by noise due to 
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relatively small nature of magnetic fields produced by sensory or cognitive events 

compared to variety of noise sources and artifacts (both biological and non-biological). 

Typical non-biological sources of noise include earth’s magnetic field, noise generated by 

electrical equipment, low frequency fields produced by moving metallic objects such as 

fans, trains and elevators etc. While most of the noise due to external sources is blocked 

by MSR, the remaining can be eliminated using reference sensors and de-noising 

algorithms. Biological sources of noise include magnetic fields generated due to 

heartbeat, muscle movements, eye-blinks or eye movements, and interference from 

spontaneous brain activity unrelated to the sensory or cognitive task at hand. Typically 

spectral and/or spatial filtering (de Cheveigne and Simon, 2008; de Cheveigne and Parra, 

2014), component analysis techniques such as Principal component analysis (PCA) and 

Independent component analysis (ICA) can be used to reduce biological noise. Apart 

from these, the thermal noise in sensors also contributes to the reduced signal-to-noise 

ratio (SNR) of the recordings. Apart from de-noising techniques, averaging over multiple 

trials is one of most common ways of improving SNR of recordings.  

 

 

Figure 2.10:  An MEG system 
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Source estimation in MEG 

The extracranial magnetic field strengths measured in MEG (or electrical 

potentials in EEG) are superposition of individual fields generated due to multiple 

(current) sources in the cortex. More than often, we are interested in the location as well 

as the time course of these cortical sources. Historically, the problem of estimating the 

sources corresponding to EEG/MEG observations can be viewed as ‘localization’ or 

‘imaging’. Localization refers to decomposing observed data into respective contributions 

of a small number (typically less than ten) of elementary current source models, e.g. 

point-like equivalent current dipoles, whereas imaging involves tessellating cortical 

space, either in volume or surface, into a number of patches (~ 104) and estimating the 

strength of current source, modeled as a dipole with fixed location and possibly variable 

orientation, in each patch. Thus, localization produces point sources whereas imaging 

produces a distributed estimate of the cortical activity. While both approaches are 

mathematically ill-posed inverse problems i.e. given measurements from a number of 

sensors (~ 102) and an observation model, the goal is to estimate the cortical source 

activity responsible for the observed measurements, the problem is further complicated in 

imaging due to its high-dimensionality. In the following, we provide a brief description 

of Minimum Norm Estimate (MNE) (Hamalainen and Ilmoniemi, 1994), an imaging 

method, employed in this dissertation, which is also most widely used in general. 

Let  N  denote the number of sensors and    t = 1,...,T  be the discrete time stamps. 

Let 
  
yi,t  be the measurement from ith sensor at time t and 

    
yt := [y1,t,y2,t,…yN ,t ]'  be 

measurements from all sensors at time t. Finally let     Y := [y1,y2,...,yT ]  be N×T 

dimensional measurement matrix. Let M be the total number of dipoles distributed across 
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the cortex and 
  
xi,t  be the amplitude of ith dipole at time t. Let 

    
xt := [x1,t,x2,t,…xM ,t ]'  

denote the vector of dipole amplitudes at time t and     X := [x1,x2,...,xT ]  be M×T 

dimensional matrix characterizing source space over time [0, T]. With this notation, for a 

fixed configuration of diploes, the measurement matrix  Y  can be related to the source 

activity matrix  X as follows: 

   Y = GX + V   (2.1) 

where    GN×M  is the lead field matrix relating the source amplitudes to sensor 

measurements and    VN×T  is the measurement noise matrix, assumed to be zero mean 

Gaussian distributed with spatial covariance matrix    CN×N . Empirically, noise covariance 

matrix can be computed from empty room or pre-trial sensor measurement data. Further, 

due to the ill-posed nature of the problem, a regularizer in the form of spatial prior 

covariance matrix    R / λ2  of dimensions M×M is imposed on  X , with  λ  being a scaling 

factor to control the  R -weighted   l2 -norm of the estimate. With these definitions, the 

minimum norm estimate is defined as: 

 
      
X! := argmin

X t=1

T

∑{|| yt −Gxt ||
C−1
2 +λ2 || xt ||

R−1
2 }  (2.2) 

The minimization is separable in time and yields a closed form solution as: 

      X
! = RG '(GRG '+ λ2C)−1Y   (2.3) 
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Auditory studies using MEG 

The auditory cortices are located in the lateral sulcus, which produces tangential 

dipoles, making MEG ideal for recording the magnetic fields generated by auditory 

cortices. Apart from this, the setup time for MEG is short making it an ideal candidate for 

short turnaround time of experiments.  

One of the earliest and extensively studied (transient) MEG responses is to 

onset/offset of a sound (Naatanen and Picton, 1987). The major components of the 

transient response following an onset (or a click) are defined as ‘P1m-N1m-P2m’ 

complex following EEG notation, or M50-M100-M150 complex based on the latency of 

responses from stimulus onset (Poeppel et al., 1996; Chait et al., 2004). P1m/M50 and 

P2/M150 are the positive deflections in response occurring at around 50 ms and 150 ms 

post-stimulus respectively, whereas N1m/M100 is a negative deflection occurring 

approximately 100 ms post-stimulus. An example of such MEG response is shown in 

Figure 2.11 and the corresponding topographic layout for M100 response. The M100 

response is the most reliable component of the onset/offset response and its latency and 

amplitude is modulated by various stimulus properties such as loudness, frequency 

composition and SNR (Naatanen and Picton, 1987; Poeppel et al., 1996; Biermann and 

Heil, 2000), as well as attention (Ding and Simon, 2012a). While exact neural source of 

the M100 response is unknown, on a coarse level, M100 is known to originate from 

superior part of temporal gyrus, with in auditory cortex. Unlike M100, M50 part of 

transient response appears to be independent of task (Chait et al., 2004). 
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Figure 2.11:  M100 response in MEG (adapted from Ding (2012)). 

Apart from the responses to onset/offset of sounds, MEG has been used in studies 

to characterize responses to a wide variety of stimulus, ranging from tone streams 

(Akram et al., 2014) to amplitude modulated (AM) and frequency modulated (FM) 

sounds (Ding and Simon, 2009) to parts of speech sounds such as vowels and syllables 

(Alho et al., 1998; Luo et al., 2005; Tavabi et al., 2007) to more complex speech sounds 

including words, sentences (Luo and Poeppel, 2007) and stories (Ding and Simon, 

2012b) and music (Maess et al., 2001). 

2.2.3 Electroencephalography  
As mentioned previously, EEG measures the voltage fluctuations (approximately 

in the range of micro-volts) extra-cranially, generated due to cortical current sources and 

can see both tangential and radial dipoles. EEG typically measures the difference 

between two electrodes, an active and a reference electrode (Figure 2.12, note that 

reference electrode is not the ground).  

 



 

 
 

24 

 

Figure 2.12:  Electroencephalography measurement system 

 

Active electrodes are placed over the head, where the activity of interest is to be 

recorded. Ideally the site of reference electrode should be electrically neutral, with 

respect to neural activity. However, in reality it is difficult to locate an electrically neutral 

site and hence the choice of reference electrode site is typically mastoids (conical 

protrusions of the skull located just behind the ears), which are supposed to pick-up least 

amount of brain activity of interest. However, the assumption that the mastoids do not 

pick up signals from regions of interest is unconfirmed (Srinivasan et al., 1998). Another 

popular referencing method is to use to average of all recorded electrodes as a reference 

signal. While researchers showed that average referencing may lead to misinterpretations 

when it is computed using small number of electrodes (Desmedt et al., 1990). However, 

average re-referencing is known to approximate reference-free recordings when used 

with high-density recordings (>32) (Bertrand et al., 1985).  Since the voltage fluctuations 

are very small, EEG uses a differential amplifier to amplify the signals. The differential 

amplifier amplifies the difference between the recording-to-ground voltage and 

reference-to-ground voltage. So, any electrical activity recorded at the ground site (such 
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as 60 Hz line noise) is cancelled out and anything recorded at the reference site 

contributes to the recorded signal. Conductive gel is applied between scalp and electrode 

to ensure good electrical contact and to keep the impedance low. For the study presented 

in this dissertation, data was recorded continuously from a 64 electrode Quick-Cap 

(Neuromedical Supplies, TX) with sintered Ag/Ag chloride electrodes and a Neuroscan 

SynAmp2. 

 

Auditory studies using EEG 

Transient responses (responses generated to a single event) in EEG are typically 

referred to as Event related potentials (ERPs). Auditory evoked potentials (AEPs) are a 

class of ERPs generated using sound as stimulus. Due to its ability to see both deep and 

radial sources, AEPs can be recorded from different structures in brain i.e., auditory 

cortex, brain stem, inferior colliculus and auditory nerve, albeit with progressively 

increasing difficulty. Although brain stem responses have been recorded using MEG 

(Parkkonen et al., 2009) they are less common and usually require much larger number of 

trials. Similar to MEG, the major transient response (from cortex) in EEG is referred to as 

P1-N1-P2 complex. P1 and P2 are positive deflections occurring around 50 ms and 200 

ms respectively, whereas N1 is a negative deflection occurring around 100 ms. Figure 

2.13 (Michelini et al., 1982) shows three major groups of AEPs obtained from EEG 

recordings using sound click as stimulus. Short latency responses (SLRs) are the 

responses from auditory brain stem and occur within 10 ms of stimulus onset and are 

characterized by 5 main peaks. Middle latency responses (MLRs) occur between 10 ms 

and 80 ms from stimulus onset and originate mainly from upper brain stem and auditory 



 

 
 

26 

cortex. Late latency responses (LLRs) occur after 80 ms from the stimulus onset and 

originate from higher order auditory cortices.  

 

 

Figure 2.13:  Transient auditory evoked potentials elicited by single acoustic 

click recorded using EEG (adapted from Michelini et al. (1982)) 

Similar to MEG, EEG has been used in various auditory studies involving odd ball 

detection, auditory streaming using tones (Snyder et al., 2009), phonemes and speech 

(Power et al., 2012; O'Sullivan et al., 2015), neural representation of speech (Crosse et 

al., 2015; Di Liberto et al., 2015), effect of neural oscillations and entrainment on 

perceptual tasks (Henry and Obleser, 2012, 2013), effects of ageing on hearing 

(Anderson et al., 2012), as well as in studies identifying biological markers for 

psychiatric disorders such as schizophrenia (Boutros et al., 2008; Hasey and Kiang, 2013) 

and so on. 
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2.3 Neural processing in human auditory cortex 
Due to their millisecond time resolution, EEG and MEG are able to record phase 

locked neural responses to temporal modulations in speech and rhythmic sounds. In the 

following, we briefly discuss the temporal structure of speech and review techniques used 

to analyzed MEG and EEG data involving speech as stimulus. 

2.3.1 Temporal modulations in speech  
The information in speech is conveyed through its spectro-temporal modulations. 

The temporal information in speech and similarly the corresponding neural processing 

occurs on multiple time scales (Rosen, 1992; Poeppel, 2003; Shamma, 2006). These are 

depicted in a spectrogram in Figure 2.14 (adapted form Chi et al. (2005)) where the 

waveform from a particular auditory channel at 750 Hz is shown in three different 

magnifications in the right side panels in Figure 2.14. The top panel shows the slowest 

modulations, approximately 4 to 6 bursts per second, indicating the syllabic rhythm 

(Greenberg et al., 2003) in that particular frequency band of the utterance and is affected 

by dynamics of vocal tract, movement of the formants and onset and offset of consonants 

which are directly responsible for the speech intelligibility. These modulations are 

referred to as slow temporal modulations in this dissertation and are generally in the 

range of 1-8 Hz. The slow modulations that are consistent over auditory channels 

constitutes temporal envelope of speech. The slow temporal modulations are coded 

through phase locked neural activity from periphery to cortex. The middle panel shows 

intermediate modulation rates (about 200 Hz here, but 70 – 300 Hz in general) 

corresponding to pitch perception and timbre of the sound. The bottom panel shows the 

responses at fastest temporal scale (akin to carrier frequency) that carry the energy of 



 

 
 

28 

stimulus in that particular auditory channel. In this dissertation, we extract the slow 

temporal modulations using the model proposed by Chi et al. (2005), which simulates 

central auditory processing using a multi-scale filter bank, with each filter tuned to a 

spectral and temporal modulations of sound at a particular frequency, denoted as spectral 

scale (Ω, cycles/octave) and modulation rate (ω, Hz), at a central frequency (CF) 

respectively. 

 

 

Figure 2.14:  Temporal modulations in speech (adapted from (Chi et al., 

2005)) 

2.4 Analysis methods 

2.4.1 Modeling the neural processing of temporal modulations  
In this section, we discuss modeling of the neural representations of slow 

temporal modulations in speech. As mentioned before, temporal modulations are encoded 

through phase locked neural activity in cortex. We use a linear time-invariant (LTI) 
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system to model auditory cortex. Even though it is known that auditory system is non-

linear, it is modeled as a LTI system due to the ease of analysis. 

An LTI system is characterized by its impulse response. Given an input (any 

representation of an auditory stimulus) and output (MEG /EEG recording), the output is 

modeled as a convolution between input and impulse response. When the input is white 

noise, impulse response can simply be calculated as the cross correlation between output 

and input. Lalor et al. (2009) demonstrated this method to estimate the impulse response 

reflecting cortical processing of temporal modulations. Due to the non-linear nature of 

auditory system, the impulse response estimated using LTI model is input (stimulus) 

dependent (LTI model of a non-linear system can be viewed as it linear approximation at 

a specific operating point, akin to drawing a tangent at a point to an arbitrary shaped 

input-output curve and hence is input dependent). Hence, several classes of sounds, such 

as white noise, random chords, natural sounds and speech have been used to model 

auditory system (deCharms et al., 1998; Theunissen et al., 2001; David et al., 2007; 

Bitterman et al., 2008; David et al., 2009; Calabrese et al., 2011).  Natural sounds, unlike 

white noise, are correlated over time and hence their auto-correlation has to be taken into 

account when used as input. In the following, we show how to evaluate the impulse 

response of LTI model when natural sounds are used as input.  

Let   x(t)  be the envelope (slow temporal modulations) of the input stimulus and 

  y(t)  be the neural response, both represented as discrete time signals with     t = 1,..., !T . 

The relation between them when modeled as LTI system is given by  

 
     
y(t) =

τ=−∞

∞

∑ x(t − τ)h(τ) + ε(t)   (2.4) 
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where   h(t)  is the impulse response, referred to as temporal response function (TRF) in 

this dissertation and    ε(t)  is the residual neural response unexplained by the LTI model. 

Since brain is a causal system (no output before input) and any stimuli generates finite 

duration neural response, above relation between   x(t)  and   y(t)  can be modified as  

 
     
y(t) =

τ=0

T

∑x(t − τ)h(τ) + ε(t)   (2.5) 

which can be expressed in matrix form as      y(t) = hTx(t) + ε(t) , with 

    h = [h(0),h(1),...,h(T)]T  and     x(t) = [x(t),x(t −1),...,x(t −T)]T . Assuming that input 

and output are wide-sense stationary, 

 
      

E[y(t)x(t)T] = hTE[x(t)x(t)T] + E[ε(t)x(t)T]

h = [E[x(t)x(t)T]]−1E[y(t)x(t)]
  (2.6)  

where   E[.]  denotes expectation over time.     E[y(t)x(t)T]  is the cross correlation between 

input and output and     E[x(t)x(t)T]  is the auto-correlation of input. The error and input are 

uncorrelated at all lags of input and hence the term      E[ε(t)x(t)T]  is equal to zero. This 

method of estimating the impulse response is sometimes known as normalized reverse 

correlation (Theunissen et al., 2001). When the input is white noise the autocorrelation 

matrix is identity and hence the impulse response is just given by the cross correlation 

between input and output. However, when input is auto-correlated, such as speech, 

inverting the autocorrelation matrix may be ill-posed. In such cases, dimension reduction 

techniques such as principal component analysis (PCA) or regularization techniques 

(Calabrese et al., 2011) can be used.  
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Another method of estimating impulse response of auditory system is through 

Boosting (David et al., 2007). Boosting assumes a sparse prior for the impulse response 

in time. Starting with null (all zeros) impulse response, the algorithm updates the impulse 

response iteratively and the updates are incremental in nature. This continues until the 

correlation between real neural response and the model’s response, referred to as 

predictive power, can no longer be improved. In each iteration of the algorithm,  h  is 

either incremented or decremented by   Δh . Each   Δh  contains only one non-zero 

element and is optimized to minimize the expected value of squared prediction error: 

 

       

Δh = argmin
Δh

E[(y(t)− y!(t))2]

where y!(t) = (h +Δh)Tx(t)
s.t. ||Δh ||0= 1 and ||Δh ||1= δ

  (2.7) 

where  || . ||0   and  || . ||1   are zero and one norms respectively.  

2.4.2 Stimulus reconstruction from neural responses 
In the above, we discussed what is known as forward problem, wherein the 

stimulus is used to predict the neural response. While we discussed the forward problem 

only in one (time) dimension, the same can be extended to two (spectro-temporal) 

(Mesgarani and Chang, 2012; Pasley et al., 2012) and well as multi-dimensions (spectro-

temporal, phonemic, MFCC etc) (Di Liberto et al., 2015). In this section, we discuss an 

analogous reverse problem, also known as stimulus reconstruction, which tries to 

decode/reconstruct the stimulus from the neural response. While the forward problem 

tells which acoustic features are transformed into neural responses the reverse problem 

tells the information contained in the neural responses. Figure 2.15 shows the relation 
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between forward and reverse problems. Mathematically the reverse problem can be 

formulated as  

 
     
x(t) =

τ=0

T

∑y(t +T − τ)d(τ) + ε(t)   (2.8) 

where   x(t)  and   y(t)  are stimulus (envelope) and neural response (MEG/EEG) 

respectively and   d(t)  is the decoder. The decoder can be estimated in a similar fashion to 

impulse response using boosting algorithm.  

 

 

Figure 2.15:  Relation between forward and Inverse models 

2.4.3 Auditory steady state response analysis 
Steady state responses (SSRs) are an important class of neural responses recorded 

using EEG. As mentioned previously, ERPs are the responses generated due a single 

event, where as SSRs are generated due to repeated and periodic presentation of certain 

class of stimuli. More precisely, Auditory Steady State Responses (ASSRs) are 

electrophysiological responses entrained to frequency and phase of a periodic stimulus 

(Brenner et al., 2009b). Typically, SSRs are generated by synchronous activity of large 

population of neurons to a temporally modulated stimulus such as amplitude modulated 

(AM) tones, frequency modulated (FM) tones and click trains (Picton et al., 2003; 
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Brenner et al., 2009b). Transient ERPs are typically analyzed in time/time-frequency 

domain and the usual measures include peak latency, amplitude, topography (e.g. 

Mismatched Negativity (MMN) (Naatanen et al., 2007; Light and Naatanen, 2013)), 

whereas SSRs are analyzed in frequency domain and typical measures include mean 

power, Phase locking factor (PLF), Inter-trial coherence (ITC), change in mean power 

from base line, etc. Figure 2.16 (adapted from Galambos et al. (1981)) shows a pictogram 

of 40-Hz ASSR generation due the repeated presentation of sound clicks every 25 ms. 

The waveforms in the upper-half of the figure shows ERPs generated due to each click, 

25 ms apart and the bottom-half of figure shows the 40-Hz ASSR generated to overlap-

addition of ERPs. While the figure shows the generation of 40 Hz ASSR, SSRs can be 

elicited using stimuli at wide variety of rates. 

 

Figure 2.16:  Example of 40-Hz ASSR generation (adapted from Galambos et 

al. (1981)) 
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3 Cortical Representation of Noisy Reverberant 

Speech 

3.1 Introduction 
Speech communication in real-world scenarios, such as in a room or other 

enclosed space, differs from communication in an isolated environment, since the sound 

entering the ear is a linear superposition of direct (clean, distortion-free) component and 

multiple reflections from the surroundings. This general acoustic phenomenon, known as 

reverberation, is ubiquitous in daily listening environments. The reflections travel a 

longer path, with correspondingly attenuated amplitudes, before summing linearly with 

the direct component, thus distorting the clean sound from the original source. Depending 

on the number of reflections and their attenuation factors (a function itself of the 

surrounding reflecting surfaces and the paths travelled), the distortion of clean sound can 

vary from mild (e.g., in large open spaces) to severe (e.g., in a cave, cathedral or a dense 

forest). The reverberant signal received by the ear can be modeled as y(t) = s(t)*h(t), 

where s(t) is the clean sound from the source and h(t) is the impulse response of a linear 

filter representing the delay and attenuation information of reflections (Figure 3.1). On 

the other hand, knowing only the reverberant signal y(t), to infer the original sound s(t) 

without knowledge of h(t) is mathematically ill-posed problem, though human listeners 

are nonetheless able to perform this routinely, with some effort (Sato et al., 2007; 

Sarampalis et al., 2009; Yang and Bradley, 2009). Comprehension of speech in such a 

reverberant environment is further complicated by the presence of other sound sources 

whether stationary (e.g., the sound of an air-conditioner) or non-stationary (e.g., other 

talkers). The neural mechanisms by which reverberation is accommodated, and the 
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representations employed by the auditory system in that process, in such adverse listening 

conditions remains unclear. 

 

Figure 3.1: Phenomenon of reverberation. A reverberant signal reaching the 

ear is the sum of the original clean speech and its copies, appropriately time-

shifted and scaled. This can be described mathematically as convolution 

between the clean speech s(t) and the reverberation impulse response h(t) 

(illustrated here with a schematic impulse response; after Traer and 

McDermott (2016)) 

 

The information in speech is conveyed through its temporal modulations, which 

can be decomposed into a slow envelope that modulates the fast temporal fine structure 

(TFS) (Rosen, 1992; Shamma and Lorenzi, 2013). The slower envelope (<10 Hz) 

corresponds to prosodic, phonemic, syllabic and word rates, whereas the TFS, the fast-

varying component of speech, represents pitch, formant structure, timbre, etc. While 
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envelope cues alone may be sufficient for partial speech comprehension in distortion free 

listening conditions, TFS is also important for speech comprehension, and especially so 

in the presence of distortions and competing backgrounds (Drullman et al., 1994a, b; 

Drullman, 1995; Smith et al., 2002; Moore, 2008; Ding et al., 2013; Moon and Hong, 

2014; Kong et al., 2015; Rimmele et al., 2015; Swaminathan et al., 2016). While additive 

noise degrades the speech signal by reducing the intensity contrast, i.e., the depth of 

modulations, it does not affect the temporal sharpness of the speech signal. In contrast, 

reverberation, due to its convolutive nature, causes temporal smearing of both the 

envelope (example shown in Figure 3.2A, top) and TFS (see review by Assmann and 

Summerfield (2004)). TFS smearing results in spectral blurring (Figure 3.2A, bottom), 

which can affect the quality of the formant structure, timbre, and even pitch, and 

envelope smearing affects timing cues in the speech signal such as phoneme and syllable 

onset and offset. Physiological studies, both in animal models (Moore et al., 2013; 

Rabinowitz et al., 2013; Mesgarani et al., 2014b) and humans (Ding and Simon, 2013) 

have demonstrated the robustness of cortical representation of speech in the presence of 

stationary noise, in spite of degraded representation at the periphery of the auditory 

system (Delgutte, 1980). Studies of the auditory brainstem (Sayles and Winter, 2008; 

Sayles et al., 2014; Fujihira et al., 2017) and midbrain (Devore and Delgutte, 2010; 

Kuwada et al., 2014; Slama and Delgutte, 2015) have shown that peripheral and 

subcortical neural coding of the temporal envelope can be substantially degraded in a 

reverberant environment. However, the effects of distortion due to reverberation, as well 

as the interaction of reverberation and additive noise (if any), on the cortical coding of 

speech, are less understood. 
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Using Magnetoencephalography (MEG) recordings of human subjects listening to 

continuous speech, and linear system methods of neural response prediction (encoding) 

and stimulus reconstruction (decoding) (Ding and Simon, 2012b; Pasley et al., 2012; Di 

Liberto et al., 2015), we investigated the effect of noise and reverberation on cortical 

representation of continuous speech. Mesgarani et al. (2014b) examined the neural 

responses from single-unit recordings in ferrets, listening to reverberant speech (in 

absence of additive noise), and found that the corresponding clean speech spectrogram 

was better reconstructed than reverberant speech spectrogram. Further, Fuglsang et al. 

(2017), using electroencephalography (EEG) recordings of human subjects listening to 

speech in reverberation, showed that the clean speech envelope was better reconstructed 

than the reverberant speech envelope in case of severe reverberant conditions. In contrast 

to these studies, here, we (1) systematically examined the effects of noise and 

reverberation on neural encoding of speech by varying the severity of both reverberation 

and noise, and (2) examined the cortical representation of speech in noisy reverberant 

environment from both encoding and decoding perspectives, allowing insights into 

reverberation processing strategies across auditory cortex. 
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Figure 3.2: Effects of reverberation. A. Reverberation smears the temporal 

envelope (top right) of Clean speech (top left) as multiple reflections 

superimpose on the direct component from source. Reverberation also distorts 

the spectral structure of speech as shown by the auditory spectrogram 

(bottom) of speech without (left) and with (right) reverberation. B. The peak 

of the modulation spectrum occurs around 4 – 5 Hz in clean speech and shifts 

downward (left) with increasing severity of reverberation. C. Correlation 

coefficients comparing the bandpassed envelopes of reverberant speech, at 

different levels of severity, with the corresponding clean speech. The 

distortion effect of reverberation is higher in the 4 – 8 Hz band (corresponding 
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to neural theta activity) than 1- 4 Hz band (corresponding to neural delta 

activity). 

3.2 Materials & Methods 
Subjects and Experimental Design Thirteen normal-hearing, young adults participated in 

the experiment. All subjects were paid for their participation. The experimental 

procedures were approved by the University of Maryland Institutional Review Board and 

written informed consent was obtained from each subject before the experiment. Subjects 

listened to 60 s duration speech segments under a full factorial design of three noise and 

four reverberation levels, totaling twelve stimulus conditions. The three noise levels were 

no-noise, +6 dB and +3 dB signal-to-noise ratio (SNR). The four reverberation levels are 

referred to, with increasing severity, as anechoic (clean), mild, medium and severe 

reverberation with Reverberation Time to 20 dB (RT20: time elapsed before the 

reflections decay by 20 dB with respect to the direct component in terms of energy) 

values of 0 ms, 150 ms, 300 ms and 450 ms, respectively. The choice of RT20 to 

characterize reverberation instead of the more standard RT60 (time elapsed before the 

reflections decay by 60 dB with respect to the direct component) arises from the usage of 

listening to reverberant continuous speech: when speech reflections from an earlier time 

act as a masker for speech at the present time, a target-to-masker ratio (TMR) of 20 dB is 

perceptually more relevant than a TMR of 60 dB (which is instead more relevant for 

detection of reverberation in silence). In practice, any given RT20 value is approximately 

one third of the corresponding RT60 value. Reverberant speech was generated by 

convolving a (base) clean speech segment with a Room Impulse Response (RIR) with the 

desired severity of reverberation. RIRs were generated using the image-source method 
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(Allen and Berkley, 1979) as implemented by Lehmann and Johansson (2010), by 

simulating listening conditions in a room of dimensions 7 x 5 x 3 m (length, width, 

height), with source and listener positioned at (4.5, 2.5, 1.7) m and (3, 2.5, 1.7) m, 

respectively. Different levels of reverberation were obtained by varying absorption 

coefficients of walls, floor and roof of the simulated room. Noisy reverberant speech was 

generated by adding spectrally matched noise to the reverberant speech, at the desired 

SNR; spectrally matched noise was generated by randomizing the phase of the 

reverberant speech signal and scaling it appropriately to achieve the required SNR. 

Mathematically, the stimulus 𝑆(𝑡) is constructed as, 

 𝑆 𝑡 = 𝑅 𝑡 + 𝑁 𝑡   (3.1) 

where 𝑅 𝑡 ,𝑁 𝑡  are reverberant speech component of the stimulus and spectrally 

matched noise respectively. Further, 𝑅(𝑡) is constructed as,  

 𝑅 𝑡 = 𝐶 𝑡 ∗ 𝑅𝐼𝑅(𝑡) (3.2) 

where 𝐶 𝑡 ,𝑅𝐼𝑅(𝑡) are (base) clean speech and RIR, respectively. All twelve (base) 

speech segments, used to generate twelve stimulus conditions, were taken from a public 

domain narration of Grimms’ Fairy Tales by Jacob & Wilhelm Grimm 

(https://librivox.org/fairy-tales-by-the-brothers-grimm/), spoken by the same narrator. 

Periods of silence longer than 300 ms were replaced by a shorter gap whose duration was 

chosen randomly between 200 ms and 300 ms. When reverberation was added, the 

amplitude was rescaled so that all exemplars were of approximately equal perceptual 

loudness. No further scaling was performed when noise was added. Each of the twelve 

stimulus conditions was presented three times (trials) in succession, with the base speech 

segment used to generate a particular stimulus condition as well as presentation order of 

https://librivox.org/fairy-tales-by-the-brothers-grimm/)
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conditions randomized across subjects. To ensure the listeners’ attention, a target-word 

was set before each trial and the subjects were asked to count the number of occurrences 

of the target-word in the stimulus being played. Additionally, at the end of each trial, 

subjects answered a different 2-alternative-forced-choice comprehension question. 

Subjects were required to close their eyes while listening.  

 

Data recording and pre-processing MEG recordings were conducted using a 160-

channel whole-head system (Kanazawa Institute of Technology, Kanazawa, Japan). Its 

detection coils are arranged in a uniform array on a helmet-shaped surface of the bottom 

of the dewar, with ~25 mm between the centers of two adjacent 15.5-mm-diameter coils. 

Sensors are configured as first-order axial gradiometers with a baseline of 50 mm; their 

field sensitivities are 5 fT/√Hz or better in the white noise region. Subjects lay 

horizontally in a dimly lit magnetically shielded room (Yokogawa Electric Corporation). 

Responses were recorded with a sampling rate of 1 kHz with an online 200-Hz low-pass 

filter and 60 Hz notch filter. Three reference magnetic sensors and three vibrational 

sensors were used to measure the environmental magnetic field and vibrations. The 

reference sensor recordings were utilized to reduce environmental noise from the MEG 

recordings using the Time-Shift PCA method (de Cheveigne and Simon, 2007). Eye-

blinks and heart beat artifacts were removed using Independent Component Analysis 

(ICA). For analysis in the sensor domain, MEG sensor recordings were decomposed into 

virtual sensors/components using denoising source separation (DSS) (Särelä and Valpola, 

2005b; de Cheveigne and Simon, 2008; de Cheveigne and Parra, 2014), a blind source 

separation method that enhances neural activity consistent over trials. Specifically, DSS 
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decomposes the multichannel MEG recording into temporally uncorrelated components, 

where each component is determined by maximizing its trial-to-trial reliability, measured 

by the correlation between the responses to the same stimulus in different trials. To 

reduce the computational complexity, sensor domain analysis was performed using DSS 

components. Additionally, for analysis in the source domain, each subject’s head shape 

was digitized (Polhemus 3SPACE FASTRAK) and the subject’s head was localized with 

respect to the MEG sensors using five marker coils attached to the head. The ‘fsaverage’ 

brain provided by FreeSurfer (Fischl, 2012) was fit to each subject’s head shape using 

rotation, translation and uniform scaling. MEG data, after de-noising with time-shift PCA 

and ICA, were localized to active regions in the cortex using distributed minimum norm 

estimate (MNE) (Hamalainen and Ilmoniemi, 1994) as implemented in MNE software 

(Gramfort et al., 2013; Gramfort et al., 2014). The source model comprised of 10242 

regularly spaced virtual source dipoles in each hemisphere with orientations 

perpendicular to the cortical surface. The sensor noise covariance was estimated from the 

empty room recording data. Due to the auditory nature of the study, further analysis was 

restricted to the responses estimated at the sources located in the transverse, superior, 

middle temporal gyri and banks of the superior temporal sulcus (Desikan et al., 2006). 

Both speech envelope and neural response (either a DSS component in sensor space, or 

the estimated activity at one source domain location) were band pass filtered between 1 – 

8 Hz (delta and theta bands), which correspond to the slow temporal modulations in 

speech (Ding and Simon, 2012b, a), for further analysis. 
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Encoding of stimulus to neural responses Encoding models provide a quantitative 

description of how information in a stimulus is represented in neural responses. 

Analyzing data from the perspective of encoding (predicting neural responses using the 

stimulus or some representation of the stimulus) allows investigators to identify, as well 

as quantify, how features/aspects of the stimulus are represented in the corresponding 

neural responses (Naselaris et al., 2011). Here, to identify the neural representation of 

speech distorted by noise and reverberation, three encoding models were compared 

(namely the Clean, Reverb and Mixed models as described below). Encoding analysis 

was performed by fitting a linear regression model between the stimulus representation 

under a particular model (whether Clean, Reverb or Mixed) and the corresponding low 

frequency (1- 8 Hz) neural responses. This approach has been used previously to describe 

the temporal relation between a speech stimulus and the corresponding neural response as 

measured by MEG (Ding and Simon, 2012b), EEG (Di Liberto et al., 2015), or ECoG 

(Mesgarani and Chang, 2012). The resulting models are commonly referred to as 

Temporal Response Functions (TRFs) and are mathematically represented as  

 𝑟 𝑡 = 𝑠 𝑡 − 𝜏 𝑇𝑅𝐹 𝜏 + 𝜀 𝑡
!

 (3.3) 

where 𝑡 = 0,1,… ,𝑇 are discretized time instances, 𝑟 𝑡  is the neural response (of any 

individual sensor or DSS component, or the time-course of activity at a source location), 

𝑠 𝑡  is the choice of stimulus representation in the encoding model under consideration 

(referred to as ‘predictor’ here), 𝑇𝑅𝐹 𝑡  is the TRF itself, and 𝜖 𝑡  is residual response 

waveform not explained by the TRF model (Ding and Simon, 2012b). The TRF is 

estimated using boosting with 10-fold cross-validation (David et al., 2007). Success of 

the linear model, referred to as ‘prediction accuracy’, is evaluated by how well it predicts 
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neural responses, as measured by the proportion of the variance explained: the square of 

the Pearson correlation coefficient between neural response 𝑟 𝑡  and the TRF model 

prediction (right hand side of Eq. (3.3) excluding the error term). The three encoding 

models compared were: (1) the Clean model, where the stimulus is represented by the 

broadband envelope of the corresponding clean (base) speech, i.e. the envelope of 𝐶(𝑡) of 

Eq. (3.2); (2) the Reverb model, where the stimulus is represented by the broadband 

envelope of the reverberant speech component of the stimulus, i.e. the envelope of 𝑅 𝑡  

of Eq. (3.1); and (3) the Mixed model – a model that allows both Clean and Reverb 

representations to contribute, i.e., simultaneously using envelopes from both the Clean 

and Reverb models as predictors. The Clean model tests the hypothesis that despite the 

distorted acoustic input to the ear, the cortex recovers and maintains neural 

representations for the underlying distortion free clean speech. The Reverb model tests 

the hypothesis that acoustic distortions due to reverberation present at the ear are also 

represented neurally in the cortex. Finally, the Mixed model allows the co-existence of 

neural representations for both clean and reverberant versions of speech. Such a dual 

representation is possible due to the hierarchical organization of the auditory cortex, 

which maintains increasingly complex and distortion robust representations of stimulus 

(Atencio et al., 2009; Okada et al., 2010; Sharpee et al., 2011). In all the encoding 

models, the broadband envelope was extracted by averaging the auditory spectrogram of 

the corresponding speech signal along the spectral dimension (Chi et al., 2005).  

In case of the Mixed model, the linear model presented in (1) is modified as  

 𝑟 𝑡 = 𝑠! 𝑡 − 𝜏 𝑇𝑅𝐹! 𝜏 + 𝑠! 𝑡 − 𝜏 𝑇𝑅𝐹!(𝜏)+ 𝜀 𝑡
!

 (3.4) 
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where 𝑠! 𝑡  is the envelope of clean speech and 𝑠! 𝑡  is the envelope of reverberant 

component of stimulus and 𝑇𝑅𝐹! 𝑡 ,𝑇𝑅𝐹! 𝑡  are the corresponding TRFs. Due to the 

presence of two predictors, the Mixed model has twice the number of degrees of freedom 

than the Clean and Reverb models. To ensure that the increased accuracy (if any) of the 

Mixed model compared to the other two is not merely due to increased degrees of 

freedom, a non-informative speech envelope was added as an additional predictor in both 

Clean and Reverb models, thus balancing the number of free parameters across models. 

For example, in the Clean model, the non-informative speech envelope is obtained by 

replacing the first half of reverb envelope with its second half and vice versa. 

 

Decoding speech from neural responses While the TRF/encoding analysis described in 

the previous section predicts neural response from stimulus, decoding analysis 

reconstructs stimulus envelope using neural responses. Thus, decoding analysis 

complements the TRF analysis (Mesgarani et al., 2009). Mathematically the envelope 

reconstruction/decoding operation can be formulated as  

 𝐸 𝑡 = 𝑀! 𝑡 + 𝜏 𝐷! 𝜏 + 𝜖(𝑡)
!!

!!!!

!

!!!

 (3.5) 

where 𝐸(𝑡) is the reconstructed envelope, 𝑀!(𝑡) is the MEG recording (neural response) 

from sensor/component k, and  𝐷! 𝑡  is the linear decoder for sensor/component k. The 

times 𝜏! and 𝜏!  denote the beginning and end times of the integration window, 0 and 500 

ms respectively here. The decoder is estimated using boosting, analogously to the TRF 

estimation in the previous section. As decoding analysis integrates information over all 
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data (whether from all sensor or from all source points) recorded in the time window 

under consideration, we restrict our decoding analysis to sensor space. 

 

Statistics Due to the presence of multiple stimulus conditions (a total of 12 in the full 

factorial design with three noise and four reverberation levels), the following statistical 

approach was used to compare between different encoding or decoding models. 

Considering the example of comparison between Mixed and Reverb models, the 

difference between both model prediction accuracies was calculated for each subject and 

condition and a repeated measures Analysis of Variance (ANOVA) is performed on the 

model differences with noise and reverb as factors (Greenhouse-Geisser corrected when 

required). Significant effects were followed up with appropriate pairwise t-tests. If a 

significant interaction effect was observed, a t-test was performed at each stimulus 

condition, to compare the mean difference of models with zero, correcting for multiple 

comparisons using False Discovery Rate (FDR) (Benjamini and Hochberg, 1995). In 

absence of a significant interaction effect, data was pooled according to the main effects, 

if present, before comparing the average model differences against zero. Here also, FDR 

was used for multiple comparisons correction.  For example, in the case of significant 

main effect for the reverberation factor but not noise, data was pooled across noise levels 

and a t-test was performed at each level of reverb. When comparing two models, either in 

encoding or decoding analysis, through their differences, anechoic (reverberation free) 

stimuli were excluded as all models coincide there and so differences would be 

identically equal to zero for all subjects, with zero variance. 
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In the case source domain analysis, nonparametric permutation tests (Nichols and 

Holmes, 2002; Maris and Oostenveld, 2007), based on the threshold-free cluster-

enhancement algorithm (TFCE; Smith and Nichols (2009)), were used to control for 

multiple comparisons when testing for the significance of a result at a large number of 

source locations. The precise implementation details are available in the Eelbrain source 

code (Brodbeck, 2017), but a brief summary follows. First, a test statistic (a t-value in 

case of t-test or an F-statistic in case of ANOVA) was computed for each source location 

based on the quantity of interest (here, the difference in prediction accuracies between 

two models) across subjects. The resulting test statistic map was then processed with 

TFCE, an image processing algorithm that enhances larger contiguous areas with large 

values compared to isolated spikes, based on the assumption that meaningful differences 

have a larger spatial extent than noise. To determine the null distribution for the resulting 

TFCE values, the procedure was repeated in 10,000 permutations of the data, with 

condition labels flipped for a randomly selected set of subjects in each permutation. The 

test statistic computation and TFCE were repeated in each permutation, and the largest 

value from the cluster-enhanced map is stored as an entry in the null distribution. Thus, a 

nonparametric distribution for the largest expected TFCE value under the null hypothesis 

was computed. Any value in the original TFCE map that exceeds the 95th percentile of 

the distribution is thus significant at the 5% level. Thus, TFCE provides strong control 

over family-wise type-I error (Nichols and Holmes, 2002). 

3.3 Results 
To examine the neural representation of speech distorted by additive noise and 

reverberation, three possible encoding models were compared (Clean, Reverb and Mixed 
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models; see Methods for detailed description), using neural responses from the first DSS 

(most dominant auditory) component (Ding and Simon, 2012b). The performance of each 

model as measured by prediction accuracy (squared correlation coefficient between 

actual and predicted response) was computed for each model under each stimulus 

condition. In particular, if the brain maintains a distortion-free representation of speech in 

addition to the original distorted acoustic representation of speech, the Mixed model 

should have higher prediction accuracy than both the Reverb and Clean models, across all 

stimulus conditions. First, to compare the Mixed and Reverb models, repeated measures 

two-way ANOVA was performed on the difference of prediction accuracies between 

Mixed and Reverb models (Figure 3.3A) with noise and reverb as within subject factors 

(anechoic level in reverb factor was excluded as both models coincide when there is no 

reverberation). The main effect of reverb was not significant (F(2, 24) = 3.307, p = 

0.054), neither was the effect of noise (F(2, 24) = 0.436, p = 0.652) or interaction (F(4, 

48) = 0.112, p = 0.978). A post-hoc test, after pooling data across noise and reverb levels, 

showed that model difference was significantly greater than zero (t(116) = 6.912, p < 

0.001). This suggests that the Mixed model predicts the neural responses better than the 

Reverb model across all stimulus conditions with reverberation. Similar comparison 

between Mixed and Clean models (Figure 3.3B) showed that model difference are 

significant in both noise (F(2, 24) = 14.380, p < 0.001) and reverb (F(2, 24) = 13.546, p < 

0.001) with significant interaction (F(4, 48) = 4.774, p = 0.003). Post-hoc tests at each 

stimulus condition showed that the model difference is significantly greater than zero at 

all conditions (FDR with q = 0.01). This suggests that the Mixed model predicts neural 

responses better than Clean model. Taken together, these results suggest that when 
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listening to speech in noisy reverberant conditions the auditory cortex maintains 

representations for both reverberant (distorted) and the corresponding clean (distortion 

free) versions of the stimulus.  

 

Figure 3.3: Comparing accuracy of encoding models. Difference between 

prediction accuracies of Mixed and Reverb models (A) as well as Mixed and 

Clean models (B) are both significantly greater than zero (FDR at q = 0.05 

and FDR at q =0.01 respectively). This illustrates that the Mixed model 

predicts neural responses significantly better than either the Reverb or Clean 

model for all stimulus conditions with reverberation. 

 

To identify the cortical regions contributing to the increased prediction accuracy 

of the Mixed model compared with the Reverb model, encoding analysis was performed 

in the neural source domain (predicting neural activity at each source location). The 

difference between the prediction accuracies of the two models was computed at each 

source location for all stimulus conditions. Variation of model difference with respect to 

reverberation level was modeled, separately for each noise level, as the slope of a line fit 
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between model difference and reverberation level, thus obtaining three data points (one 

value of slope per noise level) per source location. As ANOVA, correcting for multiple 

comparisons using TFCE, showed no significance with respect to noise (p >= 0.482), 

data was pooled by averaging the slope across three noise conditions, resulting in one 

value of slope per source location.  Any value of slope significantly different from zero 

indicates significant model difference. A t-test performed at each source location, 

correcting for multiple comparisons, showed that Heschl’s gyrus and middle-to-posterior 

superior temporal gyrus areas contribute to the increased performance of the Mixed 

model over the Reverb model (Figure 3.4). 

 

 

Figure 3.4: Anatomical regions contributing to increased performance of the 

Mixed model over the Reverb model (p < 0.05, corrected), rendered on the 

inflated brain surface model. These regions are better explained as containing 

areas with representations of both reverberant (distorted) and the 

corresponding clean (distortion free) versions of the stimulus, than as 

containing only representations of the reverberant (distorted) version. Areas 

that are not included in the analysis are shaded with a dark overlay. 

p
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To examine the fidelity of neural encoding of speech under different levels of 

noise and reverberation, prediction accuracies of the Mixed model (which best explained 

the neural response among the three encoding models compared) under different stimulus 

conditions were compared (Figure 3.5). A repeated measures ANOVA was used to assess 

the effect of noise and reverb on the prediction accuracy of the Mixed model. ANOVA 

showed a significant interaction between noise and reverb factors (F(2.761, 33.133) = 

7.042, p = 0.001). Hence, post-hoc analysis was performed at each reverb level to see the 

effect of noise. The variation of prediction accuracy with respect to noise, as measured by 

the slope of the line fit between noise levels and prediction accuracies, at each reverb 

level, were calculated per subject. A t-test at each reverb level, corrected for multiple 

comparisons at q = 0.05 FDR, showed that the slope is significantly less than zero for 

mild (mean = -0.039, t(12) = -2.649, p = 0.021), medium (mean = -0.054, t(12) = -3.285, 

p = 0.007) and severe (mean = -0.047, t(12) = -3.410, p = 0.005) reverberation, whereas 

the anechoic condition showed no significant variation with respect to noise (mean = 

0.0054, t(12) = 0.793, p = 0.443). This suggests that noise differentially affects the 

accuracy of neural encoding for conditions with and without reverberation: In the absence 

of any reverberation, noise did not show a significant effect on the accuracy of neural 

encoding, whereas its effect was adverse in presence of all reverberation levels tested. 
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Figure 3.5: Effect of noise and reverberation on accuracy of neural encoding.  

In the absence of reverberation (“Anechoic”), noise did not show any 

significant effect on the accuracy of neural encoding. In contrast, encoding 

accuracy was reduced significantly with increase in noise, in the presence of 

any reverberation.  

 

While the results presented so far provide an encoding perspective of speech in 

noisy and reverberant listening conditions, the putative role of delta and theta band neural 

responses in representing different aspects of speech (Ding and Simon, 2014; Kösem and 

Van Wassenhove, 2017) was examined in the following. The results from encoding 

models suggest that the auditory cortex maintains representations for both reverberant 

and clean versions of speech in reverberant environments. To assess the relative 

contributions of delta and theta band neural responses to the reverberant and clean 
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representations, decoding analysis was employed. Here, both the reverberant and the 

respective clean versions of the stimulus envelope were reconstructed using delta and 

theta band neural responses separately, in order to compare which version of the envelope 

is more faithfully represented by delta and theta neural response. Figure 3.6 shows the 

difference between reconstruction accuracies of the reverberant and clean envelopes 

using only delta or only theta band neural responses. A repeated measures ANOVA on 

model differences (Reverb - Clean), in the delta band, showed a significant effect of noise 

(F(2, 24) = 7.005, p = 0.004), reverb (F(2, 24) = 8.564, p = 0.002) as well as significant 

interaction (F(4, 48) = 3.019, p = 0.027). Post-hoc t-tests showed that model difference is 

significantly greater than zero in all stimulus conditions (multiple comparisons corrected 

via FDR at q = 0.05). Similar analysis using theta band neural responses showed that 

model differences are not significantly affected by noise (F(1.395, 16.743) = 0.265, p = 

0.691) or reverb (F(2, 24) = 0.904, p = 0.418) with no significant interaction effect 

(F(2.622, 31.463) = 2.034, p = 0.104). Further, post-hoc analysis showed that the model 

difference at any stimulus condition was not significantly different from zero (correcting 

for multiple comparisons using FDR). These results suggest that the delta band responses 

dominantly maintain reverberant representation, whereas theta band contains nearly equal 

contributions from both cleaned and reverberant representations. Delta band neural 

responses maintain a better representation of reverb speech than clean, while theta band 

shows no such distinction.  



 

 
 

54 

 

Figure 3.6: Comparing stimulus reconstruction accuracies for reverberant and 

corresponding clean speech. Results above the midline favor the Reverb 

model; below the midline favor the Clean model. A. Using only delta band (1 

– 4 Hz) neural responses, the stimulus reconstruction of reverberant speech is 

significantly better than the corresponding clean speech (FDR with q = 0.05). 

B. Reconstruction using only theta band (4 – 8 Hz) neural responses did not 

show significant differences (FDR with q = 0.05) between reconstruction 

accuracies of the reverberant and respective clean stimulus. 

3.4 Discussion 
Using MEG to record the cortical activity of subjects listening to noisy, 

reverberant speech, and linear methods of neural response prediction and stimulus 

reconstruction, we observed that (1) the cortex maintains both distorted as well as the 

corresponding distortion free representations of distorted speech (2) noise differentially 

affects the accuracy of neural encoding in absence and presence of reverberation (3) theta 
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band neural responses are a more likely candidate than delta band neural responses to 

hold the distortion free representation of the (distorted) acoustic stimulus. 

 That the Mixed model has better encoding accuracy compared to both the 

Reverb and Clean models (Figure 3.3) suggests that both distorted (reverberant) and 

distortion free (cleaned) versions of the speech are represented in auditory cortex. Such a 

dual representation is feasible given the hierarchical nature of auditory processing in 

cortex (Okada et al., 2010), where progressively distortion free (Moore et al., 2013; 

Rabinowitz et al., 2013) and categorical representations of speech emerge (Chang et al., 

2010; Di Liberto et al., 2015). Historically, echo suppression, in simple stimuli such as 

lead-lag pairs referred to as the precedence effect, is often explained using inhibition 

triggered by the leading sound (Litovsky et al., 1999; Xia and Shinn-Cunningham, 2011). 

Mesgarani et al. (2014b) suggest a similar mechanistic model based on feed-forward 

synaptic depression and feed-back gain normalization to reduce the distortion due to 

reverberation. Traer and McDermott (2016) suggest that the problem of speech 

comprehension in reverberant conditions is solved by the auditory system as a cocktail 

party problem due to its ill-posed nature. They suggest that the brain uses prior 

information, accumulated through experience, to separate the clean speech from distorted 

reverberant speech input to the ear and identify it as an auditory object, separate from the 

environment in which it was produced. Both of these approaches (Mesgarani et al. 

(2014b) and Traer and McDermott (2016)) argue for simultaneous cortical 

representations of cleaned speech and the original reverberant speech, as shown in the 

current study. Significant difference between the prediction accuracies of the Mixed and 

Reverb models, reflecting the contribution of the distortion free part of the Mixed model, 
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was confined to Heschl’s gyrus and middle to posterior superior temporal gyrus (Figure 

3.4). Similar anatomical areas have been implicated as the substrate of categorical 

(phonemic) representation of speech in the cortex (Mesgarani et al., 2014a), suggesting 

that the clean contribution of the Mixed model could be related to the computation of 

distortion invariant categorical representation of speech. 

 In the absence of reverberation, the accuracy of neural encoding of speech 

is not significantly affected by noise (Figure 3.5). Such robustness to stationary noise has 

been previously demonstrated (Ding and Simon, 2013) and is thought to be the result of 

neural adaptation to statistics (such as mean and variance) of sound intensity (Dean et al., 

2005; Dean et al., 2008; Robinson and McAlpine, 2009). However, in the case of 

reverberant environments, our results show that the neural encoding of speech is strongly 

and detrimentally affected by the addition of stationary noise (Figure 3.5). A similar 

detrimental effect of stationary noise has been previously observed using vocoded speech 

(Ding et al., 2013), highlighting the importance of TFS integrity for accurate neural 

encoding of speech in noisy background in contrast to the quiet listening conditions, 

wherein envelope cues are thought to be sufficient. Further, this suggests that the 

envelope entrainment to speech observed in MEG and EEG studies is a function of TFS 

along with the envelope. 

On the other hand, in the absence of noise the encoding accuracy of reverberant 

speech (even under mild reverberation) is significantly higher compared with anechoic 

condition (Figure 3.5). The low-pass nature of the cortical response modulation transfer 

function (Simon and Ding, 2010), combined with the downward shift of modulation 

spectrum with increasing reverberation (Figure 3.2B), could explain the increase in 



 

 
 

57 

accuracy of neural encoding with reverberation in the absence of noise. However the 

effect of listening effort due to reverberation cannot be discounted here either. Thus, the 

observed increase in encoding accuracy with increase in reverberation, in the absence of 

noise, could be due to combined effect of change in modulation spectrum and listener’s 

effort. Another distinct possibility could be due to the fact that reverberant listening 

conditions, even mild, are pervasive in daily life, whereas anechoic listening conditions 

are rarely experienced. Thus, it is possible that ecologically irrelevant anechoic speech is 

not encoded as accurate as speech in ecologically relevant listening conditions. 

 Along with successful comprehension of speech in typical reverberant 

environments, a listener can also perceive and make subjective judgments regarding the 

reverberant environment, suggesting that such information is readily accessible to the 

auditory system. The observation that a reverberant envelope is better reconstructed than 

the corresponding cleaned envelope using only delta band neural responses (Figure 3.6A) 

suggest that the delta band is a candidate to convey the perception of reverberation. 

Similar reconstruction results using theta band neural responses (Figure 3.6B) showed no 

preference for either reverberant or clean envelope. Despite the increased stimulus 

contrast (reduced correlation) between the reverberant and clean envelopes in the theta 

band compared to delta band (Figure 3.2C), the shift away from the reverberation-

dominated decoding in delta to the more balanced representation in theta provides limited 

evidence for reverberation removal occurring dominantly in theta band neural responses. 

These observations are consistent with the hypothesized roles of slow varying delta band 

and fast varying theta band neural responses to encode information related to the 

perceived non-speech specific acoustic rhythm and speech specific modulations 
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necessary for intelligibility respectively (Ding and Simon, 2014). As such, it is beneficial 

for the auditory system to reduce the distortion in the theta band more than the delta band 

(Figure 3.6). In contrast to the decoding results presented here, using a combination of 

both delta and theta band neural responses, Fuglsang et al. (2017) showed that clean 

speech envelope is better reconstructed than reverberant speech envelope in case of 

severe reverberation. This difference may be due to the lack of binaural cues in the 

current study, which are known to enhance speech perception in reverberant and noisy 

environments (Nabelek and Robinson, 1982). Also, using single unit recording from the 

primary auditory cortex of ferrets, Mesgarani et al. (2014b) showed that clean speech is 

better reconstructed while listening in reverberant conditions. This difference with the 

decoding results presented here could be due to the availability of spike/high-gamma (> 

40 Hz) neuronal responses in single unit recordings, in contrast to the current study which 

examined only slow temporal modulations.  

 In summary, the results suggest that while listening to speech distorted by 

additive noise and reverberation, the auditory cortex maintains representations for both 

distorted and the corresponding cleaned (distortion free) speech, possibly in different 

cortical areas. The additive noise differentially affects the accuracy of neural encoding in 

presence and absence of reverberation. Finally, theta band neural responses are a 

candidate for containing distortion free representations of speech in reverberant 

environments, while the delta band neural responses may convey the non-speech-specific 

information regarding the reverberant listening environment. 
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4 Cortical Representation of Speech in a Multi-talker 

Auditory Scene 

4.1 Introduction  
Individual sounds originating from multiple sources in a complex auditory scene 

mix linearly and irreversibly before they enter the ear, yet are perceived as distinct 

objects by the listener (Cherry, 1953; Bregman, 1994; McDermott, 2009). The separation, 

or rather individual re-creation, of such linearly mixed original sound sources is a 

mathematically ill-posed question, yet the brain nevertheless routinely performs this task 

with ease. The neural mechanisms by which this perceptual ‘un-mixing’ of sounds occur, 

the collective cortical representations of the auditory scene and its constituents, and the 

role of attention in both, are key problems in contemporary auditory neuroscience.  

It is known that auditory processing in primate cortex is hierarchical (Davis and 

Johnsrude, 2003; Hickok and Poeppel, 2007; Rauschecker and Scott, 2009; Okada et al., 

2010; Peelle et al., 2010; Overath et al., 2015) with subcortical areas projecting onto the 

core areas of auditory cortex, and from there, on to belt, parabelt and additional auditory 

areas (Kaas and Hackett, 2000). Sound entering the ear reaches different 

anatomical/functional areas of auditory cortex with different latencies (Recanzone et al., 

2000; Nourski et al., 2014). Due to this serial component of auditory processing, the 

hierarchy of processing can be described by both anatomy and latency, of which the latter 

may be exploited using the high temporal fidelity of non-invasive 

magnetoencephalography (MEG) neural recordings.  

In selective listening experiments using natural speech and MEG, the two major 

neural responses known to track the speech envelope are the M50TRF and M100TRF, with 
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respective latencies of 30 – 80 ms and 80 – 150 ms, of which the dominant neural sources 

are, respectively, Heschl's gyrus (HG) and Planum temporale (PT) (Steinschneider et al., 

2011; Ding and Simon, 2012a). Posteromedial HG is the site of core auditory cortex; PT 

contains both belt and parabelt auditory areas (here collectively referred to as higher-

order areas) (Griffiths and Warren, 2002; Sweet et al., 2005). Hence the earlier neural 

responses are dominated by core auditory cortex, and the later are dominated by higher-

order areas. To better understand the neural mechanisms of auditory scene analysis, it is 

essential to understand how the cortical representations of a complex auditory scene 

change from the core to the higher order auditory areas.  

One topic of interest is whether the brain maintains distinct neural representations 

for each unattended source (in addition to the representation of the attended source), or if 

all unattended sources are represented collectively as a single monolithic background 

object. A common paradigm used to investigate the neural mechanisms underlying 

auditory scene analysis employs a pair of speech streams, of which one is attended, which 

then leaves the other speech stream remaining as the background (Kerlin et al., 2010; 

Ding and Simon, 2012a; Mesgarani and Chang, 2012; Power et al., 2012; Zion Golumbic 

et al., 2013b; O'Sullivan et al., 2015). This results in a limitation, which cannot address 

the question of distinct vs. collective neural representations for unattended sources. This 

touches on the long-standing debate of whether auditory object segregation is pre-

attentive or it is actively influenced by attention (Carlyon, 2004; Sussman et al., 2005; 

Shinn-Cunningham, 2008; Shamma et al., 2011). Evidence for segregated neural 

representations of background streams would support the former, whereas a lack of 

segregated background objects would support the latter. 
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 To address these issues, we use MEG to investigate a variety of potential cortical 

representations of the elements of a multi-talker auditory scene. We test two major 

hypotheses: that the dominant representation in core auditory cortex is of the physical 

acoustics, not of separated auditory objects; and that once object-based representations 

emerge in higher order auditory areas, the unattended contributions to the auditory scene 

are represented collectively as a single background object. The methodological approach 

employs the linear systems methods of stimulus prediction and MEG response 

reconstruction (Lalor et al., 2009; Mesgarani et al., 2009; Ding and Simon, 2012a; 

Mesgarani and Chang, 2012; Pasley et al., 2012; Di Liberto et al., 2015). 

4.2 Materials & Methods 
Subjects & Experimental Design Nine normal-hearing, young adults (6 Female) 

participated in the experiment. All subjects were paid for their participation. The 

experimental procedures were approved by the University of Maryland Institutional 

Review Board. Subjects listened to a mixture of three speech segments spoken by, 

respectively, a male adult, female adult and a child speaker. The three speech segments 

were mixed into a single audio channel with equal perceptual loudness. All three speech 

segments were taken from public domain narration of Grimms’ Fairy Tales by Jacob & 

Wilhelm Grimm (https://librivox.org/fairy-tales-by-the-brothers-grimm/). Periods of 

silence longer than 300 ms were replaced by a shorter gap whose duration was chosen 

randomly between 200 ms and 300 ms. The audio signal was low-pass filtered with cut-

off at 4 kHz. In first of three conditions, the subjects were asked to attend to the child 

speaker, while ignoring the other two (i.e., child speaker as target, with male and female 

adult speakers as background). In condition two, during which the same mixture was 
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played as in condition one, the subjects were instead asked to attend to the male adult 

speaker (with female adult and child speakers as background). Similarly, in condition 

three, the target was switched to the female adult speaker. Each condition was repeated 

three times successively, producing three trials per condition. The presentation order of 

the three conditions was counterbalanced across subjects. Each trial was of 220 s 

duration, divided into two 110 s sections, to reduce listener fatigue. To help participants 

attend to the correct speaker, the first 30 s of each section was replaced by the clean 

recording of the target speaker alone, followed by a 5 s upward linear ramp of the 

background speakers. Recordings of this first 35 s of each segment were not included in 

any analysis. To further encourage the subjects to attend to the correct speaker, a target-

word was set before each trial and the subjects were asked to count the number of 

occurrences of the target-word in the speech of the attended speaker. Additionally, after 

each condition, the subject was asked to recount a short summary of the attended 

narrative. The subjects were required to close their eyes while listening. Before the main 

experiment, 100 repetitions of a 500-Hz tone pip were presented to each subject to elicit 

the M100 response, a reliable auditory response occurring ~100 ms after the onset of a 

tone pip. This data was used check whether any potential subjects gave abnormal 

auditory responses, but no subjects were excluded based on this criterion. 

 

Data recording and pre-processing MEG recordings were conducted using a 160-

channel whole-head system (Kanazawa Institute of Technology, Kanazawa, Japan). Its 

detection coils are arranged in a uniform array on a helmet-shaped surface of the bottom 

of the dewar, with ~25 mm between the centers of two adjacent 15.5-mm-diameter coils. 
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Sensors are configured as first-order axial gradiometers with a baseline of 50 mm; their 

field sensitivities are 5 fT/√Hz or better in the white noise region. Subjects lay 

horizontally in a dimly lit magnetically shielded room (Yokogawa Electric Corporation). 

Responses were recorded with a sampling rate of 1 kHz with an online 200-Hz low-pass 

filter and 60 Hz notch filter. Three reference magnetic sensors and three vibrational 

sensors were used to measure the environmental magnetic field and vibrations. The 

reference sensor recordings were utilized to reduce environmental noise from the MEG 

recordings using the Time-Shift PCA method (de Cheveigne and Simon, 2007). 

Additionally, MEG recordings were decomposed into virtual sensors/ components using 

denoising source separation (DSS) (Särelä and Valpola, 2005b; de Cheveigne and Simon, 

2008; de Cheveigne and Parra, 2014), a blind source separation method that enhances 

neural activity consistent over trials. Specifically, DSS decomposes the multichannel 

MEG recording into temporally uncorrelated components, where each component is 

determined by maximizing its trial-to-trial reliability, measured by the correlation 

between the responses to the same stimulus in different trials. To reduce the 

computational complexity, for all further analysis the 157 MEG sensors were reduced, 

using DSS, to 4 components in each hemisphere. Also, both stimulus envelope and MEG 

responses were band pass filtered between 1 – 8 Hz (delta and theta bands), which 

correspond to the slow temporal modulations in speech (Ding and Simon, 2012b, a).  

 

Neural Model Terminology and Notation As specified in the stimulus description, in 

each condition the subject attends to one among the three speech streams. Neural models 

of speech stream processing can be compared by contrasting the predicted envelope 
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reconstructions of the different models. The envelope of attended speech stream is 

referred to as the ‘foreground’ and the envelope of each of the two unattended speech 

streams is referred to as the ‘individual background’. In contrast, the envelope of the 

entire unattended part of the stimulus, comprising both unattended speech streams, is 

referred to as the ‘combined background’. The envelope of entire acoustic stimulus or 

auditory scene, comprising of all the three speech streams is referred to as the ‘acoustic 

scene’. Thus, if 𝑆! , 𝑆! , 𝑆!  are three speech stimuli, 𝐸𝑛𝑣(𝑆! + 𝑆! + 𝑆!) is the acoustic 

scene. In contrast, the sum of envelopes of three speech streams, 𝐸𝑛𝑣 𝑆! + 𝐸𝑛𝑣 𝑆! +

𝐸𝑛𝑣(𝑆!), is referred to as the ‘sum of streams’, and the two are not mathematically equal: 

even though both are functions of the same stimuli, they differ due to the non-linear 

nature of a signal envelope (the linear correlation between the acoustic scene and the sum 

of streams is typically ~0.75). Combination (unsegregated) envelopes, whether of the 

entire acoustic scene or the background only, can be used to test neural models that do 

not perform stream segregation. Sums of individual stream envelopes, whether of all 

streams or just the background streams, can be used to test neural models that process the 

(segregated) streams in parallel, given that neurally generated magnetic fields add in 

linear superposition. 

Neural responses with latencies less than ~85 ms (typically originating from core 

auditory areas) are referred to here as ‘early neural responses’ and responses with 

latencies more than ~85 ms (typically from higher-order auditory areas) (Ahveninen et 

al., 2011; Okamoto et al., 2011; Steinschneider et al., 2011) are referred to as ‘late neural 

responses’.  



 

 
 

65 

The next two sections describe models of the neural encoding of stimuli into 

responses, followed by models of the decoding of stimuli from neural responses. 

Encoding models are presented here first because of their ease of description over 

decoding models, but in Results the decoding analysis is presented first, since it is the 

decoding results that inform the new model of encoding.  

 

Temporal Response Function In an auditory scene with a single talker, the relation 

between MEG neural response and the presented speech stimuli can be modeled using a 

linear temporal response function (TRF) as  

 𝑟 𝑡 = 𝑠 𝑡 − 𝜏 𝑇𝑅𝐹 𝜏 + 𝜀 𝑡
!

 (4.1) 

where 𝑡 = 0,1,… ,𝑇 is time, 𝑟 𝑡  is the response from any individual sensor or DSS 

component, 𝑠 𝑡  is the stimulus envelope in decibels, 𝑇𝑅𝐹 𝑡  is the TRF itself, and 𝜖 𝑡   

is residual response waveform not explained by the TRF model (Ding and Simon, 

2012b). The envelope is extracted by averaging the auditory spectrogram, (Chi et al., 

2005) along the spectral dimension. The TRF is estimated using boosting with 10-fold 

cross-validation (David et al., 2007). In case of single speech stimuli, the TRF is typically 

characterized by a positive peak between 30 ms and 80 ms and a negative peak between 

90 ms and 130 ms, referred to as M50TRF and M100TRF respectively (Ding and Simon, 

2012a) (positivity/negativity of the magnetic field is by convention defined to agree with 

the corresponding electroencephalography[EEG] peaks). Success/accuracy of the linear 

model is evaluated by how well it predicts neural responses, as measured by the 

proportion of the variance explained: the square of the Pearson correlation coefficient 

between the MEG measurement and the TRF model prediction.  
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In the case of more than one speaker, the MEG neural response, 𝑟 𝑡  can be 

modeled as the sum of the responses to the individual acoustic sources (Ding and Simon, 

2012a; Zion Golumbic et al., 2013b), referred to here as the 'Summation model'. For 

example, with three speech streams, the neural response would be modeled as  

 𝑟 𝑡 = 𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹! 𝜏
!!!!

!!!

+  𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹! 𝜏
!!!!

!!!

+ 𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹! 𝜏
!!!!

!!!
+ 𝜖 𝑡  

(4.2) 

 

where 𝑆! 𝑡 , 𝑆!(𝑡) and 𝑆!(𝑡) are the envelopes of the three speech streams, and 𝑇𝑅𝐹! 𝑡 , 

𝑇𝑅𝐹! 𝑡  and 𝑇𝑅𝐹! 𝑡  are the TRFs corresponding to each stream. 𝜏!  represents the 

length of TRF. All TRFs in the Summation model are estimated simultaneously. 

In addition to the existing summation model, we propose a new encoding-model 

referred to as the ‘Early-late model’, which allows one to incorporate the hypothesis that 

the early neural responses typically represent the entire acoustic scene, but that the later 

neural responses differentially represent the separated foreground and background.  

 𝑟 𝑡 = 𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹! 𝜏
!!!!

!!!

+ 𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹! 𝜏 + 𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹!(𝜏)
!!!!

!!!!

!!!!

!!!!
+ 𝜖(𝑡) 

(4.3) 

   

where 𝑆!(𝑡) is the (entire) acoustic scene, 𝑆!(𝑡) is the envelope of attended (foreground) 

speech stream, and 𝑆!(𝑡) is the combined background (i.e., envelope of everything other 

than attended speech stream in the auditory scene), and  𝑇𝑅𝐹! 𝑡 ,𝑇𝑅𝐹! 𝑡 ,  and 𝑇𝑅𝐹!(𝑡) 

are the corresponding TRFs. 𝜏!, 𝜏! represent the boundary values of the integration 

windows for early and late neural responses respectively, with 0 <  𝜏! < 𝜏!. 

 The explanatory power of different models, such as the Summation and 

Early-late models, can be ranked by comparing the accuracy of their response predictions 
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(illustrated in Figure 4.1A). The models differ in terms of number of free parameters, 

with the Early-late model having fewer parameters than the Summation model. Hence, 

any improved performance observed in the proposed Early-late model over the 

Summation model is correspondingly more likely due to a better model fit, since it has 

less freedom to fit the data (though the converse would not hold). 

 

 

Figure 4.1: Illustrations of outcomes comparing competing encoding- and 

decoding-based neural representations of the auditory scene and its 

constituents. All examples are grand averages across subjects (3 seconds 

duration). A. Comparing competing models of encoding to neural responses. 

In both the top and bottom examples, an experimentally measured MEG 

response (black) is compared to the neural response predictions made by 

competing proposed models. In the top example, the neural response 

prediction (red) is from the Early-late model; in the bottom example, the 

neural response prediction (magenta) is from the Summation model. The 
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proposed Early-late model prediction shows higher correlation with the actual 

MEG neural response than Summation model. B. Comparing competing 

models of decoding to stimulus speech envelopes. In both the top and bottom 

examples, an acoustic speech stimulus envelope (blue/cyan) is compared to 

the model reconstruction of the respective envelope (gray). In the top 

example, the envelope reconstruction (blue) is of the foreground stimulus, 

based on late time responses; in the bottom example, the envelope 

reconstruction (cyan) is of the background stimulus, also based on late time 

responses. The foreground reconstruction shows higher correlation with the 

actual foreground envelope, compared to the background reconstruction with 

the actual background envelope. 

 

Decoding speech from neural responses While the TRF/encoding analysis described in 

the previous section predicts neural response from the stimulus, decoding analysis 

reconstructs the stimulus based on the neural response. Thus, decoding analysis 

complements the TRF analysis (Mesgarani et al., 2009). Mathematically the envelope 

reconstruction/decoding operation can be formulated as  

 𝐸 𝑡 = 𝑀! 𝑡 + 𝜏 𝐷! 𝜏 + 𝜖(𝑡)
!!

!!!!

!

!!!

 (4.4) 

 

where 𝐸(𝑡) is the reconstructed envelope, 𝑀!(𝑡) is the MEG recording (neural response) 

from sensor/component k, and  𝐷! 𝑡  is the linear decoder for sensor/component k. The 

times 𝜏! and 𝜏!  denote the beginning and end times of the integration window. By 
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appropriately choosing the values of 𝜏! and 𝜏!, envelope reconstructions using neural 

responses from any desired time window can be compared. The decoder is estimated 

using boosting analogously to the TRF estimation in the previous section. In the single 

talker case the envelope is of that talker’s speech. In a multi-talker case, the envelope to 

be reconstructed might be the envelope of the speech of attended talker, or one of the 

background talkers, or of a mixture of any two or all three talkers, depending on the 

model under consideration. Chance-level reconstruction (i.e., the noise floor) from a 

particular neural response is estimated by reconstructing an unrelated stimulus envelope 

from that neural response. Figure 4.2 illustrates the distinction between reconstruction of 

stimulus envelope from early and late responses. The stimulus envelope at time point t 

can be reconstructed using neural responses from the dashed (early response) window or 

dotted (late response) window. (While it is true that the late responses to the stimulus at 

time point t –Δt  overlap with early responses to the stimulus at time point t, the decoder 

used to reconstruct the stimulus at time point t from early responses is only minimally 

affected by late responses to the stimulus at time point t –Δt  when the decoder is 

estimated by averaging over a long enough duration, e.g., tens of seconds). The cut-off 

time between early and late responses, 𝜏!"#$%&'(, was chosen to minimize the overlap 

between the M50TRF and M100TRF peaks, on a per subject basis, with a median value of 

85 ms (range 70-100 ms in 5 ms increments); repeating the analysis using the single 

value of 85 ms for all subjects did not qualitatively change any conclusions. When 

decoding from early responses only, the time window of integration is from 𝜏! = 0 to 

𝜏! = 𝜏!"#$%&'(. When decoding from late neural responses only, the time window of 

integration is from 𝜏! =  𝜏!"#$%&'( to 𝜏! = 500 ms.  
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Figure 4.2: Early vs. late MEG neural responses to a continuous speech 

stimulus. A sample stimulus envelope and time-locked multi-channel MEG 

recordings are shown in red and black respectively. The two grey vertical 

lines indicate two arbitrary time points at t - Δt and t. The dashed and dotted 

boxes represent the early and late MEG neural responses to stimulus at time 

point t respectively. The reconstruction of the stimulus envelope at time t can 

be based on either early or late neural responses, and the separate 

reconstructions can be compared against each other. 
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The robustness of different representations, such as of Foreground vs. 

Background, can be compared by examining the accuracy of their respective stimulus 

envelope reconstructions (illustrated in Figure 4.1, right). 

 

Statistics All statistical comparisons reported here are two-tailed permutation tests with 

N=1,000,000 random permutations (within subject). Due to the value of N selected, the 

smallest accurate p value that can be reported is 2×1/N (= 2×10-6; the factor of 2 arises 

from the two-tailed test) and any p value smaller than 2/N is reported as p < 2×10-6. The 

statistical comparison between foreground and individual backgrounds requires special 

mention, since each listening condition has one foreground but two individual 

backgrounds. From the perspective of both behavior and task, both the individual 

backgrounds are interchangeable. Hence, when comparing reconstruction accuracy of 

foreground vs. individual background the average reconstruction accuracy of the two 

individual backgrounds is used. Finally, Bayes factor analysis is used, when appropriate, 

to evaluate evidence in favor of null hypothesis, since conventional hypothesis testing is 

not suitable for such purposes. Briefly, Bayes factor analysis calculates the posterior odds 

i.e., the ratio of P(H0|observations) to P(H1|observations), where H0 and H1 are the null 

and alternate hypotheses respectively. 

 
𝑃 𝐻!|𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝑃 𝐻!|𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

=  
𝑃 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝐻!
𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝐻!)

 ×  
𝑃 𝐻!
𝑃 𝐻!

 

 
(4.5) 

          =  𝐵𝐹!" ×  
𝑃 𝐻!
𝑃 𝐻!

 

 
(4.6) 
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The ratio of P(observations|H0) and P(observations|H1) is denoted as the Bayes 

factor, BF01. Then, under the assumption of equal priors (P(H0) = P(H1)), the posterior 

odds reduce to BF01. A BF01 value of 10 indicates that the data is ten times more likely to 

occur under the null hypothesis than the alternate hypothesis; conversely, a BF01 value of 

0.1 indicates that the data is 10 times more likely to occur under the alternate hypothesis 

than the null hypothesis. Conventionally, a BF01 value between 3 and 10 is considered as 

moderate evidence in favor of the null hypothesis, and a value between 10 and 30 is 

considered strong evidence; conversely, a BF01 value between 1/3 & 1/10  (respectively 

1/10 & 1/30) is considered moderate (respectively strong) evidence for the alternate 

hypothesis (for more details we refer the reader to Rouder et al. (2009)). 

 

4.3 Results 
Stimulus reconstruction from early neural responses To investigate the neural 

representations of the attended vs. unattended speech streams associated with early 

auditory areas, i.e., from core auditory cortex, (Nourski et al., 2014), the temporal 

envelope of attended (foreground) and unattended speech streams (individual 

backgrounds) were reconstructed using decoders optimized individually for each speech 

stream. All reconstructions performed significantly better than chance level (foreground 

vs. noise, p < 2×10-6; individual background vs. noise, p < 2×10-6), indicating that all 

three speech streams are represented in early auditory cortex. Figure 4.3A shows 

reconstruction accuracy for foreground vs. individual backgrounds. A permutation test 

shows no significant difference between foreground and individual background (p = 

0.21), indicating that there is no evidence of significant neural bias for the attended 
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speech stream over the ignored speech stream, in early neural responses. In fact, Bayes 

Factor analysis (BF01 = 4.2) indicates moderate support in favor of the null hypothesis 

(Rouder et al., 2009), that early neural responses do not distinguish significantly between 

attended and ignored speech streams.  

 

 

Figure 4.3: Stimulus envelope reconstruction accuracy using early neural 

responses. A. Scatter plot of reconstruction accuracy of the foreground vs. 

individual background envelopes. No significant difference was observed (p = 

0.21), and therefore no preferential representation of the foreground speech 

over the individual background streams is revealed in early neural responses. 

Each data point corresponds to a distinct background and condition partition 

per subject (with two backgrounds sharing a common foreground). B. Scatter 

plot of reconstruction accuracy of the envelope of the entire acoustic scene vs. 

that of the sum of the envelopes of all three individual speech streams. The 

acoustic scene is reconstructed more accurately (visually, most of data points 
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fall above the diagonal) as a whole than as the sum of individual components 

in early neural responses (p < 2 × 10-6). Each data point corresponds to a 

distinct condition partition per subject. In both plots, reconstruction accuracy 

is measured by proportion of the variance explained: the square of the Pearson 

correlation coefficient between the actual and predicted envelopes. 

 

To test the hypothesis that early auditory areas represent the auditory scene in 

terms of acoustics, rather than as individual auditory objects, we reconstructed the 

acoustic scene (the envelope of the sum of all three speech streams) and compared it 

against the reconstruction of the sum of streams (sum of reconstruction envelopes of each 

of the three individual speech streams). Separate decoders optimized individually were 

used to reconstruct the acoustic scene and the sum of streams. As can be seen in Figure 

4.3B, the result shows that the acoustic scene is better reconstructed than the sum of 

streams (p < 2×10-6). This indicates that early auditory cortex is better described as 

processing the entire acoustic scene rather than processing the separate elements of the 

scene individually. 

 

Stimulus reconstruction from late neural responses While the preceding results were 

based on early cortical processing, the following results are based on late auditory 

cortical processing (responses with latencies more than ~85 ms). Figure 4.4A shows the 

scatter plot of reconstruction accuracy for the foreground vs. individual background 

envelopes based on late responses. A paired permutation test shows that reconstruction 

accuracy for the foreground is significantly higher than the background (p < 2×10-6). 
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Even though the individual backgrounds are not as reliably reconstructed as foreground, 

their reconstructions are nonetheless significantly better than chance level (p < 2×10-6).  

In order to distinguish among possible neural representations of the background 

streams, we compared the reconstructability of the envelope of the entire background as a 

whole, with the reconstructability of the sum of the envelopes of the (two) backgrounds. 

If the background is represented as a single auditory object (i.e., “the background”), the 

reconstruction of the envelope of the entire background should be more faithful than the 

sum of envelopes of individual backgrounds. In contrast, if the background is represented 

as distinct auditory objects, each distinguished by its own envelope, the reconstruction of 

the sum of envelopes of the individual backgrounds should be more faithful. Figure 4.4B 

shows the scatter plot of reconstruction accuracy for the envelope of combined 

background vs. the sum of the envelopes of the individual background streams. Analysis 

shows that the envelope of the combined background is significantly better represented 

than the sum of the individual envelopes of the individual backgrounds (p = 0.012). As 

noted previously, the envelope of the combined background is actually strongly 

correlated with the sum of the envelopes of the individual backgrounds, meaning that 

finding a significant difference in their reconstruction accuracy is a priori unlikely, 

providing even more credence to the result. 
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Figure 4.4: Stimulus envelope reconstruction accuracy using late neural 

responses. A. Scatter plot of accuracy between foreground vs. individual 

background envelope reconstructions demonstrates that the foreground is 

represented with dramatically better fidelity (visually, most of data points fall 

above the diagonal) than the background speech, in late neural responses (p < 

2 × 10-6). Each data point corresponds to a distinct background and condition 

partition per subject (with two backgrounds sharing a common foreground). 

B. Scatter plot of the reconstruction accuracy of the envelope of the entire 

background vs. that of the sum of the envelopes of the two individual 

background speech streams. The background scene is reconstructed more 

accurately as a monolithic background than as separated individual 

background streams in late neural responses (p = 0.012). Each data point 

corresponds to a distinct condition partition per subject. 
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Encoding analysis Results above from envelope reconstruction suggest that while early 

neural responses represent the auditory scene in terms of the acoustics, the later neural 

responses represent the auditory scene in terms of a separated foreground and a single 

background stream. In order to further test this hypothesis, we use TRF-based encoding 

analysis to directly compare two different models of auditory scene representations. The 

two models compared are the standard Summation model (based on parallel 

representations of all speech streams; see Equation 2) and the new Early-late model 

(based on an early representation of the entire acoustic scene and late representations of 

separated foreground and background; see Equation 3). Figure 4.5 shows the response 

prediction accuracies for the two models. A permutation test shows that the accuracy of 

the Early-late model is considerably higher than that of the Summation model (p < 2×10-

6). This indicates that a model in which early/core auditory cortex processes the entire 

acoustic scene but later/higher-order auditory cortex processes the foreground and 

background separately has more support than the previously employed model of parallel 

processing of separate streams throughout auditory cortex. 
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Figure 4.5: MEG response prediction accuracy. Scatter plot of the accuracy of 

predicted MEG neural response for the proposed Early-late model vs. the 

standard Summation model. The Early-late model predicts the MEG neural 

response dramatically better (visually, most of data points fall above the 

diagonal) than the Summation model (p < 2 × 10-6). The accuracy of predicted 

MEG neural responses is measured by proportion of the variance explained: 

the square of the Pearson correlation coefficient between the actual and 

predicted responses. Each data point corresponds to a distinct condition 

partition per subject. 

4.4 Discussion 
In this study, we used cortical tracking of continuous speech, in a multi-talker 

scenario, to investigate the neural representations of an auditory scene. From MEG 

recordings of subjects selectively attending to one of the three co-located speech streams, 

we observed that 1) The early neural responses (from sources with short latencies), which 
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originate primarily from core auditory cortex, represent the foreground (attended) and 

background (ignored) speech streams without any significant difference, whereas the late 

neural responses (from sources with longer latencies), which originate primarily from 

higher-order areas of auditory cortex, represent the foreground with significantly higher 

fidelity than the background; 2) Early neural responses are not only balanced in how they 

represent the constituent speech streams, but in fact represent the entire acoustic scene 

holistically, rather than as separately contributing individual perceptual objects; 3) Even 

though there are two physical speech streams in the background, no neural segregation is 

observed for the background speech streams. 

It is well established that auditory processing in cortex is performed in a 

hierarchical fashion, in which an auditory stimulus is processed by different anatomical 

areas at different latencies (Inui et al., 2006; Nourski et al., 2014). Using this idea to 

inform the neural decoding/encoding analysis allows the effective isolation of neural 

signals from a particular cortical area, and thereby the ability to track changes in neural 

representations as the stimulus processing proceeds along the auditory hierarchy. This 

time-constrained reconstruction/prediction approach may prove especially fruitful in 

high-time-resolution/low-spatial-resolution imaging techniques such as MEG and EEG. 

Even though different response components are generated by different neural sources, 

standard neural source localization algorithms may perform poorly when different 

sources are strongly correlated in their responses (Lutkenhoner and Mosher, 2007). While 

the proposed method is not to be viewed as an alternative to source localization methods, 

it can nonetheless be used to tease apart different components of MEG/EEG response, 

without explicit source localization.  
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Even though there is no significant difference between the ability to reconstruct 

the foreground and background from early neural responses, nonetheless we observe a 

non-significant tendency towards an enhanced representation of the foreground 

(foreground > background, p = 0.21). This could be due to task-related plasticity of 

spectro-temporal receptive fields of neurons in mammalian primary auditory cortex (Fritz 

et al., 2003), where the receptive fields of neurons are tuned to match the stimulus 

characteristics of attended sounds. The selective amplification of foreground in late 

neural responses (from higher-order auditory cortices) but not in early responses (from 

core auditory cortex) observed here using decoding is in agreement with the encoding 

result of Ding and Simon (2012a) where the authors showed that the late M100TRF 

component, but not the early M50TRF component, of TRF is significantly modulated by 

attention. The increase in fidelity of the foreground as the response latency increases 

indicates a temporal as well as functional hierarchy in cortical processing of auditory 

scene, from core to higher-order areas in auditory cortex. Similar preferential 

representation for the attended speech stream has been demonstrated, albeit with only two 

speech streams and not differentiating between early and late responses, using delta and 

theta band neural responses (Ding and Simon, 2012a; Zion Golumbic et al., 2013a; Zion 

Golumbic et al., 2013b) as well as high-gamma neural responses (Mesgarani and Chang, 

2012; Zion Golumbic et al., 2013a), and using monaural (Ding and Simon, 2012a; 

Mesgarani and Chang, 2012) as well as audio-visual speech (Zion Golumbic et al., 

2013a; Zion Golumbic et al., 2013b).  

While some researchers suggest selective entrainment (Schroeder and Lakatos, 

2009; Ng et al., 2012; Zion Golumbic et al., 2013b; Kayser et al., 2015) as the 
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mechanism for selective tracking of attended speech, others suggest a temporal coherence 

model (Shamma et al., 2011; Ding and Simon, 2012a). Natural speech is quasi-rhythmic 

with dominant rates at syllabic, word and prosodic frequencies. The selective entrainment 

model suggests that attention causes endogenous low frequency neural oscillations to 

align with the temporal structure of the attended speech stream, thus aligning the high 

excitability phases of oscillations with events in attended stream. This effectively forms a 

mask that favors the attended speech. The temporal coherence model suggests that 

selective tracking of attended speech is achieved in two stages. First, a cortical filtering 

stage, where feature-selective neurons filter the stimulus, producing a multidimensional 

representation of auditory scene along different feature axes. This is followed by a second 

stage, coherence analysis, which combines relevant features streams based on their 

temporal similarity, giving rise to separate perceptions of attended and ignored streams. 

In this model, it is hypothesized that attention, acting through in the coherence analysis 

stage, plays an important role in stream formation. This type of coherence model predicts 

an unsegregated representation of any (non-attended) background streams. 

The representation of an auditory scene in core auditory cortex, based on the early 

responses, is here shown to be more spectro-temporal- or acoustic-based than object-

based (e.g., Figure 4.3B). This is further supported by the result that the Early-late model 

predicts MEG neural responses significantly better than Summation model (e.g., Figure 

4.5). This is consistent with previous demonstrations that neural activity in core auditory 

cortex was highly sensitive to acoustic characteristics of speech and primarily reflects 

spectro-temporal attributes of sound (Nourski et al., 2009; Okada et al., 2010; Ding and 

Simon, 2013; Steinschneider et al., 2014). In contrast, Nelken and Bar-Yosef (2008) 
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suggest that neural auditory objects may form as early as primary auditory cortex, and 

Fritz et al. (2003) show that representations of dynamic sounds in primary auditory cortex 

are influenced by task. As a working principle, it is possible that less complex stimuli are 

resolved earlier in the hierarchy of auditory pathway (e.g., sounds that can be separated 

via tonotopy) whereas more complex stimuli (e.g., concurrent speech streams), which 

need further processing, are resolved only much later in auditory pathway. In addition, it 

is worth noting that the current study uses co-located speech streams, whereas 

mechanisms of stream segregation will also be influenced by other auditory cues, 

including spatial cues, differences in acoustic source statistics (e.g., only speech streams 

vs. mixed speech and music; strong statistical differences might drive stream segregation 

in a more bottom-up manner than the top-down attentional effects studied here), 

perceptual load effects (e.g., tone streams vs. speech streams), as well as visual cues. Any 

of these additional cues has the potential to alter the timing and neural mechanisms by 

which auditory scene analysis occurs. 

It is widely accepted that an auditory scene is perceived in terms of auditory 

objects (Bregman, 1994; Griffiths and Warren, 2004; Shinn-Cunningham, 2008; Shamma 

et al., 2011). Ding and Simon (2012b) demonstrated evidence for an object-based cortical 

representation of an auditory scene, but did not distinguish between early and late neural 

responses. This, coupled with the result here that early neural responses provide an 

acoustic, not object-based, representation, strongly suggest that the object-based 

representation emerges only in the late neural responses/higher-order (belt and parabelt) 

auditory areas. This is further supported by the observation that acoustic invariance, a 

property of object-based representation, is observed in higher order areas but not in core 
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auditory cortex (Chang et al., 2010; Okada et al., 2010). When the foreground is 

represented as an auditory object in late neural responses, the finding that the combined 

background is better reconstructed than the sum of envelopes of individual backgrounds 

(Figure 4.4B) suggests that in late neural responses the background is not represented as 

separated and distinct auditory objects. This result is consistent with that of Sussman et 

al. (2005), who reported an unsegregated background when subjects attended to one of 

three tone streams in the auditory scene. This unsegregated background may be a result 

of an 'analysis-by-synthesis’ (Yuille and Kersten, 2006; Poeppel et al., 2008) mechanism, 

wherein the auditory scene is first decomposed into basic acoustic elements, followed by 

top-down processes that guide the synthesis of the relevant components into a single 

stream, which then becomes the object of attention. The remainder of the auditory scene 

would be the unsegregated background, which itself might have the properties of an 

auditory object. When attention shifts, new auditory objects are correspondingly formed, 

with the old ones now contributing to the unstructured background. Shamma et al. (2011) 

suggest that this top down influence acts through the principle of temporal coherence. 

Between the two opposing views, that streams are formed pre-attentively and that 

multiple streams can co-exist simultaneously, or that attention is required to form a 

stream and only that single stream is ever present as separated perceptual entity, these 

findings lend support to the latter. 

 In summary, these results provide evidence that, in a complex auditory 

scene with multiple overlapping spectral and temporal sources, the core areas of auditory 

cortex maintains an acoustic representation of the auditory scene with no significant 

preference to attended over ignored source, and with no separation into distinct sources. 
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It is only the higher-order auditory areas that provide an object based representation for 

the foreground, but even there the background remains unsegregated. 
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5 Delta vs. Gamma Auditory Steady State Synchrony 

in Schizophrenia 

5.1 Introduction 

Many schizophrenia-related symptoms, such as auditory hallucination, speech 

disorganization, disorganized thoughts, and verbal working memory deficits are in the 

auditory–verbal domain, suggesting that the schizophrenia disease process impacts the 

auditory processing pathway. Electrophysiological abnormalities in schizophrenia are 

consistently reported in patients during auditory paradigms such as auditory mismatch 

negativity (Javitt et al., 1996; Light and Braff, 2005), steady-state response (Kwon et al., 

1999; Hirano et al., 2015), sensory gating (Freedman et al., 1996; Hong et al., 2008), 

and word, language and speech processing (Ford et al., 2007; Kiang et al., 2008). 

Auditory–verbal processing deficits in schizophrenia may thus be associated with 

fundamental electrophysiological deficits in the auditory processing network. 

Cortical oscillations are thought to play an important role in cognitive 

functioning, communication, and integration of information across different regions of 

the brain (Basar et al., 2001; Ward, 2003; Uhlhaas et al., 2009). In healthy subjects, 

low frequency oscillations (<10 Hz) regulate speech processing (Ding and Simon, 

2012a), where accurate perception of attended speech is associated with more precise 

delta band (1-4 Hz) neuronal responses (Ding et al., 2013; Zion Golumbic et al., 

2013b) than in other bands. These low frequency oscillations, especially in the delta 

band, appear to serve a stabilization and enhancement function while attending to, and 

during the processing of, auditory streams (Ding and Simon, 2014). Auditory selective 
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attention is also associated with the entrainment of ongoing neuronal oscillations in the 

delta band, which modulates neuronal excitability in primary auditory cortex (Lakatos 

et al., 2013b). We hypothesized that in schizophrenia a reduced ability to generate 

synchronous delta oscillations in response to auditory stimuli would disrupt auditory 

processing, leading to auditory-verbal domain problems.  

The auditory steady-state response (ASSR) can be used to test the integrity of 

cortical oscillatory activity (Picton et al., 2003; Uhlhaas and Singer, 2010; O'Donnell et 

al., 2013). It is a robust activation paradigm to elicit frequency-specific auditory 

responses. It is generated using stimuli that are repeated (periodic) at a specified 

frequency, resulting in electroencephalographic neural entrainment at the presentation 

frequency. We used a 2.5 Hz (mean of 1 to 4 Hz) stimulus train to elicit ASSR in the 

delta band, and to test the joint hypotheses that 1) schizophrenia is associated with an 

inability to support delta synchronization, and 2) this impairment is associated with 

cognitive disturbances and other symptoms in the auditory–verbal domain.  

Our study is the first to investigate the delta (1-4 Hz) range ASSR in 

schizophrenia. Previous studies using attention-based paradigms have shown that delta 

entrainment is associated with clinical symptoms in schizophrenia (Lakatos et al., 

2013a). ASSR has appeal in translational research for studying intrinsic 

neurobiological abnormalities without the need to rely on explicit behavioral 

performance. The first study to investigate ASSR in the 20 to 40 Hz range in 

schizophrenia reported reduced ASSR at 40 Hz (Kwon et al., 1999). Subsequent ASSR 

studies expanded the range down to 5-10 Hz or up to 80-160 Hz (Hamm et al., 2011; 
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Tsuchimoto et al., 2011), and have generally confirmed ASSR deficits in schizophrenia 

(Clementz et al., 2004; Hong et al., 2004; Light et al., 2006; Spencer et al., 2008; 

Brenner et al., 2009a; Hamm et al., 2011; Tsuchimoto et al., 2011; Kirihara et al., 2012; 

Hirano et al., 2015) primarily in the 40 to 80 Hz range. The strong interest in 40 Hz has 

also been justified by finding a reduced 40 Hz ASSR in the first-degree relatives (FDR) 

of schizophrenia patients (Hong et al., 2004; Rass et al., 2012). FDR typically have 

about a 10-fold increase in risk for schizophrenia compared with the general 

population, although risks do not necessitate a transition to psychosis as the rate of 

schizophrenia is about 10% in FDR (Kendler et al., 1993; Erlenmeyer-Kimling et al., 

1997). Given these findings, we investigated delta band ASSR, along with higher 

frequencies at 5, 10, 20, 40, and 80 Hz, with a focus on assessing the relationship 

between delta (2.5 Hz) vs. gamma (40 to 80 Hz). This design also allowed an unbiased 

assessment across a very broad range of frequencies, to determine whether there may 

be frequency specificity in schizophrenia psychopathology. 

5.2 Materials & Methods 
Participants: The study included 128 schizophrenia spectrum disorder (SSD) patients and 

108 healthy controls (HC) (Table 5.1). The Structured Clinical Interview for DSM was 

used to make Axis I diagnoses. All patients were recruited from outpatient clinics; media 

advertisements were used for HC. Subjects with medical and neurological illnesses, head 

injury, and substance dependence or abuse (except nicotine) were excluded. Six patients 

were not on antipsychotics, 19 on typical, 74 on one atypical, 18 on more than one 

atypical, and 11 on a combination of atypical and typical antipsychotics. Patients on daily 

GABAergic hypnotics were excluded. Significant findings in SSD were re-examined in 
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FDR of patients (n=55) who have no psychosis. 70% of the FDR were from families of 

the patients in this study. All patient probands of the FDR were interviewed by SCID 

regardless of whether the patients were in the current study.  

Table 5.1: Demographic and clinical information 

 HC 
(n=108) 

SSD 
(n=128) 

FDR 
(n=55) 

HC vs. SSD HC vs. FDR 
F or χ2 p value F or χ2 p value 

Age mean 
(SD) 

37.9 
(13.8) 

37.8 
(13.1) 

46.6 
(13.6) 0.003 0.96 15.1 <0.001** 

%Male 65.7 67.2 31.6 0.06 0.89 17.5 <0.001** 

Verbal 
working 
memory 

20.4 
(4.4) 

17.0 
(5.3) 

18.9 
(5.1) 24.8 <0.001** 3.4 0.067 

Auditory 
perception 
trait 

3.8 
(4.8) 

19.4 
(11.8) 

4.8 
(7.7) 140.3 <0.001** 0.9 0.35 

Auditory 
perception 
state 

1.1 
(2.4) 

9.8 
(12.0) 

3.8 
(4.8) 46.4 <0.001** 0.5 0.46 

BPRS n/a 40.4 
(11.2) n/a n/a n/a n/a n/a 

 
BPRS: Brief Psychiatric Rating Scale; HC: healthy controls; SSD: schizophrenia 

spectrum disorder patients; FDR: first degree relatives of SSD patients 

Auditory Clinical and Cognitive Symptoms: We developed the Auditory Perceptual 

Trait and State Scale (APTS) to measure perceptual abnormalities. The anomalies are 

rated for “trait”, defined as longitudinally experienced symptoms over one’s lifetime, 

and “state”, defined as symptoms recently experienced in the past week. The full scale is 

available at http://www.mdbrain.org/APTS.pdf. The APTS is self-rated. Its test-retest 

reliability was assessed in 41 participants about 4 months apart, which showed 

ICC=0.81 for both the trait and state measures, suggesting good reliability.  The Brief 
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Psychiatric Rating Scale (BPRS) was used to rate overall symptoms. The APTS was 

administered to all participants; the BPRS only to patients. Finally, auditory-verbal 

working memory was assessed using the digit sequencing task (Hong et al., 2004; Rass 

et al., 2012).  

ASSR Paradigm: ASSRs were recorded in a sound-attenuated chamber while 

participants listened to click trains, delivered by headphones, at 2.5, 5, 10, 20, 40, and 80 

Hz. Seventy-five stimulus trains (trials) each consisting of 15 clicks, with each click at 72 

dB and of 1 ms duration were delivered at each stimulus frequency. The duration ranged 

from 6 s per train for 2.5 Hz, to 0.1875 s per train for 80 Hz. The inter-train interval was 

0.7 s. Therefore, the durations for 2.5, 5, 10, 20, 40, and 80 Hz were 8.38, 4.69, 2.82, 

1.89, 1.42, and 1.19 minutes, respectively, presented in six separate blocks separated by 

two minutes. The order of the blocks was randomized. This design allows steady-state 

neural entrainment for each frequency (Figure 5.2 & Figure 5.3). A hearing screening test 

excluded apparent hearing impairment. EEG was recorded using a 64 electrode Quick-

Cap with sintered Ag/Ag chloride electrodes and a Neuroscan SynAmp2 (Compumedics, 

Charlotte, NC) at 1000 Hz with a 0.1 to 200 Hz bandpass filter. Impedance was kept 

below 5 kΩ. Offline, electrodes were average referenced, highpass-filtered at 0.8 Hz, and 

detrended. Ocular artifacts were removed using the time-shift-PCA algorithm, with 

ocular channels as references(de Cheveigne and Simon, 2007). The full-duration 

waveforms from each channel were epoched into 75 individual trials.  

Normalized ASSR Power: While typical ASSR analysis uses individual channels (often 

CZ or FZ), we adapted signal processing techniques (Wang et al., 2012; de Cheveigne 

and Arzounian, 2015) where individual EEG channels are spatially combined to 
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maximize response reliability using the Denoising Source Separation (DSS) algorithm 

(Särelä and Valpola, 2005a; de Cheveigne and Simon, 2008; de Cheveigne and Parra, 

2014). DSS is a blind source separation technique related to Principal Component 

Analysis (PCA) and Independent Component Analysis (ICA) but specifically designed 

for use with data from multi-trial evoked responses or narrowband signals. DSS works by 

enhancing stimulus-driven activity over stimulus-unrelated activity, with its components 

ordered according to their reliability(Särelä and Valpola, 2005a; de Cheveigne and 

Simon, 2008; de Cheveigne and Parra, 2014). 

Raw ASSR power was calculated as the magnitude squared of the Fourier 

transform at the stimulus frequency. The Fourier transform was calculated using 

concatenated trials rather than averaged trials to increase spectral resolution (Elhilali et 

al., 2009; Xiang et al., 2010). Background power was calculated as average spectral 

power over 1 Hz width frequency bands (on either side of the stimulus frequency, after 

leaving a guard band of 0.5 Hz on either side). Normalized ASSR power was then 

calculated as the mean over DSS components of the ratio of raw ASSR power and 

respective background power. This normalization with respect to background power 

dramatically reduces subject-to-subject variability of frequency response profiles 

(Elhilali et al., 2009). This combined use of DSS and normalized ASSR power 

represents the two critical improvements over previous ASSR power extraction 

methods. The accompanying reduction of noise is particularly critical for low frequency 

ASSR, which is known to be more susceptible to background low frequency fluctuations 

(Picton et al., 2003; Wang et al., 2012).  

ASSR Phase Locking Value (PLV): PLV (Jervis et al., 1983) has been extensively used 
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in ASSR analysis. Increased variability of neural responses across trials reduces the 

PLV value towards 0, where as increased reliability increases the value towards 1 

(Herrmann et al., 2013). First, intra-electrode PLV was calculated for each stimulus 

frequency at each electrode according to the following formula  

𝑃𝐿𝑉 =  
1
𝑁 𝑒−𝑖𝜃𝑘

!

!!!

 

where N is the number of trials and 𝜃! denotes the phase at the steady state frequency 

from the Discrete Fourier Transform. Based on topographic analysis showing that ASSR 

was strongest at fronto-central locations (Figure 5.1), the PLV of 16 fronto-central 

electrodes (AF3, AFZ, AF4, F3, F1, FZ, F2, F4, FC3, FC1, FCZ, FC2, FC4, C1, CZ, 

C2) were averaged and used for the final PLV assessment. 

Statistics: Data processing was performed without the knowledge of group and 

demographic information. Repeated measures ANOVA was performed to compare 

normalized ASSR power by stimulus frequency (six) and group (SSD vs. HC). The 

Greenhouse-Geisser correction was applied. Significant effect was followed by post-hoc 

comparison using Bonferroni correction (p<0.008). If a significant difference was found 

for SSD vs. HC, we then further tested whether the same frequency was significantly 

different between FDR vs. HC (no further Bonferroni correction was applied). A similar 

analysis was followed for the PLV measure. Contributions of ASSR to clinical measures 

were examined using stepwise linear regression, where at each step the ASSR power at 

the six frequencies were the predictors and one clinical measure was the dependent 

variable. Multi-collinearity was examined using variance inflation factor (VIF) (Stevens, 
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2002). A regression model was considered significant if the overall model was significant 

at p<0.05 and all predictors had VIF<5. All tests were two-tailed. 

5.3 Results 
ASSR in Schizophrenia Spectrum Disorder Patients 

 

Figure 5.1: Grand averages of topographies of normalized ASSR power for 

HC, FDR and SSD patients. Scaled based on lowest (blue) to highest power 

value (red) within each frequency. Refer to Results for statistical group 

differences. 

Figure 5.1 shows that the spatial distribution of normalized ASSR power has a 

fronto-central accentuation; Figure 5.2 & Figure 5.3 shows grand average time courses of 

the ASSR responses from electrode FZ and first DSS component respectively. Repeated 

measures ANOVA on normalized ASSR power extracted by DSS showed significant 
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effects for stimulus frequency (F=390.1, p<0.001), group (SSD vs. HC; F=13.4, p<0.001) 

and a frequency × group interaction (p=0.039). Post-hoc tests showed that the SSD group 

had significantly reduced power at 2.5 Hz (F=18.3, p<0.001), 5 Hz (F=10.1, p=0.002), 10 

Hz (F=9.9, p=0.002), and 40 Hz (F=8.7, p=0.004), but not 20 Hz (p=0.18) or 80 Hz 

(p=0.03) after Bonferroni correction (Figure 5.4A).  When the analogous analysis was 

performed on ASSR responses without the use of DSS (e.g., from the single electrode 

FZ) and without normalization, most findings of significance were lost: only 40 Hz 

ASSR showed nominally significant reduction in SSD compared with HC (p=0.017), 

which was then lost after correcting for multiple comparisons. 

To formally test the frequency × group interaction between 2.5 Hz and 40 Hz, 

ANOVA was repeated contrasting these frequencies. It showed significant group 

(p<0.001) and interaction effects (p=0.023), where the interaction was due to a greater 

reduction of 2.5 Hz ASSR than of 40 Hz ASSR, in patients compared with controls, as 

seen in Figure 5.4A.  

Re-examining these findings using PLV, significant effects were seen for 

frequency (p<0.001) and group (p<0.001) without interaction (p=0.09). Patients had 

reduced PLV at 2.5 Hz (F=9.5, p=0.002), 5 Hz (F=8.2, p=0.004), 10 Hz (F=5.9, 

p=0.016), 40 Hz (F=5.3, p=0.022) and 80 Hz (F=4.0, p=0.045) but not 20 Hz (p=0.50). 

Findings from 2.5, 5, 10, and 40 Hz replicated power-based analyses and thus no further 

Bonferroni correction was applied (Figure 5.4B). Therefore, reduced ASSR was found in 

2.5, 5, 10, and 40 Hz in both power and phase based analysis. 
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Figure 5.2: Time-domain grand averages from electrode FZ. The vertical axis 

shows amplitude in µV. The vertical dotted lines indicate begin and end points 

of a stimulus train. Preferential entrainment in the delta (2.5 Hz) and gamma 

(40 Hz) bands can be seen in both the controls and schizophrenic patient 
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group, and 2.5 Hz and 40 Hz stimuli are also associated with larger patient-

control differences. 

 

Figure 5.3: Time-domain grand averages using the first DSS component. The 

vertical dotted lines indicate begin and end points of a stimulus train. DSS is 
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able extract ASSR responses with higher SNR compared to single electrode 

responses (Figure 5.2). In controls, 2.5 Hz and 40 Hz stimuli elicit larger 

ASSR amplitudes than at other frequencies, and 2.5 Hz and 40 Hz stimuli are 

also associated with larger patient-control differences.  

 

 

Figure 5.4: Mean and s.e. of normalized power (in dB) and phase locking 

values (PLV). A: Power at 2.5, 5, 10 and 40 Hz are significantly lower for 

patients than controls. B: Replicable findings using PLV. C and D: FDR 

showed replicable ASSR reduction compared with controls only at 40 Hz. * 

Statistically significant. Effect sizes are tabulated in Appendix. 
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ASSR in First Degree Relatives 

Age and sex were not matched between FDR and HC (Table 5.1). However, 

neither age (p=0.44) nor sex (p=0.44) were significant in the repeated measures 

ANCOVA and so were removed. The results showed significant effects for stimulus 

frequency (F=171.0, p<0.001), group (F=5.1, p=0.025), and frequency × group 

interaction (p=0.036) in FDR vs. HC. Post-hoc tests at the frequencies for which SSD 

and HC were significantly different (2.5, 5, 10 and 40 Hz) showed that FDR had lower 

ASSR power than HC at 40 Hz (F=5.4, p=0.022) but not at 2.5, 5, or 10 Hz (p=0.28 to 

0.85) (Figure 5.4C). Only the reduction in gamma band ASSR at 40 Hz was considered 

a replication of findings in patients.   

For PLV, age (p=0.71) and sex (p=0.88) were not significant. There was a 

significant stimulus frequency effect (F=84.4, p<0.001) and a frequency × group 

interaction (F=3.5, p=0.007). Post hoc tests showed that only the 40 Hz ASSR 

reduction (F=5.5, p=0.021) was replicated (Figure 5.4D).  

In summary, findings were largely consistent between normalized power and 

PLV except with PLV generally having smaller effect sizes (Figure 5.4; Appendix 

Table A1 & A2). In subsequent analyses, we opted to use only normalized power based 

ASSR. 

ASSR and Verbal Working Memory (VWM) 

Working memory is impaired in SSD (Barch et al., 2009; Forbes et al., 2009). 

While the SSD group had lower VWM compared with HC (p<0.001, Table 5.1), the FDR 
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did not significantly differ from HC on VWM (p=0.067). The regression model was 

significant in SSD (F=15.8, ΔR2=11.8%, p<0.001; all VIFs<1.5) where only 2.5 Hz 

ASSR significantly contributed to VWM (t=4.0, p<0.001): patients with lower delta 

power showed worse VWM (r=0.36, p<0.001) (Figure 5.5A). The correlation of 2.5 Hz 

ASSR with VWM was not significant in either the HC or FDR groups. 

We calculated the correlation coefficients between VWM and ASSR at each 

frequency: 2.5 Hz: r=0.34, p<0.001; 5 Hz: r=0.30, p=0.001; 10 Hz: r=0.22, p=0.016; 20 

Hz: r=0. 19, p=0.040; 40 Hz: r=0.20, p=0.033; and 80 Hz: r=0.15, p=0.11. The 

relationship between ASSR and VWM, quantified through these correlation coefficients, 

was strongly linked to the stimulus frequency (r=-0.95, p=0.003) (Figure 5.5C): the 

correlation between ASSR and VWM significantly decreases with increasing stimulus 

frequency. 

The model was also significant in FDR (F=9.8, ΔR2=17.5%, p=0.003; VIFs<3.6) 

where only the 40 Hz ASSR significantly contributed to VWM (t=3.13, p=0.003) (Figure 

5.5B). The model was not significant in controls (model p>0.05). 



 

 
 

99 

 

Figure 5.5: Frequency-specific associations between verbal working memory 

and ASSR. A: In SSD, higher 2.5 Hz ASSR was associated with better 

working memory. B: In FDR, 40 Hz ASSR was associated with working 

memory. C: The ASSR-working memory relationships (by their correlation 

coefficients: y axis) were strongly (negatively) associated with stimulus 

frequencies. 
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ASSR and Auditory Perception Abnormality 

A regression model with APTS trait score as the dependent variable and 

normalized ASSR power as predictors in the SSD group was significant (F=7.7, 

ΔR2=13.8%, p=0.001; VIFs<1.5). Only 2.5 Hz (t=-2.8, ΔR2=6.8%, p=0.007) and 40 Hz 

(t=3.6, ΔR2=6.9%, p=0.001) normalized ASSR powers were significant predictors but in 

opposite directions: reduced 2.5 Hz and increased 40 Hz ASSR were associated with 

more longitudinally experienced auditory symptoms in SSD patients (Figure 5.6B and 

Figure 5.6C). The model was not significant for state auditory symptoms (p=0.056) 

although the trends were the same. 

 

Medication and Other Clinical Measurements 

Chlorpromazine equivalent (CPZ) of antipsychotic dosages was not correlated 

with ASSR power at any frequency (all r<0.13, all p>0.20). BPRS total or psychosis 

score was not significantly correlated with ASSR power at any frequency (all r<0.11, all 

p>0.30). 
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Figure 5.6: Auditory perception as measured by APTS was significantly 

higher (*) in patients compared with controls as experience in lifetime (trait) 

or the past seven days (state), but not in FDR compared with controls (A). 

Regression analyses reviewed that 2.5 Hz (B) and 40 Hz (C) ASSR 

contributed to auditory perceptual trait score in patients but in opposite 

directions. Partial r refers to having partialled out the effects of 2.5 Hz for 40 

Hz, or vice versa, in the regression analyses. 

5.4 Discussion 
We found that delta and gamma ASSR were both reduced in patients, with delta 

showing a more pronounced reduction. Critically, reduced delta ASSR was associated 

both with more severe longitudinally experienced auditory symptom “traits” and also 

poorer verbal working memory. The observed reduction in gamma ASSR, on the other 
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hand, which was also present in non-psychotic FDR, was found to be more associated 

with the risk of SSD than with SSD itself. 

The finding of reduced 40 Hz ASSR in SSD replicates other studies (Kwon et al., 

1999; Light et al., 2006; Spencer et al., 2008; Vierling-Claassen et al., 2008) while the 

finding of reduced delta ASSR is new. While delta band power may be significantly 

increased in SSD in resting EEG (Sponheim et al., 1994), delta band oscillations in SSD 

are also found to be significantly reduced in stimulus or behavior activated paradigms 

(Ford et al., 2002; Brenner et al., 2003; Ford et al., 2008; Basar-Eroglu et al., 2009; Bates 

et al., 2009; Doege et al., 2009; Hamm et al., 2011; Donkers et al., 2013). Of particular 

relevance are findings of reduced delta power and fronto-temporal coherence during 

talking (Ford et al., 2002) and auditory target detection (Ford et al., 2008) in SSD. Unlike 

a task-related auditory paradigm depending on performance, the delta ASSR is a passive 

paradigm and its deficit may indicate difficulty in generating normal delta 

synchronization to auditory stimuli. Reduced ability to generate delta entrainment might 

serve as a tangible mechanism for the frequently observed auditory–verbal domain issues 

in SSD, as neural entrainment in the delta and theta band is critical for normal speech 

perception (Ding and Simon, 2012a; Ding et al., 2013; Zion Golumbic et al., 2013b).  

Auditory hallucinations are experienced by most patients with SSD in their 

lifetime (Sartorius et al., 1974; Andreasen, 1991). We tested the hypothesis that an ASSR 

delta deficit contributes to their auditory symptoms, as low frequency temporal 

modulations (<4 Hz) are more critical in speech perception than faster (22–40 Hz) 

modulations (Ding and Simon, 2012a; Ding et al., 2013; Zion Golumbic et al., 2013b). 

This hypothesis was supported. Patients have impaired ability to generate delta ASSR 
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more so than any other frequency tested, and this deficit is associated with more severe 

longitudinally experienced auditory anomalies. We did not find this correlation with 

“state” symptoms in APTS or BPRS, perhaps due to fluctuations in state symptoms or to 

variability in treatment or treatment response. 

ASSR based delta entrainment was significantly associated with VWM (Figure 

5.5A). The linear relationship between stimulus frequency and the ASSR-VWM 

correlation coefficients (r=-0.95; Figure 5.5C) further highlights a potentially prominent 

role of low frequency oscillations in the auditory cognitive system in patients with SSD.  

In evaluating the association between ASSR power and VWM, we observed that 

the most strongly correlated frequency band changed from delta with SSD to gamma with 

FDR (Figure 5.5A vs. Figure 5.5B). In the auditory cortex, the amplitude of neural 

oscillations are controlled in a nested fashion, where delta (1-4 Hz) phase modulates theta 

(4-8Hz) amplitude, and theta phase modulates gamma (30+ Hz) amplitude(Lakatos et al., 

2005). This oscillatory hierarchy is thought to control baseline excitability (Lakatos et al., 

2005). Under this assumption, we speculate that in individuals without a major deficit in 

delta generation, as in FDR, gamma band abnormality may yield a more apparent 

relationship with VWM (Figure 5.5B). However, in individuals with major deficits in 

delta generation, as in the patients, delta deficits may exert a more fundamental role and 

thus stronger contribution to VWM (Figure 5.5A & Figure 5.5C). 

Figure 5.2 illustrates the ‘preferential’ entrainment at 2.5 Hz and 40 Hz using 

absolute power analysis even at a single electrode. The special 40 Hz entrainment in 

human brains is well known but the 2.5 Hz case is a new observation. Using 

normalization and DSS analysis, the reduction of 2.5 Hz ASSR for SSD was significant, 
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but not when using simple spectral power; this may explain the lack of earlier 

observations. DSS and normalization reduce variability separately in delta ASSR 

(normalization does not improve gamma ASSR), allowing the delta reduction to even 

surpass the gamma reduction. 

Delta ASSR was not significantly different between FDR and controls, suggesting 

that this deficit does not indicate a genetic vulnerability for SSD. The finding of reduced 

40 Hz ASSR in FDR replicated our previous finding (Hong et al., 2004), now in an 

independent, much larger cohort. Combined with another independent replication (Rass 

et al., 2012), the data support a 40 Hz ASSR deficit as a genetic biomarker for SSD.  

Greater 40 Hz ASSR (within overall reduction) in patients was associated with 

more auditory symptoms (Figure 5.6C). This matches findings in the visual domain, 

where higher gamma during gestalt perception was associated with more visual 

hallucinations (Spencer et al., 2004). Recent animal and human studies are converging to 

show that glutamatergic receptor antagonists increase gamma neural oscillations (Hong et 

al., 2010; Sullivan et al., 2015). A leading hypothesis in psychosis generation is 

excitatory glutamatergic receptor hypofunction, based on observations that glutamatergic 

receptor antagonism by phencyclidine and ketamine mimics aspects of schizophrenia 

symptomatology (Kantrowitz and Javitt, 2010; Snyder and Gao, 2013). Therefore, the 

link between higher gamma power and more visual and auditory symptoms could be 

through abnormal glutamatergic mechanisms. 

Gamma oscillations are generated by inhibitory GABAergic interneurons 

regulating excitatory glutamatergic pyramidal neurons (Bartos and Elgueta, 2012; 

Gonzalez-Burgos and Lewis, 2012). Abnormal GABAergic regulation of gamma is 
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thought to underlie working memory deficits in SSD (Maldonado-Aviles et al., 2009; 

Hines et al., 2013; Kim et al., 2015) and is often hypothesized to be genetic in origin 

(Straub et al., 2007). Therefore, reduced gamma ASSR in FDR, and correlation with 

working memory in FDR (Figure 5.5B), appear to support the hypothesis that gamma-

working memory deficit confers risk for SSD.  The neural mechanisms underlying delta 

oscillations are less well understood. Studies of sleep and waking state delta oscillations 

(Neske, 2015) suggest that N-Methyl-D-aspartate (NMDA) receptors play a role in 

maintaining these slow oscillations, and the NMDA receptor antagonist ketamine reduces 

slow wave 1-5 Hz oscillations(Hong et al., 2010). Whether reduced delta ASSR reflects 

an NMDA hypofunction origin of schizophrenia (Coyle, 2012) would require follow-up 

studies. 

Compared to conventional single-channel-based spectral power analysis, this 

study employed the techniques of DSS, which integrates over channels, and 

normalization, which takes into account background power; both contribute separately to 

increase statistical power in the ASSR analysis. Normalization particularly improves 

ASSR analysis at lower frequencies, due to the 1/f nature (strong rise at low frequencies) 

of noisy background activity in electrophysiological recordings (Miller et al., 2009; 

Voytek et al., 2015). DSS enhances amplitude contrast, due to its ability to optimally 

combine responses across electrodes and so extract ASSR responses with higher fidelity.  

DSS performs only spatial, not spectral filtering, and hence does not introduce artifacts 

associating with spectral filtering.  

An important limitation is that we did not test for the specificity of the findings. 

We tested auditory working memory, but not deficits in other cognitive domains. This 
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limits interpretation regarding whether the correlations with clinical features were 

specific to auditory working memory or more general to other cognitive deficits. Reduced 

delta frequency ASSR in SSD might also arise from antipsychotic medications, though 

no correlations were found between delta frequency ASSR and current antipsychotic 

medication dosage. Finally, the failure to synchronize to delta frequency stimulation 

could also be related to abnormal baseline delta activity, although the DSS procedure was 

designed to account for this effect. 

In summary, the results from this study support that inadequate ability to sustain 

neural oscillatory responses in the lower frequency range may play a role in the auditory 

perceptual and cognitive deficit mechanisms in schizophrenia. The findings from this 

study support the use of delta range ASSR as part of the effort to build translational 

animal models to study the etiology of SSD. 
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6 Summary 
Most normal-hearing listeners can hold a conversation with a partner in everyday 

settings with an ease that is unmatched by any artificial recognition system available 

today. Listeners can reliably extract meaning from a sound source in a cacophony of 

multiple competing talkers, broadband machine noise, room reflections etc. in busy 

offices, crowded restaurants, noisy streets and so on. Inspired from Cherry (1953) these 

complex auditory scenarios are generally referred to as “cocktail party problems” and 

Bregman (1994) dubbed our ability to solve these problems as “auditory scene analysis”. 

While we hear with ears, it is with the brain that we listen. Neural computations in the 

brain facilitate our ability to navigate these complex auditory scenarios and reasonably, 

many neurological illnesses are correlated with deficiencies in cortical auditory 

processing. In this dissertation, we investigated the neural representations, which form 

the basis for neural computations, in two different abstractions of cocktail party. 

Listening to continuous speech in (1) reverberant as well as noisy environments and (2) 

in the presence of multiple competing background talkers. Further, using auditory steady 

state response (ASSR) paradigm, we showed that delta band neural responses, which are 

commensurate with slow temporal rhythms in speech, are better correlated with auditory 

processing deficits observed in schizophrenia than historically focused gamma band 

responses. 

Distinct from existing studies, which investigated cortical encoding of speech 

either in anechoic conditions or corrupted by simple additive noise, the study in chapter 3 

focused on cortical encoding of speech distorted by noise as well as the reverberation 

which is ubiquitous in our daily listening conditions. Evidence shown in this work 
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suggests that cortex maintains both distorted and distortion free representation of speech 

in reverberant listening conditions. Further, the results showed that noise affected cortical 

encoding of speech only in presence of reverberation, arguing for differential encoding 

mechanisms for additive and convolutive distortions of speech, with implications for 

distortion robust speech perception observed in humans. Given the limited spatial 

resolution of current MEG source localization techniques, especially in presence of 

correlated sources, the study presented here did not explore the corresponding regions of 

brain hosting distorted and distorted free representations of reverberant speech. Hence, it 

would be of great interest to replicate the current study using intercranial recording 

techniques. Further, it would be of interest to investigate the effect of binaural cues, given 

their relevance in accurate speech perception in noisy conditions. 

Elaborating on the important mechanistic questions that remain open since 

Cherry’s seminal cocktail party work, the study presented in chapter 4 addressed how 

speech streams in a multi-talker auditory scene are represented, parsed and attended in 

different hierarchical levels of auditory cortex as measured by how the speech envelope 

is represented at lower (1-8 Hz) MEG frequencies. The results strongly suggest that early 

auditory cortex represents auditory scene acoustically and holistically, not as objects and 

with out any preference for attended speech over unattended. Later auditory cortex 

represents auditory scene in terms of objects with attended speech represented much 

more strongly than unattended. Further, the attentional “background,” comprising those 

parts of auditory scene that are not the focus of attention, is shown to be organized as an 

unsegregated background, rather than separate individual objects. The results imply that 

the auditory object segregation is influenced by attention, though not measured directly 
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here, rather than pre-attentive – an important debate in the field, with implications for all 

downstream speech processing in attention, memory and language. An interesting future 

direction for this work is to study the neural representation of auditory scene with 

additional streaming cues such as directional sources, differing statistics of auditory 

sources as well as integration with visual cues. 

Given that low frequency neuronal responses can reliably track speech and that 

schizophrenia patients exhibit frequent auditory-verbal domain deficits, chapter 5 

explored the integrity of neural responses to auditory stimuli using ASSR paradigm over 

broad range of frequencies. Examining the association between auditory steady state 

responses and cognitive performance and auditory hallucination symptom severity in 

patients, first-degree relatives and controls, the results, apart from replicating the gamma 

band deficiencies observed in patients, revealed for the first time that delta band 

deficiencies are much greater in patients compared with controls. Interestingly, observed 

reduction in delta ASSR was better correlated with cognitive deficits observed in patients 

than gamma band, thus extending and shifting the focus of neural response impairments 

away from what has been a relatively narrow focus on high-frequency gamma responses 

in the community and highlights the potential importance of slow wave activity in 

studying the etiology of schizophrenia. Complimenting the passive listening paradigm 

used in this study, an important extension would be to use an active listening paradigm, 

such as a cocktail party used in chapter 4, which also takes in to consideration the 

attention deficits observed in schizophrenia patients.  
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Appendix 
Mean, standard error, standard deviation and effect size data for ASSR power and PLV 
measures for controls vs. patients and controls vs. FDR from chapter 5. 

 
 
  

Table A1: Mean, Standard Error, Standard Deviation, and Effect Size Data: Controls vs. Patients 
  Controls  Patients 

Measure 
Stimulation 
Frequency Mean s.e s.d. N  Mean s.e. s.d. N 

Effect 
Size 

Power 2.5 Hz 12.96 0.29 3.02 108  11.24 0.27 3.08 128 0.57 
  5 Hz 13.58 0.23 2.35 108  12.39 0.28 3.20 128 0.42 
  10 Hz 12.94 0.24 2.43 108  11.80 0.26 2.96 128 0.42 
  20 Hz 14.60 0.23 2.36 108  14.10 0.28 3.17 128 0.18 
  40 Hz 19.30 0.18 1.85 108  18.46 0.21 2.41 128 0.39 
  80 Hz 16.52 0.20 2.04 108  15.55 0.37 4.20 128 0.29 
PLV 2.5 Hz 0.23 0.01 0.13 108  0.18 0.01 0.12 128 0.40 
  5 Hz 0.22 0.01 0.12 108  0.17 0.01 0.11 128 0.38 
  10 Hz 0.21 0.01 0.11 108  0.18 0.01 0.10 128 0.32 
  20 Hz 0.21 0.01 0.10 108  0.20 0.01 0.11 128 0.09 
  40 Hz 0.38 0.01 0.15 108  0.33 0.01 0.16 128 0.30 
  80 Hz 0.11 0.00 0.04 108  0.09 0.00 0.05 128 0.26 

  
Table A2: Mean, Standard Error, Standard Deviation, and Effect Size Data: Controls vs. FDR 

   Controls  FDR 
Power 2.5 Hz 12.96 0.29 3.02 108  12.42 0.39 2.92 55 0.18 
  5 Hz 13.58 0.23 2.35 108  13.50 0.39 2.86 55 0.03 
  10 Hz 12.94 0.24 2.43 108  12.54 0.49 3.60 55 0.14 
  20 Hz 14.60 0.23 2.36 108  13.50 0.46 3.38 55 0.40 
  40 Hz 19.30 0.18 1.85 108  18.41 0.41 3.02 55 0.38 
  80 Hz 16.52 0.20 2.04 108  14.80 0.74 5.49 55 0.48 
PLV 2.5 Hz 0.23 0.01 0.13 108  0.19 0.02 0.12 55 0.33 
  5 Hz 0.22 0.01 0.12 108  0.23 0.02 0.16 55 -0.14 
  10 Hz 0.21 0.01 0.11 108  0.22 0.02 0.13 55 -0.11 
  20 Hz 0.21 0.01 0.10 108  0.18 0.01 0.10 55 0.29 
  40 Hz 0.38 0.01 0.15 108  0.31 0.02 0.18 55 0.39 
  80 Hz 0.11 0.00 0.04 108  0.09 0.01 0.05 55 0.30 
PLV: Phase locking value 
FDR: First degree relatives          
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