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0. Introduction. In the paper [FV], defect determination for electrically con-
ductible specimens by using electrostatic boundary measurement was first time
modeled as an inverse boundary value problem. Some studies about interior cracks
have been done numerically or analytically [A, ABV, BV1, BV2, KS, KSV, SV].
It is our intent in this paper to study the detectability of a surface crack at its
early stage of growth by means of the electrostatic potential field method. Unique-
ness results of determining surface cracks have been established in [EIN]. In [EIN,
EH], some computational methods are also developed for polygonal and/or doubly
connected domains. We explore the case of simple geometry, namely, a circular
cylinder which has a crack plane somewhere penetrating the side wall. Assume the
plate has a constant conductivity (WLOG, say, equal to 1), and the crack plane
is all the way through the thickness of the cylinder in the z-direction. From both
practical and technical point of view, there are a couple of reasons to tackle this
type of through crack ( meaning, the crack with through-thickness in one dimension
of the probed specimen).

(1) Lab experiments indicate the effect of potential field-flaw interaction with
smooth crack surface is less prominent than that with rough crack surface
[C]. In other words, a defect with rough crack surface should be detectable
by means of a field method if the case with smooth crack surface has certain
detectability.

(2) Due to the cylindrical homogeneity of the probed model in the z-direction,
and the negligible thickness, the model can be treated by a 2D method.

(3) It is more difficult to probe a defect at its early stage of growth. Since a
smooth crack can be regarded as a C? curve in many 2D models, the crack
can be approximately treated as a line segment when the flaw size is small.

So. we will consider a planar disk with a radial slit penetrating the circumference.
Let ©2 C R? represent the disk and denote by 89 the boundary of Q. Let ¢ stand
for the crack. Assume the crack is perfect insulating. Suppose one imposes a dipole
Neumann condition or 99. then the induced electrostatic potential field u satisfies
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the following PDE :

Au=0 in Q\og,
ou

(0.1) Fi 0 on o,
ou

—6;=5p—5Q on 69,

where 563 denotes the outward normal derivative, P and @ stand for the locaitons
of the dipole. In the context of physics, -g—‘,f represents the current flux density.
(Theoretically) We can generate the given Neumann boundary condition in (0.1)
by setting two (point) current electrodes at P and @ and applying DC current to
the boundary of the probed domain Let f represent the corresponding Dirichlet

condition, i.e.,
(0.2) F =140

and denote by ;% the tangential derivative along 9. The solution to (0.1) is not
unique (it is unique up to some constant). However, by taking %é, this boundary
measurement is unique. The physical meaning of %ﬁi will be the infinitesimal chage
of the electrical potential in the direction along the boundary. The inverse problem
pertaining to this model can be phrased in the following manner : “ Given P, ), and
measuring %,1;, how do we determine the location and the length of ¢ 7 » It turns out
with particular choice of P and @), we can construct a strictly increasing function of
s in terms of %; measured at two specific locations on 2. An immediate application
of this result is the capability to determine whether a surface crack exists in the
domain by the boundary measurements %—; at two different locaitons of specific
choice. Based on this result, we formulate two convergent numerical algorithms
: one for locating the crack and the other for determining the crack length. Our
detection algorithms are in nature very much different from those implemented in
[SV, BV]. In [SV, BV], the inspection algorithms rely on Newton’s method to solve
the implicit functionals of o which are derived based on some weighted integrals of
Dirichlet boundary measurements. The weight functions have to be carefully chosen
in order to achieve nonsigularity of the Jacobians, and this is the most difficult part
comprised in the construction of those computational algorithms. Our algorithms
completely avoid Newton’s method whose covergence and efficiency depend on the
corresponding Jacobian. We trap the surface crack tip in a small neighborhood
using a besection procedure. The idea of the length algorithm is to construct a
decreasing sequence of estimates which converges to the actual crack length. The
main results will be presented in section 1. We leave the analysis to section 2, section
3 and the Appendix. In section 4, Numerical simulation is performed. Specifically
when the crake length is small, we have detailed discussion regarding the stability
and the effectiveness of the method.
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1. Main Results. In this section, we present the major results. Since we impose
some assumptions on the characteristics of the material defect (i.e., a linear surface
crack with radial orientation), the only crack parameters remained to be determined
are the location of the exterior crack tip and the crack length. In Theorem 1, we
explicitly formualte an exact formula of the tangential derivative of the electrical
voltage potential on Of2 in terms of the locations of P, @), and the crack parameters.

Theorem 1. Let ) be the unit disk centered at the origin in R®. Assume a linear
crack, o, of length s initializes from 00 and lies perpendicular to 62. In complex
plane, let 2z, = e~ be the location of the exterior crack tip on Q. The diameter
on which o is located divides 002 into two half circles, say, Q% and 0Q~. Suppose
0 < s < 2. Similarly, let P = e and Q = €' be two distinct points on 9%
away from o. We denote by up q,0 a solution to (0.1), and let fp 4., Tepresent the
Darichlet boundary measurement, i.e.,

(1.1) foa.e = Upa,e|ag

where the subscripts indicate both of the incurred electrical potential field and the
boundary measurement depend on p, q, and o. Define

1 (9) — _1_ [Ks(q - 90‘) — Ks(p - 00)]tan (Q_QQL) sec (2791)
A 21 K(6 — 0,)[Ks(8 — 0,) — Ks(p— 05)}[Ks(8 — 6,) — Ks(q — 90)]
f2 () = _1_ [Ks(p—- 0s) — Ks(g— 0 )]tan (9_21) sec (%)
POOETT 2w K(0 — 06)[Ks (6 — 05) + Ks(p — 05)][Ks (0 — 05) + Ks(q — 65)]
1 (Ks(p—0,) + Ks(q— 0, ]tan(%ﬁ—)sec (L)

pao () = o T ORI G 8.) = Ko~ 6K, B =0, S Ko = 0]

and

4 — 1 [Ks(p - ga) + Ks(q - 90)] tan (%ﬂ) SeC2 (%g_)

paeld) = R O 0K 6 - 0,) + Koo — 0K (B — 8,) — Ks(a = B.)]

where

- 1/2
(12) K(z) :=

<2i8>2+tan2 (%)}

Then for 8 # p+ 2nw, 0 # q + 2nw, and 0 # 0, + 2nw with n € Z, in polar
coordinates,

(18) ( f;’q’a(ﬁ), when P, Q, and z are all on the same half circle,
fqu,a(e), when P and Q are on the same half circle, while z is
on the other half circle,
8—%’;_&(9) = fg, a »(0), when P and z are on the same half circle, while Q is
on the other half circle,
p,q,a( ), when @ and z are on the same half circle, while P is

\ on the other half circle,
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where z = €'° is the location on 0 where the boundary value gg—;,—?ﬁ s measured,

and whenever “the half circle” is mentioned, it always refers to QT or 6Q~.

To determine the location and the size of the crack through the knowledge of the
boundary measurements (p, ¢, and %é), we have to solve the nonlinear equations
(1.3) for 6, (exterior crack tip) and s (crack length). One has to calculate the
Jacobian of the system (1.3) if using Newton’s method to directly solve (1.3) for
(8,0, ) simultaneously. This involves choosing the optimal locations of P and @Q — the
choice of P and Q is optimal in the sense that the corresponding Jacobian of (1.3)
is most nonsingular. Instead, we develop a convergent algorithm to independently
trap the exterior crack tip in a “sufficiently” small neighborhood on 0. After the
surface crack tip is located, only s remaines to be solved in (1.3). Though we can
solve the nonlinear equation (1.3) for s by means of Newton’s mehtod, instead,
we construct a completely different iteration procedure. This algorithm creates a
sequencce of estimates which converges to the crack length.

nondamaged surface
---------- damaged surface

s Q = unit disk

Re z

input
diameter

O = crack

]

FIiGURE 1

When a surface crack exists in the disk, two electrodes P and Q always divide
the unit circle into two arcs : one represents the undamaged surface, and the other
represents the damaged surface on which the exterior crack tip is located. Let M be
the midpoint between P and @ on the undamaged surface. Let M, be the midpoint
between P and @ on the damaged part and denote by Mj for the case of an empty
crack. When P and @ are located on the opposite ends of an arbitrary diameter
of the unit disk (let us refer to this diameter as an “input diameter”, Figure 1),
then




Claim :

(1) |ﬂu__( )= [gl’ﬁ—( 0)| (the case where no crack exists).

(2) |9—%f—-( )| > |g§f*—(ma)| (the case where a crack with length s ezists).
where M = '™, My = "™, and M, = ¢'™- .

The above claim is the result of the following theorem :

Theorem 2. Assume all the assumptions in Theorem 1 are satisfied. Suppose
lp — q| = =, so that q, m and m, depend on p. Define

(1.4) Tp.b, (8) = lafp d \/Iafp’q’ Mg)

Then vp,0,(8) is a continuous, increasing function of s on [0,2) for each fized pair
of {p,9s}, such that p # 6, + 2nmw, n € Z. More precisely,

(1.5) Yoo, (5) = L+ 1o, ()5, 0<s<2,

wherenp 9, (s) > 0, depends on s and the relative orientation of the “input diameter”
with respect to the surface crack tip. Moreover, Assume sy is any upper bound of s
less than 2, i.e., 0 < s < sp < 2. Let K4(f) be the same as in (1.2). Define

(16) App,(¥) = 1Ky (ma =) - [Ky(mo = 65) = Ky(g = 0)]],

Ky( —8,) +Kylp—05)
(1.7) By, (y l (m—8,) + Kyy(q —65)

1
(1.8) Cpo.(y) = le(m — 05)[Ky(m — 65) — Ky(p — 65)] |’
and
| tan (7582 sec? (=) _ Ko(m —8,)[K§(m —6,) + 1]

(1-9) " Dpo, = |0 (me=bz) gec2 (Me=bz) ’  Ko(mo — 05)[K§(ms — 85) + 1]

FBr convenience, let’s denote

a= Apred (O)’
b=1B 0),
(1.10) 0. (0)
c= preu (0)’
d= Dp7ea'

For fized p, define

(1.11)

_ [Kz(q—6)— Kz (mg—6)]°
¥1(0,3) = K(,q(m,,—e)K:Zq—e) '

_ Ky(ms—0)+K,(p—06) 1 1
'l,bz(e T y) - I{yvgtn—e)"‘Kvy(qp_a) ’ ':K,(m,—G)K,(p—B) - K.(m—-8)K.(q—0) |’

Y3(0,z) = K;’(m—G;K: (»—6)’



and simply denote
(1.12) U =91(05,0), P2 =12(05,0,55), and ¥3=1h3(65,0).

Then for 0 <p -6, < m/2,

(113) .8 (5) S a(p, 907 Sb),

(2 - 5)?

where

2d
a(p, 8y, sp) =2—b - (be¥y + ac¥s + ab¥3)

4s2d
(2 — sp)*

83gd
(2 - 85)7

(1.14) . (C\Ifl\I’2 +a¥o U3 + b\Ifl\I/3)

A IRPIES

Let PQ denote the curve which one traverses from P to @) counterclockwise along

02 and PQ stand for the arc length of PQ. In the following algorithm, P; and Q;
stand for the locations of the current electrodes to be 1mposed on o0 at the jth

step. For each j, let R; (or R) denote the mldpomt of P; QJ (or PQ respectively)

, and N; (or N) the midpoint of QJ i (or QP respectively). Let an upper case
letter represent a point, and the corresponding lower case letter denote the angular
measurement of this point in polar coordinates (e.g., P = &7, R; = eii, ete.. ).
Assume P;@Q; = m (Figure 2, Figure 3).

)

(¢}

crack

Q;

FIGURE 2



FIGURE 3

Consider the same PDEs as (0.1) at a set of different dipole locations :

Aw; =0 in Q\o,
(1.15) %%i =0 e
%% = 6p,—0g, on 09
and let
(1.16) Foiaie = Wjlsq-

. : e 1 8fpiae 0fp:oqirc
The claim prior to Theorem 2 implies |ﬁi’—"l’——( )| = |ﬁﬁ3‘—(

crack inside the disk. Otherwise, ]M( 3| > ]—”J—q-’—a(n,)l if there is a crack

g 6 o
penetrating the boundary somewhere on QJPJ, and |j7—31—( ri)| < [—fﬁﬁi—(nm

n;)| if there is no

if the crack penetrates the boundary somewhere on Pij. Based on this result, we
Prove the following theorem of convergence. This theorem will serve as the guidline
to construct an iterative procedure for locating a surface crack

Theorem 3 (A Convergent Algorithm To Locate The Edge Crack Tip). Let
Zs denote the location of the edge crack tip. Assume all the assumptions in Theorem
1 are satisfied when applied to the PDE (1.11) for each j. Py and Qg are given and
lpo — qo| = 7. For j =0,1,2,..., P; and Q; are determined in the following way:

0 o
(1) If | =222 fp 27 ()] > |m1’—qJ—°(nJ)| then rotate P; and Q; counterclockwise
along BQ through an angle of 55+ to obtain P,+1 and ();11 respectively.
(2) If |——f51—ql—i( )] < |ﬁ-Lq1——7-(nJ)|, then rotate P; and Q; clockwise along 0Q
through an angle of 57T to obtain Pj, and Qjy1 respectively.

Then
Qj — 2g, as j — oo.



Moreover,
£Q;0z5 < % Vi=0,1,2,..

where O 1is the center of the unit disk and LW'Y Z stands for the acute angle mea-
surement of an angle LZWY Z.

Last, we would like to present the result regarding length determination. For
fixed p, define

/ _ 2 K. (q—8)—K,(m,—0)]
$1(0,z,y) = (2_3;/)3 . qu(ma_g)}{(z(q_.g)] )

. 2 K,(m,—68)+K,(p—6)
1.17 9:0,2.9) = @iy Bt Kaad
(1.17) . _ .

Kz (mys—0)K(p—86) Kz(m—6)K,(q-9) |
. 2 1
L 930,2.9) = o7 mImea R n)

Let
(1 18) IB(p7 9, x, y) =Dp,9 [Bp,tg (y)Cp,e(y)¢1(95 z, y) + Ap,9 (y)Cp’g(y)ngg(H, z, y)+

AP,G(y)BP,e(y)¢3(67 T, y) + ¢1 (07 T, y)¢2(0’ Z, y)d)S(e’ z, y)] :

Given o and p, define

1 _ o Y6(Y) —10.0,(8) . e(y) = Vpe, (5)
wl (8, 2,y) =max { i {y 8p.6,2y) 0 B.0.5y) J

min {1, - a0 ||

2 _  Apely)  Bpely)  GCpey) }
(1.20) “’P(G"”’y)‘m”{y 510,20 " 520,397 $:(6,2,9) )

where Z = max(z,y —1). ¥p,(-) and (-, -, ) have been defined in Theorem 2. We
construct two iteration functions as follows:

— Yp,6.(8) — 1 Yoo, (s) —1
20 Aa’p(?’y) =? a(p,6,y) /(1 * a(p,8,y) >

(1.19)

and

and
w;(91$’y)7 if Yp.,8, (S) > ¥p,6 (wg(ewray))
(1.22) wep(8,,y) = or wg(G,x,y) <0,
w2(0,z,y), otherwise.

The subscripts of w; ,, Wi, Asp and w, , indicate these functions depend on the
locations of the current electrodes and/or the geometric characteristics of the crack.
We prove the following theorem in order to propose an effective procedure to esti-

mate the crack length.



Theorem 4 (A Convergent Iterative Scheme to estimate the crack length). Suppose
p ts chosen so that 0 < p— 0, < 7/2. Assume 0 < s < sp for some upper bound
sp < 2. Let

( S0 = Sby
tg = /\a,p(ea, 30) = /\a,p(ea, Sb)v
(1.23) < and for j = 0,1,2,3,...,

3j+1 = wo‘,p(9¢71 t]7 3j)7

\ tj+1 = )\a,p(QU, Sj+1).

Then

(1.24) O0<tp<t1 <tag<---<8§< <82 <81 <80 =5
and,

(1.25) sj—Ss as j—oo.

Remark. Using similar arguments, it is still possible to construct and prove a
convergent algorithm if the condition 0 < p — 6, < =/2 failes. We consider 0 <
p — 0, < w/2 simply for the following reason : Due to the circular symmetry of
the geometry, all the possibile degrees of sensitivity of the method corresponding
to different locations of the current electrodes P and () can be discussed within
this range. Regarding the issue of sensitivity, we make observations and have some
discussion in Section 4.

In Section 2, we present the proofs of Theorem 1 and Theorem 2. The proofs of
Theorem 3 and Theorem 4 are arranged in Section 3.

]



2. Proof of Theorem 1. First of all, we need explictly solve the direct problem

Au=20 in Q\o,
ou

(2.1) 3 0 on o,
ou

525}9—5@2 on ON.

Consider two delta families, {g2 }nen and {g9}nen C C(89), whose compact sup-
ports are away from o, such that

lim gf(z) = 6p(z),
2.2 n—co
22 lim 92 (2) = Go(2)

n—oQ

in the sense of distribution, and

/gfds:/ggds.

N aQ

Let u,, satisfy the boundary value problem:

Au, =0 in Q\o,
Oun,

(23) —8-1-/— =0 on g,
Otin =gP — g% on ORQ.
ov

The solution to (2.3) is unique up to a constant. We normalize the solution by

imposing the condition that [ un, = 0. It’s been understood that
a0

Up = u as j — oo in the sense of distribution.

In particular,
oy

(2.4) lim un(2z) = u(z), Vz e Q\o.

n—r00

Let h, be a one-to-one analytic transform that maps the connected domain Q\ &
onto the unit disk Q. Let G(:,-) represent the Green’s function for the Neumann
Problem in Q, and G,(-,) represent the Green’s function for the Neumann Prob-
lem in £\ o. The Green’s functions corresponding to the Laplace equation are
conformally invariant, so

Go(y,2) = G(he(y), ho(2)), VzeEQ\o.
Therefore the solution to (2.3) is given by
(28)  ua(2) = / (97 () = 92 @) G (ho (v), ha(2))dy,  2€Q\o,
o)
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since the Neumann boundary condition vanishes on ¢ which is regarded as part of

0(Q\ ). Passing limits on both sides of (2.5) as n — oo, and applying (2.2) and
(2.4), we have

(2.6) u(2) = G(ho(P), ho(2)) ~ G(hs(Q), ho(2)), z€ D\ o
In polar coordinates, the Green’s function G reads
1
(2.7) G(p, $,1,8) = i log (r* + p* — 2rpcos(d — ¢)) (1 + p*r? — 2rpcos(f — 4)).
We then apply (2.7) to (2.6) for z = re'?. In polar coordinates, (2.6) reads

u(r, 8) =G(lho (P)], arg ho (P), |he (re™)], arg ho (re™))
~ G(lho (Q)], arg ho(Q), |ho (re®)], arg hy (re™)),

- g [m,(rew)w 1o (P = 2 ho(re)] - [ho(P))

cos (arg h, (re'®) — arg hd(P))] : [1 + ho (P)|? - |ho(re®)?
(28) =2 [ho(re)] - |ho(P)] - cos (arg ho(re’®) - arg ha<P>)]
+ 2 log [gh,<mw>;2 + 1B (Q)F = 2+ hy(re®)] - 1, (Q)}

cos (arghare”) = axghal@)] - [L+ ho (QF 1o (e

~ 2 |ho(re®)] - | (Q)] - cos (arg hy (re®) — arg ha(Q))},
0<r<1, 040,

Iy Appendix A, we explicitly construct A, for the case where 6, = 0. The notations
QF, Q-, 097, 00, ¢, and o~ will follow the definitions (A.2) in Appendix A.
Since Q \ o is not a smooth doamin, some properties of h, have to be carefully
counsidered while carrying out the calcuations in order to solve the boundary value
problem. Regarding this point, we have detailed discussion in Appendix A. Now,
we claim that

1—-K2(6) 2K,(9) . .
TR0 + 1+K3L(g)z, if 0<b6<m,
0y — ~K2(9 K, (9) . .
(2.9) he(e) 1+K§§9; - 11[{3(((3527 if ™<8<2m,
-1, if 8=m,

2—-3

where K,(f) := [(—’——)2 + tan? (?2—)} 1/2.
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Given z = e* € 8Q, consider a sequence of points, {2, = r,e?"}%; C Q, such
that z, — 2z, asn — co. That is, r, =+ 17, and 8, — 8 as n — co. Then

(2.10)
( s )2 _ (zn - 1>2 _ < s )2 (r2 —1)% — 4r2sin?4,
2—s m+1l) \2-s —[(r§+1)+2rnc050n]2
4r,(r2 - 1)sinf,
TrZ 1)+ 2rncos bt
Let

s 2 Zn — 1 2
2.11 = — [ = = £ e'¥n,
2.1) wni= (5) - (220) =6

To keep analyticity of A, in the interior of the mapping domain 2 \ o, we must
consider the branch 0 < ¢, < 2, so that wy/> = \/Enei¥~/? (see Appendix A).
Suppose z € 00T, then the sequence is chosen to approach z from the interior of Q.
That is, z, € QF, Vn. Thus, sinf, > 0 and 0 < 7, < 1. From (2.10) adn (2.11),
we observe that Im(w,) > 0. This implies 0 < ¢, < 7. Hence 0 < ¥,/2 < w/2.

Moreover,

n—00 n—co 2—3s [(’r% -+ 1) + 27y, cos Hn]2
_ S 2 L 4sin% 6
T \2-s (2 + 2cos )2

2
= (2 -l—tanzg
2-—3s 2 ’

2 2 _1)\2 _ A2 ain?
lim Re(wn) = hm {( s ) _ (rn 1) 4Tn sin 91’1}

and . 2 1)eing
lim Tm(w,) = lim ———n(Ta = 1)sinbn - =0
n—00 n—oo [(7‘% + 1) + 2r, cos Bn]
~Lherefore, we obtain
lim tan 2% = lim —SB¥n e S0Yn
n—co 2 - n—ooo 14 cosiy, n—oo &, + &, COS Yy,
— lim Im(w,) lim Im(wy,)
" nso0 &, + Re(w,) n—oo (Rew,)? + (Imwy,)2 + Rew,
= 0.

It immediately follows that ll’zi — 0 since 0 < ¥, /2 < w/2, Vn. So

: /2 _ Wa/2 _ 2 2
(2.12) nlirgo w,/? = nlinéo VEne = nli)ngo v (Rew,,)? + (Imwy,)
1/2

() ]

12



Using the definition (A.3) in Appendix A and applymg (2.12), we obta.m

ho(e¥) = lim

Q+dz,— z—e‘9 (

1/2
z —1
z,,+1

z —1
z,.+1

l\JIQ)

12t

( )W
= lim = 7
1+ ( )
_ 1—K3(9) 2Ks(0)
T 1+ K2(0) 1+ K2(9)
for 0 < 8 < m, as claimed in (2.9). Using similar argument, we assert that if
z € 092~ then ¥, — 7 as n — oco. Analogous to (2.12), we have

1/2
lim w1/2 lim -—\/E = — s\’ + tan® -
™ 2—-s

(
(

) + tan?
2
) + tan?

[3C115 o3

2-3
_S
2—3
1

n—oQ n—00

and then,

Q= 3Dz, —z=ef

ho(e?) = lim i—(
(

1 - K20) 2K,

TI1YK20) 1+ K2(9)

for T < 0 < 27. In particular, wy /2 _, oo when 6 = 7 and the limit is approached
from either Q% or Q. So

ha(ei;’)= im i_(

13




We have proved (2.9).

Now, we would like to formulate f, 4, from (2.8). There are four possibilities
concerning the locations of P and Q. Case I: 0 < p,qg < 7; Case II : 7 < p,q < 27;
Case IIl: 0<p<m,m7<qg<2r;And Case IV: 7 <p < 2m 0 < qg< 7w We
only discuss case I in the following paragraph. Calculations for the other cases are
similar.

Case I : Suppose 0 < p,q < 7. Let arg ho (%) = ¢, 0 < ¢ < 27. Since h, maps
the boundary of Q\ ¢ onto the unit circle, |h,(e?)] = 1. We have

ho () = e = cos ¢ + isin .
Comparing this expression with (2.9), it follows that

HC
(2.13) cos (arg hy(e?)) = ﬁ 0 <6< 2m,
and
2K, () :
(2.14) sin (argh (eie)) _ ) TFRIeY if 0<é<m,
—%{‘—3(%, if m<60<2nr.
Similarly, |ho (P)| = [ko(Q)] = 1,
(2.15)
. 1— K2(p) ; 1-K2(q)
cos (arg h,(e'?)) = ——=——— cos (arg hy(€'?)) = ———=
reho ™) = gy | ) o) =R
_ . 2K,(p) |’ . ; 2K,(q)
ho’ P = h'a' “ =
sin (arg he (e'?)) T+ K2(p) sin (arg hq (€'7)) 1+ K2(q)

Since |hy(€¥)| = |ho(P)| = |ho(Q)| = 1, Applying (2.8) to the definition (1,1), we
obtain
fo.q.0(0) = 1‘l_i}ril_ u(r,0) = -—-4% log[2 — 2 cos (arg(h, (e*°) — arg(ho (P)))]-
[2 - 2 cos (arg(ho(e*?)) — arg(ho(P)))]
- + 3= log[2 — 2cos (arg(ho (6)) - arg(ha< I

[2 2 cos (arg(hy (€*)) — arg(ho(Q)))]
1, [1= cos (arg(hn () - arg( )]
o7 811 cos (arg(hy (e?)) — arg(hy(eP)))
whenever § # 2n7, n € Z. Based on the formula cos(a— ) = cos a cos f+sin asin 3
and unsing conditions (2.13)—(2.14), we have
(2.17) cos (arg ho (%) — arg h, (7))

C1-RXO)1-KXg) | 2K,(0) 2K.(q)

C1+K2(0)1+K2(q) 1+ K2(0) 1+ K2(q)

_ 1+ E(0)K,(9)]? - [K,(0) - Ku(g)]?
[1+ K2(0)][1 + KZ(q)] ’

(2.16) =

0<f<m,
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and

(2.18) cos (arg hy(e') — arg hy(e'7))

[1 + Ks(e)Ks(p)]z — [Ks(e) — Ks(p)]z
1+ K30t + Ki(p)]

Now we substitute expressions (2.17)-(2.18) into the right-hand side of (2.15).

Through some simplifications, we reduce (2.15) to the following equation:

_ 1 [KO) - Ke(9)], 1, [1+ES(D)
(2.19) fp,q,d(g) = log [Ks(e) — Ks(P):| " or lo [1 + K2(q)
Note that on 01,

, 0<B<m.

}, 0<f<m.

Ofp,a,0 oy _ Ofp,g0
Ypac(o = Ugazo)

So, when 0 < p,q¢ < m and 0 < 8 < 7 (equivalently, P, @, z € 3Q"), we obtain
8fp,q,9 _rl
24 (9) = £2.,,(0)

= Jpg,co
by differentiating (2.19) on both sides with respect to 6.

In case 7 < § < 2w, instead of (2.17) and (2.18), we have
cos (arg ho (€%) — arg hy(e'?))
_1-K7@9)1-Kj(g) | —2K,(0) 2K(g)
1+K2(0) 1+ K2(q) 1+ K2(0)1+ K2(q)
— [1 - Ks(0)Ks(9))® - [Ks(8) + K,(q)?

1+ K2(9)][1+ K2(g)] ,  w<8<2m,
and
cos (arg by (¢%) — arg hy (7))
_ - K,(0)K(p)]? - [Ks(6) + Ks(p)}z, e

[1+K2(0)][1+ K2(p)]
Repeating the same course of computations as for the case 0 < § < w, we obtain
_ 1 [K(0) - Ks(g)] , 1 1+ KZ(p)
229 fraol®) = 108 | 00| * 2% | Ty Rh
Bherefore,

}, <6 <2m.

6fp,q,a — 8fpa¢1a0' _ £2
87' (9) - 80 (9) - p,q,a(0)7

for 0 <p,g<m and w < 8 < 27 (i.e.,, P,Q € 9QF, but z € Q) if we differentiate
(2.20) on both sides with respect to #. We have proved case 1.

The above calculations are based on the assumption that 8, = 0. In general,
suppose 8, # 0. Through a counterclockwise rotation of angle —8,, one can first
map Q\o to another auxiliary domain which has the crack positioned on the positive
real axis. The effect of this rotation on the conformal transform is equivalent to
a translation by —8, units on the factor K,. So when reflected on the boundary

measurement g%_ii(ﬁ), it is natural to come up with the results given in (1.3).

ad

To prove Theorem 2, we need the following result :
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Lemma 2.1. Assume 0 < p—0 < 7/2. Then for any fized p and 6, ;(6,z) is o
continuous, nonnegative, and decreasing funtion of z on [0,2), where j =1,3. And
¥2(0, z,y) 1s a continuous, nonnegative, and decreasing funtion of z and increasing
function of y on [0,2) x [0,2). As a result, for fized p and 6,, a(p,0,,5s) is a
continuous, nonnegative, and increasing function of sp on [0,2).

Proof. Continuities are trivial. To show that ¢; (j = 1,2,3) and a(p, 85, sp) are
nonnegative, it suffices to show that

tan (259) | > | taa (22) |
tan (252) | > tan(L;Q) ‘,
(2.21) <
tan (9;—9> > ltan (%ﬁ) l,
| | tan (9;—9) > | tan (Zz=%)

It requires only some algebra to check (2.21) under the assumption 0 < p—8 < 7/2.
All the remaining properties stated in the lemma are also the results by applying
(2.21) to the definitions of the functions. a

Corollary 2.2. Assume 0 < p—0 < w/2. Then given any o and p, Ay p(8,-) is
decreasing on [0,2) for any fized 6.

Proof. Since 2+/z/(1++/z) is an increasing function of z > 0, Lemma 2.1 implies
Ao,p(8, sb) is decreasing with s on [0, 2) because that a(p, 05, sp) is increasing with
sp on [0, 2). d

Now, we prove Theorem 2.
-
Proof of Theorem 2. Let Q1 and 92~ be defined as in Theorem 1. According
to Theorem 1, we ha.ve
(2.22)

)= | Pzt / [Pz,

3
%%[, if M and P are both on Q% (or both on 927) ,

4
]lﬁ’&@% if M, and P are both on dQ* (or both on 0Q7) .

3.q,0(me) ’

We will only prove the case where M and P are both on dQt. The analysis
is similar for the othe cases. Without loss of generality, we can further assume
0<p—0, <7/2

16



By (2.22) and (0.4), we have

lfgq o(m))|
T Fi g0 (mo)]
tan (%) sec? (25%) | | Ks(mo - 65)
o () (52| | R
I [Ks(mo —85) + Ks(p = 05)][Ks(mo — 8,) — Ks(q = 65)] !
[Ks(m —05) — Ks(p — 0,)][Ks(m —0,) + Ks(q — 05)]

V6, (8)

(2.23) =

Rearranging the last expression and applying (1.6) — (1.9), (2.23) reads

(2.24) Yp,6.(8) = Apa,(s)  Bpa,(s) Cpes,(s) Dpg,.

Through some calculations, we obtain

(9.41,,90 (S) _ 2s ] [Ks(q -0,) — Ks(ma - 90)}2
(2.25) Os (2 —s)3 Ks(mg — ea)Ks(q —65)
2s
= PSR Y185, 5),
0By, (s) = 25 Ks(p—90,)+ Ks(mog —05)
ds T (2-5)8 K,m-0, +Ksq—8,)
(2 26) Ks(m“ea-)Ks(q_ga) "KS(mO‘ —QU)KS(p—QG)
) Ks(m —0,)Ks(my —0,)Ks(p — 60,)Ks(g — 85)
=(§—%§:‘3—)‘§ ' ¢2(90'a S, 8)’
and
301,790 (s) = 2s . 1
£2 27) Os (2-5)3 K3(m—0,)Ks(p—05)
o __ 2% 8,,3)
_(2 — 3)3 ’lp3( g1 9).

Lemma 2.1 implies that %&ﬁ“—(s) >0, éég;—"ﬂ(s) > 0, and a—Cg,’igﬁf’-(s) > 0. Hence
Ap o, (), Bppe,(s),and Cp g, (s) are increasing functions of s. Consequently, 7,4, (s)
is an increasing function of s due to (2.24).

To prove the rest of the theorem, next we take Taylor’s expansion of Apg, (s)
around 0 and apply (2.25):

Apo,(5) = Apo, (0) + 222 (1)) s
(2.28) o) $=1(s)
=a+ C=6(s))® Y1(05,£1(8)) - s,
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for some &;(s) between 0 and s. Since ¥1(0,, -) is decreasing on [0, 2) (Lemma 2.1),
hence
(2.29) ¥1(00,€1(5)) < ¥1(05,0) = 1.
From (2.28) and (2.29), we obtain

261(8)
SV g, s
@-&a()?®

252

- Uy,

(2-s3
Similarly, we decompose By g, (s) and Cp g, (s) by taking their Taylor’s expansions

around 0 and followed by applying (2.26) and (2.27) respectively. There exist £3(s)
and £3(s), so that 0 < £2(s),&3(s) < s, and

Apyga (S) <a-+
(2.30)
<a+

Bpo, (5) = Bpa, 0) + promiss - al6r, €a(5),a(9) -
(2:31) 252 2 252
<b+ -(—2——_—;-)—3 -¢2(0,,0,sb) =b+ (—2'_—8)3' - WU,,
and
o, (8) = G, (0) + Gcohss - a(0r 0(5) -
(2.32) 0y 3 0.2
s s
<c+ Z2—_-:9—)'§"¢J3(90,0) =C+'(—2_—s)—3 AUER

The inequalities in (2.31) and (2.32) are based on Lemma 2.1 which states that
¥2(0y,z,y) is decreasing with z and increasing with y, and ¢3(6,,z) is decreasing
with z. Now, we substitute the expressions on the RHS of (2.28), (2.31), and (2.32)
for Ay g, (s), Bpyg,(s), and Cppg, (s) respectively. (2.24) reads

3
(2.33) Yp,8, (8) = abcd + Zgjsj,
j=1
where
. _ 262(s) . ac s s _261_("_9_)___ . be s
g1 =G 6205 dip2(85,€2(s), E2(s)) + 2= () bedip1 (8, £1(3))
£ 200 s (0,,65(5)),

(2 - &(s))
g = 261(s) _ 26(s)
2-&(s))° (2-&(s))

3" Cd’l,/)]_(ea-a 51(3))¢2(6U, 62(3)1 52(3))+

(2.34) 265(s) ' 2£5(s) . S
Co6E? Gobe) (W0 6(s),6(s)Ya(8s, fa(s)+
2£1(s) 2%a(s)

(2 — 51(8))3 : (2 _ 63(5))3 ’ bd’ﬂbl(@a,&(s))%(@m53(3)),
g5 = 261(s) 26i(s)  28(s)

(2-¢€1(5))% (2—-6&(9))® (2—¢&3(9))°

$1(00,€1(8))2(00, €2(5), §2(5))¥3(04, £3(5))-
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Note that each g; > 0 (by Lemma 2.1). By applying the estimates (2.30), (2.31)
and (2.32) to (2.24), we obtain

2s
(2.35) g1 < Gos)t d(bc¥y + ac¥y + ab¥3)
4 2
(2.36) 92 <5 —SS)G - d(cW, Ty + alpTs + b, Ty)
~ 8s3
(23() gs < m . d\IJ]_\Dz\IJ;g
Let
(2.38) M6, (8) :=g1+3ga-5+gs3- s

Then 7.9, (s) > 0 . Since abcd = 1 (easy to check), (2.33) can be written as

’719)60 (s) = 1 + T/Pyga (8) - 8.

if we replace 7,4, (8) for g1 + g2 - s + g3 - s*. Applying (2.35), (2.36), and (2.37) to
(2.38), it follows that

s 2d
Tp,0, (8) < 2= )2 T (bcwy + acws + abypsz)+

s 4s3d
o [ s P12 T ava0s T horps)

$ 8sid
(2 _ 3)2 (2 _ Sb)7 L1923

S
= (2 _ 3)2 ) a(p) 00‘) Sb))

+

This completes the proof. U

-
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3. Proof of Theorem 3. To show Q; — z,, as j — o0, it suffices to show
£Q;0z, < Z for all j. We would like to prove (by induction) that

(3.1) £Q;07, < £Q;-10Q; = =
forall y =1,2,3,---

z, lies either on POZQO or on Q;Po. It is trivial that £Qo0z, < LQeOF; = .

If z, € POAQO, then [ ()| < ] ( 0)]. According to (2) in the algorithm, @)y is
obtained by rotating Qo clockwme through an angle of 7. In other words, either
Ze € POQl or 25 € Q1Q0 Similar argument applies for the case where z, € QOPO
So when j =1,

£Q10z; < £Qo0Q:1 =

Awm

Assume (3.1) holds for j = k. We have to prove that
There are two possibilities:

3.1) is also true for j = k+ 1.

Case I : |%£(rk)| > |g§_(nk)| Following (1) in the algorithm, Q41 is ob-
tained by rotating @ counterclockwise through an angle of %r. In other words,
£QrOQy41 = oigr. From the claim preceding Theorem 2, we know that z, €

QrPy. Hence either z, € QxQr+1 O 25 € Qr+1Pr. In case z, € QrQxr+1, then

obviously 7r

£Qx+1025 < £QrOQk+1 = 5y

If 2y € Qes1Pr, 16y Q1 € Qrzo, then
(3.2) 4Qr+10%, = Q025 — £QrOQk41.

Since the induction hypothesis implies that
T
£QrOz, < £Q-10Qk = o

oy

and
T

1
£QrOQxk+1 = 5£4Qk-100k = 577,

therefore from (3.2), we obtain

£Qr4+10%, < £Qi-10Qk — £Q10Qk41
(3.3) = 24Qk0Qk+1 — £QrO0Qk 41

T
= <QxOQ%k+1 = 531

Case Il : |%£(Mk)| < i%f(Nk)L following (1) of the algorithm, one obtains Qg1
by rotating Qk clockwise through an angle of 5&y. Again, £QxOQk+1 = 7t
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Now, it must true that z, € Pka and this implies that either z, € PkaH or

Zs € Qk+1Qk In case z, € Qk+1Qk, then clearly
™
£Qr+102, < £Q+10Qk = ok+1"

Otherwise suppose 2z, € Pk§k+1, e, Qrs1 € zka. Then (3.2) still holds. The
rest of the argument is nothing different from Case I. So we conclude that (3.1) is
true for j =k + 1. O

To prove Theorem 4, we need the following preliminary results.

Lemma 3.1. Suppose 0 < s < sp < 2. 7vp9,(8) and a(p,8,,s) are defined as in
Theorem 2. Then

(3.4) §> Agp(0s,85) >0

forO<p-46,<m7/2.

Proof. By substituting (1.6) into (1.2) and solving the resulting inequality for s,
we obtain

Tr.s(5) =1 Yot () = 1) _y g
> a(p, b, sb) // (1 " a(p,bs,85) | Aop (0o 50)

The second inequality immediately follows since vp g, (s) > 1.

Lemma 3.2. Assume 0 < p—0 < /2. Then for any fired p and 8, $;(0,x,y) s a
continuous, nonnegative, and decreasing funtion of £ and increasing function of y
on [0,2) x [0,2), where j = 1,2,3. As a result, for fixed p and 6,, B(p, b5, Siv, Sp) s
a continuous, nonnegative, and decreasing function of s;p and increasing function
of sp on [0,2) x [0,2).

Proof. Similar to the proof for Lemma, 2.1. a

Lemma 3.3. Let A9, (s), Bpe, (), Cpa,(s), and Dpg_(s) be defined as in (1.6),
(1.7), (1.8), and (1.9) respectively. Denote

A=Ay, (sp),
B=18H Sb),
(3'5) p,9a( b)
C = prea' (sb))
D = Dpvetr’
and let
(36) (bj = ¢j (90" Siby sb)a J = 172:3'
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Assume 0 < p—0, <7/2, and 0 < s;p < s < sp < 1. Then

"Yp’aa (Sb) - pr 9‘, (8)
3.7 s§< 8p— ’
(3.7) b B(D, 0, Sib, Sb)

: A B c
zstma.x{sb—q>—1,sb——32-,sb—q>—3 .

Proof. Take Taylor’s expansion of Ay g_(s) around s :

3.3 Ap5,(5) = Apa, (39) + 228 (5)| (s s)

ls=(C1

for some (1, s.t. $ < {3 < sp. From (1.17),

8AP,96 (t) _ 2¢1 . [KC1 (g — 90‘) - KC1 (ma - 00)]2
(39) ot t=C1 (2 - Cl)3 KC1 (md - GG)KCI (q - 90)

= d)l(ea; C17 Cl)

if0<p—0, <7/2. Since 0 < spp < § < (1 < 8p < 2, Lemma 3.2 implies that

(3.10) $1(05,C1,61) < 61(00, S1b, Sb)-

Suppose s > max {sp — %,sb - 332-,31, - 3%}, then applying (3.9) and (3.10) to
(3.8), we obtain the following estimate

Apo, (s) > Apo, (sp) + 01(05, Siv, 58) - (5 — 58)

1
(3-11) =A+® - (s—355) 20

if s;p < s < sp. Similarly,

By, (8) > By, (ss) + ¢2(85, 516, Sp) - (5 — 8p)

12
(31) =B+@2-(S—8b)20
oy
and
(3.13) Cpp,(8) > Cpa,(sp) + ¢3(0s, Siv, Sp) - (8 — Sp)

=C+@3'(S—Sb)20
if s;p < s < sp. Recall that from (2.24),

(2.24) Vo6, (8) = Ap,6,(5) - Bp,6,(s) - Cp,6,(5) - Dpss,-

Applying the estimates (3.11), (3.12), and (3.13) to (2.24), we have

Yp,0,(8) >[A+®1-(s—sp)] - [B+P2-(s—5p)] - [C+P3-(s—sp)]- D

3.14 - -
(3.14) =ABCD + g, (3) = Tp.0, () + Tp.0, (5),
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where
(3.15)
T8, () =(ABD®3 + ACD®; + BCD®1)(s — sp)+

(AD®y®3 + BD®1 B3 + CD®,D5)(s — 53)% + DO, D235 - (5 — s3)°
Since sp < 1, 0 < s < sp implies that
(3.16) s—sp < (5—83)°
Applying (3.16) to (3.15), we obtain

Tipg, (5) > (ABD®3 + ACD®y + BCD®:)(s — sp) + DB1®2®3 - (s — 5p)

3.17
( ) =ﬁ(p780’7slb)sb)'(s—3b).
for 4,B,C,D >0, and ®; > 0, Vj = 1,2,3. Using (3.17), (3.14) reads

(3.18) Yp,8, (8) > Vp,6, (s8) + B(D, 00, S15, 58) - (5 — Sp).

The result (3.7) immediately follows by solving (3.18) for s. O

Lemma 3.4. Assume 0 <p—0, <7/2 and 1 < sp < 2. B(p, 05, S1v, Sb) 15 defined
in (1.18). If 0 < sip < 5 < sp, then

(1) fors>sp—1,

Yp,6, (8b) — ¥p,8, (S)
3.19 s < 8§p — —~
( ) :6( 790',8117,31))
if s > max {sp — EAT’ Sp — gi—, Sp — 3%}, where §p = max(syp, sy — 1), and

5] - ¢j(90a§lbasb)7 ] = 1,2,3.

(2) fors<sp—1,

]

3.19° s<min|sp—1,¢ Yp.0, (55) ~ Tp,6. (5) .
(3.19) ‘ ( ’ \/ B(p, 6o, 516, Sb)

: A B c
zstma.x{sb—(I,—I,sb—(I,—z,s;_ﬁ,—;I;3 )

Proof. (1) Note that from the proof for Lemma 3.3, (3.7) is valid for any pair of
{s1, sp} which satisfies 0 < s; < s < sp < 2 and (3.16) if furthermore,

A B B ____“_C—}
61000, 51,58)" ° G2(0ar516,55)  $3(Bsy 10y 50)

Since s; < s and s > sy — 1, we have 0 < §;p < s < sp. Moreover,

(3.20) s> max {sb -

s>sp—1=-1<s—5,<(s—sp)°<0.
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Therefore (3.16) holds. (3.19) immediately follows by replacing the new lower bound
51y for sip in Lemma 3.3 and the condition (3.20).

(2) For s < sp—1, (3.8) — (3.15) are still valid if s > ma.x{sb—q,il, sb—@%, sb—;g—; .
Moreover, s < sp — 1 implies

(3.21) (s —sp)° <s—s5p < —1.
From (3.15) and (3.21), we obtain the following lower bound for 7, 4_(s) :

(3.22)
p.6. (8) > (ABD®3 + ACD®; + BCD®1)(s — sp)° + D®1D2®3 - (5 — s)°

= B(p, 05, 516, 55) - (s — 55)°.
Coupling (3.14) and (3.22) together results in the following inequality:
V0,6, (8) > Vp,0,(56) + B(P: b0 516, 55) - (5 — 56)°.

Under the assumption that s < sp—1, we obtain (3.19’) by solving the last inequality
for s. a

Lemma 3.5. Assume 0 <p—0, <7/2 and 0 < s;p < s < 8p < 2. Then
(3.23) §< w;’p(ﬁa, Sib, Sp) < Sp

if 1,8, (5) = Vp,6, (W2 (0o, S16,55)) 0T W2 (0, 18, 55) < 0.

Proof. Suppose w2(fs, sw, sp) < 0, obviously s > wZ(85, s1, 56). Suppose w285, s1b, 55) >

0 and ¥p,6, (5) = Vp,6, (W2(0s, S16y 56)), then s > w2(85, 515, 8) since vpe, (+) is in-
creasing on [0, 2). In other words, if vp.6, (s) > ¥p,0, (w3(00, stb, s)) or w2(8s, s1b, 85) <
0, then

A B C

{3-24) s > w2(0s, 516, 55) = max {sp — 05, 50
There are three cases:

Case I: sp < 1,
CaseII: sy>1 and s> sp—1,
CaseIII: s >1 and s<sp—1.

First of all, we claim that for Case I and Case II,

: Yp,6, (8b) = Vp,6, (s) Yp,8, (55) = Vp,6, (S) }
3.25 s < minq S§p — , Sp — - .
( ) { ° ﬂ(p, eaaslbasb) ° ﬁ(pa 90’931b’5b)

if Yp,0, (5) > ¥p,0, (W2 (0o, S16, 5)) OF w204, 516, 85) < 0.
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Proof of (3.25) : When s, < 1, we have shown in Lemma 3.3 that (3.7) is true if
(3.24) holds. Hence,

_ Yp,8.(86) = p,8, ($)
:B(pa 90" Sib, Sb)

(3.7) s < 8

if ¥p.0,(8) > V.6, (wﬁ(@m Sib, Sb)) OT w2(8s, 51, sp) < 0. Since,
Sb§1:>3b—1§0:>§lb=815,

therefore,

: V.8, (86) = Vp,6,(5) Yp,8. (85) = Vp,6, () }
min { sp — , Sp — —
{ ° ﬁ(p, HU,Slb,Sb) b IB(p, Hﬂ,slb)sb)
Vp,6,(86) = Yp,s, (5)
3.26 =8y —
(3.26) ’ B(p, 05, 516, Sb)
_ Yp.8,(85) — Vp,8,(s)
B(p, 05, Sib; Sb)

":sb

By (3.7) and (3.26), we obtain (3.25) in case sp < 1 and this proves (3.25) for Case
I

When s, > 1 and s > s, — 1, Lemma 3.4 (1) implies (3.19) if (3.24) is valid.
That is,

_ Y9,6.(55) = Vp,6, (5)
:B(p’ 90’) 5:lba Sb)

(3.19) 8 < 8

when Vp,0s (3) _>_ Vp,0s (wg(é?c,, Sip, Sb)) or wg(H(,, Sib, Sb) <0 If Sib Z Sp — 1, then
51 = s15. Hence (3.26) holds when s;5 > sp—1 . By (3.19) and (3.26), we have once
again proved (3.25) for s > sp — 1. Suppose s < sp — 1, then 5 = s — 1. Since
B(p, 85, s, sp) is decreasing with s; on [0,2) for any fixed p, 6, and sp (Lemma
3.2), therefore

_ 108, (55) = Vp0, (8) 5y — T20e (s6) = 1p,6, (3)

sp< Ssp—1= sp

,3(17, eo'aslbwsb) - :B(p) 00‘7Sb— 1786) .
So,
: _ Tpbs (85) = Yp,0, ($) _ Tpbs (55) = Vp,0,(5) }
e {Sb B(p, 8., s, Sb) )% B(p, 8-, 31, sb)
(3‘27) =sp — 717:90 (sb) - 7?790' (s)

,3(P7 90‘1 Sp — 1a Sb)
Y65 (Sb) — ¥p,6, ($)
,B(p, 90‘1 S1bs Sb)

:Sb
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for sip < 8o — 1, if vp,6,(5) > ¥p6, (W2 (0o, s15, 55)) or w2(8s, 18, 5p) < 0. By (3.19)
and (3.27), we see that

s < min {Sb _ In8, (s6) = ¥p,6, (5) 5 — Ipbs (s) — ’Ypﬁ«(s)}

B(p, 05, S, S6) b B(p,0s, 515y Sb)

for sip < sp — 1 if vpe,(3) = Ype, (wg(GU,szb,sb)) or w2(0s,1,5) < 0. This
completes the proof of (3.25) for Case II.

As for Case III, we have shown in Lemma 3.4 (2) that (3.19") holds. The first
inequality in (3.23) follows by taking the maximum of two upper bounds of s given
in (3.19’) and (3.25). Moreover, we know that -y, g, (s) is an increasing function of

s on [0,2) (Theorem 2). Hence given any p and 84, vp e, (Ss) > Vpe,(s) and this
implies wg,p<90, Sib, Sb) S Sp- O

Proof of Theorem 4. To show (1.24), we first claim that

(3.28) 0<tj <s<s;< sy, Vi=0,1,2,..

Proof of (3.28) : When j =0, s < sp = sp from the definition (1.23). Applying

Lemma 3.1, we have

Tp,8, () = 1/ 1+ Y6, (s) — 1

Cl(p, 00’730) OI(P, 90,30)

= )\a,p(()g, s0) = to.
So (3.28) holds when j = 0. Assume (3.28) is valid for j < k. That is,
0 <t <5< s < 8p.

JLhen by Lemma 3.5,
(3.29a) s < wcl,’p(B,,,tk, Sk) < Sk
if ¥p.0,(8) = Yp,6, (wf, G sk)) or wg(ﬂa,tk, sk) < 0. Otherwise,
(3.29D) § < wi(ea,tk, Sk) < Sk
if wg By, tr, k) > 0 and vpg,(5) < ¥p,6. (wg(ﬁg, tx, sk)), since 7p g, (+) is increasing
on [0,2). The second inequality in (3.29b) is trivial from the definition (1.20) of

w2. (3.292) and (3.29b) simply means

(3.29) s < w,,p(Og,tk, Sk) < Sg-

-

-~

Sk+41
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Under the condition (3.29) and applying Lemma 3.1 with the new upper bound
Sg+1 for s, we obtain

| Yot (8) = 1 \/ Tr8,(8) — 1
(3.30) 52 \/ a(p, b5, Sk+1)/ b o(p, 0o, Sk+1)

= /\a,p(em -5'k;+1) = tg4+1 > 0.

Coupling (3.29) and (3.30) together gives (3.28) for j = k + 1. Therefore by induc-
tion, we have shown that (3.28) holds for all j = 0,1,2,... More than that, (3.29)
is true for all kK =0,1,2, ..., ie.,

(3.31) §< - < 8y <81 <8 = Sp.

To complete the proof of (1.24), it remains to show that {t;}32, is an increasing
sequence. But from Corollary 2.2, we know that A, 5(6,, ) is a decreasing function
on [0,2). Since {s;}32, is a decreasing sequence (by (3.31)), hence

/\a,p(ga;sk) < /\d,p(ga’ask-*-l)a Vk = 07172,~~

or equivalently,
tr < tr+1, Vk=10,1,2,...

So {t;}%2, is an increasing sequence and (1.24) follows immediately.
We can proceed to prove (1.25). We know that (from (1.24)) 3 t* and s*, s.t.,

.32 t* = lim t; = supt; d s"= lim s; =infs;.
(3.32) Jim ¢ 5111.p i end "= lim s; =infs;

First, we would like to show that there must exist an ng € N, s.t.,
‘(?’)33) wayp(eg, tj, Sj) = wip(eg, tj, Sj), V] > nyg

Suppose this is not true, then from the definition (1.22) of w, p, there must exist a
subsequence {jx}32;, so that

wo'yp(ea’tjk73jk) = w;za(607tjk’sjk)7 Vk - 1$ 2)3

By (1.19), we have
(3.34)
Sjp+1 — 5= wg(em ik sjk) -
Apb. (S5) Bp,6, (54:) Chp,6. (S5i) } s

=max< §j, — y Sje — -
{Jk ¢1(60'7tjk78jk) o

P2 (90, tjk’ sjk) I $3 (90, tjk ’ Sjk)

. Apa.(85) By g, (35.) Cpo. (54.) }
<3‘ —~ §) — min P,Vea Ik , Yo Ik , D,Vo Jk i
—( 7 ) {¢1(90’tjk’sjk) ¢2(9U’tjk?sjk) ¢3(907tjk7sjk)
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Note that Apg, (), Bp,(-), and Cppg, (-) are continuous on [0,2). ¢;(84,-,-) (j =
1,2,3) is continuous on [0,2) x [0,2). Since (3.32) implies limg_,o0 $j, = s* and
limg oo 5, = t*, passing limits on both sides of (3.34) as k — oo, we obtain

6, (s*) By, (s*) Cpy,(5*) }
t*,8*) ¢2(0g,t*, 5*) d3(0,,t*,5*) |

s —s< (55 —8) - min{¢1(

Therefore,

. Ape, (s) Bpe,(s*) Cp,6,(s") }
3.35 0 > min{ —2 , —2e , P2 .
( ) - {q)l(eaat*;S*)l @2(90~t*)3*)1 ¢3(90)t*)3*)

However, in Theorem 2 we have shown that
(3.36) Vp.8, (5%) = App, (") - Bpg, (%) - Cpp,(s*) - Dpe, > 1,
which is the result of (1.5). (3.36) simply implies that all of A, ¢ (s*), By, (s*) and

Cp,0, (s*) must be greater than 0. Since each ¢;(f,,t*, s*) is nonnegative (Lemma
3.2), hence

0 <min{ t( s) Bp6,(s") Cp.6,(8*) }

¢1( *)’ ¢2(0s,t%,5*)" Pa(fs,t*,5%)
But this contradicts (3.35). So, there must exist an ng € N so that (3.33) holds.
Now, we use the fact (3.33) and apply the formula (1.19). Then we get

Sj+1 — 8 = We p(Oc,t5,85) — = wl p0s:t5,85) — s

_ o Yp8.(55) = 0. (8) e, (s5) — ’Yp,ea(S)}
_max{mln{sj 'B(p’ea"tj’sj) ' % ﬂ(p7001£j)5j) ,

: L .__ 8 ,Yp)ea (SJ) - ’Yp,ea (S) _
— mm{sJ 1, s; \/ A0, 96,tj,$j) S
Vp,8, (55) = Vp,6, () s 12,65 (85) = ¥p,6,(8)
< - . — .
—.max{sj .B(pv gdvtjﬂsj) * ,B(p,ea,tj,sj) °

=(s; — 5) — min { V0, (85) — Vp,e,(S), i;/’Yp,Qd(Sj) - 7,,,90)(3) }, Vi >

lg(pygowtj,sj) 'B(p’etﬂtj’sj

Since vp,9, (+) is continuous on [0, 2) and B(p, 85, -, -) is continuous on [0, 2) x [0, 2),
taking limits as 5 — co on both sides of the above inequality and applying (3.32),
we obtain

S*_SS(S*_S)_MH{%,( m,(s) \/vp, )—vp,o,(s>}

ﬂ(pyeaat s* ,B(p 907t 3)
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Therefore,

” YA CH 7p9 Tp.bs — Yp.8. ($)
: >
(337) 02 mm{ p(p, 9mt s* \/ p,9mt §*)

Moreover, (1.24) and (3.32) implies 0 < t* < s < s* < 2. Since Yp,6, () is an
increasing function on [0, 2), hence we have

(3.38) V6, (8%) = Vp,0,(s) > 0

But (3.37) and (3.38) implies that

(3.39) V5.6, (8") — V8, (s) =0

because B(p,0,,t*,s*) > 0. From (3.39), we conclude that s = s* due to the
monotonicity of vp9,. That is, lim;_, 55 = s. ad

]
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4. Numerical Simulation. In this section, we will present the results of some
numeical experiments. Theorem 3 and Theorem 4 serve as our guideline for the
crack inspection procedure. In each step of the procedure to locate a crack, we
choose the proper locaitons (referring to P and @ throughout this paper) to set
the current electrodes. At the midways between two current electrodes, we mea-
sure the infinitesimal change in magnitude of the electostatic potential along the

circumference (this is referring to lﬂﬁul). Recall that the midpoints on PQ and

QP are denoted by R and N respectively. The procedure to locate a crack is stated
as follows :

Procedure to locate a crack:

(1) Arbitrarily choose Py and Qg so that they are at the end points of some
diameter of the disk. Start from P = Py and QQ = Qg. In other words, place
two current electrodes at the end points of some diameter of the disk.

(2) Measure |géhji] at R and N. If the measurements are identical, then there’s
no crack. Otherwise follow the following steps of iteration for 3 =0,1,2, ...

(3) If the measurement at R is larger than that at N, then rotate P; and Q;
counterclockwise along 02 through an angle of 54 to obtain Pjy1 and Q41
respectively. If the measurement at N is larger than that at R, then rotate
P; and Q; clockwise along 0S) through an angle of 5751 to obtain Pjy; and
Qj+1 respectively. Go to (4).

(4) Set

P = Pj.q, and Q = Qj4+1

Go to (3).

(5) As j — oo, the location of the current electrode at QQ will approach the
crack tip on the boundary. Terminate the process , say, at @ = @;, when
the rotational angle in step (3) is sufficiently small. Let 6, stand for the
approximate crack tip. Then take

Oapp = -

To determine the crack length, the iteration in (1.23) yields a sequence of es-
Yimates which converges to the crack length provided the following information is
given :

(1) An upper bound of the crack length (sp).
(2) The exact locaiton of the exterior crack tip (8, ).

A natural candidate for (1) is to take sp to be the damage size growth limit
which is defined to be the maximum size to which initial or in-service size damage is
allowed to grow without degrading the residual strength level below its required level
[MS]. As for (2), if the exterior crack tip is not prominent enough to be visualizable,
6, can be replaced in (1.23) by 0,,, Which is obtained from the preceding procedure.
We revise the computational algorithm for length determination as follows :

Procedure to size a crack:

(1) Choose P and Q (the locations of current electrodes) so that 0 < p—8, < /2
(070 < p—Oapp < T/2).
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(2) Measure |g§;‘1—'1| at the midways between P and @Q (referring to M and

M, as before), and take the ratio of these two measurements to evaluate
.0, (8) (recall the definition from (1.4)). This is the only data obtained
from two Dirichlet boundary measurements. So the iteration functions de-
fined in (1.21) and (1.22) actually can be expressed in terms of the boundary
measurements as follows :

data—l/ - data — 1
a(p,8,y) a(p,b,y) |’

p
max { min {y _ Ype(y)—data y— 72.6(?!)-:data }’

and

B(p.6,z,y) B(2,8,2,y)

. vp,0(y)—data
mm{y—l,y— \ ‘%ﬁ(ﬁﬂ)_}}’

if data > vpe(w2 (0,2,y)) or Wi, (0,z,y) <0,

Wo,p(8,Z,y) = <

0(y) 0(y) 0(y)
max {y - ¢1€0 :c,y)’ ¢22,9 z,y)’ Y- ¢3€9,x,y) }’
L otherwise,

where "data” is the measurement of v, 6, (), and vp6(y) s to be calculated
using the formula (2.23), i.e.,

| tan (252) sec? (m—— K mg—e) .
7P,9(y) T tan (__;) secz( m_ 9) l

[Ky(mg —0) + K. (P 9)][K (ma —0) — Ky(g - 9)]
[Ky(m 6) — (P 9)][K (m—@)-l—Ky(q—H)]
The functions Ap g, Bp g, Cpa, and ¢; (7 =1,2,3) are computable using the

formula (1.6) - (1.8) and (1.17). a and B are explicitly defined in (1.14)

and (1.18), hence they are also computable by plugging argument values for
(p,0,z,y) into the formula (1.6) - (1.12) and (1.17).

(3) Iteration Steps :

Set 0 =06, (or8upp)
S0 = Sb,
to = Aop(87, 50).
For 7=0,1,2,3,...,
Sj+1 = Wa,p(e*’ tss sj),
ti+1 = Agp(0%, 5541)-

(4) When 0* = O,pp, (1.24) and (1.25) are not necessarily true. We will con-

sider the algorithm stable in the sense that we can still obtain an increasing
sequence t; and a decreasing sequence s;, so that

\
;=8 as j— o
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for some s* near s whenever 0,5, is close to 0,. We apply the following
strategy to determine when to terminate the iteration stated in (3) :

Stop performing the iteration when |s; — s;_1] is
within the required tolerance for some j, or when

’Yp»eapp(sj) < 717’90 (S) < 7py9app(sj"'1)'
e’

data

Recall that vp 6, (s) is directly measurable from two Dirichlet boundary mea-
surements.

(3) Let sqpp be the approzimate length of the crack. Then take

Sapp = Sj.

Example. Suppose a linear crack of length 0.4 (out of 2) is located at 15° coun-
terclockwise away from the horizontal diameter. We demonstrate in Table 1 the
computational data needed for crack tip detection. Each row contains indispens-
able measurements at each step of iteration. “msr at R” (“msr at N”) stands for

|§—fgf—"’—[ measured at R (or measured at IV, respectively). We list rotation angle
of P and @ to be carried out in the 4th column, where positive v2lues indicate
counterclockwise rotation and negative indicate clockwise rotation.

Crack tip Inspection Data

astep, j P Q rot angle msr at R | msr at N
0 45. 225. 90 2.14042 1.6222

1 135. 315. 45. 2.07451 1.35354

2 180. 0. 22.5 2.24045 1.60883

3 202.5 22.5 11.25 1.57224 2.33525

4 191.25 11.25 5.625 2.40161 1.54612

5 196.875 16.875 2.8125 1.53114 2.44096

6 194.063 | 14.0625 1.40625 2.46238 1.52318

7 195.469 | 15.4687 0.703125 1.51909 2.47356

8 194.766 | 14.7656 0.351562 2.47928 L.51702

9 195.117 | 15.1172 0.173781 1.51598 2.48216
.y 10 194.941 | 14.9414 0.0878906 2.48361 1.51543
11 195.029 | 15.0293 0.0439453 1.51519 2.48434
12 194.985 | 14.9854 0.0219727 2.48471 1.51506
13 195.007 | 15.0073 0.0109863 1.51499 2.48489
14* 194.996 | 14.9963 | 0.00549316 | 2.48498 1.51496
15 195.002 | 15.0018 | 0.00274658 1.51495 2.48503

+ indicates counterclockwise rotation.
- indicates clockwise rotation.
0, = 15°, 3 = 0.4, and 8.5, = @15 = 15.0018°.

TABLE 1

We choose to start with P at 45° counterclockwise away from the horizontal
diameter and Q at 225° counterclockwise away from the horizontal diameter (j =
0). It turns out |g§—$i| at R is larger than that at N (Table 1). According
to the algorithm, at next step j = 1, we have to simultaneously rotate P and
Q counterclockwise by 90°, where the current electrodes are therefore placed at
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135° and 315° counterclockwise away from the horizontal diameter. Once again,
}Q{,;,L'ji| measured at R is greater than that measured at N. Then we rotate the
electrodes counterclockwise by 45° to obtain the new locations for P and Q. Keep
following the procedure in this manner — at each step, rotate the electrodes by 1/2
of the rotational amount applied at the previous step. At j = 15, Q is switched
to the point 15.0018° counterclockwise away from the horizontal diameter (Table
1), where is considered to be close to the exact crack tip on the boundary. A
graphical demonstration of this approximation procedure for the first 6 steps is
displayed in Figure 4. To determine the crack length, we assume the crack growth
limit is s, = 0.8. and we choose P to be at (1,15°) in the polar coordinates. That
is, p — 8, = 30°. There is a reason for this particular choice of the locaitons of
the current electrodes. We will discuss this issue later. In Table 2, we list the
progressive data of a lower-bound sequence and an upper-bound sequence. The
upper-bound sequence is used to approximate the crack length. The 4th column
contains the realtive error of each approximation at different iteration steps. After
10 steps of iteration, the crack length is approximated by s1o = 0.400001.

Crack Length Inspection Data

j S, t, error(%)
o] 0.8 0.0901924 100.

1 0.625534 0.154974 56.3836
2 | 0.555927 0.181214 38.9817
3 | 0.488639 0.20484 22.1599
4 0.43729 0.22119 9.32244
5 | 0.410623 | 0.229022 2.65585
6 | 0.402174 | 0.231405 0.543535

7 1 0.400385 | 0.231903 0.0963738
8 | 0.400065 | 0.231992 0.0163248
9 0.40001 0.232008 0.00254455
10 | 0.400001 0.23201 0.000189227

p—0, =30% s3 =08 s=0.4.
The approximate crack length is :
Sapp = 810 = 0.400001.

. TABLE 2

We have tested our algorithms on many other examples. The crack length we
have simulated ranges from 0.001 to 0.4 (out of the unit disk). Recall that in our
detection procedure the current electrodes at P and @ are always to be placed
on the opposite sides of a diameter. Suppose we consider the detectability of an
edge crack only in the sense that we are able to distinguish a damaged disk from
the flawless one by two boundary measurements. Without choosing the current
electrodes in a particular orientation (i.e., p — 6s could be arbitrary), we are able
to detect a crack of length 0.0016 by comparing two measurements of |—g—£| at the
midways between the current electrodes (immediate application of the Claim (2)
preceding Theorem 2). Similar to [KSV], this requires 4 to 5 significant digits of
voltage readings. In other words, using this 2D method, we are able to determine
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Imz Imz

Q = unit disk

FIGURE 4. Crack length = 0.4. The surface crack tip
is located at (1,15°) in polar coordinates.
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ratio of potent:al drop

s (length)

FIGURE 5. The graph of v, 4, (s) associated with different values of p — 4,.
The number appended to the curve indicates the associated value of p — 8,
measured in degrees.

whether a radial crack plane of depth > 0.0016 is imbedded in a unit circular
cylinder. In theorem 2, the function v, ¢, is characterized as an increasing function
of crack length. Since 7,4, is also measurable by taking the ratio of l%;l (which
in practice represents the electrical potential difference within small distance) at
the midpoints between the current electrodes, its increasing rate with crack length
can be used to determine the sensitivity of the conventional potential drop method
[reference]. The sensitivity depends on p— 6., the orientation of the input diameter
(see Figure 1 in Section 1) relative to the detected crack plane. In Figure 5 - 10, we
ploted the curves of v, 6, vs. crack length at different values of p — 8, varying from
0° and 90°. Figure 5 shows an overview over all the possible range of crack length.
Figure 6 — 10 give a closer look at different levels of crack length. We observe
that for different crack lengths, 7vp g, changes most dramatically when p — 8, is
close to 90°. In particular when the crack length is so small as 0.0016 compared
With the dimension of the domain, the variation of 7,4, (s) with s becomes less
prominent when the orientation of the current electrodes changes from p -6, =~ 90°
to p—8, =~ 30°, and, then increases the effect when p—8, decreases from 30° to 0° or
so. The classical potential drop technique utilizes the difference of the electrostatic
potential drop between a damaged specimen and a flawless specimen to estimate
the size of a crack (Figure 11 - 12). For this conventional technique, the above
observations can be used to identify the most sensitive locations of the current
electrodes and the probing detector. In our model, a small neighborhood around
90° away from the crack is considered to be the most sensitive area to impose the
current electrode P. And the regoin between 30° and 45° with respect to the crack
plane is considered to be the least sensitive area to impose the current electrodes.
This conclusion is independent of crack length.

The classical potential drop technique [Ha} does not provide a way to locate
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FIGURE 6. A closer look at Figure 5

ratio of potentcial drop
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FiGUrRE 7. The graph of 7,4, (s) associated with different values of p — 8,
for s varying from 0 to 0.5. The number appended to the curve indicates the

associated value of p — 8, measured in degrees.

a crack. Our inspection procedure enables us to identify the location of a radial
through crack even the crack is invisible from the surface. Sensitivity is again
an important issue in this detection algorithm. To be short, we switch the current
electrodes on the boundary according to the difference between the potential drop at
the corresponding midpoints. Suppose the current electrodes are switched to some
locations where the voltage reading at two midpoints does not make any difference,
then we cannot determine the appropriate locations of the current electrodes for
the following steps. The drawback of this location identification procedure is that
it requires certain sensitivity at “all” steps of the measurements. Nevertheless, we
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FIGURE 8. The graph of v, 4, (s) associated with different values of p — 6,
for s varying from 0 to 0.016. The number appended to the curve indicates
the associated value of p — 6, measured in degrees.
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FIGURE 9. The graph of Yp.8,(s) associated with different values of p — 8,
for s varying from 0 to 0.0016. The number appended to the curve indicates
the associated value of p — 8, measured in degrees.

are still able to approximately locate a very small crack of length 0.0016 (Table
3) within a high accuracy. Though as mentioned in the previous paragraph, this
requires accurate voltage readings to the 5th decimal point. From Table 1, Table
3, and many other simulation examples, we observe that it always takes 15 steps to
trap the probed crack within a small region, namely, the sector bounded between
(214 and @15. Basically, this iteration procedure is based on a bisection technique
- starting from a rotation angle of 90°, each time we rotate the current electrodes

37



ratio of potent:ral drop

1.060Lf ; ' ——ee 3
! i
4 ! - - 15
1.00008+ " ' _—— —— 7
/  mmmmmes- 45
1.30006[ / I > —— = —— 5D
] /
; . - - - - - 73
1.90004 - — e — - 34
- e = a7
1.00002F
- s {length)

FiGUure 10. The graph of v, ¢, (s) associated with different values of p — 0,
for s varying from 0 to 0.0016. When 30° < p—6, < 60°, The curve increases
with s slowly.
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FIGURE 11. Plot of the potential drop on the boundary of a flawless disk.

by 1/2 rotational amount applied at the previous step. Hence the convergent rate
significally depends on the dimension of the probed area. But at least after a finite
steps of inspection, the searching region can be narrowed down to a neighborhood
of the damaged area. The accuracy and convergent rate of this location trapping
algorithm does not depend on crack length as long as the probed crack is detectable
as we defined before for all different locations of the current electrodes.

It is a more subtle issue to find a simple relation between the effectiveness of the
length algorithm and the orientation of the current electrodes with respect to the
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FIGURE 12. Plot of the potential drop on the boundary of a damaged disk.

Crack tip Inspection Data

istep, j P Q rot angle msrt at R | msr at N
0 75. 255. 90 2. 1.99999
1 165. 3453. 43. 2. 1.99999
2 210. 30. 22.5 1.99999 2.

3 187.5 7.5 11.25 2.00001 1.99999
4 198.75 18.75 3.625 1.99998 2.00002
5 193.125 | 13.125 2.8125 2.00004 1.99996
6 195.938 | 15.9375 1.40625 1.99992 2.00008
7 194.531 | 14.3312 0.703125 2.00015 1.99984
8 195.234 | 15.2344 0.351362 1.9997 2.0003
9 194.883 | 14.8828 0.175781 2.00055 1.99945
10 195.059 | 15.0586 | 0.0878906 1.99912 2.00088
11 194.971 | 14.9707 | 0.0439453 2.00117 1.99883
12 195.015 | 15.0146 0.0219727 1.99863 2.00137
t3 194.993 | 14.9927 0.0109863 2.00148 1.99852
14 195.004 | 15.0037 | 0.00549316 1.99846 2.00134
L5 194.998 | 14.9982 | 0.00274658 2.00157 1.99843

+ indicates counterclockwise rotation.
- indicates clockwise rotation.
-y 9, = 15°, s = 0.0016, and Bap,, = q15 = 14.9982°.

TABLE 3

probed crack. There are two factors which affects the efficiency of the algorithm
for length determination : one is the assumed upper bound s, and the other is
the orientation of the electrode pair with respect to the probed crack. It is not
surprising that the algorithm converges faster if s, is closer to the actual length
s. This can be easily explained from the formula (1.19) and (1.20) associated with
the iteration function w, , since sp is used as the initial guess in the iterations. For
example, consider the case of the minimum detectable length, s = 0.0016. Table
4 - 11 lists the inspection data corresponding to s, = 0.01, s, = 0.1, s == 0.8,
and s, = 1.2 respectively. We present the results simulated with two different
orientations of the current electrodes : p — 8, = 30° and p — 8, = 45°. We observe
that in both cases, the number of iterations required for a certain accuracy (say,
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Crack Length Inspection Data

[ s; t, error(%)
0 0.01 0.00112872 525.
1| 0.00515186 | 0.00113013 221.991

| 2 1 0.00282957 | 0.00113082 76.8478

| 3 0.00186795 | 0.00113109 16.7471

| 11 0.00161926 | 0.00113117 1.20347

i 5| 0.0016001 | 0.00113117 | 0.00626369

16 1 0.00159999 | 0.00113117 | 0.000921697

p— 6, =30° s, =0.01. s

= 0.0016.

The approximate crack length is :

Sapp = S10 = 0.00139999.

TABLE 4

Crack Length Inspection Data

3 R t, error(%)
0 0.01 0.00112876 525.

1 0.0051515 | 0.00113018 221.969
2 | 0.00282937 | 0.00113085 76.8355

3 0.0018679 0.00113112 16.744

4 | 0.00161928 | 0.00113119 1.20516
5 | 0.00160014 0.0011312 0.00876997
6 | 0.00160003 0.0011312 0.00159673
7 | 0.00160003 0.0011312 0.00159648
8 | 0.00160003 0.0011312 0.00159647
9 | 0.00160003 0.0011312 0.00159647

p— 0, =45°. 5, = 0.01L. s = 0.0016.
The approximate crack length is :
Sapp = So = 0.00160003.

TABLE 5

with the error less than 0.01%) increases with s;. This phenomenon is global in
the sense that it is true with different orientations of the current electrodes. We
also observe that even though we use an approximate crack tip as the input data
(i.e., 8* = O4pp), the length algorithm works effectively in all the examples under
the condition 30° < p — 8, < 60° and 0.0016 < sp < 1.2. It all takes less than
20 steps of iterations to converge to an estimate within 0.05% of the relative error.
However, under the same condition 30° < p — 8, < 60°, it takes about 40 iteration
steps to achieve the same accuracy as s increases to 1.5. If we increase s, to 1.8,
then the approximating sequence {s;} stays far beyond 0.0016 even after 100 steps
of iterations. Whenever we use an approximate crack tip 8* = 8,5,, we have to
worry about the stability which has been defined in step (4) of the algorithm. For
all the tested examples of different crack lengths (varying from 0.0016 to 0.4), the
condition 30° < p — 4, < 600 yields a stable length algorithm under a reasonable
assumed upper bound. This stability condition is minimal within the detectability
of our method. That is, if the crack length is larger than 0.0016, then the condition
300 < p—6, < 60° can be relaxed to a larger range in order to obtain a stable
length algorithm.

To explore the effect of p — 8, on the length algorithm, we further perform the
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Crack Length Inspection Data

b3 s, t, error(%%)
o 0.1 0.00109535 6150.

| 1| 0.0531399 | 0.00111444 3221.24
| 2| 0.0273901 | 0.00112332 1611.88
| 3| 0.0139398 | 0.00112754 771.239
| 4+ 1 0.00711014 | 0.00112958 344.384
| 5! 0.0037463 | 0.00113056 134.144
.6 | 0.00221697 | 0.00113099 38.5609
| 7| 0.00168607 | 0.00113115 5.37968
S| 0.00160219 | 0.00113117 | 0.136788
9 | 0.00159999 | 0.0011311T | 0.000826841

p — 8, = 30°. s, = 0.1. 5 = 0.0016.
The approximate crack length is :
3app — S11 = 0.00159999.

TABLE 6

Crack Length Inspection Data

Sj t, error(%)

0.1 0.00109578 6150.
0.0527513 | 0.00111472 3196.95
0.0271273 | 0.00112346 1595.46
0.0137974 | 0.00112762 762.337
0.00703786 | 0.00112963 339.866
0.00371164 | 0.0011306 131.977
0.00220277 | 0.00113103 37.6734
0.00168271 | 0.00113118 5.16965
0.00160206 | 0.0011312 0.128885
0.00160003 | 0.0011312 | 0.00167753
0.00160003 | 0.0011312 | 0.00159648
0.00160003 | 0.0011312 | 0.00159647
0.00160003 | 0.0011312 | 0.00159647
p— 8, =45°. s, = 0.1. s = 0.0016.
The approximate crack length is :

Sapp = S12 = 0.00160003.

o ©®~N OO WO

-
t

TABLE 7

gilculations for p—6, =~ 0° and for p—8, ~ 90°, whcih are considered better choice
concerning the sentivity of the classical ptential drop method. For p — 8, = 0°
when s = 0.0016, it takes 46 iteration loops to achieve an error within 1% by
assuming s, = 0.01 and using the exact crack tip 8* = ,. If we use an approximate
value #* = 6, as the input data, then it needs 54 iteration steps to bound the
error within 1%. Compared with the result for p — 6, = 30° or p — 6, = 45°
(Table 4 - 5), the algorithm yields much slower convergent rate when p — 0, = 0°.
The algorithm does not work well and is very unstable for small cracks when the
current electrodes have a 90° orientation with respect to the probed crack. For
example, consider s = 0.0016 and 6, = 15°. Recall that the output data is given

0fp.g.0 3 fp.q. 3fp.q.0 .
by ¥p,8,(s) = —fgf—(m)l -%Tq'—(m,) , where ——fg—f'—(md) is measured near by

the crack tip when p — 8, ~ 90°. This leads to the oscillations in the course of
iterations even when we use 8* = 6, (Table 12). Using the approximate crack
tip fapp = 15.0049° for 6*, we obtain an estimate sqpp = 0.006401 with the error

41



Crack Length Inspection Data
T T

S 3, t, |  error{%)
; 0 ! 0.8 0.000308941 | 49900.
L1 | 0.628832 | 0.000544543 l 39202.
P2 0.303963 | 0.000958205 18897.7
3 0.193 0.00104467 f 11962.5
;b ] 0.110458 0.00109054 | 6803.6
5 | 0.0591402 | 0.00111221 | 3596.26

6 | 0.0305915 | 0.00112228 |  1811.97

T 1 0.015387 | 0.00112704 | 874.186

S | 0.0079368 | 0.0011203+ |  396.05
9 | 0.00414404 | 0.00113044 |  159.002
10 ! 0.00238379 | 0.00113095 |  18.9871
‘11 0.00172021 | 0.00113113 |  8.0756 |
. 12, 0.00160483 | 0.00113117 0.301618 !
{13 ] 0.00159999 | 0.00113117 l 0.000464141 |

L

p—0, =30° s, =0.8. s

The approximate crack length is :

Sapp = S13 = 0.00159999.

TABLE 8

= 0.0016.

Crack Length Inspection Data

L) s, t, error(%)
0 0.8 0.000320078 49900.
1 0.609081 0.000580138 37967.6
2 0.218577 0.00102911 13561.1
3 0.124044 0.0010846 7652.73
4 0.0663469 0.00110966 4046.68
5 0.0343591 0.0011211 2047.45
6 0.0175192 0.00112649 994.95
7 | 0.00890877 | 0.00112908 456.798
3 | 0.00461637 | 0.00113033 188.523
9 | 0.00258934 0.00113092 61.8335
10 | 0.00178957 0.00113115 11.848
11 { 0.00161009 0.0011312 0.630517
i 12 | 0.00160006 0.0011312 0.0035663
1 13| 0.00160003 0.0011312 0.00155649
i 14 | 0.00160003 0.0011312 0.00159647
I 15 | 0.00160003 0.0011312 0.00139647

p — 0, = 45°. s, = 0.8. s = 0.0016.
The approximate crack length is :

Al d Sapp = 818 = 000160003.

TABLE 9

59.9% after 45 iteration loops under the assumption s, = 0.01. What has happened
here to the length algorithm seems to be in contrast to our observations as to the
sensitivity associated with the classsical potential drop technique.

Summing up our observations regarding length determination, we draw the fol-
lowing conclusions :
(1) The orientation of the input curren electrodes (represented by the value of
p — B,) is crucial in determining the stability and the effectiveness of the
length algorithm. In particular when the probed crack is small, the effect
of this orientation becomes more prominent.
(2) Let the locatios of the current electrodes be our boundary input. Within
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1.2
1.16619
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1.07997
1.02283
0.950542
0.854182
0.714621
0.479122
0.36033
0.241815
0.14466
0.0795048
0.0416397
0.0213366
0.0108461
0.00556947
0.00302085
0.00193519
0.00162909
0.00160025
0.001359999

Length Inspection

i,
0.000039519
0.0000487312
0.0000616916
0.0000807305
0.00011025
0.00015923
0.000247502
0.000420597
0.0007391
0.000902374
0.00101036
0.00107328
0.00110419
I 0.00111853
0.00112526
0.00112847
0.00113003
0.00113076
0.00113108
0.00113116
0.00113117
0.00113117

74900.
T2786.8
70324.8
67398.3
63826.9
59308.9
53286.4
44563.8
29845.1
22420.6

i error(%)

.,..
o2}
(o}
©
1 ~1 O -
L 0 O K

20.9493
1.81824
0.0153714
| 0.000920613

p— 68, = 30° s, = 1.2,

s = 0.0016.

The approximate crack length is :
Sapp = S21 = 0.00159999.

TABLE 10
Crack Length Inspection Data

] s, t, error{ %)
0 1.2 0.0000446876 74900.

1 1.16229 0.0000560249 72543.

2 1.11758 0.0000724336 69748.9

3 1.06324 0.0000974189 66352.4

4 0.994903 0.000138 62081.4

5 0.904696 0.000209568 56443.5

6 0.776317 0.000348958 48419.8

7 0.567694 0.000640139 35380.8

8 0.110196 0.00109117 6787.23
9 0.0584683 0.00111263 35534.27
10 | 0.0301548 0.00112248 1784.68
i1 0.0153514 0.00112715 859.466
12 | 0.00781703 0.0011294 388.564
13 | 0.00408598 0.00113049 155.374
14 | 0.00235903 0.00113098 47.14396
15 | 0.00172247 0.00113116 7.65433
16 | 0.00160439 0.0011312 0.274267
17 | 0.00160003 0.0011312 0.00196799
18 | 0.00160003 0.0011312 0.00159647
19 | 0.00160003 0.0011312 0.00159647

p— 0, = 45°. s, = 1.2. s = 0.0016.
The approximate crack length is :
Sapp = 819 = 0.00160003.

the detectability of our method (i.e., for s > 0.0016), there is a minimal
stability region for the the boundary input. Given an appropriate upper
bound s, this minimal stability region 1s characterized by the condition
30° < p—6, < 60° If the input current electrodes are imposed on this

TABLE 11
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Crack Length Inspection Data
T

13 0.00549108 0.000360744 243.192
14 0.00511953 0.000363954 219.972
15 0.00474472 0.000367041 196.545
16 0.00436671 0.000369987 172.919
17 0.00398564 0.00037277 149.103
18 0.00360166 0.000375376 125.104
19 0.00321492 0.000377781 100.933
20 0.0028256 0.000379966 76.6002
21 0.00243389 0.000381914 52.1184
22 0.00203999 0.000383607 27.4993
23 0.00164407 0.00038503 2.75449
24 0.00146895 0.000385568 3.19049
25 0.00199062 0.0003838 24.4134
26 | 0.000444351 | 0.000387536 72.228
27 0.00515603 0.000363645 222.252
28 0.00478153 0.000366745 198.845
29 0.00440382 0.000369705 175.239
30 0.00402305 0.000372507 151.441
31 0.00363934 0.00037513 127.459
i 32 0.00325287 0.00037753353 103.304
133 1 0.00286379 | 0.000379763 78.9871
34 0.00247231 0.000381734 534.5194
35 0.00207861 0.000383453 29.9132
36 0.00168288 0.000384903 5.18024
37 0.00135368 0.000385891 15.3951
p — 68, = 89.994°. s, = 0.01. s = 0.0016.

o%* = 4g,.

R s, ¢ - error(%) |
o ; 0.01 0.000314787 | 525. |
| 1 | 0.00967447 | 0.000318308 | 504.655 |
2 1 0.00934547 | 0.000321861 | 484.092 |
© 3 | 0.00901296 | 0.00032344 | 163.31 |
b 4+ | 0.00867691 | 0.000329039 | 142.307

b5 | 0.00833728 | 0.00033265 @ 121.08 ‘
i 6 | 0.00799406 | 6.000336265 ., 399.628 |
1T ) 0.00764723 | 0.000339875 | 377.952 !
8 | 0.00729679 | 0.000343469 | 356.049 |
| 9 | 0.00694274 | 0.000347035 | 333.922

L 10 0.00658512 | 0.000350561 | 311.57

. L1 | 0.00622393 | 0.000354031 | 288.996 f
v 120 0.00585923 | 0.000357431 , 266.202

TABLE 12

region, the algorithm is not only stable but also converges very fast. There
is certain choice for the boundary input we would always like to avoid. Our
simulation indicates a neighborhood around 90° off the probed crack plane
is considered to be the most unstable area to attach the current electrodes
to.

The initial upper bound s, can not be too large in order to speed up the
convergent rate of the algorithm. Nevertheless, we think the assumed upper
bound is a minor factor in determning the effectiveness of the algorithm.
For the minimum detectable length s = 0.0016, we are still able to obtain
a good estimate (within 20 iteration steps) by starting with s = 1.2 if we
carefully choose the input current electrodes in the minimal stability region.

Even though we have tackled a model with simple geometry, we are convinced
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that the stability and the sensitivity quesitons are far more complicate to answer
completely from our computational observations. However, we believe that by
generalizing the ideas implemented in this paper, we can treat these problems in a
more analytic way and in a more general setting [BCW].

Acknowledgments. We thank Dr. Fourney of Aerospace Engineering Depart-
ment and Dr. Samford of Mechanical Engineering Department at University of
Maryland for many interesting conversations. We also thank Dr. Vogelius and Dr.
Santosa for providing useful information.

REFERENCE

[A] G. Alessandrini, Stable determination of a crack from boundary measurements, proc. Royal
Soc. Edinb. Ser A 123 (1993), no. 3, 497 - 516.

[ABV] G. Alessandrini, E.Beretta, and S Vessella., Determining linear cracks by boundary mea-
surements — Lipschitz stability., SIAM J. Math. Anal. to appear.

[BCW]C. Berenstein, D. C. Chang, and E. Wang, A stability property of surface cracks, in progress.

[BV1] K. Bryan and M. Vogelius, A uniqueness result concerning the identification of a collection
of cracks from finitely many electrostatic boundary measurements, SIAM J. Math. Anal.
23 (1992), no. 4, 950 - 958.

, A computational algorithm to Determine crack locations from electrostatic bound-
ary measurements. The case of multiple cracks, Int. J. Engng Sci. 32 (1994), no. 4, 579 -
603.

[C] J. M. Coffey, Mathematical modeling in NDT ~ What it is and what it does, The institute
of mathematics and its applications conference series (M. Blakemore and G. Georgiou,
eds.), Oxford, 1986.

(EH] A. R. Elcrat and C. Hu., Determination of surface and interior cracks from electrostatic
measurements using Schwarz-Christoffel transformations, Int. J. Eng. Science to appear.

[EIN] A. R. Elerat, V. Isakov, and O. Neculoiu, On finding a surface crack from boundary mea-
surements, Inverse Problems 11 (1995), 343 — 352.

[FV] A. Friedman and M. Vogelius, Determine cracks by boundary measurements, Indiana Math.
J. 38 (1989), 527 — 556.

[Ha] R. Halmshaw, Nondestructive Testing, Wiley-Interscience.

[He] P. Henrici, Appled And Computational Complexr Analysis, vol. I, John Wiley & Sons,
U.S.A..

[KS] P. G. Kaup and F. Santosa, Nondestructive evaluation of corrosion damage using electro-
static measurements, J. Nondestructive Evaluation to appear.

l§SV] P. G. Kaup, F. Santosa, and M. Vogelius, A method for imaging corrosion damage in thin
plates from electrostatic data, Technical Report CTC95TR219 (1995), Cornell Theroy
Center, Ithaca.

[MS] Military Specification, Airplane Damage Tolerance Requirements, MIL-A-83444 (1974),
USAF. )

[SV] F. Santosa and M. Vogelius, A computational algorithm to determine cracks from electro-
static boundary measurements, Int. J. Engng Sci. 29 (1991), no. 8, 917 — 937.

[BV2]

45



APPENDIX A

A CONFORMAL MAPPING FROM 9\o ONTO
THE UNIT DISK {z € Cljz| < 1} IN CGPLANE

In this section we explicitly construct a one-to-one conformal transform which
maps the crack domain 2\ o onto the open unit disk {z € Cl|z| < 1}. The existence
of an analytic map from a connected damain onto another connected domain is
guaranteed by the Riemann mapping theorem. We coustruct the mapping by taking
the composition of 6 intermediate one-to-one analytic functions. One cannot ignore
the asymptotic behavior of the conformal map near the boundary of 2\ ¢ in order
to calculate the potential on the boundary. In other words, finally we need consdier
a topological extension of this map to the closure of Q \ ¢. Through a translation
and a rotation, 2\ o could be placed in a position so that §2 is centered at the origin
and o lies on the real axis of the complex plane with the surface crack tip located at
z = 1. Therefore without loss of generality, we can assume that Q = {z € C||2| < 1}
and o lies on the positive real axis. Let a = 1 — s. That is, assume the interior
crack tip is located at z = a in the complex plane.

STEP 1.
First, we map Q \ ¢ onto the region defined by

Q={z€CRez<0}\{z€Cl(a—1)/(a+1) <Rez <0,Imz = 0}
via the linear fractional transformation h; given as follows:

z—1
z+1

h1 (Z) =

STEP 2.
Rotate §2; clockwise through an angle of 7/2 to obtain the region

Q={2€Cllmz>0}\{z€CRez=0,0<Imz< (1 —-a)/(1+a)}
This could be done by taking an analytic function A, defined by
hz(z) = -1z

STEP 3.
Set
h3(z) = 2*

Then hs conformally maps (), onto the region defined by

2
Q3=C\{26C|Imz=0,Re22—<1—a> }
l1+a
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STEP 4. \
Shift Q3 to the right (}‘TZ) units. Equivalently, if we let

ha(z) = z + (1;3)2

then hy4 will map 23 onto the following region:

Q4 =C\ {z € ClRez > 0,Imz = 0}

STEP 5.
Let’s define a mapping as follows:

hs(z) = 2%/2

where we take the branch {z € C|0 < arg(z) < 2r} for the square root in the
complex plane so that hs is analytic in 4. It is easy to see that the mapping hs
maps the region 4 onto the upper half plane, denoted by Qs.

STEP 6.

Now, the upper half plane {25 can be mapped onto the unit disk {z € C||z| < 1}
through a familiar Mobius transform. We achieve this if we define the following
Mbébius transform: )

i—z

142

then hg conformally maps the upper half plane onto the unit disk which is centered
at the origin.

he(z) =

Finally, we take the composition of those conformal maps calculated form STEP
1 through SETP 6. Let us denote this conformal transform by h,, where the
subscript s indicates the dependence of the map on crack length. We obtain

ho(2) = (he © hs © hg 0 hg 0 hy 0 hy)(z)

1/2
(=) - (=)

2 2\ /2
(- ()

Again, we would like to emphasize that we consider the branch {z € C|0 < arg(z) <
27} whenever the square root is involved in the calculations.

(A.1) =

ho is a one-to-one analytic function from 2\ ¢ onto {z € C||z| < 1}, hence the
inverse exists in the interior of O\ o. However, this is not sufficient for solving the
boundary value problem (0.1) since ho is not continuous over the entire closure of
O\ . Actually, as we carefully examine the preceding calculations. we observe that
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in step 3, hz(z) = 2% maps the negative real axis onto the positive real axis. Due
to the branch taken in step 3. hs(z) = z!/2 will not send back the positive real axis
into the negaive real axis again. So the entire boundary of Q\ ¢ is in reality mapped
onto the upper half circle only. As the consequence, h, will be discontinuous when
a sequence of points approach the crack edge and the lower half boundary from
the interior of the lower half plane. Fortunately, this drawback can be remedied by
implementing “Osgood-Carathéodory theorem”. We state the theorem as follows
and refer readers to [He] for further reference:

Definition. A region is called a Jordan region if it is the interior of a Jordan
curve.

Definition. A map of one set onto another is called topological if it is one-to-one
and continuous in both direction.

Theorem (“Osgood-Carathéodory theorem”). let D and D* be two Jordan
regions. Any function mapping D conformally and one-to-one onto D* can be
extended to a topological map of the closure of D onto the closure of D*.

Although Q\ ¢ is not a Jordan region, we could divide it into two Jordan regions
by a simple arc whose one end is at the interior crack tip and the other end could be
any point of J{2 other than the surface crack tip. Applying Osgood-Carathéodory
theorem to these two Jordan subregions, it is possible to topologically extend A,
to the entire closure of 2\ o. In practice, We proceed in the following way. Let’s
denote by R?2 the upper half plane and R? the lower half plane. Define

(A.2) Qt=QnRL
Q" =QNR2
0T =00n Ri, and o0~ =90NR2

Regarding o as a double-edged slit, the upper edge is denoted by £+ and the lower
part by o~. That is, we have 0 = o™ Uo~. Define h, : Q\ o — Q by

.y ﬁa(z), for zeQ\o
im A + gt
(A.3) hg(z)A:: Q_*_lalg}_)zha(zn), for z€0QTUo
lim  ho(za), for z€80-Uo™
Q= Dzp—z

Then h, is the topological map of A, extended to the closure of Q \ 0. The inverse
of h, exists in the sense that it is analytic from Q onto Q2 \ o , continuous and
one-to-one from Q onto 2\ &.
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