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While water quality is often cited as the main factor that controls the distribution of 

submersed aquatic macrophytes (SAM) in the Chesapeake Bay, additional factors 

associated with physical and/or biological disturbances also affect the distribution.  At 

local scales, such as in Saltpeter Creek, a tributary to the Gunpowder River, the thermal 

effluent from C.P. Crane Power Plant may be an important environmental gradient.  I 

mapped the temperature signature of the effluent in Saltpeter Creek and intensively 

sampled the plant community structure to investigate the ecological similarity of SAM 

communities within and across different thermal regimes.  I also conducted growth 

chamber experiments to study how different species and populations sampled from 

different temperature regimes respond to a controlled temperature gradient.  Analyses 

show that although significant differences in water temperature exist across the study site, 

differences in temperature do not appear to significantly drive the plant community 

composition of the system. 
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Chapter 1: Background Information 

INTRODUCTION 
 

Power plants that generate electricity through the use of coal or nuclear reactions 

change the temperature regime of aquatic systems by discharging thermal effluent into 

aquatic systems (Carter, 1968; Hamilton, et al., 1970; Parker, 1979; Coleman, 1996; Ma, 

et al. 1998; Martinez-Arroyo, 2000; Choi, 2002; Contador, 2005).  Temperature effects of 

power plants on aquatic ecosystems may be viewed positively or negatively depending on 

who studies the system; a conservationist refers to thermal pollution; utility 

representatives refer to thermal enrichment; and the biologist refers to thermal addition 

(Sorge, 1969).  These differing viewpoints reflect that thermal discharge on ecosystems 

can be detrimental or beneficial, or may still be uncertain (Gibbons and Sharitz, 1981).  

One such uncertainty is how aquatic organisms are affected by thermal effluent when the 

period of maximum use of electricity and cooling water overlaps with the warmest period 

of the year when surface waters are at or near their maximum temperatures and 

organisms in these waters may be near their upper temperature tolerance (Cairns, 1972).   

My thesis research examined the effects of thermal effluent on the structure of submersed 

aquatic macrophyte communities in a tidal fresh/oligohaline tributary of northern 

Chesapeake Bay. 

With over 50 percent of the world’s human population living in the coastal zone, 

the natural resources of coastal zones are considered to be under extreme pressure 

(Douven, 1999; Boesch, 2002; Charlier and Bologa 2003).  The Chesapeake Bay 

watershed is now populated by sixteen million people (Chesapeake Bay Program, 2006). 

One million people are projected to settle in Maryland alone within the next 20 years 
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(Mark Goldstein, Maryland Department of Planning, Planning Data Services, pers. 

comm.). All of these people use electricity in their everyday life.  The production of 

electricity usually requires a water source for use in power plant cooling systems. Owing 

to the proximity to both population centers and water, the tributaries of the Chesapeake 

Bay provide convenient locations for power plants.  The production of electricity either 

from nuclear or fossil-fuel plants may have many different environmental impacts, but 

one constant by-product is excess heat of the water discharge (Gibbons and Sharitz, 

1974).  With thermally altered aquatic systems becoming more commonplace the 

consequences of elevated temperature on aquatic ecosystems are becoming better 

defined, however uncertainties still exist (Gibbons and Sharitz, 1981; Pilon and 

Santamaria, 2002).      

Thirty-four power plants have been established in the Maryland portion of the 

Chesapeake Bay watershed alone.  Power plants that use the Bay’s water in their cooling 

system discharge this water back into the estuary (Nauman and Cory, 1969; Gatz et al., 

1973; Mountford et al, 1977; Sanders, 1982; Jordon and Sutton, 1984; Schreiner et al., 

2002). However, estuarine systems are highly productive and home to many species of 

submersed aquatic vegetation (Jordan and Sutton, 1984; Stevenson, 1988) that are 

sensitive to changes in land-use and inputs of sediments, nutrients, toxins, and heat 

(Cunningham et al., 1984; Moore et al., 1996; Santamaria and van Vierssen, 1997; 

Boesch, 2002).  Although efforts are underway to protect coastal ecosystems, global 

environmental changes are taking place (Tilman and Lehman, 2001) and dramatic 

changes in biodiversity are expected (Sala et al., 2000).  Caused by changes in land use, 

biotic exchange and global climate, the most dramatic changes in biodiversity are 
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expected to be witnessed in freshwater aquatic ecosystems, with the rate of decline for 

freshwater ecosystems being far greater than for even the most affected terrestrial 

ecosystem (Sala et al., 2000).  Furthermore, Worm et al. (2006) have estimated up to a 

90% reduction in marine fisheries before the end of this century.  

Submersed aquatic macrophyte beds (SAM) are among the most biologically 

diverse, productive, and valuable habitats in coastal and estuarine ecosystems (Livingston 

et al., 1998; Orth et al., 2003).  SAM can be considered a keystone community in tidal 

and non-tidal systems (Parrish and Litle, 2001) in that SAM provides food web support 

for a variety of heterotrophic organisms; affects ecosystem processes, such as nutrient 

cycling and productivity; and can enhance its own habitat through, for example, 

attenuation of water currents and wave energy (Koch, 2001). Thus, the loss of highly 

productive and diverse freshwater SAM communities, or certain species within those 

communities, can lead to a loss of ecosystem services that are valuable to humans 

(Chapin et al., 1998; Tilman, 1999; Giller et al., 2004).  If species or entire communities 

are lost, the potential for aesthetic, recreational, and commercial losses exists (Wilson 

and Carpenter, 1999).  In addition to economic losses, ecosystem reliability, productivity, 

and stability could be depressed (Kemp et al., 1983; Naeem et al., 2000; Petchey and 

Gaston, 2002; Naeem, 2002). 

My thesis study focused on how the thermal effluent from a coal-fired power 

plant affects the species composition and diversity of the submersed aquatic macrophyte 

community in the Dundee-Saltpeter Creek system, a tidal fresh/oligohaline tributary of 

Chesapeake Bay.  Results of the study may be used to educate power plant developers 

and managers, natural resources managers, and citizens about the effects of thermal 
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effluent on important estuarine plant communities. The study may also be used to explore 

the potential effects of global warming on species abundance patterns. 

 

THERMAL EFFLUENTS AND GLOBAL CLIMATE CHANGE 

An estimated one-sixth of all the freshwater in the United States was used for 

power plant cooling systems by the year 2000 (de Sylva, 1969; Hutson et al., 2000).  

Although many studies have been conducted on thermal effluent effects on lakes and 

reservoirs (Lewis, 1974; Grace and Tilly, 1976; Haag and Gorham, 1977; Nicholas et al., 

1980; Schneider, 1981; Coleman 1996; Ma et al. 1998; Martinez-Arroyo 2000), marine 

and estuarine water resources are now used without proportional research to document 

the effects of the thermal effluent on these ecosystems (Naylor, 1965; Schneider, 1981; 

Martinez-Arroyo, 2000).  Although the effects of thermal effluents may be more 

pronounced in the cool climates (Taylor and Helwig, 1995), the effects of thermal 

effluent may also be observed as the thermal tolerance of the plants is reached in hotter 

climates.   

In estuarine areas, changes in temperature can cause changes in salinity, dissolved 

oxygen, pH, CO2, the uptake and effect of toxins on aquatic life (de Sylva, 1969), and the 

magnitude and extent of river ice (Dingman et al., 1968).  Temperature fluctuations over 

the short- or long-term may also have a pronounced effect on the estuarine fauna in the 

discharge area.  The most extreme effect of thermal effluent on estuarine flora and fauna 

is local extinction through heat death caused by protein denaturing and aggregation 

(Levitt, 1969). More subtle effects can include changes in plant metabolism, growth, 

reproduction and breeding; exclusion from heat-stressed areas; increased levels of 
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parasites/toxins; and changes in length/weight relationships of plants (Naylor, 1965; 

Levitt, 1969; Texas Instruments, 1980; Taylor and Helwig, 1995).  The stress of thermal 

effluent on aquatic systems is not likely to diminish in the face of an expanding 

population in the coastal zone and with projected changes in global climate.  

Global climate change studies increasingly suggest that one of the main 

environmental changes that has taken place on a global scale is the rise in oceanic 

temperature (Levitus et al., 2000). In the Maryland region, the expected air temperature 

increase is 1.7-2.4 oC over the next century with seasonal variations (EPA, 1998).  Local 

water temperatures are also predicted to rise (Albritton and Filho, 2001) and, owing to the 

development of coastal areas, more water will be used in power plant cooling systems, 

creating thermal discharge.  The compounding elevation of temperatures could push 

waters past the thermal tolerance of several SAM species, especially those species 

adapted to cooler water temperatures. 

Global warming is predicted to result in more hot days and heat waves over land 

areas and cause the frequency of extreme precipitation events to increase (Albritton and 

Filho, 2001).  These long-term changes are likely to result in changes in water 

temperature with potential consequences on aquatic plant community composition.  An 

increased frequency of hot days and heat waves can heighten the human energy demand 

and, thus, intensify environmental stressors that aquatic systems, whose water is used in 

power plant cooling systems, are faced with.  Heating and cooling systems may need to 

be run for longer periods of time, requiring power suppliers to maximize power plant 

production and/or build new plants.  Maximization of power plant production and 

construction of new power plants can increase the intensity and number of heated 
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effluents, increasing the ecological effects of power plants (Barnett, 1972; Parker et al., 

1973; Sharitz et al., 1974).  Thermal effluents can result in a wide variety of changes in 

aquatic plant communities, including changes in species composition, standing crop, net 

production (Grace and Tilly, 1976; Haag and Gorham, 1977) and a loss of diversity 

(Brown, 1971).  Although the biotic effects of thermal effluents may be minimal in areas 

with already high ambient temperatures or where other factors such as nutrient 

availability is strongly limiting (Haag and Gorham, 1977), thermal effluents may indeed 

be a dominant environmental driver in small creek systems 

 

RESPONSE OF SUBMERSED AQUATIC MACROPHYTES TO ENVIRONMENTAL 

CHANGE 

Submersed aquatic vegetation is sensitive to changes in water quality conditions; 

light and nutrient concentrations are considered primary factors, but other stressors 

include water temperature, salinity, tidal range and wave activity (Short and Short, 1984; 

Batiuk et al., 2000; Koch, 2001).  Changes in the amplitude or magnitude of any of these 

stressors could trigger declines in SAM abundance if species cannot acclimate to the 

changes.  Unlike SAM beds in higher salinity areas, freshwater SAM beds are usually 

comprised of more than one species (Stevenson, 1988; Orth, 2003).  If hypotheses 

explaining the responses of biodiversity to environmental stressors are applied to aquatic 

systems (Yachi and Loreau, 1999), multi-species SAM beds may have a higher resistance 

to the stressors (Duarte, 2000) than monotypic SAM beds.  Temporary and acute changes 

in local environmental conditions may favor one species over another for a short time. 

However, long-term environmental changes, such as the operation of a power plant or 
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global warming, may lead to permanent changes in species richness, abundance and 

distribution. 

Many of the resident and migratory animal species that frequent freshwater 

habitats in Chesapeake Bay rely on SAM beds for food, protection, and provision of 

oxygen.  The Upper Bay and its diverse SAM beds play an important role in faunal life 

cycles, such as during spawning or juvenile development (Posey et al., 1993; Thorpe et 

al., 1997).  The most notable example of this is the Canvasback duck (Aythya 

valisineria), which declined after Tropical Storm Agnes in June 1972, coinciding with the 

decline of tuber forming Wild celery (Vallisneria americana Michx.) and Sago pondweed 

(Stuckenia pectinata (L) Boemer).  Not only did the number of Canvasback ducks 

decline, they were forced to change their main food source to anthropogenic corn (Kemp 

et al., 1984; Haramis et al., 2001).  Additional studies show that SAM beds provide 

protection and prey for both finfish and shellfish (Kemp et al., 1984; Rozas and Odum, 

1988; Stevenson, 1988; Diaz et al., 2001; Tetra Tech, 2000; Heck et al., 2001; Sime, 

2005). Thus, understanding environmental factors that influence the abundance, diversity, 

and distribution of submersed aquatic macrophyte beds is important for enhancing the 

protection of this important estuarine habitat. My thesis research focuses specifically on 

the effect of temperature on submersed aquatic macrophyte communities, taking into 

account other covarying environmental factors (dissolved inorganic phosphorus, light 

attenuation, total suspended solids, chlorophyll-a, etc.) that might also affect SAM 

communities. 

TEMPERATURE AND SUBMERSED AQUATIC MACROPHYTES 
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Temperature is known to be a major factor determining the distribution and 

productivity of plants in both terrestrial and aquatic ecosystems (Setchell, 1924; Haag 

and Gorham, 1977; Seemann et al., 1984).  In terrestrial systems, for example, a decline 

in CO2 uptake by Camissonia brevipes was observed under high temperatures in Death 

Valley, CA (Seemann et al., 1984).  Setchell (1924) noted differences in various plant 

species’ anthesis on Mt. Tamalpais near San Francisco, CA, as a response to changes in 

temperature.  In aquatic systems, Haag and Gorham (1977) observed increased 

productivity and earlier flowering of Elodea canadensis Michx. in thermal effluents. 

While most evidence and research shows that light has the greatest influence on the 

distribution of aquatic macrophytes (Goldsborough and Kemp, 1988; Koch, 2001), 

evidence also exists that temperature influences the growth and distribution of SAM 

(Rooney and Kalff, 2000).  Temperature effects on SAM distribution has been researched 

since the early 1920’s (Setchell, 1922).  Temperature affects plant morphology (Setchell, 

1924) and controls reproductive events such as flowering and the germination of seeds 

(Santamaria and van Vierssen, 1997).  While inland aquatic systems may be well 

buffered against extreme temperature fluctuations, terrestrial systems show great 

variations in temperature (Santamaria and van Vierssen, 1997).  True seagrass systems 

have a narrow optimal temperature range (Santamaria and van Vierssen, 1997).  For non-

marine aquatic systems the temperature response is expected to be intermediate between 

terrestrial and marine systems (Santamaria and van Vierssen, 1997).  Conducting studies 

on power plant thermal discharge areas and comparing observed patterns and processes to 

areas that are not influenced by thermal discharge allows the separation of temperature 

effects from other environmental factors that influence the distribution of SAM. 
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Differences in other environmental factors, such as fetch and turbidity, among thermally 

impacted and un-impacted sites need to be accounted for to ensure that other factors are 

not confounding or masking a temperature effect (Rooney and Kalff, 2000). My thesis 

research uses this observational approach and combines it with an experiment 

investigating survival and growth responses of common species observed in my study 

area. 

Temperatures can vary along diel cycles, as well as seasonal cycles, but broad-

scale changes in temperature have also been observed in the mid-Atlantic region (EPA, 

1998; Levitus et al., 2000).  On a global scale, warming will affect SAM both directly 

and indirectly (Neckles et al., 1997). Direct effects can include changes in the respiration 

rate of plants, nutrient uptake and other enzymatic processes which are temperature 

dependent (Short and Neckles, 1999).  At high temperatures, photosynthesis cannot keep 

up with respiration and the plant dies with consequences on population dynamics and 

species extinction.  Plant communities and physiological functions may also be indirectly 

altered by climate change.  Changes in severe weather events or carbon dioxide levels 

can cause changes in community structure or individual plant responses (Short and 

Neckles, 1999).  The sensitivity of submersed macrophyte communities to higher 

temperatures and an earlier onset of the growing season suggest that littoral plant 

communities, and associated epiphyte, zooplankton, zoobenthic, and fish communities, 

are particularly susceptible to long-term climate changes (Rooney and Kalff, 2000).  For 

species growing in locations with temperatures above the optimum for growth or near the 

upper limit of thermal tolerance, an increase in average annual temperature should 

decrease productivity and distribution (Short and Neckles, 1999).  Although each species 
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of SAM may respond to global warming in an individualistic manner, entire macrophyte 

communities may be lost from an ecosystem, and the most vulnerable ecosystem are 

likely to be those where eutrophication and other stressors already exist (McKee et al., 

2002). 

Heat injury in plants can manifest itself in several forms.  Submersed aquatic 

macrophytes will generally not suffer from desiccation if water temperatures increase. 

However, their metabolic processes may be affected by an increase in water temperature 

(Sutcliffe, 1977), decreasing growth rates and leading to eventual death when high 

temperatures combined with low light levels trigger rapid respiration.  When respiration 

is more rapid than photosynthesis, food reserves in the plant are exhausted leading to 

starvation and eventual death of the plant (Sutcliffe, 1977).  Higher respiration rates can 

also lead to a shortage of oxygen in the plant tissues and the accumulation of toxic 

products from anaerobic respiration (Sutcliffe, 1977).  Heat injury in plants can also be 

caused by protein denaturation (Levitt, 1969) after continued high temperatures.  This 

process at high temperatures can be reversible if the denaturation is not followed by 

protein aggregation. 

 

WATER TEMPERATURE DURING THE STUDY PERIOD (2005) 

The National Oceanographic and Atmospheric Administration (NOAA) reported 

that Maryland experienced higher than normal air temperatures during 2005, and high 

water temperatures in parts of Chesapeake Bay (Figure 1) were attributed to causing 

declines in submersed aquatic  macrophytes (Blankenship, 2006; NOAA, 2006). The 

higher air temperatures within the region in 2005, the year of my study, could have 
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confounded my results and therefore requires careful examination and consideration.  The 

NOAA reports also indicate that Maryland air temperatures during 2005 were similar to 

previous years and did not exceed temperatures reached in 1998 (NOAA, 2006); similar 

to findings regarding water temperatures from the Dundee Creek study area (Figure 2).  

As part of Aberdeen Proving Ground’s water quality monitoring program, water 

temperatures have been recorded, in situ, for nearly a decade (Figure 2).  At the mouth of 

Dundee Creek, water temperatures are recorded with hand-held water quality monitors 

(YSI-85), 5 cm below the waters surface.  These measurements were not always collected 

at the same intensity during this time period, but measurements were made during the 

Figure 1.  A map of interpolated water temperatures created by NOAA 
(Chesapeake Bay and Tidal Tributary Interpolator, VOL3D, version 4.6, 
August, 2006), for the Chesapeake Bay for August 2005.  Data are collected at 
over 50 stations throughout the Bay and its’ tributaries and interpolated 
vertically and laterally to provide a snapshot of water quality in the Bay.  The 
circled area is the general area in which Dundee Creek is located.  Higher 
water temperatures appear in the lower Chesapeake Bay, while relatively lower 
water temperatures were observed in the study area.  This trend was observed 
for most of the SAM growing season. 
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SAM growing season (April – October) at the same locations.  The water temperature 

data from Dundee Creek show 2005 was one of three years in the past decade where 

maximum water temperature exceeded 30 °C during the summer (Figure 2).   

Water temperature data presented by NOAA (Figure 1) show an interesting trend 

throughout the Chesapeake Bay; water temperatures at the study site often do not 

correspond with temperatures recorded in areas of the Lower Bay (Figure 1).  When 

water temperatures are depressed in the Lower Bay, they appear to be higher in the Upper 

Bay (Bahner, 2006), while the opposite appears when water temperatures are higher in 

the Lower Bay (the latter situation is illustrated in Figure 1).  While elevated water 

Figure 2.  Surface (top 5 cm of water column) water temperatures as part of 
Aberdeen Proving Ground’s submersed aquatic vegetation program over the 
last ten years during the SAM growing season (April –October).  This data 
was collected at the mouth of Dundee Creek (station DM1), which is located 
outside the influence of the thermal effluent. 
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temperatures may have had a detrimental effect on submersed aquatic vegetation in the 

Lower Bay in 2005 (NOAA, 2006; Blankenship, 2006), conditions in the study area were 

near average in 2005.  In the study area, which receives freshwater inputs from small 

restricted creeks, water temperatures are probably driven more by localized inputs rather 

than regional climatic changes; thus, the record high temperatures in 2005 experienced by 

most of the region probably did not have a confounding effect on my results. Ideally, a 

multi-year study would have been conducted to place the study within the context of 

short-term inter-annual temperature fluctuations and long-term directional temperature 

trends. Thus, my results need to be interpreted with caution when examining submersed 

aquatic vegetation responses to changes in water temperature. Given that the thermal 

effluent has been a constant presence in my study system since 1961, however, a 

difference in submersed aquatic macrophyte communities between thermally affected and 

unaffected areas should be detected if submersed aquatic macrophytes respond to the 

temperature ranges experienced in my study system. 

 

CHARACTERISTICS OF STUDY AREA AND HISTORICAL SAM CONDITIONS 

Built between 1961 and 1963, C.P. Crane Power Plant is located between Seneca 

and Saltpeter Creeks, both of which are tributaries to Upper Chesapeake Bay.  The 

surface area of the Saltpeter-Dundee Creek system is 5.5 x 106 m2 and the total mean low 

water volume is 6.5 x 106 m3 (Jacobs, 1983).  The drainage area for the Saltpeter-Dundee 

Creek system is 62 km2 and the estimated annual runoff is 0.86 m3 s-1.  Since this is a 

shallow water system with an average water depth of 1.2 m at mean low water, water 

column stratification can occur, but wind events can frequently mix the water column 
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(Jacobs, 1983).  The mean tidal range in the area is 0.36 m and the tidal prism is 

approximately 2,014,000 m3 (Jacobs, 1983).  The thermal discharge comprises about 

20% of the intertidal volume of the creek system and over 50% of the water entering 

upper Saltpeter Creek on the flood tides. The study area is subject to ice scouring during 

the winter and ambient water temperatures (Figure 1) can reach over 30 °C during the 

summer (Jacobs, 1983).  

The power plant houses two units capable of producing 400 megawatts and is 

usually only run at full capacity during the day.  The plant draws water from Seneca 

Creek at approximately 21 m3 s-1, and in 2001 C.P. Crane withdrew approximately 345 

million gallons of creek water per day to use in its once-through cooling system (Jacobs, 

1983).  The discharge flows through an open canal approximately 735 m long and into an 

impoundment approximately 61 x 103 m2.  The water then flows over a submerged weir 

and into Saltpeter Creek.  Owing to cycles in C.P. Crane’s electricity production, 

discharge temperature and velocity can vary between 3 oC and 8 oC above ambient and 

between 55 cm s-1 and 95 cm s-1, respectively (Jacobs, 1983).  The temperature plume of 

the C.P. Crane Generating Station is evident in water quality data collected by the 

Maryland Department of Natural Resources (MDDNR) DATAFLOW system, which is a 

system of shipboard water quality probes that rapidly measures parameters from a flow-

through stream of water collected near the water body’s surface, (Madden and Day, 

1992) and through the Aberdeen Proving Grounds (APG) water quality monitoring 

program (Figure 3).  

Biological effects of a coal fired power plant cooling system include entrainment, 

impingement, and discharge effects.  Discharge effects can be further broken down into 
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temperature exposure effects, modification effects, and scouring effects (Jacobs, 1983).  

This study investigated the exposure effects of submersed aquatic vegetation to the 

heated effluent.  Some vegetated sites within Saltpeter and Dundee Creeks are 

continuously affected by the discharge, while others are affected only on flood tides 

(Jacobs, 1983).  Other sites within the system are physically buffered from the effluent 

and provide good control sites, provided other physical and chemical parameters are 

similar. 

 
 
Figure 3. Water temperature map created by Maryland 
Department of Natural Resources of the Gunpowder 
River, including Saltpeter and Dundee Creeks 
(highlighted by the rectangle).  The thermal effluent from 
C.P. Crane Generating Station is visible as darker shades 
of gray.  Permission obtained from Tidewater Ecosystem 
Assessment Division of MDDNR 
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Prior to the establishment of the power plant, the submersed aquatic macrophyte 

community in the Saltpeter-Dundee Creek system consisted of several of the native 

Chesapeake Bay species including Vallisneria americana Michx., Potamogeton 

perfoliatus (L.) (Redhead Grass), Potamogeton crispus (L.) (Curly Pondweed), 

Ceratophyllym demersum (L.) (Coontail) and Elodea canadensis Michx. and these 

species are still present in the system.  Myriophyllum spicatum (L.) (Eurasian 

Watermilfoil) was first noticed in this system in 1902 (Reed, 1977), but the species is 

currently not a dominant species. The diverse SAM community within the creek system 

creates a situation in which peak productivity is extended during the growing season 

owing to differences in life cycles.  The diversity of the SAM communities also creates 

stratification of plants within the water column with V. americana occupying the lower 

two thirds of the water column and other plants such as E. canadensis forming a canopy 

(Nichols et al., 1980).  

After the power plant began production, localized effects on the vegetation within 

the discharge impoundment were observed but were attributed to construction activities 

(Nichols et al., 1980).  More recently, the area has undergone large natural fluctuations in 

submersed aquatic macrophyte abundance owing to changes in precipitation patterns in 

the area.  The Upper Chesapeake Bay is severely affected by drought years that increase 

water temperatures and salinity.  For example, during the drought years of 2000-2002, the 

vegetation in Dundee Creek decreased significantly (Orth et al., 2003; Julie Bortz, pers. 

comm.).  During 2003 and 2004, higher precipitation allowed a rebound of SAM in 

Upper Chesapeake Bay, while the lower portions of Chesapeake Bay were affected by an 

increase in pollutant inputs (Chesapeake Bay Program, 2005).  I hypothesize that the 
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largest environmental influence on the SAM in Dundee and Saltpeter Creeks to be the 

thermal effluent from C.P. Crane power plant.   

The following chapters present the research I conducted on the effects of elevated 

water temperatures on species richness and abundances of submersed aquatic 

macrophytes in the Dundee and Saltpeter Creeks estuarine ecosystem.  I also present the 

results from a controlled growth chamber experiment, where three common submersed 

aquatic macrophyte species of the study site were placed in three growth chambers set at 

different temperatures.  Furthermore, this controlled experiment compared the response 

of a single species, V. americana, collected from three separate locations, to three 

different temperatures.  The final chapter places empirical results into the larger context 

of global climate change and submersed aquatic vegetation management. Specifically, the 

alternative hypotheses I set out to test with my complementary field observations and 

growth chamber experiment were: 

H1 - The submersed aquatic macrophyte species observed growing at the study site 

tolerate the higher temperatures of the thermal effluent. If so, I predicted that the 

thermal effluent of the C.P. Crane power plant would have no effect on submersed 

aquatic macrophyte species richness and cover, which is my null statistical hypothesis.  

 

H2 – Some of the submersed aquatic macrophyte species observed at the study site 

are not tolerant of the higher temperatures of the thermal effluent. If so, I expected 

species richness and cover to be lower in areas affected by the thermal effluent.  
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H3 – The higher temperatures of the thermal effluent are more favorable to 

submersed aquatic macrophyte growth and survival. If so, I predicted that species 

richness and cover would be higher in areas affected by the thermal effluent compared to 

unaffected areas with similar environmental conditions. 

 



 19

Chapter 2:  Effects of the thermal effluent from C.P. Crane 
Generating Station on submersed aquatic macrophyte 
communities in the Saltpeter-Dundee Creek system 

Introduction 
 

Temperature is one of the most important environmental factors controlling the 

growth, reproduction and death of plants (Anderson, 1969; Barko and Smart, 1981; 

Bulthuis, 1987; Pip, 1989; Hartleb et al., 1993). Owing to the ease of measuring 

temperature, a vast body of information exists about its effects on living organisms 

(Brock, 1970).  As early as 1922, Setchell reported that aquatic macrophytes occupy 

certain habitats based on the temperature profile of the water column.  Setchell also 

suggested that macrophytes can invade neighboring aquatic habitats if the temperature 

conditions change to support hospitable conditions.  Thus, while factors such as light and 

nutrient availability are known to affect growth rates of submersed aquatic macrophytes 

(Barko and Filbin, 1983; Goldsborough and Kemp, 1988; Olesen and Madsen, 2000), 

water temperature may also structure submersed aquatic macrophyte communities 

(Anderson, 1969; Barko and Smart, 1981; Bulthuis, 1987; Pip, 1989; Hartleb et al., 

1993). 

Most natural temperature variation is driven by climatic fluctuations.  However, 

with increasing global industrialization, aquatic environments are being exposed to 

unnatural temperature elevations (Schneider, 1981).  Of water withdrawn for industrial 

uses, an estimated 70% is used for cooling purposes (Schneider, 1981).  Around power 

plants, water temperatures can fluctuate annually, seasonally, diurnally, vertically and 

laterally through tidal cycles in response to the amount of electricity bring produced 
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(Nauman and Cory, 1969).  The main effect fossil fuel power plants have on aquatic life 

is the removal of large quantities of water for condenser cooling and the return of this 

water to the system at an elevated temperature (Adams, 1969), sometimes 8 ºC above 

ambient water temperature (Nichols, 1981).  The elevated water temperatures from the 

thermal effluent from the coal fired C.P. Crane Generating Station, MD, is the focus of 

this research.  The effluent impacts a relatively small area of Northern Chesapeake Bay, 

but has been an impact since the 1960’s when it went into operation.   

 As part of the Maryland Department of Natural Resources’ (MDDNR) Power 

Plant Siting Program (PPSP), several studies have been conducted to evaluate the effect 

of the thermal effluent from Crane Power Plant on the surrounding ecosystem (Nichols et 

al., 1980; Texas Instruments, 1980; Jacobs, 1983; Jordon and Sutton, 1984).  One of these 

studies (Nichols et al., 1980) focused on the effects of thermal effluent on the submersed 

aquatic macrophyte community and its associated fauna.  Seven sites were selected near 

the power plant intake in Seneca Creek, upstream and downstream of the thermal 

discharge in Saltpeter Creek, in the upper and lower portions of Dundee Creek and in a 

portion of the lower Gunpowder River (Figure 4).  Nichols et al. (1980) concluded there 

were no significant differences in submersed aquatic macrophyte biomass between sites, 

although differences in density (i.e., many small plants at the control site vs. few large 

plants at the thermally affected site) were observed (Nichols et al., 1980).  The study 

concluded that biodiversity and biomass of submersed aquatic macrophyte beds were not 

affected in areas that received the thermal discharge.  Although the study observed no 

effects of the thermal effluent, the study area has undergone natural and anthropogenic 

changes since 1980.  The human population increased approximately 57-persons km-2 
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while houses km-2 have increased from 23 to 30 (Chesapeake Bay Program, 2000). The 

Gunpowder River and its’ tributaries have undergone fluctuations in water quality and 

precipitation, which has been associated with changes in the submersed aquatic 

macrophyte communities (Orth et al., 2003).  

The initial series of PPSP studies did not incorporate two important areas.  The 
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 Figure 4. Aerial photograph of the Saltpeter-Dundee 
Creek study area.  (Air Photographics, Inc. 2005)   
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first area is upper Saltpeter Creek (Figure 4), which supports large submersed aquatic 

macrophyte beds, and is influenced by the thermal plume on flood tides.  The second, 

Bengies Cove (Figure 4), supports a large and diverse macrophyte bed within the area of 

the heated effluent, but the bed may be physically buffered from the plume.  Bengies 

Cove, located east of the discharge canal, is protected by Bengies Point.  Bengies Point 

forces the discharge from Saltpeter Creek towards Battery Point and away from Bengies 

Cove.  This effect on the hydrology of the estuary may allow Bengies Cove to be an 

accurate representation of the area’s submersed aquatic macrophyte if the thermal 

effluent did not exist.  Differences of a few degrees of temperature can alter the growth of 

submersed aquatic macrophytes (Barko and Smart, 1981).  Thus, by studying these two 

additional reference areas, one that may be physically buffered from the effluent and one 

that is only affected on flooding tides, temperature-related diversity differences could be 

determined, accounting for other environmental factors that influence submersed aquatic 

macrophyte growth and may be different among sites. 

The objective of my study was to evaluate whether water temperature has a 

discernable impact on the community structure of submersed aquatic macrophytes in the 

Saltpeter-Dundee Creek system.  I predicted that species diversity and macrophyte cover 

would be lower in thermally-affected areas if several of the submersed macrophyte 

species common at ambient temperatures are not tolerant of higher water temperatures.  

On the other hand, I predicted that species diversity and macrophyte cover would be 

higher in thermally-affected areas if the higher temperatures are more favorable to 

submersed aquatic macrophyte growth.  This prediction may be realized if some species 

observed in the study system are at their northern range limit or if water temperature 
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increases the availability of resources that are otherwise limiting under ambient 

conditions. Alternatively, no effect of thermal effluent on submersed aquatic macrophytes 

would be detected if species are tolerant of and are not favored by the higher 

temperatures.  These hypotheses were tested by interpolating water temperature across 

131 sampling locations 12 times during the 2005 growing season (April – October). This 

spatially intensive sampling was complemented by intensive temporal sampling that 

continuously recorded water temperatures at 5 sites affected and unaffected by the 

thermal effluent. I sampled the submersed aquatic macrophytes at 13 sites throughout the 

creek system six times during the 2005 growing season to relate submersed aquatic 

macrophyte community structure with the study site’s temperature regime.  To account 

for the effects of environmental factors on submersed aquatic macrophytes that could 

confound or mask a temperature effect, I measured dissolved inorganic nitrogen, 

dissolved inorganic phosphorus, total suspended solids, chlorophyll-a, secchi disk depth 

and salinity at 5 sites.  Complementary to the field observations, I conducted a growth 

chamber experiment to test a) how different submersed aquatic macrophyte species 

respond to water temperature and b) whether populations of one abundant species, V. 

americana, growing in areas affected by thermal effluent would be more tolerant of 

higher water temperature than populations growing elsewhere within the system or in a 

northern climate.  Combined, my field observations and lab experiments were designed to 

provide useful information on how the thermal effluent of power plants, and possibly 

global climate change, can affect submersed aquatic macrophyte communities in 

oligohaline portions of estuaries.   
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Methods 

Temperature Sampling 
I used two approaches to map the thermal plume and compare temperature 

differences throughout the Saltpeter-Dundee Creek system.  One approach was 

temporally intensive and used underwater continuously-logging temperature probes to 

record changes in temperature through time in areas that were and were not affected by 

the thermal plume.  Five Onset HOBO® Water Temp Pro data loggers were attached to 

½″ PVC pipe (Figure 5) and anchored at or near sites DM2, DN1, DN2, DN3, and SP1 

(Figure 6) at a water depth of approximately 0.75 meters from the sediment surface at 

low tide.  SP1 was chosen to represent Saltpeter Creek (always heated), DN1 to represent 

Bengies Cove (never heated), and DN2 to represent Battery Cove (tidally heated).   DN1 

and DN2 were both located in lower Dundee Creek.  DN3 was located in upper Dundee 

Creek (never heated) and DM2 represented the confluence of upper Dundee and Saltpeter 

Creeks (tidally heated) (Figure 6).  The sites were marked using an additional piece of ½″ 

PVC with a piece of floating white polyline attached.  The probes recorded temperatures 

every fifteen minutes and were downloaded in the field on a monthly basis, between 10 

June and 26 October 2005.  The control site at Aberdeen Proving Ground (APG) was 

located 3.5 nautical miles upriver from Dundee Creek in the Gunpowder River near 

Canal Creek and was maintained by Maryland Department of Natural Resources.  The 

water temperature data for APG, which was collected using a YSI 6600 every 15 minutes 

throughout the year, was downloaded from a publicly accessible internet site 

(www.eyesonthebay.net) at the end of the 2005 growing season.   
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The second approach to sample temperature at the study site was spatially 

intensive to create one interpolated map of the thermal plume for each month of the 

growing season (May to October) for each tidal cycle, resulting in 6 flood tide and 6 ebb 

tide maps of watet temperature.  Sampling was conducted from 17 May to 13 October 

2005 at a GIS-created 200-meter interval point grid covering Dundee and Saltpeter 

Creeks (Figure 7).  The grid for temperature sampling resulted in 131 points.  Three 

additional points could occasionally not be reached owing to shallow depth restrictions.  

At each point, surface, bottom, and mid-depth water temperatures were recorded, along 

with total water depth and salinity.  Owing to the number of points, each sampling event 

covered a four-day period with two days dedicated to each tidal cycle beginning at the 

 
Figure 5.  The deployment setup of the underwater HOBO® 
temperature probe.  The PVC pole on the left was used as a marker 
and the pole on the right was used as an anchoring pole with the 
probe attached.  The positive buoyancy of the probe kept it near mid-
depth throughout each tidal cycle.  This setup was modified to test for 
stratification by attaching additional probes near the middle and at the 
bottom of the PVC pole.  The top probe remained at the surface with 
fishing floats and at the bottom probe was weighted down with 
fishing weights. 
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predicted start of each tidal cycle and continuing through the entire cycle or until all sites 

were sampled.  Times for sampling during each tidal cycle were selected from MDDNR 

tide charts for Battery Point in the Gunpowder River and were chosen to occur 

throughout the morning and early afternoon to control for diurnal variations in 

temperature.  All sampling sites were located to the nearest 10 meters using a handheld 

Garmin® etrex Venture global positioning system (GPS), using the World Geodetic 

System of 1984 (WGS 84) datum.  

Measuring tidal levels concurrently with water temperature provides estimates of 

the time and duration that the higher temperatures of the thermal effluent affects each site 

and also the maximum depth experienced at each site.  One wave gauge (Macrowave, 

Coastal Leasing), housing a pressure transducer was deployed for two weeks in Saltpeter 

Creek (SP1; Figure 6) to measure wave height, wave period and water level.  Water level 

was recorded at a 5Hz frequency for 13 minutes at the top of the hour.  The data was 

offloaded and Fast-Fourier transformed to obtain wave height, wave frequency, and water 

depth.   

Stratification of the water column could affect interpretations of temperature 

effects on submersed aquatic macrophytes because species occupy different areas of the 

water column and may therefore not experience changes in water temperatures the same 

way if the water column is stratified.  For example, V. americana is a rosette-forming 

species that elongates its leaves in the lower part of the water column where its meristems 

are located.  Elodea canadensis, on the other hand, is a canopy-former and has its 

meristems located close to the water surface.  The temperature probes were therefore 

deployed for one month in 2006 to determine whether the water column was stratified.   
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Figure 6.  Aerial photograph of Dundee and Saltpeter Creeks in the Upper 
Chesapeake Bay including bathymetric data in meters (at low water) and 
locations of 6 water quality monitoring stations.  Only water temperature data 
was used from station DM1 for comparisons to previous years. A seventh site 
at Aberdeen Proving Ground was used as a control and was located near Canal 
Creek.  C.P. Crane Generating Station is identified by a star.  Areas are grayed 
out due to security reasons of the Department of Defense. 
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Two sites were selected in Saltpeter Creek, one upstream of the discharge impoundment 

and one downstream of the impoundment.  Two temperature probes were attached to one 

pole which held one probe at the surface with small fishing floats and one probe at the 

sediment surface with 4oz. fishing weights.  The probes were originally deployed on 31 

August 2006 near Bengies Point.  After two weeks the probes were relocated to upstream 

of the impoundment and downloaded after 2 weeks deployment on 29 September 2006. 

Wind data was obtained from the United States Army Testing Center collected 

from a weather station (Model # RMY 05103) near the Gunpowder River for the same 

dates and times as the temperature grid sampling.  Wind direction and speed, and 

duration may affect the spatial extent of the thermal plume.  I therefore created ebb and 

flood tide wind roses (Lakes Environmental Software, 2005) for the dates and times I 

measured water temperatures to visually inspect the impact of wind on the thermal 

plume.  One constraint of this analysis is that I sampled temperature during calm days 

such that my analysis was biased towards finding little effect of wind on the thermal 

plume.  Complementary to the visual inspection, I calculated the thermal plume area for 

ebb and flood tides for each monthly sampling and correlated area with average wind 

speed.  

Vegetation sampling 
After the first round of temperature sampling was completed in May 2005, 

thirteen sites were selected throughout the study site (Figure 8) based on their location in 

the thermal effluent.  Two sites were always heated, 6 sites were tidally heated and 4 sites 

were outside the influence of the thermal effluent.  At each site, macrophyte sampling 

was conducted with a mask and snorkel to keep disturbance of submersed aquatic 
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Figure 7.  Sampling points for the temperature grid survey.  Sample points 
are 200 m apart.  Areas are grayed out due to security restrictions.  C.P. 
Crane Generating Station is identified by a star. 

macrophytes to a minimum. Once anchored at the sampling site, a 0.25 m2 PVC grid was 

blindly tossed 10 times within a 25 m2 radius from the boat.  The cover class model 

presented by the global seagrass monitoring network (SeagrassNet) was used to guide the 

estimates of total percent cover and percent cover of each species (Short et al., 2004).  

Total depth and secchi depth were also recorded at each site.  Intensive macrophyte 



 30

sampling with mask and snorkel was not conducted at the 131 grid sites used for 

temperature sampling owing to time constraints.  Water temperature sampling was 

constrained to late morning and early afternoon; intensive macrophyte sampling would 

not have allowed enough time to complete temperature measurements.  Furthermore, 

with the number of points sampled during the temperature grid sampling, intensive 

macrophyte sampling was not a viable option while controlling for time of day, and 

hence diurnal fluctuations in temperature, during the temperature survey. 
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Figure 8.  Vegetation sampling sites in Saltpeter-Dundee Creek.  Areas 
grayed out are due to security reasons. C.P. Crane Generating Station is 
identified with a star.   
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Water Quality  
Water quality parameters were measured to control for factors that influence 

survival and distribution of submersed aquatic macrophytes so that temperature effects 

could be isolated.  Throughout the 2005 growing season (April – October), five sites in 

Dundee and Saltpeter Creeks (Figure 6) were monitored for a suite of water quality 

parameters on a biweekly schedule.  Sampling was conducted between 1000 and 1400 

hours.  The five sites selected for water quality monitoring are a subset of the sites used 

for Aberdeen Proving Grounds’ water quality program which have been monitored since 

1996. 

In situ measurements of salinity, temperature (ºC), conductivity (µs), and 

dissolved oxygen (mg l-1) were collected at the water surface and just above the sediment 

surface with a Yellow Springs Instrument (YSI) 85 multi-parameter water quality 

instrument, which was calibrated by YSI Inc, in March 2005.  The instrument was not 

calibrated post sampling.  At each of the water quality sites and the 13 sites surveyed for 

macrophytes, total depth and secchi disk depth were also measured.  Secchi disk depth 

was measured by lowering the disk from the sunny side of the boat until the disk visually 

disappeared.  The disk was then raised until it was visible and the depth was measured 

and used to estimate the light attenuation coefficient (Kd = 1.45/Secchi depth; Walker, 

1980).  Total depth was measured with a 0.01 m graduated 2-m PVC pole; if the depth 

was greater than 2 meters, a weighted line was dropped overboard, marked and measured.  

A grab sample of water was also collected just below the water surface and transported 

back to the laboratory on ice in a cooler.  The grab samples were processed according to 

established water sample preparation and filtering protocols, including use of pre-

weighed 47-mm GF/F filters for total suspended solids and chlorophyll-a (Koch et al., 
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2004).  Samples were frozen and transported monthly to the University of Maryland 

Center for Environmental Science’s Chesapeake Biological Laboratory where they were 

analyzed for total suspended solids (TSS), chlorophyll a (Chl-a), nitrite, nitrite plus 

nitrate, ammonium, phosphate (DIP), and total volatile solids (Keefe et al., 2004).   

Growth Chamber Methods 
Three species of submersed aquatic macrophytes that are common at the study 

site (V. americana, E. canadensis and C. demersum), were acquired from a nursery 

(Kester’s Wild Game and Seed) in Wisconsin.  Forty-five specimens of each species were 

placed in 2366 cm3 plastic containers (height = 13.5 cm, diameter = 16 cm) filled 4 cm 

high with previously dried and sterilized sediment collected from Otter Point Creek in the 

Bush River, MD.  The containers were filled with reverse osmosis water to 1 cm below 

the top of the containers.  Each set of containers was then randomly divided among three 

growth chambers so that each growth chamber contained five containers of each species.  

The growth chambers were set at 28, 32, and 36 ºC and ran on a 12 hour light: 12 hour 

dark cycle.  The temperatures were selected to represent cool ambient conditions (28 oC), 

conditions experienced in the thermal plume (32 oC), and extreme temperatures that are 

potentially lethal (36 oC).  This design corresponded to 4 oC temperature differences that 

the National Phytotron at Duke University has used in the past.  The design intentionally 

spanned temperatures from cool to extreme to set the study up to find a temperature 

effect.  Temperatures were not decreased at night because the thermal effluent is a 

constant presence, even at night.  A combination of fluorescent and incandescent light 

bulbs produced a constant light intensity of 200 μmol m-2 s-1, which is above light 

compensation that occurs at 20-25 µmol m-2 s-1 but below light-saturated photosynthesis 
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that occurs at 450 µmol m-2 s-1 as determined using laboratory oxygen-production data 

(Blanch et al., 1998)  Harley and Findlay (1994) showed that light-saturation occurred 

between 100 and 280 µmol m-2 s-1 and light compensation between 2.5 and 82 µmol m-2 

s-1.  Thus, our light levels were reasonable for growing V. americana in the controlled 

growth chamber environment.  Thus, our light levels were reasonable for growing V. 

americana in the controlled growth chamber environment.  Water pH in the field is 

typically between 6 and 9 (Figure B2) suggesting free CO2 limitation; thus, pH in the 

experimental containers was allowed to rise. Given that all three species are able to use 

bicarbonate as an alternative carbon source (Maberly and Madsen, 1988; Stevenson, 

1988), free CO2 limitation should not have affected the outcome of the experiments and 

more realistically represented natural conditions. On a weekly basis for 8 weeks the 

specimens were measured for maximum length, number of ramets and number of 

branches (E. canadensis and C. demersum) or leaves (V. americana) per ramet.  These 

parameters were chosen because they are easily obtained with minimal disturbance while 

representing vertical and lateral growth of plants.  After measurements were collected, 

the containers were refilled with tap water filtered through a carbon filter.  Nutrient 

concentrations of the water were: Ammonium-N = 0.117 mg/L; Nitrate + Nitrite – N = 

0.1620 mg/L; Total Phosphorus = 0.0752 mg/L.  No organic N was detected.  After 

containers were refilled, they were placed back into each temperature treatment using 

randomly generated numbers.  In addition to the Wisconsin plants, samples of V. 

americana were collected from areas of Dundee/Saltpeter Creek that experienced 

different magnitudes of the thermal effluent.  Five sites were selected from areas of 

elevated water temperature and five sites were from areas of colder water.  At University 
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of Maryland Center for Environmental Science’s Appalachian Laboratory, three 

specimens from each of the 10 sites were individually placed into three separate 2366 

cm3 containers that were filled with steam-treated (6 h at 99 oC after establishing a 

vacuum) sediment from Otter Point Creek and with reverse osmosis water.  Each set of 

three containers per site was then randomly divided among the three growth chambers so 

that each growth chamber contained 5 containers from heated areas and 5 containers with 

plants from unheated sties.  The plants were measured on a weekly basis for 8 weeks for 

the maximum length, number of ramets and number of leaves per ramet. Containers were 

refilled with the same carbon-filtered tap water as above and placed back into each 

growth chamber using the same described protocol that randomized placement. 

Statistical and Geographic Information System Analysis 
 

To test for differences in water temperatures among the five temperature probe 

locations, 1000 readings were randomly selected from data collected with the 

temperatures probes and was analyzed using the non-parametric Kruskal-Wallis test with 

the Nemenyi comparison for ranked sums.  These tests parallel the analysis of variance 

(ANOVA) procedure and Tukey comparisons of means (Zar, 1996).  The thermal plume 

was mapped using data collected from the temperature grid sampling.  The maps were 

created using the ordinary kriging method in the Geostatistical Analyst extension of 

ArcMap, (ESRI, 2001).  Boundaries cannot be used in this method; however use of the 

Gaussian semivariogram with a circular neighborhood containing between 2 and 4 

neighbors kept the interpolation across land features to a minimum.  Interpolations were 

displayed using the standard deviation classification scheme in ArcMap, which shows 



 35

how much a feature’s attribute value varies from the mean.  This classification scheme 

was selected to standardize class breaks as seasonal water temperatures varied.   

Time series analysis was conducted by selecting hourly temperature probe data 

from the full data series for three time periods; 22 June 2005 to 11 July 2005, 12 

September 2005 to 2 October 2005 and 15 October 2005 to 26 October 2005.  The three 

time periods were selected because daily maximums, minimums, averages and standard 

deviations that were calculated from the hourly readings were likely to change as the 

growing season progressed.  The above time periods were also selected to capture data 

from all of the temperature probe sites.  One probe (DM2) was lost during the sampling 

period and at the control site (APG) the temperature probe failed to record data for a short 

time period.    

Temperature stratification data using temperature probes suspended at the top and 

bottom of the water column were analyzed using the student’s t-test.  Data was also 

graphically inspected.  The spatial extent of the thermal plume was calculated in ArcGIS.  

Correlations of the thermal plume with wind direction and wind speed were quantified 

using Pearson product moment correlations. 

In addition to comparing water temperatures at sites within Saltpeter and Dundee 

Creeks, I compared 1000 random water temperature readings within the creek system to 

the APG control site to determine if differences existed between water temperatures in 

the study area and a control area.  Although random selection of water temperatures may 

miss differences in time of day or tidal cycle, they were selected to test for water 

temperature differences in the study area.  
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Ecological similarity of submersed aquatic macrophyte communities was 

calculated between sites and months.  Several separate software packages were used, 

including SAS (SAS Institute Inc., 2004), Arcmap (ESRI, 2005), PC-ORD (McCune and 

Grace, 2002) and EstimateS (Colwell, 2005).  To relate macrophytes to water quality, 

water quality measurements, including salinity, had to be interpolated across the study 

site and extracted to the macrophyte sampling sites using ArcMap. This approach does 

have it’s limitations as water quality can vary at smaller resolutions than was measured, 

especially if groundwater seepages occur within the study area.  However, due to the 

small extent of the study system and the similarity of shoreline development, I assumed 

that interpolation would approximate water quality at unsampled locations reasonably 

well.  Unlike the temperature grid, the inverse distance weighted (IDW) interpolation 

method was used.  Because only a few sites were sampled, interpolation across the land 

features would have created inaccurate predictions, since two sites may be close to each 

other “as the crow flies” but far apart “as the fish swims” (Little et al., 1997).  Using 

boundaries in the IDW method forces the nearest neighbor to be “as the fish swims”.  

This method assumes that the variable being mapped decreases in influence as the 

distance from the sampled location increases.  The resulting community and 

environmental matrices were used in PC-ORD to conduct a Bray-Curtis ordination and 

non-metric multidimensional scaling to relate environmental variables to species 

presence/absence.  Ordination was used to reduce the redundancy of multiple univariate 

tests and to emphasize trends or gradients in the data, as well as produce graphical results 

that reveal species-environment relationships.   In both cases, the Bray-Curtis distance 

measure was used and Pearson and Kendall correlations were calculated.  PC-ORD was 
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also used to conduct hierarchal classification of the data, again using the Bray-Curtis 

distance measure to complement and validate the ordination.  Site-by-site Bray-Curtis 

similarity comparisons of plant communities were calculated using the EstimateS 

software.  Likewise, the Shannon diversity index was calculated using EstimateS.  

Repeated measures ANOVA was used to test for macrophyte cover differences among 

heated and non-heated sites and between months of the growing season.  Coupled with 

ordination, this test was used to test for differences in abundance and location of 

thermally tolerant species.  In addition, Pearson product-moment correlation coefficients 

were calculated to test for correlations between water temperature and cover of specific 

species and total cover of all species.  This was done on a monthly basis, where average 

macrophyte cover at the 13 macrophyte sampling sites was correlated with average 

monthly water temperature. 

Water quality and submersed aquatic macrophyte habitat data collected at the five 

water quality sites were analyzed using ANOVA with Tukey HSD comparisons on log 

transformed data.  Pearson product-moment correlation coefficients were calculated to 

determine if water levels from the wave gauge and water temperatures in Saltpeter Creek 

were correlated.  A significant correlation would show how the thermal effluent impacts 

the sites as heated and unheated water is pushed in and out of areas during the tidal cycle. 

Correlations were also calculated for salinity and water temperature at the five water 

quality stations. Water quality was analyzed to control for factors besides temperature 

that can influence submersed aquatic macrophyte distribution and to isolate the 

temperature effect on plant communities. 



 38

Growth chamber data were statistically analyzed using the general linear model 

(GLM) procedure, as V. americana was the only species to be collected from high and 

low temperature areas of the study area and from the Wisconsin nursery.   The GLM 

procedure in conjunction with the Ryan-Einot-Gabriel-Welsch Multiple Range Test was 

used to discern if temperature, time and source effects were significant and if any of the 

interactions between these effects were significant.  The maximum lengths of V. 

americana, E. canadensis and C. demersum were analyzed graphically and statistically to 

determine how each species fared at the respective temperatures. Alpha level was 

determined at 0.05. 

Results 

Temperature 
Spatially extensive temperature sampling at 131 sites and geostatistical 

interpolation (Figures 9-14) show that the thermal effluent from C.P. Crane raises the 

water temperature in Saltpeter Creek 4-5 ºC over the water temperatures in Dundee Creek 

throughout the growing season.  The thermal plume extends into Dundee Creek on the 

ebb tide and is pushed into Saltpeter Creek on the flood tides.  The water temperatures 

recorded from May through October show the expected seasonal rise and fall throughout 

the growing season (Figure B1).  Water temperatures differed among the five sites 

outfitted with temperature loggers (Figure 15) and validated the observed water 

temperature gradients within Dundee/Saltpeter Creek.  Sites DM2 and SP1 experienced 

the highest water temperatures with readings greater then 33 ºC recorded for as long as 24 

h in July 2005.  Water temperatures greater than 30 oC were recorded for 51 days in June, 

July, August and September 2005.  Sites DN3 and DN1 supported the lowest recorded 



 

Figure 9.  K
rigged interpolation of w

ater tem
peratures in D

undee and Saltpeter C
reeks during M

ay 2005.  The left panel 
show

s w
ater tem

peratures during the ebb tide, w
hile the right panel is the flood tide.  The classification of the data is 

based on the standard deviations com
puted in A

rcG
IS.  C

.P. C
rane G

enerating Station is located in the low
er left corner 

of the m
ap.  W

ind roses displaying w
ind direction and speed are also displayed for the selected sam

pling dates. 

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

9%

18%

27%

36%

45%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00% 

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

5%

10%

15%

20%

25%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00% 

39 



                               

40 

Figure 10.  K
rigged interpolation of w

ater tem
peratures in D

undee and Saltpeter C
reeks during June 2005.  The left 

panel show
s w

ater tem
peratures during the ebb tide, w

hile the right panel is the flood tide.  The classification of the 
data is based on the standard deviations com

puted in A
rcG

IS.  C
.P. C

rane G
enerating Station is located in the low

er 
left corner of the m

ap.  W
ind roses displaying w

ind direction and speed are also displayed for the selected sam
pling 

dates. 

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

10%

20%

30%

40%

50%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00%

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

10%

20%

30%

40%

50%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00%



                           

41 

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

8%

16%

24%

32%

40%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00%

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

10%

20%

30%

40%

50%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00%

Figure 11.  K
rigged interpolation of w

ater tem
peratures in D

undee and Saltpeter C
reeks during July 2005.  The left 

panel show
s w

ater tem
peratures during the ebb tide, w

hile the right panel is the flood tide.  The classification of the 
data is based on the standard deviations com

puted in A
rcG

IS.  C
.P. C

rane G
enerating Station is located in the low

er 
left corner of the m

ap.  W
ind roses displaying w

ind direction and speed are also displayed for the selected sam
pling 

dates. 



                               
Figure 12.  K

rigged interpolation of w
ater tem

peratures in D
undee and Saltpeter C

reeks during A
ugust 2005.  The left 

panel show
s w

ater tem
peratures during the ebb tide, w

hile the right panel is the flood tide.  The classification of the 
data is based on the standard deviations com

puted in A
rcG

IS.  C
.P. C

rane G
enerating Station is located in the low

er 
left corner of the m

ap.  W
ind roses displaying w

ind direction and speed are also displayed for the selected sam
pling 

dates. 

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

6%

12%

18%

24%

30%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00%

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

4%

8%

12%

16%

20%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00%

42 



                

Figure 13.  K
rigged interpolation of w

ater tem
peratures in D

undee and Saltpeter C
reeks during Septem

ber 2005.  The 
left panel show

s w
ater tem

peratures during the ebb tide, w
hile the right panel is the flood tide.  The classification of the 

data is based on the standard deviations com
puted in A

rcG
IS.  C

.P. C
rane G

enerating Station is located in the low
er left 

corner of the m
ap.  W

ind roses displaying w
ind direction and speed are also displayed for the selected sam

pling dates. 

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

7%

14%

21%

28%

35%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00%

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

10%

20%

30%

40%

50%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00%

43 



      

44 

Figure 14.  K
rigged interpolation of w

ater tem
peratures in D

undee and Saltpeter C
reeks during O

ctober 2005.  The 
left panel show

s w
ater tem

peratures during the ebb tide, w
hile the right panel is the flood tide.  The classification of 

the data is based on the standard deviations com
puted in A

rcG
IS.  C

.P. C
rane G

enerating Station is located in the 
low

er left corner of the m
ap.  W

ind roses displaying w
ind direction and speed are also displayed for the selected 

sam
pling dates. 

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

11%

22%

33%

44%

55%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00%

NO
R

TH

SO
U

TH

W
ES

T
EA

ST

11%

22%

33%

44%

55%

W
IN

D S
PEED 

(K
nots) >= 22

 17 - 21

 11 - 17

 7 - 11

 4 - 7

 1 - 4

C
alm

s: 0.00%



 45

water temperatures (Figure 15).  Time series analysis also confirms higher water 

temperatures in Saltpeter Creek.  From 22 June 2005 through 11 July 2005 (Figure 16), 

the highest daily average and maximum water temperatures were measured in Saltpeter 

Creek at SP1 and DM2.  The highest daily minimum water temperature was observed at 

SP1 in Saltpeter Creek.  Most of the sites displayed similar standard deviations in water 

temperature.  Temperature at DM2 was generally more variable than the rest of the sites 

in the study area.  The other two time periods showed similar trends (Figures 17 and 18). 

Comparison with the MDDNR continuous monitoring site showed that temperatures at 

DN1, DN2, and DN3 are similar to ambient conditions outside of Saltpeter-Dundee,  

 

Figure 15.  Average water temperature at the five temperature probe sites and 
MDDNR’s continuous monitoring site at Aberdeen Proving Ground (APG).  
DM2 = Dundee Creek mid-channel 2; DN1 = Dundee Creek nearshore 1; DN2 
= Dundee Creek nearshore 2; DN3 = Dundee Creek nearshore 3; SP1 = 
Saltpeter Creek 1. Water temperatures at SP1 and DM2, the sites located 
within the thermal effluence of the CP Crane power plant, were higher 
(P<0.05) than the sites located outside the effluent. 
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while sites SP1 and DM2 represent sites affected by the thermal plume (ANOVA; F5, 5980 

= 58.06, P <0.001; Table A1).  Due to the continuous operation of the power plant, the 

temperature signature of the effluent is affected by the diurnal tidal cycle, carrying the 

heated water to different parts of the creek in a regular pattern.  Indeed, water 

temperature at DM2 was negatively correlated with water depth (Figure 19, Table 1), and 

positively correlated at SP1 (Figure 19, Table 1).  A weak negative correlation with water 

depth was observed at DN2 whereas a weak positive correlation was detected at DN1 

(Figure 19, Table 1).  Temperature and depth were not correlated at DN3 (Figure 19, 

Table 1). In several instances, the highest water temperatures were recorded near 

midnight and in the early morning.  Visual analysis of the temperature probe data 

(Figures 16, 17, 18) and the correlation analysis of water temperature and depth (Figure 

19, Table 1) show that DM2 is influenced by the thermal plume for at least the ebb tide  

Figure 16.  Time series of maximum (A), minimum (B), average (C), and standard deviation 
(D) daily water temperature at continuous monitoring sites from 22 June 2005 through 11 July 
2005.   
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Figure 17.  Time series of maximum (A), minimum (B), average (C), and standard deviation (D) 
daily water temperature at continuous monitoring sites from 12 September 2005 through 2 
October 2005.   
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Figure 18.  Time series of maximum (A), minimum (B), average (C), and standard deviation (D) 
daily water temperature at continuous monitoring sites from 15 October 2005 through 26 October 
2005.   
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cycle, or approximately 6-7 hours, which occurs approximately twice a day (Figure 20).  

Surface and bottom water temperatures differed in upper Saltpeter Creek (ANOVA; F = 

3.95, P = 0.04) and also at the mouth of Saltpeter Creek near Bengies Point (ANOVA; F 

= 21.58, P <0.001) indicating water column stratification does occur.  However, visual 

analysis of water temperature at the different depths (Figures 21 and 22) show that 

stratification of the water column can be broken down, creating a well-mixed 

environment either during the day or at night. The area of the thermal plume in Saltpeter 

and Dundee Creeks was not corelated with wind speed (r = -0.07, p = 0.58, n = 7 

Vegetation 
Several of the 13 surveyed sites in Bengies Cove and upper Dundee Creek 

supported large diverse submersed aquatic macrophyte beds.  Species present included  

M. spicatum, V. americana, N. guadalupensis (Spreng.) Magnus, E. canadensis, P. 

perfoliatus, P. pusillus (L.), P. crispus and C. demersum.  Number and cover of species  

varied greatly over the study area (Figure 23).  Vallisneria americana was the most 

prevalent species in the areas directly affected by the thermal effluent, while C. 

 

Site Model 

 r P N 

DN1 0.123 0.048 248 

DN2 -0.188 0.003 248 

DN3 0.018 0.777 248 

SP1 0.165 0.009 248 

DM2 -0.636 <0.001 248 

Table 1.  Pearson product moment correlations of depth and water 
temperatures at the five sites in Saltpeter and Dundee Creeks. 
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Figure 19.  Water temperature and water depth scatter plots for the five 
continuous monitoring sites in the study area. DN1 and SPI were 
positively correlated and negatively at DM2 and DN2 (Table 1). 
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Figure 20.  The water temperatures at DM2 were correlated with the ebb tide.  
The outgoing tide carried the thermal effluent out of Saltpeter Creek, where the 
highest water temperatures were recorded at DM2 during low tide. 
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 demersum was one of the most dominant species at the most diverse sites outside the 

thermal plume (Figure 23).   The thirteen macrophyte sampling sites differed in total 

percent plant cover (Repeated Measures ANOVA; F12, 57.4 = 159.31, P <0.001).  

Macrophyte cover also differed across time (Repeated Measures ANOVA F4, 135 = 33.88, 

P <0.001; Table A2).  In general, sites outside the thermal plume supported higher cover 

and higher species richness than sites within the plume; however, this observation could 

not be corroborated statistically as variability in macrophyte cover and richness was high  
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Figure 21.  Surface (solid line) and bottom (dashed line) water temperatures 
(º C) at Bengies Point, downstream of the discharge impoundment. 
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Figure 22.  Surface (solid line) and bottom (dashed line) water temperatures 
(º C) in upper Saltpeter Creek, upstream of the discharge impoundment. 
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and one site within the thermal plume (361) supported high cover and species richness 

similar to some sites outside the plume. 

Species-specific cover data was also analyzed to test for differences between sites 

and months.  Vallisneria americana, E. canadensis and N. guadalupensis cover differed 

between sites whereas M. spicatum and P. perfoliatus did not. Only P. perfoliatus 

differed in cover across months and C. demersum was the only species to differ in cover 

across months and sites.  

Classification and ordination analysis by its nature reduces highly dimensional 

data into a low-dimensional summary.  Several complementary methods (Hierarchal 

classification, Bray-Curtis, Non-metric multidimensional scaling) were used and the 

results were compared to evaluate similarity of submersed aquatic macrophyte 

Legend

MS

EC

CD

VA

NGD

PPF

PPU

SP

PPC

Legend

MS

EC

CD

VA

NGD

PPF

PPU

SP

PPC  

Figure 23.  Pie charts showing average macrophyte cover (over 
the sampling events) per species at the macrophyte sampling sites, 
where larger pies represent greater total macrophyte cover 
averaged over the sampling events. 
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communities within Dundee Creek.  Site 359 was dropped from this analysis because 

macrophytes were absent and null entries cannot be used in the analyses .  In all three 

multivariate analyses, sites 261, 268 and 358 (Figure 24) were found to support similar 

community structures.  These three sites supported a total of seven species throughout the 

growing season, peaking at 100% total cover in August.  This grouping was dominated 

by the ubiquitous species, C. demersum.  Additional species recorded at the 3 sites were 

M. spicatum, V. americana, E. canadensis, N. guadalupensis, P. perfoliatus, P. pusillus 

and one instance of S. pectinata. 

The second group emerging from ordination analysis was made up of five sites, 

262, 267, 356, 357, and 361 (Figure 24).  The dominant species in this grouping was V. 

americana.  Other species observed at these sites included M. spicatum, E. canadensis, N. 

guadalupensis, C. demersum, P. perfoliatus and a few instances of P. pusillus.  These 

sites did not support any populations of S. pectinata.  Compared to the most diverse sites 

of the first grouping, little M. spicatum was observed at these five sites.  Less C. 

demersum was observed in the second grouping compared to the first.  At site 356, in 

Saltpeter Creek, there was a switch from C. demersum and N. guadalupensis dominance 

to V. americana dominance in the summer months of August into September.  

The third grouping contained sites 263, 265 and 360 (Figure 24).  These sites all 

supported low total macrophyte cover, with no site exceeding 25%.  Site 263 did not 

support a clear dominant species.  Vallisneria americana dominated sites 265 and 360, 

with small amounts of M. spicatum, E. canadensis, N. guadalupensis, C. demersum and 

P. perfoliatus.  At site 265, species dominance switched from M. spicatum, E. canadensis 

and C. demersum to V. americana from August into September. 
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Site 266 was classified into its own group.  This site was dominated by E. canadensis and 

N. guadalupensis throughout the growing season and did not support a high abundance of 

V. americana.  The total cover of all of the species at this site dropped off considerably 

after July 

Supporting the results observed in the ordination analyses, Shannon Diversity 

(Magurran, 1981) was the highest for the sites in the first ordination group (Figure 25). 

Only site 268, in Bengies Cove, was significantly different from sites 356 and 357.  

Shannon Diversity indices of the remaining macrophyte sampling sites were comparable 

and independent of location. 

Figure 25.  Vegetation sampling sites displaying the Shannon diversity 
index using the standard deviation classification created in ArcGIS.  
Areas are grayed out due to security restrictions.  C.P. Crane Generating 
Station is identified with a star.  
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Relating macrophytes and temperature 
Pearson product-moment correlation was used to relate cover of specific species 

to water temperature at the 13 sites on a monthly basis.  Water temperature and cover of 

submersed aquatic macrophytes for any of the sampling months were not correlated.  

Similarly, total macrophyte cover was not correlated with water temperature in any of the 

months in which sampling occurred.   Fluctuations in water temperature may have been 

important, but no correlations were found between standard deviation in water 

temperature and total macrophyte cover at the sampling sites (Figure 26; r = -0.23, P = 

0.05). 

Other covarying factors 
Habitat Parameters 

Dundee Creek is a relatively small system, with little water quality variation 

throughout the creek (Table 2), allowing a reliable representation of the water quality in 

the creek system using the 5 water quality stations.  Of a suite of water quality  

3
3.2
3.4
3.6
3.8

4
4.2
4.4
4.6
4.8

5

0 20 40 60 80 100

Total % cover

St
an

da
rd

 d
ev

ia
tio

n 
of

 w
at

er
 

te
m

pe
ra

tu
re

 Figure 26.  Scatter plot of total percent macrophyte cover and standard 
deviation of water temperature at the 13 macrophyte sampling sites. 
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parameters, only four, light attenuation coefficient (Kd), dissolved inorganic phosphorus 

(DIP), chlorophyll-a (Chl-a), and total suspended solids (TSS), were defined as habitat 

requirements for tidal fresh and oligohaline portions of the Chesapeake Bay (Batiuk et 

al., 2000).  The requirements were defined as: Kd <2m-1; TSS <15mgl-1; Chl-a <15µml-1 

and DIP <0.02mgl-1 (Batiuk et al., 2000).  All four requirements were either met or only 

slightly exceeded at all five sites within the study area (Table 2).  Dissolved inorganic 

nitrogen is also presented in Table 2, although it is not considered a habitat requirement 

in the tidal fresh/oligohaline regions because it is so high (i.e., the system is P limited).  

The mean light attenuation coefficient was slightly higher than the habitat requirement at 

sites DN1 and SP1 and DN3, while DIP was slightly higher at all sites except DN3.  

Analysis of Variance shows that the 4 habitat variables did not differ among the five 

water quality sites (Table 3). 

Although no differences were found among the water quality sites for habitat 

parameters, salinity differed between the 13 sites surveyed for macrophyte (RMANOVA 

F12, 328 = 154.44, p < 0.001, Table A7) and months (RMANOVA F4, 433 = 9455.86, p < 

0.001, Table A7).  Site 361 supported the highest mean salinity of 5.86 and site 268 the 

lowest mean salinity of 4.44 (Figure 27).  Salinity was highest in October and lowest in  

Table 3.  Summary of water quality habitat requirement ANOVA tables 
(A3-A6). 

Habitat requirement variable F df p 
Light attenuation coefficient 1.26 4,60 0.30 
Chlorophyll-a 0.80 4,60 0.53 
Dissolved inorganic phosphorus 0.83 4,60 0.51 
Total suspended solids 0.89 4,60 0.47 
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Figure 27.  Average salinity in Dundee and Saltpeter Creeks during 
the 2005 SAM growing season.  Grayed out areas are part of 
Aberdeen Proving Ground and grayed out due to security 
restrictions.  C.P. Crane Generating Station is located in the lower 
left corner of the map.
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April. Salinity and water temperature were negatively correlated (Pearson product 

moment: r = -0.51, p = <0.001). 

Ecological similarity and ordination  
Similarity analysis 

The quantitative Sorenson similarity index, or Bray-Curtis index, was calculated 

for each pair of the 13 macrophyte sampling sites to determine the variation in species 

composition along the environmental gradients in Dundee Creek.  The results contain a 

wide range of coefficients.  The two most similar sites were 268 and 358, with a Bray-

Curtis coefficient of Cn = 0.726.  The two most frequently observed sites with high Bray-

Curtis coefficients were 262 and 361.  Site 262 supported four species and was located in 
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the second lowest temperature standard deviation, while site 361 supported five species 

and was located in the second highest temperature standard deviation.  On the other 

extreme, sites 359 and 266 were most commonly found to be completely dissimilar (Cn= 

0) from other macrophyte sampling sites in the creek system. 

Bray-Curtis Ordination 
Using Bray-Curtis ordination, four groupings of the 12 (Site 359 was dropped 

because it did not support any species) sites emerge across three ordination axes.  The 

three axes explain 83.9% of the total variance.  The locations of the sites on the Bray-

Curtis ordination graph (Figure 24) are similar to the results of the classification analysis.  

The most dominant environmental variables related to community structure were depth 

(r2 = 0.55 on Axis 1), salinity (r2 = 0.43 on Axis 2), DIP (r2 = 0.47 on Axis 3) and water 

temperature (r2 = 0.229 on Axis 3).  The species with the highest correlation on any axis 

was V. americana (r2 = 0.749 on Axis 2).  Several species were correlated with Axis 3, 

including C. demersum (r2 = 0.72), which is also the axis with some correlation with 

surface temperature.  In combination with the classification results, the ordination results 

show that sites within the thermal plume are similar to sites outside of the thermal plume, 

as evidenced by site 361 being classified with sites 262 and 267.  

Growth Chamber Results 
 None of the species obtained from the Wisconsin nursery performed well in the 

36 °C chamber with V. americana dying after only 4 weeks. Elodea canadensis and C. 

demersum survived the length of experiment but showed signs of stress by the end of the 

experiment that would have eventually lead to death (Figure 28).  Vallisneria americana 

produced the longest leaves in the 32 °C chamber and the shortest leaves in the 36 °C 

chamber (ANOVA; F = 131.49, P < 0.001; Figure 28A).  Ceratophyllum demersum fared 
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the best at the highest temperature of 36 °C (Figure 28B), but maximum length of leaves 
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Figure 28.  Maximum length (±SE) of V. americana (A), E. canadensis (B) 
and C. demersum (C) from the Wisconsin nursery. 
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did not differ between temperature treatments (ANOVA; F = 2.43, P = 0.09).  Elodea 

canadensis survived the eight week experiment in the 36 °C chamber, but the maximum 

length peaked in week 4 and declined through the end of the experiment (Figure 28C).  

Maximum length was reached in the 28 °C chamber and was shorter in the other two 

treatments (ANOVA; F = 46.87, P <0.001).  Each of these species showed the same 
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Figure 29.  Maximum length (± SE) of V. americana 
obtained from Wisconsin (A), low temperature areas from 
the study area site (B) and high temperature areas of the 
study area site (C). 
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general trends in the 28 °C and 32 °C chambers of increasing maximum leaf length 

through the 8 week period (Figure 28).  The number of ramets also showed a significant 

temperature effect (ANOVA; F = 29.38, P <0.001) where the number of ramets in the 36 

°C (1.3 ramets) chamber was lower than the two lower temperature chambers (3.6 

ramets).  Similarly, the maximum number of leaves for one plant showed a significant 

temperature effect (ANOVA; F = 90.20, P <0.001).  The maximum number of leaves for 

one plant in the 36 °C (4.2 leaves) chamber was lower than in the 28 °C (8.6 leaves) and 

32 °C (8.6 leaves) chambers. 

The source of plant material also had an effect on how plants performed in the 

three temperature treatments. Vallisneria americana plants from the low temperature 

areas of the study area produced the longest leaves and the plants from Wisconsin 

produced the shortest leaves (ANOVA; F = 27.73, P <0.001).  The number of ramets also 

showed a source effect (F = 12.79, P <0.001), but in this case the number of ramets of 

plants collected in low temperature areas (3.7 ramets) were higher than plants from 

Wisconsin and plants from the high temperature areas (2.2 ramets; Figure, 29).  

Temperature effects on leaf production was also affected by source of plant material 

(ANOVA; F = 11.33, P <0.001); the plants from Wisconsin supported fewer leaves than 

the plants from the study area (Figure 29).  Finally, the sum of all leaves among all plants 

in a container differed among temperature (F = 26.91, P <0.001) and source treatments (F 

= 11.69, P <0.001).  The sum of all leaves was lower in the 36 °C chamber, while the 

plants from the low temperature areas produced more leaves than the Wisconsin plants or 

plants from the thermally impacted area. 
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Discussion 
As expected, significant differences in water temperature were observed within 

the study site that were generated by the thermal effluent of the C.P. Crane power 

generating station; however, owing to the high variability in submersed aquatic 

macrophyte species presence and cover at the 13 sample sites and the necessary small 

sample size within the thermal plume to avoid autocorrelation issues, the temperature 

differences did not result in statistically detectable differences in submersed aquatic 

macrophyte communities.  Thus, the null hypothesis could not be falsified. Nevertheless, 

water temperature does appear to play a role in structuring the macrophyte communities 

at the study site; diversity and cover were generally higher outside the thermally 

impacted area than inside (Figure 23) and temperature was an important environmental 

gradient in ordinations (Figure 24). In addition, Elodea canadensis performed best in the 

28oC temperature treatment of the growth chamber experiment (Figure 28) and appeared 

stressed at the higher temperatures that represent temperatures commonly experienced in 

the thermal plume (32 oC) or above the thermal tolerance of many species (36 oC). Thus, 

at least one species at the study site may be sensitive to the temperatures commonly 

experienced within the thermal plume.  

Results from the continuous temperature probes support the hypothesis that 

temperature differences existed within the creek (Figure15).  The two sites nearest the 

discharge impoundment experienced the highest water temperatures, exceeding 30 °C 

during the summer for approximately 12 hours per day.  Temperature not only varied 

among sites but also changed with the tidal cycle.  At the mouth of Saltpeter Creek, at 

Bengies Point, the water temperatures were found to correlate with the ebb tide owing to 

circulation patterns and the location of the discharge impoundment (Table 1).  Peak water 
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temperatures at DM2 were reached twice a day and at times may have occurred during 

the middle of the night.  Unlike the other sites in the creek system, the dual peaks in 

water temperature persisted for the entire tidal cycle.  The disruption of the coinciding 

light:dark - temperature cycle could cause physiological stress to the plants in this area 

(Hennessey et al., 1991 and Liu et al., 1998).  Disruption of the diel light:dark -

temperature cycle may have an influence on temperature dependent processes such as 

nutrient uptake, and translocation (Bulthuis, 1987).  Water temperature is also known to 

affect photosynthesis (Anderson, 1969; Bulthuis, 1987; Santamaria and van Vierrsen, 

1997) and respiration (Bulthuis, 1987).  The temperature probe in upper Saltpeter Creek 

did not show any correlation with water levels (Table 1).  This was surprising, as a 

correlation with the flood tide was expected.  The lack of correlation could be due to the 

build-up of heated water over several tidal cycles, similar to observations made at Chalk 

Point Station, MD (Schreiner et al., 2002). 

Temperature effects on submersed aquatic macrophyte communities were more 

subtle than expected, which may have several explanations. Perhaps the most obvious 

explanation is that the 4-5 ºC increase in temperature within the thermal effluent was not 

large enough to noticeably impact plant growth and survival of most local species. The 

“average” rainfall year (McPherson, 2006) created conditions in which published 

stressful or lethal temperatures for most submersed aquatic macrophyte species  (Table 4) 

were not reached.  Along with average precipitation, ambient water temperatures during 

2005 were not significantly different from the previous nine years in the study area 

(Figure 30), even though water temperatures were higher in the Lower Chesapeake Bay 

(Blankenship, 2006).  The “average” rainfall and average water temperatures mitigated 
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the increase in salinity caused by the effluent.  Conditions in which temperature and 

salinity tolerances for submersed aquatic macrophytes are exceeded may only be 

achieved during years of low river flow and high air temperatures coinciding with 

drought conditions. 

Despite temperatures within the thermal effluent falling within the thermal 

tolerances of submersed aquatic macrophytes, changes in the balance between 

photosynthesis and respiration of some species can be expected (Ryan, 1991) even for the 

relatively small temperature difference experienced within the thermal plume compared 

to ambient conditions.  Indeed, the temperature tolerance of E. canadensis appears to be 

reached at relatively low temperatures and should have been reached at the study site. 

Furthermore, I expected the V. americana plants collected from the thermal plume to 

perform better than plants collected from sites outside the thermal plume. That the 
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Table 1.  Species specific temperature ranges and information concerning 
important growth aspects for several species present in Dundee and 
Saltpeter Creeks.

 

Table 4.  Species specific temperature ranges and information concerning 
important growth aspects for several species present in Dundee and 
Saltpeter Creeks. 
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opposite was observed (Figure 29) suggests that the plants from the thermal plume were 

not acclimated to the higher temperatures, but were stressed enough to be affected by the 

experimental conditions. Still, plants collected from the study site do appear to be 

acclimated to the higher temperatures of the mid-Atlantic region compared to the plants 

from Wisconsin that generally experience cooler temperatures during the summer; V. 

americana from Wisconsin died within 4 weeks of the experiment whereas the V. 

americana from the study site did not.  

Another explanation for the subtle temperature effects is that the water column at 

the study site stratified during the summer such that temperatures at the bottom were 

often 2 oC and in one instance 4 oC cooler than at the water surface (Figure 21) except 

when wind events and strong tidal currents could break down the stratification. Thus, 

some species with meristems close to the bottom of the water column experience cooler 

temperatures than other species that form canopies at the water surface. This could 

explain why V. americana, a rosette-forming species, was abundant within the thermal 

effluent. 

Finally, temperature effects on plant metabolism may be compounded when 

combined with other environmental changes such as salinity and nutrient inputs (Ryan 

1991). Water quality is known to vary significantly within systems larger than Dundee 

Creek; however, water quality at the study site did not vary significantly (Table 3).  The 

water quality data also shows that the habitat requirements for Kd (<2m-1), TSS (<15mgl-

1), Chl-a (<15µml-1), and DIP (<0.02mgl-1) (Batiuk et al., 2000) were either met, or only 

slightly exceeded.  These favorable conditions allowed the submersed aquatic 

macrophytes within the study site to grow and provided consistent conditions under 
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which the influence of the thermal effluent could be investigated.  In addition to the 

habitat requirements, salinity can also be a driving force in the distribution of submersed 

aquatic macrophytes (Batiuk et al., 2000).  Differences were found in salinity between the 

13 sites in Dundee Creek, but the highest mean salinity was only 5.86 at site 361.  

Salinity was also identified as an important gradient in the ordination analysis (Figure 

24).  Jordon and Sutton (1984) suggested that without the salinity gradient, the benthic 

communities in the thermally affected areas would probably resemble the freshwater 

areas in the nearby Bush River.  However, unlike benthic invertebrates, the salinity 

gradient should not be an influencing factor of the distribution of submersed aquatic 

macrophytes in Saltpeter and Dundee Creeks because the range of salinity did not exceed 

the tolerance of the tidal fresh/oligohaline submersed aquatic macrophyte species 

observed at the study site (Stevenson, 1988; Twilley and Barko, 1990, and Doering et al., 

2001). 

In conclusion, although results of the field surveys show that the thermal effluent 

of the studied power plant creates a thermal gradient within the study system, sample 

sites were ecologically similar within and outside the thermal plume.  Although no 

statistical correlations were found between water temperature and macrophyte cover in 

the field, E. canadensis preformed best at the coolest temperature (28 °C) in the growth 

chamber experiment.  This suggests that E. canadensis can not survive as well as other 

species in areas of elevated water temperature. Acclimation of populations to warmer 

temperature is conceivable considering V. americana from Maryland was able to survive 

36 °C temperature but the Wisconsin plants could not.  Thus, introduction of a new 

thermal effluent to a coastal ecosystem may cause short term changes in macrophyte 
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community structure, but once plants acclimate, the communities may return to historic 

conditions, assuming other influencing variables remain the same and plants can 

recolonize via seeds or vegetative propagules from nearby populations. If such 

populations are absent, restoration efforts should use local sources of plant materials that 

are acclimated to higher water temperatures rather than plants from places such as 

Wisconsin that are less tolerant of warmer water. In combination with passive or active 

restoration of submersed aquatic macrophytes, techniques should be developed to reduce 

the temperature of the effluent so that the initial shock and overall effect of the thermal 

effluent is reduced.  
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Chapter 3: Broader Theoretical Context 

 
One by-product common to fossil fuel and nuclear power plants is excess heat 

(Gibbons and Sharitz, 1974).  Thermally-altered aquatic environments are commonplace 

throughout the world (Parker et al., 1973), affecting organisms directly and sub-lethally 

and impacting the environmental conditions (de Sylva, 1969). These local thermal effects 

of power plants may be heightened as global climate change is causing whole regions to 

become hotter, including the Chesapeake Bay. On an annual mean basis, North American 

annual mean surface air temperatures are predicted to increase by 2 to 4 oC, with eastern 

North America, including Maryland, increasing by 3.6 oC over the next century (IPCC, 

2007).  Global climate models also predict increases in precipitation and extreme hot 

days in the summer (IPCC, 2007).  Influences of temperature on biological processes are 

not a new topic and have been studied for many years.  Studies show that increases in 

water temperature can cause changes in community composition, life cycles of organisms 

and productivity (Brock, 1970; Barnett; 1972; Jordon and Sutton, 1984).  The scale of the 

temperature fluctuations are difficult to capture in a single study as they can fluctuate 

hourly, daily, seasonally, yearly and even on century scales.  The potential effects of 

global warming on terrestrial plant communities have received considerable attention, but 

little attention has been given to how aquatic plant communities may respond to 

fluctuations in water temperatures (Short and Neckles, 1999).   

My research addressed how water temperature affects submersed aquatic 

macrophyte community composition by sampling macrophyte coverage and diversity 

based on the thermal regime in an area that has been thermally altered for almost 45 
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years.  The results of the study showed that the submersed aquatic macrophyte 

communities within the thermal plume were statistically similar to the communities that 

occurred outside of the plume.  However, statistical similarity of the macrophyte 

communities may overshadow actual biological differences between sites within the 

thermal plume and unaffected sites.  For example, the most diverse sites were found 

outside the heated areas while a lack of diversity was found at one site within the themal 

plume.  To reduce auto correlation effects, only three sites within the plume were 

sampled compared to 10 sites outside the plume.  This design increased the chance of 

sampling highly diverse sites outside the plume (261, 268, 358) but also sites that could 

not support any plant life (359), essentially increasing the variability of the data to swamp 

any real biological effects of the thermal discharge.  Even so, E. canadensis, coverage 

was negatively correlated with water temperature in the field (Table A8) and showed 

depressed growth in the 32 oC and 36 oC growth chamber.  The growth chamber results 

coupled with the field correlations suggest that E. canadensis may indeed be sensitive to 

a thermal alteration of the environment, refuting the hypothesis that all species at the 

study site are tolerant of higher temperatures.  Water temperatures were significantly 

different throughout the creek, but water temperature was not the only dominant variable 

in the system with salinity and dissolved inorganic phosphorus also being as, if not more, 

important (Figure 24).  Thus, although the results of this study do not show a statistically 

significant thermal effect from C.P. Crane Generating Station on the SAM communities, 

effects of higher temperatures on specific species coupled with other environmental 

changes, such as increase salinity, increased nutrients, and decreased light availability to 
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submersed leaves, can be observed now and may become more prevalent in the future as 

global temperature rise and the demand for electricity increases. 

Currently ambient water temperatures in the Dundee-Saltpeter Creek system are 

below the lethal limits of the native submersed aquatic macrophytes.  Even had surface 

water temperatures been closer to the lethal limit in 2005, stratification of the water 

column (Figures 21, 22) may have served as a buffer against higher temperatures for 

some species with meristems close to the bottom of the water column (e.g. V. 

americana).  A major influence on water temperatures in this system is the amount of 

precipitation.  During drought years the ambient water temperatures increase, causing the 

thermally elevated areas to reach or exceed the tolerances of several species.  In years 

with drought conditions (2001, 2002) a large loss of vegetation was observed at the study 

site, but this loss of vegetation may also be attributed to increased salinity.  Years with 

greater than average precipitation (2003, 2004) reduced ambient water temperatures, 

allowing the macrophytes to re-colonize the creeks (Orth et al., 2005).  Global warming 

models predict increases in precipitation as well in many areas, but droughts are expected 

in horse latitudes (EPA, 1998).  Although increased precipitation may keep water 

temperatures below the lethal limits for submersed aquatic macrophytes, it could cause 

increases in sediment and nutrient pollution, both of which can decrease the amount of 

sunlight penetrating the water column as well as increased epiphytic growth on leaves. 

An additional change that is predicted to take place with global warming is sea 

level rise.  Sea level rise has several consequences, but one of the most important changes 

to the tidal fresh and oligohaline regions will be saltwater intrusion.  Tidal 

fresh/oligohaline species of submersed aquatic macrophytes can already withstand small 



73 

fluctuations in salinity, as reported in my study, but large saltwater intrusions into the 

Upper Chesapeake Bay will start to displace vegetation.  Setchell (1922) showed that 

submersed aquatic macrophytes can invade neighboring zones if the temperature is raised 

or lowered to ideal conditions and the same is expected for changes in salinity (Short and 

Neckles, 1999 and Doering et al, 2001).  Gradual changes in salinity may allow species 

such as Ruppia maritima to invade more of the Upper Bay, but Zostera marina is 

unlikely to move northward if temperatures increase.  

Increases in temperature and saltwater intrusion could lead to a loss of 

biodiversity in the tidal fresh/oligohaline regions of the Chesapeake Bay.  Loss of 

biodiversity could lead to a loss of ecosystem productivity (Lehman and Tilman, 2000), 

function (Solan et al., 2004) and resistance to stress (Yachi and Loreau, 1999).  

Communities composed of several species may be able to survive the effects of multiple 

stressors better than communities consisting of only one species.  This was evidenced in 

2005 when a large die-off of Z. marina was observed in the Lower Chesapeake Bay 

believed to be have been caused by a single stressor, high water temperatures.  However 

Stevenson and Confer (1978) found almost every species in the Mid-Upper Bay declined 

after Hurricane Agnes hit in 1972.  Diverse tidal fresh/oligohaline submersed aquatic 

macrophyte communities in the Upper Chesapeake Bay have been able to persist in areas 

with constant higher than ambient water temperatures such as Dundee and Saltpeter 

Creeks.  Although the submersed aquatic macrophytes in Dundee and Saltpeter Creeks 

have been able to persist, the cumulative effects of the additional stressors that will 

accompany global warming may cause the health and biodiversity of these important 

ecosystems to decline. 



74 

This study shows that significant differences in water temperature exist in Dundee 

and Saltpeter Creeks.  The thermal effluent is a constant presence in the system but does 

not cause diversity differences between submersed aquatic macrophyte communities in 

different areas of the thermal regime.  The once-through cooling system of the power 

plant also alters the salinity gradient, but the salinities do not exceed the tolerance of the 

tidal fresh/oligohaline submersed aquatic macrophytes found in this system.  An 

additional important conclusion was the correlation between maximum water temperature 

and tidal cycle at the mouth of Saltpeter Creek, which could inspire further research.  I 

concluded that the thermal effluent does not cause significant diversity differences 

between submersed aquatic macrophyte communities in Dundee and Saltpeter Creeks. 

Dundee and Saltpeter Creeks provide and excellent location for further research 

due to their undeveloped nature.  Further research should consider the presence of the 

thermal effluent and its correlation with the tidal cycle and the power plant’s creation of a 

salinity gradient.  Two important questions that arose during the course of this research 

are 1. does the disruption of the natural light:dark cycle and the diel temperature 

fluctuation affect photosynthesis/respiration processes and 2. have physiological 

modifications allowed the macrophytes to tolerate the higher temperatures at the study 

site (Pilon and Santamaria, 2002).  Other considerations should include seasonal climate 

patterns and how these can influence the effect of the thermal effluent.  Although 

conducting research in a thermal effluent may provide insight into how ecosystems may 

respond to global warming, there are many synergistic effects of global warming that are 

still poorly understood for aquatic systems. 
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Table A1.  Results of the ANOVA comparing Maryland DNR’s continous 
monitoring site at APG and the five temperature probes in Saltpeter and Dundee 
Creeks. 

Source DF Sum of Squares Mean Square F Value Pr > F 
Model 5 5534 1107 1.625 < 0.001 

      
Error 5980 114009 19.06   

      
Total 5985 119542    
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Table A2.  Repeated measures ANOVA using Month as the grouping 
variable.   
  

Month Effect Num DF Dem DF F value Pr > F 
June Site 6 63 39.03 < 0.001 
July Site 12 117 68.75 < 0.001 

August Site 12 117 33.49 < 0.001 
September Site 12 117 29.21 < 0.001 

October Site 12 117 15.22 < 0.001 
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Table A3.  ANOVA comparing log transformed light attenuation 
coefficient across water quality sampling sites. 
Source DF Sum of Squares Mean Square F Value Pr > F 
Model 4 0.54 0.134 1.259 0.296 

      
Error 60 6.39 0.011   

      
Total 64 6.92    
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Table A4.  ANOVA comparing log transformed chlorophyll a 
concentration across macrophyte sampling sites. 
Source DF Sum of Squares Mean Square F Value Pr > F 
Model 4 1.21 0.302 0.804 0.528 

      
Error 60 22.56 0.386   

      
Total 64 23.77    
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Table A5.  ANOVA comparing log transformed dissolved inorganic 
phosphorus concentration across water quality sampling sites. 
Source DF Sum of Squares Mean Square F Value Pr > F 
Model 4 1.33 0.333 0.829 0.512 

      
Error 60 24.10 0.402   

      
Total 64 25.43    
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Table A6.  ANOVA comparing log transformed total suspended solids 
concentration across water quality sampling sites. 
Source DF Sum of Squares Mean Square F Value Pr > F 
Model 4 1.20 0.300 0.892 0.475 

      
Error 60 19.52 0.337   

      
Total 64 20.72    
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 Table A7.  Repeated measures analysis of variance for salinity 
extracted from the GIS interpolations at the 13 macrophyte 
sampling sites for the 5 sampling months. 
 

Effect Num. DF Den. DF F value Pr > F 
Month 4 433 9455 <0.001 

     
Site 12 328 154 <0.001 

 



83 

 
 
 
 

Table A8.  Pearson product moment correlations of submersed aquatic macrophytes and 
water temperature.  CD = C. demersum; EC = E. canadensis; MS = M. spicatum; NGD = 
N. guadalupensis; PPF = P. perfoliatus; PPU = P. pusillus; VA = V. americana 
 CD EC MS NGD PPF PPU VA 
r = -0.05726 -0.27686 0.02292 0.18495 -0.30618 0.05307 0.03998 
p =  0.4665 0.0244 0.8029 0.0921 0.0547 0.7693 0.5368 
 N = 164 N = 66 N = 121 N = 84 N = 40 N = 33 N = 241 
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Figure B1.  Water temperatures recorded at 15 minute intervals from 10 
June 2005 though 27 October 2005 at the five sites within the study area 
and the control site at Aberdeen Proving Ground (APG). 
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pH 

Figure B2.  pH data collected by Maryland DNR at the 
continuous monitoring site at Aberdeen Proving Ground for 
the 2005 season. 
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Table C1.  Raw data from macrophyte sampling events 
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