wARE,

SRC-TR-87-49

A Microcomputer Based Expert
Controller for Industrial Applications

by

L. Lebow
G.L. Blankenship



O T
LSO
wn‘-,’

A MICROCOMPUTER BASED EXPERT CONTROLLER
FOR INDUSTRIAL APPLICATIONS!

L. Lebow and G.L. Blankenship

Systems Research Center and Electrical Engineering Department, University
of Maryland, College Park, Maryland 20742 USA

1 Introduction

Expert control as defined by Astrom, Anton and Arzen [7,6,1,2,3] involves
the construction of a composite control structure for a complex process
which includes supervisory functions, adaptive control algorithms and low
level control laws all managed by an expert system which monitors process
parameters and control system performance. In [1,2,3] a prototype expert
controller was built using high level tools on a super-mini computer.? This
work and the related work of Moore and colleagues [11] and others [10] has
demonstrated the potential value of expert systems in management of the
full range on-line control functions from alarms to single loop PID feedback
elements.

In this paper we report on our efforts to produce a practical implemen-
tation of an expert (industrial) controller on microprocessor based systems.
Expert systems are briefly discussed and the structure of an expert controller
is outlined. As an initial step in the development of this implementation, an
adaptive PID (proportional, integral and derivative) controller is being con-
structed. It is described in some detail; and the enhancements needed, and
how they are to be accomplished, to transform the current implementation
into an expert controller are then discussed.

Expert systems are computer programs designed to aid humans in com-
plex tasks. By representing the knowledge about a given domain in the
proper manner, and providing an “inference” control structure for access
to the knowledge base, an expert system can “reason” to solve a problem

1This research was supported in part by a grant of equipment and funds from the
Industrial Systems Division of Texas Instruments, in part by the Engineering Research
Center of the College of Engineering, University of Maryland, and in part by the Systems
Research Center under NSF Grant CDR-85-00108.

3Specifically, the forward chaining production system YAPS and the object-oriented
Flavors system running on a VAX 11/780.
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or perform a difficult task. Such problems may have limited, conflicting or
unreliable data and more than one solution. The expert system is usually
designed to emulate human behavior by employing some heuristic “rules of
thumb” to reduce many solution possibilities to a few “good” ones.

In general, an expert system can be broken into three parts, a knowledge
base, an inference engine, and a user interface. The knowledge base contains
facts about the domain of interest as well as rules defining the relationships
among the facts. The inference engine processes these rules and generates
the solution or possible solutions to a problem. This inference can be data
driven (forward chaining) or goal driven (backward chaining), or both. The
inference engine may generate a search tree that represents possible paths
to a solution. Rules are used to prune this search in an effort to find a best
solution. The user interface allows a problem to be stated to the expert
system along with any data that may apply. It usually provides a means for
the expert system to request more data and display intermediate results as
well as a final solution, and an “explanation” of the steps taken to reach the
solution.

Expert systems may handle large amounts of data and solve problems
of high complexity. Most of the systems in current use are static and time
invariant, which is not the case with expert controllers [7,2,3]. In many con-
ventional expert systems human interaction is often expected and required
in the pursuit of a solution This helps the system eliminate unpromising
paths in the search for a solution and reinforce promising ones.

2 Expert Control

An expert controller as a decision making element in a feedback control
loop requires much the same decision making ability needed in other expert
systems, but there are significant differences. One crucial requirement is the
need to produce expert behavior in “real time”. Not only must the expert
controller respond quickly, but its operation interacts with the process in
a dynamic time varying environment. Also, the expert controller must be
interfaced directly to a process and be equipped with the means for applying
control to the process.

Many current industrial controllers include some heuristics for safety
net procedures [7]. These heuristics may only handle extreme “alarm” type
situations, and a prescribed solution may be a plant shutdown until human
intervention can solve the problem. An expert controller should have the
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ability to adapt to changing situations and prevent most “alarms” from ever
occurring. )

Two examples illustrate possible roles for expert controllers. Variable
controller parameters allow a single control algorithm to change as the pro-
cess changes. Changes in a process may come from deterioration of valves,
pumps and other mechanical devices in the plant. These changes are some-
what slow; but, if optimal performance is important at all times, it is clearly
advantageous to have the controller change its parameters as the process
changes. An expert controller might manage the selection and execution
of different adaptive control algorithms [5,6,8] to maintain the control pa-
rameters at or near their optimal values for the specific process conditions.
In emergency situations where major elements in a system break or falter,
an expert controller may manage the reconfiguration of the control algo-
rithm or switch to another more appropriate or robust control algorithm.
If the bandwidth of the response of the expert controller is large enough,
such capabilities would be extremely useful in aerospace applications where
a loss of control may result the loss of life or valuable equipment. One
might also argue that most situations requiring control over a wide range of
(unpredictable) operating conditions could benefit from expert control.

An expert controller should have the capability of using several differ-
ent control algorithms as well as the ability to tune the parameters of each
algorithm to the process under control. Possible control algorithms might
include Proportional, Integral and Derivative (PID), pole-placement, linear
observers or algorithms designed for optimal control. The expert controller
must provide control signals to the process (in “real time”) in addition to
“reasoning” about what control laws or algorithms are to be applied. Ul-
timately the expert controller should have available, an entire library of
relevant algorithms for process control and identification. The job of the
expert system would then be to orchestrate the application of these vari-
ous algorithms [7]. The knowledge base consists of experiential knowledge
about the process along with facts and rules that are used to infer which
control algorithm to apply and what the current parameter settings for that
algorithm should be. By periodically applying identification routines and
monitoring the results, the expert system could accumulate more and more
information about a given process to find the best control law. Identification
algorithms might include methods for estimation of critical gain and periods
and to Least-Squares algorithms for process parameter estimation [7].

By keeping track of all control algorithms applied and their respective
effects, a history about the process could be compiled. Such a history could



e
L WOWE
M;i?

be used either for user information and education, or by the expert sys-
tem itself in a comparative study versus a reference process and its control
history. Should the expert controller be able to recognize a given process
configuration based on such a comparison, the optimal control might al-
ready be known. The expert system should continuously manage the search
for the best control law and its optimal parameters. As a process goes
through gradual changes, perhaps due to mechanical wear, the expert sys-
tem should respond by directing adaptive changes in control parameters.
When major upsets enter the system the expert controller should be capa-
ble of recognizing the situation and quickly responding with a control law
that accommodates the new configuration.

A major requirement for the expert controller lies in the “real time”
requirements of process sampling and control. In architecture proposed here
the control algorithm implementation (discrete time and digitally computed)
resides in a separate microprocessor from that employed by the knowledge
base and inference engine. Current technology, both hardware and software,
are only just now approaching technical abilities that would allow inference
to proceed fast enough to avoid undesirable delays in the application of a
control law to a process. With the development of Lisp chips and compiled
Prolog inference systems, such high speed inference may not be far off.
However, separation of control algorithm implementation and the inference
procedures seems more efficient and flexible within the current technology.
Flexibility is provided by the fact that inconsistent search times in picking a
new set of parameters or a new control law do not effect the ongoing actual
control of the process. In this configuration the expert system itself co-exists
with the control law processor, and the union is an “expert controller.”

In this realization the expert system may be viewed as having two “user”
interfaces. The controller (control algorithm computer) takes intermediate
control solutions and applies them to the process. This process, regarded as
an expert system “user,” responds to the control in some fashion providing
the expert system with more information about itself and the relative suc-
cess of the current solution. The second user, a human who is monitoring
the expert system, may intervene with a “suggested” control law, new pa-
rameters, or some constraints on what the expert system should consider as
a “good” response. This human user interface also indicates that a separa-
tion of control law implementation and the actual expert system is desirable.
Communication with humans takes a great deal of time in relation to other
computer tasks. This time should not interfere with the smooth ongoing
application of a control algorithm.
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The expert controller is then a complex system that is able to monitor
its environment, make decisions based on experiential and new information
as well as known facts, and enact those decisions in a feedback loop. The
first level of adaptability is provided by the ability to tune the parame-
ters of a given control law, perhaps through an auto-tuning control strat-
egy [5,6,8]. Alternately, the expert controller could use inference to pick the
proportional, integral, and derivative coeflicients in a standard PID control
algorithm. A strategy for this is discussed in in Section 3. A more challeng-
ing level of adaptability is the capability of changing from one control law
to another. This implies the use of a combination of process identification
algorithms in conjunction with a library of control algorithms. Continued
monitoring and adjustment should eventually lead to optimal control within
a selected class. Ultimately, the expert controller might be a learning system
that could synthesize control algorithms on its own.

3 Microcomputer Based Expert Controller

The main thrust of the present study is to produce a microcomputer based
expert controller using available industrial controller technology with some
enhancements. The expert controller is based on hardware supplied by Texas
Instruments Inc. and is essentially built about a Programmable Logic Con-
troller (PLC) and its supporting elements. The enhancement that provides
this standard controller with the potential to support expert capabilities is
the addition of personal computer (PC) capabilities, including a direct com-
munication link with the programmable controller. The personal computer
technology allows the expert system to be programmed in high level lan-
guages such as C, Lisp, Prolog etc. The hardware and software capabilities
of this system provide all the power necessary to build and program a expert
controller for certain industrial applications.

The expert controller is being developed in stages. An adaptive “in-
telligent” PID controller has been chosen as a primary goal. PID control
enjoys wide acceptance in industry and its properties are well understood.
The secondary, or next goal would be, to develop a controller that relies on
adaptive PID control as its basic mode of operation but has the ability to
learn about the process. Using this ezperience, the enhanced version could
switch to more sophisticated control algorithms such as pole placement or
linear observers. The initial system should lay the foundation for this future
system. Hence, the current configuration should provide the flexibility for
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Figure 1: PID control loop.

enhancements while functioning as an adaptive PID controller.

Two kinds of tuning may be defined for PID controllers [4,8]. The first
is the Zeigler-Nichols method for auto-tuning which we will be referred to as
“pre-tuning”. The following paragraph discusses this “pre-tuning” mode in
some detail. This is followed by a description of the current implementation
which employs this type of tuning. The discussion of the second type of
tuning “continuous tuning,” is postponed until the final section dealing with
ongoing developments and future enhancements.

3.1 Self-tuning PID Control

The objective of PID control is to constrain a process response to follow
input disturbances or setpoints. In general, the output is compared to the
setpoint and the error signal e(t) is computed and fedback to a compensator
that combines it with its integral and derivative to produce the control signal
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u(t) as shown in equation (1) and Figure 1.

um=k4m)+ *fewa + mf@] (1)

t; dt
The pre-tuning mode is needed when no prior information about the process
is available. That is, the process and the proper PID control parameters are
completely unknown. Therefore, a basic identification routine that indicates
what parameters may work, must be employed. In Zeigler-Nichols auto-
tuning, the basic idea is to enter a known disturbance to the process; and,
based on the system response, the three PID parameters can be estimated.
These parameters are the proportional constant ky, the integral constant ¢;
and the derivative constant t4. The discrete time equivalent expression PID
control used in this study is shown in equation (2). In equation (2), t is the
sample period for the controller.

n
Wi =k el + f el + L(eldl - elk-1) | @
=1
There are actually two methods for PID parameter estimation presented
by Zeigler-Nichols that may be used here. The first technique employs sim-
ple proportional control (no integral and derivative terms in equation (1)).
Step functions disturbances are input to the process and responses under
this proportional control are monitored. The objective is then to find the
ky, or critical gain, that just barely causes the system to become unstable.
Instability is indicated when the process response grows (usually exponen-
tially) as time increases. The limit of stability determines a critical gain,
k. and the period of oscillation for the response under these conditions de-
termines a critical frequency, t.. The parameters kp, ¢; and t4 can then be
computed as shown in equation (3). For this implementation a binary search
or bisection algorithm is used to “zero in” on the desired critical frequency.
i

¢
kp = 06k 4= ta= 3 (3)

The second Zeigler-Nichols method requires only one test with a unit step
disturbance applied and the open loop response monitored. As the response
signal increases toward the setpoint, the maximum slope, 8, is determined.
The point on the time axis where the tangent to this slope intersects is
called the deadtime, d. These two values yield PID parameters according to
equation (4).

1.2 d
ky = — t; = 2d td=-2-

(4)
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This second method is clearly easier to apply and much less disturbing to
the plant or process to be controlled. Therefore, this method is usually
used for pre-tuning. The first method may still be applied when an exact
measure for the critical proportional gain is desired. Although both methods
claim to supply this information, testing as outlined in method one, actually
graphically illustrates its determination and is therefore more dependable.
Due to delays in the actual application of the control law along with noise
in the process and controller connections, the critical frequency may only
be reliably estimated with the bisection search approach used in method
one. Nonetheless, both techniques provide an effective means for finding
estimates of PID parameters when no prior information is available.

A prototype self-tuning PID controller has been constructed and suc-
cessfully tested. This controller employs either of the “pre-tuning” methods
discussed above to tune itself to a given process. In an effort to establish
feasibility first, a simple configuration was used as a starting point. The
following paragraph details this configuration and its basic operation.

In the prototype system both the adaptive algorithms and the control
law implementation are performed in the PC portion of the system. This was
done to establish the potential for true expert system performance before
proceeding to more advanced configurations.

The processes and their disturbances are simulated in the PLC. These
processes are in discrete state space form and are modeled by

Zk+1 = AzZ[k] + B(ulk] + v[k])
(5)
K = CK
In equation (5) Z is a vector of state variables and § is the process output.
A, B and C are the system matrix, the input matrix and the output matrix
of the process. Also, u[k] is the current control signal and v[k] is the current
disturbance.

Due to complications beyond the scope of this paper, processes are lim-
ited to second order and disturbances are limited to positive and negative
step functions. The possible choices of second order processes that may be
modeled is limited only by the discrete nature of the process simulation.
Process update times less than about 0.02 seconds are not possible. There-
fore processes with time constants less than 0.2 (or real poles larger than
5.0) are not considered.

The PC based expert system handles both monitoring and “pre-tuning”.
Upon start-up the expert system will simply monitor open loop responses.
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When a human operator gives the go-ahead the expert system will execute
one of the two pre-tuning methods supplying its own unit step disturbances
to the process. Once the PID control parameters have been found the expert
system enters a dedicated monitoring mode. By once more inputing a unit
step disturbance, the expert system can monitor a “characteristic response”
for the process while under PID control. Several criteria such as overshoot
of the first peak beyond the setpoint and settling time are noted and stored.
When monitoring is complete, the system enters the normal PID control
mode,

Whenever a unit step disturbance enters the system (from some outside
source), the expert system again monitors the response while PID control
continues as an intertwined task. If the process has changed, the response
will also be different. Very small changes in the response are ignored to
avoid constant oscillation between tuning and control modes of operation.
When a “significant” change occurs in the process, and hence its response,
the expert system automatically invokes a new “pre-tuning” routine and
recalculates the PID parameters ky, ¢; and t4. Thus, the system performs
self-tuning PID control and establishes a baseline for the creation of a true
expert controller.

3.2 Continuous Tuning in the Expert Controller

Pre-tuning, while ingenious, really involves no requirement for expert behav-
ior. While it may be true that most controllers do not have the ability to test
the system and then monitor and interpret the results, the pre-tuning al-
gorithms are still basically numerical analysis. The addition of “continuous
tuning” begins to utilize concepts and facilities that qualify the controller
as an expert. The objective of continuous tuning is to manipulate the PID
control parameters such that the optimal response curve is achieved. It is
assumed that some other means such as “pre-tuning” has been used to find
the initial PID parameter settings. In this case, optimal is determined by
the human operator and/or some generally accepted performance criteria.
This specified criteria may be based on measurable characteristics of the
process response curve, such as the risetime and settling time.

When a human operator attempts to manually tune a PID control for
an optimal response curve, he/she trys to find a compromise in controller
settings that meets the performance objectives as well as possible. For ex-
ample, attempts to reduce overshoot (height above setpoint) might result
in an increase to settling time. Thus, the human operator finds PID pa-



rameters that yield a response that is “good enough”. Such a response is
a compromise, where each performance criteria may be only partially satis-
fied. Heuristic rules that indicate which parameter to change, what direction
and by how much, tell the human operator what adjustments to make for
a desired result. Years of experience and “rules of thumb,” combined with
common sense, allow the operator to find a satisfactory response for his/her
plant requirements.

The expert controller must mimic this human behavior and tune #tselfin
an effort to find the “ideal” process response. The term “continuous tuning”
is used because a cycle of monitoring and then adjusting parameters always
takes place. If it is indicated that a best compromise has been achieved, no
adjustments will occur but monitoring still continues. Any change in the
process and its response will automatically invoke more tuning. Therefore,
the expert controller is constantly in this tuning mode, even if no adjust-
ments are currently required.

The transient curves that result from the application of PID control
to various processes generally fall into one of five basic classes [10]: (i)
Overdamped with one peak or less; (ii) Overdamped with more than one
peak; (iii) Underdamped with only one peak; (iv) Underdamped with more
than one peak; and (v) Underdamped with high-frequency oscillations. The
fourth type, underdamped with more than one peak, is commonly accepted
as the ideal form for PID control responses given that the overshoot, number
of peaks, etc. are within the constraints set by plant operators. A typical
curve is illustrated in Figure 2.

For the purposes of this study, it is assumed that a curve of this gen-
eral type can be found by manipulating the parameters properly. That is,
any of the other four response curves can be changed to this general form
by proper PID parameter adjustments. (The PID parameters determined
by Zeigler-Nichols “pre-tuning” are designed to produce curves with these
characteristics). To efficiently adjust these parameters, some interactive self-
tuning method is needed. Once the proper overall curve is achieved a more
sensitive interactive tuning method is needed to find the parameters that
produce the response that best meets the criteria set out by the plant oper-
ator. A methodology that allows various types to be changed to this desired
type, and more importantly, provides the means to optimize the form of this
classic response is outlined in the following paragraph.

This tuning method requires two skills generally unique to humans. The
first is pattern recognition and the second is the ability to interpret when
a response is “satisfactory”. The expert controller must know what the

10
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Figure 2: Typical response trajectory.

11



R

current response curve looks like before it can proceed to make tuning deci-
sions. Fortunately, this rather complex business of pattern recognition, can
be simplified to a definition of features for this application. The separate
curves can be distinguished in general by the absence or presence of peaks
relative to the setpoint. Crucial tuning criteria such as overshoot, risetime
and settling time are also available by basic monitoring of the response. By
recognizing features and making useful measurements, the expert controller
can know enough about a given response to proceed with the business of
making decisions based upon this information.

3.3 Logical Specifications of Performance

The determination of whether a given response is “satisfactory” or not,
requires a bit more sophistication. One approach may be based on the
use of compatibility or membership functions defined in fuzzy logic and set
theory {12]. The curves shown in Figure 3 are examples of such membership
functions along with their defining equations. In fuzzy set theory, the curve
determines the degree of membership that individuals in some universe have
to the fuzzy subset in question. For example, if Tim is five feet tall he has
a membership value of .72 in the fuzzy subset called “short”. Curve (a) in
Figure 3 might represent the relative memberships that a given height has in
the fuzzy subset “short”. For heights less than say, four feet and six inches,
the membership value might be unity.

A similar curve may be interpreted to signify the proximity of a given
value for a response’s settling time to some ideal settling time. Again values
below some point receive a rating of 1.0 on this continuous compatibility
scale ranging from 0.0 to 1.0. Thus, settling times less than a given value
all get optimal ratings. Curve (b) is simply a generalization of curve (a),
since each side is based upon the same curve shown in (a). This curve is
useful to describe membership to properties that have an optimal value, and
membership values must be available for both above and below this value.
The other defining parameter of this curve can be thought of as an allowable
bandwidth.

A property of PID response curves that may be defined in this manner
is the ratio of the second peak overshoot to the first. For a “nice” curve this
ratio should be 0.25. However, values both below and above are acceptable
within a certain range. Fuzzy membership functions provide an analytical
method for assigning a measure just how “good” a given response may be.
Each specific criteria such as overshoot, risetime and settling time has its

12
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own membership function with appropriate peak and bandwidth values. A
“score” can be defined for a given response as the sum of all the criteria’s
membership values.

The objective of the adaptive PID control algorithm and the expert con-
troller is to maximize this score. The raising or lowering of different PID
parameters will have effects on each of these basic criteria. For example,
lowering k, while raising t; and t4 might increase overshoot for a given type
of response. Such “rules of thumb” use the membership values as an indi-
cation about how much to change a particular PID parameter. Some rules
will indicate an increase in a given parameter while some will indicate a de-
crease. The varying degrees of membership and the opposing directions of
adjustment combine to yield a compromise adjustment that will hopefully
increase the “score” of the next response. These adjustments have the ten-
dency to converge and as the best possible curve, according to the specified
criteria, is reached, indicated increases and decreases offset and the resulting
adjustments approach zero.

The potential of this technique lies in the fact that membership values
for one or more of the criteria may be not be very high but the system has
done the “best” it can. That is, it has determined that this response is
“satisfactory” even though only some or none of the criteria are very close
to their respective optimal values. This emulates the actions of a human
operator who manually tunes a PID control loop. A refinement is the use
of weighting factors for the different criteria. In a given plant the overshoot
may need to be highly restricted, and its excursions should be considered as
more important relative to other response characteristics. This weight factor
can be achieved by applying exponential factors to the defining membership
functions. Squaring a typical membership curve will cause a steeper slope
and faster drop-off. Hence, for more important criteria the defining functions
are raised to powers greater than one. For less important criteria fractional
powers (less than one) are used. Zero weight factor will always yield a unity
membership indicating that this criteria is so unimportant that its value is
always more than “satisfactory”.

Occasionally, basic heuristic rules may come into play also. For instance,
when severe conditions such as instability or major process changes are in
effect, heuristic rules may take over. Somewhat different tuning rules will
apply for each of the five basic response types and there are possible vari-
ations within one type. Rules must be included that know how to pick the
right tuning rule subset for a given response type. This technique for adap-
tively tuning PID loops is in its infancy at this time. However, preliminary

14
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simulation studies indicate great promise. There is a great deal of flexibil-
ity in this methodology and many extensions are possible. For example,
future implementations might use similar fuzzy procedures to even modify
the tuning rules themselves.

3.4 Current Implementation

At the time of this writing, various portions of the expert controller are
in different stages of completion and the configuration described below is
well within reach. For a full diagram of the expert controller see Figure 4.
Processes are simulated using a separate personal computer. These processes
are in discrete state space form and are modeled by equation (5).

Using a dedicated personal computer provides a very versatile means
for process simulation. There is no constraint on the order of the process,
and options such as non-linear behavior and noise can be easily added to
the simulation. Signals for state space variables z;j...... z,, are converted to
analog signals and made available to the expert controller. The control and
disturbance signals, both generated by the PLC, are received through an
analog to digital converter and applied to the process. The Texas Instru-
ments PLC is used to implement the control algorithm. For the case of PID
control, it samples an analog signal (usually state variable z;) and computes
a control value using equation (2). This control signal is converted back to
analog in a zero-order hold fashion and subsequently applied to the process.

Ultimately, the PLC could implement a variety of control algorithms in
similar fashion. The ideal arrangement would allow all possible choices of
control algorithms to reside in the PLC memory at one time. Then the
expert system must simply indicate which is to employed. Also, for the
purposes of simulation, the PLC provides a convenient means of simulating
disturbances to the process. This disturbance simulation does take time
and will effect the overall performance of the controller, but this is not a
significant concern at this stage of development.

The analog to digital and digital to analog conversion is required, even
though both the process and the control algorithm are digital in nature.
Analog signals are used as the common signal for two reasons. First, a
direct digital link is more difficult than it seems, since internal number rep-
resentation and formats may vary. Second, analog signals are more likely
to be the mode of communication in “real world” applications; and, to es-
tablish credibility and practicality, it makes sense to model the “real world”
whenever possible.

15
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The expert system resides in a personal computer technology designed to
interface directly with the PLC. This same PC technology also provides the
human user interface. The operation of the expert system can be divided
into several modes in the PID adaptive control configuration. In a most
trivial mode the expert system waits for a disturbance to effect the system.
Upon detection of the disturbance, the expert system enters a dedicated
monitoring mode. During this response, all the necessary information for
subsequent tuning is noted and saved. Once a complete response has been
monitored the expert system leaves the PLC to control the process while it
does some “thinking”. Using the tuning method outlined above, this “think-
ing” may not take long, but the times required may not be consistent. Once
a new set of parameters have been determined and the new PID constants
are stored in the memory of the PLC, the expert system can return to the
duty of waiting. Human interaction, unless urgent, would be taken care of
during this waiting period.

The programming of the expert system is accomplished with two lan-
guages. C is used for monitoring the process responses and all other com-
munications with the PLC. This is primarily due to the fact that the lower
level interfaces, provided by Texas Instruments Inc., providing PC/PLC in-
teraction are written in C. The decision support processes are being coded
in a dialect of Lisp, called TI-Scheme, also provided by Texas Instruments.
The outer shell program is the Lisp portion, which essentially uses subpro-
grams written in C for PLC communications etc. Communication between
the languages is handled through sequential disk files. This is a little slow,
but it serves well enough for this implementation at its current stage of
development.

4 Plans for Further Development

Although the adaptive controller outlined above is an expert controller,
much still needs to be accomplished to produce the expert controller de-
scribed in Section 2. The current implementation does however, lay the
foundation for future enhancements.

The use of a Lisp shell supporting object oriented programming pro-
vides the expert controller with an adequate Al tool to produce the kind of
complex decision making that will be needed. TI-Scheme also has several
features, such as graphics capabilities and processes called “engines” that
can be programmed to run for a specified amount of time. These facilities

17



LB
a3
T

greatly enhance the interface for the human operator. Other Al languages,
such as Prolog, could be used for inference if that becomes desirable. This
opportunity is facilitated by the separation of lower level communications
by C subprograms from the decision making processes.

The concept of creating a “history of control actions” and its usefulness
was discussed in Section 2. The addition of a history file is fairly simple.
The expert system simply creates a disk file that is updated after every
decision making sequence. The information contained would include: the
current control law; the control law parameters; all typical response criteria;
membership scores; and other useful information. It might be left to a
human operator to decide when a given history file begins and ends (in
time), based on some knowledge about changes in the plant. Use of the
history file to advantage is more subtle. Some method of determining if the
current history file and some previous one match close enough to assume
they are products of the same process is required. One systematic method,
suggested in Section 3, would be the use of fuzzy membership functions.
Also, there is the need to spend a good deal of time creating some standard
history files for comparisons to be possible.

The concept of switching control algorithms mentioned in Section 3 is
realized to a limited extent in the current implementation of the expert
controller. The PLC being used at this point in time does not have enough
memory to house several different control algorithms. However, a larger
memory is readily available with other Texas Instruments PLCs and this
limitation presents no problem up to a point. With enough memory, all
the necessary control and identification algorithms could be available at
any time. The PC technology involved here also has the ability to actually
download a new algorithm from disk to the PLC. (This capability is possible
but not actually available at this time.) An intriguing use for this facility
might be to download modified or new control algorithms.

Of course, the expert controller is far from the kind of advanced operation
required to modify existing algorithms or invent new ones. One potential
concern in achieving such a powerful facility is that it may prove too slow for
“real world” plants and processes. As for the decision making process that
determines when and which control or identification algorithm is applied,
much is still undeveloped. However, the potential for the necessary inference
is provided by the the ability to program in high level languages such as Lisp
and Prolog.

The possible enhancements are unlimited. It would certainly be desirable
to extend the operation of the PLC to multiple input and multiple output
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processes. Several PLCs might be employed and overseen by the expert
system each maintaining one loop of a multi-loop process. There may be
special heuristics that could be incorporated to handle unwieldy or non-
linear processes. The purpose of this research is to lay the foundation for
the production of such powerful systems.

In closing, there is one final point to be made about the topic of expert

control. The ultimate key to success lies in identification. The more about a
process that is known, the more likely it becomes that optimal control can be
achieved. Many techniques exist for process identification but most involve
repeated testing of the process. Such testing takes time and often such
repeated disturbances to the plant or process may not be practical or even
feasible. Such “off line” testing becomes completely unreasonable when the
process is prone to change. The answer is to build an expert controller that
can learn about the process “on line” while maintaining some level of control.
From what it learns, an internal model or configuration of the current process
can be built. Based on this model and its completeness and accuracy the
best possible control can employed. The more the expert controller knows
the better the control will be. Therefore, an expert controller requires the
ability to learn about a process; and so, process identification is the crucial
factor.
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