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Abstract— The pairwise key distribution scheme of Chan secure network, and the connectivity results for the underlying
et al. was proposed as an alternative to the key distribution random key graph then provide helpful (though optimistic)
scheme of Eschenauer and Gligor (EG) to enable network guidelines to dimension the EG scheme.
security in wireless sensor networks. In this paper we  Following the original work of Eschenauer and Gligor, a
consider the random graph induced by this pairwise number of other key distribution schemes have been suggested.
scheme under the assumption of full visibility. We first The g-composite scheme [3] is a variation on the EG scheme
establish a zero-one law for graph connectivity. Then, we where two nodes need to share at lepkeys (withg > 1) in
discuss the number of keys needed in the memory of order to establish a secure link between them. gflasemposite
each sensor in order to achieve secure connectivity (with scheme improves resiliency against small-scale attacks as the
high probability). For a network of n sensors the required network becomes more vulnerable to large attacks. Du et al.
number of keys is shown to be on the order ofogn, a key [5] have proposed a key predistribution scheme which also
ring size comparable to that of the EG scheme (in realistic improves resiliency but at the cost of increased overheads. Al-
scenarios). though these schemes somewhat improve network resiliency,

Keywords: Wireless sensor networks, Security, Key predighey all fail to provideperfectresiliency against node capture
tribution, Random graphs, Connectivity, Zero-one laws. attacks. Moreover, none of them enables a node to authenticate

the identity of a neighbor with which it communicates. In
. INTRODUCTION terms of network security this is a major drawback because

Wireless sensor networks (WSNs) are distributed collectionsde-to-node authenticatiaran help detect node misbehavior,
of sensors withlimited computing and communications re-and provides resistance against node replication attacks [3].
sources. Security is expected to be a key challenge for WSNSo address this last point, Chan et al. [3] have proposed a
deployed in hostile environments where communications ai@ndom pairwise key predistribution scheme with the follow-
monitored, and nodes are subject to capture and surreptitiéng properties: (i) Even if some nodes are captured, the secrecy
use by an adversary. However, traditional key exchange asfdthe remaining nodes iperfectly preserved; (ii) Unlike
distribution protocols have been found inadequate for use @arlier schemes, this pairwise scheme enables both node-to-
large-scale WSNss; see [7], [13], [15] for detailed discussiom®de authentication and quorum-based node revocation. The
of some of the challenges. pairwise distribution scheme can be implemented through the

Recently,random key predistribution schemes have beefollowing offline construction: Before deployment, each of the
proposed to address some of these difficulties. The idearofensor nodes is paired (offline) witi distinct nodes which
randomly assigning secure keys to the sensor nodes pwioe randomly selected from amongst all other nodes. For each
to network deployment was first introduced by Eschenausuch pair of sensors, a unique (pairwise) key is generated and
and Gligor [7]. The EG scheme, as we refer to it hereaftestored in the memory modules of each of the paired sensors
has been investigated in the context rahdom key graphs along with the id of the other node. A secure link can then
by several authors [1], [4], [14], [18], [19]. Random keybe established between two nodes if at least one of them is
graphs are random graphs induced by the EG scheme urakesigned to the other, i.e., if they have at least one pairwise
the assumption of full visibility, i.e., when nodes are alkey in common. Precise definitions and implementation details
within communication range of each other. To be sure, tlage given in Section Il.
full visibility assumption does away with the wireless nature Let H(n; K) denote the random graph on the vertex set
of the communication infrastructure supporting WSNs. Ifi1,...,n} where distinct nodes and j are adjacent if they
return, this simplification makes it possible to focus on howave at least a pairwise key in common; this corresponds to
randomizing the key selections affects the establishment ofmmdelling the random pairwise distribution scheme under full



visibility. The main goal of this paper is to give conditiongaper [22]; there the connectivity properties of the pai?wise
on n and K under whichH(n; K) is a connected graphscheme are analyzed under a simplified communication model
with high probability asn grows large. As in the casewhere unreliable wireless links are represented as on/off
of the EG scheme, such conditions might provide helpfaghannels. Despite these limitations, the study of the random
guidelines for dimensioning purposes. In the original papgraph H(n; K) is nevertheless of independent interest as it
of Chan et al. [3] (as in the reference [9]), the connectivity ahodels a very basic random pairing mechanism with potential
H(n; K) is analyzed byquatingit with the Erdds-Renyi graph applications in areas beyond wireless sensor networks, e.g.,
G(n;p) wherep = %; this constraint ensures that the linksocial; networks, where full visibility is not an issue.
probabilities in the two graphs are asymptotically matched. We close by noting that this paper considers only the
A formal transfer of well-known connectivity results fromcase when the sensor nodes..,n are all deployed at the
Erds-Renyi graphs td(n; K) suggests that the parametesame time. However, in practice the initially deployed network
K should behave like:logn for somec > % in order for may have fewer tham nodes. In that case only a subset of
H(n; K) to be connected with a probability approachihg {1,...n} will be deployed initially and the remaining sensor
for n large. With this conclusion as a point of departurdabels will be used at a later time if additional nodes are
the maximum supportable networks size was evaluated [Bkeded to be deployed. The implementation details and the
[9], and the random pairwise key predistribution scheme wasnnectivity results regarding the case where the network is

deemednot scalable. deployedgradually are discussed in [21].

Here we show that transferring connectivity results from The rest of the paper is organized as follows: In Section II
Erdés-Renyi graphs t@#(n; K) leads tomisleadingconclu- We give a formal model for the random pairwise distribution
sions. Indeed by alirect analysis we show the following Scheme of Chan et al. The random gréfin; K) is contrasted
zero-one law: WithK > 2 (resp. K = 1), the probability 2gainst Erds-Renyi graphs and regular random graphs in
that H(n; K) is a connected graph approachegresp.0) Section Ill. Results concerning connectivity are presented in
as n grows large, and the desired connectivity is therefof@ection IV, and properties of the key rings are discussed in
achievable under very small values & (much smaller Section V. Proofs can be found in Sections VI, VIl and VIII.
than prescribed by the transfer from BsdRenyi graphs). A word on notation: All statements involving limits, includ-
Furthermore, at the connectivity threshold obtained here, i.81g @symptotic equivalences, are understood witgoing to
when K = 2, we show that the expected degree of a node ifinity. The cardinality of any discrete set is denoted by
H(n’K) is less tham’ this Suggests a major difference frorr‘S| AlSO, we use the notat|0ﬁ35t to indicate distributional
many classical random graph structures where the connectiguality.
threshold appears when the expected node degree equals to
log n, e.g., see Eik-Renyi graphs [2], random key graphs [1], o o
[4], [14], [18], random intersection graphs [16] and random The random pairwise key predistribution scheme of Chan et
geometric graphs [12]. al. is parametrized by two positive integerand K such that

. . K < n. There aren nodes which are labelled=1,...,n.
We then discuss the required number of keys to be kept'in . . ;
. . with unique idsldy,...,Id,. Write N := {1,...n} and set

the memory module of each sensor in order to achieve secyr, . _ . .
N — {i} for eachi = 1,...,n. With node: we

.. . —i =
connectivity. Since sensor nodes are expected to have Ve Jciate a subsBt, ; of nodes selected aandomfrom A",

limited memory, it is crucial for a key distribution scheme . . :
to havelow memory requirements [5]. In contrast with thel_hvl\jlse ‘;’gg;ﬁ?tsﬁzg&ﬁoyﬁ hov(\jlgsrg%aii paired to node.
L —_— —121

EG scheme (and its variants), the key rings produced by the

Il. THE RANDOM PAIRWISE SCHEME

pairwise scheme of Chan et al. have variable size betwéen (nl—(l)‘l if [A] =K
and K + (n — 1). Still, with the average size of a key ring Pl,;=A4] =
being2K, we identify minimal conditions on how to scale the 0 otherwise

parameterK with the numberm of nodes so that the size of ] . . .

any key ring hovers arourls,, (in some probabilistic sense).ensuring that the selection &%, ; is doneuniformly amongst
Next, we show that thenaximumkey ring size is on the order @l subsets of\"; which are of size exactlyx'. The rvs
log n with very high probability provideds = O(logn). Such  I'n.15-++:I'nn are assumed to be mutually independent so that

a concentration result, together with the fact that very small n

K values suffice for the connectivity dfl(n; K), points to PT,;,=A4;, i=1,...,n]= HIP’[FM = Aj]

the possibility of turning the pairwise scheme into a scalable i=1

one. for arbitrary A,,..., A, subsets ofN_;,...,N_,, respec-

As with available results regarding the EG scheme based torely.
random key graphs, the results given here under full visibility Once this offline random pairing has been created, we

may lead to a dimensioning of the pairwise scheme which éenstruct the key rings,, 1,...,%, ,, one for each node,
too optimistic. This is due to the fact that the unreliable natues follows: Assumed available is a collection sk distinct
of wireless links has not been incorporated in the model. We doyptographic keys{w;,, i = 1,...,n; £ = 1,..., K} —

take a first step towards addressing this issue in the companidrese keys are drawn from a very large pool of keys; in



practice the pool size is assumed to be much larger t&an Comparing with Erd 6s-Renyi graphs: Pick distincti, j 2
and can be safely taken to be infinite for the purpose of olr...  n. It is plain that
discussion. n_2

Now, fix ¢ = 1,...,n and let¢,,; : I',; — {1,...,K} Pli €Ty, ] = (K—l) _ K
denote a labeling of',, ;. For each node in T',,; paired to ’ (") n-1
i, the cryptographic ke, ,(;) is associated withj. For
instance, if the random sét, ; is realized as{j,...,jx}
with 1 < j; < ... < jg < n, then an obvious labeling Pli¢Ty;, j¢Tni] = Pli¢gl, ;P ¢l
consists int,, ;(jx) = k for eachk = 1,..., K with key w;;, < K \2

so that

associated with nodg,. Of course other labeling are possible. =
e.g., according to decreasing labels or according to a random
permutation. Finally, the pairwise key by independence. As a result,

wrr i = [Idi[1dj|wqpe, . (5] Eft, . ]=1 (1 K )2 )
is constructed and inserted in the memory modules of both Y n—1) "~

nodes; andj. Inherent to this construction is the fact that the, differently,

key wy, ;; is assignecexclusivelyto the pair of nodes and j,

hence the terminology pairwise distribution scheme. The key Pi ~ j] _ K (2 K ) . ©6)
ring ,,; of nodei is the set | n—1

Sni={wni; JE€ iy U{wy, iy i €005 (1) Next, as we turn to the evaluation of correlations between

As mentioned earlier, under full visibility, two nodes, say (?;E? aaiség}cnzeﬁml;vti’epilﬁléitchees;/e;“ieir]?éi ng .a.ll' lj?s\tlzlrllt:t

andj, can establish a secure link if at least one of the everihen by virtue of (3) the 1vs,, ;; andé, 4, are independent
n,ij n, ’

ieIy;orjel,; is taking place. Note that both events - _ : :
can take place, in which case the memory modules of modc\é\’hencecov[g"’”’g”’“] = 0. Itremains to consider the cases

and,j both contain the distinct keys;, ;. andw;, ... It is also When the indices, j, k£ and/ arenotall distinct, e.g., without

plain that by construction this scheme supports node-to-n | §S of generality, take the cage- k with ¢, j and/ distinct.
en from (3) we get

authentication.
This pairwise distribution scheme naturally gives rise to the Cov(¢,, .5, &)
following class of random graphs: With = 2,3,... and — Cov[l — & il — Enat]
positive integerK < n, we say that the distinct nodésand o n,it .
j are adjacent, written ~ j, if and only if they have at least = Cov[l[i ¢ Tn;, jETnil, 1[i ¢ T, £ Tyl
one key in common in their key rings, namely = Pli¢gTlng j¢Tni, i€ Tne, £¢ 0]
i N] Iﬁ Enz N En,j 7é [Z) (2) - ]P [7’ ¢ Fn,j, j ¢ Fnﬂ} ]P [Z ¢ Fn,€7 E ¢ Fn,i]

Let H(n; K) denote the undirected random graph on the vertex Pli ¢ Do Pl ¢ Do Pl ¢ Doy £ T

set{1,...,n} induced by the adjacency notion (2). To keep —Pli ¢y, §ETn]Pli ¢ Tng, £¢Tnl
the notation simple we have omitted the dependenceson = Pl¢l,;|P[i ¢, P[j ¢Tn,, (&)
for most of the quantities introduced so far. In what follows —P[i ¢ Ty ]P[j ¢ Tnil Pli ¢ Ty PI0 ¢ T

we largely abide by this practice, although we shall make the . _
dependence otk explicit in a few places when scalingg by the independence of the ni, ;, I';, ; andI',, ;. Noting

with the numbem of users. that (7-3)
[1l. COMPARING WITH OTHER RANDOM GRAPHS PljgTh:, £¢Th:] = (n—lfly
First some notation: Fix positive integens= 2,3, ... and _ K
K with K < n. The edge assignments in the random grapte €asily conclude that
H(n; K') are characterized by tH®, 1}-valued rvs{¢,, ;;, j € e
N_i, i=1,...,n} defined by Cov[&n,ijs Enit] 7
3 1[i€T,; VjeTl, i = <(nK2)>2 (nK3)<(nK2)>2 <0
n,ij - n,j n,il o L. - n—1 n—1 n—1
’ ! hLj=1...,n (K) (K) (K)

with v stam_jmg for Io.g|cal disjunction. Thug,, ;; = 1 (resp. by elementary calculations. It is now plain that the random
&nij = 0) _|f i and j are adjacent (rgsp. not adjacent) "&;raph H(n; K) is not an Erés-Rényi graph [2] — Edge
gﬁar{{ )|nvtvrl1teh i ation o ollow wo atall . r?;aﬁfisgg“me“ts are (negatively) correlated fiin; i) while
L X independent in Eiis-Renyi graphs.
to exploit the relation In fact, the rvs{¢,,;;, j € N_;, i =1,...,n} turn out to
1 -6, =10 ¢T,,, ¢, (3) exhibit a strong form of negative correlation in that they are



negatively associateih the sense of Joag-Dev and Proschamsed for proving the one law for connectivity in E)EdFénfl
[11]. To see this, consider the rvs graphs.
i Theorem 4.1:With any positive integeK > 2, the bound
si=1lelu), .. '77
T}n,lj J 7,1] 7 — 1 n K2—1
b LSSV
Under the enforced assumptions, it is clear that 1;, j € 2

Noab{nm2j, G € Noats oo g, 5 € Non} areindepen- noigs for alln — 2.3, ... sufficiently large, say > n(K) for
dentfamilies of rvs, each of which is negatively associated [11, e finite integen(K) > e(K + 1) which depends oi .
Example 3.2(c)]. More precisely, for eachk= 1,...,n, the Vs pe pound (11) gives some indication as to how fast the
{15, J € N—i} are negatively associated sinEg,; repre-  conyergencdim,, ... P(n; ) = 1 occurs whenk > 2, with
sents a random sample (without replacement\af,. Thus, he convergence becoming faster with largéras would be

the entire collection of fvt{nn:‘z’p JEN-, i=1,... 7’}} IS expected: see also (13) below. Although the right handside of
negatively associated by the “closure under products propefgyl) may be negative for small values of (in which case

of negative association [6, p. 35]. Now, for distinci = e hound is trivial), it is already active (i.e., positive) when

Pn; K)>1— (11)

1,...,n we note from (3) that n = 2(K +1) (and beyond pasi(K)).
§nij = 1= (1 =&u) (1= &nji) For K = 2, the bound (11) takes the simpler form
= Sz mngi) ® P2) 21— o 0> n(2) (12)
with non-decreasing functiorf : R? — R : (2,y) — . " . )
1—(1—2)(1—y). Hence, by the disjoint monotone aggregatioﬁor eac_hn =1,2,..., a simple coupling argument yields the
property [6, p. 35] of negative association, the family of edge®MmpParison
indicajtor Vs {5, 1 < i' < j S.n.} is alsq negatively P(n;2) < P(n,K), 2<K <n. (13)
associated. As a result, witd = {{i,j}: 1 <i<j <n},
it is plain that Making use of (12) we then conclude that
Pli~j{i, 7} € A], x < H Pli~jl, gk, ACA P(n; K) > 1—22—72, n > max(K,n(2)) (14)
{ij}eA n

for any K > 2.
A zero-one law for connectivity is presented next.
Theorem 4.2:With any positive integekK , it holds that

Comparing with random regular graphs: For eachi =
1,2,...,n, let D, ; denote the degree of node in the
undirectedgraphH(n; K'). We have

n 0 ifK=1
Dni = > 1[i€ln; VjeT,] lim P(n; K) = (15)
=15 e 1 ifK>2.
= K + > 1[i e T ] (9)  The one-law in Theorem 4.2 is an easy consequence of the
J=1,¢Tn :U{i} bound (11) (or (14)), while the zero-law of Theorem 4.2 is
where we note that proved separately in Section VII.
Theorem 4.2 easily yields the behavior of graph connectivity
i=1...,n: j¢ln;U{i}}|=n—-K-1 as the parametek is scaled withn. First some terminology:

Therefore, by independence, the sum appearing in (9) s refer to any mapping : No — No as ascaling provided
binomial rv with n — K — 1 trials and success probability!t Satisfies the natural conditions

747, whence Ko<n, n=12.... (16)
D, ; =« K + Bin <n _K-—1 K ) (10) Corollary 4.3: For any scalings : No — Ny, we have
n,7 s ) n—1 .
: : : . lim P(n; K,)=1 17
It is now plain that the nodes ifl(n; K) have different oo (n; Kn) (7

(random) degree, and therefolé(n; K) is not a random providedk,, > 2 for all n sufficiently large.
regular graph [2, p. 50] [10, Chap. 9, p. 233].
IV. CONNECTIVITY Proof. For eachn = 1,2,..., a simple coupling argument

. L ields
Fix positive integers: = 2,3, ... and K < n. Throughout y

P(n;K) < P(n,K'), K<K' <n.
we set

Under the scalingK : Ny — N, it follows that
P(n;2) < P(n,K,) for all n sufficiently large as soon
The first technical result of this paper, given next, is estabs K,, > 2. Letting n go to infinity in this last inequality, we

lished in Section VI; the proof adapts classical argumenggt (17) by invoking Theorem 4.2. [ ]

P(n; K) :=P[H(n; K) is connected] .



a step which is usually much simpler to complete witﬁ the
BecauseH(n; K) cannot be equated with an BstRenyi help of the method of first and second moments [10, p. 55].
graph, neither Theorem 4.1 nor Corollary 4.3 are consequenttsvever, there are no isolated nodesHin; K) since each
of classical results for Efis-Renyi graphs [2]. Indeed, con-node has degree at least Thus, the class of random graphs
sider the following well-known zero-one law for ErstRenyi  studied here provides an example where graph connectivity
graphs: For any scaling : Ny — [0, 1] satisfying and the absence of isolated nodes are not asymptotically
equivalent properties; in fact this is what makes the proof of

1 o
a1 (18) the zero-law more intricate.

Pn ~C
n

for somec > 0, it holds that V. KEY RING SIZES

0 if 0<e<1 Fix n = 2,3,... and positive integefX with K < n. For
lim P [G(n;p,) is connectepl= eachi = 1,2,...,n, node: is assigned a key ring,, ; whose
e 1 if 1<e size is given by

K2 - n
As seen from (6),% — (atyz stands for the probability Snil = Tagl + > 1[i €Tyl 1)
of link assignment inH(n; K,,) and therefore plays a role G=T, ji
analogous to that gf,, in Erdds-Renyi graphs. Thus, @ansfer
of the connectivity results frorft(n; p,,) to H(n; K,,) suggests

scaling K such that

This is a simple consequence of the definition (1), and should
be contrasted with the definition (9) for the degrBg ; of
nodes. In the latter case, if both evenjsc I',, ; andi € T, ;

2K, K? logn are realized, this producesly a unit contribution to bottD,, ;
n—1 (n—1)2 T and D, ;, although two distinct pairwise keys are generated
for the nodes and; (and both are included in the key rings).
We also define the maximal key ring size as

or equivalently

2K, ~ clogn (19)
in the practically relevant case whéfy, = 0(n). This would My, := maxizy,...n[Zn.il-
then lead formally to the zero-one law It is easy to see that
' . 0 if 0<ex1 |Zni|:K+Bn,i (22)

lim P[H(n; K,,) is connectefl= ’

e 1 if 1<e. where B,, ; is the rv determined through
to hold under (19). Clearly, this yields the misleading conclu- " _
sion thatK,, has to behave likelogn for somec > % for B = Z 1[i €Dyl
P[H(n; K,,)] to be asymptotically almost surely connected— g=1, j#i
In fact, by Theorem 4.2 it is only needed to hakig > 2. Under the enforced independence assumptions, thg,rvis

Also, observe from (10) that a binomial rvBin(n — 1, -5£5), with

ED,;] = K -K-1 K
(D] o ST E[Bud=(n-1) —5 =K
K
= K (2 — ) : (20) and
n—1

K n—1—K
Thus, whenK = 2 the expected degree of a nodeliin; 2) n—1 n—1
is less thand. However, as can be seen from Theorem 4.2, Ag 3 resultE [|S, ;|] = 2K and

the random grapltHi(n; K') is asymptotically almost surely ’

connected. This already points out to a significant difference Var[|Sn,]] = K (1 - L) )
with many other random graph structures discussed in the ’ n—1
literature where the threshold for connectivity appears whenig o plain that

the expected node degree equalddgn, e.g., Erds-Renyi

Var[B,, ;| = (n—1) -

graphs [2], random key graphs [1], [4], [14], [18], random |Z0.] 2 Var[|2,, ]
intersection graphs [16] and random geometric graphs [12]. ‘m -1 - m
To further drive this point, note the following: In many '
known classes of random graphs, the absence of isolated - l(i _ L) (23)
nodes and graph connectivity are asymptotically equivalent 4\K n-1

properties, e.g., Efis-Renyi graphs [2], random geometricsg that
random graphs [12] and random key graphs [14], [17]. This
equivalence, when it holds, is used to advantage by first
establishing the zero-one law for the absence of isolated nodes,

‘En,i| _

2111
]:1<§‘n_J~ (24)



In general the key ring sizes satisfy the bounds

n=200, K=4

vl T T T ]

K S |Zn77| S K + (n — 1)7 L= 1, ey n. (25) T ey s

= Largest key ring of n nodes |

We give minimal conditions on a scaling : Ny — Ny to
ensure that the key ring of a node has size roughly o
order (of its meanRK,, whenn is large.
Lemma 5.1:For any scalings : Ny — Ny, we have
|En’1(Kn)| E’nl
2K,

as soon aém,, ., K,, = oo.

Frequency of occurrence

Proof. Under the enforced assumptions, we have
2
- Eﬂwl ] 0

n—o00 2K,
by the earlier calculations (24), and the result follows. H

4 6 8 10 12 u 16 18 20
Key ring size

Thus,|%,, 1 (K,,)| fluctuates fromk,, to K,, + (n— 1) with
a propensity to hover abo@tk,, whenn is large under the
conditions of Lemma 5.1. Next we provide a concentratiofig. 1. Key ring sizes observed i, 000 experiments fom = 200 and
result that quantifies how the maximal key ring size deviatés= 4 — Only 2% of the key rings are larger thai and the largest key
ring has size20.
from 2K,,.
Theorem 5.2:Consider a scalings : Ny — Ny of the form

K, ~~logn, n=23,... (26) VI. A PROOF OFTHEOREMA4.1

. . Fix n = 2,3,... and consider a positive integéf. The
with v > 0. If v > v* := (2log2 — 1) ~ 2.6, then there .qnditions

existsc(v) in the interval(0, ) such that 2<K and e(K+1)<n (29)
nIEI;oPHMn(Kn) — 2K,| > clogn] =0 (27) are assumed enforced throughout; the second condition is

h a made to avoid degenerate situations which have no bearing
whenever(y) <c<~. _ _ on the final result. There is no loss of generality in doing so
In the course of proving Theorem 5.2 in Section VIII, Wes we eventually let go to infinity. In particular we
also show that For any non-empty subsétof nodes, i.e.S C {1,...,n},
P(|M,(K,) — 2K,| > clogn] < 2n~ () (28) Wwe define the grapﬂﬂ(n;lK)(S) (with vertex setS) as the
subgraph offi(n; K) restricted to the nodes ifi. We say that
for all n = 1,2,... wheneverc(y) < ¢ <y with h(y;¢) >0 S is isolatedin H(n; K) if there are no edges (ifl(n; K))
specified at (57). between the nodes ifl and the nodes in the complemefit =
We present experimental results that validate Lemma 5{1,... n} — S. This is characterized by the eveBf,(K;S)
and Theorem 5.2: For fixed values of and X we have given by
constructed key rings according to the mechanism presented ) ]
in Section Il. For each pair of parametetsand K, the ex- Bu(K;5) == Nies Njese [§ € Tnjs J & gl
periments have been repeated00 times yieldingl,000 x n  since each node ifil(n; K) is connected to at leadt other
key rings for each parameter pair. The results are depictednifges, a se$ can be isolated ifil(n; &) only if IS| > K+1.
Figures 1-4 which show the key ring sizes according to their plso. we let C,.(K;S) denote the event that the induced

frequency of occurrence. The histograms in blue consider &ipgraphi(n; K)(S) is itself connected. Finally, we set
of the produced, 000 x n key rings, while the histograms in

white consider only the,000 maximal key ring sizes, i.e., An(K;8) == Cp(K;8) N By (K5 S).

only the largest key ring among nodes in an experiment. The discussion starts with the following basic observation:

It is immediate from Figures 1-4 that the key ring sizeg H(n; K) is not connected, then there must exist a sulsset

t5er11d;\o concantt:ate arouaoclj(, \;]"?‘“datmg the qlam;)of Lemma ¢ hodes with|S| > K +1 such thatH(n; K)(S) is connected
L. As would be expected, this concentration becomes Mife ¢ s jsolated inH(n; K). Thus, if C,,(K) denotes the

evident asu gets large. It is also clear that, in almost all cas
the maximum size of a key ring (out af nodes) is less than
3K validating the claim of Theorem 5.2. Cn(K)° CUgep,: |s|>K+1 An(K;S) (30)

ent thatH(n; K) is connected, we have the inclusion
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Fig. 2. Key ring sizes observed ih, 000 experiments forn. = 500 and Fig. 3. Key ring sizes observed in 000 experiments fom = 1,000 and
K = 21 — Out of the500, 000 key rings produced only happened to be K = 24 — 1,000,000 key rings are produced. Only of them happened to
larger than3 K while the largest size observed@s. be larger tharBK and the largest observed key ring sizeris

whereP,, stands for the collection of all non-empty subset&s we note the inclusiod,, ,.(K) C B, ,(K).

of {1,...,n}. A moment of reflection should convince the For eachr = K +1,...,n, itis easy to check that
reader that this union need only be taken over all subsets e\ T 1y \ P
{1,...,n} with K41 < |S| < | §]. A standard union bound P[Bn.(K)] = (_If) . (L,) ) (34)
argument immediately gives ’ ("Kl) (nKl)

P[C,(K)]] < Z P[A,(K;S)] Reporting (34) into (33) we get
SEP.:K+1L|S|I<| 5] [3] n (r—l) T (n—r-l) n—r
L%J ]P) [C’ﬂ (K)C] S Z (7_> ((ni—(l)> < (TLI—(1> > N (35)
= Y | 3 plk:s)| (31 ot K X
r=K+1 \SEP, . For0 < K <z <y, we have
whereP,, , denotes the collection of all subsets{df, ..., n} (%) E=b /0y 2\ %
with exactlyr elements. (O] = H (m) < (5)
For eachr = 1,...,n, we simplify the notation K/ =0
by writing A, (K) := An(K;{l,....r}), Bnr(K) = sinceZ={ decreases asincreases fronlf =0 to ¢ = K — 1.
B, (K;{1,...,r}) and C,, .(K) = C,(K;{1,...,r}). For Using this fact into (35) together with the standard bound
r = n, the notatior”,, ,,(K') coincides withC,,(K) as defined n ne\ T
earlier. Under the enforced assumptions, it is a simple matter (T) < (7) , r=1,....n

to check by exchangeability that

we conclude that
P [Aﬂ(Kv S)] =P [Anr(K)] ) Se Pn,r

d th i P[Cn(K)‘]
and the expression 8] \rK N\ K(nm)
< ne 1-—
> rlams) = (1) P ) @ S 2 () (=) ()
SEP - _Lﬂj
follows since|P,, .| = (7). Substituting into (31) we obtain < Z (E)T (Z)TK (1 — E)K(n_r)
the bounds or VT n n
P[C (K)(] < 32 (n) P[B (K)} (33) < L5] (ne)T (r)rK rin=r)
n >~ r n,r T ;
r=K+1 r=K+1



. n large enough, say > n(K) for some finite integen(K§
il T w w w w ] which depends oik” (and which can be taken to satisfy (29)).
Using (38) together with the fact that

P +1) = (5 + Dtog (51,

we obtain the equality

max ((%)T(Kl) cr=K+1,..., {gJ)

| _ <K+1)Kz_1 39)

n

Frequency of occurrence
g
I

for all n > n(K). Reporting (39) into (37), we conclude that

[5] K21 K2-1
. K+1 n (K+1
PC.(K)]< S (—n ) g§~( . )

r=K-+1

J for all n > n(K), and (11) is established. [ |
30 3% 40 45 50 5% 60 65 0 75 80
Key ring size

%10 —

] o ) ) VIlI. A PROOF OF THE ZERGLAW IN THEOREM4.2
Fig. 4. Key ring sizes observed in 000 experiments fom = 2,000 and ) )
K = 26 — Out of the 2000000 key rings produced oryhappened to be  First some terminology: Wher = 1, the random sets

larger than3 K the largest of them having0 keys. Tni,...,0n, are now singletons, and can be interpreted
as{l,...,n}-valued rvs (as we do from now on) such that
|2 ] K ” I'y,; #iforeachi =1,...,n. Thus,I', ; is the node selected
= Z ( ﬁ) - el—K(",;")> ) (36) at random which becomes associated (paired) with riode
pea1 N7 With thi)s in mind, aformation is any sequencey =
B il (Y1,---,7) such that for each = 1,...,n, the component
On the ranger = K +1,..., | 3] with K > 2, we have v; is an element of{1,...,n} such thaty; # 4. In other
n—r n—|5] K words, ~ is one of the(n — 1)" possible realizations of the
K——2K—==2>-2>1 VS (Tyts -, Do),
whence With any formationy we associate directedgraph on the
Pl KU vertex set{1,...,n} in an obvious manner: There is a directed
_ _ _ - edge from node to nodej if «; = j. This directed graph is
Reporting this fact into (36) we find denoted byH~ (n). As there argn—1)" possible formations,
12 there are(n — 1)™ distinct directed graphs so defined. Under
P[C(K)] < Z (f)T(K_l) ) (37 the pair\_/vise distribytion scheme considered here, each of these
L graphs is equally likely, so that we have
For eachn = 1,2,.. ., write 1 |H~(n) is connecte
. P(n;1) = 2yt [y () — ] (40)
(E)w = E-Dfu(@) 5> (38) (n—1)
. n where the summatiof} ., is taken over all possible forma-
with tions. Here, we have used the conventional notion of connec-
fn(z) =z (logz —logn). tivity for directed graphs: A directed graph is connected if and
It is plain that only if the underlyingundirectedgraph is connected — This

is to be distinguished from the notion efrong connectivity
fl(z) =1+logx — logn. defined for directed graphs. The desired zero-law will be

Therefore, f,,(r) is monotone decreasing on the range= established if we can show that

K +1,...,[2] and monotone increasing on the range- i >~ 1 [Hy(n) is connected 0 1)
2] +1,..., 5], whence 00 (n—1)n = 0.
Fu(r) < max (fn(K 1), f (FD) From now on, letH (n) denote the underlying undirected
2 graph of Hy(n). We note that{4(n) is a realization of the
forr=K+1,..., [gJ It is also a simple matter to check byrandom graptH(n;1) when (T, 1,...,T,, ») = . For each

direct inspection thaf,,(K + 1) is larger thanf, ([gJ) for formationy, we can easily validate the following observations:



1) By definition,H,*y(n) is connected if and only it/ (n) which are connected and have exactlydges. We find
is connected. )
2) The undirected graph% (n) can haveat mostn edges [ [H(n; 1) is connected and has edge$

since H~(n) hasexactlyn directed edges (as each of _ 1 Z 1 H~(n) is connected an
the n nodes has out-degrdg. (n— 1) vy has exactly one cycle
3) If H~(n)is connected (and hendéy (n) is connected), B
then H4(n) should haveat leastn — 1 edges. In this T (n—1)n Z Z [ G]
case 7 ety
1
I. If H%(n) hasn—1, edges thett/ (n) is necessarily — 2|7 (44)
R v S (n—1)n

a tree and H~(n) has exactly one bi-directional

edge. However, it is known [8, p. 133-134] that
Il. If H4(n) hasn edges, theri{~(n) has exactly one 1 )

cycle. |TF| ~ Z\/27m”*§,

Case | —H(n;1) is connected and has: — 1 edges:Thus,

H(n;1) is a tree. With7,, denoting the collection of labelled and reporting this fact into (44) gives

trees on the set of verticgd, ..., n}, we have|7,| = n"~2 P[H(n; 1) is connected and has edge$
by Cayley’'s formula. Noting also that a given tree is the Nor:
underlying undirected graph for — 1 different formations ~ < > -3
(corresponding ton — 1 possible places for the single bi- 2
directional edge), we get N n—t (45)
2 .
P[H(n; 1) is connected and has— 1 edge$ It is now immediate that
B 1 Z 1 H~(n) is connected and . ,
= —(n ) has one bi-directional edg HILHQOP[H(T“ 1) is connected and has edge$= 0.
= Z Z [ } Together with (43) and Facts 2-3, we now conclude that (41)
(n—1)" holds [ |
7 rez, .
1
_ - —1) - n—2
1 ( n )”‘1 42) VIIl. A PROOF OFTHEOREM5.2
n o \n-1 . Fix the positive integera = 2,3,... and K with K < n.
) Using (22) we readily get
It is now clear that
. Yol | = 2K = B, —K).
H(n;1) is connected (i—nllf?.}.(,nl ’ > i:I?,E.L.)fn( ’ )
fm P and hasn — 1 edges | ~ (43)
e 9 Therefore, with any giver > 0, we find
Case Il — H(n;1) is connected and has: edges:This P H( max |, /4|> —ZK‘ > t}
corresponds to all formationg such that/7% (n) is connected i=t,..n "
and has exactly one cycle. It is not difficult to see that a
connected graph with only one cycle can be the underlying = P P (Bni = K)| > 1
undirected graph for two different formations (corresponding
to the two possible orientations of the cycle). For instance, = P L_Hllaxn B, > K+t}

consider a connected graph on nodes with exactly one
cycle. This graph necessarily hasedges and therefore the 4P { max Bm <K — t} (46)
original directed graphi{~(n) cannot have a bi-directional =1,

edge. Without loss of generality, assume that the cycle consist§ye take each term in turn. First a simple union argument

of nodesl, 2, 3, 4 with edgesl ~ 2,2 ~ 3,3 ~ 4,4~ 1. Then ghows that
the two possible formations a#e, 3,4, 1,vs5,7, - .-V} and

{4,1,2,3,75,76, - - - Yn }- Similar arguments can be made for Pmax;—1,. nBni > K +1]
all possible cycles. Since there can be no other cycles or bi- = P[U™,[Bn:> K +1
directional edges in the rest of the graph, these two formations n

will be the only ones that give rise to that particular undirected < Z P[B,; > K +1]
structure. im1

Now let 7.+ denote the set of undirected graphsronodes = nP[B,1>K+1] (47)



since the rvsB,, 1,..., B, , are identically distributed (but then follow from (49) and (50), respectively, and the d(laosired

not independent). Next we note that

P [maXi=1,...,an,i <K — t]
P[B,,< K-t i=1,...n]
mini:17,,,)n]P’ [Bnﬂ‘ < K — t}
]P)[Bml < K, — t] .

<

(48)

To proceed we recall standard bounds for the tails
binomial rvs [12, lemma 1.1, p. 16]: With

H(t) :=1—t+tlogt,

we have the concentration inequalities

K+t
e

P[Bny > K +1] < e K

and .
P[Bn,1 < K —t] < e KHER)

where the additional conditiof < ¢t < K is required for

the second inequality to hold. Simple calculations on the

appropriate ranges show that

K+t t
~K-H(=——)=+t—(K+t)-log(1+— ).
() ==-weo (i 5)

conclusion (27) flows from (46).

With the selections made above, we géf(K,;t,) ~
a(v;c)logn and B, (K,;t,) ~ b(~; ¢) logn with coefficients
a(~y; ¢) andb(v; ¢) given by

a(v;c) ::1+c—(7+c)-log(1+§), c>0
ahd
b(7; ¢) ::—c—(v—c)-log(l—g), 0<c<n.

Thus, in order to ensure (51) and (52), we need to find
in the interval (0,~) such thata(vy;¢) < 0 andb(y;¢) < 0,
respectively. To that end, we first note that

Oa

C
Zyie)=—log([1+Z) <0 0
ac(%c) og( +W)< , >

and
ob

%(7;c)zlog(1—§> <0, 0<ec<n.

Therefore, both mappings — a(y;¢) and ¢ — b(y;¢)
are strictly decreasing on the interval®, co) and (0,7),

Thus, by the first concentration inequality, we concludé€spectively. Sincéim. o b(v;c) = 0, itis plain thatb(v; ¢) <

from (47) that

P[max;—1,  nBni > K + 1] < eAn KD (49)

with

A (K;t) :=logn+t— (K +1)-log (1—1—%).

The second concentration inequality and (48) together yield

Pmax;=1, . nBn: < K —1] < eBn (K5t) (50)

with .
Bn(K,t) = —t— (K — t) : 10g <1 — E)
under the additional constraift< ¢ < K.

Now consider a scaling( : Ny — Ny of the form (26) for
somey > 0, and select the sequente Ny, — R, given by

t, =clogn, n=12,...

with ¢ in the interval (0,v) (so that0 < ¢, < K,, for all n
sufficiently large). Under appropriate
Under appropriate conditions enandc, we shall show that

lim A, (Kp;t,) = —o0 (51)
and
lim B, (K,;t,) = —oc. (52)

n—oo

The convergence statements

lim P [maXi:L...,an,i(Kn) > Kn + tn] =0
and
lim Pmax;=1. nBni(K,) < K, —t,] =0

n—oo

0 on the entire interval0,y). On the other hand, it is easy to
check thatlim. | a(v;¢) =1 and

—1-L

Y
Hence, if we selecty > +*, thena(vy;¢) < 0 for all ¢ > ¢(v)
wherec(v) is the unique solution to the equation

liTma('y;c) =1-—7(2log2-1)
cly

a(y;¢) =0, ¢>0. (53)

Uniqueness is a consequence of the strict monotonicity men-
tioned earlier.
The proof will be completed by showing that the constraint

cy)<v, > (54)

indeed holds. For each> 0, define the quantity:(v) := @
In view of (53) it is the unique solution to the equation

1
;—l—x—(l—l—x)log(l—i—x)zo, x> 0. (55)
This equation is equivalent to
1
; =p(x), >0 (56)

where the mapping : R, — R, is given by

pl@)y=0+=x)log(1+z)—2, xz>0.

This mappingy : R, — R, is strictly monotone increasing
with lim, o p(x) = 0 and lim,1. ¢(z) = o0, SO thaty is
a bijection fromR, onto itself. It then follows from (56)
that z(~y) is strictly decreasing as increases. Since(1) =
(v)~', we getz(y*) = 1 by uniqueness, whence(y) <
z(y*) =1 for v > ~*, a statement equivalent to (54).



. . . 11
Careful inspection of the proof shows that (28) holds witt9] 0. Yajan and A.M. Makowski, “Zero-one laws for connectivity

h(7;c) == —max (a(v; ¢), b(v; c)) (57)

on the range:(y) < ¢ < ~, and it is clear from the discussion!?”!

above thati(v;c) > 0 when~y > ~v*.

|
(21]
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