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Abstract— The pairwise key distribution scheme of Chan
et al. was proposed as an alternative to the key distribution
scheme of Eschenauer and Gligor (EG) to enable network
security in wireless sensor networks. In this paper we
consider the random graph induced by this pairwise
scheme under the assumption of full visibility. We first
establish a zero-one law for graph connectivity. Then, we
discuss the number of keys needed in the memory of
each sensor in order to achieve secure connectivity (with
high probability). For a network of n sensors the required
number of keys is shown to be on the order oflog n, a key
ring size comparable to that of the EG scheme (in realistic
scenarios).

Keywords: Wireless sensor networks, Security, Key predis-
tribution, Random graphs, Connectivity, Zero-one laws.

I. I NTRODUCTION

Wireless sensor networks (WSNs) are distributed collections
of sensors withlimited computing and communications re-
sources. Security is expected to be a key challenge for WSNs
deployed in hostile environments where communications are
monitored, and nodes are subject to capture and surreptitious
use by an adversary. However, traditional key exchange and
distribution protocols have been found inadequate for use in
large-scale WSNs; see [7], [13], [15] for detailed discussions
of some of the challenges.

Recently, random key predistribution schemes have been
proposed to address some of these difficulties. The idea of
randomly assigning secure keys to the sensor nodes prior
to network deployment was first introduced by Eschenauer
and Gligor [7]. The EG scheme, as we refer to it hereafter,
has been investigated in the context ofrandom key graphs
by several authors [1], [4], [14], [18], [19]. Random key
graphs are random graphs induced by the EG scheme under
the assumption of full visibility, i.e., when nodes are all
within communication range of each other. To be sure, the
full visibility assumption does away with the wireless nature
of the communication infrastructure supporting WSNs. In
return, this simplification makes it possible to focus on how
randomizing the key selections affects the establishment of a

secure network, and the connectivity results for the underlying
random key graph then provide helpful (though optimistic)
guidelines to dimension the EG scheme.

Following the original work of Eschenauer and Gligor, a
number of other key distribution schemes have been suggested.
The q-composite scheme [3] is a variation on the EG scheme
where two nodes need to share at leastq keys (withq > 1) in
order to establish a secure link between them. Theq-composite
scheme improves resiliency against small-scale attacks as the
network becomes more vulnerable to large attacks. Du et al.
[5] have proposed a key predistribution scheme which also
improves resiliency but at the cost of increased overheads. Al-
though these schemes somewhat improve network resiliency,
they all fail to provideperfectresiliency against node capture
attacks. Moreover, none of them enables a node to authenticate
the identity of a neighbor with which it communicates. In
terms of network security this is a major drawback because
node-to-node authenticationcan help detect node misbehavior,
and provides resistance against node replication attacks [3].

To address this last point, Chan et al. [3] have proposed a
random pairwise key predistribution scheme with the follow-
ing properties: (i) Even if some nodes are captured, the secrecy
of the remaining nodes isperfectly preserved; (ii) Unlike
earlier schemes, this pairwise scheme enables both node-to-
node authentication and quorum-based node revocation. The
pairwise distribution scheme can be implemented through the
following offlineconstruction: Before deployment, each of the
n sensor nodes is paired (offline) withK distinct nodes which
are randomly selected from amongst all other nodes. For each
such pair of sensors, a unique (pairwise) key is generated and
stored in the memory modules of each of the paired sensors
along with the id of the other node. A secure link can then
be established between two nodes if at least one of them is
assigned to the other, i.e., if they have at least one pairwise
key in common. Precise definitions and implementation details
are given in Section II.

Let H(n;K) denote the random graph on the vertex set
{1, . . . , n} where distinct nodesi and j are adjacent if they
have at least a pairwise key in common; this corresponds to
modelling the random pairwise distribution scheme under full
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visibility. The main goal of this paper is to give conditions
on n and K under which H(n;K) is a connected graph
with high probability asn grows large. As in the case
of the EG scheme, such conditions might provide helpful
guidelines for dimensioning purposes. In the original paper
of Chan et al. [3] (as in the reference [9]), the connectivity of
H(n;K) is analyzed byequatingit with the Erd̋os-Renyi graph
G(n; p) wherep = 2K

n ; this constraint ensures that the link
probabilities in the two graphs are asymptotically matched.
A formal transfer of well-known connectivity results from
Erdős-Renyi graphs toH(n;K) suggests that the parameter
K should behave likec log n for somec > 1

2 in order for
H(n;K) to be connected with a probability approaching1
for n large. With this conclusion as a point of departure,
the maximum supportable networks size was evaluated [3],
[9], and the random pairwise key predistribution scheme was
deemednot scalable.

Here we show that transferring connectivity results from
Erdős-Renyi graphs toH(n;K) leads tomisleadingconclu-
sions. Indeed by adirect analysis we show the following
zero-one law: WithK ≥ 2 (resp. K = 1), the probability
that H(n;K) is a connected graph approaches1 (resp. 0)
as n grows large, and the desired connectivity is therefore
achievable under very small values ofK (much smaller
than prescribed by the transfer from Erdős-Renyi graphs).
Furthermore, at the connectivity threshold obtained here, i.e.,
whenK = 2, we show that the expected degree of a node in
H(n;K) is less than4; this suggests a major difference from
many classical random graph structures where the connectivity
threshold appears when the expected node degree equals to
log n, e.g., see Erd̋os-Ŕenyi graphs [2], random key graphs [1],
[4], [14], [18], random intersection graphs [16] and random
geometric graphs [12].

We then discuss the required number of keys to be kept in
the memory module of each sensor in order to achieve secure
connectivity. Since sensor nodes are expected to have very
limited memory, it is crucial for a key distribution scheme
to have low memory requirements [5]. In contrast with the
EG scheme (and its variants), the key rings produced by the
pairwise scheme of Chan et al. have variable size betweenK
and K + (n − 1). Still, with the average size of a key ring
being2K, we identify minimal conditions on how to scale the
parameterK with the numbern of nodes so that the size of
any key ring hovers around2Kn (in some probabilistic sense).
Next, we show that themaximumkey ring size is on the order
log n with very high probability providedK = O(log n). Such
a concentration result, together with the fact that very small
K values suffice for the connectivity ofH(n;K), points to
the possibility of turning the pairwise scheme into a scalable
one.

As with available results regarding the EG scheme based on
random key graphs, the results given here under full visibility
may lead to a dimensioning of the pairwise scheme which is
too optimistic. This is due to the fact that the unreliable nature
of wireless links has not been incorporated in the model. We do
take a first step towards addressing this issue in the companion

paper [22]; there the connectivity properties of the pairwise
scheme are analyzed under a simplified communication model
where unreliable wireless links are represented as on/off
channels. Despite these limitations, the study of the random
graph H(n;K) is nevertheless of independent interest as it
models a very basic random pairing mechanism with potential
applications in areas beyond wireless sensor networks, e.g.,
social; networks, where full visibility is not an issue.

We close by noting that this paper considers only the
case when the sensor nodes1, . . . , n are all deployed at the
same time. However, in practice the initially deployed network
may have fewer thann nodes. In that case only a subset of
{1, . . . n} will be deployed initially and the remaining sensor
labels will be used at a later time if additional nodes are
needed to be deployed. The implementation details and the
connectivity results regarding the case where the network is
deployedgradually are discussed in [21].

The rest of the paper is organized as follows: In Section II
we give a formal model for the random pairwise distribution
scheme of Chan et al. The random graphH(n;K) is contrasted
against Erd̋os-Ŕenyi graphs and regular random graphs in
Section III. Results concerning connectivity are presented in
Section IV, and properties of the key rings are discussed in
Section V. Proofs can be found in Sections VI, VII and VIII.

A word on notation: All statements involving limits, includ-
ing asymptotic equivalences, are understood withn going to
infinity. The cardinality of any discrete setS is denoted by
|S|. Also, we use the notation=st to indicate distributional
equality.

II. T HE RANDOM PAIRWISE SCHEME

The random pairwise key predistribution scheme of Chan et
al. is parametrized by two positive integersn andK such that
K < n. There aren nodes which are labelledi = 1, . . . , n.
with unique idsId1, . . . , Idn. Write N := {1, . . . n} and set
N−i := N − {i} for each i = 1, . . . , n. With node i we
associate a subsetΓn,i of nodes selected atrandomfrom N−i

– We say that each of the nodes inΓn,i is paired to nodei.
Thus, for any subsetA ⊆ N−i, we require

P [Γn,i = A] =







(

n−1
K

)−1
if |A| = K

0 otherwise

ensuring that the selection ofΓn,i is doneuniformly amongst
all subsets ofN−i which are of size exactlyK. The rvs
Γn,1, . . . ,Γn,n are assumed to be mutually independent so that

P [Γn,i = Ai, i = 1, . . . , n] =

n
∏

i=1

P [Γn,i = Ai]

for arbitrary A1, . . . , An subsets ofN−1, . . . ,N−n, respec-
tively.

Once this offline random pairing has been created, we
construct the key ringsΣn,1, . . . ,Σn,n, one for each node,
as follows: Assumed available is a collection ofnK distinct
cryptographic keys{ωi|ℓ, i = 1, . . . , n; ℓ = 1, . . . ,K} –
These keys are drawn from a very large pool of keys; in
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practice the pool size is assumed to be much larger thannK,
and can be safely taken to be infinite for the purpose of our
discussion.

Now, fix i = 1, . . . , n and let ℓn,i : Γn,i → {1, . . . ,K}
denote a labeling ofΓn,i. For each nodej in Γn,i paired to
i, the cryptographic keyωi|ℓn,i(j) is associated withj. For
instance, if the random setΓn,i is realized as{j1, . . . , jK}
with 1 ≤ j1 < . . . < jK ≤ n, then an obvious labeling
consists inℓn,i(jk) = k for eachk = 1, . . . ,K with key ωi|k

associated with nodejk. Of course other labeling are possible.
e.g., according to decreasing labels or according to a random
permutation. Finally, the pairwise key

ω⋆
n,ij = [Idi|Idj |ωi|ℓn,i(j)]

is constructed and inserted in the memory modules of both
nodesi andj. Inherent to this construction is the fact that the
key ω⋆

n,ij is assignedexclusivelyto the pair of nodesi andj,
hence the terminology pairwise distribution scheme. The key
ring Σn,i of nodei is the set

Σn,i := {ω⋆
n,ij , j ∈ Γn,i} ∪ {ω⋆

n,ji, i ∈ Γn,j}. (1)

As mentioned earlier, under full visibility, two nodes, sayi
andj, can establish a secure link if at least one of the events
i ∈ Γn,j or j ∈ Γn,j is taking place. Note that both events
can take place, in which case the memory modules of nodei
andj both contain the distinct keysω⋆

n,ij andω⋆
n,ji. It is also

plain that by construction this scheme supports node-to-node
authentication.

This pairwise distribution scheme naturally gives rise to the
following class of random graphs: Withn = 2, 3, . . . and
positive integerK < n, we say that the distinct nodesi and
j are adjacent, writteni ∼ j, if and only if they have at least
one key in common in their key rings, namely

i ∼ j iff Σn,i ∩ Σn,j 6= ∅. (2)

Let H(n;K) denote the undirected random graph on the vertex
set {1, . . . , n} induced by the adjacency notion (2). To keep
the notation simple we have omitted the dependence onK
for most of the quantities introduced so far. In what follows
we largely abide by this practice, although we shall make the
dependence onK explicit in a few places when scalingK
with the numbern of users.

III. C OMPARING WITH OTHER RANDOM GRAPHS

First some notation: Fix positive integersn = 2, 3, . . . and
K with K < n. The edge assignments in the random graph
H(n;K) are characterized by the{0, 1}-valued rvs{ξn,ij , j ∈
N−i, i = 1, . . . , n} defined by

ξn,ij := 1 [i ∈ Γn,j ∨ j ∈ Γn,i] ,
i 6= j

i, j = 1, . . . , n

with ∨ standing for logical disjunction. Thus,ξn,ij = 1 (resp.
ξn,ij = 0) if i and j are adjacent (resp. not adjacent) in
H(n;K), with ξn,ij = ξn,ji by the undirected nature of the
graph. In the calculations that follow we shall find it helpful
to exploit the relation

1 − ξn,ij = 1 [i /∈ Γn,j , j /∈ Γn,i] . (3)

Comparing with Erd ős-Ŕenyi graphs: Pick distincti, j =
1, . . . , n. It is plain that

P [i ∈ Γn,j ] =

(

n−2
K−1

)

(

n−1
K

) =
K

n − 1
,

so that

P [i /∈ Γn,j , j /∈ Γn,i] = P [i /∈ Γn,j ] P [j /∈ Γn,i]

=

(

1 − K

n − 1

)2

(4)

by independence. As a result,

E [ξn,ij ] = 1 −
(

1 − K

n − 1

)2

. (5)

Put differently,

P [i ∼ j]n,K =
K

n − 1

(

2 − K

n − 1

)

. (6)

Next, as we turn to the evaluation of correlations between
edge assignment rvs, pick the verticesi, j, k, ℓ = 1, . . . , n with
i 6= j and k 6= ℓ. If the indicesi, j, k and ℓ are all distinct,
then by virtue of (3) the rvsξn,ij and ξn,kℓ are independent,
whenceCov[ξn,ij , ξn,kℓ] = 0. It remains to consider the cases
when the indicesi, j, k andℓ arenot all distinct, e.g., without
loss of generality, take the casei = k with i, j andℓ distinct.
Then from (3) we get

Cov[ξn,ij , ξn,iℓ]

= Cov[1 − ξn,ij , 1 − ξn,iℓ]

= Cov[1 [i /∈ Γn,j , j /∈ Γn,i] ,1 [i /∈ Γn,ℓ, ℓ /∈ Γn,i]]

= P [i /∈ Γn,j , j /∈ Γn,i, i /∈ Γn,ℓ, ℓ /∈ Γn,i]

− P [i /∈ Γn,j , j /∈ Γn,i] P [i /∈ Γn,ℓ, ℓ /∈ Γn,i]

= P [i /∈ Γn,j ] P [i /∈ Γn,ℓ] P [j /∈ Γn,i, ℓ /∈ Γn,i]

− P [i /∈ Γn,j , j /∈ Γn,i] P [i /∈ Γn,ℓ, ℓ /∈ Γn,i]

= P [i /∈ Γn,j ] P [i /∈ Γn,ℓ] P [j /∈ Γn,i, ℓ /∈ Γn,i]

− P [i /∈ Γn,j ] P [j /∈ Γn,i] P [i /∈ Γn,ℓ] P [ℓ /∈ Γn,i]

by the independence of the rvsΓn,i, Γn,j and Γn,ℓ. Noting
that

P [j /∈ Γn,i, ℓ /∈ Γn,i] =

(

n−3
K

)

(

n−1
K

) ,

we easily conclude that

Cov[ξn,ij , ξn,iℓ] (7)

=

(

(

n−2
K

)

(

n−1
K

)

)2




(

n−3
K

)

(

n−1
K

) −
(

(

n−2
K

)

(

n−1
K

)

)2


 < 0

by elementary calculations. It is now plain that the random
graph H(n;K) is not an Erd̋os-Ŕenyi graph [2] – Edge
assignments are (negatively) correlated inH(n;K) while
independent in Erd̋os-Ŕenyi graphs.

In fact, the rvs{ξn,ij , j ∈ N−i, i = 1, . . . , n} turn out to
exhibit a strong form of negative correlation in that they are
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negatively associatedin the sense of Joag-Dev and Proschan
[11]. To see this, consider the rvs

ηn,ij := 1 [j ∈ Γn,i] ,
i 6= j

i, j = 1, . . . , n.

Under the enforced assumptions, it is clear that{ηn,1j , j ∈
N−1}, {ηn,2j , j ∈ N−2}, . . . , {ηn,nj , j ∈ N−n} areindepen-
dentfamilies of rvs, each of which is negatively associated [11,
Example 3.2(c)]. More precisely, for eachi = 1, . . . , n, the rvs
{ηn,ij , j ∈ N−i} are negatively associated sinceΓn,i repre-
sents a random sample (without replacement) ofN−i. Thus,
the entire collection of rvs{ηn,ij , j ∈ N−i, i = 1, . . . , n} is
negatively associated by the “closure under products” property
of negative association [6, p. 35]. Now, for distincti, j =
1, . . . , n we note from (3) that

ξn,ij = 1 − (1 − ξn,ij) (1 − ξn,ji)

= f(ηn,ij , ηn,ji) (8)

with non-decreasing functionf : R
2 → R : (x, y) →

1−(1−x)(1−y). Hence, by the disjoint monotone aggregation
property [6, p. 35] of negative association, the family of edge
indicator rvs {ξn,ij , 1 ≤ i < j ≤ n} is also negatively
associated. As a result, withA = {{i, j} : 1 ≤ i < j ≤ n},
it is plain that

P [i ∼ j, {i, j} ∈ A]n,K ≤
∏

{i,j}∈A

P [i ∼ j]n,K , A ⊆ A.

Comparing with random regular graphs: For eachi =
1, 2, . . . , n, let Dn,i denote the degree of nodei in the
undirectedgraphH(n;K). We have

Dn,i =

n
∑

j=1,j 6=i

1 [i ∈ Γn,j ∨ j ∈ Γn,i]

= K +

n
∑

j=1,j /∈Γn,i∪{i}

1 [i ∈ Γn,j ] (9)

where we note that

|{j = 1, . . . , n : j /∈ Γn,i ∪ {i}}| = n − K − 1.

Therefore, by independence, the sum appearing in (9) is a
binomial rv with n − K − 1 trials and success probability

K
n−1 , whence

Dn,i =st K + Bin

(

n − K − 1,
K

n − 1

)

. (10)

It is now plain that the nodes inH(n;K) have different
(random) degree, and thereforeH(n;K) is not a random
regular graph [2, p. 50] [10, Chap. 9, p. 233].

IV. CONNECTIVITY

Fix positive integersn = 2, 3, . . . andK < n. Throughout
we set

P (n;K) := P [H(n;K) is connected] .

The first technical result of this paper, given next, is estab-
lished in Section VI; the proof adapts classical arguments

used for proving the one law for connectivity in Erdős-Ŕenyi
graphs.

Theorem 4.1:With any positive integerK ≥ 2, the bound

P (n;K) ≥ 1 − (K + 1)
K2−1

2
· n−(K2−2) (11)

holds for alln = 2, 3, . . . sufficiently large, sayn ≥ n(K) for
some finite integern(K) > e(K + 1) which depends onK.

The bound (11) gives some indication as to how fast the
convergencelimn→∞ P (n;K) = 1 occurs whenK ≥ 2, with
the convergence becoming faster with largerK as would be
expected; see also (13) below. Although the right handside of
(11) may be negative for small values ofn (in which case
the bound is trivial), it is already active (i.e., positive) when
n = 2(K + 1) (and beyond pastn(K)).

For K = 2, the bound (11) takes the simpler form

P (n; 2) ≥ 1 − 27

2n2
, n ≥ n(2). (12)

For eachn = 1, 2, . . ., a simple coupling argument yields the
comparison

P (n; 2) ≤ P (n,K), 2 ≤ K < n. (13)

Making use of (12) we then conclude that

P (n;K) ≥ 1 − 27

2n2
, n ≥ max(K,n(2)) (14)

for any K ≥ 2.
A zero-one law for connectivity is presented next.
Theorem 4.2:With any positive integerK, it holds that

lim
n→∞

P (n;K) =







0 if K = 1

1 if K ≥ 2.
(15)

The one-law in Theorem 4.2 is an easy consequence of the
bound (11) (or (14)), while the zero-law of Theorem 4.2 is
proved separately in Section VII.

Theorem 4.2 easily yields the behavior of graph connectivity
as the parameterK is scaled withn. First some terminology:
We refer to any mappingK : N0 → N0 as ascalingprovided
it satisfies the natural conditions

Kn < n, n = 1, 2, . . . . (16)

Corollary 4.3: For any scalingK : N0 → N0, we have

lim
n→∞

P (n;Kn) = 1 (17)

providedKn ≥ 2 for all n sufficiently large.

Proof. For eachn = 1, 2, . . ., a simple coupling argument
yields

P (n;K) ≤ P (n,K ′), K < K ′ < n.

Under the scalingK : N0 → N0, it follows that
P (n; 2) ≤ P (n,Kn) for all n sufficiently large as soon
asKn ≥ 2. Letting n go to infinity in this last inequality, we
get (17) by invoking Theorem 4.2.
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BecauseH(n;K) cannot be equated with an Erdős-Renyi
graph, neither Theorem 4.1 nor Corollary 4.3 are consequences
of classical results for Erd̋os-Renyi graphs [2]. Indeed, con-
sider the following well-known zero-one law for Erdős-Ŕenyi
graphs: For any scalingp : N0 → [0, 1] satisfying

pn ∼ c · log n

n
(18)

for somec > 0, it holds that

lim
n→∞

P [G(n; pn) is connected] =







0 if 0 < c < 1

1 if 1 < c.

As seen from (6),2Kn

n−1 − K2
n

(n−1)2 stands for the probability
of link assignment inH(n;Kn) and therefore plays a role
analogous to that ofpn in Erdős-Ŕenyi graphs. Thus, atransfer
of the connectivity results fromG(n; pn) to H(n;Kn) suggests
scalingK such that

2Kn

n − 1
− K2

n

(n − 1)2
∼ c

log n

n
,

or equivalently
2Kn ∼ c log n (19)

in the practically relevant case whenKn = 0(n). This would
then lead formally to the zero-one law

lim
n→∞

P [H(n;Kn) is connected] =







0 if 0 < c < 1

1 if 1 < c.

to hold under (19). Clearly, this yields the misleading conclu-
sion thatKn has to behave likec log n for somec > 1

2 for
P [H(n;Kn)] to be asymptotically almost surely connected–
In fact, by Theorem 4.2 it is only needed to haveKn ≥ 2.

Also, observe from (10) that

E [Dn,i] = K + (n − K − 1)
K

n − 1

= K

(

2 − K

n − 1

)

. (20)

Thus, whenK = 2 the expected degree of a node inH(n; 2)
is less than4. However, as can be seen from Theorem 4.2,
the random graphH(n;K) is asymptotically almost surely
connected. This already points out to a significant difference
with many other random graph structures discussed in the
literature where the threshold for connectivity appears when
the expected node degree equals tolog n, e.g., Erd̋os-Ŕenyi
graphs [2], random key graphs [1], [4], [14], [18], random
intersection graphs [16] and random geometric graphs [12].

To further drive this point, note the following: In many
known classes of random graphs, the absence of isolated
nodes and graph connectivity are asymptotically equivalent
properties, e.g., Erd̋os-Ŕenyi graphs [2], random geometric
random graphs [12] and random key graphs [14], [17]. This
equivalence, when it holds, is used to advantage by first
establishing the zero-one law for the absence of isolated nodes,

a step which is usually much simpler to complete with the
help of the method of first and second moments [10, p. 55].
However, there are no isolated nodes inH(n;K) since each
node has degree at leastK. Thus, the class of random graphs
studied here provides an example where graph connectivity
and the absence of isolated nodes are not asymptotically
equivalent properties; in fact this is what makes the proof of
the zero-law more intricate.

V. K EY RING SIZES

Fix n = 2, 3, . . . and positive integerK with K < n. For
eachi = 1, 2, . . . , n, nodei is assigned a key ringΣn,i whose
size is given by

|Σn,i| = |Γn,i| +
n

∑

j=1, j 6=i

1 [i ∈ Γn,j ] . (21)

This is a simple consequence of the definition (1), and should
be contrasted with the definition (9) for the degreeDn,i of
nodei. In the latter case, if both eventsj ∈ Γn,i andi ∈ Γn,j

are realized, this producesonlya unit contribution to bothDn,i

and Dn,j , although two distinct pairwise keys are generated
for the nodesi andj (and both are included in the key rings).
We also define the maximal key ring size as

Mn := maxi=1,...,n|Σn,i|.

It is easy to see that

|Σn,i| = K + Bn,i (22)

whereBn,i is the rv determined through

Bn,i :=

n
∑

j=1, j 6=i

1 [i ∈ Γn,j ] .

Under the enforced independence assumptions, the rvBn,i is
a binomial rvBin(n − 1, K

n−1 ), with

E [Bn,i] = (n − 1) · K

n − 1
= K

and

Var[Bn,i] = (n − 1) · K

n − 1
· n − 1 − K

n − 1
.

As a result,E [|Σn,i|] = 2K and

Var[|Σn,i|] = K

(

1 − K

n − 1

)

.

It is now plain that

E

[

∣

∣

∣

∣

|Σn,i|
E [|Σn,i|]

− 1

∣

∣

∣

∣

2
]

=
Var[|Σn,i|]
E [|Σn,i|]2

=
1

4

(

1

K
− 1

n − 1

)

(23)

so that

E

[

∣

∣

∣

∣

|Σn,i|
2K

− 1

∣

∣

∣

∣

2
]

=
1

4

(

1

K
− 1

n − 1

)

. (24)
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In general the key ring sizes satisfy the bounds

K ≤ |Σn,i| ≤ K + (n − 1), i = 1, . . . , n. (25)

We give minimal conditions on a scalingK : N0 → N0 to
ensure that the key ring of a node has size roughly of the
order (of its mean)2Kn whenn is large.

Lemma 5.1:For any scalingK : N0 → N0, we have

|Σn,1(Kn)|
2Kn

P→ n 1

as soon aslimn→∞ Kn = ∞.

Proof. Under the enforced assumptions, we have

lim
n→∞

E

[

∣

∣

∣

∣

|Σn,1(Kn)|
2Kn

− 1

∣

∣

∣

∣

2
]

= 0

by the earlier calculations (24), and the result follows.

Thus,|Σn,1(Kn)| fluctuates fromKn to Kn +(n−1) with
a propensity to hover about2Kn when n is large under the
conditions of Lemma 5.1. Next we provide a concentration
result that quantifies how the maximal key ring size deviates
from 2Kn.

Theorem 5.2:Consider a scalingK : N0 → N0 of the form

Kn ∼ γ log n, n = 2, 3, . . . (26)

with γ > 0. If γ > γ⋆ := (2 log 2 − 1)
−1 ≃ 2.6, then there

existsc(γ) in the interval(0, γ) such that

lim
n→∞

P [|Mn(Kn) − 2Kn| ≥ c log n] = 0 (27)

wheneverc(γ) < c < γ.
In the course of proving Theorem 5.2 in Section VIII, we

also show that

P [|Mn(Kn) − 2Kn| ≥ c log n] ≤ 2n−h(γ;c) (28)

for all n = 1, 2, . . . wheneverc(γ) < c < γ with h(γ; c) > 0
specified at (57).

We present experimental results that validate Lemma 5.1
and Theorem 5.2: For fixed values ofn and K we have
constructed key rings according to the mechanism presented
in Section II. For each pair of parametersn and K, the ex-
periments have been repeated1, 000 times yielding1, 000×n
key rings for each parameter pair. The results are depicted in
Figures 1-4 which show the key ring sizes according to their
frequency of occurrence. The histograms in blue consider all
of the produced1, 000× n key rings, while the histograms in
white consider only the1, 000 maximal key ring sizes, i.e.,
only the largest key ring amongn nodes in an experiment.

It is immediate from Figures 1-4 that the key ring sizes
tend to concentrate around2K, validating the claim of Lemma
5.1. As would be expected, this concentration becomes more
evident asn gets large. It is also clear that, in almost all cases
the maximum size of a key ring (out ofn nodes) is less than
3K validating the claim of Theorem 5.2.
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All key rings
Largest key ring of n nodes

Fig. 1. Key ring sizes observed in1, 000 experiments forn = 200 and
K = 4 – Only 2% of the key rings are larger than3K and the largest key
ring has size20.

VI. A PROOF OFTHEOREM 4.1

Fix n = 2, 3, . . . and consider a positive integerK. The
conditions

2 ≤ K and e(K + 1) < n (29)

are assumed enforced throughout; the second condition is
made to avoid degenerate situations which have no bearing
on the final result. There is no loss of generality in doing so
as we eventually letn go to infinity. In particular we

For any non-empty subsetS of nodes, i.e.,S ⊆ {1, . . . , n},
we define the graphH(n;K)(S) (with vertex setS) as the
subgraph ofH(n;K) restricted to the nodes inS. We say that
S is isolated in H(n;K) if there are no edges (inH(n;K))
between the nodes inS and the nodes in the complementSc =
{1, . . . , n} − S. This is characterized by the eventBn(K;S)
given by

Bn(K;S) := ∩i∈S ∩j∈Sc [i 6∈ Γn,j , j /∈ Γn,i] .

Since each node inH(n;K) is connected to at leastK other
nodes, a setS can be isolated inH(n;K) only if |S| ≥ K+1.

Also, we let Cn(K;S) denote the event that the induced
subgraphH(n;K)(S) is itself connected. Finally, we set

An(K;S) := Cn(K;S) ∩ Bn(K;S).

The discussion starts with the following basic observation:
If H(n;K) is not connected, then there must exist a subsetS
of nodes with|S| ≥ K +1 such thatH(n;K)(S) is connected
while S is isolated inH(n;K). Thus, if Cn(K) denotes the
event thatH(n;K) is connected, we have the inclusion

Cn(K)c ⊆ ∪S∈Pn: |S|≥K+1 An(K;S) (30)



7

25 30 35 40 45 50 55 60 65 70
%0

%10

%20

%30

%40

Key ring size

F
re

q
u
e
n
c
y
 o

f 
o
c
c
u
rr

e
n
c
e

n=500, K=21

 

 
All key rings
Largest key ring of n nodes

Fig. 2. Key ring sizes observed in1, 000 experiments forn = 500 and
K = 21 – Out of the500, 000 key rings produced only9 happened to be
larger than3K while the largest size observed is67.

wherePn stands for the collection of all non-empty subsets
of {1, . . . , n}. A moment of reflection should convince the
reader that this union need only be taken over all subsetsS of
{1, . . . , n} with K +1 ≤ |S| ≤ ⌊n

2 ⌋. A standard union bound
argument immediately gives

P [Cn(K)c] ≤
∑

S∈Pn:K+1≤|S|≤⌊n
2 ⌋

P [An(K;S)]

=

⌊n
2 ⌋

∑

r=K+1





∑

S∈Pn,r

P [An(K;S)]



 (31)

wherePn,r denotes the collection of all subsets of{1, . . . , n}
with exactlyr elements.

For each r = 1, . . . , n, we simplify the notation
by writing An,r(K) := An(K; {1, . . . , r}), Bn,r(K) :=
Bn(K; {1, . . . , r}) and Cn,r(K) := Cn(K; {1, . . . , r}). For
r = n, the notationCn,n(K) coincides withCn(K) as defined
earlier. Under the enforced assumptions, it is a simple matter
to check by exchangeability that

P [An(K;S)] = P [An,r(K)] , S ∈ Pn,r

and the expression
∑

S∈Pn,r

P [An(K;S)] =

(

n

r

)

P [An,r(K)] (32)

follows since|Pn,r| =
(

n
r

)

. Substituting into (31) we obtain
the bounds

P [Cn(K)c] ≤
⌊n

2 ⌋
∑

r=K+1

(

n

r

)

P [Bn,r(K)] (33)
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Fig. 3. Key ring sizes observed in1, 000 experiments forn = 1, 000 and
K = 24 – 1, 000, 000 key rings are produced. Only5 of them happened to
be larger than3K and the largest observed key ring size is75.

as we note the inclusionAn,r(K) ⊆ Bn,r(K).
For eachr = K + 1, . . . , n, it is easy to check that

P [Bn,r(K)] =

(

(

r−1
K

)

(

n−1
K

)

)r

·
(

(

n−r−1
K

)

(

n−1
K

)

)n−r

. (34)

Reporting (34) into (33) we get

P [Cn(K)c] ≤
⌊n

2 ⌋
∑

r=K+1

(

n

r

)

(

(

r−1
K

)

(

n−1
K

)

)r (

(

n−r−1
K

)

(

n−1
K

)

)n−r

. (35)

For 0 ≤ K ≤ x ≤ y, we have
(

x
K

)

(

y
K

) =

K−1
∏

ℓ=0

(

x − ℓ

y − ℓ

)

≤
(

x

y

)K

since x−ℓ
y−ℓ decreases asℓ increases fromℓ = 0 to ℓ = K − 1.

Using this fact into (35) together with the standard bound
(

n

r

)

≤
(ne

r

)r

, r = 1, . . . , n

we conclude that

P [Cn(K)c]

≤
⌊n

2 ⌋
∑

r=K+1

(ne

r

)r
(

r − 1

n − 1

)rK (

1 − r

n − 1

)K(n−r)

≤
⌊n

2 ⌋
∑

r=K+1

(ne

r

)r ( r

n

)rK (

1 − r

n

)K(n−r)

≤
⌊n

2 ⌋
∑

r=K+1

(ne

r

)r ( r

n

)rK

e−rK
(n−r)

n
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Fig. 4. Key ring sizes observed in1, 000 experiments forn = 2, 000 and
K = 26 – Out of the 2000000 key rings produced only2 happened to be
larger than3K the largest of them having80 keys.

=

⌊n
2 ⌋

∑

r=K+1

(

( r

n

)K−1

e1−K
(n−r)

n

)r

. (36)

On the ranger = K + 1, . . . , ⌊n
2 ⌋ with K ≥ 2, we have

K
n − r

n
≥ K

n − ⌊n
2 ⌋

n
≥ K

2
≥ 1,

whence
e1−K

(n−r)
n ≤ 1.

Reporting this fact into (36) we find

P [Cn(K)c] ≤
⌊n

2 ⌋
∑

r=K+1

( r

n

)r(K−1)

. (37)

For eachn = 1, 2, . . ., write
(x

n

)x(K−1)

= e(K−1)fn(x), x ≥ 1 (38)

with
fn(x) = x (log x − log n) .

It is plain that

f ′
n(x) = 1 + log x − log n.

Therefore,fn(r) is monotone decreasing on the ranger =
K + 1, . . . , ⌊n

e ⌋ and monotone increasing on the ranger =
⌊n

e ⌋ + 1, . . . , ⌊n
2 ⌋, whence

fn(r) ≤ max
(

fn(K + 1), fn

(⌊n

2

⌋))

for r = K +1, . . . ,
⌊

n
2

⌋

. It is also a simple matter to check by
direct inspection thatfn(K + 1) is larger thanfn

(⌊

n
2

⌋)

for

n large enough, sayn ≥ n(K) for some finite integern(K)
which depends onK (and which can be taken to satisfy (29)).
Using (38) together with the fact that

fn(K + 1) = (K + 1) log

(

K + 1

n

)

,

we obtain the equality

max

(

( r

n

)r(K−1)

: r = K + 1, . . . ,
⌊n

2

⌋

)

=

(

K + 1

n

)K2−1

(39)

for all n ≥ n(K). Reporting (39) into (37), we conclude that

P [Cn(K)c] ≤
⌊n

2 ⌋
∑

r=K+1

(

K + 1

n

)K2−1

≤ n

2
·
(

K + 1

n

)K2−1

for all n ≥ n(K), and (11) is established.

VII. A PROOF OF THE ZERO-LAW IN THEOREM 4.2

First some terminology: WhenK = 1, the random sets
Γn,1, . . . ,Γn,n are now singletons, and can be interpreted
as {1, . . . , n}-valued rvs (as we do from now on) such that
Γn,i 6= i for eachi = 1, . . . , n. Thus,Γn,i is the node selected
at random which becomes associated (paired) with nodei.

With this in mind, a formation is any sequenceγ =
(γ1, . . . , γn) such that for eachi = 1, . . . , n, the component
γi is an element of{1, . . . , n} such thatγi 6= i. In other
words,γ is one of the(n − 1)n possible realizations of the
rvs (Γn,1, . . . ,Γn,n).

With any formationγ we associate adirectedgraph on the
vertex set{1, . . . , n} in an obvious manner: There is a directed
edge from nodei to nodej if γi = j. This directed graph is
denoted byHγ(n). As there are(n−1)n possible formations,
there are(n − 1)n distinct directed graphs so defined. Under
the pairwise distribution scheme considered here, each of these
graphs is equally likely, so that we have

P (n; 1) =

∑

γ 1
[

Hγ(n) is connected
]

(n − 1)n
(40)

where the summation
∑

γ is taken over all possible forma-
tions. Here, we have used the conventional notion of connec-
tivity for directed graphs: A directed graph is connected if and
only if the underlyingundirectedgraph is connected – This
is to be distinguished from the notion ofstrong connectivity
defined for directed graphs. The desired zero-law will be
established if we can show that

lim
n→∞

∑

γ 1
[

Hγ(n) is connected
]

(n − 1)n
= 0. (41)

From now on, letH⋆
γ(n) denote the underlying undirected

graph ofHγ(n). We note thatH⋆
γ(n) is a realization of the

random graphH(n; 1) when (Γn,1, . . . ,Γn,n) = γ. For each
formationγ, we can easily validate the following observations:
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1) By definition,H⋆

γ(n) is connected if and only ifHγ(n)
is connected.

2) The undirected graphH⋆
γ(n) can haveat mostn edges

sinceHγ(n) hasexactlyn directed edges (as each of
the n nodes has out-degree1).

3) If Hγ(n) is connected (and henceH⋆
γ(n) is connected),

then H⋆
γ(n) should haveat leastn − 1 edges. In this

case

I. If H⋆
γ(n) hasn−1, edges thenH⋆

γ(n) is necessarily
a tree and Hγ(n) has exactly one bi-directional
edge.

II. If H⋆
γ(n) hasn edges, thenHγ(n) has exactly one

cycle.

Case I –H(n; 1) is connected and hasn−1 edges:Thus,
H(n; 1) is a tree. WithTn denoting the collection of labelled
trees on the set of vertices{1, . . . , n}, we have|Tn| = nn−2

by Cayley’s formula. Noting also that a given tree is the
underlying undirected graph forn − 1 different formations
(corresponding ton − 1 possible places for the single bi-
directional edge), we get

P [H(n; 1) is connected and hasn − 1 edges]

=
1

(n − 1)n
·
∑

γ
1

[

Hγ(n) is connected and
has one bi-directional edge

]

=
1

(n − 1)n
·
∑

γ

∑

T∈Tn

1

[

H⋆
γ(n) = T

]

=
1

(n − 1)n
· (n − 1) · nn−2

=
1

n
·
(

n

n − 1

)n−1

. (42)

It is now clear that

lim
n→∞

P

[

H(n; 1) is connected
and hasn − 1 edges

]

= 0. (43)

Case II – H(n; 1) is connected and hasn edges:This
corresponds to all formationsγ such thatH⋆

γ(n) is connected
and has exactly one cycle. It is not difficult to see that a
connected graph with only one cycle can be the underlying
undirected graph for two different formations (corresponding
to the two possible orientations of the cycle). For instance,
consider a connected graph onn nodes with exactly one
cycle. This graph necessarily hasn edges and therefore the
original directed graphHγ(n) cannot have a bi-directional
edge. Without loss of generality, assume that the cycle consists
of nodes1, 2, 3, 4 with edges1 ∼ 2, 2 ∼ 3, 3 ∼ 4, 4 ∼ 1. Then
the two possible formations are{2, 3, 4, 1, γ5, γ6, . . . γn} and
{4, 1, 2, 3, γ5, γ6, . . . γn}. Similar arguments can be made for
all possible cycles. Since there can be no other cycles or bi-
directional edges in the rest of the graph, these two formations
will be the only ones that give rise to that particular undirected
structure.

Now let T +
n denote the set of undirected graphs onn nodes

which are connected and have exactlyn edges. We find

P [H(n; 1) is connected and hasn edges]

=
1

(n − 1)n
·
∑

γ
1

[

Hγ(n) is connected and
has exactly one cycle

]

=
1

(n − 1)n
·
∑

γ

∑

G∈T +
n

1

[

H⋆
γ(n) = G

]

=
1

(n − 1)n
· 2 · |T +

n |. (44)

However, it is known [8, p. 133-134] that

|T +
n | ∼ 1

4

√
2πnn− 1

2 ,

and reporting this fact into (44) gives

P [H(n; 1) is connected and hasn edges]

∼
√

2π

2

(

n

n − 1

)n

n− 1
2

∼
√

2πe

2
n− 1

2 . (45)

It is now immediate that

lim
n→∞

P [H(n; 1) is connected and hasn edges] = 0.

Together with (43) and Facts 2-3, we now conclude that (41)
holds.

VIII. A PROOF OFTHEOREM 5.2

Fix the positive integersn = 2, 3, . . . andK with K < n.
Using (22) we readily get

(

max
i=1,...,n

|Σn,i|
)

− 2K = max
i=1,...,n

(Bn,i − K) .

Therefore, with any givent > 0, we find

P

[∣

∣

∣

∣

(

max
i=1,...,n

|Σn,i|
)

− 2K

∣

∣

∣

∣

> t

]

= P

[∣

∣

∣

∣

max
i=1,...,n

(Bn,i − K)

∣

∣

∣

∣

> t

]

= P

[

max
i=1,...,n

Bn,i > K + t

]

+ P

[

max
i=1,...,n

Bn,i < K − t

]

. (46)

We take each term in turn. First a simple union argument
shows that

P [maxi=1,...,nBn,i > K + t]

= P [∪n
i=1[Bn,i > K + t]]

≤
n

∑

i=1

P [Bn,i > K + t]

= nP [Bn,1 > K + t] (47)
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since the rvsBn,1, . . . , Bn,n are identically distributed (but
not independent). Next we note that

P [maxi=1,...,nBn,i < K − t]

= P [Bn,i < K − t, i = 1, . . . n]

≤ mini=1,...,nP [Bn,i < K − t]

= P [Bn,1 < Kn − t] . (48)

To proceed we recall standard bounds for the tails of
binomial rvs [12, lemma 1.1, p. 16]: With

H(t) := 1 − t + t log t,

we have the concentration inequalities

P [Bn.1 > K + t] ≤ e−K·H( K+t

K
)

and
P [Bn,1 < K − t] ≤ e−K·H( K−t

K
)

where the additional condition0 < t < K is required for
the second inequality to hold. Simple calculations on the
appropriate ranges show that

−K · H
(

K ± t

K

)

= ±t − (K ± t) · log

(

1 ± t

K

)

.

Thus, by the first concentration inequality, we conclude
from (47) that

P [maxi=1,...,nBn,i > K + t] ≤ eAn(K;t) (49)

with

An(K; t) := log n + t − (K + t) · log

(

1 +
t

K

)

.

The second concentration inequality and (48) together yield

P [maxi=1,...,nBn,i < K − t] ≤ eBn(K;t) (50)

with

Bn(K; t) := −t − (K − t) · log

(

1 − t

K

)

under the additional constraint0 < t < K.
Now consider a scalingK : N0 → N0 of the form (26) for

someγ > 0, and select the sequencet : N0 → R+ given by

tn = clogn, n = 1, 2, . . .

with c in the interval(0, γ) (so that0 < tn < Kn for all n
sufficiently large). Under appropriate

Under appropriate conditions onγ andc, we shall show that

lim
n→∞

An(Kn; tn) = −∞ (51)

and
lim

n→∞
Bn(Kn; tn) = −∞. (52)

The convergence statements

lim
n→∞

P [maxi=1,...,nBn,i(Kn) > Kn + tn] = 0

and

lim
n→∞

P [maxi=1,...,nBn,i(Kn) < Kn − tn] = 0

then follow from (49) and (50), respectively, and the desired
conclusion (27) flows from (46).

With the selections made above, we getAn(Kn; tn) ∼
a(γ; c) log n andBn(Kn; tn) ∼ b(γ; c) log n with coefficients
a(γ; c) andb(γ; c) given by

a(γ; c) := 1 + c − (γ + c) · log

(

1 +
c

γ

)

, c > 0

and

b(γ; c) := −c − (γ − c) · log

(

1 − c

γ

)

, 0 < c < γ.

Thus, in order to ensure (51) and (52), we need to findc
in the interval(0, γ) such thata(γ; c) < 0 and b(γ; c) < 0,
respectively. To that end, we first note that

∂a

∂c
(γ; c) = − log

(

1 +
c

γ

)

< 0, c > 0

and
∂b

∂c
(γ; c) = log

(

1 − c

γ

)

< 0, 0 < c < γ.

Therefore, both mappingsc → a(γ; c) and c → b(γ; c)
are strictly decreasing on the intervals(0,∞) and (0, γ),
respectively. Sincelimc↓0 b(γ; c) = 0, it is plain thatb(γ; c) <
0 on the entire interval(0, γ). On the other hand, it is easy to
check thatlimc↓0 a(γ; c) = 1 and

lim
c↑γ

a(γ; c) = 1 − γ (2 log 2 − 1) = 1 − γ

γ⋆
.

Hence, if we selectγ > γ⋆, thena(γ; c) < 0 for all c > c(γ)
wherec(γ) is the unique solution to the equation

a(γ; c) = 0, c > 0. (53)

Uniqueness is a consequence of the strict monotonicity men-
tioned earlier.

The proof will be completed by showing that the constraint

c(γ) < γ, γ > γ⋆ (54)

indeed holds. For eachγ > 0, define the quantityx(γ) := c(γ)
γ .

In view of (53) it is the unique solution to the equation

1

γ
+ x − (1 + x) log (1 + x) = 0, x > 0. (55)

This equation is equivalent to

1

γ
= ϕ(x), x > 0 (56)

where the mappingϕ : R+ → R+ is given by

ϕ(x) = (1 + x) log (1 + x) − x, x ≥ 0.

This mappingϕ : R+ → R+ is strictly monotone increasing
with limx↓0 ϕ(x) = 0 and limx↑∞ ϕ(x) = ∞, so thatϕ is
a bijection from R+ onto itself. It then follows from (56)
that x(γ) is strictly decreasing asγ increases. Sinceϕ(1) =
(γ⋆)

−1, we getx(γ⋆) = 1 by uniqueness, whencex(γ) <
x(γ⋆) = 1 for γ > γ⋆, a statement equivalent to (54).
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Careful inspection of the proof shows that (28) holds with

h(γ; c) := −max (a(γ; c), b(γ; c)) (57)

on the rangec(γ) < c < γ, and it is clear from the discussion
above thath(γ; c) > 0 whenγ > γ⋆.
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